Home | History | Annotate | Line # | Download | only in client
nfs_clbio.c revision 1.6.2.1
      1  1.6.2.1   thorpej /*	$NetBSD: nfs_clbio.c,v 1.6.2.1 2021/04/03 22:28:59 thorpej Exp $	*/
      2      1.1  dholland /*-
      3      1.1  dholland  * Copyright (c) 1989, 1993
      4      1.1  dholland  *	The Regents of the University of California.  All rights reserved.
      5      1.1  dholland  *
      6      1.1  dholland  * This code is derived from software contributed to Berkeley by
      7      1.1  dholland  * Rick Macklem at The University of Guelph.
      8      1.1  dholland  *
      9      1.1  dholland  * Redistribution and use in source and binary forms, with or without
     10      1.1  dholland  * modification, are permitted provided that the following conditions
     11      1.1  dholland  * are met:
     12      1.1  dholland  * 1. Redistributions of source code must retain the above copyright
     13      1.1  dholland  *    notice, this list of conditions and the following disclaimer.
     14      1.1  dholland  * 2. Redistributions in binary form must reproduce the above copyright
     15      1.1  dholland  *    notice, this list of conditions and the following disclaimer in the
     16      1.1  dholland  *    documentation and/or other materials provided with the distribution.
     17      1.1  dholland  * 4. Neither the name of the University nor the names of its contributors
     18      1.1  dholland  *    may be used to endorse or promote products derived from this software
     19      1.1  dholland  *    without specific prior written permission.
     20      1.1  dholland  *
     21      1.1  dholland  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22      1.1  dholland  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23      1.1  dholland  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24      1.1  dholland  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25      1.1  dholland  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26      1.1  dholland  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27      1.1  dholland  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28      1.1  dholland  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29      1.1  dholland  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30      1.1  dholland  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31      1.1  dholland  * SUCH DAMAGE.
     32      1.1  dholland  *
     33      1.1  dholland  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     34      1.1  dholland  */
     35      1.1  dholland 
     36      1.1  dholland #include <sys/cdefs.h>
     37      1.3  pgoyette /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */
     38  1.6.2.1   thorpej __RCSID("$NetBSD: nfs_clbio.c,v 1.6.2.1 2021/04/03 22:28:59 thorpej Exp $");
     39      1.1  dholland 
     40      1.1  dholland #include <sys/param.h>
     41      1.1  dholland #include <sys/systm.h>
     42      1.1  dholland #include <sys/buf.h>
     43      1.1  dholland #include <sys/kernel.h>
     44      1.1  dholland #include <sys/mount.h>
     45      1.1  dholland #include <sys/rwlock.h>
     46      1.1  dholland #include <sys/vmmeter.h>
     47      1.1  dholland #include <sys/vnode.h>
     48      1.1  dholland 
     49      1.4  pgoyette #include <fs/nfs/common/nfsport.h>
     50      1.4  pgoyette #include <fs/nfs/client/nfsmount.h>
     51      1.4  pgoyette #include <fs/nfs/client/nfs.h>
     52      1.4  pgoyette #include <fs/nfs/client/nfsnode.h>
     53      1.4  pgoyette #include <fs/nfs/client/nfs_kdtrace.h>
     54      1.1  dholland 
     55      1.1  dholland extern int newnfs_directio_allow_mmap;
     56      1.3  pgoyette extern struct nfsstatsv1 nfsstatsv1;
     57      1.1  dholland extern struct mtx ncl_iod_mutex;
     58      1.1  dholland extern int ncl_numasync;
     59      1.1  dholland extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
     60      1.1  dholland extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
     61      1.1  dholland extern int newnfs_directio_enable;
     62      1.1  dholland extern int nfs_keep_dirty_on_error;
     63      1.1  dholland 
     64      1.1  dholland int ncl_pbuf_freecnt = -1;	/* start out unlimited */
     65      1.1  dholland 
     66      1.1  dholland static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
     67      1.1  dholland     struct thread *td);
     68      1.1  dholland static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
     69      1.1  dholland     struct ucred *cred, int ioflag);
     70      1.1  dholland 
     71      1.1  dholland /*
     72      1.1  dholland  * Vnode op for VM getpages.
     73      1.1  dholland  */
     74      1.1  dholland int
     75      1.1  dholland ncl_getpages(struct vop_getpages_args *ap)
     76      1.1  dholland {
     77      1.1  dholland 	int i, error, nextoff, size, toff, count, npages;
     78      1.1  dholland 	struct uio uio;
     79      1.1  dholland 	struct iovec iov;
     80  1.6.2.1   thorpej 	vaddr_t kva;
     81      1.1  dholland 	struct buf *bp;
     82      1.1  dholland 	struct vnode *vp;
     83      1.1  dholland 	struct thread *td;
     84      1.1  dholland 	struct ucred *cred;
     85      1.1  dholland 	struct nfsmount *nmp;
     86      1.1  dholland 	vm_object_t object;
     87      1.1  dholland 	vm_page_t *pages;
     88      1.1  dholland 	struct nfsnode *np;
     89      1.1  dholland 
     90      1.1  dholland 	vp = ap->a_vp;
     91      1.1  dholland 	np = VTONFS(vp);
     92      1.1  dholland 	td = curthread;				/* XXX */
     93      1.1  dholland 	cred = curthread->td_ucred;		/* XXX */
     94      1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
     95      1.1  dholland 	pages = ap->a_m;
     96      1.3  pgoyette 	npages = ap->a_count;
     97      1.1  dholland 
     98      1.1  dholland 	if ((object = vp->v_object) == NULL) {
     99      1.3  pgoyette 		printf("ncl_getpages: called with non-merged cache vnode\n");
    100      1.1  dholland 		return (VM_PAGER_ERROR);
    101      1.1  dholland 	}
    102      1.1  dholland 
    103      1.1  dholland 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
    104      1.1  dholland 		mtx_lock(&np->n_mtx);
    105      1.1  dholland 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    106      1.1  dholland 			mtx_unlock(&np->n_mtx);
    107      1.3  pgoyette 			printf("ncl_getpages: called on non-cacheable vnode\n");
    108      1.1  dholland 			return (VM_PAGER_ERROR);
    109      1.1  dholland 		} else
    110      1.1  dholland 			mtx_unlock(&np->n_mtx);
    111      1.1  dholland 	}
    112      1.1  dholland 
    113      1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    114      1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    115      1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    116      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    117      1.1  dholland 		/* We'll never get here for v4, because we always have fsinfo */
    118      1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    119      1.1  dholland 	} else
    120      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    121      1.1  dholland 
    122      1.1  dholland 	/*
    123      1.1  dholland 	 * If the requested page is partially valid, just return it and
    124      1.1  dholland 	 * allow the pager to zero-out the blanks.  Partially valid pages
    125      1.1  dholland 	 * can only occur at the file EOF.
    126      1.3  pgoyette 	 *
    127      1.3  pgoyette 	 * XXXGL: is that true for NFS, where short read can occur???
    128      1.1  dholland 	 */
    129      1.1  dholland 	VM_OBJECT_WLOCK(object);
    130      1.3  pgoyette 	if (pages[npages - 1]->valid != 0 && --npages == 0)
    131      1.3  pgoyette 		goto out;
    132      1.1  dholland 	VM_OBJECT_WUNLOCK(object);
    133      1.1  dholland 
    134      1.1  dholland 	/*
    135      1.1  dholland 	 * We use only the kva address for the buffer, but this is extremely
    136      1.3  pgoyette 	 * convenient and fast.
    137      1.1  dholland 	 */
    138      1.1  dholland 	bp = getpbuf(&ncl_pbuf_freecnt);
    139      1.1  dholland 
    140  1.6.2.1   thorpej 	kva = (vaddr_t) bp->b_data;
    141      1.1  dholland 	pmap_qenter(kva, pages, npages);
    142      1.1  dholland 	PCPU_INC(cnt.v_vnodein);
    143      1.1  dholland 	PCPU_ADD(cnt.v_vnodepgsin, npages);
    144      1.1  dholland 
    145      1.3  pgoyette 	count = npages << PAGE_SHIFT;
    146      1.1  dholland 	iov.iov_base = (caddr_t) kva;
    147      1.1  dholland 	iov.iov_len = count;
    148      1.1  dholland 	uio.uio_iov = &iov;
    149      1.1  dholland 	uio.uio_iovcnt = 1;
    150      1.1  dholland 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
    151      1.1  dholland 	uio.uio_resid = count;
    152      1.1  dholland 	uio.uio_segflg = UIO_SYSSPACE;
    153      1.1  dholland 	uio.uio_rw = UIO_READ;
    154      1.1  dholland 	uio.uio_td = td;
    155      1.1  dholland 
    156      1.1  dholland 	error = ncl_readrpc(vp, &uio, cred);
    157      1.1  dholland 	pmap_qremove(kva, npages);
    158      1.1  dholland 
    159      1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
    160      1.1  dholland 
    161      1.1  dholland 	if (error && (uio.uio_resid == count)) {
    162      1.3  pgoyette 		printf("ncl_getpages: error %d\n", error);
    163      1.1  dholland 		return (VM_PAGER_ERROR);
    164      1.1  dholland 	}
    165      1.1  dholland 
    166      1.1  dholland 	/*
    167      1.1  dholland 	 * Calculate the number of bytes read and validate only that number
    168      1.1  dholland 	 * of bytes.  Note that due to pending writes, size may be 0.  This
    169      1.1  dholland 	 * does not mean that the remaining data is invalid!
    170      1.1  dholland 	 */
    171      1.1  dholland 
    172      1.1  dholland 	size = count - uio.uio_resid;
    173      1.1  dholland 	VM_OBJECT_WLOCK(object);
    174      1.1  dholland 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
    175      1.1  dholland 		vm_page_t m;
    176      1.1  dholland 		nextoff = toff + PAGE_SIZE;
    177      1.1  dholland 		m = pages[i];
    178      1.1  dholland 
    179      1.1  dholland 		if (nextoff <= size) {
    180      1.1  dholland 			/*
    181      1.1  dholland 			 * Read operation filled an entire page
    182      1.1  dholland 			 */
    183      1.1  dholland 			m->valid = VM_PAGE_BITS_ALL;
    184      1.1  dholland 			KASSERT(m->dirty == 0,
    185      1.1  dholland 			    ("nfs_getpages: page %p is dirty", m));
    186      1.1  dholland 		} else if (size > toff) {
    187      1.1  dholland 			/*
    188      1.1  dholland 			 * Read operation filled a partial page.
    189      1.1  dholland 			 */
    190      1.1  dholland 			m->valid = 0;
    191      1.1  dholland 			vm_page_set_valid_range(m, 0, size - toff);
    192      1.1  dholland 			KASSERT(m->dirty == 0,
    193      1.1  dholland 			    ("nfs_getpages: page %p is dirty", m));
    194      1.1  dholland 		} else {
    195      1.1  dholland 			/*
    196      1.1  dholland 			 * Read operation was short.  If no error
    197      1.3  pgoyette 			 * occurred we may have hit a zero-fill
    198      1.1  dholland 			 * section.  We leave valid set to 0, and page
    199      1.1  dholland 			 * is freed by vm_page_readahead_finish() if
    200      1.1  dholland 			 * its index is not equal to requested, or
    201      1.1  dholland 			 * page is zeroed and set valid by
    202      1.1  dholland 			 * vm_pager_get_pages() for requested page.
    203      1.1  dholland 			 */
    204      1.1  dholland 			;
    205      1.1  dholland 		}
    206      1.1  dholland 	}
    207      1.3  pgoyette out:
    208      1.1  dholland 	VM_OBJECT_WUNLOCK(object);
    209      1.3  pgoyette 	if (ap->a_rbehind)
    210      1.3  pgoyette 		*ap->a_rbehind = 0;
    211      1.3  pgoyette 	if (ap->a_rahead)
    212      1.3  pgoyette 		*ap->a_rahead = 0;
    213      1.3  pgoyette 	return (VM_PAGER_OK);
    214      1.1  dholland }
    215      1.1  dholland 
    216      1.1  dholland /*
    217      1.1  dholland  * Vnode op for VM putpages.
