Home | History | Annotate | Line # | Download | only in client
nfs_clbio.c revision 1.1
      1 /*	$NetBSD: nfs_clbio.c,v 1.1 2013/09/30 07:19:30 dholland Exp $	*/
      2 /*-
      3  * Copyright (c) 1989, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * Rick Macklem at The University of Guelph.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 252072 2013-06-21 22:26:18Z rmacklem "); */
     38 __RCSID("$NetBSD: nfs_clbio.c,v 1.1 2013/09/30 07:19:30 dholland Exp $");
     39 
     40 #include "opt_kdtrace.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/bio.h>
     45 #include <sys/buf.h>
     46 #include <sys/kernel.h>
     47 #include <sys/mount.h>
     48 #include <sys/rwlock.h>
     49 #include <sys/vmmeter.h>
     50 #include <sys/vnode.h>
     51 
     52 #include <vm/vm.h>
     53 #include <vm/vm_param.h>
     54 #include <vm/vm_extern.h>
     55 #include <vm/vm_page.h>
     56 #include <vm/vm_object.h>
     57 #include <vm/vm_pager.h>
     58 #include <vm/vnode_pager.h>
     59 
     60 #include <fs/nfs/nfsport.h>
     61 #include <fs/nfsclient/nfsmount.h>
     62 #include <fs/nfsclient/nfs.h>
     63 #include <fs/nfsclient/nfsnode.h>
     64 #include <fs/nfsclient/nfs_kdtrace.h>
     65 
     66 extern int newnfs_directio_allow_mmap;
     67 extern struct nfsstats newnfsstats;
     68 extern struct mtx ncl_iod_mutex;
     69 extern int ncl_numasync;
     70 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
     71 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
     72 extern int newnfs_directio_enable;
     73 extern int nfs_keep_dirty_on_error;
     74 
     75 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
     76 
     77 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
     78     struct thread *td);
     79 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
     80     struct ucred *cred, int ioflag);
     81 
     82 /*
     83  * Vnode op for VM getpages.
     84  */
     85 int
     86 ncl_getpages(struct vop_getpages_args *ap)
     87 {
     88 	int i, error, nextoff, size, toff, count, npages;
     89 	struct uio uio;
     90 	struct iovec iov;
     91 	vm_offset_t kva;
     92 	struct buf *bp;
     93 	struct vnode *vp;
     94 	struct thread *td;
     95 	struct ucred *cred;
     96 	struct nfsmount *nmp;
     97 	vm_object_t object;
     98 	vm_page_t *pages;
     99 	struct nfsnode *np;
    100 
    101 	vp = ap->a_vp;
    102 	np = VTONFS(vp);
    103 	td = curthread;				/* XXX */
    104 	cred = curthread->td_ucred;		/* XXX */
    105 	nmp = VFSTONFS(vp->v_mount);
    106 	pages = ap->a_m;
    107 	count = ap->a_count;
    108 
    109 	if ((object = vp->v_object) == NULL) {
    110 		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
    111 		return (VM_PAGER_ERROR);
    112 	}
    113 
    114 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
    115 		mtx_lock(&np->n_mtx);
    116 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    117 			mtx_unlock(&np->n_mtx);
    118 			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
    119 			return (VM_PAGER_ERROR);
    120 		} else
    121 			mtx_unlock(&np->n_mtx);
    122 	}
    123 
    124 	mtx_lock(&nmp->nm_mtx);
    125 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    126 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    127 		mtx_unlock(&nmp->nm_mtx);
    128 		/* We'll never get here for v4, because we always have fsinfo */
    129 		(void)ncl_fsinfo(nmp, vp, cred, td);
    130 	} else
    131 		mtx_unlock(&nmp->nm_mtx);
    132 
    133 	npages = btoc(count);
    134 
    135 	/*
    136 	 * If the requested page is partially valid, just return it and
    137 	 * allow the pager to zero-out the blanks.  Partially valid pages
    138 	 * can only occur at the file EOF.
    139 	 */
    140 	VM_OBJECT_WLOCK(object);
    141 	if (pages[ap->a_reqpage]->valid != 0) {
    142 		for (i = 0; i < npages; ++i) {
    143 			if (i != ap->a_reqpage) {
    144 				vm_page_lock(pages[i]);
    145 				vm_page_free(pages[i]);
    146 				vm_page_unlock(pages[i]);
    147 			}
    148 		}
    149 		VM_OBJECT_WUNLOCK(object);
    150 		return (0);
    151 	}
    152 	VM_OBJECT_WUNLOCK(object);
    153 
    154 	/*
    155 	 * We use only the kva address for the buffer, but this is extremely
    156 	 * convienient and fast.
    157 	 */
    158 	bp = getpbuf(&ncl_pbuf_freecnt);
    159 
    160 	kva = (vm_offset_t) bp->b_data;
    161 	pmap_qenter(kva, pages, npages);
    162 	PCPU_INC(cnt.v_vnodein);
    163 	PCPU_ADD(cnt.v_vnodepgsin, npages);
    164 
    165 	iov.iov_base = (caddr_t) kva;
    166 	iov.iov_len = count;
    167 	uio.uio_iov = &iov;
    168 	uio.uio_iovcnt = 1;
    169 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
    170 	uio.uio_resid = count;
    171 	uio.uio_segflg = UIO_SYSSPACE;
    172 	uio.uio_rw = UIO_READ;
    173 	uio.uio_td = td;
    174 
    175 	error = ncl_readrpc(vp, &uio, cred);
    176 	pmap_qremove(kva, npages);
    177 
    178 	relpbuf(bp, &ncl_pbuf_freecnt);
    179 
    180 	if (error && (uio.uio_resid == count)) {
    181 		ncl_printf("nfs_getpages: error %d\n", error);
    182 		VM_OBJECT_WLOCK(object);
    183 		for (i = 0; i < npages; ++i) {
    184 			if (i != ap->a_reqpage) {
    185 				vm_page_lock(pages[i]);
    186 				vm_page_free(pages[i]);
    187 				vm_page_unlock(pages[i]);
    188 			}
    189 		}
    190 		VM_OBJECT_WUNLOCK(object);
    191 		return (VM_PAGER_ERROR);
    192 	}
    193 
    194 	/*
    195 	 * Calculate the number of bytes read and validate only that number
    196 	 * of bytes.  Note that due to pending writes, size may be 0.  This
    197 	 * does not mean that the remaining data is invalid!
    198 	 */
    199 
    200 	size = count - uio.uio_resid;
    201 	VM_OBJECT_WLOCK(object);
    202 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
    203 		vm_page_t m;
    204 		nextoff = toff + PAGE_SIZE;
    205 		m = pages[i];
    206 
    207 		if (nextoff <= size) {
    208 			/*
    209 			 * Read operation filled an entire page
    210 			 */
    211 			m->valid = VM_PAGE_BITS_ALL;
    212 			KASSERT(m->dirty == 0,
    213 			    ("nfs_getpages: page %p is dirty", m));
    214 		} else if (size > toff) {
    215 			/*
    216 			 * Read operation filled a partial page.
    217 			 */
    218 			m->valid = 0;
    219 			vm_page_set_valid_range(m, 0, size - toff);
    220 			KASSERT(m->dirty == 0,
    221 			    ("nfs_getpages: page %p is dirty", m));
    222 		} else {
    223 			/*
    224 			 * Read operation was short.  If no error
    225 			 * occured we may have hit a zero-fill
    226 			 * section.  We leave valid set to 0, and page
    227 			 * is freed by vm_page_readahead_finish() if
    228 			 * its index is not equal to requested, or
    229 			 * page is zeroed and set valid by
    230 			 * vm_pager_get_pages() for requested page.
    231 			 */
    232 			;
    233 		}
    234 		if (i != ap->a_reqpage)
    235 			vm_page_readahead_finish(m);
    236 	}
    237 	VM_OBJECT_WUNLOCK(object);
    238 	return (0);
    239 }
    240 
    241 /*
    242  * Vnode op for VM putpages.
