nfs_clbio.c revision 1.1 1 /* $NetBSD: nfs_clbio.c,v 1.1 2013/09/30 07:19:30 dholland Exp $ */
2 /*-
3 * Copyright (c) 1989, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Rick Macklem at The University of Guelph.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
34 */
35
36 #include <sys/cdefs.h>
37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 252072 2013-06-21 22:26:18Z rmacklem "); */
38 __RCSID("$NetBSD: nfs_clbio.c,v 1.1 2013/09/30 07:19:30 dholland Exp $");
39
40 #include "opt_kdtrace.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bio.h>
45 #include <sys/buf.h>
46 #include <sys/kernel.h>
47 #include <sys/mount.h>
48 #include <sys/rwlock.h>
49 #include <sys/vmmeter.h>
50 #include <sys/vnode.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_page.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_pager.h>
58 #include <vm/vnode_pager.h>
59
60 #include <fs/nfs/nfsport.h>
61 #include <fs/nfsclient/nfsmount.h>
62 #include <fs/nfsclient/nfs.h>
63 #include <fs/nfsclient/nfsnode.h>
64 #include <fs/nfsclient/nfs_kdtrace.h>
65
66 extern int newnfs_directio_allow_mmap;
67 extern struct nfsstats newnfsstats;
68 extern struct mtx ncl_iod_mutex;
69 extern int ncl_numasync;
70 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
71 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
72 extern int newnfs_directio_enable;
73 extern int nfs_keep_dirty_on_error;
74
75 int ncl_pbuf_freecnt = -1; /* start out unlimited */
76
77 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
78 struct thread *td);
79 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
80 struct ucred *cred, int ioflag);
81
82 /*
83 * Vnode op for VM getpages.
84 */
85 int
86 ncl_getpages(struct vop_getpages_args *ap)
87 {
88 int i, error, nextoff, size, toff, count, npages;
89 struct uio uio;
90 struct iovec iov;
91 vm_offset_t kva;
92 struct buf *bp;
93 struct vnode *vp;
94 struct thread *td;
95 struct ucred *cred;
96 struct nfsmount *nmp;
97 vm_object_t object;
98 vm_page_t *pages;
99 struct nfsnode *np;
100
101 vp = ap->a_vp;
102 np = VTONFS(vp);
103 td = curthread; /* XXX */
104 cred = curthread->td_ucred; /* XXX */
105 nmp = VFSTONFS(vp->v_mount);
106 pages = ap->a_m;
107 count = ap->a_count;
108
109 if ((object = vp->v_object) == NULL) {
110 ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
111 return (VM_PAGER_ERROR);
112 }
113
114 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
115 mtx_lock(&np->n_mtx);
116 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
117 mtx_unlock(&np->n_mtx);
118 ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
119 return (VM_PAGER_ERROR);
120 } else
121 mtx_unlock(&np->n_mtx);
122 }
123
124 mtx_lock(&nmp->nm_mtx);
125 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
126 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
127 mtx_unlock(&nmp->nm_mtx);
128 /* We'll never get here for v4, because we always have fsinfo */
129 (void)ncl_fsinfo(nmp, vp, cred, td);
130 } else
131 mtx_unlock(&nmp->nm_mtx);
132
133 npages = btoc(count);
134
135 /*
136 * If the requested page is partially valid, just return it and
137 * allow the pager to zero-out the blanks. Partially valid pages
138 * can only occur at the file EOF.
139 */
140 VM_OBJECT_WLOCK(object);
141 if (pages[ap->a_reqpage]->valid != 0) {
142 for (i = 0; i < npages; ++i) {
143 if (i != ap->a_reqpage) {
144 vm_page_lock(pages[i]);
145 vm_page_free(pages[i]);
146 vm_page_unlock(pages[i]);
147 }
148 }
149 VM_OBJECT_WUNLOCK(object);
150 return (0);
151 }
152 VM_OBJECT_WUNLOCK(object);
153
154 /*
155 * We use only the kva address for the buffer, but this is extremely
156 * convienient and fast.
157 */
158 bp = getpbuf(&ncl_pbuf_freecnt);
159
160 kva = (vm_offset_t) bp->b_data;
161 pmap_qenter(kva, pages, npages);
162 PCPU_INC(cnt.v_vnodein);
163 PCPU_ADD(cnt.v_vnodepgsin, npages);
164
165 iov.iov_base = (caddr_t) kva;
166 iov.iov_len = count;
167 uio.uio_iov = &iov;
168 uio.uio_iovcnt = 1;
169 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
170 uio.uio_resid = count;
171 uio.uio_segflg = UIO_SYSSPACE;
172 uio.uio_rw = UIO_READ;
173 uio.uio_td = td;
174
175 error = ncl_readrpc(vp, &uio, cred);
176 pmap_qremove(kva, npages);
177
178 relpbuf(bp, &ncl_pbuf_freecnt);
179
180 if (error && (uio.uio_resid == count)) {
181 ncl_printf("nfs_getpages: error %d\n", error);
182 VM_OBJECT_WLOCK(object);
183 for (i = 0; i < npages; ++i) {
184 if (i != ap->a_reqpage) {
185 vm_page_lock(pages[i]);
186 vm_page_free(pages[i]);
187 vm_page_unlock(pages[i]);
188 }
189 }
190 VM_OBJECT_WUNLOCK(object);
191 return (VM_PAGER_ERROR);
192 }
193
194 /*
195 * Calculate the number of bytes read and validate only that number
196 * of bytes. Note that due to pending writes, size may be 0. This
197 * does not mean that the remaining data is invalid!
198 */
199
200 size = count - uio.uio_resid;
201 VM_OBJECT_WLOCK(object);
202 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
203 vm_page_t m;
204 nextoff = toff + PAGE_SIZE;
205 m = pages[i];
206
207 if (nextoff <= size) {
208 /*
209 * Read operation filled an entire page
210 */
211 m->valid = VM_PAGE_BITS_ALL;
212 KASSERT(m->dirty == 0,
213 ("nfs_getpages: page %p is dirty", m));
214 } else if (size > toff) {
215 /*
216 * Read operation filled a partial page.
217 */
218 m->valid = 0;
219 vm_page_set_valid_range(m, 0, size - toff);
220 KASSERT(m->dirty == 0,
221 ("nfs_getpages: page %p is dirty", m));
222 } else {
223 /*
224 * Read operation was short. If no error
225 * occured we may have hit a zero-fill
226 * section. We leave valid set to 0, and page
227 * is freed by vm_page_readahead_finish() if
228 * its index is not equal to requested, or
229 * page is zeroed and set valid by
230 * vm_pager_get_pages() for requested page.
231 */
232 ;
233 }
234 if (i != ap->a_reqpage)
235 vm_page_readahead_finish(m);
236 }
237 VM_OBJECT_WUNLOCK(object);
238 return (0);
239 }
240
241 /*
242 * Vnode op for VM putpages.