    218      1.1  dholland  */
    219      1.1  dholland int
    220      1.1  dholland ncl_putpages(struct vop_putpages_args *ap)
    221      1.1  dholland {
    222      1.1  dholland 	struct uio uio;
    223      1.1  dholland 	struct iovec iov;
    224  1.6.2.1   thorpej 	vaddr_t kva;
    225      1.1  dholland 	struct buf *bp;
    226      1.1  dholland 	int iomode, must_commit, i, error, npages, count;
    227      1.1  dholland 	off_t offset;
    228      1.1  dholland 	int *rtvals;
    229      1.1  dholland 	struct vnode *vp;
    230      1.1  dholland 	struct thread *td;
    231      1.1  dholland 	struct ucred *cred;
    232      1.1  dholland 	struct nfsmount *nmp;
    233      1.1  dholland 	struct nfsnode *np;
    234      1.1  dholland 	vm_page_t *pages;
    235      1.1  dholland 
    236      1.1  dholland 	vp = ap->a_vp;
    237      1.1  dholland 	np = VTONFS(vp);
    238      1.1  dholland 	td = curthread;				/* XXX */
    239      1.1  dholland 	/* Set the cred to n_writecred for the write rpcs. */
    240      1.1  dholland 	if (np->n_writecred != NULL)
    241      1.1  dholland 		cred = crhold(np->n_writecred);
    242      1.1  dholland 	else
    243      1.1  dholland 		cred = crhold(curthread->td_ucred);	/* XXX */
    244      1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
    245      1.1  dholland 	pages = ap->a_m;
    246      1.1  dholland 	count = ap->a_count;
    247      1.1  dholland 	rtvals = ap->a_rtvals;
    248      1.1  dholland 	npages = btoc(count);
    249      1.1  dholland 	offset = IDX_TO_OFF(pages[0]->pindex);
    250      1.1  dholland 
    251      1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    252      1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    253      1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    254      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    255      1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    256      1.1  dholland 	} else
    257      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    258      1.1  dholland 
    259      1.1  dholland 	mtx_lock(&np->n_mtx);
    260      1.1  dholland 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
    261      1.1  dholland 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    262      1.1  dholland 		mtx_unlock(&np->n_mtx);
    263      1.3  pgoyette 		printf("ncl_putpages: called on noncache-able vnode\n");
    264      1.1  dholland 		mtx_lock(&np->n_mtx);
    265      1.1  dholland 	}
    266      1.1  dholland 
    267      1.1  dholland 	for (i = 0; i < npages; i++)
    268      1.1  dholland 		rtvals[i] = VM_PAGER_ERROR;
    269      1.1  dholland 
    270      1.1  dholland 	/*
    271      1.1  dholland 	 * When putting pages, do not extend file past EOF.
    272      1.1  dholland 	 */
    273      1.1  dholland 	if (offset + count > np->n_size) {
    274      1.1  dholland 		count = np->n_size - offset;
    275      1.1  dholland 		if (count < 0)
    276      1.1  dholland 			count = 0;
    277      1.1  dholland 	}
    278      1.1  dholland 	mtx_unlock(&np->n_mtx);
    279      1.1  dholland 
    280      1.1  dholland 	/*
    281      1.1  dholland 	 * We use only the kva address for the buffer, but this is extremely
    282      1.3  pgoyette 	 * convenient and fast.
    283      1.1  dholland 	 */
    284      1.1  dholland 	bp = getpbuf(&ncl_pbuf_freecnt);
    285      1.1  dholland 
    286  1.6.2.1   thorpej 	kva = (vaddr_t) bp->b_data;
    287      1.1  dholland 	pmap_qenter(kva, pages, npages);
    288      1.1  dholland 	PCPU_INC(cnt.v_vnodeout);
    289      1.1  dholland 	PCPU_ADD(cnt.v_vnodepgsout, count);
    290      1.1  dholland 
    291      1.1  dholland 	iov.iov_base = (caddr_t) kva;
    292      1.1  dholland 	iov.iov_len = count;
    293      1.1  dholland 	uio.uio_iov = &iov;
    294      1.1  dholland 	uio.uio_iovcnt = 1;
    295      1.1  dholland 	uio.uio_offset = offset;
    296      1.1  dholland 	uio.uio_resid = count;
    297      1.1  dholland 	uio.uio_segflg = UIO_SYSSPACE;
    298      1.1  dholland 	uio.uio_rw = UIO_WRITE;
    299      1.1  dholland 	uio.uio_td = td;
    300      1.1  dholland 
    301      1.1  dholland 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
    302      1.1  dholland 	    iomode = NFSWRITE_UNSTABLE;
    303      1.1  dholland 	else
    304      1.1  dholland 	    iomode = NFSWRITE_FILESYNC;
    305      1.1  dholland 
    306      1.1  dholland 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
    307      1.1  dholland 	crfree(cred);
    308      1.1  dholland 
    309      1.1  dholland 	pmap_qremove(kva, npages);
    310      1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
    311      1.1  dholland 
    312      1.1  dholland 	if (error == 0 || !nfs_keep_dirty_on_error) {
    313      1.1  dholland 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
    314      1.1  dholland 		if (must_commit)
    315      1.1  dholland 			ncl_clearcommit(vp->v_mount);
    316      1.1  dholland 	}
    317      1.1  dholland 	return rtvals[0];
    318      1.1  dholland }
    319      1.1  dholland 
    320      1.1  dholland /*
    321      1.1  dholland  * For nfs, cache consistency can only be maintained approximately.
    322      1.1  dholland  * Although RFC1094 does not specify the criteria, the following is
    323      1.1  dholland  * believed to be compatible with the reference port.
    324      1.1  dholland  * For nfs:
    325      1.1  dholland  * If the file's modify time on the server has changed since the
    326      1.1  dholland  * last read rpc or you have written to the file,
    327      1.1  dholland  * you may have lost data cache consistency with the
    328      1.1  dholland  * server, so flush all of the file's data out of the cache.
    329      1.1  dholland  * Then force a getattr rpc to ensure that you have up to date
    330      1.1  dholland  * attributes.
    331      1.1  dholland  * NB: This implies that cache data can be read when up to
    332      1.1  dholland  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
    333      1.1  dholland  * attributes this could be forced by setting n_attrstamp to 0 before
    334      1.1  dholland  * the VOP_GETATTR() call.
    335      1.1  dholland  */
    336      1.1  dholland static inline int
    337      1.1  dholland nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
    338      1.1  dholland {
    339      1.1  dholland 	int error = 0;
    340      1.1  dholland 	struct vattr vattr;
    341      1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    342      1.1  dholland 	int old_lock;
    343      1.1  dholland 
    344      1.1  dholland 	/*
    345      1.1  dholland 	 * Grab the exclusive lock before checking whether the cache is
    346      1.1  dholland 	 * consistent.
    347      1.1  dholland 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
    348      1.1  dholland 	 * But for now, this suffices.
    349      1.1  dholland 	 */
    350      1.1  dholland 	old_lock = ncl_upgrade_vnlock(vp);
    351      1.1  dholland 	if (vp->v_iflag & VI_DOOMED) {
    352      1.1  dholland 		ncl_downgrade_vnlock(vp, old_lock);
    353      1.1  dholland 		return (EBADF);
    354      1.1  dholland 	}
    355      1.1  dholland 
    356      1.1  dholland 	mtx_lock(&np->n_mtx);
    357      1.1  dholland 	if (np->n_flag & NMODIFIED) {
    358      1.1  dholland 		mtx_unlock(&np->n_mtx);
    359      1.1  dholland 		if (vp->v_type != VREG) {
    360      1.1  dholland 			if (vp->v_type != VDIR)
    361      1.1  dholland 				panic("nfs: bioread, not dir");
    362      1.1  dholland 			ncl_invaldir(vp);
    363      1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    364      1.1  dholland 			if (error)
    365      1.1  dholland 				goto out;
    366      1.1  dholland 		}
    367      1.1  dholland 		np->n_attrstamp = 0;
    368      1.1  dholland 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    369      1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    370      1.1  dholland 		if (error)
    371      1.1  dholland 			goto out;
    372      1.1  dholland 		mtx_lock(&np->n_mtx);
    373      1.1  dholland 		np->n_mtime = vattr.va_mtime;
    374      1.1  dholland 		mtx_unlock(&np->n_mtx);
    375      1.1  dholland 	} else {
    376      1.1  dholland 		mtx_unlock(&np->n_mtx);
    377      1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    378      1.1  dholland 		if (error)
    379      1.1  dholland 			return (error);
    380      1.1  dholland 		mtx_lock(&np->n_mtx);
    381      1.1  dholland 		if ((np->n_flag & NSIZECHANGED)
    382      1.1  dholland 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
    383      1.1  dholland 			mtx_unlock(&np->n_mtx);
    384      1.1  dholland 			if (vp->v_type == VDIR)
    385      1.1  dholland 				ncl_invaldir(vp);
    386      1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    387      1.1  dholland 			if (error)
    388      1.1  dholland 				goto out;
    389      1.1  dholland 			mtx_lock(&np->n_mtx);
    390      1.1  dholland 			np->n_mtime = vattr.va_mtime;
    391      1.1  dholland 			np->n_flag &= ~NSIZECHANGED;
    392      1.1  dholland 		}
    393      1.1  dholland 		mtx_unlock(&np->n_mtx);
    394      1.1  dholland 	}
    395      1.1  dholland out:
    396      1.1  dholland 	ncl_downgrade_vnlock(vp, old_lock);
    397      1.1  dholland 	return error;
    398      1.1  dholland }
    399      1.1  dholland 
    400      1.1  dholland /*
    401      1.1  dholland  * Vnode op for read using bio
    402      1.1  dholland  */
    403      1.1  dholland int
    404      1.1  dholland ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
    405      1.1  dholland {
    406      1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    407      1.1  dholland 	int biosize, i;
    408      1.1  dholland 	struct buf *bp, *rabp;
    409      1.1  dholland 	struct thread *td;
    410      1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    411      1.1  dholland 	daddr_t lbn, rabn;
    412      1.1  dholland 	int bcount;
    413      1.1  dholland 	int seqcount;
    414      1.1  dholland 	int nra, error = 0, n = 0, on = 0;
    415      1.1  dholland 	off_t tmp_off;
    416      1.1  dholland 
    417      1.1  dholland 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
    418      1.1  dholland 	if (uio->uio_resid == 0)
    419      1.1  dholland 		return (0);
    420      1.1  dholland 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
    421      1.1  dholland 		return (EINVAL);
    422      1.1  dholland 	td = uio->uio_td;
    423      1.1  dholland 
    424      1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    425      1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    426      1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    427      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    428      1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    429      1.1  dholland 		mtx_lock(&nmp->nm_mtx);
    430      1.1  dholland 	}
    431      1.1  dholland 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
    432      1.1  dholland 		(void) newnfs_iosize(nmp);
    433      1.1  dholland 
    434      1.1  dholland 	tmp_off = uio->uio_offset + uio->uio_resid;
    435      1.1  dholland 	if (vp->v_type != VDIR &&
    436      1.1  dholland 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
    437      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    438      1.1  dholland 		return (EFBIG);
    439      1.1  dholland 	}
    440      1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    441      1.1  dholland 
    442      1.1  dholland 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
    443      1.1  dholland 		/* No caching/ no readaheads. Just read data into the user buffer */
    444      1.1  dholland 		return ncl_readrpc(vp, uio, cred);
    445      1.1  dholland 
    446      1.1  dholland 	biosize = vp->v_bufobj.bo_bsize;
    447      1.1  dholland 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
    448      1.1  dholland 
    449      1.1  dholland 	error = nfs_bioread_check_cons(vp, td, cred);
    450      1.1  dholland 	if (error)
    451      1.1  dholland 		return error;
    452      1.1  dholland 
    453      1.1  dholland 	do {
    454      1.1  dholland 	    u_quad_t nsize;
    455      1.1  dholland 
    456      1.1  dholland 	    mtx_lock(&np->n_mtx);
    457      1.1  dholland 	    nsize = np->n_size;
    458      1.1  dholland 	    mtx_unlock(&np->n_mtx);
    459      1.1  dholland 
    460      1.1  dholland 	    switch (vp->v_type) {
    461      1.1  dholland 	    case VREG:
    462      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
    463      1.1  dholland 		lbn = uio->uio_offset / biosize;
    464      1.1  dholland 		on = uio->uio_offset - (lbn * biosize);
    465      1.1  dholland 
    466      1.1  dholland 		/*
    467      1.1  dholland 		 * Start the read ahead(s), as required.
    468      1.1  dholland 		 */
    469      1.1  dholland 		if (nmp->nm_readahead > 0) {
    470      1.1  dholland 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
    471      1.1  dholland 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
    472      1.1  dholland 			rabn = lbn + 1 + nra;
    473      1.1  dholland 			if (incore(&vp->v_bufobj, rabn) == NULL) {
    474      1.1  dholland 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
    475      1.1  dholland 			    if (!rabp) {
    476      1.1  dholland 				error = newnfs_sigintr(nmp, td);
    477      1.1  dholland 				return (error ? error : EINTR);
    478      1.1  dholland 			    }
    479      1.1  dholland 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    480      1.1  dholland 				rabp->b_flags |= B_ASYNC;
    481      1.1  dholland 				rabp->b_iocmd = BIO_READ;
    482      1.1  dholland 				vfs_busy_pages(rabp, 0);
    483      1.1  dholland 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    484      1.1  dholland 				    rabp->b_flags |= B_INVAL;
    485      1.1  dholland 				    rabp->b_ioflags |= BIO_ERROR;
    486      1.1  dholland 				    vfs_unbusy_pages(rabp);
    487      1.1  dholland 				    brelse(rabp);
    488      1.1  dholland 				    break;
    489      1.1  dholland 				}
    490      1.1  dholland 			    } else {
    491      1.1  dholland 				brelse(rabp);
    492      1.1  dholland 			    }
    493      1.1  dholland 			}
    494      1.1  dholland 		    }
    495      1.1  dholland 		}
    496      1.1  dholland 
    497      1.1  dholland 		/* Note that bcount is *not* DEV_BSIZE aligned. */
    498      1.1  dholland 		bcount = biosize;
    499      1.1  dholland 		if ((off_t)lbn * biosize >= nsize) {
    500      1.1  dholland 			bcount = 0;
    501      1.1  dholland 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
    502      1.1  dholland 			bcount = nsize - (off_t)lbn * biosize;
    503      1.1  dholland 		}
    504      1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
    505      1.1  dholland 
    506      1.1  dholland 		if (!bp) {
    507      1.1  dholland 			error = newnfs_sigintr(nmp, td);
    508      1.1  dholland 			return (error ? error : EINTR);
    509      1.1  dholland 		}
    510      1.1  dholland 
    511      1.1  dholland 		/*
    512      1.1  dholland 		 * If B_CACHE is not set, we must issue the read.  If this
    513      1.1  dholland 		 * fails, we return an error.
