Home | History | Annotate | Line # | Download | only in client
nfs_clbio.c revision 1.5
      1  1.5  riastrad /*	$NetBSD: nfs_clbio.c,v 1.5 2018/09/03 16:29:34 riastradh Exp $	*/
      2  1.1  dholland /*-
      3  1.1  dholland  * Copyright (c) 1989, 1993
      4  1.1  dholland  *	The Regents of the University of California.  All rights reserved.
      5  1.1  dholland  *
      6  1.1  dholland  * This code is derived from software contributed to Berkeley by
      7  1.1  dholland  * Rick Macklem at The University of Guelph.
      8  1.1  dholland  *
      9  1.1  dholland  * Redistribution and use in source and binary forms, with or without
     10  1.1  dholland  * modification, are permitted provided that the following conditions
     11  1.1  dholland  * are met:
     12  1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     13  1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     14  1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  dholland  *    documentation and/or other materials provided with the distribution.
     17  1.1  dholland  * 4. Neither the name of the University nor the names of its contributors
     18  1.1  dholland  *    may be used to endorse or promote products derived from this software
     19  1.1  dholland  *    without specific prior written permission.
     20  1.1  dholland  *
     21  1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1  dholland  * SUCH DAMAGE.
     32  1.1  dholland  *
     33  1.1  dholland  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     34  1.1  dholland  */
     35  1.1  dholland 
     36  1.1  dholland #include <sys/cdefs.h>
     37  1.3  pgoyette /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */
     38  1.5  riastrad __RCSID("$NetBSD: nfs_clbio.c,v 1.5 2018/09/03 16:29:34 riastradh Exp $");
     39  1.1  dholland 
     40  1.1  dholland #include <sys/param.h>
     41  1.1  dholland #include <sys/systm.h>
     42  1.1  dholland #include <sys/buf.h>
     43  1.1  dholland #include <sys/kernel.h>
     44  1.1  dholland #include <sys/mount.h>
     45  1.1  dholland #include <sys/rwlock.h>
     46  1.1  dholland #include <sys/vmmeter.h>
     47  1.1  dholland #include <sys/vnode.h>
     48  1.1  dholland 
     49  1.4  pgoyette #include <fs/nfs/common/nfsport.h>
     50  1.4  pgoyette #include <fs/nfs/client/nfsmount.h>
     51  1.4  pgoyette #include <fs/nfs/client/nfs.h>
     52  1.4  pgoyette #include <fs/nfs/client/nfsnode.h>
     53  1.4  pgoyette #include <fs/nfs/client/nfs_kdtrace.h>
     54  1.1  dholland 
     55  1.1  dholland extern int newnfs_directio_allow_mmap;
     56  1.3  pgoyette extern struct nfsstatsv1 nfsstatsv1;
     57  1.1  dholland extern struct mtx ncl_iod_mutex;
     58  1.1  dholland extern int ncl_numasync;
     59  1.1  dholland extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
     60  1.1  dholland extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
     61  1.1  dholland extern int newnfs_directio_enable;
     62  1.1  dholland extern int nfs_keep_dirty_on_error;
     63  1.1  dholland 
     64  1.1  dholland int ncl_pbuf_freecnt = -1;	/* start out unlimited */
     65  1.1  dholland 
     66  1.1  dholland static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
     67  1.1  dholland     struct thread *td);
     68  1.1  dholland static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
     69  1.1  dholland     struct ucred *cred, int ioflag);
     70  1.1  dholland 
     71  1.1  dholland /*
     72  1.1  dholland  * Vnode op for VM getpages.
     73  1.1  dholland  */
     74  1.1  dholland int
     75  1.1  dholland ncl_getpages(struct vop_getpages_args *ap)
     76  1.1  dholland {
     77  1.1  dholland 	int i, error, nextoff, size, toff, count, npages;
     78  1.1  dholland 	struct uio uio;
     79  1.1  dholland 	struct iovec iov;
     80  1.1  dholland 	vm_offset_t kva;
     81  1.1  dholland 	struct buf *bp;
     82  1.1  dholland 	struct vnode *vp;
     83  1.1  dholland 	struct thread *td;
     84  1.1  dholland 	struct ucred *cred;
     85  1.1  dholland 	struct nfsmount *nmp;
     86  1.1  dholland 	vm_object_t object;
     87  1.1  dholland 	vm_page_t *pages;
     88  1.1  dholland 	struct nfsnode *np;
     89  1.1  dholland 
     90  1.1  dholland 	vp = ap->a_vp;
     91  1.1  dholland 	np = VTONFS(vp);
     92  1.1  dholland 	td = curthread;				/* XXX */
     93  1.1  dholland 	cred = curthread->td_ucred;		/* XXX */
     94  1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
     95  1.1  dholland 	pages = ap->a_m;
     96  1.3  pgoyette 	npages = ap->a_count;
     97  1.1  dholland 
     98  1.1  dholland 	if ((object = vp->v_object) == NULL) {
     99  1.3  pgoyette 		printf("ncl_getpages: called with non-merged cache vnode\n");
    100  1.1  dholland 		return (VM_PAGER_ERROR);
    101  1.1  dholland 	}
    102  1.1  dholland 
    103  1.1  dholland 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
    104  1.1  dholland 		mtx_lock(&np->n_mtx);
    105  1.1  dholland 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    106  1.1  dholland 			mtx_unlock(&np->n_mtx);
    107  1.3  pgoyette 			printf("ncl_getpages: called on non-cacheable vnode\n");
    108  1.1  dholland 			return (VM_PAGER_ERROR);
    109  1.1  dholland 		} else
    110  1.1  dholland 			mtx_unlock(&np->n_mtx);
    111  1.1  dholland 	}
    112  1.1  dholland 
    113  1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    114  1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    115  1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    116  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    117  1.1  dholland 		/* We'll never get here for v4, because we always have fsinfo */
    118  1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    119  1.1  dholland 	} else
    120  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    121  1.1  dholland 
    122  1.1  dholland 	/*
    123  1.1  dholland 	 * If the requested page is partially valid, just return it and
    124  1.1  dholland 	 * allow the pager to zero-out the blanks.  Partially valid pages
    125  1.1  dholland 	 * can only occur at the file EOF.
    126  1.3  pgoyette 	 *
    127  1.3  pgoyette 	 * XXXGL: is that true for NFS, where short read can occur???
    128  1.1  dholland 	 */
    129  1.1  dholland 	VM_OBJECT_WLOCK(object);
    130  1.3  pgoyette 	if (pages[npages - 1]->valid != 0 && --npages == 0)
    131  1.3  pgoyette 		goto out;
    132  1.1  dholland 	VM_OBJECT_WUNLOCK(object);
    133  1.1  dholland 
    134  1.1  dholland 	/*
    135  1.1  dholland 	 * We use only the kva address for the buffer, but this is extremely
    136  1.3  pgoyette 	 * convenient and fast.
    137  1.1  dholland 	 */
    138  1.1  dholland 	bp = getpbuf(&ncl_pbuf_freecnt);
    139  1.1  dholland 
    140  1.1  dholland 	kva = (vm_offset_t) bp->b_data;
    141  1.1  dholland 	pmap_qenter(kva, pages, npages);
    142  1.1  dholland 	PCPU_INC(cnt.v_vnodein);
    143  1.1  dholland 	PCPU_ADD(cnt.v_vnodepgsin, npages);
    144  1.1  dholland 
    145  1.3  pgoyette 	count = npages << PAGE_SHIFT;
    146  1.1  dholland 	iov.iov_base = (caddr_t) kva;
    147  1.1  dholland 	iov.iov_len = count;
    148  1.1  dholland 	uio.uio_iov = &iov;
    149  1.1  dholland 	uio.uio_iovcnt = 1;
    150  1.1  dholland 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
    151  1.1  dholland 	uio.uio_resid = count;
    152  1.1  dholland 	uio.uio_segflg = UIO_SYSSPACE;
    153  1.1  dholland 	uio.uio_rw = UIO_READ;
    154  1.1  dholland 	uio.uio_td = td;
    155  1.1  dholland 
    156  1.1  dholland 	error = ncl_readrpc(vp, &uio, cred);
    157  1.1  dholland 	pmap_qremove(kva, npages);
    158  1.1  dholland 
    159  1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
    160  1.1  dholland 
    161  1.1  dholland 	if (error && (uio.uio_resid == count)) {
    162  1.3  pgoyette 		printf("ncl_getpages: error %d\n", error);
    163  1.1  dholland 		return (VM_PAGER_ERROR);
    164  1.1  dholland 	}
    165  1.1  dholland 
    166  1.1  dholland 	/*
    167  1.1  dholland 	 * Calculate the number of bytes read and validate only that number
    168  1.1  dholland 	 * of bytes.  Note that due to pending writes, size may be 0.  This
    169  1.1  dholland 	 * does not mean that the remaining data is invalid!
    170  1.1  dholland 	 */
    171  1.1  dholland 
    172  1.1  dholland 	size = count - uio.uio_resid;
    173  1.1  dholland 	VM_OBJECT_WLOCK(object);
    174  1.1  dholland 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
    175  1.1  dholland 		vm_page_t m;
    176  1.1  dholland 		nextoff = toff + PAGE_SIZE;
    177  1.1  dholland 		m = pages[i];
    178  1.1  dholland 
    179  1.1  dholland 		if (nextoff <= size) {
    180  1.1  dholland 			/*
    181  1.1  dholland 			 * Read operation filled an entire page
    182  1.1  dholland 			 */
    183  1.1  dholland 			m->valid = VM_PAGE_BITS_ALL;
    184  1.1  dholland 			KASSERT(m->dirty == 0,
    185  1.1  dholland 			    ("nfs_getpages: page %p is dirty", m));
    186  1.1  dholland 		} else if (size > toff) {
    187  1.1  dholland 			/*
    188  1.1  dholland 			 * Read operation filled a partial page.
    189  1.1  dholland 			 */
    190  1.1  dholland 			m->valid = 0;
    191  1.1  dholland 			vm_page_set_valid_range(m, 0, size - toff);
    192  1.1  dholland 			KASSERT(m->dirty == 0,
    193  1.1  dholland 			    ("nfs_getpages: page %p is dirty", m));
    194  1.1  dholland 		} else {
    195  1.1  dholland 			/*
    196  1.1  dholland 			 * Read operation was short.  If no error
    197  1.3  pgoyette 			 * occurred we may have hit a zero-fill
    198  1.1  dholland 			 * section.  We leave valid set to 0, and page
    199  1.1  dholland 			 * is freed by vm_page_readahead_finish() if
    200  1.1  dholland 			 * its index is not equal to requested, or
    201  1.1  dholland 			 * page is zeroed and set valid by
    202  1.1  dholland 			 * vm_pager_get_pages() for requested page.
    203  1.1  dholland 			 */
    204  1.1  dholland 			;
    205  1.1  dholland 		}
    206  1.1  dholland 	}
    207  1.3  pgoyette out:
    208  1.1  dholland 	VM_OBJECT_WUNLOCK(object);
    209  1.3  pgoyette 	if (ap->a_rbehind)
    210  1.3  pgoyette 		*ap->a_rbehind = 0;
    211  1.3  pgoyette 	if (ap->a_rahead)
    212  1.3  pgoyette 		*ap->a_rahead = 0;
    213  1.3  pgoyette 	return (VM_PAGER_OK);
    214  1.1  dholland }
    215  1.1  dholland 
    216  1.1  dholland /*
    217  1.1  dholland  * Vnode op for VM putpages.