243 */
244 int
245 ncl_putpages(struct vop_putpages_args *ap)
246 {
247 struct uio uio;
248 struct iovec iov;
249 vm_offset_t kva;
250 struct buf *bp;
251 int iomode, must_commit, i, error, npages, count;
252 off_t offset;
253 int *rtvals;
254 struct vnode *vp;
255 struct thread *td;
256 struct ucred *cred;
257 struct nfsmount *nmp;
258 struct nfsnode *np;
259 vm_page_t *pages;
260
261 vp = ap->a_vp;
262 np = VTONFS(vp);
263 td = curthread; /* XXX */
264 /* Set the cred to n_writecred for the write rpcs. */
265 if (np->n_writecred != NULL)
266 cred = crhold(np->n_writecred);
267 else
268 cred = crhold(curthread->td_ucred); /* XXX */
269 nmp = VFSTONFS(vp->v_mount);
270 pages = ap->a_m;
271 count = ap->a_count;
272 rtvals = ap->a_rtvals;
273 npages = btoc(count);
274 offset = IDX_TO_OFF(pages[0]->pindex);
275
276 mtx_lock(&nmp->nm_mtx);
277 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
278 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
279 mtx_unlock(&nmp->nm_mtx);
280 (void)ncl_fsinfo(nmp, vp, cred, td);
281 } else
282 mtx_unlock(&nmp->nm_mtx);
283
284 mtx_lock(&np->n_mtx);
285 if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
286 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
287 mtx_unlock(&np->n_mtx);
288 ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
289 mtx_lock(&np->n_mtx);
290 }
291
292 for (i = 0; i < npages; i++)
293 rtvals[i] = VM_PAGER_ERROR;
294
295 /*
296 * When putting pages, do not extend file past EOF.
297 */
298 if (offset + count > np->n_size) {
299 count = np->n_size - offset;
300 if (count < 0)
301 count = 0;
302 }
303 mtx_unlock(&np->n_mtx);
304
305 /*
306 * We use only the kva address for the buffer, but this is extremely
307 * convienient and fast.
308 */
309 bp = getpbuf(&ncl_pbuf_freecnt);
310
311 kva = (vm_offset_t) bp->b_data;
312 pmap_qenter(kva, pages, npages);
313 PCPU_INC(cnt.v_vnodeout);
314 PCPU_ADD(cnt.v_vnodepgsout, count);
315
316 iov.iov_base = (caddr_t) kva;
317 iov.iov_len = count;
318 uio.uio_iov = &iov;
319 uio.uio_iovcnt = 1;
320 uio.uio_offset = offset;
321 uio.uio_resid = count;
322 uio.uio_segflg = UIO_SYSSPACE;
323 uio.uio_rw = UIO_WRITE;
324 uio.uio_td = td;
325
326 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
327 iomode = NFSWRITE_UNSTABLE;
328 else
329 iomode = NFSWRITE_FILESYNC;
330
331 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
332 crfree(cred);
333
334 pmap_qremove(kva, npages);
335 relpbuf(bp, &ncl_pbuf_freecnt);
336
337 if (error == 0 || !nfs_keep_dirty_on_error) {
338 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
339 if (must_commit)
340 ncl_clearcommit(vp->v_mount);
341 }
342 return rtvals[0];
343 }
344
345 /*
346 * For nfs, cache consistency can only be maintained approximately.
347 * Although RFC1094 does not specify the criteria, the following is
348 * believed to be compatible with the reference port.
349 * For nfs:
350 * If the file's modify time on the server has changed since the
351 * last read rpc or you have written to the file,
352 * you may have lost data cache consistency with the
353 * server, so flush all of the file's data out of the cache.
354 * Then force a getattr rpc to ensure that you have up to date
355 * attributes.
356 * NB: This implies that cache data can be read when up to
357 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
358 * attributes this could be forced by setting n_attrstamp to 0 before
359 * the VOP_GETATTR() call.
360 */
361 static inline int
362 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
363 {
364 int error = 0;
365 struct vattr vattr;
366 struct nfsnode *np = VTONFS(vp);
367 int old_lock;
368
369 /*
370 * Grab the exclusive lock before checking whether the cache is
371 * consistent.
372 * XXX - We can make this cheaper later (by acquiring cheaper locks).
373 * But for now, this suffices.
374 */
375 old_lock = ncl_upgrade_vnlock(vp);
376 if (vp->v_iflag & VI_DOOMED) {
377 ncl_downgrade_vnlock(vp, old_lock);
378 return (EBADF);
379 }
380
381 mtx_lock(&np->n_mtx);
382 if (np->n_flag & NMODIFIED) {
383 mtx_unlock(&np->n_mtx);
384 if (vp->v_type != VREG) {
385 if (vp->v_type != VDIR)
386 panic("nfs: bioread, not dir");
387 ncl_invaldir(vp);
388 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
389 if (error)
390 goto out;
391 }
392 np->n_attrstamp = 0;
393 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
394 error = VOP_GETATTR(vp, &vattr, cred);
395 if (error)
396 goto out;
397 mtx_lock(&np->n_mtx);
398 np->n_mtime = vattr.va_mtime;
399 mtx_unlock(&np->n_mtx);
400 } else {
401 mtx_unlock(&np->n_mtx);
402 error = VOP_GETATTR(vp, &vattr, cred);
403 if (error)
404 return (error);
405 mtx_lock(&np->n_mtx);
406 if ((np->n_flag & NSIZECHANGED)
407 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
408 mtx_unlock(&np->n_mtx);
409 if (vp->v_type == VDIR)
410 ncl_invaldir(vp);
411 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
412 if (error)
413 goto out;
414 mtx_lock(&np->n_mtx);
415 np->n_mtime = vattr.va_mtime;
416 np->n_flag &= ~NSIZECHANGED;
417 }
418 mtx_unlock(&np->n_mtx);
419 }
420 out:
421 ncl_downgrade_vnlock(vp, old_lock);
422 return error;
423 }
424
425 /*
426 * Vnode op for read using bio
427 */
428 int
429 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
430 {
431 struct nfsnode *np = VTONFS(vp);
432 int biosize, i;
433 struct buf *bp, *rabp;
434 struct thread *td;
435 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
436 daddr_t lbn, rabn;
437 int bcount;
438 int seqcount;
439 int nra, error = 0, n = 0, on = 0;
440 off_t tmp_off;
441
442 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
443 if (uio->uio_resid == 0)
444 return (0);
445 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
446 return (EINVAL);
447 td = uio->uio_td;
448
449 mtx_lock(&nmp->nm_mtx);
450 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
451 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
452 mtx_unlock(&nmp->nm_mtx);
453 (void)ncl_fsinfo(nmp, vp, cred, td);
454 mtx_lock(&nmp->nm_mtx);
455 }
456 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
457 (void) newnfs_iosize(nmp);
458
459 tmp_off = uio->uio_offset + uio->uio_resid;
460 if (vp->v_type != VDIR &&
461 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
462 mtx_unlock(&nmp->nm_mtx);
463 return (EFBIG);
464 }
465 mtx_unlock(&nmp->nm_mtx);
466
467 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
468 /* No caching/ no readaheads. Just read data into the user buffer */
469 return ncl_readrpc(vp, uio, cred);
470
471 biosize = vp->v_bufobj.bo_bsize;
472 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
473
474 error = nfs_bioread_check_cons(vp, td, cred);
475 if (error)
476 return error;
477
478 do {
479 u_quad_t nsize;
480
481 mtx_lock(&np->n_mtx);
482 nsize = np->n_size;
483 mtx_unlock(&np->n_mtx);
484
485 switch (vp->v_type) {
486 case VREG:
487 NFSINCRGLOBAL(newnfsstats.biocache_reads);
488 lbn = uio->uio_offset / biosize;
489 on = uio->uio_offset - (lbn * biosize);
490
491 /*
492 * Start the read ahead(s), as required.
