nfs_clbio.c revision 1.3 1 /* $NetBSD: nfs_clbio.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $ */
2 /*-
3 * Copyright (c) 1989, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Rick Macklem at The University of Guelph.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
34 */
35
36 #include <sys/cdefs.h>
37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */
38 __RCSID("$NetBSD: nfs_clbio.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/bio.h>
43 #include <sys/buf.h>
44 #include <sys/kernel.h>
45 #include <sys/mount.h>
46 #include <sys/rwlock.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49
50 #include <vm/vm.h>
51 #include <vm/vm_param.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_page.h>
54 #include <vm/vm_object.h>
55 #include <vm/vm_pager.h>
56 #include <vm/vnode_pager.h>
57
58 #include <fs/nfs/nfsport.h>
59 #include <fs/nfsclient/nfsmount.h>
60 #include <fs/nfsclient/nfs.h>
61 #include <fs/nfsclient/nfsnode.h>
62 #include <fs/nfsclient/nfs_kdtrace.h>
63
64 extern int newnfs_directio_allow_mmap;
65 extern struct nfsstatsv1 nfsstatsv1;
66 extern struct mtx ncl_iod_mutex;
67 extern int ncl_numasync;
68 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
69 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
70 extern int newnfs_directio_enable;
71 extern int nfs_keep_dirty_on_error;
72
73 int ncl_pbuf_freecnt = -1; /* start out unlimited */
74
75 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
76 struct thread *td);
77 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
78 struct ucred *cred, int ioflag);
79
80 /*
81 * Vnode op for VM getpages.
82 */
83 int
84 ncl_getpages(struct vop_getpages_args *ap)
85 {
86 int i, error, nextoff, size, toff, count, npages;
87 struct uio uio;
88 struct iovec iov;
89 vm_offset_t kva;
90 struct buf *bp;
91 struct vnode *vp;
92 struct thread *td;
93 struct ucred *cred;
94 struct nfsmount *nmp;
95 vm_object_t object;
96 vm_page_t *pages;
97 struct nfsnode *np;
98
99 vp = ap->a_vp;
100 np = VTONFS(vp);
101 td = curthread; /* XXX */
102 cred = curthread->td_ucred; /* XXX */
103 nmp = VFSTONFS(vp->v_mount);
104 pages = ap->a_m;
105 npages = ap->a_count;
106
107 if ((object = vp->v_object) == NULL) {
108 printf("ncl_getpages: called with non-merged cache vnode\n");
109 return (VM_PAGER_ERROR);
110 }
111
112 if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
113 mtx_lock(&np->n_mtx);
114 if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
115 mtx_unlock(&np->n_mtx);
116 printf("ncl_getpages: called on non-cacheable vnode\n");
117 return (VM_PAGER_ERROR);
118 } else
119 mtx_unlock(&np->n_mtx);
120 }
121
122 mtx_lock(&nmp->nm_mtx);
123 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
124 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
125 mtx_unlock(&nmp->nm_mtx);
126 /* We'll never get here for v4, because we always have fsinfo */
127 (void)ncl_fsinfo(nmp, vp, cred, td);
128 } else
129 mtx_unlock(&nmp->nm_mtx);
130
131 /*
132 * If the requested page is partially valid, just return it and
133 * allow the pager to zero-out the blanks. Partially valid pages
134 * can only occur at the file EOF.
135 *
136 * XXXGL: is that true for NFS, where short read can occur???
137 */
138 VM_OBJECT_WLOCK(object);
139 if (pages[npages - 1]->valid != 0 && --npages == 0)
140 goto out;
141 VM_OBJECT_WUNLOCK(object);
142
143 /*
144 * We use only the kva address for the buffer, but this is extremely
145 * convenient and fast.
146 */
147 bp = getpbuf(&ncl_pbuf_freecnt);
148
149 kva = (vm_offset_t) bp->b_data;
150 pmap_qenter(kva, pages, npages);
151 PCPU_INC(cnt.v_vnodein);
152 PCPU_ADD(cnt.v_vnodepgsin, npages);
153
154 count = npages << PAGE_SHIFT;
155 iov.iov_base = (caddr_t) kva;
156 iov.iov_len = count;
157 uio.uio_iov = &iov;
158 uio.uio_iovcnt = 1;
159 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
160 uio.uio_resid = count;
161 uio.uio_segflg = UIO_SYSSPACE;
162 uio.uio_rw = UIO_READ;
163 uio.uio_td = td;
164
165 error = ncl_readrpc(vp, &uio, cred);
166 pmap_qremove(kva, npages);
167
168 relpbuf(bp, &ncl_pbuf_freecnt);
169
170 if (error && (uio.uio_resid == count)) {
171 printf("ncl_getpages: error %d\n", error);
172 return (VM_PAGER_ERROR);
173 }
174
175 /*
176 * Calculate the number of bytes read and validate only that number
177 * of bytes. Note that due to pending writes, size may be 0. This
178 * does not mean that the remaining data is invalid!
179 */
180
181 size = count - uio.uio_resid;
182 VM_OBJECT_WLOCK(object);
183 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
184 vm_page_t m;
185 nextoff = toff + PAGE_SIZE;
186 m = pages[i];
187
188 if (nextoff <= size) {
189 /*
190 * Read operation filled an entire page
191 */
192 m->valid = VM_PAGE_BITS_ALL;
193 KASSERT(m->dirty == 0,
194 ("nfs_getpages: page %p is dirty", m));
195 } else if (size > toff) {
196 /*
197 * Read operation filled a partial page.
198 */
199 m->valid = 0;
200 vm_page_set_valid_range(m, 0, size - toff);
201 KASSERT(m->dirty == 0,
202 ("nfs_getpages: page %p is dirty", m));
203 } else {
204 /*
205 * Read operation was short. If no error
206 * occurred we may have hit a zero-fill
207 * section. We leave valid set to 0, and page
208 * is freed by vm_page_readahead_finish() if
209 * its index is not equal to requested, or
210 * page is zeroed and set valid by
211 * vm_pager_get_pages() for requested page.
212 */
213 ;
214 }
215 }
216 out:
217 VM_OBJECT_WUNLOCK(object);
218 if (ap->a_rbehind)
219 *ap->a_rbehind = 0;
220 if (ap->a_rahead)
221 *ap->a_rahead = 0;
222 return (VM_PAGER_OK);
223 }
224
225 /*
226 * Vnode op for VM putpages.