    218  1.1  dholland  */
    219  1.1  dholland int
    220  1.1  dholland ncl_putpages(struct vop_putpages_args *ap)
    221  1.1  dholland {
    222  1.1  dholland 	struct uio uio;
    223  1.1  dholland 	struct iovec iov;
    224  1.1  dholland 	vm_offset_t kva;
    225  1.1  dholland 	struct buf *bp;
    226  1.1  dholland 	int iomode, must_commit, i, error, npages, count;
    227  1.1  dholland 	off_t offset;
    228  1.1  dholland 	int *rtvals;
    229  1.1  dholland 	struct vnode *vp;
    230  1.1  dholland 	struct thread *td;
    231  1.1  dholland 	struct ucred *cred;
    232  1.1  dholland 	struct nfsmount *nmp;
    233  1.1  dholland 	struct nfsnode *np;
    234  1.1  dholland 	vm_page_t *pages;
    235  1.1  dholland 
    236  1.1  dholland 	vp = ap->a_vp;
    237  1.1  dholland 	np = VTONFS(vp);
    238  1.1  dholland 	td = curthread;				/* XXX */
    239  1.1  dholland 	/* Set the cred to n_writecred for the write rpcs. */
    240  1.1  dholland 	if (np->n_writecred != NULL)
    241  1.1  dholland 		cred = crhold(np->n_writecred);
    242  1.1  dholland 	else
    243  1.1  dholland 		cred = crhold(curthread->td_ucred);	/* XXX */
    244  1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
    245  1.1  dholland 	pages = ap->a_m;
    246  1.1  dholland 	count = ap->a_count;
    247  1.1  dholland 	rtvals = ap->a_rtvals;
    248  1.1  dholland 	npages = btoc(count);
    249  1.1  dholland 	offset = IDX_TO_OFF(pages[0]->pindex);
    250  1.1  dholland 
    251  1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    252  1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    253  1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    254  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    255  1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    256  1.1  dholland 	} else
    257  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    258  1.1  dholland 
    259  1.1  dholland 	mtx_lock(&np->n_mtx);
    260  1.1  dholland 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
    261  1.1  dholland 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    262  1.1  dholland 		mtx_unlock(&np->n_mtx);
    263  1.3  pgoyette 		printf("ncl_putpages: called on noncache-able vnode\n");
    264  1.1  dholland 		mtx_lock(&np->n_mtx);
    265  1.1  dholland 	}
    266  1.1  dholland 
    267  1.1  dholland 	for (i = 0; i < npages; i++)
    268  1.1  dholland 		rtvals[i] = VM_PAGER_ERROR;
    269  1.1  dholland 
    270  1.1  dholland 	/*
    271  1.1  dholland 	 * When putting pages, do not extend file past EOF.
    272  1.1  dholland 	 */
    273  1.1  dholland 	if (offset + count > np->n_size) {
    274  1.1  dholland 		count = np->n_size - offset;
    275  1.1  dholland 		if (count < 0)
    276  1.1  dholland 			count = 0;
    277  1.1  dholland 	}
    278  1.1  dholland 	mtx_unlock(&np->n_mtx);
    279  1.1  dholland 
    280  1.1  dholland 	/*
    281  1.1  dholland 	 * We use only the kva address for the buffer, but this is extremely
    282  1.3  pgoyette 	 * convenient and fast.
    283  1.1  dholland 	 */
    284  1.1  dholland 	bp = getpbuf(&ncl_pbuf_freecnt);
    285  1.1  dholland 
    286  1.1  dholland 	kva = (vm_offset_t) bp->b_data;
    287  1.1  dholland 	pmap_qenter(kva, pages, npages);
    288  1.1  dholland 	PCPU_INC(cnt.v_vnodeout);
    289  1.1  dholland 	PCPU_ADD(cnt.v_vnodepgsout, count);
    290  1.1  dholland 
    291  1.1  dholland 	iov.iov_base = (caddr_t) kva;
    292  1.1  dholland 	iov.iov_len = count;
    293  1.1  dholland 	uio.uio_iov = &iov;
    294  1.1  dholland 	uio.uio_iovcnt = 1;
    295  1.1  dholland 	uio.uio_offset = offset;
    296  1.1  dholland 	uio.uio_resid = count;
    297  1.1  dholland 	uio.uio_segflg = UIO_SYSSPACE;
    298  1.1  dholland 	uio.uio_rw = UIO_WRITE;
    299  1.1  dholland 	uio.uio_td = td;
    300  1.1  dholland 
    301  1.1  dholland 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
    302  1.1  dholland 	    iomode = NFSWRITE_UNSTABLE;
    303  1.1  dholland 	else
    304  1.1  dholland 	    iomode = NFSWRITE_FILESYNC;
    305  1.1  dholland 
    306  1.1  dholland 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
    307  1.1  dholland 	crfree(cred);
    308  1.1  dholland 
    309  1.1  dholland 	pmap_qremove(kva, npages);
    310  1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
    311  1.1  dholland 
    312  1.1  dholland 	if (error == 0 || !nfs_keep_dirty_on_error) {
    313  1.1  dholland 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
    314  1.1  dholland 		if (must_commit)
    315  1.1  dholland 			ncl_clearcommit(vp->v_mount);
    316  1.1  dholland 	}
    317  1.1  dholland 	return rtvals[0];
    318  1.1  dholland }
    319  1.1  dholland 
    320  1.1  dholland /*
    321  1.1  dholland  * For nfs, cache consistency can only be maintained approximately.
    322  1.1  dholland  * Although RFC1094 does not specify the criteria, the following is
    323  1.1  dholland  * believed to be compatible with the reference port.
    324  1.1  dholland  * For nfs:
    325  1.1  dholland  * If the file's modify time on the server has changed since the
    326  1.1  dholland  * last read rpc or you have written to the file,
    327  1.1  dholland  * you may have lost data cache consistency with the
    328  1.1  dholland  * server, so flush all of the file's data out of the cache.
    329  1.1  dholland  * Then force a getattr rpc to ensure that you have up to date
    330  1.1  dholland  * attributes.
    331  1.1  dholland  * NB: This implies that cache data can be read when up to
    332  1.1  dholland  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
    333  1.1  dholland  * attributes this could be forced by setting n_attrstamp to 0 before
    334  1.1  dholland  * the VOP_GETATTR() call.
    335  1.1  dholland  */
    336  1.1  dholland static inline int
    337  1.1  dholland nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
    338  1.1  dholland {
    339  1.1  dholland 	int error = 0;
    340  1.1  dholland 	struct vattr vattr;
    341  1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    342  1.1  dholland 	int old_lock;
    343  1.1  dholland 
    344  1.1  dholland 	/*
    345  1.1  dholland 	 * Grab the exclusive lock before checking whether the cache is
    346  1.1  dholland 	 * consistent.
    347  1.1  dholland 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
    348  1.1  dholland 	 * But for now, this suffices.
    349  1.1  dholland 	 */
    350  1.1  dholland 	old_lock = ncl_upgrade_vnlock(vp);
    351  1.1  dholland 	if (vp->v_iflag & VI_DOOMED) {
    352  1.1  dholland 		ncl_downgrade_vnlock(vp, old_lock);
    353  1.1  dholland 		return (EBADF);
    354  1.1  dholland 	}
    355  1.1  dholland 
    356  1.1  dholland 	mtx_lock(&np->n_mtx);
    357  1.1  dholland 	if (np->n_flag & NMODIFIED) {
    358  1.1  dholland 		mtx_unlock(&np->n_mtx);
    359  1.1  dholland 		if (vp->v_type != VREG) {
    360  1.1  dholland 			if (vp->v_type != VDIR)
    361  1.1  dholland 				panic("nfs: bioread, not dir");
    362  1.1  dholland 			ncl_invaldir(vp);
    363  1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    364  1.1  dholland 			if (error)
    365  1.1  dholland 				goto out;
    366  1.1  dholland 		}
    367  1.1  dholland 		np->n_attrstamp = 0;
    368  1.1  dholland 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    369  1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    370  1.1  dholland 		if (error)
    371  1.1  dholland 			goto out;
    372  1.1  dholland 		mtx_lock(&np->n_mtx);
    373  1.1  dholland 		np->n_mtime = vattr.va_mtime;
    374  1.1  dholland 		mtx_unlock(&np->n_mtx);
    375  1.1  dholland 	} else {
    376  1.1  dholland 		mtx_unlock(&np->n_mtx);
    377  1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    378  1.1  dholland 		if (error)
    379  1.1  dholland 			return (error);
    380  1.1  dholland 		mtx_lock(&np->n_mtx);
    381  1.1  dholland 		if ((np->n_flag & NSIZECHANGED)
    382  1.1  dholland 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
    383  1.1  dholland 			mtx_unlock(&np->n_mtx);
    384  1.1  dholland 			if (vp->v_type == VDIR)
    385  1.1  dholland 				ncl_invaldir(vp);
    386  1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    387  1.1  dholland 			if (error)
    388  1.1  dholland 				goto out;
    389  1.1  dholland 			mtx_lock(&np->n_mtx);
    390  1.1  dholland 			np->n_mtime = vattr.va_mtime;
    391  1.1  dholland 			np->n_flag &= ~NSIZECHANGED;
    392  1.1  dholland 		}
    393  1.1  dholland 		mtx_unlock(&np->n_mtx);
    394  1.1  dholland 	}
    395  1.1  dholland out:
    396  1.1  dholland 	ncl_downgrade_vnlock(vp, old_lock);
    397  1.1  dholland 	return error;
    398  1.1  dholland }
    399  1.1  dholland 
    400  1.1  dholland /*
    401  1.1  dholland  * Vnode op for read using bio
    402  1.1  dholland  */
    403  1.1  dholland int
    404  1.1  dholland ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
    405  1.1  dholland {
    406  1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    407  1.1  dholland 	int biosize, i;
    408  1.1  dholland 	struct buf *bp, *rabp;
    409  1.1  dholland 	struct thread *td;
    410  1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    411  1.1  dholland 	daddr_t lbn, rabn;
    412  1.1  dholland 	int bcount;
    413  1.1  dholland 	int seqcount;
    414  1.1  dholland 	int nra, error = 0, n = 0, on = 0;
    415  1.1  dholland 	off_t tmp_off;
    416  1.1  dholland 
    417  1.1  dholland 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
    418  1.1  dholland 	if (uio->uio_resid == 0)
    419  1.1  dholland 		return (0);
    420  1.1  dholland 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
    421  1.1  dholland 		return (EINVAL);
    422  1.1  dholland 	td = uio->uio_td;
    423  1.1  dholland 
    424  1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    425  1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    426  1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    427  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    428  1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    429  1.1  dholland 		mtx_lock(&nmp->nm_mtx);
    430  1.1  dholland 	}
    431  1.1  dholland 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
    432  1.1  dholland 		(void) newnfs_iosize(nmp);
    433  1.1  dholland 
    434  1.1  dholland 	tmp_off = uio->uio_offset + uio->uio_resid;
    435  1.1  dholland 	if (vp->v_type != VDIR &&
    436  1.1  dholland 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
    437  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    438  1.1  dholland 		return (EFBIG);
    439  1.1  dholland 	}
    440  1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    441  1.1  dholland 
    442  1.1  dholland 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
    443  1.1  dholland 		/* No caching/ no readaheads. Just read data into the user buffer */
    444  1.1  dholland 		return ncl_readrpc(vp, uio, cred);
    445  1.1  dholland 
    446  1.1  dholland 	biosize = vp->v_bufobj.bo_bsize;
    447  1.1  dholland 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
    448  1.1  dholland 
    449  1.1  dholland 	error = nfs_bioread_check_cons(vp, td, cred);
    450  1.1  dholland 	if (error)
    451  1.1  dholland 		return error;
    452  1.1  dholland 
    453  1.1  dholland 	do {
    454  1.1  dholland 	    u_quad_t nsize;
    455  1.1  dholland 
    456  1.1  dholland 	    mtx_lock(&np->n_mtx);
    457  1.1  dholland 	    nsize = np->n_size;
    458  1.1  dholland 	    mtx_unlock(&np->n_mtx);
    459  1.1  dholland 
    460  1.1  dholland 	    switch (vp->v_type) {
    461  1.1  dholland 	    case VREG:
    462  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
    463  1.1  dholland 		lbn = uio->uio_offset / biosize;
    464  1.1  dholland 		on = uio->uio_offset - (lbn * biosize);
    465  1.1  dholland 
    466  1.1  dholland 		/*
    467  1.1  dholland 		 * Start the read ahead(s), as required.
    468  1.1  dholland 		 */
    469  1.1  dholland 		if (nmp->nm_readahead > 0) {
    470  1.1  dholland 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
    471  1.1  dholland 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
    472  1.1  dholland 			rabn = lbn + 1 + nra;
    473  1.1  dholland 			if (incore(&vp->v_bufobj, rabn) == NULL) {
    474  1.1  dholland 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
    475  1.1  dholland 			    if (!rabp) {
    476  1.1  dholland 				error = newnfs_sigintr(nmp, td);
    477  1.1  dholland 				return (error ? error : EINTR);
    478  1.1  dholland 			    }
    479  1.1  dholland 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    480  1.1  dholland 				rabp->b_flags |= B_ASYNC;
    481  1.1  dholland 				rabp->b_iocmd = BIO_READ;
    482  1.1  dholland 				vfs_busy_pages(rabp, 0);
    483  1.1  dholland 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    484  1.1  dholland 				    rabp->b_flags |= B_INVAL;
    485  1.1  dholland 				    rabp->b_ioflags |= BIO_ERROR;
    486  1.1  dholland 				    vfs_unbusy_pages(rabp);
    487  1.1  dholland 				    brelse(rabp);
    488  1.1  dholland 				    break;
    489  1.1  dholland 				}
    490  1.1  dholland 			    } else {
    491  1.1  dholland 				brelse(rabp);
    492  1.1  dholland 			    }
    493  1.1  dholland 			}
    494  1.1  dholland 		    }
    495  1.1  dholland 		}
    496  1.1  dholland 
    497  1.1  dholland 		/* Note that bcount is *not* DEV_BSIZE aligned. */
    498  1.1  dholland 		bcount = biosize;
    499  1.1  dholland 		if ((off_t)lbn * biosize >= nsize) {
    500  1.1  dholland 			bcount = 0;
    501  1.1  dholland 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
    502  1.1  dholland 			bcount = nsize - (off_t)lbn * biosize;
    503  1.1  dholland 		}
    504  1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
    505  1.1  dholland 
    506  1.1  dholland 		if (!bp) {
    507  1.1  dholland 			error = newnfs_sigintr(nmp, td);
    508  1.1  dholland 			return (error ? error : EINTR);
    509  1.1  dholland 		}
    510  1.1  dholland 
    511  1.1  dholland 		/*
    512  1.1  dholland 		 * If B_CACHE is not set, we must issue the read.  If this
    513  1.1  dholland 		 * fails, we return an error.