    243  */
    244 int
    245 ncl_putpages(struct vop_putpages_args *ap)
    246 {
    247 	struct uio uio;
    248 	struct iovec iov;
    249 	vm_offset_t kva;
    250 	struct buf *bp;
    251 	int iomode, must_commit, i, error, npages, count;
    252 	off_t offset;
    253 	int *rtvals;
    254 	struct vnode *vp;
    255 	struct thread *td;
    256 	struct ucred *cred;
    257 	struct nfsmount *nmp;
    258 	struct nfsnode *np;
    259 	vm_page_t *pages;
    260 
    261 	vp = ap->a_vp;
    262 	np = VTONFS(vp);
    263 	td = curthread;				/* XXX */
    264 	/* Set the cred to n_writecred for the write rpcs. */
    265 	if (np->n_writecred != NULL)
    266 		cred = crhold(np->n_writecred);
    267 	else
    268 		cred = crhold(curthread->td_ucred);	/* XXX */
    269 	nmp = VFSTONFS(vp->v_mount);
    270 	pages = ap->a_m;
    271 	count = ap->a_count;
    272 	rtvals = ap->a_rtvals;
    273 	npages = btoc(count);
    274 	offset = IDX_TO_OFF(pages[0]->pindex);
    275 
    276 	mtx_lock(&nmp->nm_mtx);
    277 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    278 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    279 		mtx_unlock(&nmp->nm_mtx);
    280 		(void)ncl_fsinfo(nmp, vp, cred, td);
    281 	} else
    282 		mtx_unlock(&nmp->nm_mtx);
    283 
    284 	mtx_lock(&np->n_mtx);
    285 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
    286 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    287 		mtx_unlock(&np->n_mtx);
    288 		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
    289 		mtx_lock(&np->n_mtx);
    290 	}
    291 
    292 	for (i = 0; i < npages; i++)
    293 		rtvals[i] = VM_PAGER_ERROR;
    294 
    295 	/*
    296 	 * When putting pages, do not extend file past EOF.
    297 	 */
    298 	if (offset + count > np->n_size) {
    299 		count = np->n_size - offset;
    300 		if (count < 0)
    301 			count = 0;
    302 	}
    303 	mtx_unlock(&np->n_mtx);
    304 
    305 	/*
    306 	 * We use only the kva address for the buffer, but this is extremely
    307 	 * convienient and fast.
    308 	 */
    309 	bp = getpbuf(&ncl_pbuf_freecnt);
    310 
    311 	kva = (vm_offset_t) bp->b_data;
    312 	pmap_qenter(kva, pages, npages);
    313 	PCPU_INC(cnt.v_vnodeout);
    314 	PCPU_ADD(cnt.v_vnodepgsout, count);
    315 
    316 	iov.iov_base = (caddr_t) kva;
    317 	iov.iov_len = count;
    318 	uio.uio_iov = &iov;
    319 	uio.uio_iovcnt = 1;
    320 	uio.uio_offset = offset;
    321 	uio.uio_resid = count;
    322 	uio.uio_segflg = UIO_SYSSPACE;
    323 	uio.uio_rw = UIO_WRITE;
    324 	uio.uio_td = td;
    325 
    326 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
    327 	    iomode = NFSWRITE_UNSTABLE;
    328 	else
    329 	    iomode = NFSWRITE_FILESYNC;
    330 
    331 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
    332 	crfree(cred);
    333 
    334 	pmap_qremove(kva, npages);
    335 	relpbuf(bp, &ncl_pbuf_freecnt);
    336 
    337 	if (error == 0 || !nfs_keep_dirty_on_error) {
    338 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
    339 		if (must_commit)
    340 			ncl_clearcommit(vp->v_mount);
    341 	}
    342 	return rtvals[0];
    343 }
    344 
    345 /*
    346  * For nfs, cache consistency can only be maintained approximately.
    347  * Although RFC1094 does not specify the criteria, the following is
    348  * believed to be compatible with the reference port.
    349  * For nfs:
    350  * If the file's modify time on the server has changed since the
    351  * last read rpc or you have written to the file,
    352  * you may have lost data cache consistency with the
    353  * server, so flush all of the file's data out of the cache.
    354  * Then force a getattr rpc to ensure that you have up to date
    355  * attributes.
    356  * NB: This implies that cache data can be read when up to
    357  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
    358  * attributes this could be forced by setting n_attrstamp to 0 before
    359  * the VOP_GETATTR() call.
    360  */
    361 static inline int
    362 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
    363 {
    364 	int error = 0;
    365 	struct vattr vattr;
    366 	struct nfsnode *np = VTONFS(vp);
    367 	int old_lock;
    368 
    369 	/*
    370 	 * Grab the exclusive lock before checking whether the cache is
    371 	 * consistent.
    372 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
    373 	 * But for now, this suffices.
    374 	 */
    375 	old_lock = ncl_upgrade_vnlock(vp);
    376 	if (vp->v_iflag & VI_DOOMED) {
    377 		ncl_downgrade_vnlock(vp, old_lock);
    378 		return (EBADF);
    379 	}
    380 
    381 	mtx_lock(&np->n_mtx);
    382 	if (np->n_flag & NMODIFIED) {
    383 		mtx_unlock(&np->n_mtx);
    384 		if (vp->v_type != VREG) {
    385 			if (vp->v_type != VDIR)
    386 				panic("nfs: bioread, not dir");
    387 			ncl_invaldir(vp);
    388 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    389 			if (error)
    390 				goto out;
    391 		}
    392 		np->n_attrstamp = 0;
    393 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    394 		error = VOP_GETATTR(vp, &vattr, cred);
    395 		if (error)
    396 			goto out;
    397 		mtx_lock(&np->n_mtx);
    398 		np->n_mtime = vattr.va_mtime;
    399 		mtx_unlock(&np->n_mtx);
    400 	} else {
    401 		mtx_unlock(&np->n_mtx);
    402 		error = VOP_GETATTR(vp, &vattr, cred);
    403 		if (error)
    404 			return (error);
    405 		mtx_lock(&np->n_mtx);
    406 		if ((np->n_flag & NSIZECHANGED)
    407 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
    408 			mtx_unlock(&np->n_mtx);
    409 			if (vp->v_type == VDIR)
    410 				ncl_invaldir(vp);
    411 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    412 			if (error)
    413 				goto out;
    414 			mtx_lock(&np->n_mtx);
    415 			np->n_mtime = vattr.va_mtime;
    416 			np->n_flag &= ~NSIZECHANGED;
    417 		}
    418 		mtx_unlock(&np->n_mtx);
    419 	}
    420 out:
    421 	ncl_downgrade_vnlock(vp, old_lock);
    422 	return error;
    423 }
    424 
    425 /*
    426  * Vnode op for read using bio
    427  */
    428 int
    429 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
    430 {
    431 	struct nfsnode *np = VTONFS(vp);
    432 	int biosize, i;
    433 	struct buf *bp, *rabp;
    434 	struct thread *td;
    435 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    436 	daddr_t lbn, rabn;
    437 	int bcount;
    438 	int seqcount;
    439 	int nra, error = 0, n = 0, on = 0;
    440 	off_t tmp_off;
    441 
    442 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
    443 	if (uio->uio_resid == 0)
    444 		return (0);
    445 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
    446 		return (EINVAL);
    447 	td = uio->uio_td;
    448 
    449 	mtx_lock(&nmp->nm_mtx);
    450 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    451 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    452 		mtx_unlock(&nmp->nm_mtx);
    453 		(void)ncl_fsinfo(nmp, vp, cred, td);
    454 		mtx_lock(&nmp->nm_mtx);
    455 	}
    456 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
    457 		(void) newnfs_iosize(nmp);
    458 
    459 	tmp_off = uio->uio_offset + uio->uio_resid;
    460 	if (vp->v_type != VDIR &&
    461 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
    462 		mtx_unlock(&nmp->nm_mtx);
    463 		return (EFBIG);
    464 	}
    465 	mtx_unlock(&nmp->nm_mtx);
    466 
    467 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
    468 		/* No caching/ no readaheads. Just read data into the user buffer */
    469 		return ncl_readrpc(vp, uio, cred);
    470 
    471 	biosize = vp->v_bufobj.bo_bsize;
    472 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
    473 
    474 	error = nfs_bioread_check_cons(vp, td, cred);
    475 	if (error)
    476 		return error;
    477 
    478 	do {
    479 	    u_quad_t nsize;
    480 
    481 	    mtx_lock(&np->n_mtx);
    482 	    nsize = np->n_size;
    483 	    mtx_unlock(&np->n_mtx);
    484 
    485 	    switch (vp->v_type) {
    486 	    case VREG:
    487 		NFSINCRGLOBAL(newnfsstats.biocache_reads);
    488 		lbn = uio->uio_offset / biosize;
    489 		on = uio->uio_offset - (lbn * biosize);
    490 
    491 		/*
    492 		 * Start the read ahead(s), as required.