227 */
228 int
229 ncl_putpages(struct vop_putpages_args *ap)
230 {
231 struct uio uio;
232 struct iovec iov;
233 vm_offset_t kva;
234 struct buf *bp;
235 int iomode, must_commit, i, error, npages, count;
236 off_t offset;
237 int *rtvals;
238 struct vnode *vp;
239 struct thread *td;
240 struct ucred *cred;
241 struct nfsmount *nmp;
242 struct nfsnode *np;
243 vm_page_t *pages;
244
245 vp = ap->a_vp;
246 np = VTONFS(vp);
247 td = curthread; /* XXX */
248 /* Set the cred to n_writecred for the write rpcs. */
249 if (np->n_writecred != NULL)
250 cred = crhold(np->n_writecred);
251 else
252 cred = crhold(curthread->td_ucred); /* XXX */
253 nmp = VFSTONFS(vp->v_mount);
254 pages = ap->a_m;
255 count = ap->a_count;
256 rtvals = ap->a_rtvals;
257 npages = btoc(count);
258 offset = IDX_TO_OFF(pages[0]->pindex);
259
260 mtx_lock(&nmp->nm_mtx);
261 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
262 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
263 mtx_unlock(&nmp->nm_mtx);
264 (void)ncl_fsinfo(nmp, vp, cred, td);
265 } else
266 mtx_unlock(&nmp->nm_mtx);
267
268 mtx_lock(&np->n_mtx);
269 if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
270 (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
271 mtx_unlock(&np->n_mtx);
272 printf("ncl_putpages: called on noncache-able vnode\n");
273 mtx_lock(&np->n_mtx);
274 }
275
276 for (i = 0; i < npages; i++)
277 rtvals[i] = VM_PAGER_ERROR;
278
279 /*
280 * When putting pages, do not extend file past EOF.
281 */
282 if (offset + count > np->n_size) {
283 count = np->n_size - offset;
284 if (count < 0)
285 count = 0;
286 }
287 mtx_unlock(&np->n_mtx);
288
289 /*
290 * We use only the kva address for the buffer, but this is extremely
291 * convenient and fast.
292 */
293 bp = getpbuf(&ncl_pbuf_freecnt);
294
295 kva = (vm_offset_t) bp->b_data;
296 pmap_qenter(kva, pages, npages);
297 PCPU_INC(cnt.v_vnodeout);
298 PCPU_ADD(cnt.v_vnodepgsout, count);
299
300 iov.iov_base = (caddr_t) kva;
301 iov.iov_len = count;
302 uio.uio_iov = &iov;
303 uio.uio_iovcnt = 1;
304 uio.uio_offset = offset;
305 uio.uio_resid = count;
306 uio.uio_segflg = UIO_SYSSPACE;
307 uio.uio_rw = UIO_WRITE;
308 uio.uio_td = td;
309
310 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
311 iomode = NFSWRITE_UNSTABLE;
312 else
313 iomode = NFSWRITE_FILESYNC;
314
315 error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
316 crfree(cred);
317
318 pmap_qremove(kva, npages);
319 relpbuf(bp, &ncl_pbuf_freecnt);
320
321 if (error == 0 || !nfs_keep_dirty_on_error) {
322 vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
323 if (must_commit)
324 ncl_clearcommit(vp->v_mount);
325 }
326 return rtvals[0];
327 }
328
329 /*
330 * For nfs, cache consistency can only be maintained approximately.
331 * Although RFC1094 does not specify the criteria, the following is
332 * believed to be compatible with the reference port.
333 * For nfs:
334 * If the file's modify time on the server has changed since the
335 * last read rpc or you have written to the file,
336 * you may have lost data cache consistency with the
337 * server, so flush all of the file's data out of the cache.
338 * Then force a getattr rpc to ensure that you have up to date
339 * attributes.
340 * NB: This implies that cache data can be read when up to
341 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
342 * attributes this could be forced by setting n_attrstamp to 0 before
343 * the VOP_GETATTR() call.
344 */
345 static inline int
346 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
347 {
348 int error = 0;
349 struct vattr vattr;
350 struct nfsnode *np = VTONFS(vp);
351 int old_lock;
352
353 /*
354 * Grab the exclusive lock before checking whether the cache is
355 * consistent.
356 * XXX - We can make this cheaper later (by acquiring cheaper locks).
357 * But for now, this suffices.
358 */
359 old_lock = ncl_upgrade_vnlock(vp);
360 if (vp->v_iflag & VI_DOOMED) {
361 ncl_downgrade_vnlock(vp, old_lock);
362 return (EBADF);
363 }
364
365 mtx_lock(&np->n_mtx);
366 if (np->n_flag & NMODIFIED) {
367 mtx_unlock(&np->n_mtx);
368 if (vp->v_type != VREG) {
369 if (vp->v_type != VDIR)
370 panic("nfs: bioread, not dir");
371 ncl_invaldir(vp);
372 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
373 if (error)
374 goto out;
375 }
376 np->n_attrstamp = 0;
377 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
378 error = VOP_GETATTR(vp, &vattr, cred);
379 if (error)
380 goto out;
381 mtx_lock(&np->n_mtx);
382 np->n_mtime = vattr.va_mtime;
383 mtx_unlock(&np->n_mtx);
384 } else {
385 mtx_unlock(&np->n_mtx);
386 error = VOP_GETATTR(vp, &vattr, cred);
387 if (error)
388 return (error);
389 mtx_lock(&np->n_mtx);
390 if ((np->n_flag & NSIZECHANGED)
391 || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
392 mtx_unlock(&np->n_mtx);
393 if (vp->v_type == VDIR)
394 ncl_invaldir(vp);
395 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
396 if (error)
397 goto out;
398 mtx_lock(&np->n_mtx);
399 np->n_mtime = vattr.va_mtime;
400 np->n_flag &= ~NSIZECHANGED;
401 }
402 mtx_unlock(&np->n_mtx);
403 }
404 out:
405 ncl_downgrade_vnlock(vp, old_lock);
406 return error;
407 }
408
409 /*
410 * Vnode op for read using bio
411 */
412 int
413 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
414 {
415 struct nfsnode *np = VTONFS(vp);
416 int biosize, i;
417 struct buf *bp, *rabp;
418 struct thread *td;
419 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
420 daddr_t lbn, rabn;
421 int bcount;
422 int seqcount;
423 int nra, error = 0, n = 0, on = 0;
424 off_t tmp_off;
425
426 KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
427 if (uio->uio_resid == 0)
428 return (0);
429 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */
430 return (EINVAL);
431 td = uio->uio_td;
432
433 mtx_lock(&nmp->nm_mtx);
434 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
435 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
436 mtx_unlock(&nmp->nm_mtx);
437 (void)ncl_fsinfo(nmp, vp, cred, td);
438 mtx_lock(&nmp->nm_mtx);
439 }
440 if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
441 (void) newnfs_iosize(nmp);
442
443 tmp_off = uio->uio_offset + uio->uio_resid;
444 if (vp->v_type != VDIR &&
445 (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
446 mtx_unlock(&nmp->nm_mtx);
447 return (EFBIG);
448 }
449 mtx_unlock(&nmp->nm_mtx);
450
451 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
452 /* No caching/ no readaheads. Just read data into the user buffer */
453 return ncl_readrpc(vp, uio, cred);
454
455 biosize = vp->v_bufobj.bo_bsize;
456 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
457
458 error = nfs_bioread_check_cons(vp, td, cred);
459 if (error)
460 return error;
461
462 do {
463 u_quad_t nsize;
464
465 mtx_lock(&np->n_mtx);
466 nsize = np->n_size;
467 mtx_unlock(&np->n_mtx);
468
469 switch (vp->v_type) {
470 case VREG:
471 NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
472 lbn = uio->uio_offset / biosize;
473 on = uio->uio_offset - (lbn * biosize);
474
475 /*
476 * Start the read ahead(s), as required.