    514  1.1  dholland 		 */
    515  1.1  dholland 
    516  1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    517  1.1  dholland 		    bp->b_iocmd = BIO_READ;
    518  1.1  dholland 		    vfs_busy_pages(bp, 0);
    519  1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    520  1.1  dholland 		    if (error) {
    521  1.1  dholland 			brelse(bp);
    522  1.1  dholland 			return (error);
    523  1.1  dholland 		    }
    524  1.1  dholland 		}
    525  1.1  dholland 
    526  1.1  dholland 		/*
    527  1.1  dholland 		 * on is the offset into the current bp.  Figure out how many
    528  1.1  dholland 		 * bytes we can copy out of the bp.  Note that bcount is
    529  1.1  dholland 		 * NOT DEV_BSIZE aligned.
    530  1.1  dholland 		 *
    531  1.1  dholland 		 * Then figure out how many bytes we can copy into the uio.
    532  1.1  dholland 		 */
    533  1.1  dholland 
    534  1.1  dholland 		n = 0;
    535  1.1  dholland 		if (on < bcount)
    536  1.1  dholland 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
    537  1.1  dholland 		break;
    538  1.1  dholland 	    case VLNK:
    539  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
    540  1.1  dholland 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
    541  1.1  dholland 		if (!bp) {
    542  1.1  dholland 			error = newnfs_sigintr(nmp, td);
    543  1.1  dholland 			return (error ? error : EINTR);
    544  1.1  dholland 		}
    545  1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    546  1.1  dholland 		    bp->b_iocmd = BIO_READ;
    547  1.1  dholland 		    vfs_busy_pages(bp, 0);
    548  1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    549  1.1  dholland 		    if (error) {
    550  1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
    551  1.1  dholland 			brelse(bp);
    552  1.1  dholland 			return (error);
    553  1.1  dholland 		    }
    554  1.1  dholland 		}
    555  1.1  dholland 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    556  1.1  dholland 		on = 0;
    557  1.1  dholland 		break;
    558  1.1  dholland 	    case VDIR:
    559  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
    560  1.1  dholland 		if (np->n_direofoffset
    561  1.1  dholland 		    && uio->uio_offset >= np->n_direofoffset) {
    562  1.1  dholland 		    return (0);
    563  1.1  dholland 		}
    564  1.1  dholland 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
    565  1.1  dholland 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
    566  1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
    567  1.1  dholland 		if (!bp) {
    568  1.1  dholland 		    error = newnfs_sigintr(nmp, td);
    569  1.1  dholland 		    return (error ? error : EINTR);
    570  1.1  dholland 		}
    571  1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    572  1.1  dholland 		    bp->b_iocmd = BIO_READ;
    573  1.1  dholland 		    vfs_busy_pages(bp, 0);
    574  1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    575  1.1  dholland 		    if (error) {
    576  1.1  dholland 			    brelse(bp);
    577  1.1  dholland 		    }
    578  1.1  dholland 		    while (error == NFSERR_BAD_COOKIE) {
    579  1.1  dholland 			ncl_invaldir(vp);
    580  1.1  dholland 			error = ncl_vinvalbuf(vp, 0, td, 1);
    581  1.1  dholland 			/*
    582  1.1  dholland 			 * Yuck! The directory has been modified on the
    583  1.1  dholland 			 * server. The only way to get the block is by
    584  1.1  dholland 			 * reading from the beginning to get all the
    585  1.1  dholland 			 * offset cookies.
    586  1.1  dholland 			 *
    587  1.1  dholland 			 * Leave the last bp intact unless there is an error.
    588  1.1  dholland 			 * Loop back up to the while if the error is another
    589  1.1  dholland 			 * NFSERR_BAD_COOKIE (double yuch!).
    590  1.1  dholland 			 */
    591  1.1  dholland 			for (i = 0; i <= lbn && !error; i++) {
    592  1.1  dholland 			    if (np->n_direofoffset
    593  1.1  dholland 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
    594  1.1  dholland 				    return (0);
    595  1.1  dholland 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
    596  1.1  dholland 			    if (!bp) {
    597  1.1  dholland 				error = newnfs_sigintr(nmp, td);
    598  1.1  dholland 				return (error ? error : EINTR);
    599  1.1  dholland 			    }
    600  1.1  dholland 			    if ((bp->b_flags & B_CACHE) == 0) {
    601  1.1  dholland 				    bp->b_iocmd = BIO_READ;
    602  1.1  dholland 				    vfs_busy_pages(bp, 0);
    603  1.1  dholland 				    error = ncl_doio(vp, bp, cred, td, 0);
    604  1.1  dholland 				    /*
    605  1.1  dholland 				     * no error + B_INVAL == directory EOF,
    606  1.1  dholland 				     * use the block.
    607  1.1  dholland 				     */
    608  1.1  dholland 				    if (error == 0 && (bp->b_flags & B_INVAL))
    609  1.1  dholland 					    break;
    610  1.1  dholland 			    }
    611  1.1  dholland 			    /*
    612  1.1  dholland 			     * An error will throw away the block and the
    613  1.1  dholland 			     * for loop will break out.  If no error and this
    614  1.1  dholland 			     * is not the block we want, we throw away the
    615  1.1  dholland 			     * block and go for the next one via the for loop.
    616  1.1  dholland 			     */
    617  1.1  dholland 			    if (error || i < lbn)
    618  1.1  dholland 				    brelse(bp);
    619  1.1  dholland 			}
    620  1.1  dholland 		    }
    621  1.1  dholland 		    /*
    622  1.1  dholland 		     * The above while is repeated if we hit another cookie
    623  1.1  dholland 		     * error.  If we hit an error and it wasn't a cookie error,
    624  1.1  dholland 		     * we give up.
    625  1.1  dholland 		     */
    626  1.1  dholland 		    if (error)
    627  1.1  dholland 			    return (error);
    628  1.1  dholland 		}
    629  1.1  dholland 
    630  1.1  dholland 		/*
    631  1.1  dholland 		 * If not eof and read aheads are enabled, start one.
    632  1.1  dholland 		 * (You need the current block first, so that you have the
    633  1.1  dholland 		 *  directory offset cookie of the next block.)
    634  1.1  dholland 		 */
    635  1.1  dholland 		if (nmp->nm_readahead > 0 &&
    636  1.1  dholland 		    (bp->b_flags & B_INVAL) == 0 &&
    637  1.1  dholland 		    (np->n_direofoffset == 0 ||
    638  1.1  dholland 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
    639  1.1  dholland 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
    640  1.1  dholland 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
    641  1.1  dholland 			if (rabp) {
    642  1.1  dholland 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    643  1.1  dholland 				rabp->b_flags |= B_ASYNC;
    644  1.1  dholland 				rabp->b_iocmd = BIO_READ;
    645  1.1  dholland 				vfs_busy_pages(rabp, 0);
    646  1.1  dholland 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    647  1.1  dholland 				    rabp->b_flags |= B_INVAL;
    648  1.1  dholland 				    rabp->b_ioflags |= BIO_ERROR;
    649  1.1  dholland 				    vfs_unbusy_pages(rabp);
    650  1.1  dholland 				    brelse(rabp);
    651  1.1  dholland 				}
    652  1.1  dholland 			    } else {
    653  1.1  dholland 				brelse(rabp);
    654  1.1  dholland 			    }
    655  1.1  dholland 			}
    656  1.1  dholland 		}
    657  1.1  dholland 		/*
    658  1.1  dholland 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
    659  1.1  dholland 		 * chopped for the EOF condition, we cannot tell how large
    660  1.1  dholland 		 * NFS directories are going to be until we hit EOF.  So
    661  1.1  dholland 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
    662  1.1  dholland 		 * it just so happens that b_resid will effectively chop it
    663  1.1  dholland 		 * to EOF.  *BUT* this information is lost if the buffer goes
    664  1.1  dholland 		 * away and is reconstituted into a B_CACHE state ( due to
    665  1.1  dholland 		 * being VMIO ) later.  So we keep track of the directory eof
    666  1.1  dholland 		 * in np->n_direofoffset and chop it off as an extra step
    667  1.1  dholland 		 * right here.
    668  1.1  dholland 		 */
    669  1.1  dholland 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
    670  1.1  dholland 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
    671  1.1  dholland 			n = np->n_direofoffset - uio->uio_offset;
    672  1.1  dholland 		break;
    673  1.1  dholland 	    default:
    674  1.3  pgoyette 		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
    675  1.1  dholland 		bp = NULL;
    676  1.1  dholland 		break;
    677  1.3  pgoyette 	    }
    678  1.1  dholland 
    679  1.1  dholland 	    if (n > 0) {
    680  1.1  dholland 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
    681  1.1  dholland 	    }
    682  1.1  dholland 	    if (vp->v_type == VLNK)
    683  1.1  dholland 		n = 0;
    684  1.1  dholland 	    if (bp != NULL)
    685  1.1  dholland 		brelse(bp);
    686  1.1  dholland 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    687  1.1  dholland 	return (error);
    688  1.1  dholland }
    689  1.1  dholland 
    690  1.1  dholland /*
    691  1.1  dholland  * The NFS write path cannot handle iovecs with len > 1. So we need to
    692  1.1  dholland  * break up iovecs accordingly (restricting them to wsize).
    693  1.1  dholland  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
    694  1.1  dholland  * For the ASYNC case, 2 copies are needed. The first a copy from the
    695  1.1  dholland  * user buffer to a staging buffer and then a second copy from the staging
    696  1.1  dholland  * buffer to mbufs. This can be optimized by copying from the user buffer
    697  1.1  dholland  * directly into mbufs and passing the chain down, but that requires a
    698  1.1  dholland  * fair amount of re-working of the relevant codepaths (and can be done
    699  1.1  dholland  * later).
    700  1.1  dholland  */
    701  1.1  dholland static int
    702  1.1  dholland nfs_directio_write(vp, uiop, cred, ioflag)
    703  1.1  dholland 	struct vnode *vp;
    704  1.1  dholland 	struct uio *uiop;
    705  1.1  dholland 	struct ucred *cred;
    706  1.1  dholland 	int ioflag;
    707  1.1  dholland {
    708  1.1  dholland 	int error;
    709  1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    710  1.1  dholland 	struct thread *td = uiop->uio_td;
    711  1.1  dholland 	int size;
    712  1.1  dholland 	int wsize;
    713  1.1  dholland 
    714  1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    715  1.1  dholland 	wsize = nmp->nm_wsize;
    716  1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    717  1.1  dholland 	if (ioflag & IO_SYNC) {
    718  1.1  dholland 		int iomode, must_commit;
    719  1.1  dholland 		struct uio uio;
    720  1.1  dholland 		struct iovec iov;
    721  1.1  dholland do_sync:
    722  1.1  dholland 		while (uiop->uio_resid > 0) {
    723  1.1  dholland 			size = MIN(uiop->uio_resid, wsize);
    724  1.1  dholland 			size = MIN(uiop->uio_iov->iov_len, size);
    725  1.1  dholland 			iov.iov_base = uiop->uio_iov->iov_base;
    726  1.1  dholland 			iov.iov_len = size;
    727  1.1  dholland 			uio.uio_iov = &iov;
    728  1.1  dholland 			uio.uio_iovcnt = 1;
    729  1.1  dholland 			uio.uio_offset = uiop->uio_offset;
    730  1.1  dholland 			uio.uio_resid = size;
    731  1.1  dholland 			uio.uio_segflg = UIO_USERSPACE;
    732  1.1  dholland 			uio.uio_rw = UIO_WRITE;
    733  1.1  dholland 			uio.uio_td = td;
    734  1.1  dholland 			iomode = NFSWRITE_FILESYNC;
    735  1.1  dholland 			error = ncl_writerpc(vp, &uio, cred, &iomode,
    736  1.1  dholland 			    &must_commit, 0);
    737  1.1  dholland 			KASSERT((must_commit == 0),
    738  1.1  dholland 				("ncl_directio_write: Did not commit write"));
    739  1.1  dholland 			if (error)
    740  1.1  dholland 				return (error);
    741  1.1  dholland 			uiop->uio_offset += size;
    742  1.1  dholland 			uiop->uio_resid -= size;
    743  1.1  dholland 			if (uiop->uio_iov->iov_len <= size) {
    744  1.1  dholland 				uiop->uio_iovcnt--;
    745  1.1  dholland 				uiop->uio_iov++;
    746  1.1  dholland 			} else {
    747  1.1  dholland 				uiop->uio_iov->iov_base =
    748  1.1  dholland 					(char *)uiop->uio_iov->iov_base + size;
    749  1.1  dholland 				uiop->uio_iov->iov_len -= size;
    750  1.1  dholland 			}
    751  1.1  dholland 		}
    752  1.1  dholland 	} else {
    753  1.1  dholland 		struct uio *t_uio;
    754  1.1  dholland 		struct iovec *t_iov;
    755  1.1  dholland 		struct buf *bp;
    756  1.1  dholland 
    757  1.1  dholland 		/*
    758  1.1  dholland 		 * Break up the write into blocksize chunks and hand these
    759  1.1  dholland 		 * over to nfsiod's for write back.