    493 		 */
    494 		if (nmp->nm_readahead > 0) {
    495 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
    496 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
    497 			rabn = lbn + 1 + nra;
    498 			if (incore(&vp->v_bufobj, rabn) == NULL) {
    499 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
    500 			    if (!rabp) {
    501 				error = newnfs_sigintr(nmp, td);
    502 				return (error ? error : EINTR);
    503 			    }
    504 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    505 				rabp->b_flags |= B_ASYNC;
    506 				rabp->b_iocmd = BIO_READ;
    507 				vfs_busy_pages(rabp, 0);
    508 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    509 				    rabp->b_flags |= B_INVAL;
    510 				    rabp->b_ioflags |= BIO_ERROR;
    511 				    vfs_unbusy_pages(rabp);
    512 				    brelse(rabp);
    513 				    break;
    514 				}
    515 			    } else {
    516 				brelse(rabp);
    517 			    }
    518 			}
    519 		    }
    520 		}
    521 
    522 		/* Note that bcount is *not* DEV_BSIZE aligned. */
    523 		bcount = biosize;
    524 		if ((off_t)lbn * biosize >= nsize) {
    525 			bcount = 0;
    526 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
    527 			bcount = nsize - (off_t)lbn * biosize;
    528 		}
    529 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
    530 
    531 		if (!bp) {
    532 			error = newnfs_sigintr(nmp, td);
    533 			return (error ? error : EINTR);
    534 		}
    535 
    536 		/*
    537 		 * If B_CACHE is not set, we must issue the read.  If this
    538 		 * fails, we return an error.
    539 		 */
    540 
    541 		if ((bp->b_flags & B_CACHE) == 0) {
    542 		    bp->b_iocmd = BIO_READ;
    543 		    vfs_busy_pages(bp, 0);
    544 		    error = ncl_doio(vp, bp, cred, td, 0);
    545 		    if (error) {
    546 			brelse(bp);
    547 			return (error);
    548 		    }
    549 		}
    550 
    551 		/*
    552 		 * on is the offset into the current bp.  Figure out how many
    553 		 * bytes we can copy out of the bp.  Note that bcount is
    554 		 * NOT DEV_BSIZE aligned.
    555 		 *
    556 		 * Then figure out how many bytes we can copy into the uio.
    557 		 */
    558 
    559 		n = 0;
    560 		if (on < bcount)
    561 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
    562 		break;
    563 	    case VLNK:
    564 		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
    565 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
    566 		if (!bp) {
    567 			error = newnfs_sigintr(nmp, td);
    568 			return (error ? error : EINTR);
    569 		}
    570 		if ((bp->b_flags & B_CACHE) == 0) {
    571 		    bp->b_iocmd = BIO_READ;
    572 		    vfs_busy_pages(bp, 0);
    573 		    error = ncl_doio(vp, bp, cred, td, 0);
    574 		    if (error) {
    575 			bp->b_ioflags |= BIO_ERROR;
    576 			brelse(bp);
    577 			return (error);
    578 		    }
    579 		}
    580 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    581 		on = 0;
    582 		break;
    583 	    case VDIR:
    584 		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
    585 		if (np->n_direofoffset
    586 		    && uio->uio_offset >= np->n_direofoffset) {
    587 		    return (0);
    588 		}
    589 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
    590 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
    591 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
    592 		if (!bp) {
    593 		    error = newnfs_sigintr(nmp, td);
    594 		    return (error ? error : EINTR);
    595 		}
    596 		if ((bp->b_flags & B_CACHE) == 0) {
    597 		    bp->b_iocmd = BIO_READ;
    598 		    vfs_busy_pages(bp, 0);
    599 		    error = ncl_doio(vp, bp, cred, td, 0);
    600 		    if (error) {
    601 			    brelse(bp);
    602 		    }
    603 		    while (error == NFSERR_BAD_COOKIE) {
    604 			ncl_invaldir(vp);
    605 			error = ncl_vinvalbuf(vp, 0, td, 1);
    606 			/*
    607 			 * Yuck! The directory has been modified on the
    608 			 * server. The only way to get the block is by
    609 			 * reading from the beginning to get all the
    610 			 * offset cookies.
    611 			 *
    612 			 * Leave the last bp intact unless there is an error.
    613 			 * Loop back up to the while if the error is another
    614 			 * NFSERR_BAD_COOKIE (double yuch!).
    615 			 */
    616 			for (i = 0; i <= lbn && !error; i++) {
    617 			    if (np->n_direofoffset
    618 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
    619 				    return (0);
    620 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
    621 			    if (!bp) {
    622 				error = newnfs_sigintr(nmp, td);
    623 				return (error ? error : EINTR);
    624 			    }
    625 			    if ((bp->b_flags & B_CACHE) == 0) {
    626 				    bp->b_iocmd = BIO_READ;
    627 				    vfs_busy_pages(bp, 0);
    628 				    error = ncl_doio(vp, bp, cred, td, 0);
    629 				    /*
    630 				     * no error + B_INVAL == directory EOF,
    631 				     * use the block.
    632 				     */
    633 				    if (error == 0 && (bp->b_flags & B_INVAL))
    634 					    break;
    635 			    }
    636 			    /*
    637 			     * An error will throw away the block and the
    638 			     * for loop will break out.  If no error and this
    639 			     * is not the block we want, we throw away the
    640 			     * block and go for the next one via the for loop.
    641 			     */
    642 			    if (error || i < lbn)
    643 				    brelse(bp);
    644 			}
    645 		    }
    646 		    /*
    647 		     * The above while is repeated if we hit another cookie
    648 		     * error.  If we hit an error and it wasn't a cookie error,
    649 		     * we give up.
    650 		     */
    651 		    if (error)
    652 			    return (error);
    653 		}
    654 
    655 		/*
    656 		 * If not eof and read aheads are enabled, start one.
    657 		 * (You need the current block first, so that you have the
    658 		 *  directory offset cookie of the next block.)
    659 		 */
    660 		if (nmp->nm_readahead > 0 &&
    661 		    (bp->b_flags & B_INVAL) == 0 &&
    662 		    (np->n_direofoffset == 0 ||
    663 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
    664 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
    665 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
    666 			if (rabp) {
    667 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    668 				rabp->b_flags |= B_ASYNC;
    669 				rabp->b_iocmd = BIO_READ;
    670 				vfs_busy_pages(rabp, 0);
    671 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    672 				    rabp->b_flags |= B_INVAL;
    673 				    rabp->b_ioflags |= BIO_ERROR;
    674 				    vfs_unbusy_pages(rabp);
    675 				    brelse(rabp);
    676 				}
    677 			    } else {
    678 				brelse(rabp);
    679 			    }
    680 			}
    681 		}
    682 		/*
    683 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
    684 		 * chopped for the EOF condition, we cannot tell how large
    685 		 * NFS directories are going to be until we hit EOF.  So
    686 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
    687 		 * it just so happens that b_resid will effectively chop it
    688 		 * to EOF.  *BUT* this information is lost if the buffer goes
    689 		 * away and is reconstituted into a B_CACHE state ( due to
    690 		 * being VMIO ) later.  So we keep track of the directory eof
    691 		 * in np->n_direofoffset and chop it off as an extra step
    692 		 * right here.
    693 		 */
    694 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
    695 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
    696 			n = np->n_direofoffset - uio->uio_offset;
    697 		break;
    698 	    default:
    699 		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
    700 		bp = NULL;
    701 		break;
    702 	    };
    703 
    704 	    if (n > 0) {
    705 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
    706 	    }
    707 	    if (vp->v_type == VLNK)
    708 		n = 0;
    709 	    if (bp != NULL)
    710 		brelse(bp);
    711 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    712 	return (error);
    713 }
    714 
    715 /*
    716  * The NFS write path cannot handle iovecs with len > 1. So we need to
    717  * break up iovecs accordingly (restricting them to wsize).
    718  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
    719  * For the ASYNC case, 2 copies are needed. The first a copy from the
    720  * user buffer to a staging buffer and then a second copy from the staging
    721  * buffer to mbufs. This can be optimized by copying from the user buffer
    722  * directly into mbufs and passing the chain down, but that requires a
    723  * fair amount of re-working of the relevant codepaths (and can be done
    724  * later).