493 */
494 if (nmp->nm_readahead > 0) {
495 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
496 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
497 rabn = lbn + 1 + nra;
498 if (incore(&vp->v_bufobj, rabn) == NULL) {
499 rabp = nfs_getcacheblk(vp, rabn, biosize, td);
500 if (!rabp) {
501 error = newnfs_sigintr(nmp, td);
502 return (error ? error : EINTR);
503 }
504 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
505 rabp->b_flags |= B_ASYNC;
506 rabp->b_iocmd = BIO_READ;
507 vfs_busy_pages(rabp, 0);
508 if (ncl_asyncio(nmp, rabp, cred, td)) {
509 rabp->b_flags |= B_INVAL;
510 rabp->b_ioflags |= BIO_ERROR;
511 vfs_unbusy_pages(rabp);
512 brelse(rabp);
513 break;
514 }
515 } else {
516 brelse(rabp);
517 }
518 }
519 }
520 }
521
522 /* Note that bcount is *not* DEV_BSIZE aligned. */
523 bcount = biosize;
524 if ((off_t)lbn * biosize >= nsize) {
525 bcount = 0;
526 } else if ((off_t)(lbn + 1) * biosize > nsize) {
527 bcount = nsize - (off_t)lbn * biosize;
528 }
529 bp = nfs_getcacheblk(vp, lbn, bcount, td);
530
531 if (!bp) {
532 error = newnfs_sigintr(nmp, td);
533 return (error ? error : EINTR);
534 }
535
536 /*
537 * If B_CACHE is not set, we must issue the read. If this
538 * fails, we return an error.
539 */
540
541 if ((bp->b_flags & B_CACHE) == 0) {
542 bp->b_iocmd = BIO_READ;
543 vfs_busy_pages(bp, 0);
544 error = ncl_doio(vp, bp, cred, td, 0);
545 if (error) {
546 brelse(bp);
547 return (error);
548 }
549 }
550
551 /*
552 * on is the offset into the current bp. Figure out how many
553 * bytes we can copy out of the bp. Note that bcount is
554 * NOT DEV_BSIZE aligned.
555 *
556 * Then figure out how many bytes we can copy into the uio.
557 */
558
559 n = 0;
560 if (on < bcount)
561 n = MIN((unsigned)(bcount - on), uio->uio_resid);
562 break;
563 case VLNK:
564 NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
565 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
566 if (!bp) {
567 error = newnfs_sigintr(nmp, td);
568 return (error ? error : EINTR);
569 }
570 if ((bp->b_flags & B_CACHE) == 0) {
571 bp->b_iocmd = BIO_READ;
572 vfs_busy_pages(bp, 0);
573 error = ncl_doio(vp, bp, cred, td, 0);
574 if (error) {
575 bp->b_ioflags |= BIO_ERROR;
576 brelse(bp);
577 return (error);
578 }
579 }
580 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
581 on = 0;
582 break;
583 case VDIR:
584 NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
585 if (np->n_direofoffset
586 && uio->uio_offset >= np->n_direofoffset) {
587 return (0);
588 }
589 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
590 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
591 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
592 if (!bp) {
593 error = newnfs_sigintr(nmp, td);
594 return (error ? error : EINTR);
595 }
596 if ((bp->b_flags & B_CACHE) == 0) {
597 bp->b_iocmd = BIO_READ;
598 vfs_busy_pages(bp, 0);
599 error = ncl_doio(vp, bp, cred, td, 0);
600 if (error) {
601 brelse(bp);
602 }
603 while (error == NFSERR_BAD_COOKIE) {
604 ncl_invaldir(vp);
605 error = ncl_vinvalbuf(vp, 0, td, 1);
606 /*
607 * Yuck! The directory has been modified on the
608 * server. The only way to get the block is by
609 * reading from the beginning to get all the
610 * offset cookies.
611 *
612 * Leave the last bp intact unless there is an error.
613 * Loop back up to the while if the error is another
614 * NFSERR_BAD_COOKIE (double yuch!).
615 */
616 for (i = 0; i <= lbn && !error; i++) {
617 if (np->n_direofoffset
618 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
619 return (0);
620 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
621 if (!bp) {
622 error = newnfs_sigintr(nmp, td);
623 return (error ? error : EINTR);
624 }
625 if ((bp->b_flags & B_CACHE) == 0) {
626 bp->b_iocmd = BIO_READ;
627 vfs_busy_pages(bp, 0);
628 error = ncl_doio(vp, bp, cred, td, 0);
629 /*
630 * no error + B_INVAL == directory EOF,
631 * use the block.
632 */
633 if (error == 0 && (bp->b_flags & B_INVAL))
634 break;
635 }
636 /*
637 * An error will throw away the block and the
638 * for loop will break out. If no error and this
639 * is not the block we want, we throw away the
640 * block and go for the next one via the for loop.
641 */
642 if (error || i < lbn)
643 brelse(bp);
644 }
645 }
646 /*
647 * The above while is repeated if we hit another cookie
648 * error. If we hit an error and it wasn't a cookie error,
649 * we give up.
650 */
651 if (error)
652 return (error);
653 }
654
655 /*
656 * If not eof and read aheads are enabled, start one.
657 * (You need the current block first, so that you have the
658 * directory offset cookie of the next block.)
659 */
660 if (nmp->nm_readahead > 0 &&
661 (bp->b_flags & B_INVAL) == 0 &&
662 (np->n_direofoffset == 0 ||
663 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
664 incore(&vp->v_bufobj, lbn + 1) == NULL) {
665 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
666 if (rabp) {
667 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
668 rabp->b_flags |= B_ASYNC;
669 rabp->b_iocmd = BIO_READ;
670 vfs_busy_pages(rabp, 0);
671 if (ncl_asyncio(nmp, rabp, cred, td)) {
672 rabp->b_flags |= B_INVAL;
673 rabp->b_ioflags |= BIO_ERROR;
674 vfs_unbusy_pages(rabp);
675 brelse(rabp);
676 }
677 } else {
678 brelse(rabp);
679 }
680 }
681 }
682 /*
683 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
684 * chopped for the EOF condition, we cannot tell how large
685 * NFS directories are going to be until we hit EOF. So
686 * an NFS directory buffer is *not* chopped to its EOF. Now,
687 * it just so happens that b_resid will effectively chop it
688 * to EOF. *BUT* this information is lost if the buffer goes
689 * away and is reconstituted into a B_CACHE state ( due to
690 * being VMIO ) later. So we keep track of the directory eof
691 * in np->n_direofoffset and chop it off as an extra step
692 * right here.
693 */
694 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
695 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
696 n = np->n_direofoffset - uio->uio_offset;
697 break;
698 default:
699 ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
700 bp = NULL;
701 break;
702 };
703
704 if (n > 0) {
705 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
706 }
707 if (vp->v_type == VLNK)
708 n = 0;
709 if (bp != NULL)
710 brelse(bp);
711 } while (error == 0 && uio->uio_resid > 0 && n > 0);
712 return (error);
713 }
714
715 /*
716 * The NFS write path cannot handle iovecs with len > 1. So we need to
717 * break up iovecs accordingly (restricting them to wsize).
718 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
719 * For the ASYNC case, 2 copies are needed. The first a copy from the
720 * user buffer to a staging buffer and then a second copy from the staging
721 * buffer to mbufs. This can be optimized by copying from the user buffer
722 * directly into mbufs and passing the chain down, but that requires a
723 * fair amount of re-working of the relevant codepaths (and can be done
724 * later).