    760  1.1  dholland 		 * Unfortunately, this incurs a copy of the data. Since
    761  1.1  dholland 		 * the user could modify the buffer before the write is
    762  1.1  dholland 		 * initiated.
    763  1.1  dholland 		 *
    764  1.1  dholland 		 * The obvious optimization here is that one of the 2 copies
    765  1.1  dholland 		 * in the async write path can be eliminated by copying the
    766  1.1  dholland 		 * data here directly into mbufs and passing the mbuf chain
    767  1.1  dholland 		 * down. But that will require a fair amount of re-working
    768  1.1  dholland 		 * of the code and can be done if there's enough interest
    769  1.1  dholland 		 * in NFS directio access.
    770  1.1  dholland 		 */
    771  1.1  dholland 		while (uiop->uio_resid > 0) {
    772  1.1  dholland 			size = MIN(uiop->uio_resid, wsize);
    773  1.1  dholland 			size = MIN(uiop->uio_iov->iov_len, size);
    774  1.1  dholland 			bp = getpbuf(&ncl_pbuf_freecnt);
    775  1.1  dholland 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
    776  1.1  dholland 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
    777  1.1  dholland 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
    778  1.1  dholland 			t_iov->iov_len = size;
    779  1.1  dholland 			t_uio->uio_iov = t_iov;
    780  1.1  dholland 			t_uio->uio_iovcnt = 1;
    781  1.1  dholland 			t_uio->uio_offset = uiop->uio_offset;
    782  1.1  dholland 			t_uio->uio_resid = size;
    783  1.1  dholland 			t_uio->uio_segflg = UIO_SYSSPACE;
    784  1.1  dholland 			t_uio->uio_rw = UIO_WRITE;
    785  1.1  dholland 			t_uio->uio_td = td;
    786  1.1  dholland 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
    787  1.1  dholland 			    uiop->uio_segflg == UIO_SYSSPACE,
    788  1.1  dholland 			    ("nfs_directio_write: Bad uio_segflg"));
    789  1.1  dholland 			if (uiop->uio_segflg == UIO_USERSPACE) {
    790  1.1  dholland 				error = copyin(uiop->uio_iov->iov_base,
    791  1.1  dholland 				    t_iov->iov_base, size);
    792  1.1  dholland 				if (error != 0)
    793  1.1  dholland 					goto err_free;
    794  1.1  dholland 			} else
    795  1.1  dholland 				/*
    796  1.1  dholland 				 * UIO_SYSSPACE may never happen, but handle
    797  1.1  dholland 				 * it just in case it does.
    798  1.1  dholland 				 */
    799  1.1  dholland 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
    800  1.1  dholland 				    size);
    801  1.1  dholland 			bp->b_flags |= B_DIRECT;
    802  1.1  dholland 			bp->b_iocmd = BIO_WRITE;
    803  1.1  dholland 			if (cred != NOCRED) {
    804  1.1  dholland 				crhold(cred);
    805  1.1  dholland 				bp->b_wcred = cred;
    806  1.1  dholland 			} else
    807  1.1  dholland 				bp->b_wcred = NOCRED;
    808  1.1  dholland 			bp->b_caller1 = (void *)t_uio;
    809  1.1  dholland 			bp->b_vp = vp;
    810  1.1  dholland 			error = ncl_asyncio(nmp, bp, NOCRED, td);
    811  1.1  dholland err_free:
    812  1.1  dholland 			if (error) {
    813  1.1  dholland 				free(t_iov->iov_base, M_NFSDIRECTIO);
    814  1.1  dholland 				free(t_iov, M_NFSDIRECTIO);
    815  1.1  dholland 				free(t_uio, M_NFSDIRECTIO);
    816  1.1  dholland 				bp->b_vp = NULL;
    817  1.1  dholland 				relpbuf(bp, &ncl_pbuf_freecnt);
    818  1.1  dholland 				if (error == EINTR)
    819  1.1  dholland 					return (error);
    820  1.1  dholland 				goto do_sync;
    821  1.1  dholland 			}
    822  1.1  dholland 			uiop->uio_offset += size;
    823  1.1  dholland 			uiop->uio_resid -= size;
    824  1.1  dholland 			if (uiop->uio_iov->iov_len <= size) {
    825  1.1  dholland 				uiop->uio_iovcnt--;
    826  1.1  dholland 				uiop->uio_iov++;
    827  1.1  dholland 			} else {
    828  1.1  dholland 				uiop->uio_iov->iov_base =
    829  1.1  dholland 					(char *)uiop->uio_iov->iov_base + size;
    830  1.1  dholland 				uiop->uio_iov->iov_len -= size;
    831  1.1  dholland 			}
    832  1.1  dholland 		}
    833  1.1  dholland 	}
    834  1.1  dholland 	return (0);
    835  1.1  dholland }
    836  1.1  dholland 
    837  1.1  dholland /*
    838  1.1  dholland  * Vnode op for write using bio
    839  1.1  dholland  */
    840  1.1  dholland int
    841  1.1  dholland ncl_write(struct vop_write_args *ap)
    842  1.1  dholland {
    843  1.1  dholland 	int biosize;
    844  1.1  dholland 	struct uio *uio = ap->a_uio;
    845  1.1  dholland 	struct thread *td = uio->uio_td;
    846  1.1  dholland 	struct vnode *vp = ap->a_vp;
    847  1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    848  1.1  dholland 	struct ucred *cred = ap->a_cred;
    849  1.1  dholland 	int ioflag = ap->a_ioflag;
    850  1.1  dholland 	struct buf *bp;
    851  1.1  dholland 	struct vattr vattr;
    852  1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    853  1.1  dholland 	daddr_t lbn;
    854  1.3  pgoyette 	int bcount, noncontig_write, obcount;
    855  1.3  pgoyette 	int bp_cached, n, on, error = 0, error1, wouldcommit;
    856  1.1  dholland 	size_t orig_resid, local_resid;
    857  1.1  dholland 	off_t orig_size, tmp_off;
    858  1.1  dholland 
    859  1.1  dholland 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
    860  1.1  dholland 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
    861  1.1  dholland 	    ("ncl_write proc"));
    862  1.1  dholland 	if (vp->v_type != VREG)
    863  1.1  dholland 		return (EIO);
    864  1.1  dholland 	mtx_lock(&np->n_mtx);
    865  1.1  dholland 	if (np->n_flag & NWRITEERR) {
    866  1.1  dholland 		np->n_flag &= ~NWRITEERR;
    867  1.1  dholland 		mtx_unlock(&np->n_mtx);
    868  1.1  dholland 		return (np->n_error);
    869  1.1  dholland 	} else
    870  1.1  dholland 		mtx_unlock(&np->n_mtx);
    871  1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    872  1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    873  1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    874  1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    875  1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    876  1.1  dholland 		mtx_lock(&nmp->nm_mtx);
    877  1.1  dholland 	}
    878  1.1  dholland 	if (nmp->nm_wsize == 0)
    879  1.1  dholland 		(void) newnfs_iosize(nmp);
    880  1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    881  1.1  dholland 
    882  1.1  dholland 	/*
    883  1.1  dholland 	 * Synchronously flush pending buffers if we are in synchronous
    884  1.1  dholland 	 * mode or if we are appending.
    885  1.1  dholland 	 */
    886  1.1  dholland 	if (ioflag & (IO_APPEND | IO_SYNC)) {
    887  1.1  dholland 		mtx_lock(&np->n_mtx);
    888  1.1  dholland 		if (np->n_flag & NMODIFIED) {
    889  1.1  dholland 			mtx_unlock(&np->n_mtx);
    890  1.1  dholland #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
    891  1.1  dholland 			/*
    892  1.1  dholland 			 * Require non-blocking, synchronous writes to
    893  1.1  dholland 			 * dirty files to inform the program it needs
    894  1.1  dholland 			 * to fsync(2) explicitly.
    895  1.1  dholland 			 */
    896  1.1  dholland 			if (ioflag & IO_NDELAY)
    897  1.1  dholland 				return (EAGAIN);
    898  1.1  dholland #endif
    899  1.1  dholland 			np->n_attrstamp = 0;
    900  1.1  dholland 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    901  1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    902  1.1  dholland 			if (error)
    903  1.1  dholland 				return (error);
    904  1.1  dholland 		} else
    905  1.1  dholland 			mtx_unlock(&np->n_mtx);
    906  1.1  dholland 	}
    907  1.1  dholland 
    908  1.1  dholland 	orig_resid = uio->uio_resid;
    909  1.1  dholland 	mtx_lock(&np->n_mtx);
    910  1.1  dholland 	orig_size = np->n_size;
    911  1.1  dholland 	mtx_unlock(&np->n_mtx);
    912  1.1  dholland 
    913  1.1  dholland 	/*
    914  1.1  dholland 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
    915  1.1  dholland 	 * get the append lock.
    916  1.1  dholland 	 */
    917  1.1  dholland 	if (ioflag & IO_APPEND) {
    918  1.1  dholland 		np->n_attrstamp = 0;
    919  1.1  dholland 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    920  1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    921  1.1  dholland 		if (error)
    922  1.1  dholland 			return (error);
    923  1.1  dholland 		mtx_lock(&np->n_mtx);
    924  1.1  dholland 		uio->uio_offset = np->n_size;
    925  1.1  dholland 		mtx_unlock(&np->n_mtx);
    926  1.1  dholland 	}
    927  1.1  dholland 
    928  1.1  dholland 	if (uio->uio_offset < 0)
    929  1.1  dholland 		return (EINVAL);
    930  1.1  dholland 	tmp_off = uio->uio_offset + uio->uio_resid;
    931  1.1  dholland 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
    932  1.1  dholland 		return (EFBIG);
    933  1.1  dholland 	if (uio->uio_resid == 0)
    934  1.1  dholland 		return (0);
    935  1.1  dholland 
    936  1.1  dholland 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
    937  1.1  dholland 		return nfs_directio_write(vp, uio, cred, ioflag);
    938  1.1  dholland 
    939  1.1  dholland 	/*
    940  1.1  dholland 	 * Maybe this should be above the vnode op call, but so long as
    941  1.1  dholland 	 * file servers have no limits, i don't think it matters
    942  1.1  dholland 	 */
    943  1.1  dholland 	if (vn_rlimit_fsize(vp, uio, td))
    944  1.1  dholland 		return (EFBIG);
    945  1.1  dholland 
    946  1.1  dholland 	biosize = vp->v_bufobj.bo_bsize;
    947  1.1  dholland 	/*
    948  1.1  dholland 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
    949  1.1  dholland 	 * would exceed the local maximum per-file write commit size when
    950  1.1  dholland 	 * combined with those, we must decide whether to flush,
    951  1.1  dholland 	 * go synchronous, or return error.  We don't bother checking
    952  1.1  dholland 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
    953  1.1  dholland 	 * no point optimizing for something that really won't ever happen.