    725  */
    726 static int
    727 nfs_directio_write(vp, uiop, cred, ioflag)
    728 	struct vnode *vp;
    729 	struct uio *uiop;
    730 	struct ucred *cred;
    731 	int ioflag;
    732 {
    733 	int error;
    734 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    735 	struct thread *td = uiop->uio_td;
    736 	int size;
    737 	int wsize;
    738 
    739 	mtx_lock(&nmp->nm_mtx);
    740 	wsize = nmp->nm_wsize;
    741 	mtx_unlock(&nmp->nm_mtx);
    742 	if (ioflag & IO_SYNC) {
    743 		int iomode, must_commit;
    744 		struct uio uio;
    745 		struct iovec iov;
    746 do_sync:
    747 		while (uiop->uio_resid > 0) {
    748 			size = MIN(uiop->uio_resid, wsize);
    749 			size = MIN(uiop->uio_iov->iov_len, size);
    750 			iov.iov_base = uiop->uio_iov->iov_base;
    751 			iov.iov_len = size;
    752 			uio.uio_iov = &iov;
    753 			uio.uio_iovcnt = 1;
    754 			uio.uio_offset = uiop->uio_offset;
    755 			uio.uio_resid = size;
    756 			uio.uio_segflg = UIO_USERSPACE;
    757 			uio.uio_rw = UIO_WRITE;
    758 			uio.uio_td = td;
    759 			iomode = NFSWRITE_FILESYNC;
    760 			error = ncl_writerpc(vp, &uio, cred, &iomode,
    761 			    &must_commit, 0);
    762 			KASSERT((must_commit == 0),
    763 				("ncl_directio_write: Did not commit write"));
    764 			if (error)
    765 				return (error);
    766 			uiop->uio_offset += size;
    767 			uiop->uio_resid -= size;
    768 			if (uiop->uio_iov->iov_len <= size) {
    769 				uiop->uio_iovcnt--;
    770 				uiop->uio_iov++;
    771 			} else {
    772 				uiop->uio_iov->iov_base =
    773 					(char *)uiop->uio_iov->iov_base + size;
    774 				uiop->uio_iov->iov_len -= size;
    775 			}
    776 		}
    777 	} else {
    778 		struct uio *t_uio;
    779 		struct iovec *t_iov;
    780 		struct buf *bp;
    781 
    782 		/*
    783 		 * Break up the write into blocksize chunks and hand these
    784 		 * over to nfsiod's for write back.
    785 		 * Unfortunately, this incurs a copy of the data. Since
    786 		 * the user could modify the buffer before the write is
    787 		 * initiated.
    788 		 *
    789 		 * The obvious optimization here is that one of the 2 copies
    790 		 * in the async write path can be eliminated by copying the
    791 		 * data here directly into mbufs and passing the mbuf chain
    792 		 * down. But that will require a fair amount of re-working
    793 		 * of the code and can be done if there's enough interest
    794 		 * in NFS directio access.
    795 		 */
    796 		while (uiop->uio_resid > 0) {
    797 			size = MIN(uiop->uio_resid, wsize);
    798 			size = MIN(uiop->uio_iov->iov_len, size);
    799 			bp = getpbuf(&ncl_pbuf_freecnt);
    800 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
    801 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
    802 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
    803 			t_iov->iov_len = size;
    804 			t_uio->uio_iov = t_iov;
    805 			t_uio->uio_iovcnt = 1;
    806 			t_uio->uio_offset = uiop->uio_offset;
    807 			t_uio->uio_resid = size;
    808 			t_uio->uio_segflg = UIO_SYSSPACE;
    809 			t_uio->uio_rw = UIO_WRITE;
    810 			t_uio->uio_td = td;
    811 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
    812 			    uiop->uio_segflg == UIO_SYSSPACE,
    813 			    ("nfs_directio_write: Bad uio_segflg"));
    814 			if (uiop->uio_segflg == UIO_USERSPACE) {
    815 				error = copyin(uiop->uio_iov->iov_base,
    816 				    t_iov->iov_base, size);
    817 				if (error != 0)
    818 					goto err_free;
    819 			} else
    820 				/*
    821 				 * UIO_SYSSPACE may never happen, but handle
    822 				 * it just in case it does.
    823 				 */
    824 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
    825 				    size);
    826 			bp->b_flags |= B_DIRECT;
    827 			bp->b_iocmd = BIO_WRITE;
    828 			if (cred != NOCRED) {
    829 				crhold(cred);
    830 				bp->b_wcred = cred;
    831 			} else
    832 				bp->b_wcred = NOCRED;
    833 			bp->b_caller1 = (void *)t_uio;
    834 			bp->b_vp = vp;
    835 			error = ncl_asyncio(nmp, bp, NOCRED, td);
    836 err_free:
    837 			if (error) {
    838 				free(t_iov->iov_base, M_NFSDIRECTIO);
    839 				free(t_iov, M_NFSDIRECTIO);
    840 				free(t_uio, M_NFSDIRECTIO);
    841 				bp->b_vp = NULL;
    842 				relpbuf(bp, &ncl_pbuf_freecnt);
    843 				if (error == EINTR)
    844 					return (error);
    845 				goto do_sync;
    846 			}
    847 			uiop->uio_offset += size;
    848 			uiop->uio_resid -= size;
    849 			if (uiop->uio_iov->iov_len <= size) {
    850 				uiop->uio_iovcnt--;
    851 				uiop->uio_iov++;
    852 			} else {
    853 				uiop->uio_iov->iov_base =
    854 					(char *)uiop->uio_iov->iov_base + size;
    855 				uiop->uio_iov->iov_len -= size;
    856 			}
    857 		}
    858 	}
    859 	return (0);
    860 }
    861 
    862 /*
    863  * Vnode op for write using bio
    864  */
    865 int
    866 ncl_write(struct vop_write_args *ap)
    867 {
    868 	int biosize;
    869 	struct uio *uio = ap->a_uio;
    870 	struct thread *td = uio->uio_td;
    871 	struct vnode *vp = ap->a_vp;
    872 	struct nfsnode *np = VTONFS(vp);
    873 	struct ucred *cred = ap->a_cred;
    874 	int ioflag = ap->a_ioflag;
    875 	struct buf *bp;
    876 	struct vattr vattr;
    877 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    878 	daddr_t lbn;
    879 	int bcount;
    880 	int bp_cached, n, on, error = 0, error1;
    881 	size_t orig_resid, local_resid;
    882 	off_t orig_size, tmp_off;
    883 
    884 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
    885 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
    886 	    ("ncl_write proc"));
    887 	if (vp->v_type != VREG)
    888 		return (EIO);
    889 	mtx_lock(&np->n_mtx);
    890 	if (np->n_flag & NWRITEERR) {
    891 		np->n_flag &= ~NWRITEERR;
    892 		mtx_unlock(&np->n_mtx);
    893 		return (np->n_error);
    894 	} else
    895 		mtx_unlock(&np->n_mtx);
    896 	mtx_lock(&nmp->nm_mtx);
    897 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    898 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    899 		mtx_unlock(&nmp->nm_mtx);
    900 		(void)ncl_fsinfo(nmp, vp, cred, td);
    901 		mtx_lock(&nmp->nm_mtx);
    902 	}
    903 	if (nmp->nm_wsize == 0)
    904 		(void) newnfs_iosize(nmp);
    905 	mtx_unlock(&nmp->nm_mtx);
    906 
    907 	/*
    908 	 * Synchronously flush pending buffers if we are in synchronous
    909 	 * mode or if we are appending.
    910 	 */
    911 	if (ioflag & (IO_APPEND | IO_SYNC)) {
    912 		mtx_lock(&np->n_mtx);
    913 		if (np->n_flag & NMODIFIED) {
    914 			mtx_unlock(&np->n_mtx);
    915 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
    916 			/*
    917 			 * Require non-blocking, synchronous writes to
    918 			 * dirty files to inform the program it needs
    919 			 * to fsync(2) explicitly.
    920 			 */
    921 			if (ioflag & IO_NDELAY)
    922 				return (EAGAIN);
    923 #endif
    924 flush_and_restart:
    925 			np->n_attrstamp = 0;
    926 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    927 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    928 			if (error)
    929 				return (error);
    930 		} else
    931 			mtx_unlock(&np->n_mtx);
    932 	}
    933 
    934 	orig_resid = uio->uio_resid;
    935 	mtx_lock(&np->n_mtx);
    936 	orig_size = np->n_size;
    937 	mtx_unlock(&np->n_mtx);
    938 
    939 	/*
    940 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
    941 	 * get the append lock.
    942 	 */
    943 	if (ioflag & IO_APPEND) {
    944 		np->n_attrstamp = 0;
    945 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    946 		error = VOP_GETATTR(vp, &vattr, cred);
    947 		if (error)
    948 			return (error);
    949 		mtx_lock(&np->n_mtx);
    950 		uio->uio_offset = np->n_size;
    951 		mtx_unlock(&np->n_mtx);
    952 	}
    953 
    954 	if (uio->uio_offset < 0)
    955 		return (EINVAL);
    956 	tmp_off = uio->uio_offset + uio->uio_resid;
    957 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
    958 		return (EFBIG);
    959 	if (uio->uio_resid == 0)
    960 		return (0);
    961 
    962 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
    963 		return nfs_directio_write(vp, uio, cred, ioflag);
    964 
    965 	/*
    966 	 * Maybe this should be above the vnode op call, but so long as
    967 	 * file servers have no limits, i don't think it matters
    968 	 */
    969 	if (vn_rlimit_fsize(vp, uio, td))
    970 		return (EFBIG);
    971 
    972 	biosize = vp->v_bufobj.bo_bsize;
    973 	/*
    974 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
    975 	 * would exceed the local maximum per-file write commit size when
    976 	 * combined with those, we must decide whether to flush,
    977 	 * go synchronous, or return error.  We don't bother checking
    978 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
    979 	 * no point optimizing for something that really won't ever happen.