    514      1.1  dholland 		 */
    515      1.1  dholland 
    516      1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    517      1.1  dholland 		    bp->b_iocmd = BIO_READ;
    518      1.1  dholland 		    vfs_busy_pages(bp, 0);
    519      1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    520      1.1  dholland 		    if (error) {
    521      1.1  dholland 			brelse(bp);
    522      1.1  dholland 			return (error);
    523      1.1  dholland 		    }
    524      1.1  dholland 		}
    525      1.1  dholland 
    526      1.1  dholland 		/*
    527      1.1  dholland 		 * on is the offset into the current bp.  Figure out how many
    528      1.1  dholland 		 * bytes we can copy out of the bp.  Note that bcount is
    529      1.1  dholland 		 * NOT DEV_BSIZE aligned.
    530      1.1  dholland 		 *
    531      1.1  dholland 		 * Then figure out how many bytes we can copy into the uio.
    532      1.1  dholland 		 */
    533      1.1  dholland 
    534      1.1  dholland 		n = 0;
    535      1.1  dholland 		if (on < bcount)
    536      1.1  dholland 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
    537      1.1  dholland 		break;
    538      1.1  dholland 	    case VLNK:
    539      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
    540      1.1  dholland 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
    541      1.1  dholland 		if (!bp) {
    542      1.1  dholland 			error = newnfs_sigintr(nmp, td);
    543      1.1  dholland 			return (error ? error : EINTR);
    544      1.1  dholland 		}
    545      1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    546      1.1  dholland 		    bp->b_iocmd = BIO_READ;
    547      1.1  dholland 		    vfs_busy_pages(bp, 0);
    548      1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    549      1.1  dholland 		    if (error) {
    550      1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
    551      1.1  dholland 			brelse(bp);
    552      1.1  dholland 			return (error);
    553      1.1  dholland 		    }
    554      1.1  dholland 		}
    555      1.1  dholland 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    556      1.1  dholland 		on = 0;
    557      1.1  dholland 		break;
    558      1.1  dholland 	    case VDIR:
    559      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
    560      1.1  dholland 		if (np->n_direofoffset
    561      1.1  dholland 		    && uio->uio_offset >= np->n_direofoffset) {
    562      1.1  dholland 		    return (0);
    563      1.1  dholland 		}
    564      1.1  dholland 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
    565      1.1  dholland 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
    566      1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
    567      1.1  dholland 		if (!bp) {
    568      1.1  dholland 		    error = newnfs_sigintr(nmp, td);
    569      1.1  dholland 		    return (error ? error : EINTR);
    570      1.1  dholland 		}
    571      1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
    572      1.1  dholland 		    bp->b_iocmd = BIO_READ;
    573      1.1  dholland 		    vfs_busy_pages(bp, 0);
    574      1.1  dholland 		    error = ncl_doio(vp, bp, cred, td, 0);
    575      1.1  dholland 		    if (error) {
    576      1.1  dholland 			    brelse(bp);
    577      1.1  dholland 		    }
    578      1.1  dholland 		    while (error == NFSERR_BAD_COOKIE) {
    579      1.1  dholland 			ncl_invaldir(vp);
    580      1.1  dholland 			error = ncl_vinvalbuf(vp, 0, td, 1);
    581      1.1  dholland 			/*
    582      1.1  dholland 			 * Yuck! The directory has been modified on the
    583      1.1  dholland 			 * server. The only way to get the block is by
    584      1.1  dholland 			 * reading from the beginning to get all the
    585      1.1  dholland 			 * offset cookies.
    586      1.1  dholland 			 *
    587      1.1  dholland 			 * Leave the last bp intact unless there is an error.
    588      1.1  dholland 			 * Loop back up to the while if the error is another
    589      1.1  dholland 			 * NFSERR_BAD_COOKIE (double yuch!).
    590      1.1  dholland 			 */
    591      1.1  dholland 			for (i = 0; i <= lbn && !error; i++) {
    592      1.1  dholland 			    if (np->n_direofoffset
    593      1.1  dholland 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
    594      1.1  dholland 				    return (0);
    595      1.1  dholland 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
    596      1.1  dholland 			    if (!bp) {
    597      1.1  dholland 				error = newnfs_sigintr(nmp, td);
    598      1.1  dholland 				return (error ? error : EINTR);
    599      1.1  dholland 			    }
    600      1.1  dholland 			    if ((bp->b_flags & B_CACHE) == 0) {
    601      1.1  dholland 				    bp->b_iocmd = BIO_READ;
    602      1.1  dholland 				    vfs_busy_pages(bp, 0);
    603      1.1  dholland 				    error = ncl_doio(vp, bp, cred, td, 0);
    604      1.1  dholland 				    /*
    605      1.1  dholland 				     * no error + B_INVAL == directory EOF,
    606      1.1  dholland 				     * use the block.
    607      1.1  dholland 				     */
    608      1.1  dholland 				    if (error == 0 && (bp->b_flags & B_INVAL))
    609      1.1  dholland 					    break;
    610      1.1  dholland 			    }
    611      1.1  dholland 			    /*
    612      1.1  dholland 			     * An error will throw away the block and the
    613      1.1  dholland 			     * for loop will break out.  If no error and this
    614      1.1  dholland 			     * is not the block we want, we throw away the
    615      1.1  dholland 			     * block and go for the next one via the for loop.
    616      1.1  dholland 			     */
    617      1.1  dholland 			    if (error || i < lbn)
    618      1.1  dholland 				    brelse(bp);
    619      1.1  dholland 			}
    620      1.1  dholland 		    }
    621      1.1  dholland 		    /*
    622      1.1  dholland 		     * The above while is repeated if we hit another cookie
    623      1.1  dholland 		     * error.  If we hit an error and it wasn't a cookie error,
    624      1.1  dholland 		     * we give up.
    625      1.1  dholland 		     */
    626      1.1  dholland 		    if (error)
    627      1.1  dholland 			    return (error);
    628      1.1  dholland 		}
    629      1.1  dholland 
    630      1.1  dholland 		/*
    631      1.1  dholland 		 * If not eof and read aheads are enabled, start one.
    632      1.1  dholland 		 * (You need the current block first, so that you have the
    633      1.1  dholland 		 *  directory offset cookie of the next block.)
    634      1.1  dholland 		 */
    635      1.1  dholland 		if (nmp->nm_readahead > 0 &&
    636      1.1  dholland 		    (bp->b_flags & B_INVAL) == 0 &&
    637      1.1  dholland 		    (np->n_direofoffset == 0 ||
    638      1.1  dholland 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
    639      1.1  dholland 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
    640      1.1  dholland 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
    641      1.1  dholland 			if (rabp) {
    642      1.1  dholland 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    643      1.1  dholland 				rabp->b_flags |= B_ASYNC;
    644      1.1  dholland 				rabp->b_iocmd = BIO_READ;
    645      1.1  dholland 				vfs_busy_pages(rabp, 0);
    646      1.1  dholland 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    647      1.1  dholland 				    rabp->b_flags |= B_INVAL;
    648      1.1  dholland 				    rabp->b_ioflags |= BIO_ERROR;
    649      1.1  dholland 				    vfs_unbusy_pages(rabp);
    650      1.1  dholland 				    brelse(rabp);
    651      1.1  dholland 				}
    652      1.1  dholland 			    } else {
    653      1.1  dholland 				brelse(rabp);
    654      1.1  dholland 			    }
    655      1.1  dholland 			}
    656      1.1  dholland 		}
    657      1.1  dholland 		/*
    658      1.1  dholland 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
    659      1.1  dholland 		 * chopped for the EOF condition, we cannot tell how large
    660      1.1  dholland 		 * NFS directories are going to be until we hit EOF.  So
    661      1.1  dholland 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
    662      1.1  dholland 		 * it just so happens that b_resid will effectively chop it
    663      1.1  dholland 		 * to EOF.  *BUT* this information is lost if the buffer goes
    664      1.1  dholland 		 * away and is reconstituted into a B_CACHE state ( due to
    665      1.1  dholland 		 * being VMIO ) later.  So we keep track of the directory eof
    666      1.1  dholland 		 * in np->n_direofoffset and chop it off as an extra step
    667      1.1  dholland 		 * right here.
    668      1.1  dholland 		 */
    669      1.1  dholland 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
    670      1.1  dholland 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
    671      1.1  dholland 			n = np->n_direofoffset - uio->uio_offset;
    672      1.1  dholland 		break;
    673      1.1  dholland 	    default:
    674      1.3  pgoyette 		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
    675      1.1  dholland 		bp = NULL;
    676      1.1  dholland 		break;
    677      1.3  pgoyette 	    }
    678      1.1  dholland 
    679      1.1  dholland 	    if (n > 0) {
    680      1.1  dholland 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
    681      1.1  dholland 	    }
    682      1.1  dholland 	    if (vp->v_type == VLNK)
    683      1.1  dholland 		n = 0;
    684      1.1  dholland 	    if (bp != NULL)
    685      1.1  dholland 		brelse(bp);
    686      1.1  dholland 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    687      1.1  dholland 	return (error);
    688      1.1  dholland }
    689      1.1  dholland 
    690      1.1  dholland /*
    691      1.1  dholland  * The NFS write path cannot handle iovecs with len > 1. So we need to
    692      1.1  dholland  * break up iovecs accordingly (restricting them to wsize).
    693      1.1  dholland  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
    694      1.1  dholland  * For the ASYNC case, 2 copies are needed. The first a copy from the
    695      1.1  dholland  * user buffer to a staging buffer and then a second copy from the staging
    696      1.1  dholland  * buffer to mbufs. This can be optimized by copying from the user buffer
    697      1.1  dholland  * directly into mbufs and passing the chain down, but that requires a
    698      1.1  dholland  * fair amount of re-working of the relevant codepaths (and can be done
    699      1.1  dholland  * later).
    700      1.1  dholland  */
    701      1.1  dholland static int
    702      1.1  dholland nfs_directio_write(vp, uiop, cred, ioflag)
    703      1.1  dholland 	struct vnode *vp;
    704      1.1  dholland 	struct uio *uiop;
    705      1.1  dholland 	struct ucred *cred;
    706      1.1  dholland 	int ioflag;
    707      1.1  dholland {
    708      1.1  dholland 	int error;
    709      1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    710      1.1  dholland 	struct thread *td = uiop->uio_td;
    711      1.1  dholland 	int size;
    712      1.1  dholland 	int wsize;
    713      1.1  dholland 
    714      1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    715      1.1  dholland 	wsize = nmp->nm_wsize;
    716      1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    717      1.1  dholland 	if (ioflag & IO_SYNC) {
    718      1.1  dholland 		int iomode, must_commit;
    719      1.1  dholland 		struct uio uio;
    720      1.1  dholland 		struct iovec iov;
    721      1.1  dholland do_sync:
    722      1.1  dholland 		while (uiop->uio_resid > 0) {
    723      1.1  dholland 			size = MIN(uiop->uio_resid, wsize);
    724      1.1  dholland 			size = MIN(uiop->uio_iov->iov_len, size);
    725      1.1  dholland 			iov.iov_base = uiop->uio_iov->iov_base;
    726      1.1  dholland 			iov.iov_len = size;
    727      1.1  dholland 			uio.uio_iov = &iov;
    728      1.1  dholland 			uio.uio_iovcnt = 1;
    729      1.1  dholland 			uio.uio_offset = uiop->uio_offset;
    730      1.1  dholland 			uio.uio_resid = size;
    731      1.1  dholland 			uio.uio_segflg = UIO_USERSPACE;
    732      1.1  dholland 			uio.uio_rw = UIO_WRITE;
    733      1.1  dholland 			uio.uio_td = td;
    734      1.1  dholland 			iomode = NFSWRITE_FILESYNC;
    735      1.1  dholland 			error = ncl_writerpc(vp, &uio, cred, &iomode,
    736      1.1  dholland 			    &must_commit, 0);
    737      1.1  dholland 			KASSERT((must_commit == 0),
    738      1.1  dholland 				("ncl_directio_write: Did not commit write"));
    739      1.1  dholland 			if (error)
    740      1.1  dholland 				return (error);
    741      1.1  dholland 			uiop->uio_offset += size;
    742      1.1  dholland 			uiop->uio_resid -= size;
    743      1.1  dholland 			if (uiop->uio_iov->iov_len <= size) {
    744      1.1  dholland 				uiop->uio_iovcnt--;
    745      1.1  dholland 				uiop->uio_iov++;
    746      1.1  dholland 			} else {
    747      1.1  dholland 				uiop->uio_iov->iov_base =
    748      1.1  dholland 					(char *)uiop->uio_iov->iov_base + size;
    749      1.1  dholland 				uiop->uio_iov->iov_len -= size;
    750      1.1  dholland 			}
    751      1.1  dholland 		}
    752      1.1  dholland 	} else {
    753      1.1  dholland 		struct uio *t_uio;
    754      1.1  dholland 		struct iovec *t_iov;
    755      1.1  dholland 		struct buf *bp;
    756      1.1  dholland 
    757      1.1  dholland 		/*
    758      1.1  dholland 		 * Break up the write into blocksize chunks and hand these
    759      1.1  dholland 		 * over to nfsiod's for write back.