    954  1.1  dholland 	 */
    955  1.3  pgoyette 	wouldcommit = 0;
    956  1.1  dholland 	if (!(ioflag & IO_SYNC)) {
    957  1.1  dholland 		int nflag;
    958  1.1  dholland 
    959  1.1  dholland 		mtx_lock(&np->n_mtx);
    960  1.1  dholland 		nflag = np->n_flag;
    961  1.1  dholland 		mtx_unlock(&np->n_mtx);
    962  1.3  pgoyette 		if (nflag & NMODIFIED) {
    963  1.1  dholland 			BO_LOCK(&vp->v_bufobj);
    964  1.1  dholland 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
    965  1.1  dholland 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
    966  1.1  dholland 				    b_bobufs) {
    967  1.1  dholland 					if (bp->b_flags & B_NEEDCOMMIT)
    968  1.1  dholland 						wouldcommit += bp->b_bcount;
    969  1.1  dholland 				}
    970  1.1  dholland 			}
    971  1.1  dholland 			BO_UNLOCK(&vp->v_bufobj);
    972  1.1  dholland 		}
    973  1.1  dholland 	}
    974  1.1  dholland 
    975  1.1  dholland 	do {
    976  1.3  pgoyette 		if (!(ioflag & IO_SYNC)) {
    977  1.3  pgoyette 			wouldcommit += biosize;
    978  1.3  pgoyette 			if (wouldcommit > nmp->nm_wcommitsize) {
    979  1.3  pgoyette 				np->n_attrstamp = 0;
    980  1.3  pgoyette 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    981  1.3  pgoyette 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    982  1.3  pgoyette 				if (error)
    983  1.3  pgoyette 					return (error);
    984  1.3  pgoyette 				wouldcommit = biosize;
    985  1.3  pgoyette 			}
    986  1.3  pgoyette 		}
    987  1.3  pgoyette 
    988  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
    989  1.1  dholland 		lbn = uio->uio_offset / biosize;
    990  1.1  dholland 		on = uio->uio_offset - (lbn * biosize);
    991  1.1  dholland 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
    992  1.1  dholland again:
    993  1.1  dholland 		/*
    994  1.1  dholland 		 * Handle direct append and file extension cases, calculate
    995  1.1  dholland 		 * unaligned buffer size.
    996  1.1  dholland 		 */
    997  1.1  dholland 		mtx_lock(&np->n_mtx);
    998  1.3  pgoyette 		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
    999  1.3  pgoyette 		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
   1000  1.3  pgoyette 			noncontig_write = 1;
   1001  1.3  pgoyette 		else
   1002  1.3  pgoyette 			noncontig_write = 0;
   1003  1.3  pgoyette 		if ((uio->uio_offset == np->n_size ||
   1004  1.3  pgoyette 		    (noncontig_write != 0 &&
   1005  1.3  pgoyette 		    lbn == (np->n_size / biosize) &&
   1006  1.3  pgoyette 		    uio->uio_offset + n > np->n_size)) && n) {
   1007  1.1  dholland 			mtx_unlock(&np->n_mtx);
   1008  1.1  dholland 			/*
   1009  1.1  dholland 			 * Get the buffer (in its pre-append state to maintain
   1010  1.1  dholland 			 * B_CACHE if it was previously set).  Resize the
   1011  1.1  dholland 			 * nfsnode after we have locked the buffer to prevent
   1012  1.1  dholland 			 * readers from reading garbage.
   1013  1.1  dholland 			 */
   1014  1.3  pgoyette 			obcount = np->n_size - (lbn * biosize);
   1015  1.3  pgoyette 			bp = nfs_getcacheblk(vp, lbn, obcount, td);
   1016  1.1  dholland 
   1017  1.1  dholland 			if (bp != NULL) {
   1018  1.1  dholland 				long save;
   1019  1.1  dholland 
   1020  1.1  dholland 				mtx_lock(&np->n_mtx);
   1021  1.1  dholland 				np->n_size = uio->uio_offset + n;
   1022  1.1  dholland 				np->n_flag |= NMODIFIED;
   1023  1.1  dholland 				vnode_pager_setsize(vp, np->n_size);
   1024  1.1  dholland 				mtx_unlock(&np->n_mtx);
   1025  1.1  dholland 
   1026  1.1  dholland 				save = bp->b_flags & B_CACHE;
   1027  1.3  pgoyette 				bcount = on + n;
   1028  1.1  dholland 				allocbuf(bp, bcount);
   1029  1.1  dholland 				bp->b_flags |= save;
   1030  1.3  pgoyette 				if (noncontig_write != 0 && on > obcount)
   1031  1.3  pgoyette 					vfs_bio_bzero_buf(bp, obcount, on -
   1032  1.3  pgoyette 					    obcount);
   1033  1.1  dholland 			}
   1034  1.1  dholland 		} else {
   1035  1.1  dholland 			/*
   1036  1.1  dholland 			 * Obtain the locked cache block first, and then
   1037  1.1  dholland 			 * adjust the file's size as appropriate.
   1038  1.1  dholland 			 */
   1039  1.1  dholland 			bcount = on + n;
   1040  1.1  dholland 			if ((off_t)lbn * biosize + bcount < np->n_size) {
   1041  1.1  dholland 				if ((off_t)(lbn + 1) * biosize < np->n_size)
   1042  1.1  dholland 					bcount = biosize;
   1043  1.1  dholland 				else
   1044  1.1  dholland 					bcount = np->n_size - (off_t)lbn * biosize;
   1045  1.1  dholland 			}
   1046  1.1  dholland 			mtx_unlock(&np->n_mtx);
   1047  1.1  dholland 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
   1048  1.1  dholland 			mtx_lock(&np->n_mtx);
   1049  1.1  dholland 			if (uio->uio_offset + n > np->n_size) {
   1050  1.1  dholland 				np->n_size = uio->uio_offset + n;
   1051  1.1  dholland 				np->n_flag |= NMODIFIED;
   1052  1.1  dholland 				vnode_pager_setsize(vp, np->n_size);
   1053  1.1  dholland 			}
   1054  1.1  dholland 			mtx_unlock(&np->n_mtx);
   1055  1.1  dholland 		}
   1056  1.1  dholland 
   1057  1.1  dholland 		if (!bp) {
   1058  1.1  dholland 			error = newnfs_sigintr(nmp, td);
   1059  1.1  dholland 			if (!error)
   1060  1.1  dholland 				error = EINTR;
   1061  1.1  dholland 			break;
   1062  1.1  dholland 		}
   1063  1.1  dholland 
   1064  1.1  dholland 		/*
   1065  1.1  dholland 		 * Issue a READ if B_CACHE is not set.  In special-append
   1066  1.1  dholland 		 * mode, B_CACHE is based on the buffer prior to the write
   1067  1.1  dholland 		 * op and is typically set, avoiding the read.  If a read
   1068  1.1  dholland 		 * is required in special append mode, the server will
   1069  1.1  dholland 		 * probably send us a short-read since we extended the file
   1070  1.1  dholland 		 * on our end, resulting in b_resid == 0 and, thusly,
   1071  1.1  dholland 		 * B_CACHE getting set.
   1072  1.1  dholland 		 *
   1073  1.1  dholland 		 * We can also avoid issuing the read if the write covers
   1074  1.1  dholland 		 * the entire buffer.  We have to make sure the buffer state
   1075  1.1  dholland 		 * is reasonable in this case since we will not be initiating
   1076  1.1  dholland 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
   1077  1.1  dholland 		 * more information.
   1078  1.1  dholland 		 *
   1079  1.1  dholland 		 * B_CACHE may also be set due to the buffer being cached
   1080  1.1  dholland 		 * normally.
   1081  1.1  dholland 		 */
   1082  1.1  dholland 
   1083  1.1  dholland 		bp_cached = 1;
   1084  1.1  dholland 		if (on == 0 && n == bcount) {
   1085  1.1  dholland 			if ((bp->b_flags & B_CACHE) == 0)
   1086  1.1  dholland 				bp_cached = 0;
   1087  1.1  dholland 			bp->b_flags |= B_CACHE;
   1088  1.1  dholland 			bp->b_flags &= ~B_INVAL;
   1089  1.1  dholland 			bp->b_ioflags &= ~BIO_ERROR;
   1090  1.1  dholland 		}
   1091  1.1  dholland 
   1092  1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
   1093  1.1  dholland 			bp->b_iocmd = BIO_READ;
   1094  1.1  dholland 			vfs_busy_pages(bp, 0);
   1095  1.1  dholland 			error = ncl_doio(vp, bp, cred, td, 0);
   1096  1.1  dholland 			if (error) {
   1097  1.1  dholland 				brelse(bp);
   1098  1.1  dholland 				break;
   1099  1.1  dholland 			}
   1100  1.1  dholland 		}
   1101  1.1  dholland 		if (bp->b_wcred == NOCRED)
   1102  1.1  dholland 			bp->b_wcred = crhold(cred);
   1103  1.1  dholland 		mtx_lock(&np->n_mtx);
   1104  1.1  dholland 		np->n_flag |= NMODIFIED;
   1105  1.1  dholland 		mtx_unlock(&np->n_mtx);
   1106  1.1  dholland 
   1107  1.1  dholland 		/*
   1108  1.1  dholland 		 * If dirtyend exceeds file size, chop it down.  This should
   1109  1.1  dholland 		 * not normally occur but there is an append race where it
   1110  1.1  dholland 		 * might occur XXX, so we log it.
   1111  1.1  dholland 		 *
   1112  1.1  dholland 		 * If the chopping creates a reverse-indexed or degenerate
   1113  1.1  dholland 		 * situation with dirtyoff/end, we 0 both of them.
   1114  1.1  dholland 		 */
   1115  1.1  dholland 
   1116  1.1  dholland 		if (bp->b_dirtyend > bcount) {
   1117  1.3  pgoyette 			printf("NFS append race @%lx:%d\n",
   1118  1.1  dholland 			    (long)bp->b_blkno * DEV_BSIZE,
   1119  1.1  dholland 			    bp->b_dirtyend - bcount);
   1120  1.1  dholland 			bp->b_dirtyend = bcount;
   1121  1.1  dholland 		}
   1122  1.1  dholland 
   1123  1.1  dholland 		if (bp->b_dirtyoff >= bp->b_dirtyend)
   1124  1.1  dholland 			bp->b_dirtyoff = bp->b_dirtyend = 0;
   1125  1.1  dholland 
   1126  1.1  dholland 		/*
   1127  1.1  dholland 		 * If the new write will leave a contiguous dirty
   1128  1.1  dholland 		 * area, just update the b_dirtyoff and b_dirtyend,
   1129  1.1  dholland 		 * otherwise force a write rpc of the old dirty area.
   1130  1.1  dholland 		 *
   1131  1.3  pgoyette 		 * If there has been a file lock applied to this file
   1132  1.3  pgoyette 		 * or vfs.nfs.old_noncontig_writing is set, do the following:
   1133  1.1  dholland 		 * While it is possible to merge discontiguous writes due to
   1134  1.1  dholland 		 * our having a B_CACHE buffer ( and thus valid read data
   1135  1.1  dholland 		 * for the hole), we don't because it could lead to
   1136  1.1  dholland 		 * significant cache coherency problems with multiple clients,
   1137  1.1  dholland 		 * especially if locking is implemented later on.
   1138  1.1  dholland 		 *
   1139  1.3  pgoyette 		 * If vfs.nfs.old_noncontig_writing is not set and there has
   1140  1.3  pgoyette 		 * not been file locking done on this file:
   1141  1.3  pgoyette 		 * Relax coherency a bit for the sake of performance and
   1142  1.3  pgoyette 		 * expand the current dirty region to contain the new
   1143  1.3  pgoyette 		 * write even if it means we mark some non-dirty data as
   1144  1.3  pgoyette 		 * dirty.
   1145  1.1  dholland 		 */
   1146  1.1  dholland 
   1147  1.3  pgoyette 		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
   1148  1.1  dholland 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
   1149  1.1  dholland 			if (bwrite(bp) == EINTR) {
   1150  1.1  dholland 				error = EINTR;
   1151  1.1  dholland 				break;
   1152  1.1  dholland 			}
   1153  1.1  dholland 			goto again;
   1154  1.1  dholland 		}
   1155  1.1  dholland 
   1156  1.1  dholland 		local_resid = uio->uio_resid;
   1157  1.1  dholland 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
   1158  1.1  dholland 
   1159  1.1  dholland 		if (error != 0 && !bp_cached) {
   1160  1.1  dholland 			/*
   1161  1.2       wiz 			 * This block has no other content than what
   1162  1.1  dholland 			 * possibly was written by the faulty uiomove.
   1163  1.1  dholland 			 * Release it, forgetting the data pages, to
   1164  1.1  dholland 			 * prevent the leak of uninitialized data to
   1165  1.1  dholland 			 * usermode.
   1166  1.1  dholland 			 */
   1167  1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
   1168  1.1  dholland 			brelse(bp);
   1169  1.1  dholland 			uio->uio_offset -= local_resid - uio->uio_resid;
   1170  1.1  dholland 			uio->uio_resid = local_resid;
   1171  1.1  dholland 			break;
   1172  1.1  dholland 		}
   1173  1.1  dholland 
   1174  1.1  dholland 		/*
   1175  1.1  dholland 		 * Since this block is being modified, it must be written
   1176  1.1  dholland 		 * again and not just committed.  Since write clustering does
   1177  1.1  dholland 		 * not work for the stage 1 data write, only the stage 2
   1178  1.1  dholland 		 * commit rpc, we have to clear B_CLUSTEROK as well.