725 */
726 static int
727 nfs_directio_write(vp, uiop, cred, ioflag)
728 struct vnode *vp;
729 struct uio *uiop;
730 struct ucred *cred;
731 int ioflag;
732 {
733 int error;
734 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
735 struct thread *td = uiop->uio_td;
736 int size;
737 int wsize;
738
739 mtx_lock(&nmp->nm_mtx);
740 wsize = nmp->nm_wsize;
741 mtx_unlock(&nmp->nm_mtx);
742 if (ioflag & IO_SYNC) {
743 int iomode, must_commit;
744 struct uio uio;
745 struct iovec iov;
746 do_sync:
747 while (uiop->uio_resid > 0) {
748 size = MIN(uiop->uio_resid, wsize);
749 size = MIN(uiop->uio_iov->iov_len, size);
750 iov.iov_base = uiop->uio_iov->iov_base;
751 iov.iov_len = size;
752 uio.uio_iov = &iov;
753 uio.uio_iovcnt = 1;
754 uio.uio_offset = uiop->uio_offset;
755 uio.uio_resid = size;
756 uio.uio_segflg = UIO_USERSPACE;
757 uio.uio_rw = UIO_WRITE;
758 uio.uio_td = td;
759 iomode = NFSWRITE_FILESYNC;
760 error = ncl_writerpc(vp, &uio, cred, &iomode,
761 &must_commit, 0);
762 KASSERT((must_commit == 0),
763 ("ncl_directio_write: Did not commit write"));
764 if (error)
765 return (error);
766 uiop->uio_offset += size;
767 uiop->uio_resid -= size;
768 if (uiop->uio_iov->iov_len <= size) {
769 uiop->uio_iovcnt--;
770 uiop->uio_iov++;
771 } else {
772 uiop->uio_iov->iov_base =
773 (char *)uiop->uio_iov->iov_base + size;
774 uiop->uio_iov->iov_len -= size;
775 }
776 }
777 } else {
778 struct uio *t_uio;
779 struct iovec *t_iov;
780 struct buf *bp;
781
782 /*
783 * Break up the write into blocksize chunks and hand these
784 * over to nfsiod's for write back.
785 * Unfortunately, this incurs a copy of the data. Since
786 * the user could modify the buffer before the write is
787 * initiated.
788 *
789 * The obvious optimization here is that one of the 2 copies
790 * in the async write path can be eliminated by copying the
791 * data here directly into mbufs and passing the mbuf chain
792 * down. But that will require a fair amount of re-working
793 * of the code and can be done if there's enough interest
794 * in NFS directio access.
795 */
796 while (uiop->uio_resid > 0) {
797 size = MIN(uiop->uio_resid, wsize);
798 size = MIN(uiop->uio_iov->iov_len, size);
799 bp = getpbuf(&ncl_pbuf_freecnt);
800 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
801 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
802 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
803 t_iov->iov_len = size;
804 t_uio->uio_iov = t_iov;
805 t_uio->uio_iovcnt = 1;
806 t_uio->uio_offset = uiop->uio_offset;
807 t_uio->uio_resid = size;
808 t_uio->uio_segflg = UIO_SYSSPACE;
809 t_uio->uio_rw = UIO_WRITE;
810 t_uio->uio_td = td;
811 KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
812 uiop->uio_segflg == UIO_SYSSPACE,
813 ("nfs_directio_write: Bad uio_segflg"));
814 if (uiop->uio_segflg == UIO_USERSPACE) {
815 error = copyin(uiop->uio_iov->iov_base,
816 t_iov->iov_base, size);
817 if (error != 0)
818 goto err_free;
819 } else
820 /*
821 * UIO_SYSSPACE may never happen, but handle
822 * it just in case it does.
823 */
824 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
825 size);
826 bp->b_flags |= B_DIRECT;
827 bp->b_iocmd = BIO_WRITE;
828 if (cred != NOCRED) {
829 crhold(cred);
830 bp->b_wcred = cred;
831 } else
832 bp->b_wcred = NOCRED;
833 bp->b_caller1 = (void *)t_uio;
834 bp->b_vp = vp;
835 error = ncl_asyncio(nmp, bp, NOCRED, td);
836 err_free:
837 if (error) {
838 free(t_iov->iov_base, M_NFSDIRECTIO);
839 free(t_iov, M_NFSDIRECTIO);
840 free(t_uio, M_NFSDIRECTIO);
841 bp->b_vp = NULL;
842 relpbuf(bp, &ncl_pbuf_freecnt);
843 if (error == EINTR)
844 return (error);
845 goto do_sync;
846 }
847 uiop->uio_offset += size;
848 uiop->uio_resid -= size;
849 if (uiop->uio_iov->iov_len <= size) {
850 uiop->uio_iovcnt--;
851 uiop->uio_iov++;
852 } else {
853 uiop->uio_iov->iov_base =
854 (char *)uiop->uio_iov->iov_base + size;
855 uiop->uio_iov->iov_len -= size;
856 }
857 }
858 }
859 return (0);
860 }
861
862 /*
863 * Vnode op for write using bio
864 */
865 int
866 ncl_write(struct vop_write_args *ap)
867 {
868 int biosize;
869 struct uio *uio = ap->a_uio;
870 struct thread *td = uio->uio_td;
871 struct vnode *vp = ap->a_vp;
872 struct nfsnode *np = VTONFS(vp);
873 struct ucred *cred = ap->a_cred;
874 int ioflag = ap->a_ioflag;
875 struct buf *bp;
876 struct vattr vattr;
877 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
878 daddr_t lbn;
879 int bcount;
880 int bp_cached, n, on, error = 0, error1;
881 size_t orig_resid, local_resid;
882 off_t orig_size, tmp_off;
883
884 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
885 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
886 ("ncl_write proc"));
887 if (vp->v_type != VREG)
888 return (EIO);
889 mtx_lock(&np->n_mtx);
890 if (np->n_flag & NWRITEERR) {
891 np->n_flag &= ~NWRITEERR;
892 mtx_unlock(&np->n_mtx);
893 return (np->n_error);
894 } else
895 mtx_unlock(&np->n_mtx);
896 mtx_lock(&nmp->nm_mtx);
897 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
898 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
899 mtx_unlock(&nmp->nm_mtx);
900 (void)ncl_fsinfo(nmp, vp, cred, td);
901 mtx_lock(&nmp->nm_mtx);
902 }
903 if (nmp->nm_wsize == 0)
904 (void) newnfs_iosize(nmp);
905 mtx_unlock(&nmp->nm_mtx);
906
907 /*
908 * Synchronously flush pending buffers if we are in synchronous
909 * mode or if we are appending.
910 */
911 if (ioflag & (IO_APPEND | IO_SYNC)) {
912 mtx_lock(&np->n_mtx);
913 if (np->n_flag & NMODIFIED) {
914 mtx_unlock(&np->n_mtx);
915 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
916 /*
917 * Require non-blocking, synchronous writes to
918 * dirty files to inform the program it needs
919 * to fsync(2) explicitly.
920 */
921 if (ioflag & IO_NDELAY)
922 return (EAGAIN);
923 #endif
924 flush_and_restart:
925 np->n_attrstamp = 0;
926 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
927 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
928 if (error)
929 return (error);
930 } else
931 mtx_unlock(&np->n_mtx);
932 }
933
934 orig_resid = uio->uio_resid;
935 mtx_lock(&np->n_mtx);
936 orig_size = np->n_size;
937 mtx_unlock(&np->n_mtx);
938
939 /*
940 * If IO_APPEND then load uio_offset. We restart here if we cannot
941 * get the append lock.
942 */
943 if (ioflag & IO_APPEND) {
944 np->n_attrstamp = 0;
945 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
946 error = VOP_GETATTR(vp, &vattr, cred);
947 if (error)
948 return (error);
949 mtx_lock(&np->n_mtx);
950 uio->uio_offset = np->n_size;
951 mtx_unlock(&np->n_mtx);
952 }
953
954 if (uio->uio_offset < 0)
955 return (EINVAL);
956 tmp_off = uio->uio_offset + uio->uio_resid;
957 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
958 return (EFBIG);
959 if (uio->uio_resid == 0)
960 return (0);
961
962 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
963 return nfs_directio_write(vp, uio, cred, ioflag);
964
965 /*
966 * Maybe this should be above the vnode op call, but so long as
967 * file servers have no limits, i don't think it matters
968 */
969 if (vn_rlimit_fsize(vp, uio, td))
970 return (EFBIG);
971
972 biosize = vp->v_bufobj.bo_bsize;
973 /*
974 * Find all of this file's B_NEEDCOMMIT buffers. If our writes
975 * would exceed the local maximum per-file write commit size when
976 * combined with those, we must decide whether to flush,
977 * go synchronous, or return error. We don't bother checking
978 * IO_UNIT -- we just make all writes atomic anyway, as there's
979 * no point optimizing for something that really won't ever happen.