    760      1.1  dholland 		 * Unfortunately, this incurs a copy of the data. Since
    761      1.1  dholland 		 * the user could modify the buffer before the write is
    762      1.1  dholland 		 * initiated.
    763      1.1  dholland 		 *
    764      1.1  dholland 		 * The obvious optimization here is that one of the 2 copies
    765      1.1  dholland 		 * in the async write path can be eliminated by copying the
    766      1.1  dholland 		 * data here directly into mbufs and passing the mbuf chain
    767      1.1  dholland 		 * down. But that will require a fair amount of re-working
    768      1.1  dholland 		 * of the code and can be done if there's enough interest
    769      1.1  dholland 		 * in NFS directio access.
    770      1.1  dholland 		 */
    771      1.1  dholland 		while (uiop->uio_resid > 0) {
    772      1.1  dholland 			size = MIN(uiop->uio_resid, wsize);
    773      1.1  dholland 			size = MIN(uiop->uio_iov->iov_len, size);
    774      1.1  dholland 			bp = getpbuf(&ncl_pbuf_freecnt);
    775      1.1  dholland 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
    776      1.1  dholland 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
    777      1.1  dholland 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
    778      1.1  dholland 			t_iov->iov_len = size;
    779      1.1  dholland 			t_uio->uio_iov = t_iov;
    780      1.1  dholland 			t_uio->uio_iovcnt = 1;
    781      1.1  dholland 			t_uio->uio_offset = uiop->uio_offset;
    782      1.1  dholland 			t_uio->uio_resid = size;
    783      1.1  dholland 			t_uio->uio_segflg = UIO_SYSSPACE;
    784      1.1  dholland 			t_uio->uio_rw = UIO_WRITE;
    785      1.1  dholland 			t_uio->uio_td = td;
    786      1.1  dholland 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
    787      1.1  dholland 			    uiop->uio_segflg == UIO_SYSSPACE,
    788      1.1  dholland 			    ("nfs_directio_write: Bad uio_segflg"));
    789      1.1  dholland 			if (uiop->uio_segflg == UIO_USERSPACE) {
    790      1.1  dholland 				error = copyin(uiop->uio_iov->iov_base,
    791      1.1  dholland 				    t_iov->iov_base, size);
    792      1.1  dholland 				if (error != 0)
    793      1.1  dholland 					goto err_free;
    794      1.1  dholland 			} else
    795      1.1  dholland 				/*
    796      1.1  dholland 				 * UIO_SYSSPACE may never happen, but handle
    797      1.1  dholland 				 * it just in case it does.
    798      1.1  dholland 				 */
    799      1.1  dholland 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
    800      1.1  dholland 				    size);
    801      1.1  dholland 			bp->b_flags |= B_DIRECT;
    802      1.1  dholland 			bp->b_iocmd = BIO_WRITE;
    803      1.1  dholland 			if (cred != NOCRED) {
    804      1.1  dholland 				crhold(cred);
    805      1.1  dholland 				bp->b_wcred = cred;
    806      1.1  dholland 			} else
    807      1.1  dholland 				bp->b_wcred = NOCRED;
    808      1.1  dholland 			bp->b_caller1 = (void *)t_uio;
    809      1.1  dholland 			bp->b_vp = vp;
    810      1.1  dholland 			error = ncl_asyncio(nmp, bp, NOCRED, td);
    811      1.1  dholland err_free:
    812      1.1  dholland 			if (error) {
    813      1.1  dholland 				free(t_iov->iov_base, M_NFSDIRECTIO);
    814      1.1  dholland 				free(t_iov, M_NFSDIRECTIO);
    815      1.1  dholland 				free(t_uio, M_NFSDIRECTIO);
    816      1.1  dholland 				bp->b_vp = NULL;
    817      1.1  dholland 				relpbuf(bp, &ncl_pbuf_freecnt);
    818      1.1  dholland 				if (error == EINTR)
    819      1.1  dholland 					return (error);
    820      1.1  dholland 				goto do_sync;
    821      1.1  dholland 			}
    822      1.1  dholland 			uiop->uio_offset += size;
    823      1.1  dholland 			uiop->uio_resid -= size;
    824      1.1  dholland 			if (uiop->uio_iov->iov_len <= size) {
    825      1.1  dholland 				uiop->uio_iovcnt--;
    826      1.1  dholland 				uiop->uio_iov++;
    827      1.1  dholland 			} else {
    828      1.1  dholland 				uiop->uio_iov->iov_base =
    829      1.1  dholland 					(char *)uiop->uio_iov->iov_base + size;
    830      1.1  dholland 				uiop->uio_iov->iov_len -= size;
    831      1.1  dholland 			}
    832      1.1  dholland 		}
    833      1.1  dholland 	}
    834      1.1  dholland 	return (0);
    835      1.1  dholland }
    836      1.1  dholland 
    837      1.1  dholland /*
    838      1.1  dholland  * Vnode op for write using bio
    839      1.1  dholland  */
    840      1.1  dholland int
    841      1.1  dholland ncl_write(struct vop_write_args *ap)
    842      1.1  dholland {
    843      1.1  dholland 	int biosize;
    844      1.1  dholland 	struct uio *uio = ap->a_uio;
    845      1.1  dholland 	struct thread *td = uio->uio_td;
    846      1.1  dholland 	struct vnode *vp = ap->a_vp;
    847      1.1  dholland 	struct nfsnode *np = VTONFS(vp);
    848      1.1  dholland 	struct ucred *cred = ap->a_cred;
    849      1.1  dholland 	int ioflag = ap->a_ioflag;
    850      1.1  dholland 	struct buf *bp;
    851      1.1  dholland 	struct vattr vattr;
    852      1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    853      1.1  dholland 	daddr_t lbn;
    854      1.3  pgoyette 	int bcount, noncontig_write, obcount;
    855      1.3  pgoyette 	int bp_cached, n, on, error = 0, error1, wouldcommit;
    856      1.1  dholland 	size_t orig_resid, local_resid;
    857      1.1  dholland 	off_t orig_size, tmp_off;
    858      1.1  dholland 
    859      1.1  dholland 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
    860      1.1  dholland 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
    861      1.1  dholland 	    ("ncl_write proc"));
    862      1.1  dholland 	if (vp->v_type != VREG)
    863      1.1  dholland 		return (EIO);
    864      1.1  dholland 	mtx_lock(&np->n_mtx);
    865      1.1  dholland 	if (np->n_flag & NWRITEERR) {
    866      1.1  dholland 		np->n_flag &= ~NWRITEERR;
    867      1.1  dholland 		mtx_unlock(&np->n_mtx);
    868      1.1  dholland 		return (np->n_error);
    869      1.1  dholland 	} else
    870      1.1  dholland 		mtx_unlock(&np->n_mtx);
    871      1.1  dholland 	mtx_lock(&nmp->nm_mtx);
    872      1.1  dholland 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    873      1.1  dholland 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    874      1.1  dholland 		mtx_unlock(&nmp->nm_mtx);
    875      1.1  dholland 		(void)ncl_fsinfo(nmp, vp, cred, td);
    876      1.1  dholland 		mtx_lock(&nmp->nm_mtx);
    877      1.1  dholland 	}
    878      1.1  dholland 	if (nmp->nm_wsize == 0)
    879      1.1  dholland 		(void) newnfs_iosize(nmp);
    880      1.1  dholland 	mtx_unlock(&nmp->nm_mtx);
    881      1.1  dholland 
    882      1.1  dholland 	/*
    883      1.1  dholland 	 * Synchronously flush pending buffers if we are in synchronous
    884      1.1  dholland 	 * mode or if we are appending.
    885      1.1  dholland 	 */
    886      1.1  dholland 	if (ioflag & (IO_APPEND | IO_SYNC)) {
    887      1.1  dholland 		mtx_lock(&np->n_mtx);
    888      1.1  dholland 		if (np->n_flag & NMODIFIED) {
    889      1.1  dholland 			mtx_unlock(&np->n_mtx);
    890      1.1  dholland #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
    891      1.1  dholland 			/*
    892      1.1  dholland 			 * Require non-blocking, synchronous writes to
    893      1.1  dholland 			 * dirty files to inform the program it needs
    894      1.1  dholland 			 * to fsync(2) explicitly.
    895      1.1  dholland 			 */
    896      1.1  dholland 			if (ioflag & IO_NDELAY)
    897      1.1  dholland 				return (EAGAIN);
    898      1.1  dholland #endif
    899      1.1  dholland 			np->n_attrstamp = 0;
    900      1.1  dholland 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    901      1.1  dholland 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    902      1.1  dholland 			if (error)
    903      1.1  dholland 				return (error);
    904      1.1  dholland 		} else
    905      1.1  dholland 			mtx_unlock(&np->n_mtx);
    906      1.1  dholland 	}
    907      1.1  dholland 
    908      1.1  dholland 	orig_resid = uio->uio_resid;
    909      1.1  dholland 	mtx_lock(&np->n_mtx);
    910      1.1  dholland 	orig_size = np->n_size;
    911      1.1  dholland 	mtx_unlock(&np->n_mtx);
    912      1.1  dholland 
    913      1.1  dholland 	/*
    914      1.1  dholland 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
    915      1.1  dholland 	 * get the append lock.
    916      1.1  dholland 	 */
    917      1.1  dholland 	if (ioflag & IO_APPEND) {
    918      1.1  dholland 		np->n_attrstamp = 0;
    919      1.1  dholland 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    920      1.1  dholland 		error = VOP_GETATTR(vp, &vattr, cred);
    921      1.1  dholland 		if (error)
    922      1.1  dholland 			return (error);
    923      1.1  dholland 		mtx_lock(&np->n_mtx);
    924      1.1  dholland 		uio->uio_offset = np->n_size;
    925      1.1  dholland 		mtx_unlock(&np->n_mtx);
    926      1.1  dholland 	}
    927      1.1  dholland 
    928      1.1  dholland 	if (uio->uio_offset < 0)
    929      1.1  dholland 		return (EINVAL);
    930      1.1  dholland 	tmp_off = uio->uio_offset + uio->uio_resid;
    931      1.1  dholland 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
    932      1.1  dholland 		return (EFBIG);
    933      1.1  dholland 	if (uio->uio_resid == 0)
    934      1.1  dholland 		return (0);
    935      1.1  dholland 
    936      1.1  dholland 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
    937      1.1  dholland 		return nfs_directio_write(vp, uio, cred, ioflag);
    938      1.1  dholland 
    939      1.1  dholland 	/*
    940      1.1  dholland 	 * Maybe this should be above the vnode op call, but so long as
    941      1.1  dholland 	 * file servers have no limits, i don't think it matters
    942      1.1  dholland 	 */
    943      1.1  dholland 	if (vn_rlimit_fsize(vp, uio, td))
    944      1.1  dholland 		return (EFBIG);
    945      1.1  dholland 
    946      1.1  dholland 	biosize = vp->v_bufobj.bo_bsize;
    947      1.1  dholland 	/*
    948      1.1  dholland 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
    949      1.1  dholland 	 * would exceed the local maximum per-file write commit size when
    950      1.1  dholland 	 * combined with those, we must decide whether to flush,
    951      1.1  dholland 	 * go synchronous, or return error.  We don't bother checking
    952      1.1  dholland 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
    953      1.1  dholland 	 * no point optimizing for something that really won't ever happen.