   1179  1.1  dholland 		 */
   1180  1.1  dholland 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1181  1.1  dholland 
   1182  1.1  dholland 		/*
   1183  1.1  dholland 		 * Get the partial update on the progress made from
   1184  1.3  pgoyette 		 * uiomove, if an error occurred.
   1185  1.1  dholland 		 */
   1186  1.1  dholland 		if (error != 0)
   1187  1.1  dholland 			n = local_resid - uio->uio_resid;
   1188  1.1  dholland 
   1189  1.1  dholland 		/*
   1190  1.1  dholland 		 * Only update dirtyoff/dirtyend if not a degenerate
   1191  1.1  dholland 		 * condition.
   1192  1.1  dholland 		 */
   1193  1.1  dholland 		if (n > 0) {
   1194  1.1  dholland 			if (bp->b_dirtyend > 0) {
   1195  1.5  riastrad 				bp->b_dirtyoff = uimin(on, bp->b_dirtyoff);
   1196  1.5  riastrad 				bp->b_dirtyend = uimax((on + n), bp->b_dirtyend);
   1197  1.1  dholland 			} else {
   1198  1.1  dholland 				bp->b_dirtyoff = on;
   1199  1.1  dholland 				bp->b_dirtyend = on + n;
   1200  1.1  dholland 			}
   1201  1.1  dholland 			vfs_bio_set_valid(bp, on, n);
   1202  1.1  dholland 		}
   1203  1.1  dholland 
   1204  1.1  dholland 		/*
   1205  1.1  dholland 		 * If IO_SYNC do bwrite().
   1206  1.1  dholland 		 *
   1207  1.1  dholland 		 * IO_INVAL appears to be unused.  The idea appears to be
   1208  1.1  dholland 		 * to turn off caching in this case.  Very odd.  XXX
   1209  1.1  dholland 		 */
   1210  1.1  dholland 		if ((ioflag & IO_SYNC)) {
   1211  1.1  dholland 			if (ioflag & IO_INVAL)
   1212  1.1  dholland 				bp->b_flags |= B_NOCACHE;
   1213  1.1  dholland 			error1 = bwrite(bp);
   1214  1.1  dholland 			if (error1 != 0) {
   1215  1.1  dholland 				if (error == 0)
   1216  1.1  dholland 					error = error1;
   1217  1.1  dholland 				break;
   1218  1.1  dholland 			}
   1219  1.1  dholland 		} else if ((n + on) == biosize) {
   1220  1.1  dholland 			bp->b_flags |= B_ASYNC;
   1221  1.1  dholland 			(void) ncl_writebp(bp, 0, NULL);
   1222  1.1  dholland 		} else {
   1223  1.1  dholland 			bdwrite(bp);
   1224  1.1  dholland 		}
   1225  1.1  dholland 
   1226  1.1  dholland 		if (error != 0)
   1227  1.1  dholland 			break;
   1228  1.1  dholland 	} while (uio->uio_resid > 0 && n > 0);
   1229  1.1  dholland 
   1230  1.1  dholland 	if (error != 0) {
   1231  1.1  dholland 		if (ioflag & IO_UNIT) {
   1232  1.1  dholland 			VATTR_NULL(&vattr);
   1233  1.1  dholland 			vattr.va_size = orig_size;
   1234  1.1  dholland 			/* IO_SYNC is handled implicitely */
   1235  1.1  dholland 			(void)VOP_SETATTR(vp, &vattr, cred);
   1236  1.1  dholland 			uio->uio_offset -= orig_resid - uio->uio_resid;
   1237  1.1  dholland 			uio->uio_resid = orig_resid;
   1238  1.1  dholland 		}
   1239  1.1  dholland 	}
   1240  1.1  dholland 
   1241  1.1  dholland 	return (error);
   1242  1.1  dholland }
   1243  1.1  dholland 
   1244  1.1  dholland /*
   1245  1.1  dholland  * Get an nfs cache block.
   1246  1.1  dholland  *
   1247  1.1  dholland  * Allocate a new one if the block isn't currently in the cache
   1248  1.1  dholland  * and return the block marked busy. If the calling process is
   1249  1.1  dholland  * interrupted by a signal for an interruptible mount point, return
   1250  1.1  dholland  * NULL.
   1251  1.1  dholland  *
   1252  1.1  dholland  * The caller must carefully deal with the possible B_INVAL state of
   1253  1.1  dholland  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
   1254  1.1  dholland  * indirectly), so synchronous reads can be issued without worrying about
   1255  1.1  dholland  * the B_INVAL state.  We have to be a little more careful when dealing
   1256  1.1  dholland  * with writes (see comments in nfs_write()) when extending a file past
   1257  1.1  dholland  * its EOF.
   1258  1.1  dholland  */
   1259  1.1  dholland static struct buf *
   1260  1.1  dholland nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
   1261  1.1  dholland {
   1262  1.1  dholland 	struct buf *bp;
   1263  1.1  dholland 	struct mount *mp;
   1264  1.1  dholland 	struct nfsmount *nmp;
   1265  1.1  dholland 
   1266  1.1  dholland 	mp = vp->v_mount;
   1267  1.1  dholland 	nmp = VFSTONFS(mp);
   1268  1.1  dholland 
   1269  1.1  dholland 	if (nmp->nm_flag & NFSMNT_INT) {
   1270  1.1  dholland 		sigset_t oldset;
   1271  1.1  dholland 
   1272  1.1  dholland 		newnfs_set_sigmask(td, &oldset);
   1273  1.1  dholland 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
   1274  1.1  dholland 		newnfs_restore_sigmask(td, &oldset);
   1275  1.1  dholland 		while (bp == NULL) {
   1276  1.1  dholland 			if (newnfs_sigintr(nmp, td))
   1277  1.1  dholland 				return (NULL);
   1278  1.1  dholland 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
   1279  1.1  dholland 		}
   1280  1.1  dholland 	} else {
   1281  1.1  dholland 		bp = getblk(vp, bn, size, 0, 0, 0);
   1282  1.1  dholland 	}
   1283  1.1  dholland 
   1284  1.1  dholland 	if (vp->v_type == VREG)
   1285  1.1  dholland 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
   1286  1.1  dholland 	return (bp);
   1287  1.1  dholland }
   1288  1.1  dholland 
   1289  1.1  dholland /*
   1290  1.1  dholland  * Flush and invalidate all dirty buffers. If another process is already
   1291  1.1  dholland  * doing the flush, just wait for completion.
   1292  1.1  dholland  */
   1293  1.1  dholland int
   1294  1.1  dholland ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
   1295  1.1  dholland {
   1296  1.1  dholland 	struct nfsnode *np = VTONFS(vp);
   1297  1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1298  1.1  dholland 	int error = 0, slpflag, slptimeo;
   1299  1.1  dholland 	int old_lock = 0;
   1300  1.1  dholland 
   1301  1.1  dholland 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
   1302  1.1  dholland 
   1303  1.1  dholland 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
   1304  1.1  dholland 		intrflg = 0;
   1305  1.1  dholland 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
   1306  1.1  dholland 		intrflg = 1;
   1307  1.1  dholland 	if (intrflg) {
   1308  1.1  dholland 		slpflag = PCATCH;
   1309  1.1  dholland 		slptimeo = 2 * hz;
   1310  1.1  dholland 	} else {
   1311  1.1  dholland 		slpflag = 0;
   1312  1.1  dholland 		slptimeo = 0;
   1313  1.1  dholland 	}
   1314  1.1  dholland 
   1315  1.1  dholland 	old_lock = ncl_upgrade_vnlock(vp);
   1316  1.1  dholland 	if (vp->v_iflag & VI_DOOMED) {
   1317  1.1  dholland 		/*
   1318  1.1  dholland 		 * Since vgonel() uses the generic vinvalbuf() to flush
   1319  1.1  dholland 		 * dirty buffers and it does not call this function, it
   1320  1.1  dholland 		 * is safe to just return OK when VI_DOOMED is set.
   1321  1.1  dholland 		 */
   1322  1.1  dholland 		ncl_downgrade_vnlock(vp, old_lock);
   1323  1.1  dholland 		return (0);
   1324  1.1  dholland 	}
   1325  1.1  dholland 
   1326  1.1  dholland 	/*
   1327  1.1  dholland 	 * Now, flush as required.
   1328  1.1  dholland 	 */
   1329  1.1  dholland 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
   1330  1.1  dholland 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
   1331  1.1  dholland 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
   1332  1.1  dholland 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
   1333  1.1  dholland 		/*
   1334  1.1  dholland 		 * If the page clean was interrupted, fail the invalidation.
   1335  1.1  dholland 		 * Not doing so, we run the risk of losing dirty pages in the
   1336  1.1  dholland 		 * vinvalbuf() call below.
   1337  1.1  dholland 		 */
   1338  1.1  dholland 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1339  1.1  dholland 			goto out;
   1340  1.1  dholland 	}
   1341  1.1  dholland 
   1342  1.1  dholland 	error = vinvalbuf(vp, flags, slpflag, 0);
   1343  1.1  dholland 	while (error) {
   1344  1.1  dholland 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1345  1.1  dholland 			goto out;
   1346  1.1  dholland 		error = vinvalbuf(vp, flags, 0, slptimeo);
   1347  1.1  dholland 	}
   1348  1.1  dholland 	if (NFSHASPNFS(nmp)) {
   1349  1.1  dholland 		nfscl_layoutcommit(vp, td);
   1350  1.1  dholland 		/*
   1351  1.1  dholland 		 * Invalidate the attribute cache, since writes to a DS
   1352  1.1  dholland 		 * won't update the size attribute.
   1353  1.1  dholland 		 */
   1354  1.1  dholland 		mtx_lock(&np->n_mtx);
   1355  1.1  dholland 		np->n_attrstamp = 0;
   1356  1.1  dholland 	} else
   1357  1.1  dholland 		mtx_lock(&np->n_mtx);
   1358  1.1  dholland 	if (np->n_directio_asyncwr == 0)
   1359  1.1  dholland 		np->n_flag &= ~NMODIFIED;
   1360  1.1  dholland 	mtx_unlock(&np->n_mtx);
   1361  1.1  dholland out:
   1362  1.1  dholland 	ncl_downgrade_vnlock(vp, old_lock);
   1363  1.1  dholland 	return error;
   1364  1.1  dholland }
   1365  1.1  dholland 
   1366  1.1  dholland /*
   1367  1.1  dholland  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
   1368  1.1  dholland  * This is mainly to avoid queueing async I/O requests when the nfsiods
   1369  1.1  dholland  * are all hung on a dead server.
   1370  1.1  dholland  *
   1371  1.1  dholland  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
   1372  1.1  dholland  * is eventually dequeued by the async daemon, ncl_doio() *will*.
   1373  1.1  dholland  */
   1374  1.1  dholland int
   1375  1.1  dholland ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
   1376  1.1  dholland {
   1377  1.1  dholland 	int iod;
   1378  1.1  dholland 	int gotiod;
   1379  1.1  dholland 	int slpflag = 0;
   1380  1.1  dholland 	int slptimeo = 0;
   1381  1.1  dholland 	int error, error2;
   1382  1.1  dholland 
   1383  1.1  dholland 	/*
   1384  1.1  dholland 	 * Commits are usually short and sweet so lets save some cpu and
   1385  1.1  dholland 	 * leave the async daemons for more important rpc's (such as reads
   1386  1.1  dholland 	 * and writes).
   1387  1.1  dholland 	 *
   1388  1.1  dholland 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
   1389  1.1  dholland 	 * in the directory in order to update attributes. This can deadlock
   1390  1.1  dholland 	 * with another thread that is waiting for async I/O to be done by
   1391  1.1  dholland 	 * an nfsiod thread while holding a lock on one of these vnodes.
   1392  1.1  dholland 	 * To avoid this deadlock, don't allow the async nfsiod threads to
   1393  1.1  dholland 	 * perform Readdirplus RPCs.
   1394  1.1  dholland 	 */
   1395  1.1  dholland 	mtx_lock(&ncl_iod_mutex);
   1396  1.1  dholland 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
   1397  1.1  dholland 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
   1398  1.1  dholland 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
   1399  1.1  dholland 		mtx_unlock(&ncl_iod_mutex);
   1400  1.1  dholland 		return(EIO);
   1401  1.1  dholland 	}
   1402  1.1  dholland again:
   1403  1.1  dholland 	if (nmp->nm_flag & NFSMNT_INT)
   1404  1.1  dholland 		slpflag = PCATCH;
   1405  1.1  dholland 	gotiod = FALSE;
   1406  1.1  dholland 
   1407  1.1  dholland 	/*
   1408  1.1  dholland 	 * Find a free iod to process this request.
