Home | History | Annotate | Line # | Download | only in client
nfs_clbio.c revision 1.3
      1 /*	$NetBSD: nfs_clbio.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $	*/
      2 /*-
      3  * Copyright (c) 1989, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * This code is derived from software contributed to Berkeley by
      7  * Rick Macklem at The University of Guelph.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */
     38 __RCSID("$NetBSD: nfs_clbio.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/bio.h>
     43 #include <sys/buf.h>
     44 #include <sys/kernel.h>
     45 #include <sys/mount.h>
     46 #include <sys/rwlock.h>
     47 #include <sys/vmmeter.h>
     48 #include <sys/vnode.h>
     49 
     50 #include <vm/vm.h>
     51 #include <vm/vm_param.h>
     52 #include <vm/vm_extern.h>
     53 #include <vm/vm_page.h>
     54 #include <vm/vm_object.h>
     55 #include <vm/vm_pager.h>
     56 #include <vm/vnode_pager.h>
     57 
     58 #include <fs/nfs/nfsport.h>
     59 #include <fs/nfsclient/nfsmount.h>
     60 #include <fs/nfsclient/nfs.h>
     61 #include <fs/nfsclient/nfsnode.h>
     62 #include <fs/nfsclient/nfs_kdtrace.h>
     63 
     64 extern int newnfs_directio_allow_mmap;
     65 extern struct nfsstatsv1 nfsstatsv1;
     66 extern struct mtx ncl_iod_mutex;
     67 extern int ncl_numasync;
     68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
     69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
     70 extern int newnfs_directio_enable;
     71 extern int nfs_keep_dirty_on_error;
     72 
     73 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
     74 
     75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
     76     struct thread *td);
     77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
     78     struct ucred *cred, int ioflag);
     79 
     80 /*
     81  * Vnode op for VM getpages.
     82  */
     83 int
     84 ncl_getpages(struct vop_getpages_args *ap)
     85 {
     86 	int i, error, nextoff, size, toff, count, npages;
     87 	struct uio uio;
     88 	struct iovec iov;
     89 	vm_offset_t kva;
     90 	struct buf *bp;
     91 	struct vnode *vp;
     92 	struct thread *td;
     93 	struct ucred *cred;
     94 	struct nfsmount *nmp;
     95 	vm_object_t object;
     96 	vm_page_t *pages;
     97 	struct nfsnode *np;
     98 
     99 	vp = ap->a_vp;
    100 	np = VTONFS(vp);
    101 	td = curthread;				/* XXX */
    102 	cred = curthread->td_ucred;		/* XXX */
    103 	nmp = VFSTONFS(vp->v_mount);
    104 	pages = ap->a_m;
    105 	npages = ap->a_count;
    106 
    107 	if ((object = vp->v_object) == NULL) {
    108 		printf("ncl_getpages: called with non-merged cache vnode\n");
    109 		return (VM_PAGER_ERROR);
    110 	}
    111 
    112 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
    113 		mtx_lock(&np->n_mtx);
    114 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    115 			mtx_unlock(&np->n_mtx);
    116 			printf("ncl_getpages: called on non-cacheable vnode\n");
    117 			return (VM_PAGER_ERROR);
    118 		} else
    119 			mtx_unlock(&np->n_mtx);
    120 	}
    121 
    122 	mtx_lock(&nmp->nm_mtx);
    123 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    124 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    125 		mtx_unlock(&nmp->nm_mtx);
    126 		/* We'll never get here for v4, because we always have fsinfo */
    127 		(void)ncl_fsinfo(nmp, vp, cred, td);
    128 	} else
    129 		mtx_unlock(&nmp->nm_mtx);
    130 
    131 	/*
    132 	 * If the requested page is partially valid, just return it and
    133 	 * allow the pager to zero-out the blanks.  Partially valid pages
    134 	 * can only occur at the file EOF.
    135 	 *
    136 	 * XXXGL: is that true for NFS, where short read can occur???
    137 	 */
    138 	VM_OBJECT_WLOCK(object);
    139 	if (pages[npages - 1]->valid != 0 && --npages == 0)
    140 		goto out;
    141 	VM_OBJECT_WUNLOCK(object);
    142 
    143 	/*
    144 	 * We use only the kva address for the buffer, but this is extremely
    145 	 * convenient and fast.
    146 	 */
    147 	bp = getpbuf(&ncl_pbuf_freecnt);
    148 
    149 	kva = (vm_offset_t) bp->b_data;
    150 	pmap_qenter(kva, pages, npages);
    151 	PCPU_INC(cnt.v_vnodein);
    152 	PCPU_ADD(cnt.v_vnodepgsin, npages);
    153 
    154 	count = npages << PAGE_SHIFT;
    155 	iov.iov_base = (caddr_t) kva;
    156 	iov.iov_len = count;
    157 	uio.uio_iov = &iov;
    158 	uio.uio_iovcnt = 1;
    159 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
    160 	uio.uio_resid = count;
    161 	uio.uio_segflg = UIO_SYSSPACE;
    162 	uio.uio_rw = UIO_READ;
    163 	uio.uio_td = td;
    164 
    165 	error = ncl_readrpc(vp, &uio, cred);
    166 	pmap_qremove(kva, npages);
    167 
    168 	relpbuf(bp, &ncl_pbuf_freecnt);
    169 
    170 	if (error && (uio.uio_resid == count)) {
    171 		printf("ncl_getpages: error %d\n", error);
    172 		return (VM_PAGER_ERROR);
    173 	}
    174 
    175 	/*
    176 	 * Calculate the number of bytes read and validate only that number
    177 	 * of bytes.  Note that due to pending writes, size may be 0.  This
    178 	 * does not mean that the remaining data is invalid!
    179 	 */
    180 
    181 	size = count - uio.uio_resid;
    182 	VM_OBJECT_WLOCK(object);
    183 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
    184 		vm_page_t m;
    185 		nextoff = toff + PAGE_SIZE;
    186 		m = pages[i];
    187 
    188 		if (nextoff <= size) {
    189 			/*
    190 			 * Read operation filled an entire page
    191 			 */
    192 			m->valid = VM_PAGE_BITS_ALL;
    193 			KASSERT(m->dirty == 0,
    194 			    ("nfs_getpages: page %p is dirty", m));
    195 		} else if (size > toff) {
    196 			/*
    197 			 * Read operation filled a partial page.
    198 			 */
    199 			m->valid = 0;
    200 			vm_page_set_valid_range(m, 0, size - toff);
    201 			KASSERT(m->dirty == 0,
    202 			    ("nfs_getpages: page %p is dirty", m));
    203 		} else {
    204 			/*
    205 			 * Read operation was short.  If no error
    206 			 * occurred we may have hit a zero-fill
    207 			 * section.  We leave valid set to 0, and page
    208 			 * is freed by vm_page_readahead_finish() if
    209 			 * its index is not equal to requested, or
    210 			 * page is zeroed and set valid by
    211 			 * vm_pager_get_pages() for requested page.
    212 			 */
    213 			;
    214 		}
    215 	}
    216 out:
    217 	VM_OBJECT_WUNLOCK(object);
    218 	if (ap->a_rbehind)
    219 		*ap->a_rbehind = 0;
    220 	if (ap->a_rahead)
    221 		*ap->a_rahead = 0;
    222 	return (VM_PAGER_OK);
    223 }
    224 
    225 /*
    226  * Vnode op for VM putpages.
    227  */
    228 int
    229 ncl_putpages(struct vop_putpages_args *ap)
    230 {
    231 	struct uio uio;
    232 	struct iovec iov;
    233 	vm_offset_t kva;
    234 	struct buf *bp;
    235 	int iomode, must_commit, i, error, npages, count;
    236 	off_t offset;
    237 	int *rtvals;
    238 	struct vnode *vp;
    239 	struct thread *td;
    240 	struct ucred *cred;
    241 	struct nfsmount *nmp;
    242 	struct nfsnode *np;
    243 	vm_page_t *pages;
    244 
    245 	vp = ap->a_vp;
    246 	np = VTONFS(vp);
    247 	td = curthread;				/* XXX */
    248 	/* Set the cred to n_writecred for the write rpcs. */
    249 	if (np->n_writecred != NULL)
    250 		cred = crhold(np->n_writecred);
    251 	else
    252 		cred = crhold(curthread->td_ucred);	/* XXX */
    253 	nmp = VFSTONFS(vp->v_mount);
    254 	pages = ap->a_m;
    255 	count = ap->a_count;
    256 	rtvals = ap->a_rtvals;
    257 	npages = btoc(count);
    258 	offset = IDX_TO_OFF(pages[0]->pindex);
    259 
    260 	mtx_lock(&nmp->nm_mtx);
    261 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    262 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    263 		mtx_unlock(&nmp->nm_mtx);
    264 		(void)ncl_fsinfo(nmp, vp, cred, td);
    265 	} else
    266 		mtx_unlock(&nmp->nm_mtx);
    267 
    268 	mtx_lock(&np->n_mtx);
    269 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
    270 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
    271 		mtx_unlock(&np->n_mtx);
    272 		printf("ncl_putpages: called on noncache-able vnode\n");
    273 		mtx_lock(&np->n_mtx);
    274 	}
    275 
    276 	for (i = 0; i < npages; i++)
    277 		rtvals[i] = VM_PAGER_ERROR;
    278 
    279 	/*
    280 	 * When putting pages, do not extend file past EOF.