    954      1.1  dholland 	 */
    955      1.3  pgoyette 	wouldcommit = 0;
    956      1.1  dholland 	if (!(ioflag & IO_SYNC)) {
    957      1.1  dholland 		int nflag;
    958      1.1  dholland 
    959      1.1  dholland 		mtx_lock(&np->n_mtx);
    960      1.1  dholland 		nflag = np->n_flag;
    961      1.1  dholland 		mtx_unlock(&np->n_mtx);
    962      1.3  pgoyette 		if (nflag & NMODIFIED) {
    963      1.1  dholland 			BO_LOCK(&vp->v_bufobj);
    964      1.1  dholland 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
    965      1.1  dholland 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
    966      1.1  dholland 				    b_bobufs) {
    967      1.1  dholland 					if (bp->b_flags & B_NEEDCOMMIT)
    968      1.1  dholland 						wouldcommit += bp->b_bcount;
    969      1.1  dholland 				}
    970      1.1  dholland 			}
    971      1.1  dholland 			BO_UNLOCK(&vp->v_bufobj);
    972      1.1  dholland 		}
    973      1.1  dholland 	}
    974      1.1  dholland 
    975      1.1  dholland 	do {
    976      1.3  pgoyette 		if (!(ioflag & IO_SYNC)) {
    977      1.3  pgoyette 			wouldcommit += biosize;
    978      1.3  pgoyette 			if (wouldcommit > nmp->nm_wcommitsize) {
    979      1.3  pgoyette 				np->n_attrstamp = 0;
    980      1.3  pgoyette 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    981      1.3  pgoyette 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    982      1.3  pgoyette 				if (error)
    983      1.3  pgoyette 					return (error);
    984      1.3  pgoyette 				wouldcommit = biosize;
    985      1.3  pgoyette 			}
    986      1.3  pgoyette 		}
    987      1.3  pgoyette 
    988      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
    989      1.1  dholland 		lbn = uio->uio_offset / biosize;
    990      1.1  dholland 		on = uio->uio_offset - (lbn * biosize);
    991      1.1  dholland 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
    992      1.1  dholland again:
    993      1.1  dholland 		/*
    994      1.1  dholland 		 * Handle direct append and file extension cases, calculate
    995      1.1  dholland 		 * unaligned buffer size.
    996      1.1  dholland 		 */
    997      1.1  dholland 		mtx_lock(&np->n_mtx);
    998      1.3  pgoyette 		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
    999      1.3  pgoyette 		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
   1000      1.3  pgoyette 			noncontig_write = 1;
   1001      1.3  pgoyette 		else
   1002      1.3  pgoyette 			noncontig_write = 0;
   1003      1.3  pgoyette 		if ((uio->uio_offset == np->n_size ||
   1004      1.3  pgoyette 		    (noncontig_write != 0 &&
   1005      1.3  pgoyette 		    lbn == (np->n_size / biosize) &&
   1006      1.3  pgoyette 		    uio->uio_offset + n > np->n_size)) && n) {
   1007      1.1  dholland 			mtx_unlock(&np->n_mtx);
   1008      1.1  dholland 			/*
   1009      1.1  dholland 			 * Get the buffer (in its pre-append state to maintain
   1010      1.1  dholland 			 * B_CACHE if it was previously set).  Resize the
   1011      1.1  dholland 			 * nfsnode after we have locked the buffer to prevent
   1012      1.1  dholland 			 * readers from reading garbage.
   1013      1.1  dholland 			 */
   1014      1.3  pgoyette 			obcount = np->n_size - (lbn * biosize);
   1015      1.3  pgoyette 			bp = nfs_getcacheblk(vp, lbn, obcount, td);
   1016      1.1  dholland 
   1017      1.1  dholland 			if (bp != NULL) {
   1018      1.1  dholland 				long save;
   1019      1.1  dholland 
   1020      1.1  dholland 				mtx_lock(&np->n_mtx);
   1021      1.1  dholland 				np->n_size = uio->uio_offset + n;
   1022      1.1  dholland 				np->n_flag |= NMODIFIED;
   1023      1.1  dholland 				vnode_pager_setsize(vp, np->n_size);
   1024      1.1  dholland 				mtx_unlock(&np->n_mtx);
   1025      1.1  dholland 
   1026      1.1  dholland 				save = bp->b_flags & B_CACHE;
   1027      1.3  pgoyette 				bcount = on + n;
   1028      1.1  dholland 				allocbuf(bp, bcount);
   1029      1.1  dholland 				bp->b_flags |= save;
   1030      1.3  pgoyette 				if (noncontig_write != 0 && on > obcount)
   1031      1.3  pgoyette 					vfs_bio_bzero_buf(bp, obcount, on -
   1032      1.3  pgoyette 					    obcount);
   1033      1.1  dholland 			}
   1034      1.1  dholland 		} else {
   1035      1.1  dholland 			/*
   1036      1.1  dholland 			 * Obtain the locked cache block first, and then
   1037      1.1  dholland 			 * adjust the file's size as appropriate.
   1038      1.1  dholland 			 */
   1039      1.1  dholland 			bcount = on + n;
   1040      1.1  dholland 			if ((off_t)lbn * biosize + bcount < np->n_size) {
   1041      1.1  dholland 				if ((off_t)(lbn + 1) * biosize < np->n_size)
   1042      1.1  dholland 					bcount = biosize;
   1043      1.1  dholland 				else
   1044      1.1  dholland 					bcount = np->n_size - (off_t)lbn * biosize;
   1045      1.1  dholland 			}
   1046      1.1  dholland 			mtx_unlock(&np->n_mtx);
   1047      1.1  dholland 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
   1048      1.1  dholland 			mtx_lock(&np->n_mtx);
   1049      1.1  dholland 			if (uio->uio_offset + n > np->n_size) {
   1050      1.1  dholland 				np->n_size = uio->uio_offset + n;
   1051      1.1  dholland 				np->n_flag |= NMODIFIED;
   1052      1.1  dholland 				vnode_pager_setsize(vp, np->n_size);
   1053      1.1  dholland 			}
   1054      1.1  dholland 			mtx_unlock(&np->n_mtx);
   1055      1.1  dholland 		}
   1056      1.1  dholland 
   1057      1.1  dholland 		if (!bp) {
   1058      1.1  dholland 			error = newnfs_sigintr(nmp, td);
   1059      1.1  dholland 			if (!error)
   1060      1.1  dholland 				error = EINTR;
   1061      1.1  dholland 			break;
   1062      1.1  dholland 		}
   1063      1.1  dholland 
   1064      1.1  dholland 		/*
   1065      1.1  dholland 		 * Issue a READ if B_CACHE is not set.  In special-append
   1066      1.1  dholland 		 * mode, B_CACHE is based on the buffer prior to the write
   1067      1.1  dholland 		 * op and is typically set, avoiding the read.  If a read
   1068      1.1  dholland 		 * is required in special append mode, the server will
   1069      1.1  dholland 		 * probably send us a short-read since we extended the file
   1070      1.1  dholland 		 * on our end, resulting in b_resid == 0 and, thusly,
   1071      1.1  dholland 		 * B_CACHE getting set.
   1072      1.1  dholland 		 *
   1073      1.1  dholland 		 * We can also avoid issuing the read if the write covers
   1074      1.1  dholland 		 * the entire buffer.  We have to make sure the buffer state
   1075      1.1  dholland 		 * is reasonable in this case since we will not be initiating
   1076      1.1  dholland 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
   1077      1.1  dholland 		 * more information.
   1078      1.1  dholland 		 *
   1079      1.1  dholland 		 * B_CACHE may also be set due to the buffer being cached
   1080      1.1  dholland 		 * normally.
   1081      1.1  dholland 		 */
   1082      1.1  dholland 
   1083      1.1  dholland 		bp_cached = 1;
   1084      1.1  dholland 		if (on == 0 && n == bcount) {
   1085      1.1  dholland 			if ((bp->b_flags & B_CACHE) == 0)
   1086      1.1  dholland 				bp_cached = 0;
   1087      1.1  dholland 			bp->b_flags |= B_CACHE;
   1088      1.1  dholland 			bp->b_flags &= ~B_INVAL;
   1089      1.1  dholland 			bp->b_ioflags &= ~BIO_ERROR;
   1090      1.1  dholland 		}
   1091      1.1  dholland 
   1092      1.1  dholland 		if ((bp->b_flags & B_CACHE) == 0) {
   1093      1.1  dholland 			bp->b_iocmd = BIO_READ;
   1094      1.1  dholland 			vfs_busy_pages(bp, 0);
   1095      1.1  dholland 			error = ncl_doio(vp, bp, cred, td, 0);
   1096      1.1  dholland 			if (error) {
   1097      1.1  dholland 				brelse(bp);
   1098      1.1  dholland 				break;
   1099      1.1  dholland 			}
   1100      1.1  dholland 		}
   1101      1.1  dholland 		if (bp->b_wcred == NOCRED)
   1102      1.1  dholland 			bp->b_wcred = crhold(cred);
   1103      1.1  dholland 		mtx_lock(&np->n_mtx);
   1104      1.1  dholland 		np->n_flag |= NMODIFIED;
   1105      1.1  dholland 		mtx_unlock(&np->n_mtx);
   1106      1.1  dholland 
   1107      1.1  dholland 		/*
   1108      1.1  dholland 		 * If dirtyend exceeds file size, chop it down.  This should
   1109      1.1  dholland 		 * not normally occur but there is an append race where it
   1110      1.1  dholland 		 * might occur XXX, so we log it.
   1111      1.1  dholland 		 *
   1112      1.1  dholland 		 * If the chopping creates a reverse-indexed or degenerate
   1113      1.1  dholland 		 * situation with dirtyoff/end, we 0 both of them.
   1114      1.1  dholland 		 */
   1115      1.1  dholland 
   1116      1.1  dholland 		if (bp->b_dirtyend > bcount) {
   1117      1.3  pgoyette 			printf("NFS append race @%lx:%d\n",
   1118      1.1  dholland 			    (long)bp->b_blkno * DEV_BSIZE,
   1119      1.1  dholland 			    bp->b_dirtyend - bcount);
   1120      1.1  dholland 			bp->b_dirtyend = bcount;
   1121      1.1  dholland 		}
   1122      1.1  dholland 
   1123      1.1  dholland 		if (bp->b_dirtyoff >= bp->b_dirtyend)
   1124      1.1  dholland 			bp->b_dirtyoff = bp->b_dirtyend = 0;
   1125      1.1  dholland 
   1126      1.1  dholland 		/*
   1127      1.1  dholland 		 * If the new write will leave a contiguous dirty
   1128      1.1  dholland 		 * area, just update the b_dirtyoff and b_dirtyend,
   1129      1.1  dholland 		 * otherwise force a write rpc of the old dirty area.
   1130      1.1  dholland 		 *
   1131      1.3  pgoyette 		 * If there has been a file lock applied to this file
   1132      1.3  pgoyette 		 * or vfs.nfs.old_noncontig_writing is set, do the following:
   1133      1.1  dholland 		 * While it is possible to merge discontiguous writes due to
   1134      1.1  dholland 		 * our having a B_CACHE buffer ( and thus valid read data
   1135      1.1  dholland 		 * for the hole), we don't because it could lead to
   1136      1.1  dholland 		 * significant cache coherency problems with multiple clients,
   1137      1.1  dholland 		 * especially if locking is implemented later on.
   1138      1.1  dholland 		 *
   1139      1.3  pgoyette 		 * If vfs.nfs.old_noncontig_writing is not set and there has
   1140      1.3  pgoyette 		 * not been file locking done on this file:
   1141      1.3  pgoyette 		 * Relax coherency a bit for the sake of performance and
   1142      1.3  pgoyette 		 * expand the current dirty region to contain the new
   1143      1.3  pgoyette 		 * write even if it means we mark some non-dirty data as
   1144      1.3  pgoyette 		 * dirty.
   1145      1.1  dholland 		 */
   1146      1.1  dholland 
   1147      1.3  pgoyette 		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
   1148      1.1  dholland 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
   1149      1.1  dholland 			if (bwrite(bp) == EINTR) {
   1150      1.1  dholland 				error = EINTR;
   1151      1.1  dholland 				break;
   1152      1.1  dholland 			}
   1153      1.1  dholland 			goto again;
   1154      1.1  dholland 		}
   1155      1.1  dholland 
   1156      1.1  dholland 		local_resid = uio->uio_resid;
   1157      1.1  dholland 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
   1158      1.1  dholland 
   1159      1.1  dholland 		if (error != 0 && !bp_cached) {
   1160      1.1  dholland 			/*
   1161      1.2       wiz 			 * This block has no other content than what
   1162      1.1  dholland 			 * possibly was written by the faulty uiomove.
   1163      1.1  dholland 			 * Release it, forgetting the data pages, to
   1164      1.1  dholland 			 * prevent the leak of uninitialized data to
   1165      1.1  dholland 			 * usermode.