    980 	 */
    981 	if (!(ioflag & IO_SYNC)) {
    982 		int nflag;
    983 
    984 		mtx_lock(&np->n_mtx);
    985 		nflag = np->n_flag;
    986 		mtx_unlock(&np->n_mtx);
    987 		int needrestart = 0;
    988 		if (nmp->nm_wcommitsize < uio->uio_resid) {
    989 			/*
    990 			 * If this request could not possibly be completed
    991 			 * without exceeding the maximum outstanding write
    992 			 * commit size, see if we can convert it into a
    993 			 * synchronous write operation.
    994 			 */
    995 			if (ioflag & IO_NDELAY)
    996 				return (EAGAIN);
    997 			ioflag |= IO_SYNC;
    998 			if (nflag & NMODIFIED)
    999 				needrestart = 1;
   1000 		} else if (nflag & NMODIFIED) {
   1001 			int wouldcommit = 0;
   1002 			BO_LOCK(&vp->v_bufobj);
   1003 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
   1004 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
   1005 				    b_bobufs) {
   1006 					if (bp->b_flags & B_NEEDCOMMIT)
   1007 						wouldcommit += bp->b_bcount;
   1008 				}
   1009 			}
   1010 			BO_UNLOCK(&vp->v_bufobj);
   1011 			/*
   1012 			 * Since we're not operating synchronously and
   1013 			 * bypassing the buffer cache, we are in a commit
   1014 			 * and holding all of these buffers whether
   1015 			 * transmitted or not.  If not limited, this
   1016 			 * will lead to the buffer cache deadlocking,
   1017 			 * as no one else can flush our uncommitted buffers.
   1018 			 */
   1019 			wouldcommit += uio->uio_resid;
   1020 			/*
   1021 			 * If we would initially exceed the maximum
   1022 			 * outstanding write commit size, flush and restart.
   1023 			 */
   1024 			if (wouldcommit > nmp->nm_wcommitsize)
   1025 				needrestart = 1;
   1026 		}
   1027 		if (needrestart)
   1028 			goto flush_and_restart;
   1029 	}
   1030 
   1031 	do {
   1032 		NFSINCRGLOBAL(newnfsstats.biocache_writes);
   1033 		lbn = uio->uio_offset / biosize;
   1034 		on = uio->uio_offset - (lbn * biosize);
   1035 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
   1036 again:
   1037 		/*
   1038 		 * Handle direct append and file extension cases, calculate
   1039 		 * unaligned buffer size.
   1040 		 */
   1041 		mtx_lock(&np->n_mtx);
   1042 		if (uio->uio_offset == np->n_size && n) {
   1043 			mtx_unlock(&np->n_mtx);
   1044 			/*
   1045 			 * Get the buffer (in its pre-append state to maintain
   1046 			 * B_CACHE if it was previously set).  Resize the
   1047 			 * nfsnode after we have locked the buffer to prevent
   1048 			 * readers from reading garbage.
   1049 			 */
   1050 			bcount = on;
   1051 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
   1052 
   1053 			if (bp != NULL) {
   1054 				long save;
   1055 
   1056 				mtx_lock(&np->n_mtx);
   1057 				np->n_size = uio->uio_offset + n;
   1058 				np->n_flag |= NMODIFIED;
   1059 				vnode_pager_setsize(vp, np->n_size);
   1060 				mtx_unlock(&np->n_mtx);
   1061 
   1062 				save = bp->b_flags & B_CACHE;
   1063 				bcount += n;
   1064 				allocbuf(bp, bcount);
   1065 				bp->b_flags |= save;
   1066 			}
   1067 		} else {
   1068 			/*
   1069 			 * Obtain the locked cache block first, and then
   1070 			 * adjust the file's size as appropriate.
   1071 			 */
   1072 			bcount = on + n;
   1073 			if ((off_t)lbn * biosize + bcount < np->n_size) {
   1074 				if ((off_t)(lbn + 1) * biosize < np->n_size)
   1075 					bcount = biosize;
   1076 				else
   1077 					bcount = np->n_size - (off_t)lbn * biosize;
   1078 			}
   1079 			mtx_unlock(&np->n_mtx);
   1080 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
   1081 			mtx_lock(&np->n_mtx);
   1082 			if (uio->uio_offset + n > np->n_size) {
   1083 				np->n_size = uio->uio_offset + n;
   1084 				np->n_flag |= NMODIFIED;
   1085 				vnode_pager_setsize(vp, np->n_size);
   1086 			}
   1087 			mtx_unlock(&np->n_mtx);
   1088 		}
   1089 
   1090 		if (!bp) {
   1091 			error = newnfs_sigintr(nmp, td);
   1092 			if (!error)
   1093 				error = EINTR;
   1094 			break;
   1095 		}
   1096 
   1097 		/*
   1098 		 * Issue a READ if B_CACHE is not set.  In special-append
   1099 		 * mode, B_CACHE is based on the buffer prior to the write
   1100 		 * op and is typically set, avoiding the read.  If a read
   1101 		 * is required in special append mode, the server will
   1102 		 * probably send us a short-read since we extended the file
   1103 		 * on our end, resulting in b_resid == 0 and, thusly,
   1104 		 * B_CACHE getting set.
   1105 		 *
   1106 		 * We can also avoid issuing the read if the write covers
   1107 		 * the entire buffer.  We have to make sure the buffer state
   1108 		 * is reasonable in this case since we will not be initiating
   1109 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
   1110 		 * more information.
   1111 		 *
   1112 		 * B_CACHE may also be set due to the buffer being cached
   1113 		 * normally.
   1114 		 */
   1115 
   1116 		bp_cached = 1;
   1117 		if (on == 0 && n == bcount) {
   1118 			if ((bp->b_flags & B_CACHE) == 0)
   1119 				bp_cached = 0;
   1120 			bp->b_flags |= B_CACHE;
   1121 			bp->b_flags &= ~B_INVAL;
   1122 			bp->b_ioflags &= ~BIO_ERROR;
   1123 		}
   1124 
   1125 		if ((bp->b_flags & B_CACHE) == 0) {
   1126 			bp->b_iocmd = BIO_READ;
   1127 			vfs_busy_pages(bp, 0);
   1128 			error = ncl_doio(vp, bp, cred, td, 0);
   1129 			if (error) {
   1130 				brelse(bp);
   1131 				break;
   1132 			}
   1133 		}
   1134 		if (bp->b_wcred == NOCRED)
   1135 			bp->b_wcred = crhold(cred);
   1136 		mtx_lock(&np->n_mtx);
   1137 		np->n_flag |= NMODIFIED;
   1138 		mtx_unlock(&np->n_mtx);
   1139 
   1140 		/*
   1141 		 * If dirtyend exceeds file size, chop it down.  This should
   1142 		 * not normally occur but there is an append race where it
   1143 		 * might occur XXX, so we log it.
   1144 		 *
   1145 		 * If the chopping creates a reverse-indexed or degenerate
   1146 		 * situation with dirtyoff/end, we 0 both of them.
   1147 		 */
   1148 
   1149 		if (bp->b_dirtyend > bcount) {
   1150 			ncl_printf("NFS append race @%lx:%d\n",
   1151 			    (long)bp->b_blkno * DEV_BSIZE,
   1152 			    bp->b_dirtyend - bcount);
   1153 			bp->b_dirtyend = bcount;
   1154 		}
   1155 
   1156 		if (bp->b_dirtyoff >= bp->b_dirtyend)
   1157 			bp->b_dirtyoff = bp->b_dirtyend = 0;
   1158 
   1159 		/*
   1160 		 * If the new write will leave a contiguous dirty
   1161 		 * area, just update the b_dirtyoff and b_dirtyend,
   1162 		 * otherwise force a write rpc of the old dirty area.
   1163 		 *
   1164 		 * While it is possible to merge discontiguous writes due to
   1165 		 * our having a B_CACHE buffer ( and thus valid read data
   1166 		 * for the hole), we don't because it could lead to
   1167 		 * significant cache coherency problems with multiple clients,
   1168 		 * especially if locking is implemented later on.
   1169 		 *
   1170 		 * As an optimization we could theoretically maintain
   1171 		 * a linked list of discontinuous areas, but we would still
   1172 		 * have to commit them separately so there isn't much
   1173 		 * advantage to it except perhaps a bit of asynchronization.