    281 	 */
    282 	if (offset + count > np->n_size) {
    283 		count = np->n_size - offset;
    284 		if (count < 0)
    285 			count = 0;
    286 	}
    287 	mtx_unlock(&np->n_mtx);
    288 
    289 	/*
    290 	 * We use only the kva address for the buffer, but this is extremely
    291 	 * convenient and fast.
    292 	 */
    293 	bp = getpbuf(&ncl_pbuf_freecnt);
    294 
    295 	kva = (vm_offset_t) bp->b_data;
    296 	pmap_qenter(kva, pages, npages);
    297 	PCPU_INC(cnt.v_vnodeout);
    298 	PCPU_ADD(cnt.v_vnodepgsout, count);
    299 
    300 	iov.iov_base = (caddr_t) kva;
    301 	iov.iov_len = count;
    302 	uio.uio_iov = &iov;
    303 	uio.uio_iovcnt = 1;
    304 	uio.uio_offset = offset;
    305 	uio.uio_resid = count;
    306 	uio.uio_segflg = UIO_SYSSPACE;
    307 	uio.uio_rw = UIO_WRITE;
    308 	uio.uio_td = td;
    309 
    310 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
    311 	    iomode = NFSWRITE_UNSTABLE;
    312 	else
    313 	    iomode = NFSWRITE_FILESYNC;
    314 
    315 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
    316 	crfree(cred);
    317 
    318 	pmap_qremove(kva, npages);
    319 	relpbuf(bp, &ncl_pbuf_freecnt);
    320 
    321 	if (error == 0 || !nfs_keep_dirty_on_error) {
    322 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
    323 		if (must_commit)
    324 			ncl_clearcommit(vp->v_mount);
    325 	}
    326 	return rtvals[0];
    327 }
    328 
    329 /*
    330  * For nfs, cache consistency can only be maintained approximately.
    331  * Although RFC1094 does not specify the criteria, the following is
    332  * believed to be compatible with the reference port.
    333  * For nfs:
    334  * If the file's modify time on the server has changed since the
    335  * last read rpc or you have written to the file,
    336  * you may have lost data cache consistency with the
    337  * server, so flush all of the file's data out of the cache.
    338  * Then force a getattr rpc to ensure that you have up to date
    339  * attributes.
    340  * NB: This implies that cache data can be read when up to
    341  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
    342  * attributes this could be forced by setting n_attrstamp to 0 before
    343  * the VOP_GETATTR() call.
    344  */
    345 static inline int
    346 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
    347 {
    348 	int error = 0;
    349 	struct vattr vattr;
    350 	struct nfsnode *np = VTONFS(vp);
    351 	int old_lock;
    352 
    353 	/*
    354 	 * Grab the exclusive lock before checking whether the cache is
    355 	 * consistent.
    356 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
    357 	 * But for now, this suffices.
    358 	 */
    359 	old_lock = ncl_upgrade_vnlock(vp);
    360 	if (vp->v_iflag & VI_DOOMED) {
    361 		ncl_downgrade_vnlock(vp, old_lock);
    362 		return (EBADF);
    363 	}
    364 
    365 	mtx_lock(&np->n_mtx);
    366 	if (np->n_flag & NMODIFIED) {
    367 		mtx_unlock(&np->n_mtx);
    368 		if (vp->v_type != VREG) {
    369 			if (vp->v_type != VDIR)
    370 				panic("nfs: bioread, not dir");
    371 			ncl_invaldir(vp);
    372 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    373 			if (error)
    374 				goto out;
    375 		}
    376 		np->n_attrstamp = 0;
    377 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    378 		error = VOP_GETATTR(vp, &vattr, cred);
    379 		if (error)
    380 			goto out;
    381 		mtx_lock(&np->n_mtx);
    382 		np->n_mtime = vattr.va_mtime;
    383 		mtx_unlock(&np->n_mtx);
    384 	} else {
    385 		mtx_unlock(&np->n_mtx);
    386 		error = VOP_GETATTR(vp, &vattr, cred);
    387 		if (error)
    388 			return (error);
    389 		mtx_lock(&np->n_mtx);
    390 		if ((np->n_flag & NSIZECHANGED)
    391 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
    392 			mtx_unlock(&np->n_mtx);
    393 			if (vp->v_type == VDIR)
    394 				ncl_invaldir(vp);
    395 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    396 			if (error)
    397 				goto out;
    398 			mtx_lock(&np->n_mtx);
    399 			np->n_mtime = vattr.va_mtime;
    400 			np->n_flag &= ~NSIZECHANGED;
    401 		}
    402 		mtx_unlock(&np->n_mtx);
    403 	}
    404 out:
    405 	ncl_downgrade_vnlock(vp, old_lock);
    406 	return error;
    407 }
    408 
    409 /*
    410  * Vnode op for read using bio
    411  */
    412 int
    413 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
    414 {
    415 	struct nfsnode *np = VTONFS(vp);
    416 	int biosize, i;
    417 	struct buf *bp, *rabp;
    418 	struct thread *td;
    419 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    420 	daddr_t lbn, rabn;
    421 	int bcount;
    422 	int seqcount;
    423 	int nra, error = 0, n = 0, on = 0;
    424 	off_t tmp_off;
    425 
    426 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
    427 	if (uio->uio_resid == 0)
    428 		return (0);
    429 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
    430 		return (EINVAL);
    431 	td = uio->uio_td;
    432 
    433 	mtx_lock(&nmp->nm_mtx);
    434 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    435 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    436 		mtx_unlock(&nmp->nm_mtx);
    437 		(void)ncl_fsinfo(nmp, vp, cred, td);
    438 		mtx_lock(&nmp->nm_mtx);
    439 	}
    440 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
    441 		(void) newnfs_iosize(nmp);
    442 
    443 	tmp_off = uio->uio_offset + uio->uio_resid;
    444 	if (vp->v_type != VDIR &&
    445 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
    446 		mtx_unlock(&nmp->nm_mtx);
    447 		return (EFBIG);
    448 	}
    449 	mtx_unlock(&nmp->nm_mtx);
    450 
    451 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
    452 		/* No caching/ no readaheads. Just read data into the user buffer */
    453 		return ncl_readrpc(vp, uio, cred);
    454 
    455 	biosize = vp->v_bufobj.bo_bsize;
    456 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
    457 
    458 	error = nfs_bioread_check_cons(vp, td, cred);
    459 	if (error)
    460 		return error;
    461 
    462 	do {
    463 	    u_quad_t nsize;
    464 
    465 	    mtx_lock(&np->n_mtx);
    466 	    nsize = np->n_size;
    467 	    mtx_unlock(&np->n_mtx);
    468 
    469 	    switch (vp->v_type) {
    470 	    case VREG:
    471 		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
    472 		lbn = uio->uio_offset / biosize;
    473 		on = uio->uio_offset - (lbn * biosize);
    474 
    475 		/*
    476 		 * Start the read ahead(s), as required.
    477 		 */
    478 		if (nmp->nm_readahead > 0) {
    479 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
    480 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
    481 			rabn = lbn + 1 + nra;
    482 			if (incore(&vp->v_bufobj, rabn) == NULL) {
    483 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
    484 			    if (!rabp) {
    485 				error = newnfs_sigintr(nmp, td);
    486 				return (error ? error : EINTR);
    487 			    }
    488 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    489 				rabp->b_flags |= B_ASYNC;
    490 				rabp->b_iocmd = BIO_READ;
    491 				vfs_busy_pages(rabp, 0);
    492 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    493 				    rabp->b_flags |= B_INVAL;
    494 				    rabp->b_ioflags |= BIO_ERROR;
    495 				    vfs_unbusy_pages(rabp);
    496 				    brelse(rabp);
    497 				    break;
    498 				}
    499 			    } else {
    500 				brelse(rabp);
    501 			    }
    502 			}
    503 		    }
    504 		}
    505 
    506 		/* Note that bcount is *not* DEV_BSIZE aligned. */
    507 		bcount = biosize;
    508 		if ((off_t)lbn * biosize >= nsize) {
    509 			bcount = 0;
    510 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
    511 			bcount = nsize - (off_t)lbn * biosize;
    512 		}
    513 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
    514 
    515 		if (!bp) {
    516 			error = newnfs_sigintr(nmp, td);
    517 			return (error ? error : EINTR);
    518 		}
    519 
    520 		/*
    521 		 * If B_CACHE is not set, we must issue the read.  If this
    522 		 * fails, we return an error.