   1409  1.1  dholland 	 */
   1410  1.1  dholland 	for (iod = 0; iod < ncl_numasync; iod++)
   1411  1.1  dholland 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
   1412  1.1  dholland 			gotiod = TRUE;
   1413  1.1  dholland 			break;
   1414  1.1  dholland 		}
   1415  1.1  dholland 
   1416  1.1  dholland 	/*
   1417  1.1  dholland 	 * Try to create one if none are free.
   1418  1.1  dholland 	 */
   1419  1.1  dholland 	if (!gotiod)
   1420  1.1  dholland 		ncl_nfsiodnew();
   1421  1.1  dholland 	else {
   1422  1.1  dholland 		/*
   1423  1.1  dholland 		 * Found one, so wake it up and tell it which
   1424  1.1  dholland 		 * mount to process.
   1425  1.1  dholland 		 */
   1426  1.1  dholland 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
   1427  1.1  dholland 		    iod, nmp));
   1428  1.1  dholland 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
   1429  1.1  dholland 		ncl_iodmount[iod] = nmp;
   1430  1.1  dholland 		nmp->nm_bufqiods++;
   1431  1.1  dholland 		wakeup(&ncl_iodwant[iod]);
   1432  1.1  dholland 	}
   1433  1.1  dholland 
   1434  1.1  dholland 	/*
   1435  1.1  dholland 	 * If none are free, we may already have an iod working on this mount
   1436  1.1  dholland 	 * point.  If so, it will process our request.
   1437  1.1  dholland 	 */
   1438  1.1  dholland 	if (!gotiod) {
   1439  1.1  dholland 		if (nmp->nm_bufqiods > 0) {
   1440  1.1  dholland 			NFS_DPF(ASYNCIO,
   1441  1.1  dholland 				("ncl_asyncio: %d iods are already processing mount %p\n",
   1442  1.1  dholland 				 nmp->nm_bufqiods, nmp));
   1443  1.1  dholland 			gotiod = TRUE;
   1444  1.1  dholland 		}
   1445  1.1  dholland 	}
   1446  1.1  dholland 
   1447  1.1  dholland 	/*
   1448  1.1  dholland 	 * If we have an iod which can process the request, then queue
   1449  1.1  dholland 	 * the buffer.
   1450  1.1  dholland 	 */
   1451  1.1  dholland 	if (gotiod) {
   1452  1.1  dholland 		/*
   1453  1.1  dholland 		 * Ensure that the queue never grows too large.  We still want
   1454  1.2       wiz 		 * to asynchronize so we block rather than return EIO.
   1455  1.1  dholland 		 */
   1456  1.1  dholland 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
   1457  1.1  dholland 			NFS_DPF(ASYNCIO,
   1458  1.1  dholland 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
   1459  1.1  dholland 			nmp->nm_bufqwant = TRUE;
   1460  1.1  dholland 			error = newnfs_msleep(td, &nmp->nm_bufq,
   1461  1.1  dholland 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
   1462  1.1  dholland 			   slptimeo);
   1463  1.1  dholland 			if (error) {
   1464  1.1  dholland 				error2 = newnfs_sigintr(nmp, td);
   1465  1.1  dholland 				if (error2) {
   1466  1.1  dholland 					mtx_unlock(&ncl_iod_mutex);
   1467  1.1  dholland 					return (error2);
   1468  1.1  dholland 				}
   1469  1.1  dholland 				if (slpflag == PCATCH) {
   1470  1.1  dholland 					slpflag = 0;
   1471  1.1  dholland 					slptimeo = 2 * hz;
   1472  1.1  dholland 				}
   1473  1.1  dholland 			}
   1474  1.1  dholland 			/*
   1475  1.1  dholland 			 * We might have lost our iod while sleeping,
   1476  1.3  pgoyette 			 * so check and loop if necessary.
   1477  1.1  dholland 			 */
   1478  1.1  dholland 			goto again;
   1479  1.1  dholland 		}
   1480  1.1  dholland 
   1481  1.1  dholland 		/* We might have lost our nfsiod */
   1482  1.1  dholland 		if (nmp->nm_bufqiods == 0) {
   1483  1.1  dholland 			NFS_DPF(ASYNCIO,
   1484  1.1  dholland 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
   1485  1.1  dholland 			goto again;
   1486  1.1  dholland 		}
   1487  1.1  dholland 
   1488  1.1  dholland 		if (bp->b_iocmd == BIO_READ) {
   1489  1.1  dholland 			if (bp->b_rcred == NOCRED && cred != NOCRED)
   1490  1.1  dholland 				bp->b_rcred = crhold(cred);
   1491  1.1  dholland 		} else {
   1492  1.1  dholland 			if (bp->b_wcred == NOCRED && cred != NOCRED)
   1493  1.1  dholland 				bp->b_wcred = crhold(cred);
   1494  1.1  dholland 		}
   1495  1.1  dholland 
   1496  1.1  dholland 		if (bp->b_flags & B_REMFREE)
   1497  1.1  dholland 			bremfreef(bp);
   1498  1.1  dholland 		BUF_KERNPROC(bp);
   1499  1.1  dholland 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
   1500  1.1  dholland 		nmp->nm_bufqlen++;
   1501  1.1  dholland 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1502  1.1  dholland 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
   1503  1.1  dholland 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
   1504  1.1  dholland 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
   1505  1.1  dholland 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
   1506  1.1  dholland 		}
   1507  1.1  dholland 		mtx_unlock(&ncl_iod_mutex);
   1508  1.1  dholland 		return (0);
   1509  1.1  dholland 	}
   1510  1.1  dholland 
   1511  1.1  dholland 	mtx_unlock(&ncl_iod_mutex);
   1512  1.1  dholland 
   1513  1.1  dholland 	/*
   1514  1.1  dholland 	 * All the iods are busy on other mounts, so return EIO to
   1515  1.1  dholland 	 * force the caller to process the i/o synchronously.
   1516  1.1  dholland 	 */
   1517  1.1  dholland 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
   1518  1.1  dholland 	return (EIO);
   1519  1.1  dholland }
   1520  1.1  dholland 
   1521  1.1  dholland void
   1522  1.1  dholland ncl_doio_directwrite(struct buf *bp)
   1523  1.1  dholland {
   1524  1.1  dholland 	int iomode, must_commit;
   1525  1.1  dholland 	struct uio *uiop = (struct uio *)bp->b_caller1;
   1526  1.1  dholland 	char *iov_base = uiop->uio_iov->iov_base;
   1527  1.1  dholland 
   1528  1.1  dholland 	iomode = NFSWRITE_FILESYNC;
   1529  1.1  dholland 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
   1530  1.1  dholland 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
   1531  1.1  dholland 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
   1532  1.1  dholland 	free(iov_base, M_NFSDIRECTIO);
   1533  1.1  dholland 	free(uiop->uio_iov, M_NFSDIRECTIO);
   1534  1.1  dholland 	free(uiop, M_NFSDIRECTIO);
   1535  1.1  dholland 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1536  1.1  dholland 		struct nfsnode *np = VTONFS(bp->b_vp);
   1537  1.1  dholland 		mtx_lock(&np->n_mtx);
   1538  1.1  dholland 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
   1539  1.1  dholland 			/*
   1540  1.1  dholland 			 * Invalidate the attribute cache, since writes to a DS
   1541  1.1  dholland 			 * won't update the size attribute.
   1542  1.1  dholland 			 */
   1543  1.1  dholland 			np->n_attrstamp = 0;
   1544  1.1  dholland 		}
   1545  1.1  dholland 		np->n_directio_asyncwr--;
   1546  1.1  dholland 		if (np->n_directio_asyncwr == 0) {
   1547  1.1  dholland 			np->n_flag &= ~NMODIFIED;
   1548  1.1  dholland 			if ((np->n_flag & NFSYNCWAIT)) {
   1549  1.1  dholland 				np->n_flag &= ~NFSYNCWAIT;
   1550  1.1  dholland 				wakeup((caddr_t)&np->n_directio_asyncwr);
   1551  1.1  dholland 			}
   1552  1.1  dholland 		}
   1553  1.1  dholland 		mtx_unlock(&np->n_mtx);
   1554  1.1  dholland 	}
   1555  1.1  dholland 	bp->b_vp = NULL;
   1556  1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
   1557  1.1  dholland }
   1558  1.1  dholland 
   1559  1.1  dholland /*
   1560  1.1  dholland  * Do an I/O operation to/from a cache block. This may be called
   1561  1.1  dholland  * synchronously or from an nfsiod.
   1562  1.1  dholland  */
   1563  1.1  dholland int
   1564  1.1  dholland ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
   1565  1.1  dholland     int called_from_strategy)
   1566  1.1  dholland {
   1567  1.1  dholland 	struct uio *uiop;
   1568  1.1  dholland 	struct nfsnode *np;
   1569  1.1  dholland 	struct nfsmount *nmp;
   1570  1.1  dholland 	int error = 0, iomode, must_commit = 0;
   1571  1.1  dholland 	struct uio uio;
   1572  1.1  dholland 	struct iovec io;
   1573  1.1  dholland 	struct proc *p = td ? td->td_proc : NULL;
   1574  1.1  dholland 	uint8_t	iocmd;
   1575  1.1  dholland 
   1576  1.1  dholland 	np = VTONFS(vp);
   1577  1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
   1578  1.1  dholland 	uiop = &uio;
   1579  1.1  dholland 	uiop->uio_iov = &io;
   1580  1.1  dholland 	uiop->uio_iovcnt = 1;
   1581  1.1  dholland 	uiop->uio_segflg = UIO_SYSSPACE;
   1582  1.1  dholland 	uiop->uio_td = td;
   1583  1.1  dholland 
   1584  1.1  dholland 	/*
   1585  1.1  dholland 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
   1586  1.1  dholland 	 * do this here so we do not have to do it in all the code that
   1587  1.1  dholland 	 * calls us.
   1588  1.1  dholland 	 */
   1589  1.1  dholland 	bp->b_flags &= ~B_INVAL;
   1590  1.1  dholland 	bp->b_ioflags &= ~BIO_ERROR;
   1591  1.1  dholland 
   1592  1.1  dholland 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
   1593  1.1  dholland 	iocmd = bp->b_iocmd;
   1594  1.1  dholland 	if (iocmd == BIO_READ) {
   1595  1.1  dholland 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
   1596  1.1  dholland 	    io.iov_base = bp->b_data;
   1597  1.1  dholland 	    uiop->uio_rw = UIO_READ;
   1598  1.1  dholland 
   1599  1.1  dholland 	    switch (vp->v_type) {
   1600  1.1  dholland 	    case VREG:
   1601  1.1  dholland 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
   1602  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.read_bios);
   1603  1.1  dholland 		error = ncl_readrpc(vp, uiop, cr);
   1604  1.1  dholland 
   1605  1.1  dholland 		if (!error) {
   1606  1.1  dholland 		    if (uiop->uio_resid) {
   1607  1.1  dholland 			/*
   1608  1.1  dholland 			 * If we had a short read with no error, we must have
   1609  1.1  dholland 			 * hit a file hole.  We should zero-fill the remainder.
   1610  1.1  dholland 			 * This can also occur if the server hits the file EOF.
   1611  1.1  dholland 			 *
   1612  1.1  dholland 			 * Holes used to be able to occur due to pending
   1613  1.1  dholland 			 * writes, but that is not possible any longer.
   1614  1.1  dholland 			 */
   1615  1.1  dholland 			int nread = bp->b_bcount - uiop->uio_resid;
   1616  1.1  dholland 			ssize_t left = uiop->uio_resid;
   1617  1.1  dholland 
   1618  1.1  dholland 			if (left > 0)
   1619  1.1  dholland 				bzero((char *)bp->b_data + nread, left);
   1620  1.1  dholland 			uiop->uio_resid = 0;
   1621  1.1  dholland 		    }
   1622  1.1  dholland 		}
   1623  1.1  dholland 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
   1624  1.1  dholland 		if (p && (vp->v_vflag & VV_TEXT)) {
   1625  1.1  dholland 			mtx_lock(&np->n_mtx);
   1626  1.1  dholland 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
   1627  1.1  dholland 				mtx_unlock(&np->n_mtx);
   1628  1.1  dholland 				PROC_LOCK(p);
   1629  1.1  dholland 				killproc(p, "text file modification");
   1630  1.1  dholland 				PROC_UNLOCK(p);
   1631  1.1  dholland 			} else
   1632  1.1  dholland 				mtx_unlock(&np->n_mtx);
   1633  1.1  dholland 		}
   1634  1.1  dholland 		break;
   1635  1.1  dholland 	    case VLNK:
   1636  1.1  dholland 		uiop->uio_offset = (off_t)0;
   1637  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
   1638  1.1  dholland 		error = ncl_readlinkrpc(vp, uiop, cr);
   1639  1.1  dholland 		break;
   1640  1.1  dholland 	    case VDIR:
   1641  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
   1642  1.1  dholland 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
   1643  1.1  dholland 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
   1644  1.1  dholland 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
   1645  1.1  dholland 			if (error == NFSERR_NOTSUPP)
   1646  1.1  dholland 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
   1647  1.1  dholland 		}
   1648  1.1  dholland 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
   1649  1.1  dholland 			error = ncl_readdirrpc(vp, uiop, cr, td);
   1650  1.1  dholland 		/*
   1651  1.1  dholland 		 * end-of-directory sets B_INVAL but does not generate an
   1652  1.1  dholland 		 * error.