477 */
478 if (nmp->nm_readahead > 0) {
479 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
480 (off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
481 rabn = lbn + 1 + nra;
482 if (incore(&vp->v_bufobj, rabn) == NULL) {
483 rabp = nfs_getcacheblk(vp, rabn, biosize, td);
484 if (!rabp) {
485 error = newnfs_sigintr(nmp, td);
486 return (error ? error : EINTR);
487 }
488 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
489 rabp->b_flags |= B_ASYNC;
490 rabp->b_iocmd = BIO_READ;
491 vfs_busy_pages(rabp, 0);
492 if (ncl_asyncio(nmp, rabp, cred, td)) {
493 rabp->b_flags |= B_INVAL;
494 rabp->b_ioflags |= BIO_ERROR;
495 vfs_unbusy_pages(rabp);
496 brelse(rabp);
497 break;
498 }
499 } else {
500 brelse(rabp);
501 }
502 }
503 }
504 }
505
506 /* Note that bcount is *not* DEV_BSIZE aligned. */
507 bcount = biosize;
508 if ((off_t)lbn * biosize >= nsize) {
509 bcount = 0;
510 } else if ((off_t)(lbn + 1) * biosize > nsize) {
511 bcount = nsize - (off_t)lbn * biosize;
512 }
513 bp = nfs_getcacheblk(vp, lbn, bcount, td);
514
515 if (!bp) {
516 error = newnfs_sigintr(nmp, td);
517 return (error ? error : EINTR);
518 }
519
520 /*
521 * If B_CACHE is not set, we must issue the read. If this
522 * fails, we return an error.
523 */
524
525 if ((bp->b_flags & B_CACHE) == 0) {
526 bp->b_iocmd = BIO_READ;
527 vfs_busy_pages(bp, 0);
528 error = ncl_doio(vp, bp, cred, td, 0);
529 if (error) {
530 brelse(bp);
531 return (error);
532 }
533 }
534
535 /*
536 * on is the offset into the current bp. Figure out how many
537 * bytes we can copy out of the bp. Note that bcount is
538 * NOT DEV_BSIZE aligned.
539 *
540 * Then figure out how many bytes we can copy into the uio.
541 */
542
543 n = 0;
544 if (on < bcount)
545 n = MIN((unsigned)(bcount - on), uio->uio_resid);
546 break;
547 case VLNK:
548 NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
549 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
550 if (!bp) {
551 error = newnfs_sigintr(nmp, td);
552 return (error ? error : EINTR);
553 }
554 if ((bp->b_flags & B_CACHE) == 0) {
555 bp->b_iocmd = BIO_READ;
556 vfs_busy_pages(bp, 0);
557 error = ncl_doio(vp, bp, cred, td, 0);
558 if (error) {
559 bp->b_ioflags |= BIO_ERROR;
560 brelse(bp);
561 return (error);
562 }
563 }
564 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
565 on = 0;
566 break;
567 case VDIR:
568 NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
569 if (np->n_direofoffset
570 && uio->uio_offset >= np->n_direofoffset) {
571 return (0);
572 }
573 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
574 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
575 bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
576 if (!bp) {
577 error = newnfs_sigintr(nmp, td);
578 return (error ? error : EINTR);
579 }
580 if ((bp->b_flags & B_CACHE) == 0) {
581 bp->b_iocmd = BIO_READ;
582 vfs_busy_pages(bp, 0);
583 error = ncl_doio(vp, bp, cred, td, 0);
584 if (error) {
585 brelse(bp);
586 }
587 while (error == NFSERR_BAD_COOKIE) {
588 ncl_invaldir(vp);
589 error = ncl_vinvalbuf(vp, 0, td, 1);
590 /*
591 * Yuck! The directory has been modified on the
592 * server. The only way to get the block is by
593 * reading from the beginning to get all the
594 * offset cookies.
595 *
596 * Leave the last bp intact unless there is an error.
597 * Loop back up to the while if the error is another
598 * NFSERR_BAD_COOKIE (double yuch!).
599 */
600 for (i = 0; i <= lbn && !error; i++) {
601 if (np->n_direofoffset
602 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
603 return (0);
604 bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
605 if (!bp) {
606 error = newnfs_sigintr(nmp, td);
607 return (error ? error : EINTR);
608 }
609 if ((bp->b_flags & B_CACHE) == 0) {
610 bp->b_iocmd = BIO_READ;
611 vfs_busy_pages(bp, 0);
612 error = ncl_doio(vp, bp, cred, td, 0);
613 /*
614 * no error + B_INVAL == directory EOF,
615 * use the block.
616 */
617 if (error == 0 && (bp->b_flags & B_INVAL))
618 break;
619 }
620 /*
621 * An error will throw away the block and the
622 * for loop will break out. If no error and this
623 * is not the block we want, we throw away the
624 * block and go for the next one via the for loop.
625 */
626 if (error || i < lbn)
627 brelse(bp);
628 }
629 }
630 /*
631 * The above while is repeated if we hit another cookie
632 * error. If we hit an error and it wasn't a cookie error,
633 * we give up.
634 */
635 if (error)
636 return (error);
637 }
638
639 /*
640 * If not eof and read aheads are enabled, start one.
641 * (You need the current block first, so that you have the
642 * directory offset cookie of the next block.)
643 */
644 if (nmp->nm_readahead > 0 &&
645 (bp->b_flags & B_INVAL) == 0 &&
646 (np->n_direofoffset == 0 ||
647 (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
648 incore(&vp->v_bufobj, lbn + 1) == NULL) {
649 rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
650 if (rabp) {
651 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
652 rabp->b_flags |= B_ASYNC;
653 rabp->b_iocmd = BIO_READ;
654 vfs_busy_pages(rabp, 0);
655 if (ncl_asyncio(nmp, rabp, cred, td)) {
656 rabp->b_flags |= B_INVAL;
657 rabp->b_ioflags |= BIO_ERROR;
658 vfs_unbusy_pages(rabp);
659 brelse(rabp);
660 }
661 } else {
662 brelse(rabp);
663 }
664 }
665 }
666 /*
667 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
668 * chopped for the EOF condition, we cannot tell how large
669 * NFS directories are going to be until we hit EOF. So
670 * an NFS directory buffer is *not* chopped to its EOF. Now,
671 * it just so happens that b_resid will effectively chop it
672 * to EOF. *BUT* this information is lost if the buffer goes
673 * away and is reconstituted into a B_CACHE state ( due to
674 * being VMIO ) later. So we keep track of the directory eof
675 * in np->n_direofoffset and chop it off as an extra step
676 * right here.