    523 		 */
    524 
    525 		if ((bp->b_flags & B_CACHE) == 0) {
    526 		    bp->b_iocmd = BIO_READ;
    527 		    vfs_busy_pages(bp, 0);
    528 		    error = ncl_doio(vp, bp, cred, td, 0);
    529 		    if (error) {
    530 			brelse(bp);
    531 			return (error);
    532 		    }
    533 		}
    534 
    535 		/*
    536 		 * on is the offset into the current bp.  Figure out how many
    537 		 * bytes we can copy out of the bp.  Note that bcount is
    538 		 * NOT DEV_BSIZE aligned.
    539 		 *
    540 		 * Then figure out how many bytes we can copy into the uio.
    541 		 */
    542 
    543 		n = 0;
    544 		if (on < bcount)
    545 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
    546 		break;
    547 	    case VLNK:
    548 		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
    549 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
    550 		if (!bp) {
    551 			error = newnfs_sigintr(nmp, td);
    552 			return (error ? error : EINTR);
    553 		}
    554 		if ((bp->b_flags & B_CACHE) == 0) {
    555 		    bp->b_iocmd = BIO_READ;
    556 		    vfs_busy_pages(bp, 0);
    557 		    error = ncl_doio(vp, bp, cred, td, 0);
    558 		    if (error) {
    559 			bp->b_ioflags |= BIO_ERROR;
    560 			brelse(bp);
    561 			return (error);
    562 		    }
    563 		}
    564 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
    565 		on = 0;
    566 		break;
    567 	    case VDIR:
    568 		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
    569 		if (np->n_direofoffset
    570 		    && uio->uio_offset >= np->n_direofoffset) {
    571 		    return (0);
    572 		}
    573 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
    574 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
    575 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
    576 		if (!bp) {
    577 		    error = newnfs_sigintr(nmp, td);
    578 		    return (error ? error : EINTR);
    579 		}
    580 		if ((bp->b_flags & B_CACHE) == 0) {
    581 		    bp->b_iocmd = BIO_READ;
    582 		    vfs_busy_pages(bp, 0);
    583 		    error = ncl_doio(vp, bp, cred, td, 0);
    584 		    if (error) {
    585 			    brelse(bp);
    586 		    }
    587 		    while (error == NFSERR_BAD_COOKIE) {
    588 			ncl_invaldir(vp);
    589 			error = ncl_vinvalbuf(vp, 0, td, 1);
    590 			/*
    591 			 * Yuck! The directory has been modified on the
    592 			 * server. The only way to get the block is by
    593 			 * reading from the beginning to get all the
    594 			 * offset cookies.
    595 			 *
    596 			 * Leave the last bp intact unless there is an error.
    597 			 * Loop back up to the while if the error is another
    598 			 * NFSERR_BAD_COOKIE (double yuch!).
    599 			 */
    600 			for (i = 0; i <= lbn && !error; i++) {
    601 			    if (np->n_direofoffset
    602 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
    603 				    return (0);
    604 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
    605 			    if (!bp) {
    606 				error = newnfs_sigintr(nmp, td);
    607 				return (error ? error : EINTR);
    608 			    }
    609 			    if ((bp->b_flags & B_CACHE) == 0) {
    610 				    bp->b_iocmd = BIO_READ;
    611 				    vfs_busy_pages(bp, 0);
    612 				    error = ncl_doio(vp, bp, cred, td, 0);
    613 				    /*
    614 				     * no error + B_INVAL == directory EOF,
    615 				     * use the block.
    616 				     */
    617 				    if (error == 0 && (bp->b_flags & B_INVAL))
    618 					    break;
    619 			    }
    620 			    /*
    621 			     * An error will throw away the block and the
    622 			     * for loop will break out.  If no error and this
    623 			     * is not the block we want, we throw away the
    624 			     * block and go for the next one via the for loop.
    625 			     */
    626 			    if (error || i < lbn)
    627 				    brelse(bp);
    628 			}
    629 		    }
    630 		    /*
    631 		     * The above while is repeated if we hit another cookie
    632 		     * error.  If we hit an error and it wasn't a cookie error,
    633 		     * we give up.
    634 		     */
    635 		    if (error)
    636 			    return (error);
    637 		}
    638 
    639 		/*
    640 		 * If not eof and read aheads are enabled, start one.
    641 		 * (You need the current block first, so that you have the
    642 		 *  directory offset cookie of the next block.)
    643 		 */
    644 		if (nmp->nm_readahead > 0 &&
    645 		    (bp->b_flags & B_INVAL) == 0 &&
    646 		    (np->n_direofoffset == 0 ||
    647 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
    648 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
    649 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
    650 			if (rabp) {
    651 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
    652 				rabp->b_flags |= B_ASYNC;
    653 				rabp->b_iocmd = BIO_READ;
    654 				vfs_busy_pages(rabp, 0);
    655 				if (ncl_asyncio(nmp, rabp, cred, td)) {
    656 				    rabp->b_flags |= B_INVAL;
    657 				    rabp->b_ioflags |= BIO_ERROR;
    658 				    vfs_unbusy_pages(rabp);
    659 				    brelse(rabp);
    660 				}
    661 			    } else {
    662 				brelse(rabp);
    663 			    }
    664 			}
    665 		}
    666 		/*
    667 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
    668 		 * chopped for the EOF condition, we cannot tell how large
    669 		 * NFS directories are going to be until we hit EOF.  So
    670 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
    671 		 * it just so happens that b_resid will effectively chop it
    672 		 * to EOF.  *BUT* this information is lost if the buffer goes
    673 		 * away and is reconstituted into a B_CACHE state ( due to
    674 		 * being VMIO ) later.  So we keep track of the directory eof
    675 		 * in np->n_direofoffset and chop it off as an extra step
    676 		 * right here.
    677 		 */
    678 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
    679 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
    680 			n = np->n_direofoffset - uio->uio_offset;
    681 		break;
    682 	    default:
    683 		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
    684 		bp = NULL;
    685 		break;
    686 	    }
    687 
    688 	    if (n > 0) {
    689 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
    690 	    }
    691 	    if (vp->v_type == VLNK)
    692 		n = 0;
    693 	    if (bp != NULL)
    694 		brelse(bp);
    695 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
    696 	return (error);
    697 }
    698 
    699 /*
    700  * The NFS write path cannot handle iovecs with len > 1. So we need to
    701  * break up iovecs accordingly (restricting them to wsize).
    702  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
    703  * For the ASYNC case, 2 copies are needed. The first a copy from the
    704  * user buffer to a staging buffer and then a second copy from the staging
    705  * buffer to mbufs. This can be optimized by copying from the user buffer
    706  * directly into mbufs and passing the chain down, but that requires a
    707  * fair amount of re-working of the relevant codepaths (and can be done
    708  * later).
    709  */
    710 static int
    711 nfs_directio_write(vp, uiop, cred, ioflag)
    712 	struct vnode *vp;
    713 	struct uio *uiop;
    714 	struct ucred *cred;
    715 	int ioflag;
    716 {
    717 	int error;
    718 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    719 	struct thread *td = uiop->uio_td;
    720 	int size;
    721 	int wsize;
    722 
    723 	mtx_lock(&nmp->nm_mtx);
    724 	wsize = nmp->nm_wsize;
    725 	mtx_unlock(&nmp->nm_mtx);
    726 	if (ioflag & IO_SYNC) {
    727 		int iomode, must_commit;
    728 		struct uio uio;
    729 		struct iovec iov;
    730 do_sync:
    731 		while (uiop->uio_resid > 0) {
    732 			size = MIN(uiop->uio_resid, wsize);
    733 			size = MIN(uiop->uio_iov->iov_len, size);
    734 			iov.iov_base = uiop->uio_iov->iov_base;
    735 			iov.iov_len = size;
    736 			uio.uio_iov = &iov;
    737 			uio.uio_iovcnt = 1;
    738 			uio.uio_offset = uiop->uio_offset;
    739 			uio.uio_resid = size;
    740 			uio.uio_segflg = UIO_USERSPACE;
    741 			uio.uio_rw = UIO_WRITE;
    742 			uio.uio_td = td;
    743 			iomode = NFSWRITE_FILESYNC;
    744 			error = ncl_writerpc(vp, &uio, cred, &iomode,
    745 			    &must_commit, 0);
    746 			KASSERT((must_commit == 0),
    747 				("ncl_directio_write: Did not commit write"));
    748 			if (error)
    749 				return (error);
    750 			uiop->uio_offset += size;
    751 			uiop->uio_resid -= size;
    752 			if (uiop->uio_iov->iov_len <= size) {
    753 				uiop->uio_iovcnt--;
    754 				uiop->uio_iov++;
    755 			} else {
    756 				uiop->uio_iov->iov_base =
    757 					(char *)uiop->uio_iov->iov_base + size;
    758 				uiop->uio_iov->iov_len -= size;
    759 			}
    760 		}
    761 	} else {
    762 		struct uio *t_uio;
    763 		struct iovec *t_iov;
    764 		struct buf *bp;
    765 
    766 		/*
    767 		 * Break up the write into blocksize chunks and hand these
    768 		 * over to nfsiod's for write back.