   1166      1.1  dholland 			 */
   1167      1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
   1168      1.1  dholland 			brelse(bp);
   1169      1.1  dholland 			uio->uio_offset -= local_resid - uio->uio_resid;
   1170      1.1  dholland 			uio->uio_resid = local_resid;
   1171      1.1  dholland 			break;
   1172      1.1  dholland 		}
   1173      1.1  dholland 
   1174      1.1  dholland 		/*
   1175      1.1  dholland 		 * Since this block is being modified, it must be written
   1176      1.1  dholland 		 * again and not just committed.  Since write clustering does
   1177      1.1  dholland 		 * not work for the stage 1 data write, only the stage 2
   1178      1.1  dholland 		 * commit rpc, we have to clear B_CLUSTEROK as well.
   1179      1.1  dholland 		 */
   1180      1.1  dholland 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1181      1.1  dholland 
   1182      1.1  dholland 		/*
   1183      1.1  dholland 		 * Get the partial update on the progress made from
   1184      1.3  pgoyette 		 * uiomove, if an error occurred.
   1185      1.1  dholland 		 */
   1186      1.1  dholland 		if (error != 0)
   1187      1.1  dholland 			n = local_resid - uio->uio_resid;
   1188      1.1  dholland 
   1189      1.1  dholland 		/*
   1190      1.1  dholland 		 * Only update dirtyoff/dirtyend if not a degenerate
   1191      1.1  dholland 		 * condition.
   1192      1.1  dholland 		 */
   1193      1.1  dholland 		if (n > 0) {
   1194      1.1  dholland 			if (bp->b_dirtyend > 0) {
   1195      1.5  riastrad 				bp->b_dirtyoff = uimin(on, bp->b_dirtyoff);
   1196      1.5  riastrad 				bp->b_dirtyend = uimax((on + n), bp->b_dirtyend);
   1197      1.1  dholland 			} else {
   1198      1.1  dholland 				bp->b_dirtyoff = on;
   1199      1.1  dholland 				bp->b_dirtyend = on + n;
   1200      1.1  dholland 			}
   1201      1.1  dholland 			vfs_bio_set_valid(bp, on, n);
   1202      1.1  dholland 		}
   1203      1.1  dholland 
   1204      1.1  dholland 		/*
   1205      1.1  dholland 		 * If IO_SYNC do bwrite().
   1206      1.1  dholland 		 *
   1207      1.1  dholland 		 * IO_INVAL appears to be unused.  The idea appears to be
   1208      1.1  dholland 		 * to turn off caching in this case.  Very odd.  XXX
   1209      1.1  dholland 		 */
   1210      1.1  dholland 		if ((ioflag & IO_SYNC)) {
   1211      1.1  dholland 			if (ioflag & IO_INVAL)
   1212      1.1  dholland 				bp->b_flags |= B_NOCACHE;
   1213      1.1  dholland 			error1 = bwrite(bp);
   1214      1.1  dholland 			if (error1 != 0) {
   1215      1.1  dholland 				if (error == 0)
   1216      1.1  dholland 					error = error1;
   1217      1.1  dholland 				break;
   1218      1.1  dholland 			}
   1219      1.1  dholland 		} else if ((n + on) == biosize) {
   1220      1.1  dholland 			bp->b_flags |= B_ASYNC;
   1221      1.1  dholland 			(void) ncl_writebp(bp, 0, NULL);
   1222      1.1  dholland 		} else {
   1223      1.1  dholland 			bdwrite(bp);
   1224      1.1  dholland 		}
   1225      1.1  dholland 
   1226      1.1  dholland 		if (error != 0)
   1227      1.1  dholland 			break;
   1228      1.1  dholland 	} while (uio->uio_resid > 0 && n > 0);
   1229      1.1  dholland 
   1230      1.1  dholland 	if (error != 0) {
   1231      1.1  dholland 		if (ioflag & IO_UNIT) {
   1232      1.1  dholland 			VATTR_NULL(&vattr);
   1233      1.1  dholland 			vattr.va_size = orig_size;
   1234      1.6   msaitoh 			/* IO_SYNC is handled implicitly */
   1235      1.1  dholland 			(void)VOP_SETATTR(vp, &vattr, cred);
   1236      1.1  dholland 			uio->uio_offset -= orig_resid - uio->uio_resid;
   1237      1.1  dholland 			uio->uio_resid = orig_resid;
   1238      1.1  dholland 		}
   1239      1.1  dholland 	}
   1240      1.1  dholland 
   1241      1.1  dholland 	return (error);
   1242      1.1  dholland }
   1243      1.1  dholland 
   1244      1.1  dholland /*
   1245      1.1  dholland  * Get an nfs cache block.
   1246      1.1  dholland  *
   1247      1.1  dholland  * Allocate a new one if the block isn't currently in the cache
   1248      1.1  dholland  * and return the block marked busy. If the calling process is
   1249      1.1  dholland  * interrupted by a signal for an interruptible mount point, return
   1250      1.1  dholland  * NULL.
   1251      1.1  dholland  *
   1252      1.1  dholland  * The caller must carefully deal with the possible B_INVAL state of
   1253      1.1  dholland  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
   1254      1.1  dholland  * indirectly), so synchronous reads can be issued without worrying about
   1255      1.1  dholland  * the B_INVAL state.  We have to be a little more careful when dealing
   1256      1.1  dholland  * with writes (see comments in nfs_write()) when extending a file past
   1257      1.1  dholland  * its EOF.
   1258      1.1  dholland  */
   1259      1.1  dholland static struct buf *
   1260      1.1  dholland nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
   1261      1.1  dholland {
   1262      1.1  dholland 	struct buf *bp;
   1263      1.1  dholland 	struct mount *mp;
   1264      1.1  dholland 	struct nfsmount *nmp;
   1265      1.1  dholland 
   1266      1.1  dholland 	mp = vp->v_mount;
   1267      1.1  dholland 	nmp = VFSTONFS(mp);
   1268      1.1  dholland 
   1269      1.1  dholland 	if (nmp->nm_flag & NFSMNT_INT) {
   1270      1.1  dholland 		sigset_t oldset;
   1271      1.1  dholland 
   1272      1.1  dholland 		newnfs_set_sigmask(td, &oldset);
   1273      1.1  dholland 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
   1274      1.1  dholland 		newnfs_restore_sigmask(td, &oldset);
   1275      1.1  dholland 		while (bp == NULL) {
   1276      1.1  dholland 			if (newnfs_sigintr(nmp, td))
   1277      1.1  dholland 				return (NULL);
   1278      1.1  dholland 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
   1279      1.1  dholland 		}
   1280      1.1  dholland 	} else {
   1281      1.1  dholland 		bp = getblk(vp, bn, size, 0, 0, 0);
   1282      1.1  dholland 	}
   1283      1.1  dholland 
   1284      1.1  dholland 	if (vp->v_type == VREG)
   1285      1.1  dholland 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
   1286      1.1  dholland 	return (bp);
   1287      1.1  dholland }
   1288      1.1  dholland 
   1289      1.1  dholland /*
   1290      1.1  dholland  * Flush and invalidate all dirty buffers. If another process is already
   1291      1.1  dholland  * doing the flush, just wait for completion.
   1292      1.1  dholland  */
   1293      1.1  dholland int
   1294      1.1  dholland ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
   1295      1.1  dholland {
   1296      1.1  dholland 	struct nfsnode *np = VTONFS(vp);
   1297      1.1  dholland 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1298      1.1  dholland 	int error = 0, slpflag, slptimeo;
   1299      1.1  dholland 	int old_lock = 0;
   1300      1.1  dholland 
   1301      1.1  dholland 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
   1302      1.1  dholland 
   1303      1.1  dholland 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
   1304      1.1  dholland 		intrflg = 0;
   1305      1.1  dholland 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
   1306      1.1  dholland 		intrflg = 1;
   1307      1.1  dholland 	if (intrflg) {
   1308      1.1  dholland 		slpflag = PCATCH;
   1309      1.1  dholland 		slptimeo = 2 * hz;
   1310      1.1  dholland 	} else {
   1311      1.1  dholland 		slpflag = 0;
   1312      1.1  dholland 		slptimeo = 0;
   1313      1.1  dholland 	}
   1314      1.1  dholland 
   1315      1.1  dholland 	old_lock = ncl_upgrade_vnlock(vp);
   1316      1.1  dholland 	if (vp->v_iflag & VI_DOOMED) {
   1317      1.1  dholland 		/*
   1318      1.1  dholland 		 * Since vgonel() uses the generic vinvalbuf() to flush
   1319      1.1  dholland 		 * dirty buffers and it does not call this function, it
   1320      1.1  dholland 		 * is safe to just return OK when VI_DOOMED is set.
   1321      1.1  dholland 		 */
   1322      1.1  dholland 		ncl_downgrade_vnlock(vp, old_lock);
   1323      1.1  dholland 		return (0);
   1324      1.1  dholland 	}
   1325      1.1  dholland 
   1326      1.1  dholland 	/*
   1327      1.1  dholland 	 * Now, flush as required.
   1328      1.1  dholland 	 */
   1329      1.1  dholland 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
   1330      1.1  dholland 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
   1331      1.1  dholland 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
   1332      1.1  dholland 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
   1333      1.1  dholland 		/*
   1334      1.1  dholland 		 * If the page clean was interrupted, fail the invalidation.
   1335      1.1  dholland 		 * Not doing so, we run the risk of losing dirty pages in the
   1336      1.1  dholland 		 * vinvalbuf() call below.
   1337      1.1  dholland 		 */
   1338      1.1  dholland 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1339      1.1  dholland 			goto out;
   1340      1.1  dholland 	}
   1341      1.1  dholland 
   1342      1.1  dholland 	error = vinvalbuf(vp, flags, slpflag, 0);
   1343      1.1  dholland 	while (error) {
   1344      1.1  dholland 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1345      1.1  dholland 			goto out;
   1346      1.1  dholland 		error = vinvalbuf(vp, flags, 0, slptimeo);
   1347      1.1  dholland 	}
   1348      1.1  dholland 	if (NFSHASPNFS(nmp)) {
   1349      1.1  dholland 		nfscl_layoutcommit(vp, td);
   1350      1.1  dholland 		/*
   1351      1.1  dholland 		 * Invalidate the attribute cache, since writes to a DS
   1352      1.1  dholland 		 * won't update the size attribute.
   1353      1.1  dholland 		 */
   1354      1.1  dholland 		mtx_lock(&np->n_mtx);
   1355      1.1  dholland 		np->n_attrstamp = 0;
   1356      1.1  dholland 	} else
   1357      1.1  dholland 		mtx_lock(&np->n_mtx);
   1358      1.1  dholland 	if (np->n_directio_asyncwr == 0)
   1359      1.1  dholland 		np->n_flag &= ~NMODIFIED;
   1360      1.1  dholland 	mtx_unlock(&np->n_mtx);
   1361      1.1  dholland out:
   1362      1.1  dholland 	ncl_downgrade_vnlock(vp, old_lock);
   1363      1.1  dholland 	return error;
   1364      1.1  dholland }
   1365      1.1  dholland 
   1366      1.1  dholland /*
   1367      1.1  dholland  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
   1368      1.1  dholland  * This is mainly to avoid queueing async I/O requests when the nfsiods
   1369      1.1  dholland  * are all hung on a dead server.
   1370      1.1  dholland  *
   1371      1.1  dholland  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
   1372      1.1  dholland  * is eventually dequeued by the async daemon, ncl_doio() *will*.
   1373      1.1  dholland  */
   1374      1.1  dholland int
   1375      1.1  dholland ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
   1376      1.1  dholland {
   1377      1.1  dholland 	int iod;
   1378      1.1  dholland 	int gotiod;
   1379      1.1  dholland 	int slpflag = 0;
   1380      1.1  dholland 	int slptimeo = 0;
   1381      1.1  dholland 	int error, error2;
   1382      1.1  dholland 
   1383      1.1  dholland 	/*
   1384      1.1  dholland 	 * Commits are usually short and sweet so lets save some cpu and
   1385      1.1  dholland 	 * leave the async daemons for more important rpc's (such as reads
   1386      1.1  dholland 	 * and writes).
   1387      1.1  dholland 	 *
   1388      1.1  dholland 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
   1389      1.1  dholland 	 * in the directory in order to update attributes. This can deadlock
   1390      1.1  dholland 	 * with another thread that is waiting for async I/O to be done by
   1391      1.1  dholland 	 * an nfsiod thread while holding a lock on one of these vnodes.
   1392      1.1  dholland 	 * To avoid this deadlock, don't allow the async nfsiod threads to
   1393      1.1  dholland 	 * perform Readdirplus RPCs.
   1394      1.1  dholland 	 */
   1395      1.1  dholland 	mtx_lock(&ncl_iod_mutex);
   1396      1.1  dholland 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
   1397      1.1  dholland 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
   1398      1.1  dholland 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
   1399      1.1  dholland 		mtx_unlock(&ncl_iod_mutex);
   1400      1.1  dholland 		return(EIO);
   1401      1.1  dholland 	}
   1402      1.1  dholland again:
   1403      1.1  dholland 	if (nmp->nm_flag & NFSMNT_INT)
   1404      1.1  dholland 		slpflag = PCATCH;
   1405      1.1  dholland 	gotiod = FALSE;
   1406      1.1  dholland 
   1407      1.1  dholland 	/*
   1408      1.1  dholland 	 * Find a free iod to process this request.