677 */
678 n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
679 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
680 n = np->n_direofoffset - uio->uio_offset;
681 break;
682 default:
683 printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
684 bp = NULL;
685 break;
686 }
687
688 if (n > 0) {
689 error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
690 }
691 if (vp->v_type == VLNK)
692 n = 0;
693 if (bp != NULL)
694 brelse(bp);
695 } while (error == 0 && uio->uio_resid > 0 && n > 0);
696 return (error);
697 }
698
699 /*
700 * The NFS write path cannot handle iovecs with len > 1. So we need to
701 * break up iovecs accordingly (restricting them to wsize).
702 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
703 * For the ASYNC case, 2 copies are needed. The first a copy from the
704 * user buffer to a staging buffer and then a second copy from the staging
705 * buffer to mbufs. This can be optimized by copying from the user buffer
706 * directly into mbufs and passing the chain down, but that requires a
707 * fair amount of re-working of the relevant codepaths (and can be done
708 * later).
709 */
710 static int
711 nfs_directio_write(vp, uiop, cred, ioflag)
712 struct vnode *vp;
713 struct uio *uiop;
714 struct ucred *cred;
715 int ioflag;
716 {
717 int error;
718 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
719 struct thread *td = uiop->uio_td;
720 int size;
721 int wsize;
722
723 mtx_lock(&nmp->nm_mtx);
724 wsize = nmp->nm_wsize;
725 mtx_unlock(&nmp->nm_mtx);
726 if (ioflag & IO_SYNC) {
727 int iomode, must_commit;
728 struct uio uio;
729 struct iovec iov;
730 do_sync:
731 while (uiop->uio_resid > 0) {
732 size = MIN(uiop->uio_resid, wsize);
733 size = MIN(uiop->uio_iov->iov_len, size);
734 iov.iov_base = uiop->uio_iov->iov_base;
735 iov.iov_len = size;
736 uio.uio_iov = &iov;
737 uio.uio_iovcnt = 1;
738 uio.uio_offset = uiop->uio_offset;
739 uio.uio_resid = size;
740 uio.uio_segflg = UIO_USERSPACE;
741 uio.uio_rw = UIO_WRITE;
742 uio.uio_td = td;
743 iomode = NFSWRITE_FILESYNC;
744 error = ncl_writerpc(vp, &uio, cred, &iomode,
745 &must_commit, 0);
746 KASSERT((must_commit == 0),
747 ("ncl_directio_write: Did not commit write"));
748 if (error)
749 return (error);
750 uiop->uio_offset += size;
751 uiop->uio_resid -= size;
752 if (uiop->uio_iov->iov_len <= size) {
753 uiop->uio_iovcnt--;
754 uiop->uio_iov++;
755 } else {
756 uiop->uio_iov->iov_base =
757 (char *)uiop->uio_iov->iov_base + size;
758 uiop->uio_iov->iov_len -= size;
759 }
760 }
761 } else {
762 struct uio *t_uio;
763 struct iovec *t_iov;
764 struct buf *bp;
765
766 /*
767 * Break up the write into blocksize chunks and hand these
768 * over to nfsiod's for write back.
769 * Unfortunately, this incurs a copy of the data. Since
770 * the user could modify the buffer before the write is
771 * initiated.
772 *
773 * The obvious optimization here is that one of the 2 copies
774 * in the async write path can be eliminated by copying the
775 * data here directly into mbufs and passing the mbuf chain
776 * down. But that will require a fair amount of re-working
777 * of the code and can be done if there's enough interest
778 * in NFS directio access.
779 */
780 while (uiop->uio_resid > 0) {
781 size = MIN(uiop->uio_resid, wsize);
782 size = MIN(uiop->uio_iov->iov_len, size);
783 bp = getpbuf(&ncl_pbuf_freecnt);
784 t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
785 t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
786 t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
787 t_iov->iov_len = size;
788 t_uio->uio_iov = t_iov;
789 t_uio->uio_iovcnt = 1;
790 t_uio->uio_offset = uiop->uio_offset;
791 t_uio->uio_resid = size;
792 t_uio->uio_segflg = UIO_SYSSPACE;
793 t_uio->uio_rw = UIO_WRITE;
794 t_uio->uio_td = td;
795 KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
796 uiop->uio_segflg == UIO_SYSSPACE,
797 ("nfs_directio_write: Bad uio_segflg"));
798 if (uiop->uio_segflg == UIO_USERSPACE) {
799 error = copyin(uiop->uio_iov->iov_base,
800 t_iov->iov_base, size);
801 if (error != 0)
802 goto err_free;
803 } else
804 /*
805 * UIO_SYSSPACE may never happen, but handle
806 * it just in case it does.
807 */
808 bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
809 size);
810 bp->b_flags |= B_DIRECT;
811 bp->b_iocmd = BIO_WRITE;
812 if (cred != NOCRED) {
813 crhold(cred);
814 bp->b_wcred = cred;
815 } else
816 bp->b_wcred = NOCRED;
817 bp->b_caller1 = (void *)t_uio;
818 bp->b_vp = vp;
819 error = ncl_asyncio(nmp, bp, NOCRED, td);
820 err_free:
821 if (error) {
822 free(t_iov->iov_base, M_NFSDIRECTIO);
823 free(t_iov, M_NFSDIRECTIO);
824 free(t_uio, M_NFSDIRECTIO);
825 bp->b_vp = NULL;
826 relpbuf(bp, &ncl_pbuf_freecnt);
827 if (error == EINTR)
828 return (error);
829 goto do_sync;
830 }
831 uiop->uio_offset += size;
832 uiop->uio_resid -= size;
833 if (uiop->uio_iov->iov_len <= size) {
834 uiop->uio_iovcnt--;
835 uiop->uio_iov++;
836 } else {
837 uiop->uio_iov->iov_base =
838 (char *)uiop->uio_iov->iov_base + size;
839 uiop->uio_iov->iov_len -= size;
840 }
841 }
842 }
843 return (0);
844 }
845
846 /*
847 * Vnode op for write using bio
848 */
849 int
850 ncl_write(struct vop_write_args *ap)
851 {
852 int biosize;
853 struct uio *uio = ap->a_uio;
854 struct thread *td = uio->uio_td;
855 struct vnode *vp = ap->a_vp;
856 struct nfsnode *np = VTONFS(vp);
857 struct ucred *cred = ap->a_cred;
858 int ioflag = ap->a_ioflag;
859 struct buf *bp;
860 struct vattr vattr;
861 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
862 daddr_t lbn;
863 int bcount, noncontig_write, obcount;
864 int bp_cached, n, on, error = 0, error1, wouldcommit;
865 size_t orig_resid, local_resid;
866 off_t orig_size, tmp_off;
867
868 KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
869 KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
870 ("ncl_write proc"));
871 if (vp->v_type != VREG)
872 return (EIO);
873 mtx_lock(&np->n_mtx);
874 if (np->n_flag & NWRITEERR) {
875 np->n_flag &= ~NWRITEERR;
876 mtx_unlock(&np->n_mtx);
877 return (np->n_error);
878 } else
879 mtx_unlock(&np->n_mtx);
880 mtx_lock(&nmp->nm_mtx);
881 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
882 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
883 mtx_unlock(&nmp->nm_mtx);
884 (void)ncl_fsinfo(nmp, vp, cred, td);
885 mtx_lock(&nmp->nm_mtx);
886 }
887 if (nmp->nm_wsize == 0)
888 (void) newnfs_iosize(nmp);
889 mtx_unlock(&nmp->nm_mtx);
890
891 /*
892 * Synchronously flush pending buffers if we are in synchronous
893 * mode or if we are appending.