    769 		 * Unfortunately, this incurs a copy of the data. Since
    770 		 * the user could modify the buffer before the write is
    771 		 * initiated.
    772 		 *
    773 		 * The obvious optimization here is that one of the 2 copies
    774 		 * in the async write path can be eliminated by copying the
    775 		 * data here directly into mbufs and passing the mbuf chain
    776 		 * down. But that will require a fair amount of re-working
    777 		 * of the code and can be done if there's enough interest
    778 		 * in NFS directio access.
    779 		 */
    780 		while (uiop->uio_resid > 0) {
    781 			size = MIN(uiop->uio_resid, wsize);
    782 			size = MIN(uiop->uio_iov->iov_len, size);
    783 			bp = getpbuf(&ncl_pbuf_freecnt);
    784 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
    785 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
    786 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
    787 			t_iov->iov_len = size;
    788 			t_uio->uio_iov = t_iov;
    789 			t_uio->uio_iovcnt = 1;
    790 			t_uio->uio_offset = uiop->uio_offset;
    791 			t_uio->uio_resid = size;
    792 			t_uio->uio_segflg = UIO_SYSSPACE;
    793 			t_uio->uio_rw = UIO_WRITE;
    794 			t_uio->uio_td = td;
    795 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
    796 			    uiop->uio_segflg == UIO_SYSSPACE,
    797 			    ("nfs_directio_write: Bad uio_segflg"));
    798 			if (uiop->uio_segflg == UIO_USERSPACE) {
    799 				error = copyin(uiop->uio_iov->iov_base,
    800 				    t_iov->iov_base, size);
    801 				if (error != 0)
    802 					goto err_free;
    803 			} else
    804 				/*
    805 				 * UIO_SYSSPACE may never happen, but handle
    806 				 * it just in case it does.
    807 				 */
    808 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
    809 				    size);
    810 			bp->b_flags |= B_DIRECT;
    811 			bp->b_iocmd = BIO_WRITE;
    812 			if (cred != NOCRED) {
    813 				crhold(cred);
    814 				bp->b_wcred = cred;
    815 			} else
    816 				bp->b_wcred = NOCRED;
    817 			bp->b_caller1 = (void *)t_uio;
    818 			bp->b_vp = vp;
    819 			error = ncl_asyncio(nmp, bp, NOCRED, td);
    820 err_free:
    821 			if (error) {
    822 				free(t_iov->iov_base, M_NFSDIRECTIO);
    823 				free(t_iov, M_NFSDIRECTIO);
    824 				free(t_uio, M_NFSDIRECTIO);
    825 				bp->b_vp = NULL;
    826 				relpbuf(bp, &ncl_pbuf_freecnt);
    827 				if (error == EINTR)
    828 					return (error);
    829 				goto do_sync;
    830 			}
    831 			uiop->uio_offset += size;
    832 			uiop->uio_resid -= size;
    833 			if (uiop->uio_iov->iov_len <= size) {
    834 				uiop->uio_iovcnt--;
    835 				uiop->uio_iov++;
    836 			} else {
    837 				uiop->uio_iov->iov_base =
    838 					(char *)uiop->uio_iov->iov_base + size;
    839 				uiop->uio_iov->iov_len -= size;
    840 			}
    841 		}
    842 	}
    843 	return (0);
    844 }
    845 
    846 /*
    847  * Vnode op for write using bio
    848  */
    849 int
    850 ncl_write(struct vop_write_args *ap)
    851 {
    852 	int biosize;
    853 	struct uio *uio = ap->a_uio;
    854 	struct thread *td = uio->uio_td;
    855 	struct vnode *vp = ap->a_vp;
    856 	struct nfsnode *np = VTONFS(vp);
    857 	struct ucred *cred = ap->a_cred;
    858 	int ioflag = ap->a_ioflag;
    859 	struct buf *bp;
    860 	struct vattr vattr;
    861 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
    862 	daddr_t lbn;
    863 	int bcount, noncontig_write, obcount;
    864 	int bp_cached, n, on, error = 0, error1, wouldcommit;
    865 	size_t orig_resid, local_resid;
    866 	off_t orig_size, tmp_off;
    867 
    868 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
    869 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
    870 	    ("ncl_write proc"));
    871 	if (vp->v_type != VREG)
    872 		return (EIO);
    873 	mtx_lock(&np->n_mtx);
    874 	if (np->n_flag & NWRITEERR) {
    875 		np->n_flag &= ~NWRITEERR;
    876 		mtx_unlock(&np->n_mtx);
    877 		return (np->n_error);
    878 	} else
    879 		mtx_unlock(&np->n_mtx);
    880 	mtx_lock(&nmp->nm_mtx);
    881 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
    882 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
    883 		mtx_unlock(&nmp->nm_mtx);
    884 		(void)ncl_fsinfo(nmp, vp, cred, td);
    885 		mtx_lock(&nmp->nm_mtx);
    886 	}
    887 	if (nmp->nm_wsize == 0)
    888 		(void) newnfs_iosize(nmp);
    889 	mtx_unlock(&nmp->nm_mtx);
    890 
    891 	/*
    892 	 * Synchronously flush pending buffers if we are in synchronous
    893 	 * mode or if we are appending.
    894 	 */
    895 	if (ioflag & (IO_APPEND | IO_SYNC)) {
    896 		mtx_lock(&np->n_mtx);
    897 		if (np->n_flag & NMODIFIED) {
    898 			mtx_unlock(&np->n_mtx);
    899 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
    900 			/*
    901 			 * Require non-blocking, synchronous writes to
    902 			 * dirty files to inform the program it needs
    903 			 * to fsync(2) explicitly.
    904 			 */
    905 			if (ioflag & IO_NDELAY)
    906 				return (EAGAIN);
    907 #endif
    908 			np->n_attrstamp = 0;
    909 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    910 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    911 			if (error)
    912 				return (error);
    913 		} else
    914 			mtx_unlock(&np->n_mtx);
    915 	}
    916 
    917 	orig_resid = uio->uio_resid;
    918 	mtx_lock(&np->n_mtx);
    919 	orig_size = np->n_size;
    920 	mtx_unlock(&np->n_mtx);
    921 
    922 	/*
    923 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
    924 	 * get the append lock.
    925 	 */
    926 	if (ioflag & IO_APPEND) {
    927 		np->n_attrstamp = 0;
    928 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    929 		error = VOP_GETATTR(vp, &vattr, cred);
    930 		if (error)
    931 			return (error);
    932 		mtx_lock(&np->n_mtx);
    933 		uio->uio_offset = np->n_size;
    934 		mtx_unlock(&np->n_mtx);
    935 	}
    936 
    937 	if (uio->uio_offset < 0)
    938 		return (EINVAL);
    939 	tmp_off = uio->uio_offset + uio->uio_resid;
    940 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
    941 		return (EFBIG);
    942 	if (uio->uio_resid == 0)
    943 		return (0);
    944 
    945 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
    946 		return nfs_directio_write(vp, uio, cred, ioflag);
    947 
    948 	/*
    949 	 * Maybe this should be above the vnode op call, but so long as
    950 	 * file servers have no limits, i don't think it matters
    951 	 */
    952 	if (vn_rlimit_fsize(vp, uio, td))
    953 		return (EFBIG);
    954 
    955 	biosize = vp->v_bufobj.bo_bsize;
    956 	/*
    957 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
    958 	 * would exceed the local maximum per-file write commit size when
    959 	 * combined with those, we must decide whether to flush,
    960 	 * go synchronous, or return error.  We don't bother checking
    961 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
    962 	 * no point optimizing for something that really won't ever happen.