980 */
981 if (!(ioflag & IO_SYNC)) {
982 int nflag;
983
984 mtx_lock(&np->n_mtx);
985 nflag = np->n_flag;
986 mtx_unlock(&np->n_mtx);
987 int needrestart = 0;
988 if (nmp->nm_wcommitsize < uio->uio_resid) {
989 /*
990 * If this request could not possibly be completed
991 * without exceeding the maximum outstanding write
992 * commit size, see if we can convert it into a
993 * synchronous write operation.
994 */
995 if (ioflag & IO_NDELAY)
996 return (EAGAIN);
997 ioflag |= IO_SYNC;
998 if (nflag & NMODIFIED)
999 needrestart = 1;
1000 } else if (nflag & NMODIFIED) {
1001 int wouldcommit = 0;
1002 BO_LOCK(&vp->v_bufobj);
1003 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1004 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1005 b_bobufs) {
1006 if (bp->b_flags & B_NEEDCOMMIT)
1007 wouldcommit += bp->b_bcount;
1008 }
1009 }
1010 BO_UNLOCK(&vp->v_bufobj);
1011 /*
1012 * Since we're not operating synchronously and
1013 * bypassing the buffer cache, we are in a commit
1014 * and holding all of these buffers whether
1015 * transmitted or not. If not limited, this
1016 * will lead to the buffer cache deadlocking,
1017 * as no one else can flush our uncommitted buffers.
1018 */
1019 wouldcommit += uio->uio_resid;
1020 /*
1021 * If we would initially exceed the maximum
1022 * outstanding write commit size, flush and restart.
1023 */
1024 if (wouldcommit > nmp->nm_wcommitsize)
1025 needrestart = 1;
1026 }
1027 if (needrestart)
1028 goto flush_and_restart;
1029 }
1030
1031 do {
1032 NFSINCRGLOBAL(newnfsstats.biocache_writes);
1033 lbn = uio->uio_offset / biosize;
1034 on = uio->uio_offset - (lbn * biosize);
1035 n = MIN((unsigned)(biosize - on), uio->uio_resid);
1036 again:
1037 /*
1038 * Handle direct append and file extension cases, calculate
1039 * unaligned buffer size.
1040 */
1041 mtx_lock(&np->n_mtx);
1042 if (uio->uio_offset == np->n_size && n) {
1043 mtx_unlock(&np->n_mtx);
1044 /*
1045 * Get the buffer (in its pre-append state to maintain
1046 * B_CACHE if it was previously set). Resize the
1047 * nfsnode after we have locked the buffer to prevent
1048 * readers from reading garbage.
1049 */
1050 bcount = on;
1051 bp = nfs_getcacheblk(vp, lbn, bcount, td);
1052
1053 if (bp != NULL) {
1054 long save;
1055
1056 mtx_lock(&np->n_mtx);
1057 np->n_size = uio->uio_offset + n;
1058 np->n_flag |= NMODIFIED;
1059 vnode_pager_setsize(vp, np->n_size);
1060 mtx_unlock(&np->n_mtx);
1061
1062 save = bp->b_flags & B_CACHE;
1063 bcount += n;
1064 allocbuf(bp, bcount);
1065 bp->b_flags |= save;
1066 }
1067 } else {
1068 /*
1069 * Obtain the locked cache block first, and then
1070 * adjust the file's size as appropriate.
1071 */
1072 bcount = on + n;
1073 if ((off_t)lbn * biosize + bcount < np->n_size) {
1074 if ((off_t)(lbn + 1) * biosize < np->n_size)
1075 bcount = biosize;
1076 else
1077 bcount = np->n_size - (off_t)lbn * biosize;
1078 }
1079 mtx_unlock(&np->n_mtx);
1080 bp = nfs_getcacheblk(vp, lbn, bcount, td);
1081 mtx_lock(&np->n_mtx);
1082 if (uio->uio_offset + n > np->n_size) {
1083 np->n_size = uio->uio_offset + n;
1084 np->n_flag |= NMODIFIED;
1085 vnode_pager_setsize(vp, np->n_size);
1086 }
1087 mtx_unlock(&np->n_mtx);
1088 }
1089
1090 if (!bp) {
1091 error = newnfs_sigintr(nmp, td);
1092 if (!error)
1093 error = EINTR;
1094 break;
1095 }
1096
1097 /*
1098 * Issue a READ if B_CACHE is not set. In special-append
1099 * mode, B_CACHE is based on the buffer prior to the write
1100 * op and is typically set, avoiding the read. If a read
1101 * is required in special append mode, the server will
1102 * probably send us a short-read since we extended the file
1103 * on our end, resulting in b_resid == 0 and, thusly,
1104 * B_CACHE getting set.
1105 *
1106 * We can also avoid issuing the read if the write covers
1107 * the entire buffer. We have to make sure the buffer state
1108 * is reasonable in this case since we will not be initiating
1109 * I/O. See the comments in kern/vfs_bio.c's getblk() for
1110 * more information.
1111 *
1112 * B_CACHE may also be set due to the buffer being cached
1113 * normally.
1114 */
1115
1116 bp_cached = 1;
1117 if (on == 0 && n == bcount) {
1118 if ((bp->b_flags & B_CACHE) == 0)
1119 bp_cached = 0;
1120 bp->b_flags |= B_CACHE;
1121 bp->b_flags &= ~B_INVAL;
1122 bp->b_ioflags &= ~BIO_ERROR;
1123 }
1124
1125 if ((bp->b_flags & B_CACHE) == 0) {
1126 bp->b_iocmd = BIO_READ;
1127 vfs_busy_pages(bp, 0);
1128 error = ncl_doio(vp, bp, cred, td, 0);
1129 if (error) {
1130 brelse(bp);
1131 break;
1132 }
1133 }
1134 if (bp->b_wcred == NOCRED)
1135 bp->b_wcred = crhold(cred);
1136 mtx_lock(&np->n_mtx);
1137 np->n_flag |= NMODIFIED;
1138 mtx_unlock(&np->n_mtx);
1139
1140 /*
1141 * If dirtyend exceeds file size, chop it down. This should
1142 * not normally occur but there is an append race where it
1143 * might occur XXX, so we log it.
1144 *
1145 * If the chopping creates a reverse-indexed or degenerate
1146 * situation with dirtyoff/end, we 0 both of them.
1147 */
1148
1149 if (bp->b_dirtyend > bcount) {
1150 ncl_printf("NFS append race @%lx:%d\n",
1151 (long)bp->b_blkno * DEV_BSIZE,
1152 bp->b_dirtyend - bcount);
1153 bp->b_dirtyend = bcount;
1154 }
1155
1156 if (bp->b_dirtyoff >= bp->b_dirtyend)
1157 bp->b_dirtyoff = bp->b_dirtyend = 0;
1158
1159 /*
1160 * If the new write will leave a contiguous dirty
1161 * area, just update the b_dirtyoff and b_dirtyend,
1162 * otherwise force a write rpc of the old dirty area.
1163 *
1164 * While it is possible to merge discontiguous writes due to
1165 * our having a B_CACHE buffer ( and thus valid read data
1166 * for the hole), we don't because it could lead to
1167 * significant cache coherency problems with multiple clients,
1168 * especially if locking is implemented later on.
1169 *
1170 * As an optimization we could theoretically maintain
1171 * a linked list of discontinuous areas, but we would still
1172 * have to commit them separately so there isn't much
1173 * advantage to it except perhaps a bit of asynchronization.