894 */
895 if (ioflag & (IO_APPEND | IO_SYNC)) {
896 mtx_lock(&np->n_mtx);
897 if (np->n_flag & NMODIFIED) {
898 mtx_unlock(&np->n_mtx);
899 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
900 /*
901 * Require non-blocking, synchronous writes to
902 * dirty files to inform the program it needs
903 * to fsync(2) explicitly.
904 */
905 if (ioflag & IO_NDELAY)
906 return (EAGAIN);
907 #endif
908 np->n_attrstamp = 0;
909 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
910 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
911 if (error)
912 return (error);
913 } else
914 mtx_unlock(&np->n_mtx);
915 }
916
917 orig_resid = uio->uio_resid;
918 mtx_lock(&np->n_mtx);
919 orig_size = np->n_size;
920 mtx_unlock(&np->n_mtx);
921
922 /*
923 * If IO_APPEND then load uio_offset. We restart here if we cannot
924 * get the append lock.
925 */
926 if (ioflag & IO_APPEND) {
927 np->n_attrstamp = 0;
928 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
929 error = VOP_GETATTR(vp, &vattr, cred);
930 if (error)
931 return (error);
932 mtx_lock(&np->n_mtx);
933 uio->uio_offset = np->n_size;
934 mtx_unlock(&np->n_mtx);
935 }
936
937 if (uio->uio_offset < 0)
938 return (EINVAL);
939 tmp_off = uio->uio_offset + uio->uio_resid;
940 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
941 return (EFBIG);
942 if (uio->uio_resid == 0)
943 return (0);
944
945 if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
946 return nfs_directio_write(vp, uio, cred, ioflag);
947
948 /*
949 * Maybe this should be above the vnode op call, but so long as
950 * file servers have no limits, i don't think it matters
951 */
952 if (vn_rlimit_fsize(vp, uio, td))
953 return (EFBIG);
954
955 biosize = vp->v_bufobj.bo_bsize;
956 /*
957 * Find all of this file's B_NEEDCOMMIT buffers. If our writes
958 * would exceed the local maximum per-file write commit size when
959 * combined with those, we must decide whether to flush,
960 * go synchronous, or return error. We don't bother checking
961 * IO_UNIT -- we just make all writes atomic anyway, as there's
962 * no point optimizing for something that really won't ever happen.
963 */
964 wouldcommit = 0;
965 if (!(ioflag & IO_SYNC)) {
966 int nflag;
967
968 mtx_lock(&np->n_mtx);
969 nflag = np->n_flag;
970 mtx_unlock(&np->n_mtx);
971 if (nflag & NMODIFIED) {
972 BO_LOCK(&vp->v_bufobj);
973 if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
974 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
975 b_bobufs) {
976 if (bp->b_flags & B_NEEDCOMMIT)
977 wouldcommit += bp->b_bcount;
978 }
979 }
980 BO_UNLOCK(&vp->v_bufobj);
981 }
982 }
983
984 do {
985 if (!(ioflag & IO_SYNC)) {
986 wouldcommit += biosize;
987 if (wouldcommit > nmp->nm_wcommitsize) {
988 np->n_attrstamp = 0;
989 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
990 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
991 if (error)
992 return (error);
993 wouldcommit = biosize;
994 }
995 }
996
997 NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
998 lbn = uio->uio_offset / biosize;
999 on = uio->uio_offset - (lbn * biosize);
1000 n = MIN((unsigned)(biosize - on), uio->uio_resid);
1001 again:
1002 /*
1003 * Handle direct append and file extension cases, calculate
1004 * unaligned buffer size.
1005 */
1006 mtx_lock(&np->n_mtx);
1007 if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1008 (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1009 noncontig_write = 1;
1010 else
1011 noncontig_write = 0;
1012 if ((uio->uio_offset == np->n_size ||
1013 (noncontig_write != 0 &&
1014 lbn == (np->n_size / biosize) &&
1015 uio->uio_offset + n > np->n_size)) && n) {
1016 mtx_unlock(&np->n_mtx);
1017 /*
1018 * Get the buffer (in its pre-append state to maintain
1019 * B_CACHE if it was previously set). Resize the
1020 * nfsnode after we have locked the buffer to prevent
1021 * readers from reading garbage.
1022 */
1023 obcount = np->n_size - (lbn * biosize);
1024 bp = nfs_getcacheblk(vp, lbn, obcount, td);
1025
1026 if (bp != NULL) {
1027 long save;
1028
1029 mtx_lock(&np->n_mtx);
1030 np->n_size = uio->uio_offset + n;
1031 np->n_flag |= NMODIFIED;
1032 vnode_pager_setsize(vp, np->n_size);
1033 mtx_unlock(&np->n_mtx);
1034
1035 save = bp->b_flags & B_CACHE;
1036 bcount = on + n;
1037 allocbuf(bp, bcount);
1038 bp->b_flags |= save;
1039 if (noncontig_write != 0 && on > obcount)
1040 vfs_bio_bzero_buf(bp, obcount, on -
1041 obcount);
1042 }
1043 } else {
1044 /*
1045 * Obtain the locked cache block first, and then
1046 * adjust the file's size as appropriate.