    963 	 */
    964 	wouldcommit = 0;
    965 	if (!(ioflag & IO_SYNC)) {
    966 		int nflag;
    967 
    968 		mtx_lock(&np->n_mtx);
    969 		nflag = np->n_flag;
    970 		mtx_unlock(&np->n_mtx);
    971 		if (nflag & NMODIFIED) {
    972 			BO_LOCK(&vp->v_bufobj);
    973 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
    974 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
    975 				    b_bobufs) {
    976 					if (bp->b_flags & B_NEEDCOMMIT)
    977 						wouldcommit += bp->b_bcount;
    978 				}
    979 			}
    980 			BO_UNLOCK(&vp->v_bufobj);
    981 		}
    982 	}
    983 
    984 	do {
    985 		if (!(ioflag & IO_SYNC)) {
    986 			wouldcommit += biosize;
    987 			if (wouldcommit > nmp->nm_wcommitsize) {
    988 				np->n_attrstamp = 0;
    989 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
    990 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
    991 				if (error)
    992 					return (error);
    993 				wouldcommit = biosize;
    994 			}
    995 		}
    996 
    997 		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
    998 		lbn = uio->uio_offset / biosize;
    999 		on = uio->uio_offset - (lbn * biosize);
   1000 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
   1001 again:
   1002 		/*
   1003 		 * Handle direct append and file extension cases, calculate
   1004 		 * unaligned buffer size.
   1005 		 */
   1006 		mtx_lock(&np->n_mtx);
   1007 		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
   1008 		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
   1009 			noncontig_write = 1;
   1010 		else
   1011 			noncontig_write = 0;
   1012 		if ((uio->uio_offset == np->n_size ||
   1013 		    (noncontig_write != 0 &&
   1014 		    lbn == (np->n_size / biosize) &&
   1015 		    uio->uio_offset + n > np->n_size)) && n) {
   1016 			mtx_unlock(&np->n_mtx);
   1017 			/*
   1018 			 * Get the buffer (in its pre-append state to maintain
   1019 			 * B_CACHE if it was previously set).  Resize the
   1020 			 * nfsnode after we have locked the buffer to prevent
   1021 			 * readers from reading garbage.
   1022 			 */
   1023 			obcount = np->n_size - (lbn * biosize);
   1024 			bp = nfs_getcacheblk(vp, lbn, obcount, td);
   1025 
   1026 			if (bp != NULL) {
   1027 				long save;
   1028 
   1029 				mtx_lock(&np->n_mtx);
   1030 				np->n_size = uio->uio_offset + n;
   1031 				np->n_flag |= NMODIFIED;
   1032 				vnode_pager_setsize(vp, np->n_size);
   1033 				mtx_unlock(&np->n_mtx);
   1034 
   1035 				save = bp->b_flags & B_CACHE;
   1036 				bcount = on + n;
   1037 				allocbuf(bp, bcount);
   1038 				bp->b_flags |= save;
   1039 				if (noncontig_write != 0 && on > obcount)
   1040 					vfs_bio_bzero_buf(bp, obcount, on -
   1041 					    obcount);
   1042 			}
   1043 		} else {
   1044 			/*
   1045 			 * Obtain the locked cache block first, and then
   1046 			 * adjust the file's size as appropriate.
   1047 			 */
   1048 			bcount = on + n;
   1049 			if ((off_t)lbn * biosize + bcount < np->n_size) {
   1050 				if ((off_t)(lbn + 1) * biosize < np->n_size)
   1051 					bcount = biosize;
   1052 				else
   1053 					bcount = np->n_size - (off_t)lbn * biosize;
   1054 			}
   1055 			mtx_unlock(&np->n_mtx);
   1056 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
   1057 			mtx_lock(&np->n_mtx);
   1058 			if (uio->uio_offset + n > np->n_size) {
   1059 				np->n_size = uio->uio_offset + n;
   1060 				np->n_flag |= NMODIFIED;
   1061 				vnode_pager_setsize(vp, np->n_size);
   1062 			}
   1063 			mtx_unlock(&np->n_mtx);
   1064 		}
   1065 
   1066 		if (!bp) {
   1067 			error = newnfs_sigintr(nmp, td);
   1068 			if (!error)
   1069 				error = EINTR;
   1070 			break;
   1071 		}
   1072 
   1073 		/*
   1074 		 * Issue a READ if B_CACHE is not set.  In special-append
   1075 		 * mode, B_CACHE is based on the buffer prior to the write
   1076 		 * op and is typically set, avoiding the read.  If a read
   1077 		 * is required in special append mode, the server will
   1078 		 * probably send us a short-read since we extended the file
   1079 		 * on our end, resulting in b_resid == 0 and, thusly,
   1080 		 * B_CACHE getting set.
   1081 		 *
   1082 		 * We can also avoid issuing the read if the write covers
   1083 		 * the entire buffer.  We have to make sure the buffer state
   1084 		 * is reasonable in this case since we will not be initiating
   1085 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
   1086 		 * more information.
   1087 		 *
   1088 		 * B_CACHE may also be set due to the buffer being cached
   1089 		 * normally.
   1090 		 */
   1091 
   1092 		bp_cached = 1;
   1093 		if (on == 0 && n == bcount) {
   1094 			if ((bp->b_flags & B_CACHE) == 0)
   1095 				bp_cached = 0;
   1096 			bp->b_flags |= B_CACHE;
   1097 			bp->b_flags &= ~B_INVAL;
   1098 			bp->b_ioflags &= ~BIO_ERROR;
   1099 		}
   1100 
   1101 		if ((bp->b_flags & B_CACHE) == 0) {
   1102 			bp->b_iocmd = BIO_READ;
   1103 			vfs_busy_pages(bp, 0);
   1104 			error = ncl_doio(vp, bp, cred, td, 0);
   1105 			if (error) {
   1106 				brelse(bp);
   1107 				break;
   1108 			}
   1109 		}
   1110 		if (bp->b_wcred == NOCRED)
   1111 			bp->b_wcred = crhold(cred);
   1112 		mtx_lock(&np->n_mtx);
   1113 		np->n_flag |= NMODIFIED;
   1114 		mtx_unlock(&np->n_mtx);
   1115 
   1116 		/*
   1117 		 * If dirtyend exceeds file size, chop it down.  This should
   1118 		 * not normally occur but there is an append race where it
   1119 		 * might occur XXX, so we log it.
   1120 		 *
   1121 		 * If the chopping creates a reverse-indexed or degenerate
   1122 		 * situation with dirtyoff/end, we 0 both of them.
   1123 		 */
   1124 
   1125 		if (bp->b_dirtyend > bcount) {
   1126 			printf("NFS append race @%lx:%d\n",
   1127 			    (long)bp->b_blkno * DEV_BSIZE,
   1128 			    bp->b_dirtyend - bcount);
   1129 			bp->b_dirtyend = bcount;
   1130 		}
   1131 
   1132 		if (bp->b_dirtyoff >= bp->b_dirtyend)
   1133 			bp->b_dirtyoff = bp->b_dirtyend = 0;
   1134 
   1135 		/*
   1136 		 * If the new write will leave a contiguous dirty
   1137 		 * area, just update the b_dirtyoff and b_dirtyend,
   1138 		 * otherwise force a write rpc of the old dirty area.
   1139 		 *
   1140 		 * If there has been a file lock applied to this file
   1141 		 * or vfs.nfs.old_noncontig_writing is set, do the following:
   1142 		 * While it is possible to merge discontiguous writes due to
   1143 		 * our having a B_CACHE buffer ( and thus valid read data
   1144 		 * for the hole), we don't because it could lead to
   1145 		 * significant cache coherency problems with multiple clients,
   1146 		 * especially if locking is implemented later on.
   1147 		 *
   1148 		 * If vfs.nfs.old_noncontig_writing is not set and there has
   1149 		 * not been file locking done on this file:
   1150 		 * Relax coherency a bit for the sake of performance and
   1151 		 * expand the current dirty region to contain the new
   1152 		 * write even if it means we mark some non-dirty data as
   1153 		 * dirty.
   1154 		 */
   1155 
   1156 		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
   1157 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
   1158 			if (bwrite(bp) == EINTR) {
   1159 				error = EINTR;
   1160 				break;
   1161 			}
   1162 			goto again;
   1163 		}
   1164 
   1165 		local_resid = uio->uio_resid;
   1166 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
   1167 
   1168 		if (error != 0 && !bp_cached) {
   1169 			/*
   1170 			 * This block has no other content than what
   1171 			 * possibly was written by the faulty uiomove.