1174 */
1175
1176 if (bp->b_dirtyend > 0 &&
1177 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1178 if (bwrite(bp) == EINTR) {
1179 error = EINTR;
1180 break;
1181 }
1182 goto again;
1183 }
1184
1185 local_resid = uio->uio_resid;
1186 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1187
1188 if (error != 0 && !bp_cached) {
1189 /*
1190 * This block has no other content then what
1191 * possibly was written by the faulty uiomove.
1192 * Release it, forgetting the data pages, to
1193 * prevent the leak of uninitialized data to
1194 * usermode.
1195 */
1196 bp->b_ioflags |= BIO_ERROR;
1197 brelse(bp);
1198 uio->uio_offset -= local_resid - uio->uio_resid;
1199 uio->uio_resid = local_resid;
1200 break;
1201 }
1202
1203 /*
1204 * Since this block is being modified, it must be written
1205 * again and not just committed. Since write clustering does
1206 * not work for the stage 1 data write, only the stage 2
1207 * commit rpc, we have to clear B_CLUSTEROK as well.
1208 */
1209 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1210
1211 /*
1212 * Get the partial update on the progress made from
1213 * uiomove, if an error occured.
1214 */
1215 if (error != 0)
1216 n = local_resid - uio->uio_resid;
1217
1218 /*
1219 * Only update dirtyoff/dirtyend if not a degenerate
1220 * condition.
1221 */
1222 if (n > 0) {
1223 if (bp->b_dirtyend > 0) {
1224 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1225 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1226 } else {
1227 bp->b_dirtyoff = on;
1228 bp->b_dirtyend = on + n;
1229 }
1230 vfs_bio_set_valid(bp, on, n);
1231 }
1232
1233 /*
1234 * If IO_SYNC do bwrite().
1235 *
1236 * IO_INVAL appears to be unused. The idea appears to be
1237 * to turn off caching in this case. Very odd. XXX
1238 */
1239 if ((ioflag & IO_SYNC)) {
1240 if (ioflag & IO_INVAL)
1241 bp->b_flags |= B_NOCACHE;
1242 error1 = bwrite(bp);
1243 if (error1 != 0) {
1244 if (error == 0)
1245 error = error1;
1246 break;
1247 }
1248 } else if ((n + on) == biosize) {
1249 bp->b_flags |= B_ASYNC;
1250 (void) ncl_writebp(bp, 0, NULL);
1251 } else {
1252 bdwrite(bp);
1253 }
1254
1255 if (error != 0)
1256 break;
1257 } while (uio->uio_resid > 0 && n > 0);
1258
1259 if (error != 0) {
1260 if (ioflag & IO_UNIT) {
1261 VATTR_NULL(&vattr);
1262 vattr.va_size = orig_size;
1263 /* IO_SYNC is handled implicitely */
1264 (void)VOP_SETATTR(vp, &vattr, cred);
1265 uio->uio_offset -= orig_resid - uio->uio_resid;
1266 uio->uio_resid = orig_resid;
1267 }
1268 }
1269
1270 return (error);
1271 }
1272
1273 /*
1274 * Get an nfs cache block.
1275 *
1276 * Allocate a new one if the block isn't currently in the cache
1277 * and return the block marked busy. If the calling process is
1278 * interrupted by a signal for an interruptible mount point, return
1279 * NULL.
1280 *
1281 * The caller must carefully deal with the possible B_INVAL state of
1282 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1283 * indirectly), so synchronous reads can be issued without worrying about
1284 * the B_INVAL state. We have to be a little more careful when dealing
1285 * with writes (see comments in nfs_write()) when extending a file past
1286 * its EOF.
1287 */
1288 static struct buf *
1289 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1290 {
1291 struct buf *bp;
1292 struct mount *mp;
1293 struct nfsmount *nmp;
1294
1295 mp = vp->v_mount;
1296 nmp = VFSTONFS(mp);
1297
1298 if (nmp->nm_flag & NFSMNT_INT) {
1299 sigset_t oldset;
1300
1301 newnfs_set_sigmask(td, &oldset);
1302 bp = getblk(vp, bn, size, PCATCH, 0, 0);
1303 newnfs_restore_sigmask(td, &oldset);
1304 while (bp == NULL) {
1305 if (newnfs_sigintr(nmp, td))
1306 return (NULL);
1307 bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1308 }
1309 } else {
1310 bp = getblk(vp, bn, size, 0, 0, 0);
1311 }
1312
1313 if (vp->v_type == VREG)
1314 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1315 return (bp);
1316 }
1317
1318 /*
1319 * Flush and invalidate all dirty buffers. If another process is already
1320 * doing the flush, just wait for completion.
1321 */
1322 int
1323 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1324 {
1325 struct nfsnode *np = VTONFS(vp);
1326 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1327 int error = 0, slpflag, slptimeo;
1328 int old_lock = 0;
1329
1330 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1331
1332 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1333 intrflg = 0;
1334 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1335 intrflg = 1;
1336 if (intrflg) {
1337 slpflag = PCATCH;
1338 slptimeo = 2 * hz;
1339 } else {
1340 slpflag = 0;
1341 slptimeo = 0;
1342 }
1343
1344 old_lock = ncl_upgrade_vnlock(vp);
1345 if (vp->v_iflag & VI_DOOMED) {
1346 /*
1347 * Since vgonel() uses the generic vinvalbuf() to flush
1348 * dirty buffers and it does not call this function, it
1349 * is safe to just return OK when VI_DOOMED is set.
1350 */
1351 ncl_downgrade_vnlock(vp, old_lock);
1352 return (0);
1353 }
1354
1355 /*
1356 * Now, flush as required.
1357 */
1358 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1359 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1360 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1361 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1362 /*
1363 * If the page clean was interrupted, fail the invalidation.
1364 * Not doing so, we run the risk of losing dirty pages in the
1365 * vinvalbuf() call below.
1366 */
1367 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1368 goto out;
1369 }
1370
1371 error = vinvalbuf(vp, flags, slpflag, 0);
1372 while (error) {
1373 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1374 goto out;
1375 error = vinvalbuf(vp, flags, 0, slptimeo);
1376 }
1377 if (NFSHASPNFS(nmp)) {
1378 nfscl_layoutcommit(vp, td);
1379 /*
1380 * Invalidate the attribute cache, since writes to a DS
1381 * won't update the size attribute.
1382 */
1383 mtx_lock(&np->n_mtx);
1384 np->n_attrstamp = 0;
1385 } else
1386 mtx_lock(&np->n_mtx);
1387 if (np->n_directio_asyncwr == 0)
1388 np->n_flag &= ~NMODIFIED;
1389 mtx_unlock(&np->n_mtx);
1390 out:
1391 ncl_downgrade_vnlock(vp, old_lock);
1392 return error;
1393 }
1394
1395 /*
1396 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1397 * This is mainly to avoid queueing async I/O requests when the nfsiods
1398 * are all hung on a dead server.
1399 *
1400 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1401 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1402 */
1403 int
1404 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1405 {
1406 int iod;
1407 int gotiod;
1408 int slpflag = 0;
1409 int slptimeo = 0;
1410 int error, error2;
1411
1412 /*
1413 * Commits are usually short and sweet so lets save some cpu and
1414 * leave the async daemons for more important rpc's (such as reads
1415 * and writes).
1416 *
1417 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1418 * in the directory in order to update attributes. This can deadlock
1419 * with another thread that is waiting for async I/O to be done by
1420 * an nfsiod thread while holding a lock on one of these vnodes.
1421 * To avoid this deadlock, don't allow the async nfsiod threads to
1422 * perform Readdirplus RPCs.