1047 */
1048 bcount = on + n;
1049 if ((off_t)lbn * biosize + bcount < np->n_size) {
1050 if ((off_t)(lbn + 1) * biosize < np->n_size)
1051 bcount = biosize;
1052 else
1053 bcount = np->n_size - (off_t)lbn * biosize;
1054 }
1055 mtx_unlock(&np->n_mtx);
1056 bp = nfs_getcacheblk(vp, lbn, bcount, td);
1057 mtx_lock(&np->n_mtx);
1058 if (uio->uio_offset + n > np->n_size) {
1059 np->n_size = uio->uio_offset + n;
1060 np->n_flag |= NMODIFIED;
1061 vnode_pager_setsize(vp, np->n_size);
1062 }
1063 mtx_unlock(&np->n_mtx);
1064 }
1065
1066 if (!bp) {
1067 error = newnfs_sigintr(nmp, td);
1068 if (!error)
1069 error = EINTR;
1070 break;
1071 }
1072
1073 /*
1074 * Issue a READ if B_CACHE is not set. In special-append
1075 * mode, B_CACHE is based on the buffer prior to the write
1076 * op and is typically set, avoiding the read. If a read
1077 * is required in special append mode, the server will
1078 * probably send us a short-read since we extended the file
1079 * on our end, resulting in b_resid == 0 and, thusly,
1080 * B_CACHE getting set.
1081 *
1082 * We can also avoid issuing the read if the write covers
1083 * the entire buffer. We have to make sure the buffer state
1084 * is reasonable in this case since we will not be initiating
1085 * I/O. See the comments in kern/vfs_bio.c's getblk() for
1086 * more information.
1087 *
1088 * B_CACHE may also be set due to the buffer being cached
1089 * normally.
1090 */
1091
1092 bp_cached = 1;
1093 if (on == 0 && n == bcount) {
1094 if ((bp->b_flags & B_CACHE) == 0)
1095 bp_cached = 0;
1096 bp->b_flags |= B_CACHE;
1097 bp->b_flags &= ~B_INVAL;
1098 bp->b_ioflags &= ~BIO_ERROR;
1099 }
1100
1101 if ((bp->b_flags & B_CACHE) == 0) {
1102 bp->b_iocmd = BIO_READ;
1103 vfs_busy_pages(bp, 0);
1104 error = ncl_doio(vp, bp, cred, td, 0);
1105 if (error) {
1106 brelse(bp);
1107 break;
1108 }
1109 }
1110 if (bp->b_wcred == NOCRED)
1111 bp->b_wcred = crhold(cred);
1112 mtx_lock(&np->n_mtx);
1113 np->n_flag |= NMODIFIED;
1114 mtx_unlock(&np->n_mtx);
1115
1116 /*
1117 * If dirtyend exceeds file size, chop it down. This should
1118 * not normally occur but there is an append race where it
1119 * might occur XXX, so we log it.
1120 *
1121 * If the chopping creates a reverse-indexed or degenerate
1122 * situation with dirtyoff/end, we 0 both of them.
1123 */
1124
1125 if (bp->b_dirtyend > bcount) {
1126 printf("NFS append race @%lx:%d\n",
1127 (long)bp->b_blkno * DEV_BSIZE,
1128 bp->b_dirtyend - bcount);
1129 bp->b_dirtyend = bcount;
1130 }
1131
1132 if (bp->b_dirtyoff >= bp->b_dirtyend)
1133 bp->b_dirtyoff = bp->b_dirtyend = 0;
1134
1135 /*
1136 * If the new write will leave a contiguous dirty
1137 * area, just update the b_dirtyoff and b_dirtyend,
1138 * otherwise force a write rpc of the old dirty area.
1139 *
1140 * If there has been a file lock applied to this file
1141 * or vfs.nfs.old_noncontig_writing is set, do the following:
1142 * While it is possible to merge discontiguous writes due to
1143 * our having a B_CACHE buffer ( and thus valid read data
1144 * for the hole), we don't because it could lead to
1145 * significant cache coherency problems with multiple clients,
1146 * especially if locking is implemented later on.
1147 *
1148 * If vfs.nfs.old_noncontig_writing is not set and there has
1149 * not been file locking done on this file:
1150 * Relax coherency a bit for the sake of performance and
1151 * expand the current dirty region to contain the new
1152 * write even if it means we mark some non-dirty data as
1153 * dirty.
1154 */
1155
1156 if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1157 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1158 if (bwrite(bp) == EINTR) {
1159 error = EINTR;
1160 break;
1161 }
1162 goto again;
1163 }
1164
1165 local_resid = uio->uio_resid;
1166 error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1167
1168 if (error != 0 && !bp_cached) {
1169 /*
1170 * This block has no other content than what
1171 * possibly was written by the faulty uiomove.
1172 * Release it, forgetting the data pages, to
1173 * prevent the leak of uninitialized data to
1174 * usermode.
1175 */
1176 bp->b_ioflags |= BIO_ERROR;
1177 brelse(bp);
1178 uio->uio_offset -= local_resid - uio->uio_resid;
1179 uio->uio_resid = local_resid;
1180 break;
1181 }
1182
1183 /*
1184 * Since this block is being modified, it must be written
1185 * again and not just committed. Since write clustering does
1186 * not work for the stage 1 data write, only the stage 2
1187 * commit rpc, we have to clear B_CLUSTEROK as well.
1188 */
1189 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1190
1191 /*
1192 * Get the partial update on the progress made from
1193 * uiomove, if an error occurred.
1194 */
1195 if (error != 0)
1196 n = local_resid - uio->uio_resid;
1197
1198 /*
1199 * Only update dirtyoff/dirtyend if not a degenerate
1200 * condition.
1201 */
1202 if (n > 0) {
1203 if (bp->b_dirtyend > 0) {
1204 bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1205 bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1206 } else {
1207 bp->b_dirtyoff = on;
1208 bp->b_dirtyend = on + n;
1209 }
1210 vfs_bio_set_valid(bp, on, n);
1211 }
1212
1213 /*
1214 * If IO_SYNC do bwrite().
1215 *
1216 * IO_INVAL appears to be unused. The idea appears to be
1217 * to turn off caching in this case. Very odd. XXX
1218 */
1219 if ((ioflag & IO_SYNC)) {
1220 if (ioflag & IO_INVAL)
1221 bp->b_flags |= B_NOCACHE;
1222 error1 = bwrite(bp);
1223 if (error1 != 0) {
1224 if (error == 0)
1225 error = error1;
1226 break;
1227 }
1228 } else if ((n + on) == biosize) {
1229 bp->b_flags |= B_ASYNC;
1230 (void) ncl_writebp(bp, 0, NULL);
1231 } else {
1232 bdwrite(bp);
1233 }
1234
1235 if (error != 0)
1236 break;
1237 } while (uio->uio_resid > 0 && n > 0);
1238
1239 if (error != 0) {
1240 if (ioflag & IO_UNIT) {
1241 VATTR_NULL(&vattr);
1242 vattr.va_size = orig_size;
1243 /* IO_SYNC is handled implicitely */
1244 (void)VOP_SETATTR(vp, &vattr, cred);
1245 uio->uio_offset -= orig_resid - uio->uio_resid;
1246 uio->uio_resid = orig_resid;
1247 }
1248 }
1249
1250 return (error);
1251 }
1252
1253 /*
1254 * Get an nfs cache block.