   1172 			 * Release it, forgetting the data pages, to
   1173 			 * prevent the leak of uninitialized data to
   1174 			 * usermode.
   1175 			 */
   1176 			bp->b_ioflags |= BIO_ERROR;
   1177 			brelse(bp);
   1178 			uio->uio_offset -= local_resid - uio->uio_resid;
   1179 			uio->uio_resid = local_resid;
   1180 			break;
   1181 		}
   1182 
   1183 		/*
   1184 		 * Since this block is being modified, it must be written
   1185 		 * again and not just committed.  Since write clustering does
   1186 		 * not work for the stage 1 data write, only the stage 2
   1187 		 * commit rpc, we have to clear B_CLUSTEROK as well.
   1188 		 */
   1189 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1190 
   1191 		/*
   1192 		 * Get the partial update on the progress made from
   1193 		 * uiomove, if an error occurred.
   1194 		 */
   1195 		if (error != 0)
   1196 			n = local_resid - uio->uio_resid;
   1197 
   1198 		/*
   1199 		 * Only update dirtyoff/dirtyend if not a degenerate
   1200 		 * condition.
   1201 		 */
   1202 		if (n > 0) {
   1203 			if (bp->b_dirtyend > 0) {
   1204 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
   1205 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
   1206 			} else {
   1207 				bp->b_dirtyoff = on;
   1208 				bp->b_dirtyend = on + n;
   1209 			}
   1210 			vfs_bio_set_valid(bp, on, n);
   1211 		}
   1212 
   1213 		/*
   1214 		 * If IO_SYNC do bwrite().
   1215 		 *
   1216 		 * IO_INVAL appears to be unused.  The idea appears to be
   1217 		 * to turn off caching in this case.  Very odd.  XXX
   1218 		 */
   1219 		if ((ioflag & IO_SYNC)) {
   1220 			if (ioflag & IO_INVAL)
   1221 				bp->b_flags |= B_NOCACHE;
   1222 			error1 = bwrite(bp);
   1223 			if (error1 != 0) {
   1224 				if (error == 0)
   1225 					error = error1;
   1226 				break;
   1227 			}
   1228 		} else if ((n + on) == biosize) {
   1229 			bp->b_flags |= B_ASYNC;
   1230 			(void) ncl_writebp(bp, 0, NULL);
   1231 		} else {
   1232 			bdwrite(bp);
   1233 		}
   1234 
   1235 		if (error != 0)
   1236 			break;
   1237 	} while (uio->uio_resid > 0 && n > 0);
   1238 
   1239 	if (error != 0) {
   1240 		if (ioflag & IO_UNIT) {
   1241 			VATTR_NULL(&vattr);
   1242 			vattr.va_size = orig_size;
   1243 			/* IO_SYNC is handled implicitely */
   1244 			(void)VOP_SETATTR(vp, &vattr, cred);
   1245 			uio->uio_offset -= orig_resid - uio->uio_resid;
   1246 			uio->uio_resid = orig_resid;
   1247 		}
   1248 	}
   1249 
   1250 	return (error);
   1251 }
   1252 
   1253 /*
   1254  * Get an nfs cache block.
   1255  *
   1256  * Allocate a new one if the block isn't currently in the cache
   1257  * and return the block marked busy. If the calling process is
   1258  * interrupted by a signal for an interruptible mount point, return
   1259  * NULL.
   1260  *
   1261  * The caller must carefully deal with the possible B_INVAL state of
   1262  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
   1263  * indirectly), so synchronous reads can be issued without worrying about
   1264  * the B_INVAL state.  We have to be a little more careful when dealing
   1265  * with writes (see comments in nfs_write()) when extending a file past
   1266  * its EOF.
   1267  */
   1268 static struct buf *
   1269 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
   1270 {
   1271 	struct buf *bp;
   1272 	struct mount *mp;
   1273 	struct nfsmount *nmp;
   1274 
   1275 	mp = vp->v_mount;
   1276 	nmp = VFSTONFS(mp);
   1277 
   1278 	if (nmp->nm_flag & NFSMNT_INT) {
   1279 		sigset_t oldset;
   1280 
   1281 		newnfs_set_sigmask(td, &oldset);
   1282 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
   1283 		newnfs_restore_sigmask(td, &oldset);
   1284 		while (bp == NULL) {
   1285 			if (newnfs_sigintr(nmp, td))
   1286 				return (NULL);
   1287 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
   1288 		}
   1289 	} else {
   1290 		bp = getblk(vp, bn, size, 0, 0, 0);
   1291 	}
   1292 
   1293 	if (vp->v_type == VREG)
   1294 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
   1295 	return (bp);
   1296 }
   1297 
   1298 /*
   1299  * Flush and invalidate all dirty buffers. If another process is already
   1300  * doing the flush, just wait for completion.
   1301  */
   1302 int
   1303 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
   1304 {
   1305 	struct nfsnode *np = VTONFS(vp);
   1306 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1307 	int error = 0, slpflag, slptimeo;
   1308 	int old_lock = 0;
   1309 
   1310 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
   1311 
   1312 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
   1313 		intrflg = 0;
   1314 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
   1315 		intrflg = 1;
   1316 	if (intrflg) {
   1317 		slpflag = PCATCH;
   1318 		slptimeo = 2 * hz;
   1319 	} else {
   1320 		slpflag = 0;
   1321 		slptimeo = 0;
   1322 	}
   1323 
   1324 	old_lock = ncl_upgrade_vnlock(vp);
   1325 	if (vp->v_iflag & VI_DOOMED) {
   1326 		/*
   1327 		 * Since vgonel() uses the generic vinvalbuf() to flush
   1328 		 * dirty buffers and it does not call this function, it
   1329 		 * is safe to just return OK when VI_DOOMED is set.
   1330 		 */
   1331 		ncl_downgrade_vnlock(vp, old_lock);
   1332 		return (0);
   1333 	}
   1334 
   1335 	/*
   1336 	 * Now, flush as required.
   1337 	 */
   1338 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
   1339 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
   1340 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
   1341 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
   1342 		/*
   1343 		 * If the page clean was interrupted, fail the invalidation.
   1344 		 * Not doing so, we run the risk of losing dirty pages in the
   1345 		 * vinvalbuf() call below.
   1346 		 */
   1347 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1348 			goto out;
   1349 	}
   1350 
   1351 	error = vinvalbuf(vp, flags, slpflag, 0);
   1352 	while (error) {
   1353 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
   1354 			goto out;
   1355 		error = vinvalbuf(vp, flags, 0, slptimeo);
   1356 	}
   1357 	if (NFSHASPNFS(nmp)) {
   1358 		nfscl_layoutcommit(vp, td);
   1359 		/*
   1360 		 * Invalidate the attribute cache, since writes to a DS
   1361 		 * won't update the size attribute.
   1362 		 */
   1363 		mtx_lock(&np->n_mtx);
   1364 		np->n_attrstamp = 0;
   1365 	} else
   1366 		mtx_lock(&np->n_mtx);
   1367 	if (np->n_directio_asyncwr == 0)
   1368 		np->n_flag &= ~NMODIFIED;
   1369 	mtx_unlock(&np->n_mtx);
   1370 out:
   1371 	ncl_downgrade_vnlock(vp, old_lock);
   1372 	return error;
   1373 }
   1374 
   1375 /*
   1376  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
   1377  * This is mainly to avoid queueing async I/O requests when the nfsiods
   1378  * are all hung on a dead server.
   1379  *
   1380  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
   1381  * is eventually dequeued by the async daemon, ncl_doio() *will*.
   1382  */
   1383 int
   1384 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
   1385 {
   1386 	int iod;
   1387 	int gotiod;
   1388 	int slpflag = 0;
   1389 	int slptimeo = 0;
   1390 	int error, error2;
   1391 
   1392 	/*
   1393 	 * Commits are usually short and sweet so lets save some cpu and
   1394 	 * leave the async daemons for more important rpc's (such as reads
   1395 	 * and writes).
   1396 	 *
   1397 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
   1398 	 * in the directory in order to update attributes. This can deadlock
   1399 	 * with another thread that is waiting for async I/O to be done by
   1400 	 * an nfsiod thread while holding a lock on one of these vnodes.
   1401 	 * To avoid this deadlock, don't allow the async nfsiod threads to
   1402 	 * perform Readdirplus RPCs.
   1403 	 */
   1404 	mtx_lock(&ncl_iod_mutex);
   1405 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
   1406 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
   1407 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
   1408 		mtx_unlock(&ncl_iod_mutex);
   1409 		return(EIO);
   1410 	}
   1411 again:
   1412 	if (nmp->nm_flag & NFSMNT_INT)
   1413 		slpflag = PCATCH;
   1414 	gotiod = FALSE;
   1415 
   1416 	/*
   1417 	 * Find a free iod to process this request.