1423 */
1424 mtx_lock(&ncl_iod_mutex);
1425 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1426 (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1427 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1428 mtx_unlock(&ncl_iod_mutex);
1429 return(EIO);
1430 }
1431 again:
1432 if (nmp->nm_flag & NFSMNT_INT)
1433 slpflag = PCATCH;
1434 gotiod = FALSE;
1435
1436 /*
1437 * Find a free iod to process this request.
1438 */
1439 for (iod = 0; iod < ncl_numasync; iod++)
1440 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1441 gotiod = TRUE;
1442 break;
1443 }
1444
1445 /*
1446 * Try to create one if none are free.
1447 */
1448 if (!gotiod)
1449 ncl_nfsiodnew();
1450 else {
1451 /*
1452 * Found one, so wake it up and tell it which
1453 * mount to process.
1454 */
1455 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1456 iod, nmp));
1457 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1458 ncl_iodmount[iod] = nmp;
1459 nmp->nm_bufqiods++;
1460 wakeup(&ncl_iodwant[iod]);
1461 }
1462
1463 /*
1464 * If none are free, we may already have an iod working on this mount
1465 * point. If so, it will process our request.
1466 */
1467 if (!gotiod) {
1468 if (nmp->nm_bufqiods > 0) {
1469 NFS_DPF(ASYNCIO,
1470 ("ncl_asyncio: %d iods are already processing mount %p\n",
1471 nmp->nm_bufqiods, nmp));
1472 gotiod = TRUE;
1473 }
1474 }
1475
1476 /*
1477 * If we have an iod which can process the request, then queue
1478 * the buffer.
1479 */
1480 if (gotiod) {
1481 /*
1482 * Ensure that the queue never grows too large. We still want
1483 * to asynchronize so we block rather then return EIO.
1484 */
1485 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1486 NFS_DPF(ASYNCIO,
1487 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1488 nmp->nm_bufqwant = TRUE;
1489 error = newnfs_msleep(td, &nmp->nm_bufq,
1490 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1491 slptimeo);
1492 if (error) {
1493 error2 = newnfs_sigintr(nmp, td);
1494 if (error2) {
1495 mtx_unlock(&ncl_iod_mutex);
1496 return (error2);
1497 }
1498 if (slpflag == PCATCH) {
1499 slpflag = 0;
1500 slptimeo = 2 * hz;
1501 }
1502 }
1503 /*
1504 * We might have lost our iod while sleeping,
1505 * so check and loop if nescessary.
1506 */
1507 goto again;
1508 }
1509
1510 /* We might have lost our nfsiod */
1511 if (nmp->nm_bufqiods == 0) {
1512 NFS_DPF(ASYNCIO,
1513 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1514 goto again;
1515 }
1516
1517 if (bp->b_iocmd == BIO_READ) {
1518 if (bp->b_rcred == NOCRED && cred != NOCRED)
1519 bp->b_rcred = crhold(cred);
1520 } else {
1521 if (bp->b_wcred == NOCRED && cred != NOCRED)
1522 bp->b_wcred = crhold(cred);
1523 }
1524
1525 if (bp->b_flags & B_REMFREE)
1526 bremfreef(bp);
1527 BUF_KERNPROC(bp);
1528 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1529 nmp->nm_bufqlen++;
1530 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1531 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1532 VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1533 VTONFS(bp->b_vp)->n_directio_asyncwr++;
1534 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1535 }
1536 mtx_unlock(&ncl_iod_mutex);
1537 return (0);
1538 }
1539
1540 mtx_unlock(&ncl_iod_mutex);
1541
1542 /*
1543 * All the iods are busy on other mounts, so return EIO to
1544 * force the caller to process the i/o synchronously.
1545 */
1546 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1547 return (EIO);
1548 }
1549
1550 void
1551 ncl_doio_directwrite(struct buf *bp)
1552 {
1553 int iomode, must_commit;
1554 struct uio *uiop = (struct uio *)bp->b_caller1;
1555 char *iov_base = uiop->uio_iov->iov_base;
1556
1557 iomode = NFSWRITE_FILESYNC;
1558 uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1559 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1560 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1561 free(iov_base, M_NFSDIRECTIO);
1562 free(uiop->uio_iov, M_NFSDIRECTIO);
1563 free(uiop, M_NFSDIRECTIO);
1564 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1565 struct nfsnode *np = VTONFS(bp->b_vp);
1566 mtx_lock(&np->n_mtx);
1567 if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1568 /*
1569 * Invalidate the attribute cache, since writes to a DS
1570 * won't update the size attribute.
1571 */
1572 np->n_attrstamp = 0;
1573 }
1574 np->n_directio_asyncwr--;
1575 if (np->n_directio_asyncwr == 0) {
1576 np->n_flag &= ~NMODIFIED;
1577 if ((np->n_flag & NFSYNCWAIT)) {
1578 np->n_flag &= ~NFSYNCWAIT;
1579 wakeup((caddr_t)&np->n_directio_asyncwr);
1580 }
1581 }
1582 mtx_unlock(&np->n_mtx);
1583 }
1584 bp->b_vp = NULL;
1585 relpbuf(bp, &ncl_pbuf_freecnt);
1586 }
1587
1588 /*
1589 * Do an I/O operation to/from a cache block. This may be called
1590 * synchronously or from an nfsiod.
1591 */
1592 int
1593 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1594 int called_from_strategy)
1595 {
1596 struct uio *uiop;
1597 struct nfsnode *np;
1598 struct nfsmount *nmp;
1599 int error = 0, iomode, must_commit = 0;
1600 struct uio uio;
1601 struct iovec io;
1602 struct proc *p = td ? td->td_proc : NULL;
1603 uint8_t iocmd;
1604
1605 np = VTONFS(vp);
1606 nmp = VFSTONFS(vp->v_mount);
1607 uiop = &uio;
1608 uiop->uio_iov = &io;
1609 uiop->uio_iovcnt = 1;
1610 uiop->uio_segflg = UIO_SYSSPACE;
1611 uiop->uio_td = td;
1612
1613 /*
1614 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
1615 * do this here so we do not have to do it in all the code that
1616 * calls us.
1617 */
1618 bp->b_flags &= ~B_INVAL;
1619 bp->b_ioflags &= ~BIO_ERROR;
1620
1621 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1622 iocmd = bp->b_iocmd;
1623 if (iocmd == BIO_READ) {
1624 io.iov_len = uiop->uio_resid = bp->b_bcount;
1625 io.iov_base = bp->b_data;
1626 uiop->uio_rw = UIO_READ;
1627
1628 switch (vp->v_type) {
1629 case VREG:
1630 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1631 NFSINCRGLOBAL(newnfsstats.read_bios);
1632 error = ncl_readrpc(vp, uiop, cr);
1633
1634 if (!error) {
1635 if (uiop->uio_resid) {
1636 /*
1637 * If we had a short read with no error, we must have
1638 * hit a file hole. We should zero-fill the remainder.
1639 * This can also occur if the server hits the file EOF.
1640 *
1641 * Holes used to be able to occur due to pending
1642 * writes, but that is not possible any longer.
1643 */
1644 int nread = bp->b_bcount - uiop->uio_resid;
1645 ssize_t left = uiop->uio_resid;
1646
1647 if (left > 0)
1648 bzero((char *)bp->b_data + nread, left);
1649 uiop->uio_resid = 0;
1650 }
1651 }
1652 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1653 if (p && (vp->v_vflag & VV_TEXT)) {
1654 mtx_lock(&np->n_mtx);
1655 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1656 mtx_unlock(&np->n_mtx);
1657 PROC_LOCK(p);
1658 killproc(p, "text file modification");
1659 PROC_UNLOCK(p);
1660 } else
1661 mtx_unlock(&np->n_mtx);
1662 }
1663 break;
1664 case VLNK:
1665 uiop->uio_offset = (off_t)0;
1666 NFSINCRGLOBAL(newnfsstats.readlink_bios);
1667 error = ncl_readlinkrpc(vp, uiop, cr);
1668 break;
1669 case VDIR:
1670 NFSINCRGLOBAL(newnfsstats.readdir_bios);
1671 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1672 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1673 error = ncl_readdirplusrpc(vp, uiop, cr, td);
1674 if (error == NFSERR_NOTSUPP)
1675 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1676 }
1677 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1678 error = ncl_readdirrpc(vp, uiop, cr, td);
1679 /*
1680 * end-of-directory sets B_INVAL but does not generate an
1681 * error.