   1174 		 */
   1175 
   1176 		if (bp->b_dirtyend > 0 &&
   1177 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
   1178 			if (bwrite(bp) == EINTR) {
   1179 				error = EINTR;
   1180 				break;
   1181 			}
   1182 			goto again;
   1183 		}
   1184 
   1185 		local_resid = uio->uio_resid;
   1186 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
   1187 
   1188 		if (error != 0 && !bp_cached) {
   1189 			/*
   1190 			 * This block has no other content then what
   1191 			 * possibly was written by the faulty uiomove.
   1192 			 * Release it, forgetting the data pages, to
   1193 			 * prevent the leak of uninitialized data to
   1194 			 * usermode.
   1195 			 */
   1196 			bp->b_ioflags |= BIO_ERROR;
   1197 			brelse(bp);
   1198 			uio->uio_offset -= local_resid - uio->uio_resid;
   1199 			uio->uio_resid = local_resid;
   1200 			break;
   1201 		}
   1202 
   1203 		/*
   1204 		 * Since this block is being modified, it must be written
   1205 		 * again and not just committed.  Since write clustering does
   1206 		 * not work for the stage 1 data write, only the stage 2
   1207 		 * commit rpc, we have to clear B_CLUSTEROK as well.
   1208 		 */
   1209 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1210 
   1211 		/*
   1212 		 * Get the partial update on the progress made from
   1213 		 * uiomove, if an error occured.
   1214 		 */
   1215 		if (error != 0)
   1216 			n = local_resid - uio->uio_resid;
   1217 
   1218 		/*
   1219 		 * Only update dirtyoff/dirtyend if not a degenerate
   1220 		 * condition.
   1221 		 */
   1222 		if (n > 0) {
   1223 			if (bp->b_dirtyend > 0) {
   1224 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
   1225 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
   1226 			} else {
   1227 				bp->b_dirtyoff = on;
   1228 				bp->b_dirtyend = on + n;
   1229 			}
   1230 			vfs_bio_set_valid(bp, on, n);
   1231 		}
   1232 
   1233 		/*
   1234 		 * If IO_SYNC do bwrite().
   1235 		 *
   1236 		 * IO_INVAL appears to be unused.  The idea appears to be
   1237 		 * to turn off caching in this case.  Very odd.  XXX
   1238 		 */
   1239 		if ((ioflag & IO_SYNC)) {
   1240 			if (ioflag & IO_INVAL)
   1241 				bp->b_flags |= B_NOCACHE;
   1242 			error1 = bwrite(bp);
   1243 			if (error1 != 0) {
   1244 				if (error == 0)
   1245 					error = error1;
   1246 				break;
   1247 			}
   1248 		} else if ((n + on) == biosize) {
   1249 			bp->b_flags |= B_ASYNC;
   1250 			(void) ncl_writebp(bp, 0, NULL);
   1251 		} else {
   1252 			bdwrite(bp);
   1253 		}
   1254 
   1255 		if (error != 0)
   1256 			break;
   1257 	} while (uio->uio_resid > 0 && n > 0);
   1258 
   1259 	if (error != 0) {
   1260 		if (ioflag & IO_UNIT) {
   1261 			VATTR_NULL(&vattr);
   1262 			vattr.va_size = orig_size;
   1263 			/* IO_SYNC is handled implicitely */
   1264 			(void)VOP_SETATTR(vp, &vattr, cred);
   1265 			uio->uio_offset -= orig_resid - uio->uio_resid;
   1266 			uio->uio_resid = orig_resid;
   1267 		}
   1268 	}
   1269 
   1270 	return (error);
   1271 }
   1272 
   1273 /*
   1274  * Get an nfs cache block.
   1275  *
   1276  * Allocate a new one if the block isn't currently in the cache
   1277  * and return the block marked busy. If the calling process is
   1278  * interrupted by a signal for an interruptible mount point, return
   1279  * NULL.
   1280  *
   1281  * The caller must carefully deal with the possible B_INVAL state of
   1282  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
   1283  * indirectly), so synchronous reads can be issued without worrying about
   1284  * the B_INVAL state.  We have to be a little more careful when dealing
   1285  * with writes (see comments in nfs_write()) when extending a file past
   1286  * its EOF.
   1287  */
   1288 static struct buf *
   1289 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
   1290 {
   1291 	struct buf *bp;
   1292 	struct mount *mp;
   1293 	struct nfsmount *nmp;
   1294 
   1295 	mp = vp->v_mount;
   1296 	nmp = VFSTONFS(mp);
   1297 
   1298 	if (nmp->nm_flag & NFSMNT_INT) {
   1299 		sigset_t oldset;
   1300 
   1301 		newnfs_set_sigmask(td, &oldset);
   1302 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
   1303 		newnfs_restore_sigmask(td, &oldset);
   1304 		while (bp == NULL) {
   1305 			if (newnfs_sigintr(nmp, td))
   1306 				return (NULL);
   1307 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
   1308 		}
   1309 	} else {
   1310 		bp = getblk(vp, bn, size, 0, 0, 0);
   1311 	}
   1312 
   1313 	if (vp->v_type == VREG)
   1314 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
   1315 	return (bp);
   1316 }
   1317 
   1318 /*
   1319  * Flush and invalidate all dirty buffers. If another process is already
   1320  * doing the flush, just wait for completion.
   1321  */
   1322 int
   1323 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
   1324 {
   1325 	struct nfsnode *np = VTONFS(vp);
   1326 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1327 	int error = 0, slpflag, slptimeo;
   1328 	int old_lock = 0;
   1329 
   1330 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
   1331 
   1332 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
   1333 		intrflg = 0;
   1334 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
   1335 		intrflg = 1;
   1336 	if (intrflg) {
   1337 		slpflag = PCATCH;
   1338 		slptimeo = 2 * hz;
   1339 	} else {
   1340 		slpflag = 0;
   1341 		slptimeo = 0;
   1342 	}
   1343 
   1344 	old_lock = ncl_upgrade_vnlock(vp);
   1345 	if (vp->v_iflag & VI_DOOMED) {
   1346 		/*
   1347 		 * Since vgonel() uses the generic vinvalbuf() to flush
   1348 		 * dirty buffers and it does not call this function, it
   1349 		 * is safe to just return OK when VI_DOOMED is set.
   1350 		 */
   1351 		ncl_downgrade_vnlock(vp, old_lock);
   1352 		return (0);
   1353 	}
   1354 
   1355 	/*
   1356 	 * Now, flush as required.
   1357 	 */
   1358 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
   1359 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
   1360 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
   1361 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
   1362 		/*
   1363 		 * If the page clean was interrupted, fail the invalidation.
   1364 		 * Not doing so, we run the risk of losing dirty pages in the
   1365 		 * vinvalbuf() call below.
   1366 		 */
   1367 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1368 			goto out;
   1369 	}
   1370 
   1371 	error = vinvalbuf(vp, flags, slpflag, 0);
   1372 	while (error) {
   1373 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1374 			goto out;
   1375 		error = vinvalbuf(vp, flags, 0, slptimeo);
   1376 	}
   1377 	if (NFSHASPNFS(nmp)) {
   1378 		nfscl_layoutcommit(vp, td);
   1379 		/*
   1380 		 * Invalidate the attribute cache, since writes to a DS
   1381 		 * won't update the size attribute.
   1382 		 */
   1383 		mtx_lock(&np->n_mtx);
   1384 		np->n_attrstamp = 0;
   1385 	} else
   1386 		mtx_lock(&np->n_mtx);
   1387 	if (np->n_directio_asyncwr == 0)
   1388 		np->n_flag &= ~NMODIFIED;
   1389 	mtx_unlock(&np->n_mtx);
   1390 out:
   1391 	ncl_downgrade_vnlock(vp, old_lock);
   1392 	return error;
   1393 }
   1394 
   1395 /*
   1396  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
   1397  * This is mainly to avoid queueing async I/O requests when the nfsiods
   1398  * are all hung on a dead server.
   1399  *
   1400  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
   1401  * is eventually dequeued by the async daemon, ncl_doio() *will*.
   1402  */
   1403 int
   1404 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
   1405 {
   1406 	int iod;
   1407 	int gotiod;
   1408 	int slpflag = 0;
   1409 	int slptimeo = 0;
   1410 	int error, error2;
   1411 
   1412 	/*
   1413 	 * Commits are usually short and sweet so lets save some cpu and
   1414 	 * leave the async daemons for more important rpc's (such as reads
   1415 	 * and writes).
   1416 	 *
   1417 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
   1418 	 * in the directory in order to update attributes. This can deadlock
   1419 	 * with another thread that is waiting for async I/O to be done by
   1420 	 * an nfsiod thread while holding a lock on one of these vnodes.
   1421 	 * To avoid this deadlock, don't allow the async nfsiod threads to
   1422 	 * perform Readdirplus RPCs.