   1418 	 */
   1419 	for (iod = 0; iod < ncl_numasync; iod++)
   1420 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
   1421 			gotiod = TRUE;
   1422 			break;
   1423 		}
   1424 
   1425 	/*
   1426 	 * Try to create one if none are free.
   1427 	 */
   1428 	if (!gotiod)
   1429 		ncl_nfsiodnew();
   1430 	else {
   1431 		/*
   1432 		 * Found one, so wake it up and tell it which
   1433 		 * mount to process.
   1434 		 */
   1435 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
   1436 		    iod, nmp));
   1437 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
   1438 		ncl_iodmount[iod] = nmp;
   1439 		nmp->nm_bufqiods++;
   1440 		wakeup(&ncl_iodwant[iod]);
   1441 	}
   1442 
   1443 	/*
   1444 	 * If none are free, we may already have an iod working on this mount
   1445 	 * point.  If so, it will process our request.
   1446 	 */
   1447 	if (!gotiod) {
   1448 		if (nmp->nm_bufqiods > 0) {
   1449 			NFS_DPF(ASYNCIO,
   1450 				("ncl_asyncio: %d iods are already processing mount %p\n",
   1451 				 nmp->nm_bufqiods, nmp));
   1452 			gotiod = TRUE;
   1453 		}
   1454 	}
   1455 
   1456 	/*
   1457 	 * If we have an iod which can process the request, then queue
   1458 	 * the buffer.
   1459 	 */
   1460 	if (gotiod) {
   1461 		/*
   1462 		 * Ensure that the queue never grows too large.  We still want
   1463 		 * to asynchronize so we block rather than return EIO.
   1464 		 */
   1465 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
   1466 			NFS_DPF(ASYNCIO,
   1467 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
   1468 			nmp->nm_bufqwant = TRUE;
   1469 			error = newnfs_msleep(td, &nmp->nm_bufq,
   1470 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
   1471 			   slptimeo);
   1472 			if (error) {
   1473 				error2 = newnfs_sigintr(nmp, td);
   1474 				if (error2) {
   1475 					mtx_unlock(&ncl_iod_mutex);
   1476 					return (error2);
   1477 				}
   1478 				if (slpflag == PCATCH) {
   1479 					slpflag = 0;
   1480 					slptimeo = 2 * hz;
   1481 				}
   1482 			}
   1483 			/*
   1484 			 * We might have lost our iod while sleeping,
   1485 			 * so check and loop if necessary.
   1486 			 */
   1487 			goto again;
   1488 		}
   1489 
   1490 		/* We might have lost our nfsiod */
   1491 		if (nmp->nm_bufqiods == 0) {
   1492 			NFS_DPF(ASYNCIO,
   1493 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
   1494 			goto again;
   1495 		}
   1496 
   1497 		if (bp->b_iocmd == BIO_READ) {
   1498 			if (bp->b_rcred == NOCRED && cred != NOCRED)
   1499 				bp->b_rcred = crhold(cred);
   1500 		} else {
   1501 			if (bp->b_wcred == NOCRED && cred != NOCRED)
   1502 				bp->b_wcred = crhold(cred);
   1503 		}
   1504 
   1505 		if (bp->b_flags & B_REMFREE)
   1506 			bremfreef(bp);
   1507 		BUF_KERNPROC(bp);
   1508 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
   1509 		nmp->nm_bufqlen++;
   1510 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1511 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
   1512 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
   1513 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
   1514 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
   1515 		}
   1516 		mtx_unlock(&ncl_iod_mutex);
   1517 		return (0);
   1518 	}
   1519 
   1520 	mtx_unlock(&ncl_iod_mutex);
   1521 
   1522 	/*
   1523 	 * All the iods are busy on other mounts, so return EIO to
   1524 	 * force the caller to process the i/o synchronously.
   1525 	 */
   1526 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
   1527 	return (EIO);
   1528 }
   1529 
   1530 void
   1531 ncl_doio_directwrite(struct buf *bp)
   1532 {
   1533 	int iomode, must_commit;
   1534 	struct uio *uiop = (struct uio *)bp->b_caller1;
   1535 	char *iov_base = uiop->uio_iov->iov_base;
   1536 
   1537 	iomode = NFSWRITE_FILESYNC;
   1538 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
   1539 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
   1540 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
   1541 	free(iov_base, M_NFSDIRECTIO);
   1542 	free(uiop->uio_iov, M_NFSDIRECTIO);
   1543 	free(uiop, M_NFSDIRECTIO);
   1544 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
   1545 		struct nfsnode *np = VTONFS(bp->b_vp);
   1546 		mtx_lock(&np->n_mtx);
   1547 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
   1548 			/*
   1549 			 * Invalidate the attribute cache, since writes to a DS
   1550 			 * won't update the size attribute.
   1551 			 */
   1552 			np->n_attrstamp = 0;
   1553 		}
   1554 		np->n_directio_asyncwr--;
   1555 		if (np->n_directio_asyncwr == 0) {
   1556 			np->n_flag &= ~NMODIFIED;
   1557 			if ((np->n_flag & NFSYNCWAIT)) {
   1558 				np->n_flag &= ~NFSYNCWAIT;
   1559 				wakeup((caddr_t)&np->n_directio_asyncwr);
   1560 			}
   1561 		}
   1562 		mtx_unlock(&np->n_mtx);
   1563 	}
   1564 	bp->b_vp = NULL;
   1565 	relpbuf(bp, &ncl_pbuf_freecnt);
   1566 }
   1567 
   1568 /*
   1569  * Do an I/O operation to/from a cache block. This may be called
   1570  * synchronously or from an nfsiod.
   1571  */
   1572 int
   1573 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
   1574     int called_from_strategy)
   1575 {
   1576 	struct uio *uiop;
   1577 	struct nfsnode *np;
   1578 	struct nfsmount *nmp;
   1579 	int error = 0, iomode, must_commit = 0;
   1580 	struct uio uio;
   1581 	struct iovec io;
   1582 	struct proc *p = td ? td->td_proc : NULL;
   1583 	uint8_t	iocmd;
   1584 
   1585 	np = VTONFS(vp);
   1586 	nmp = VFSTONFS(vp->v_mount);
   1587 	uiop = &uio;
   1588 	uiop->uio_iov = &io;
   1589 	uiop->uio_iovcnt = 1;
   1590 	uiop->uio_segflg = UIO_SYSSPACE;
   1591 	uiop->uio_td = td;
   1592 
   1593 	/*
   1594 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
   1595 	 * do this here so we do not have to do it in all the code that
   1596 	 * calls us.
   1597 	 */
   1598 	bp->b_flags &= ~B_INVAL;
   1599 	bp->b_ioflags &= ~BIO_ERROR;
   1600 
   1601 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
   1602 	iocmd = bp->b_iocmd;
   1603 	if (iocmd == BIO_READ) {
   1604 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
   1605 	    io.iov_base = bp->b_data;
   1606 	    uiop->uio_rw = UIO_READ;
   1607 
   1608 	    switch (vp->v_type) {
   1609 	    case VREG:
   1610 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
   1611 		NFSINCRGLOBAL(nfsstatsv1.read_bios);
   1612 		error = ncl_readrpc(vp, uiop, cr);
   1613 
   1614 		if (!error) {
   1615 		    if (uiop->uio_resid) {
   1616 			/*
   1617 			 * If we had a short read with no error, we must have
   1618 			 * hit a file hole.  We should zero-fill the remainder.
   1619 			 * This can also occur if the server hits the file EOF.
   1620 			 *
   1621 			 * Holes used to be able to occur due to pending
   1622 			 * writes, but that is not possible any longer.
   1623 			 */
   1624 			int nread = bp->b_bcount - uiop->uio_resid;
   1625 			ssize_t left = uiop->uio_resid;
   1626 
   1627 			if (left > 0)
   1628 				bzero((char *)bp->b_data + nread, left);
   1629 			uiop->uio_resid = 0;
   1630 		    }
   1631 		}
   1632 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
   1633 		if (p && (vp->v_vflag & VV_TEXT)) {
   1634 			mtx_lock(&np->n_mtx);
   1635 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
   1636 				mtx_unlock(&np->n_mtx);
   1637 				PROC_LOCK(p);
   1638 				killproc(p, "text file modification");
   1639 				PROC_UNLOCK(p);
   1640 			} else
   1641 				mtx_unlock(&np->n_mtx);
   1642 		}
   1643 		break;
   1644 	    case VLNK:
   1645 		uiop->uio_offset = (off_t)0;
   1646 		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
   1647 		error = ncl_readlinkrpc(vp, uiop, cr);
   1648 		break;
   1649 	    case VDIR:
   1650 		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
   1651 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
   1652 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
   1653 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
   1654 			if (error == NFSERR_NOTSUPP)
   1655 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
   1656 		}
   1657 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
   1658 			error = ncl_readdirrpc(vp, uiop, cr, td);
   1659 		/*
   1660 		 * end-of-directory sets B_INVAL but does not generate an
   1661 		 * error.