1255 *
1256 * Allocate a new one if the block isn't currently in the cache
1257 * and return the block marked busy. If the calling process is
1258 * interrupted by a signal for an interruptible mount point, return
1259 * NULL.
1260 *
1261 * The caller must carefully deal with the possible B_INVAL state of
1262 * the buffer. ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1263 * indirectly), so synchronous reads can be issued without worrying about
1264 * the B_INVAL state. We have to be a little more careful when dealing
1265 * with writes (see comments in nfs_write()) when extending a file past
1266 * its EOF.
1267 */
1268 static struct buf *
1269 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1270 {
1271 struct buf *bp;
1272 struct mount *mp;
1273 struct nfsmount *nmp;
1274
1275 mp = vp->v_mount;
1276 nmp = VFSTONFS(mp);
1277
1278 if (nmp->nm_flag & NFSMNT_INT) {
1279 sigset_t oldset;
1280
1281 newnfs_set_sigmask(td, &oldset);
1282 bp = getblk(vp, bn, size, PCATCH, 0, 0);
1283 newnfs_restore_sigmask(td, &oldset);
1284 while (bp == NULL) {
1285 if (newnfs_sigintr(nmp, td))
1286 return (NULL);
1287 bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1288 }
1289 } else {
1290 bp = getblk(vp, bn, size, 0, 0, 0);
1291 }
1292
1293 if (vp->v_type == VREG)
1294 bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1295 return (bp);
1296 }
1297
1298 /*
1299 * Flush and invalidate all dirty buffers. If another process is already
1300 * doing the flush, just wait for completion.
1301 */
1302 int
1303 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1304 {
1305 struct nfsnode *np = VTONFS(vp);
1306 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1307 int error = 0, slpflag, slptimeo;
1308 int old_lock = 0;
1309
1310 ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1311
1312 if ((nmp->nm_flag & NFSMNT_INT) == 0)
1313 intrflg = 0;
1314 if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1315 intrflg = 1;
1316 if (intrflg) {
1317 slpflag = PCATCH;
1318 slptimeo = 2 * hz;
1319 } else {
1320 slpflag = 0;
1321 slptimeo = 0;
1322 }
1323
1324 old_lock = ncl_upgrade_vnlock(vp);
1325 if (vp->v_iflag & VI_DOOMED) {
1326 /*
1327 * Since vgonel() uses the generic vinvalbuf() to flush
1328 * dirty buffers and it does not call this function, it
1329 * is safe to just return OK when VI_DOOMED is set.
1330 */
1331 ncl_downgrade_vnlock(vp, old_lock);
1332 return (0);
1333 }
1334
1335 /*
1336 * Now, flush as required.
1337 */
1338 if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1339 VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1340 vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1341 VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1342 /*
1343 * If the page clean was interrupted, fail the invalidation.
1344 * Not doing so, we run the risk of losing dirty pages in the
1345 * vinvalbuf() call below.
1346 */
1347 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1348 goto out;
1349 }
1350
1351 error = vinvalbuf(vp, flags, slpflag, 0);
1352 while (error) {
1353 if (intrflg && (error = newnfs_sigintr(nmp, td)))
1354 goto out;
1355 error = vinvalbuf(vp, flags, 0, slptimeo);
1356 }
1357 if (NFSHASPNFS(nmp)) {
1358 nfscl_layoutcommit(vp, td);
1359 /*
1360 * Invalidate the attribute cache, since writes to a DS
1361 * won't update the size attribute.
1362 */
1363 mtx_lock(&np->n_mtx);
1364 np->n_attrstamp = 0;
1365 } else
1366 mtx_lock(&np->n_mtx);
1367 if (np->n_directio_asyncwr == 0)
1368 np->n_flag &= ~NMODIFIED;
1369 mtx_unlock(&np->n_mtx);
1370 out:
1371 ncl_downgrade_vnlock(vp, old_lock);
1372 return error;
1373 }
1374
1375 /*
1376 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1377 * This is mainly to avoid queueing async I/O requests when the nfsiods
1378 * are all hung on a dead server.
1379 *
1380 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1381 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1382 */
1383 int
1384 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1385 {
1386 int iod;
1387 int gotiod;
1388 int slpflag = 0;
1389 int slptimeo = 0;
1390 int error, error2;
1391
1392 /*
1393 * Commits are usually short and sweet so lets save some cpu and
1394 * leave the async daemons for more important rpc's (such as reads
1395 * and writes).
1396 *
1397 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1398 * in the directory in order to update attributes. This can deadlock
1399 * with another thread that is waiting for async I/O to be done by
1400 * an nfsiod thread while holding a lock on one of these vnodes.
1401 * To avoid this deadlock, don't allow the async nfsiod threads to
1402 * perform Readdirplus RPCs.
1403 */
1404 mtx_lock(&ncl_iod_mutex);
1405 if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1406 (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1407 (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1408 mtx_unlock(&ncl_iod_mutex);
1409 return(EIO);
1410 }
1411 again:
1412 if (nmp->nm_flag & NFSMNT_INT)
1413 slpflag = PCATCH;
1414 gotiod = FALSE;
1415
1416 /*
1417 * Find a free iod to process this request.
1418 */
1419 for (iod = 0; iod < ncl_numasync; iod++)
1420 if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1421 gotiod = TRUE;
1422 break;
1423 }
1424
1425 /*
1426 * Try to create one if none are free.
1427 */
1428 if (!gotiod)
1429 ncl_nfsiodnew();
1430 else {
1431 /*
1432 * Found one, so wake it up and tell it which
1433 * mount to process.
1434 */
1435 NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1436 iod, nmp));
1437 ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1438 ncl_iodmount[iod] = nmp;
1439 nmp->nm_bufqiods++;
1440 wakeup(&ncl_iodwant[iod]);
1441 }
1442
1443 /*
1444 * If none are free, we may already have an iod working on this mount
1445 * point. If so, it will process our request.
1446 */
1447 if (!gotiod) {
1448 if (nmp->nm_bufqiods > 0) {
1449 NFS_DPF(ASYNCIO,
1450 ("ncl_asyncio: %d iods are already processing mount %p\n",
1451 nmp->nm_bufqiods, nmp));
1452 gotiod = TRUE;
1453 }
1454 }
1455
1456 /*
1457 * If we have an iod which can process the request, then queue
1458 * the buffer.
1459 */
1460 if (gotiod) {
1461 /*
1462 * Ensure that the queue never grows too large. We still want
1463 * to asynchronize so we block rather than return EIO.