   1423 	 */
   1424 	mtx_lock(&ncl_iod_mutex);
   1425 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
   1426 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
   1427 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
   1428 		mtx_unlock(&ncl_iod_mutex);
   1429 		return(EIO);
   1430 	}
   1431 again:
   1432 	if (nmp->nm_flag & NFSMNT_INT)
   1433 		slpflag = PCATCH;
   1434 	gotiod = FALSE;
   1435 
   1436 	/*
   1437 	 * Find a free iod to process this request.
   1438 	 */
   1439 	for (iod = 0; iod < ncl_numasync; iod++)
   1440 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
   1441 			gotiod = TRUE;
   1442 			break;
   1443 		}
   1444 
   1445 	/*
   1446 	 * Try to create one if none are free.
   1447 	 */
   1448 	if (!gotiod)
   1449 		ncl_nfsiodnew();
   1450 	else {
   1451 		/*
   1452 		 * Found one, so wake it up and tell it which
   1453 		 * mount to process.
   1454 		 */
   1455 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
   1456 		    iod, nmp));
   1457 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
   1458 		ncl_iodmount[iod] = nmp;
   1459 		nmp->nm_bufqiods++;
   1460 		wakeup(&ncl_iodwant[iod]);
   1461 	}
   1462 
   1463 	/*
   1464 	 * If none are free, we may already have an iod working on this mount
   1465 	 * point.  If so, it will process our request.
   1466 	 */
   1467 	if (!gotiod) {
   1468 		if (nmp->nm_bufqiods > 0) {
   1469 			NFS_DPF(ASYNCIO,
   1470 				("ncl_asyncio: %d iods are already processing mount %p\n",
   1471 				 nmp->nm_bufqiods, nmp));
   1472 			gotiod = TRUE;
   1473 		}
   1474 	}
   1475 
   1476 	/*
   1477 	 * If we have an iod which can process the request, then queue
   1478 	 * the buffer.
   1479 	 */
   1480 	if (gotiod) {
   1481 		/*
   1482 		 * Ensure that the queue never grows too large.  We still want
   1483 		 * to asynchronize so we block rather then return EIO.
   1484 		 */
   1485 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
   1486 			NFS_DPF(ASYNCIO,
   1487 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
   1488 			nmp->nm_bufqwant = TRUE;
   1489 			error = newnfs_msleep(td, &nmp->nm_bufq,
   1490 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
   1491 			   slptimeo);
   1492 			if (error) {
   1493 				error2 = newnfs_sigintr(nmp, td);
   1494 				if (error2) {
   1495 					mtx_unlock(&ncl_iod_mutex);
   1496 					return (error2);
   1497 				}
   1498 				if (slpflag == PCATCH) {
   1499 					slpflag = 0;
   1500 					slptimeo = 2 * hz;
   1501 				}
   1502 			}
   1503 			/*
   1504 			 * We might have lost our iod while sleeping,
   1505 			 * so check and loop if nescessary.
   1506 			 */
   1507 			goto again;
   1508 		}
   1509 
   1510 		/* We might have lost our nfsiod */
   1511 		if (nmp->nm_bufqiods == 0) {
   1512 			NFS_DPF(ASYNCIO,
   1513 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
   1514 			goto again;
   1515 		}
   1516 
   1517 		if (bp->b_iocmd == BIO_READ) {
   1518 			if (bp->b_rcred == NOCRED && cred != NOCRED)
   1519 				bp->b_rcred = crhold(cred);
   1520 		} else {
   1521 			if (bp->b_wcred == NOCRED && cred != NOCRED)
   1522 				bp->b_wcred = crhold(cred);
   1523 		}
   1524 
   1525 		if (bp->b_flags & B_REMFREE)
   1526 			bremfreef(bp);
   1527 		BUF_KERNPROC(bp);
   1528 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
   1529 		nmp->nm_bufqlen++;
   1530 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1531 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
   1532 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
   1533 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
   1534 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
   1535 		}
   1536 		mtx_unlock(&ncl_iod_mutex);
   1537 		return (0);
   1538 	}
   1539 
   1540 	mtx_unlock(&ncl_iod_mutex);
   1541 
   1542 	/*
   1543 	 * All the iods are busy on other mounts, so return EIO to
   1544 	 * force the caller to process the i/o synchronously.
   1545 	 */
   1546 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
   1547 	return (EIO);
   1548 }
   1549 
   1550 void
   1551 ncl_doio_directwrite(struct buf *bp)
   1552 {
   1553 	int iomode, must_commit;
   1554 	struct uio *uiop = (struct uio *)bp->b_caller1;
   1555 	char *iov_base = uiop->uio_iov->iov_base;
   1556 
   1557 	iomode = NFSWRITE_FILESYNC;
   1558 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
   1559 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
   1560 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
   1561 	free(iov_base, M_NFSDIRECTIO);
   1562 	free(uiop->uio_iov, M_NFSDIRECTIO);
   1563 	free(uiop, M_NFSDIRECTIO);
   1564 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1565 		struct nfsnode *np = VTONFS(bp->b_vp);
   1566 		mtx_lock(&np->n_mtx);
   1567 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
   1568 			/*
   1569 			 * Invalidate the attribute cache, since writes to a DS
   1570 			 * won't update the size attribute.
   1571 			 */
   1572 			np->n_attrstamp = 0;
   1573 		}
   1574 		np->n_directio_asyncwr--;
   1575 		if (np->n_directio_asyncwr == 0) {
   1576 			np->n_flag &= ~NMODIFIED;
   1577 			if ((np->n_flag & NFSYNCWAIT)) {
   1578 				np->n_flag &= ~NFSYNCWAIT;
   1579 				wakeup((caddr_t)&np->n_directio_asyncwr);
   1580 			}
   1581 		}
   1582 		mtx_unlock(&np->n_mtx);
   1583 	}
   1584 	bp->b_vp = NULL;
   1585 	relpbuf(bp, &ncl_pbuf_freecnt);
   1586 }
   1587 
   1588 /*
   1589  * Do an I/O operation to/from a cache block. This may be called
   1590  * synchronously or from an nfsiod.
   1591  */
   1592 int
   1593 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
   1594     int called_from_strategy)
   1595 {
   1596 	struct uio *uiop;
   1597 	struct nfsnode *np;
   1598 	struct nfsmount *nmp;
   1599 	int error = 0, iomode, must_commit = 0;
   1600 	struct uio uio;
   1601 	struct iovec io;
   1602 	struct proc *p = td ? td->td_proc : NULL;
   1603 	uint8_t	iocmd;
   1604 
   1605 	np = VTONFS(vp);
   1606 	nmp = VFSTONFS(vp->v_mount);
   1607 	uiop = &uio;
   1608 	uiop->uio_iov = &io;
   1609 	uiop->uio_iovcnt = 1;
   1610 	uiop->uio_segflg = UIO_SYSSPACE;
   1611 	uiop->uio_td = td;
   1612 
   1613 	/*
   1614 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
   1615 	 * do this here so we do not have to do it in all the code that
   1616 	 * calls us.
   1617 	 */
   1618 	bp->b_flags &= ~B_INVAL;
   1619 	bp->b_ioflags &= ~BIO_ERROR;
   1620 
   1621 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
   1622 	iocmd = bp->b_iocmd;
   1623 	if (iocmd == BIO_READ) {
   1624 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
   1625 	    io.iov_base = bp->b_data;
   1626 	    uiop->uio_rw = UIO_READ;
   1627 
   1628 	    switch (vp->v_type) {
   1629 	    case VREG:
   1630 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
   1631 		NFSINCRGLOBAL(newnfsstats.read_bios);
   1632 		error = ncl_readrpc(vp, uiop, cr);
   1633 
   1634 		if (!error) {
   1635 		    if (uiop->uio_resid) {
   1636 			/*
   1637 			 * If we had a short read with no error, we must have
   1638 			 * hit a file hole.  We should zero-fill the remainder.
   1639 			 * This can also occur if the server hits the file EOF.
   1640 			 *
   1641 			 * Holes used to be able to occur due to pending
   1642 			 * writes, but that is not possible any longer.
   1643 			 */
   1644 			int nread = bp->b_bcount - uiop->uio_resid;
   1645 			ssize_t left = uiop->uio_resid;
   1646 
   1647 			if (left > 0)
   1648 				bzero((char *)bp->b_data + nread, left);
   1649 			uiop->uio_resid = 0;
   1650 		    }
   1651 		}
   1652 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
   1653 		if (p && (vp->v_vflag & VV_TEXT)) {
   1654 			mtx_lock(&np->n_mtx);
   1655 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
   1656 				mtx_unlock(&np->n_mtx);
   1657 				PROC_LOCK(p);
   1658 				killproc(p, "text file modification");
   1659 				PROC_UNLOCK(p);
   1660 			} else
   1661 				mtx_unlock(&np->n_mtx);
   1662 		}
   1663 		break;
   1664 	    case VLNK:
   1665 		uiop->uio_offset = (off_t)0;
   1666 		NFSINCRGLOBAL(newnfsstats.readlink_bios);
   1667 		error = ncl_readlinkrpc(vp, uiop, cr);
   1668 		break;
   1669 	    case VDIR:
   1670 		NFSINCRGLOBAL(newnfsstats.readdir_bios);
   1671 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
   1672 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
   1673 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
   1674 			if (error == NFSERR_NOTSUPP)
   1675 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
   1676 		}
   1677 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
   1678 			error = ncl_readdirrpc(vp, uiop, cr, td);
   1679 		/*
   1680 		 * end-of-directory sets B_INVAL but does not generate an
   1681 		 * error.