   1409      1.1  dholland 	 */
   1410      1.1  dholland 	for (iod = 0; iod < ncl_numasync; iod++)
   1411      1.1  dholland 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
   1412      1.1  dholland 			gotiod = TRUE;
   1413      1.1  dholland 			break;
   1414      1.1  dholland 		}
   1415      1.1  dholland 
   1416      1.1  dholland 	/*
   1417      1.1  dholland 	 * Try to create one if none are free.
   1418      1.1  dholland 	 */
   1419      1.1  dholland 	if (!gotiod)
   1420      1.1  dholland 		ncl_nfsiodnew();
   1421      1.1  dholland 	else {
   1422      1.1  dholland 		/*
   1423      1.1  dholland 		 * Found one, so wake it up and tell it which
   1424      1.1  dholland 		 * mount to process.
   1425      1.1  dholland 		 */
   1426      1.1  dholland 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
   1427      1.1  dholland 		    iod, nmp));
   1428      1.1  dholland 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
   1429      1.1  dholland 		ncl_iodmount[iod] = nmp;
   1430      1.1  dholland 		nmp->nm_bufqiods++;
   1431      1.1  dholland 		wakeup(&ncl_iodwant[iod]);
   1432      1.1  dholland 	}
   1433      1.1  dholland 
   1434      1.1  dholland 	/*
   1435      1.1  dholland 	 * If none are free, we may already have an iod working on this mount
   1436      1.1  dholland 	 * point.  If so, it will process our request.
   1437      1.1  dholland 	 */
   1438      1.1  dholland 	if (!gotiod) {
   1439      1.1  dholland 		if (nmp->nm_bufqiods > 0) {
   1440      1.1  dholland 			NFS_DPF(ASYNCIO,
   1441      1.1  dholland 				("ncl_asyncio: %d iods are already processing mount %p\n",
   1442      1.1  dholland 				 nmp->nm_bufqiods, nmp));
   1443      1.1  dholland 			gotiod = TRUE;
   1444      1.1  dholland 		}
   1445      1.1  dholland 	}
   1446      1.1  dholland 
   1447      1.1  dholland 	/*
   1448      1.1  dholland 	 * If we have an iod which can process the request, then queue
   1449      1.1  dholland 	 * the buffer.
   1450      1.1  dholland 	 */
   1451      1.1  dholland 	if (gotiod) {
   1452      1.1  dholland 		/*
   1453      1.1  dholland 		 * Ensure that the queue never grows too large.  We still want
   1454      1.2       wiz 		 * to asynchronize so we block rather than return EIO.
   1455      1.1  dholland 		 */
   1456      1.1  dholland 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
   1457      1.1  dholland 			NFS_DPF(ASYNCIO,
   1458      1.1  dholland 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
   1459      1.1  dholland 			nmp->nm_bufqwant = TRUE;
   1460      1.1  dholland 			error = newnfs_msleep(td, &nmp->nm_bufq,
   1461      1.1  dholland 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
   1462      1.1  dholland 			   slptimeo);
   1463      1.1  dholland 			if (error) {
   1464      1.1  dholland 				error2 = newnfs_sigintr(nmp, td);
   1465      1.1  dholland 				if (error2) {
   1466      1.1  dholland 					mtx_unlock(&ncl_iod_mutex);
   1467      1.1  dholland 					return (error2);
   1468      1.1  dholland 				}
   1469      1.1  dholland 				if (slpflag == PCATCH) {
   1470      1.1  dholland 					slpflag = 0;
   1471      1.1  dholland 					slptimeo = 2 * hz;
   1472      1.1  dholland 				}
   1473      1.1  dholland 			}
   1474      1.1  dholland 			/*
   1475      1.1  dholland 			 * We might have lost our iod while sleeping,
   1476      1.3  pgoyette 			 * so check and loop if necessary.
   1477      1.1  dholland 			 */
   1478      1.1  dholland 			goto again;
   1479      1.1  dholland 		}
   1480      1.1  dholland 
   1481      1.1  dholland 		/* We might have lost our nfsiod */
   1482      1.1  dholland 		if (nmp->nm_bufqiods == 0) {
   1483      1.1  dholland 			NFS_DPF(ASYNCIO,
   1484      1.1  dholland 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
   1485      1.1  dholland 			goto again;
   1486      1.1  dholland 		}
   1487      1.1  dholland 
   1488      1.1  dholland 		if (bp->b_iocmd == BIO_READ) {
   1489      1.1  dholland 			if (bp->b_rcred == NOCRED && cred != NOCRED)
   1490      1.1  dholland 				bp->b_rcred = crhold(cred);
   1491      1.1  dholland 		} else {
   1492      1.1  dholland 			if (bp->b_wcred == NOCRED && cred != NOCRED)
   1493      1.1  dholland 				bp->b_wcred = crhold(cred);
   1494      1.1  dholland 		}
   1495      1.1  dholland 
   1496      1.1  dholland 		if (bp->b_flags & B_REMFREE)
   1497      1.1  dholland 			bremfreef(bp);
   1498      1.1  dholland 		BUF_KERNPROC(bp);
   1499      1.1  dholland 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
   1500      1.1  dholland 		nmp->nm_bufqlen++;
   1501      1.1  dholland 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1502      1.1  dholland 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
   1503      1.1  dholland 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
   1504      1.1  dholland 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
   1505      1.1  dholland 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
   1506      1.1  dholland 		}
   1507      1.1  dholland 		mtx_unlock(&ncl_iod_mutex);
   1508      1.1  dholland 		return (0);
   1509      1.1  dholland 	}
   1510      1.1  dholland 
   1511      1.1  dholland 	mtx_unlock(&ncl_iod_mutex);
   1512      1.1  dholland 
   1513      1.1  dholland 	/*
   1514      1.1  dholland 	 * All the iods are busy on other mounts, so return EIO to
   1515      1.1  dholland 	 * force the caller to process the i/o synchronously.
   1516      1.1  dholland 	 */
   1517      1.1  dholland 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
   1518      1.1  dholland 	return (EIO);
   1519      1.1  dholland }
   1520      1.1  dholland 
   1521      1.1  dholland void
   1522      1.1  dholland ncl_doio_directwrite(struct buf *bp)
   1523      1.1  dholland {
   1524      1.1  dholland 	int iomode, must_commit;
   1525      1.1  dholland 	struct uio *uiop = (struct uio *)bp->b_caller1;
   1526      1.1  dholland 	char *iov_base = uiop->uio_iov->iov_base;
   1527      1.1  dholland 
   1528      1.1  dholland 	iomode = NFSWRITE_FILESYNC;
   1529      1.1  dholland 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
   1530      1.1  dholland 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
   1531      1.1  dholland 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
   1532      1.1  dholland 	free(iov_base, M_NFSDIRECTIO);
   1533      1.1  dholland 	free(uiop->uio_iov, M_NFSDIRECTIO);
   1534      1.1  dholland 	free(uiop, M_NFSDIRECTIO);
   1535      1.1  dholland 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1536      1.1  dholland 		struct nfsnode *np = VTONFS(bp->b_vp);
   1537      1.1  dholland 		mtx_lock(&np->n_mtx);
   1538      1.1  dholland 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
   1539      1.1  dholland 			/*
   1540      1.1  dholland 			 * Invalidate the attribute cache, since writes to a DS
   1541      1.1  dholland 			 * won't update the size attribute.
   1542      1.1  dholland 			 */
   1543      1.1  dholland 			np->n_attrstamp = 0;
   1544      1.1  dholland 		}
   1545      1.1  dholland 		np->n_directio_asyncwr--;
   1546      1.1  dholland 		if (np->n_directio_asyncwr == 0) {
   1547      1.1  dholland 			np->n_flag &= ~NMODIFIED;
   1548      1.1  dholland 			if ((np->n_flag & NFSYNCWAIT)) {
   1549      1.1  dholland 				np->n_flag &= ~NFSYNCWAIT;
   1550      1.1  dholland 				wakeup((caddr_t)&np->n_directio_asyncwr);
   1551      1.1  dholland 			}
   1552      1.1  dholland 		}
   1553      1.1  dholland 		mtx_unlock(&np->n_mtx);
   1554      1.1  dholland 	}
   1555      1.1  dholland 	bp->b_vp = NULL;
   1556      1.1  dholland 	relpbuf(bp, &ncl_pbuf_freecnt);
   1557      1.1  dholland }
   1558      1.1  dholland 
   1559      1.1  dholland /*
   1560      1.1  dholland  * Do an I/O operation to/from a cache block. This may be called
   1561      1.1  dholland  * synchronously or from an nfsiod.
   1562      1.1  dholland  */
   1563      1.1  dholland int
   1564      1.1  dholland ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
   1565      1.1  dholland     int called_from_strategy)
   1566      1.1  dholland {
   1567      1.1  dholland 	struct uio *uiop;
   1568      1.1  dholland 	struct nfsnode *np;
   1569      1.1  dholland 	struct nfsmount *nmp;
   1570      1.1  dholland 	int error = 0, iomode, must_commit = 0;
   1571      1.1  dholland 	struct uio uio;
   1572      1.1  dholland 	struct iovec io;
   1573      1.1  dholland 	struct proc *p = td ? td->td_proc : NULL;
   1574      1.1  dholland 	uint8_t	iocmd;
   1575      1.1  dholland 
   1576      1.1  dholland 	np = VTONFS(vp);
   1577      1.1  dholland 	nmp = VFSTONFS(vp->v_mount);
   1578      1.1  dholland 	uiop = &uio;
   1579      1.1  dholland 	uiop->uio_iov = &io;
   1580      1.1  dholland 	uiop->uio_iovcnt = 1;
   1581      1.1  dholland 	uiop->uio_segflg = UIO_SYSSPACE;
   1582      1.1  dholland 	uiop->uio_td = td;
   1583      1.1  dholland 
   1584      1.1  dholland 	/*
   1585      1.1  dholland 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
   1586      1.1  dholland 	 * do this here so we do not have to do it in all the code that
   1587      1.1  dholland 	 * calls us.
   1588      1.1  dholland 	 */
   1589      1.1  dholland 	bp->b_flags &= ~B_INVAL;
   1590      1.1  dholland 	bp->b_ioflags &= ~BIO_ERROR;
   1591      1.1  dholland 
   1592      1.1  dholland 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
   1593      1.1  dholland 	iocmd = bp->b_iocmd;
   1594      1.1  dholland 	if (iocmd == BIO_READ) {
   1595      1.1  dholland 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
   1596      1.1  dholland 	    io.iov_base = bp->b_data;
   1597      1.1  dholland 	    uiop->uio_rw = UIO_READ;
   1598      1.1  dholland 
   1599      1.1  dholland 	    switch (vp->v_type) {
   1600      1.1  dholland 	    case VREG:
   1601      1.1  dholland 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
   1602      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.read_bios);
   1603      1.1  dholland 		error = ncl_readrpc(vp, uiop, cr);
   1604      1.1  dholland 
   1605      1.1  dholland 		if (!error) {
   1606      1.1  dholland 		    if (uiop->uio_resid) {
   1607      1.1  dholland 			/*
   1608      1.1  dholland 			 * If we had a short read with no error, we must have
   1609      1.1  dholland 			 * hit a file hole.  We should zero-fill the remainder.
   1610      1.1  dholland 			 * This can also occur if the server hits the file EOF.
   1611      1.1  dholland 			 *
   1612      1.1  dholland 			 * Holes used to be able to occur due to pending
   1613      1.1  dholland 			 * writes, but that is not possible any longer.
   1614      1.1  dholland 			 */
   1615      1.1  dholland 			int nread = bp->b_bcount - uiop->uio_resid;
   1616      1.1  dholland 			ssize_t left = uiop->uio_resid;
   1617      1.1  dholland 
   1618      1.1  dholland 			if (left > 0)
   1619      1.1  dholland 				bzero((char *)bp->b_data + nread, left);
   1620      1.1  dholland 			uiop->uio_resid = 0;
   1621      1.1  dholland 		    }
   1622      1.1  dholland 		}
   1623      1.1  dholland 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
   1624      1.1  dholland 		if (p && (vp->v_vflag & VV_TEXT)) {
   1625      1.1  dholland 			mtx_lock(&np->n_mtx);
   1626      1.1  dholland 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
   1627      1.1  dholland 				mtx_unlock(&np->n_mtx);
   1628      1.1  dholland 				PROC_LOCK(p);
   1629      1.1  dholland 				killproc(p, "text file modification");
   1630      1.1  dholland 				PROC_UNLOCK(p);
   1631      1.1  dholland 			} else
   1632      1.1  dholland 				mtx_unlock(&np->n_mtx);
   1633      1.1  dholland 		}
   1634      1.1  dholland 		break;
   1635      1.1  dholland 	    case VLNK:
   1636      1.1  dholland 		uiop->uio_offset = (off_t)0;
   1637      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
   1638      1.1  dholland 		error = ncl_readlinkrpc(vp, uiop, cr);
   1639      1.1  dholland 		break;
   1640      1.1  dholland 	    case VDIR:
   1641      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
   1642      1.1  dholland 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
   1643      1.1  dholland 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
   1644      1.1  dholland 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
   1645      1.1  dholland 			if (error == NFSERR_NOTSUPP)
   1646      1.1  dholland 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
   1647      1.1  dholland 		}
   1648      1.1  dholland 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
   1649      1.1  dholland 			error = ncl_readdirrpc(vp, uiop, cr, td);
   1650      1.1  dholland 		/*
   1651      1.1  dholland 		 * end-of-directory sets B_INVAL but does not generate an
   1652      1.1  dholland 		 * error.