   1653  1.1  dholland 		 */
   1654  1.1  dholland 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
   1655  1.1  dholland 			bp->b_flags |= B_INVAL;
   1656  1.1  dholland 		break;
   1657  1.1  dholland 	    default:
   1658  1.3  pgoyette 		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
   1659  1.1  dholland 		break;
   1660  1.3  pgoyette 	    }
   1661  1.1  dholland 	    if (error) {
   1662  1.1  dholland 		bp->b_ioflags |= BIO_ERROR;
   1663  1.1  dholland 		bp->b_error = error;
   1664  1.1  dholland 	    }
   1665  1.1  dholland 	} else {
   1666  1.1  dholland 	    /*
   1667  1.1  dholland 	     * If we only need to commit, try to commit
   1668  1.1  dholland 	     */
   1669  1.1  dholland 	    if (bp->b_flags & B_NEEDCOMMIT) {
   1670  1.1  dholland 		    int retv;
   1671  1.1  dholland 		    off_t off;
   1672  1.1  dholland 
   1673  1.1  dholland 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
   1674  1.1  dholland 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
   1675  1.1  dholland 			bp->b_wcred, td);
   1676  1.1  dholland 		    if (retv == 0) {
   1677  1.1  dholland 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1678  1.1  dholland 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1679  1.1  dholland 			    bp->b_resid = 0;
   1680  1.1  dholland 			    bufdone(bp);
   1681  1.1  dholland 			    return (0);
   1682  1.1  dholland 		    }
   1683  1.1  dholland 		    if (retv == NFSERR_STALEWRITEVERF) {
   1684  1.1  dholland 			    ncl_clearcommit(vp->v_mount);
   1685  1.1  dholland 		    }
   1686  1.1  dholland 	    }
   1687  1.1  dholland 
   1688  1.1  dholland 	    /*
   1689  1.1  dholland 	     * Setup for actual write
   1690  1.1  dholland 	     */
   1691  1.1  dholland 	    mtx_lock(&np->n_mtx);
   1692  1.1  dholland 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
   1693  1.1  dholland 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
   1694  1.1  dholland 	    mtx_unlock(&np->n_mtx);
   1695  1.1  dholland 
   1696  1.1  dholland 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
   1697  1.1  dholland 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
   1698  1.1  dholland 		    - bp->b_dirtyoff;
   1699  1.1  dholland 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
   1700  1.1  dholland 		    + bp->b_dirtyoff;
   1701  1.1  dholland 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
   1702  1.1  dholland 		uiop->uio_rw = UIO_WRITE;
   1703  1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.write_bios);
   1704  1.1  dholland 
   1705  1.1  dholland 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
   1706  1.1  dholland 		    iomode = NFSWRITE_UNSTABLE;
   1707  1.1  dholland 		else
   1708  1.1  dholland 		    iomode = NFSWRITE_FILESYNC;
   1709  1.1  dholland 
   1710  1.1  dholland 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
   1711  1.1  dholland 		    called_from_strategy);
   1712  1.1  dholland 
   1713  1.1  dholland 		/*
   1714  1.1  dholland 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
   1715  1.1  dholland 		 * to cluster the buffers needing commit.  This will allow
   1716  1.1  dholland 		 * the system to submit a single commit rpc for the whole
   1717  1.1  dholland 		 * cluster.  We can do this even if the buffer is not 100%
   1718  1.1  dholland 		 * dirty (relative to the NFS blocksize), so we optimize the
   1719  1.1  dholland 		 * append-to-file-case.
   1720  1.1  dholland 		 *
   1721  1.1  dholland 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
   1722  1.1  dholland 		 * cleared because write clustering only works for commit
   1723  1.1  dholland 		 * rpc's, not for the data portion of the write).
   1724  1.1  dholland 		 */
   1725  1.1  dholland 
   1726  1.1  dholland 		if (!error && iomode == NFSWRITE_UNSTABLE) {
   1727  1.1  dholland 		    bp->b_flags |= B_NEEDCOMMIT;
   1728  1.1  dholland 		    if (bp->b_dirtyoff == 0
   1729  1.1  dholland 			&& bp->b_dirtyend == bp->b_bcount)
   1730  1.1  dholland 			bp->b_flags |= B_CLUSTEROK;
   1731  1.1  dholland 		} else {
   1732  1.1  dholland 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1733  1.1  dholland 		}
   1734  1.1  dholland 
   1735  1.1  dholland 		/*
   1736  1.1  dholland 		 * For an interrupted write, the buffer is still valid
   1737  1.1  dholland 		 * and the write hasn't been pushed to the server yet,
   1738  1.1  dholland 		 * so we can't set BIO_ERROR and report the interruption
   1739  1.1  dholland 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
   1740  1.1  dholland 		 * is not relevant, so the rpc attempt is essentially
   1741  1.1  dholland 		 * a noop.  For the case of a V3 write rpc not being
   1742  1.1  dholland 		 * committed to stable storage, the block is still
   1743  1.1  dholland 		 * dirty and requires either a commit rpc or another
   1744  1.1  dholland 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
   1745  1.1  dholland 		 * the block is reused. This is indicated by setting
   1746  1.1  dholland 		 * the B_DELWRI and B_NEEDCOMMIT flags.
   1747  1.1  dholland 		 *
   1748  1.1  dholland 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
   1749  1.1  dholland 		 * write error and is handled as above, except that
   1750  1.1  dholland 		 * B_EINTR isn't set. One cause of this is a stale stateid
   1751  1.1  dholland 		 * error for the RPC that indicates recovery is required,
   1752  1.1  dholland 		 * when called with called_from_strategy != 0.
   1753  1.1  dholland 		 *
   1754  1.1  dholland 		 * If the buffer is marked B_PAGING, it does not reside on
   1755  1.1  dholland 		 * the vp's paging queues so we cannot call bdirty().  The
   1756  1.1  dholland 		 * bp in this case is not an NFS cache block so we should
   1757  1.1  dholland 		 * be safe. XXX
   1758  1.1  dholland 		 *
   1759  1.1  dholland 		 * The logic below breaks up errors into recoverable and
   1760  1.1  dholland 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
   1761  1.1  dholland 		 * and keep the buffer around for potential write retries.
   1762  1.1  dholland 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
   1763  1.1  dholland 		 * and save the error in the nfsnode. This is less than ideal
   1764  1.1  dholland 		 * but necessary. Keeping such buffers around could potentially
   1765  1.1  dholland 		 * cause buffer exhaustion eventually (they can never be written
   1766  1.1  dholland 		 * out, so will get constantly be re-dirtied). It also causes
   1767  1.1  dholland 		 * all sorts of vfs panics. For non-recoverable write errors,
   1768  1.1  dholland 		 * also invalidate the attrcache, so we'll be forced to go over
   1769  1.1  dholland 		 * the wire for this object, returning an error to user on next
   1770  1.1  dholland 		 * call (most of the time).
   1771  1.1  dholland 		 */
   1772  1.1  dholland 		if (error == EINTR || error == EIO || error == ETIMEDOUT
   1773  1.1  dholland 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
   1774  1.1  dholland 			int s;
   1775  1.1  dholland 
   1776  1.1  dholland 			s = splbio();
   1777  1.1  dholland 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
   1778  1.1  dholland 			if ((bp->b_flags & B_PAGING) == 0) {
   1779  1.1  dholland 			    bdirty(bp);
   1780  1.1  dholland 			    bp->b_flags &= ~B_DONE;
   1781  1.1  dholland 			}
   1782  1.1  dholland 			if ((error == EINTR || error == ETIMEDOUT) &&
   1783  1.1  dholland 			    (bp->b_flags & B_ASYNC) == 0)
   1784  1.1  dholland 			    bp->b_flags |= B_EINTR;
   1785  1.1  dholland 			splx(s);
   1786  1.1  dholland 		} else {
   1787  1.1  dholland 		    if (error) {
   1788  1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
   1789  1.1  dholland 			bp->b_flags |= B_INVAL;
   1790  1.1  dholland 			bp->b_error = np->n_error = error;
   1791  1.1  dholland 			mtx_lock(&np->n_mtx);
   1792  1.1  dholland 			np->n_flag |= NWRITEERR;
   1793  1.1  dholland 			np->n_attrstamp = 0;
   1794  1.1  dholland 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
   1795  1.1  dholland 			mtx_unlock(&np->n_mtx);
   1796  1.1  dholland 		    }
   1797  1.1  dholland 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1798  1.1  dholland 		}
   1799  1.1  dholland 	    } else {
   1800  1.1  dholland 		bp->b_resid = 0;
   1801  1.1  dholland 		bufdone(bp);
   1802  1.1  dholland 		return (0);
   1803  1.1  dholland 	    }
   1804  1.1  dholland 	}
   1805  1.1  dholland 	bp->b_resid = uiop->uio_resid;
   1806  1.1  dholland 	if (must_commit)
   1807  1.1  dholland 	    ncl_clearcommit(vp->v_mount);
   1808  1.1  dholland 	bufdone(bp);
   1809  1.1  dholland 	return (error);
   1810  1.1  dholland }
   1811  1.1  dholland 
   1812  1.1  dholland /*
   1813  1.1  dholland  * Used to aid in handling ftruncate() operations on the NFS client side.
   1814  1.1  dholland  * Truncation creates a number of special problems for NFS.  We have to
   1815  1.1  dholland  * throw away VM pages and buffer cache buffers that are beyond EOF, and
   1816  1.1  dholland  * we have to properly handle VM pages or (potentially dirty) buffers
   1817  1.1  dholland  * that straddle the truncation point.
   1818  1.1  dholland  */
   1819  1.1  dholland 
   1820  1.1  dholland int
   1821  1.1  dholland ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
   1822  1.1  dholland {
   1823  1.1  dholland 	struct nfsnode *np = VTONFS(vp);
   1824  1.1  dholland 	u_quad_t tsize;
   1825  1.1  dholland 	int biosize = vp->v_bufobj.bo_bsize;
   1826  1.1  dholland 	int error = 0;
   1827  1.1  dholland 
   1828  1.1  dholland 	mtx_lock(&np->n_mtx);
   1829  1.1  dholland 	tsize = np->n_size;
   1830  1.1  dholland 	np->n_size = nsize;
   1831  1.1  dholland 	mtx_unlock(&np->n_mtx);
   1832  1.1  dholland 
   1833  1.1  dholland 	if (nsize < tsize) {
   1834  1.1  dholland 		struct buf *bp;
   1835  1.1  dholland 		daddr_t lbn;
   1836  1.1  dholland 		int bufsize;
   1837  1.1  dholland 
   1838  1.1  dholland 		/*
   1839  1.1  dholland 		 * vtruncbuf() doesn't get the buffer overlapping the
   1840  1.1  dholland 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
   1841  1.1  dholland 		 * buffer that now needs to be truncated.
   1842  1.1  dholland 		 */
   1843  1.1  dholland 		error = vtruncbuf(vp, cred, nsize, biosize);
   1844  1.1  dholland 		lbn = nsize / biosize;
   1845  1.1  dholland 		bufsize = nsize - (lbn * biosize);
   1846  1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
   1847  1.1  dholland 		if (!bp)
   1848  1.1  dholland 			return EINTR;
   1849  1.1  dholland 		if (bp->b_dirtyoff > bp->b_bcount)
   1850  1.1  dholland 			bp->b_dirtyoff = bp->b_bcount;
   1851  1.1  dholland 		if (bp->b_dirtyend > bp->b_bcount)
   1852  1.1  dholland 			bp->b_dirtyend = bp->b_bcount;
   1853  1.1  dholland 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
   1854  1.1  dholland 		brelse(bp);
   1855  1.1  dholland 	} else {
   1856  1.1  dholland 		vnode_pager_setsize(vp, nsize);
   1857  1.1  dholland 	}
   1858  1.1  dholland 	return(error);
   1859  1.1  dholland }
   1860  1.1  dholland 
   1861