   1682 		 */
   1683 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
   1684 			bp->b_flags |= B_INVAL;
   1685 		break;
   1686 	    default:
   1687 		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
   1688 		break;
   1689 	    };
   1690 	    if (error) {
   1691 		bp->b_ioflags |= BIO_ERROR;
   1692 		bp->b_error = error;
   1693 	    }
   1694 	} else {
   1695 	    /*
   1696 	     * If we only need to commit, try to commit
   1697 	     */
   1698 	    if (bp->b_flags & B_NEEDCOMMIT) {
   1699 		    int retv;
   1700 		    off_t off;
   1701 
   1702 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
   1703 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
   1704 			bp->b_wcred, td);
   1705 		    if (retv == 0) {
   1706 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1707 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1708 			    bp->b_resid = 0;
   1709 			    bufdone(bp);
   1710 			    return (0);
   1711 		    }
   1712 		    if (retv == NFSERR_STALEWRITEVERF) {
   1713 			    ncl_clearcommit(vp->v_mount);
   1714 		    }
   1715 	    }
   1716 
   1717 	    /*
   1718 	     * Setup for actual write
   1719 	     */
   1720 	    mtx_lock(&np->n_mtx);
   1721 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
   1722 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
   1723 	    mtx_unlock(&np->n_mtx);
   1724 
   1725 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
   1726 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
   1727 		    - bp->b_dirtyoff;
   1728 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
   1729 		    + bp->b_dirtyoff;
   1730 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
   1731 		uiop->uio_rw = UIO_WRITE;
   1732 		NFSINCRGLOBAL(newnfsstats.write_bios);
   1733 
   1734 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
   1735 		    iomode = NFSWRITE_UNSTABLE;
   1736 		else
   1737 		    iomode = NFSWRITE_FILESYNC;
   1738 
   1739 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
   1740 		    called_from_strategy);
   1741 
   1742 		/*
   1743 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
   1744 		 * to cluster the buffers needing commit.  This will allow
   1745 		 * the system to submit a single commit rpc for the whole
   1746 		 * cluster.  We can do this even if the buffer is not 100%
   1747 		 * dirty (relative to the NFS blocksize), so we optimize the
   1748 		 * append-to-file-case.
   1749 		 *
   1750 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
   1751 		 * cleared because write clustering only works for commit
   1752 		 * rpc's, not for the data portion of the write).
   1753 		 */
   1754 
   1755 		if (!error && iomode == NFSWRITE_UNSTABLE) {
   1756 		    bp->b_flags |= B_NEEDCOMMIT;
   1757 		    if (bp->b_dirtyoff == 0
   1758 			&& bp->b_dirtyend == bp->b_bcount)
   1759 			bp->b_flags |= B_CLUSTEROK;
   1760 		} else {
   1761 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1762 		}
   1763 
   1764 		/*
   1765 		 * For an interrupted write, the buffer is still valid
   1766 		 * and the write hasn't been pushed to the server yet,
   1767 		 * so we can't set BIO_ERROR and report the interruption
   1768 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
   1769 		 * is not relevant, so the rpc attempt is essentially
   1770 		 * a noop.  For the case of a V3 write rpc not being
   1771 		 * committed to stable storage, the block is still
   1772 		 * dirty and requires either a commit rpc or another
   1773 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
   1774 		 * the block is reused. This is indicated by setting
   1775 		 * the B_DELWRI and B_NEEDCOMMIT flags.
   1776 		 *
   1777 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
   1778 		 * write error and is handled as above, except that
   1779 		 * B_EINTR isn't set. One cause of this is a stale stateid
   1780 		 * error for the RPC that indicates recovery is required,
   1781 		 * when called with called_from_strategy != 0.
   1782 		 *
   1783 		 * If the buffer is marked B_PAGING, it does not reside on
   1784 		 * the vp's paging queues so we cannot call bdirty().  The
   1785 		 * bp in this case is not an NFS cache block so we should
   1786 		 * be safe. XXX
   1787 		 *
   1788 		 * The logic below breaks up errors into recoverable and
   1789 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
   1790 		 * and keep the buffer around for potential write retries.
   1791 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
   1792 		 * and save the error in the nfsnode. This is less than ideal
   1793 		 * but necessary. Keeping such buffers around could potentially
   1794 		 * cause buffer exhaustion eventually (they can never be written
   1795 		 * out, so will get constantly be re-dirtied). It also causes
   1796 		 * all sorts of vfs panics. For non-recoverable write errors,
   1797 		 * also invalidate the attrcache, so we'll be forced to go over
   1798 		 * the wire for this object, returning an error to user on next
   1799 		 * call (most of the time).
   1800 		 */
   1801 		if (error == EINTR || error == EIO || error == ETIMEDOUT
   1802 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
   1803 			int s;
   1804 
   1805 			s = splbio();
   1806 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
   1807 			if ((bp->b_flags & B_PAGING) == 0) {
   1808 			    bdirty(bp);
   1809 			    bp->b_flags &= ~B_DONE;
   1810 			}
   1811 			if ((error == EINTR || error == ETIMEDOUT) &&
   1812 			    (bp->b_flags & B_ASYNC) == 0)
   1813 			    bp->b_flags |= B_EINTR;
   1814 			splx(s);
   1815 		} else {
   1816 		    if (error) {
   1817 			bp->b_ioflags |= BIO_ERROR;
   1818 			bp->b_flags |= B_INVAL;
   1819 			bp->b_error = np->n_error = error;
   1820 			mtx_lock(&np->n_mtx);
   1821 			np->n_flag |= NWRITEERR;
   1822 			np->n_attrstamp = 0;
   1823 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
   1824 			mtx_unlock(&np->n_mtx);
   1825 		    }
   1826 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1827 		}
   1828 	    } else {
   1829 		bp->b_resid = 0;
   1830 		bufdone(bp);
   1831 		return (0);
   1832 	    }
   1833 	}
   1834 	bp->b_resid = uiop->uio_resid;
   1835 	if (must_commit)
   1836 	    ncl_clearcommit(vp->v_mount);
   1837 	bufdone(bp);
   1838 	return (error);
   1839 }
   1840 
   1841 /*
   1842  * Used to aid in handling ftruncate() operations on the NFS client side.
   1843  * Truncation creates a number of special problems for NFS.  We have to
   1844  * throw away VM pages and buffer cache buffers that are beyond EOF, and
   1845  * we have to properly handle VM pages or (potentially dirty) buffers
   1846  * that straddle the truncation point.
   1847  */
   1848 
   1849 int
   1850 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
   1851 {
   1852 	struct nfsnode *np = VTONFS(vp);
   1853 	u_quad_t tsize;
   1854 	int biosize = vp->v_bufobj.bo_bsize;
   1855 	int error = 0;
   1856 
   1857 	mtx_lock(&np->n_mtx);
   1858 	tsize = np->n_size;
   1859 	np->n_size = nsize;
   1860 	mtx_unlock(&np->n_mtx);
   1861 
   1862 	if (nsize < tsize) {
   1863 		struct buf *bp;
   1864 		daddr_t lbn;
   1865 		int bufsize;
   1866 
   1867 		/*
   1868 		 * vtruncbuf() doesn't get the buffer overlapping the
   1869 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
   1870 		 * buffer that now needs to be truncated.
   1871 		 */
   1872 		error = vtruncbuf(vp, cred, nsize, biosize);
   1873 		lbn = nsize / biosize;
   1874 		bufsize = nsize - (lbn * biosize);
   1875 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
   1876 		if (!bp)
   1877 			return EINTR;
   1878 		if (bp->b_dirtyoff > bp->b_bcount)
   1879 			bp->b_dirtyoff = bp->b_bcount;
   1880 		if (bp->b_dirtyend > bp->b_bcount)
   1881 			bp->b_dirtyend = bp->b_bcount;
   1882 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
   1883 		brelse(bp);
   1884 	} else {
   1885 		vnode_pager_setsize(vp, nsize);
   1886 	}
   1887 	return(error);
   1888 }
   1889 
   1890