   1662 		 */
   1663 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
   1664 			bp->b_flags |= B_INVAL;
   1665 		break;
   1666 	    default:
   1667 		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
   1668 		break;
   1669 	    }
   1670 	    if (error) {
   1671 		bp->b_ioflags |= BIO_ERROR;
   1672 		bp->b_error = error;
   1673 	    }
   1674 	} else {
   1675 	    /*
   1676 	     * If we only need to commit, try to commit
   1677 	     */
   1678 	    if (bp->b_flags & B_NEEDCOMMIT) {
   1679 		    int retv;
   1680 		    off_t off;
   1681 
   1682 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
   1683 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
   1684 			bp->b_wcred, td);
   1685 		    if (retv == 0) {
   1686 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1687 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1688 			    bp->b_resid = 0;
   1689 			    bufdone(bp);
   1690 			    return (0);
   1691 		    }
   1692 		    if (retv == NFSERR_STALEWRITEVERF) {
   1693 			    ncl_clearcommit(vp->v_mount);
   1694 		    }
   1695 	    }
   1696 
   1697 	    /*
   1698 	     * Setup for actual write
   1699 	     */
   1700 	    mtx_lock(&np->n_mtx);
   1701 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
   1702 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
   1703 	    mtx_unlock(&np->n_mtx);
   1704 
   1705 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
   1706 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
   1707 		    - bp->b_dirtyoff;
   1708 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
   1709 		    + bp->b_dirtyoff;
   1710 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
   1711 		uiop->uio_rw = UIO_WRITE;
   1712 		NFSINCRGLOBAL(nfsstatsv1.write_bios);
   1713 
   1714 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
   1715 		    iomode = NFSWRITE_UNSTABLE;
   1716 		else
   1717 		    iomode = NFSWRITE_FILESYNC;
   1718 
   1719 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
   1720 		    called_from_strategy);
   1721 
   1722 		/*
   1723 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
   1724 		 * to cluster the buffers needing commit.  This will allow
   1725 		 * the system to submit a single commit rpc for the whole
   1726 		 * cluster.  We can do this even if the buffer is not 100%
   1727 		 * dirty (relative to the NFS blocksize), so we optimize the
   1728 		 * append-to-file-case.
   1729 		 *
   1730 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
   1731 		 * cleared because write clustering only works for commit
   1732 		 * rpc's, not for the data portion of the write).
   1733 		 */
   1734 
   1735 		if (!error && iomode == NFSWRITE_UNSTABLE) {
   1736 		    bp->b_flags |= B_NEEDCOMMIT;
   1737 		    if (bp->b_dirtyoff == 0
   1738 			&& bp->b_dirtyend == bp->b_bcount)
   1739 			bp->b_flags |= B_CLUSTEROK;
   1740 		} else {
   1741 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
   1742 		}
   1743 
   1744 		/*
   1745 		 * For an interrupted write, the buffer is still valid
   1746 		 * and the write hasn't been pushed to the server yet,
   1747 		 * so we can't set BIO_ERROR and report the interruption
   1748 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
   1749 		 * is not relevant, so the rpc attempt is essentially
   1750 		 * a noop.  For the case of a V3 write rpc not being
   1751 		 * committed to stable storage, the block is still
   1752 		 * dirty and requires either a commit rpc or another
   1753 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
   1754 		 * the block is reused. This is indicated by setting
   1755 		 * the B_DELWRI and B_NEEDCOMMIT flags.
   1756 		 *
   1757 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
   1758 		 * write error and is handled as above, except that
   1759 		 * B_EINTR isn't set. One cause of this is a stale stateid
   1760 		 * error for the RPC that indicates recovery is required,
   1761 		 * when called with called_from_strategy != 0.
   1762 		 *
   1763 		 * If the buffer is marked B_PAGING, it does not reside on
   1764 		 * the vp's paging queues so we cannot call bdirty().  The
   1765 		 * bp in this case is not an NFS cache block so we should
   1766 		 * be safe. XXX
   1767 		 *
   1768 		 * The logic below breaks up errors into recoverable and
   1769 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
   1770 		 * and keep the buffer around for potential write retries.
   1771 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
   1772 		 * and save the error in the nfsnode. This is less than ideal
   1773 		 * but necessary. Keeping such buffers around could potentially
   1774 		 * cause buffer exhaustion eventually (they can never be written
   1775 		 * out, so will get constantly be re-dirtied). It also causes
   1776 		 * all sorts of vfs panics. For non-recoverable write errors,
   1777 		 * also invalidate the attrcache, so we'll be forced to go over
   1778 		 * the wire for this object, returning an error to user on next
   1779 		 * call (most of the time).
   1780 		 */
   1781 		if (error == EINTR || error == EIO || error == ETIMEDOUT
   1782 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
   1783 			int s;
   1784 
   1785 			s = splbio();
   1786 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
   1787 			if ((bp->b_flags & B_PAGING) == 0) {
   1788 			    bdirty(bp);
   1789 			    bp->b_flags &= ~B_DONE;
   1790 			}
   1791 			if ((error == EINTR || error == ETIMEDOUT) &&
   1792 			    (bp->b_flags & B_ASYNC) == 0)
   1793 			    bp->b_flags |= B_EINTR;
   1794 			splx(s);
   1795 		} else {
   1796 		    if (error) {
   1797 			bp->b_ioflags |= BIO_ERROR;
   1798 			bp->b_flags |= B_INVAL;
   1799 			bp->b_error = np->n_error = error;
   1800 			mtx_lock(&np->n_mtx);
   1801 			np->n_flag |= NWRITEERR;
   1802 			np->n_attrstamp = 0;
   1803 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
   1804 			mtx_unlock(&np->n_mtx);
   1805 		    }
   1806 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
   1807 		}
   1808 	    } else {
   1809 		bp->b_resid = 0;
   1810 		bufdone(bp);
   1811 		return (0);
   1812 	    }
   1813 	}
   1814 	bp->b_resid = uiop->uio_resid;
   1815 	if (must_commit)
   1816 	    ncl_clearcommit(vp->v_mount);
   1817 	bufdone(bp);
   1818 	return (error);
   1819 }
   1820 
   1821 /*
   1822  * Used to aid in handling ftruncate() operations on the NFS client side.
   1823  * Truncation creates a number of special problems for NFS.  We have to
   1824  * throw away VM pages and buffer cache buffers that are beyond EOF, and
   1825  * we have to properly handle VM pages or (potentially dirty) buffers
   1826  * that straddle the truncation point.
   1827  */
   1828 
   1829 int
   1830 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
   1831 {
   1832 	struct nfsnode *np = VTONFS(vp);
   1833 	u_quad_t tsize;
   1834 	int biosize = vp->v_bufobj.bo_bsize;
   1835 	int error = 0;
   1836 
   1837 	mtx_lock(&np->n_mtx);
   1838 	tsize = np->n_size;
   1839 	np->n_size = nsize;
   1840 	mtx_unlock(&np->n_mtx);
   1841 
   1842 	if (nsize < tsize) {
   1843 		struct buf *bp;
   1844 		daddr_t lbn;
   1845 		int bufsize;
   1846 
   1847 		/*
   1848 		 * vtruncbuf() doesn't get the buffer overlapping the
   1849 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
   1850 		 * buffer that now needs to be truncated.
   1851 		 */
   1852 		error = vtruncbuf(vp, cred, nsize, biosize);
   1853 		lbn = nsize / biosize;
   1854 		bufsize = nsize - (lbn * biosize);
   1855 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
   1856 		if (!bp)
   1857 			return EINTR;
   1858 		if (bp->b_dirtyoff > bp->b_bcount)
   1859 			bp->b_dirtyoff = bp->b_bcount;
   1860 		if (bp->b_dirtyend > bp->b_bcount)
   1861 			bp->b_dirtyend = bp->b_bcount;
   1862 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
   1863 		brelse(bp);
   1864 	} else {
   1865 		vnode_pager_setsize(vp, nsize);
   1866 	}
   1867 	return(error);
   1868 }
   1869 
   1870