   1653      1.1  dholland 		 */
   1654      1.1  dholland 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
   1655      1.1  dholland 			bp->b_flags |= B_INVAL;
   1656      1.1  dholland 		break;
   1657      1.1  dholland 	    default:
   1658      1.3  pgoyette 		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
   1659      1.1  dholland 		break;
   1660      1.3  pgoyette 	    }
   1661      1.1  dholland 	    if (error) {
   1662      1.1  dholland 		bp->b_ioflags |= BIO_ERROR;
   1663      1.1  dholland 		bp->b_error = error;
   1664      1.1  dholland 	    }
   1665      1.1  dholland 	} else {
   1666      1.1  dholland 	    /*
   1667      1.1  dholland 	     * If we only need to commit, try to commit
   1668      1.1  dholland 	     */
   1669      1.1  dholland 	    if (bp->b_flags & B_NEEDCOMMIT) {
   1670      1.1  dholland 		    int retv;
   1671      1.1  dholland 		    off_t off;
   1672      1.1  dholland 
   1673      1.1  dholland 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
   1674      1.1  dholland 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
   1675      1.1  dholland 			bp->b_wcred, td);
   1676      1.1  dholland 		    if (retv == 0) {
   1677      1.1  dholland 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1678      1.1  dholland 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1679      1.1  dholland 			    bp->b_resid = 0;
   1680      1.1  dholland 			    bufdone(bp);
   1681      1.1  dholland 			    return (0);
   1682      1.1  dholland 		    }
   1683      1.1  dholland 		    if (retv == NFSERR_STALEWRITEVERF) {
   1684      1.1  dholland 			    ncl_clearcommit(vp->v_mount);
   1685      1.1  dholland 		    }
   1686      1.1  dholland 	    }
   1687      1.1  dholland 
   1688      1.1  dholland 	    /*
   1689      1.1  dholland 	     * Setup for actual write
   1690      1.1  dholland 	     */
   1691      1.1  dholland 	    mtx_lock(&np->n_mtx);
   1692      1.1  dholland 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
   1693      1.1  dholland 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
   1694      1.1  dholland 	    mtx_unlock(&np->n_mtx);
   1695      1.1  dholland 
   1696      1.1  dholland 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
   1697      1.1  dholland 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
   1698      1.1  dholland 		    - bp->b_dirtyoff;
   1699      1.1  dholland 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
   1700      1.1  dholland 		    + bp->b_dirtyoff;
   1701      1.1  dholland 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
   1702      1.1  dholland 		uiop->uio_rw = UIO_WRITE;
   1703      1.3  pgoyette 		NFSINCRGLOBAL(nfsstatsv1.write_bios);
   1704      1.1  dholland 
   1705      1.1  dholland 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
   1706      1.1  dholland 		    iomode = NFSWRITE_UNSTABLE;
   1707      1.1  dholland 		else
   1708      1.1  dholland 		    iomode = NFSWRITE_FILESYNC;
   1709      1.1  dholland 
   1710      1.1  dholland 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
   1711      1.1  dholland 		    called_from_strategy);
   1712      1.1  dholland 
   1713      1.1  dholland 		/*
   1714      1.1  dholland 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
   1715      1.1  dholland 		 * to cluster the buffers needing commit.  This will allow
   1716      1.1  dholland 		 * the system to submit a single commit rpc for the whole
   1717      1.1  dholland 		 * cluster.  We can do this even if the buffer is not 100%
   1718      1.1  dholland 		 * dirty (relative to the NFS blocksize), so we optimize the
   1719      1.1  dholland 		 * append-to-file-case.
   1720      1.1  dholland 		 *
   1721      1.1  dholland 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
   1722      1.1  dholland 		 * cleared because write clustering only works for commit
   1723      1.1  dholland 		 * rpc's, not for the data portion of the write).
   1724      1.1  dholland 		 */
   1725      1.1  dholland 
   1726      1.1  dholland 		if (!error && iomode == NFSWRITE_UNSTABLE) {
   1727      1.1  dholland 		    bp->b_flags |= B_NEEDCOMMIT;
   1728      1.1  dholland 		    if (bp->b_dirtyoff == 0
   1729      1.1  dholland 			&& bp->b_dirtyend == bp->b_bcount)
   1730      1.1  dholland 			bp->b_flags |= B_CLUSTEROK;
   1731      1.1  dholland 		} else {
   1732      1.1  dholland 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1733      1.1  dholland 		}
   1734      1.1  dholland 
   1735      1.1  dholland 		/*
   1736      1.1  dholland 		 * For an interrupted write, the buffer is still valid
   1737      1.1  dholland 		 * and the write hasn't been pushed to the server yet,
   1738      1.1  dholland 		 * so we can't set BIO_ERROR and report the interruption
   1739      1.1  dholland 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
   1740      1.1  dholland 		 * is not relevant, so the rpc attempt is essentially
   1741      1.1  dholland 		 * a noop.  For the case of a V3 write rpc not being
   1742      1.1  dholland 		 * committed to stable storage, the block is still
   1743      1.1  dholland 		 * dirty and requires either a commit rpc or another
   1744      1.1  dholland 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
   1745      1.1  dholland 		 * the block is reused. This is indicated by setting
   1746      1.1  dholland 		 * the B_DELWRI and B_NEEDCOMMIT flags.
   1747      1.1  dholland 		 *
   1748      1.1  dholland 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
   1749      1.1  dholland 		 * write error and is handled as above, except that
   1750      1.1  dholland 		 * B_EINTR isn't set. One cause of this is a stale stateid
   1751      1.1  dholland 		 * error for the RPC that indicates recovery is required,
   1752      1.1  dholland 		 * when called with called_from_strategy != 0.
   1753      1.1  dholland 		 *
   1754      1.1  dholland 		 * If the buffer is marked B_PAGING, it does not reside on
   1755      1.1  dholland 		 * the vp's paging queues so we cannot call bdirty().  The
   1756      1.1  dholland 		 * bp in this case is not an NFS cache block so we should
   1757      1.1  dholland 		 * be safe. XXX
   1758      1.1  dholland 		 *
   1759      1.1  dholland 		 * The logic below breaks up errors into recoverable and
   1760      1.1  dholland 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
   1761      1.1  dholland 		 * and keep the buffer around for potential write retries.
   1762      1.1  dholland 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
   1763      1.1  dholland 		 * and save the error in the nfsnode. This is less than ideal
   1764      1.1  dholland 		 * but necessary. Keeping such buffers around could potentially
   1765      1.1  dholland 		 * cause buffer exhaustion eventually (they can never be written
   1766      1.1  dholland 		 * out, so will get constantly be re-dirtied). It also causes
   1767      1.1  dholland 		 * all sorts of vfs panics. For non-recoverable write errors,
   1768      1.1  dholland 		 * also invalidate the attrcache, so we'll be forced to go over
   1769      1.1  dholland 		 * the wire for this object, returning an error to user on next
   1770      1.1  dholland 		 * call (most of the time).
   1771      1.1  dholland 		 */
   1772      1.1  dholland 		if (error == EINTR || error == EIO || error == ETIMEDOUT
   1773      1.1  dholland 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
   1774      1.1  dholland 			int s;
   1775      1.1  dholland 
   1776      1.1  dholland 			s = splbio();
   1777      1.1  dholland 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
   1778      1.1  dholland 			if ((bp->b_flags & B_PAGING) == 0) {
   1779      1.1  dholland 			    bdirty(bp);
   1780      1.1  dholland 			    bp->b_flags &= ~B_DONE;
   1781      1.1  dholland 			}
   1782      1.1  dholland 			if ((error == EINTR || error == ETIMEDOUT) &&
   1783      1.1  dholland 			    (bp->b_flags & B_ASYNC) == 0)
   1784      1.1  dholland 			    bp->b_flags |= B_EINTR;
   1785      1.1  dholland 			splx(s);
   1786      1.1  dholland 		} else {
   1787      1.1  dholland 		    if (error) {
   1788      1.1  dholland 			bp->b_ioflags |= BIO_ERROR;
   1789      1.1  dholland 			bp->b_flags |= B_INVAL;
   1790      1.1  dholland 			bp->b_error = np->n_error = error;
   1791      1.1  dholland 			mtx_lock(&np->n_mtx);
   1792      1.1  dholland 			np->n_flag |= NWRITEERR;
   1793      1.1  dholland 			np->n_attrstamp = 0;
   1794      1.1  dholland 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
   1795      1.1  dholland 			mtx_unlock(&np->n_mtx);
   1796      1.1  dholland 		    }
   1797      1.1  dholland 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1798      1.1  dholland 		}
   1799      1.1  dholland 	    } else {
   1800      1.1  dholland 		bp->b_resid = 0;
   1801      1.1  dholland 		bufdone(bp);
   1802      1.1  dholland 		return (0);
   1803      1.1  dholland 	    }
   1804      1.1  dholland 	}
   1805      1.1  dholland 	bp->b_resid = uiop->uio_resid;
   1806      1.1  dholland 	if (must_commit)
   1807      1.1  dholland 	    ncl_clearcommit(vp->v_mount);
   1808      1.1  dholland 	bufdone(bp);
   1809      1.1  dholland 	return (error);
   1810      1.1  dholland }
   1811      1.1  dholland 
   1812      1.1  dholland /*
   1813      1.1  dholland  * Used to aid in handling ftruncate() operations on the NFS client side.
   1814      1.1  dholland  * Truncation creates a number of special problems for NFS.  We have to
   1815      1.1  dholland  * throw away VM pages and buffer cache buffers that are beyond EOF, and
   1816      1.1  dholland  * we have to properly handle VM pages or (potentially dirty) buffers
   1817      1.1  dholland  * that straddle the truncation point.
   1818      1.1  dholland  */
   1819      1.1  dholland 
   1820      1.1  dholland int
   1821      1.1  dholland ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
   1822      1.1  dholland {
   1823      1.1  dholland 	struct nfsnode *np = VTONFS(vp);
   1824      1.1  dholland 	u_quad_t tsize;
   1825      1.1  dholland 	int biosize = vp->v_bufobj.bo_bsize;
   1826      1.1  dholland 	int error = 0;
   1827      1.1  dholland 
   1828      1.1  dholland 	mtx_lock(&np->n_mtx);
   1829      1.1  dholland 	tsize = np->n_size;
   1830      1.1  dholland 	np->n_size = nsize;
   1831      1.1  dholland 	mtx_unlock(&np->n_mtx);
   1832      1.1  dholland 
   1833      1.1  dholland 	if (nsize < tsize) {
   1834      1.1  dholland 		struct buf *bp;
   1835      1.1  dholland 		daddr_t lbn;
   1836      1.1  dholland 		int bufsize;
   1837      1.1  dholland 
   1838      1.1  dholland 		/*
   1839      1.1  dholland 		 * vtruncbuf() doesn't get the buffer overlapping the
   1840      1.1  dholland 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
   1841      1.1  dholland 		 * buffer that now needs to be truncated.
   1842      1.1  dholland 		 */
   1843      1.1  dholland 		error = vtruncbuf(vp, cred, nsize, biosize);
   1844      1.1  dholland 		lbn = nsize / biosize;
   1845      1.1  dholland 		bufsize = nsize - (lbn * biosize);
   1846      1.1  dholland 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
   1847      1.1  dholland 		if (!bp)
   1848      1.1  dholland 			return EINTR;
   1849      1.1  dholland 		if (bp->b_dirtyoff > bp->b_bcount)
   1850      1.1  dholland 			bp->b_dirtyoff = bp->b_bcount;
   1851      1.1  dholland 		if (bp->b_dirtyend > bp->b_bcount)
   1852      1.1  dholland 			bp->b_dirtyend = bp->b_bcount;
   1853      1.1  dholland 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
   1854      1.1  dholland 		brelse(bp);
   1855      1.1  dholland 	} else {
   1856      1.1  dholland 		vnode_pager_setsize(vp, nsize);
   1857      1.1  dholland 	}
   1858      1.1  dholland 	return(error);
   1859      1.1  dholland }
   1860      1.1  dholland 
   1861