1682 */
1683 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1684 bp->b_flags |= B_INVAL;
1685 break;
1686 default:
1687 ncl_printf("ncl_doio: type %x unexpected\n", vp->v_type);
1688 break;
1689 };
1690 if (error) {
1691 bp->b_ioflags |= BIO_ERROR;
1692 bp->b_error = error;
1693 }
1694 } else {
1695 /*
1696 * If we only need to commit, try to commit
1697 */
1698 if (bp->b_flags & B_NEEDCOMMIT) {
1699 int retv;
1700 off_t off;
1701
1702 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1703 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1704 bp->b_wcred, td);
1705 if (retv == 0) {
1706 bp->b_dirtyoff = bp->b_dirtyend = 0;
1707 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1708 bp->b_resid = 0;
1709 bufdone(bp);
1710 return (0);
1711 }
1712 if (retv == NFSERR_STALEWRITEVERF) {
1713 ncl_clearcommit(vp->v_mount);
1714 }
1715 }
1716
1717 /*
1718 * Setup for actual write
1719 */
1720 mtx_lock(&np->n_mtx);
1721 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1722 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1723 mtx_unlock(&np->n_mtx);
1724
1725 if (bp->b_dirtyend > bp->b_dirtyoff) {
1726 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1727 - bp->b_dirtyoff;
1728 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1729 + bp->b_dirtyoff;
1730 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1731 uiop->uio_rw = UIO_WRITE;
1732 NFSINCRGLOBAL(newnfsstats.write_bios);
1733
1734 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1735 iomode = NFSWRITE_UNSTABLE;
1736 else
1737 iomode = NFSWRITE_FILESYNC;
1738
1739 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1740 called_from_strategy);
1741
1742 /*
1743 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1744 * to cluster the buffers needing commit. This will allow
1745 * the system to submit a single commit rpc for the whole
1746 * cluster. We can do this even if the buffer is not 100%
1747 * dirty (relative to the NFS blocksize), so we optimize the
1748 * append-to-file-case.
1749 *
1750 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1751 * cleared because write clustering only works for commit
1752 * rpc's, not for the data portion of the write).
1753 */
1754
1755 if (!error && iomode == NFSWRITE_UNSTABLE) {
1756 bp->b_flags |= B_NEEDCOMMIT;
1757 if (bp->b_dirtyoff == 0
1758 && bp->b_dirtyend == bp->b_bcount)
1759 bp->b_flags |= B_CLUSTEROK;
1760 } else {
1761 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1762 }
1763
1764 /*
1765 * For an interrupted write, the buffer is still valid
1766 * and the write hasn't been pushed to the server yet,
1767 * so we can't set BIO_ERROR and report the interruption
1768 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1769 * is not relevant, so the rpc attempt is essentially
1770 * a noop. For the case of a V3 write rpc not being
1771 * committed to stable storage, the block is still
1772 * dirty and requires either a commit rpc or another
1773 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1774 * the block is reused. This is indicated by setting
1775 * the B_DELWRI and B_NEEDCOMMIT flags.
1776 *
1777 * EIO is returned by ncl_writerpc() to indicate a recoverable
1778 * write error and is handled as above, except that
1779 * B_EINTR isn't set. One cause of this is a stale stateid
1780 * error for the RPC that indicates recovery is required,
1781 * when called with called_from_strategy != 0.
1782 *
1783 * If the buffer is marked B_PAGING, it does not reside on
1784 * the vp's paging queues so we cannot call bdirty(). The
1785 * bp in this case is not an NFS cache block so we should
1786 * be safe. XXX
1787 *
1788 * The logic below breaks up errors into recoverable and
1789 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1790 * and keep the buffer around for potential write retries.
1791 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1792 * and save the error in the nfsnode. This is less than ideal
1793 * but necessary. Keeping such buffers around could potentially
1794 * cause buffer exhaustion eventually (they can never be written
1795 * out, so will get constantly be re-dirtied). It also causes
1796 * all sorts of vfs panics. For non-recoverable write errors,
1797 * also invalidate the attrcache, so we'll be forced to go over
1798 * the wire for this object, returning an error to user on next
1799 * call (most of the time).
1800 */
1801 if (error == EINTR || error == EIO || error == ETIMEDOUT
1802 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1803 int s;
1804
1805 s = splbio();
1806 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1807 if ((bp->b_flags & B_PAGING) == 0) {
1808 bdirty(bp);
1809 bp->b_flags &= ~B_DONE;
1810 }
1811 if ((error == EINTR || error == ETIMEDOUT) &&
1812 (bp->b_flags & B_ASYNC) == 0)
1813 bp->b_flags |= B_EINTR;
1814 splx(s);
1815 } else {
1816 if (error) {
1817 bp->b_ioflags |= BIO_ERROR;
1818 bp->b_flags |= B_INVAL;
1819 bp->b_error = np->n_error = error;
1820 mtx_lock(&np->n_mtx);
1821 np->n_flag |= NWRITEERR;
1822 np->n_attrstamp = 0;
1823 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1824 mtx_unlock(&np->n_mtx);
1825 }
1826 bp->b_dirtyoff = bp->b_dirtyend = 0;
1827 }
1828 } else {
1829 bp->b_resid = 0;
1830 bufdone(bp);
1831 return (0);
1832 }
1833 }
1834 bp->b_resid = uiop->uio_resid;
1835 if (must_commit)
1836 ncl_clearcommit(vp->v_mount);
1837 bufdone(bp);
1838 return (error);
1839 }
1840
1841 /*
1842 * Used to aid in handling ftruncate() operations on the NFS client side.
1843 * Truncation creates a number of special problems for NFS. We have to
1844 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1845 * we have to properly handle VM pages or (potentially dirty) buffers
1846 * that straddle the truncation point.
1847 */
1848
1849 int
1850 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1851 {
1852 struct nfsnode *np = VTONFS(vp);
1853 u_quad_t tsize;
1854 int biosize = vp->v_bufobj.bo_bsize;
1855 int error = 0;
1856
1857 mtx_lock(&np->n_mtx);
1858 tsize = np->n_size;
1859 np->n_size = nsize;
1860 mtx_unlock(&np->n_mtx);
1861
1862 if (nsize < tsize) {
1863 struct buf *bp;
1864 daddr_t lbn;
1865 int bufsize;
1866
1867 /*
1868 * vtruncbuf() doesn't get the buffer overlapping the
1869 * truncation point. We may have a B_DELWRI and/or B_CACHE
1870 * buffer that now needs to be truncated.
1871 */
1872 error = vtruncbuf(vp, cred, nsize, biosize);
1873 lbn = nsize / biosize;
1874 bufsize = nsize - (lbn * biosize);
1875 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1876 if (!bp)
1877 return EINTR;
1878 if (bp->b_dirtyoff > bp->b_bcount)
1879 bp->b_dirtyoff = bp->b_bcount;
1880 if (bp->b_dirtyend > bp->b_bcount)
1881 bp->b_dirtyend = bp->b_bcount;
1882 bp->b_flags |= B_RELBUF; /* don't leave garbage around */
1883 brelse(bp);
1884 } else {
1885 vnode_pager_setsize(vp, nsize);
1886 }
1887 return(error);
1888 }
1889
1890