1464 */
1465 while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1466 NFS_DPF(ASYNCIO,
1467 ("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1468 nmp->nm_bufqwant = TRUE;
1469 error = newnfs_msleep(td, &nmp->nm_bufq,
1470 &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1471 slptimeo);
1472 if (error) {
1473 error2 = newnfs_sigintr(nmp, td);
1474 if (error2) {
1475 mtx_unlock(&ncl_iod_mutex);
1476 return (error2);
1477 }
1478 if (slpflag == PCATCH) {
1479 slpflag = 0;
1480 slptimeo = 2 * hz;
1481 }
1482 }
1483 /*
1484 * We might have lost our iod while sleeping,
1485 * so check and loop if necessary.
1486 */
1487 goto again;
1488 }
1489
1490 /* We might have lost our nfsiod */
1491 if (nmp->nm_bufqiods == 0) {
1492 NFS_DPF(ASYNCIO,
1493 ("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1494 goto again;
1495 }
1496
1497 if (bp->b_iocmd == BIO_READ) {
1498 if (bp->b_rcred == NOCRED && cred != NOCRED)
1499 bp->b_rcred = crhold(cred);
1500 } else {
1501 if (bp->b_wcred == NOCRED && cred != NOCRED)
1502 bp->b_wcred = crhold(cred);
1503 }
1504
1505 if (bp->b_flags & B_REMFREE)
1506 bremfreef(bp);
1507 BUF_KERNPROC(bp);
1508 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1509 nmp->nm_bufqlen++;
1510 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1511 mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1512 VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1513 VTONFS(bp->b_vp)->n_directio_asyncwr++;
1514 mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1515 }
1516 mtx_unlock(&ncl_iod_mutex);
1517 return (0);
1518 }
1519
1520 mtx_unlock(&ncl_iod_mutex);
1521
1522 /*
1523 * All the iods are busy on other mounts, so return EIO to
1524 * force the caller to process the i/o synchronously.
1525 */
1526 NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1527 return (EIO);
1528 }
1529
1530 void
1531 ncl_doio_directwrite(struct buf *bp)
1532 {
1533 int iomode, must_commit;
1534 struct uio *uiop = (struct uio *)bp->b_caller1;
1535 char *iov_base = uiop->uio_iov->iov_base;
1536
1537 iomode = NFSWRITE_FILESYNC;
1538 uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1539 ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1540 KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1541 free(iov_base, M_NFSDIRECTIO);
1542 free(uiop->uio_iov, M_NFSDIRECTIO);
1543 free(uiop, M_NFSDIRECTIO);
1544 if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1545 struct nfsnode *np = VTONFS(bp->b_vp);
1546 mtx_lock(&np->n_mtx);
1547 if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1548 /*
1549 * Invalidate the attribute cache, since writes to a DS
1550 * won't update the size attribute.
1551 */
1552 np->n_attrstamp = 0;
1553 }
1554 np->n_directio_asyncwr--;
1555 if (np->n_directio_asyncwr == 0) {
1556 np->n_flag &= ~NMODIFIED;
1557 if ((np->n_flag & NFSYNCWAIT)) {
1558 np->n_flag &= ~NFSYNCWAIT;
1559 wakeup((caddr_t)&np->n_directio_asyncwr);
1560 }
1561 }
1562 mtx_unlock(&np->n_mtx);
1563 }
1564 bp->b_vp = NULL;
1565 relpbuf(bp, &ncl_pbuf_freecnt);
1566 }
1567
1568 /*
1569 * Do an I/O operation to/from a cache block. This may be called
1570 * synchronously or from an nfsiod.
1571 */
1572 int
1573 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1574 int called_from_strategy)
1575 {
1576 struct uio *uiop;
1577 struct nfsnode *np;
1578 struct nfsmount *nmp;
1579 int error = 0, iomode, must_commit = 0;
1580 struct uio uio;
1581 struct iovec io;
1582 struct proc *p = td ? td->td_proc : NULL;
1583 uint8_t iocmd;
1584
1585 np = VTONFS(vp);
1586 nmp = VFSTONFS(vp->v_mount);
1587 uiop = &uio;
1588 uiop->uio_iov = &io;
1589 uiop->uio_iovcnt = 1;
1590 uiop->uio_segflg = UIO_SYSSPACE;
1591 uiop->uio_td = td;
1592
1593 /*
1594 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O. We
1595 * do this here so we do not have to do it in all the code that
1596 * calls us.
1597 */
1598 bp->b_flags &= ~B_INVAL;
1599 bp->b_ioflags &= ~BIO_ERROR;
1600
1601 KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1602 iocmd = bp->b_iocmd;
1603 if (iocmd == BIO_READ) {
1604 io.iov_len = uiop->uio_resid = bp->b_bcount;
1605 io.iov_base = bp->b_data;
1606 uiop->uio_rw = UIO_READ;
1607
1608 switch (vp->v_type) {
1609 case VREG:
1610 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1611 NFSINCRGLOBAL(nfsstatsv1.read_bios);
1612 error = ncl_readrpc(vp, uiop, cr);
1613
1614 if (!error) {
1615 if (uiop->uio_resid) {
1616 /*
1617 * If we had a short read with no error, we must have
1618 * hit a file hole. We should zero-fill the remainder.
1619 * This can also occur if the server hits the file EOF.
1620 *
1621 * Holes used to be able to occur due to pending
1622 * writes, but that is not possible any longer.
1623 */
1624 int nread = bp->b_bcount - uiop->uio_resid;
1625 ssize_t left = uiop->uio_resid;
1626
1627 if (left > 0)
1628 bzero((char *)bp->b_data + nread, left);
1629 uiop->uio_resid = 0;
1630 }
1631 }
1632 /* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1633 if (p && (vp->v_vflag & VV_TEXT)) {
1634 mtx_lock(&np->n_mtx);
1635 if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1636 mtx_unlock(&np->n_mtx);
1637 PROC_LOCK(p);
1638 killproc(p, "text file modification");
1639 PROC_UNLOCK(p);
1640 } else
1641 mtx_unlock(&np->n_mtx);
1642 }
1643 break;
1644 case VLNK:
1645 uiop->uio_offset = (off_t)0;
1646 NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
1647 error = ncl_readlinkrpc(vp, uiop, cr);
1648 break;
1649 case VDIR:
1650 NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
1651 uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1652 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1653 error = ncl_readdirplusrpc(vp, uiop, cr, td);
1654 if (error == NFSERR_NOTSUPP)
1655 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1656 }
1657 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1658 error = ncl_readdirrpc(vp, uiop, cr, td);
1659 /*
1660 * end-of-directory sets B_INVAL but does not generate an
1661 * error.
1662 */
1663 if (error == 0 && uiop->uio_resid == bp->b_bcount)
1664 bp->b_flags |= B_INVAL;
1665 break;
1666 default:
1667 printf("ncl_doio: type %x unexpected\n", vp->v_type);
1668 break;
1669 }
1670 if (error) {
1671 bp->b_ioflags |= BIO_ERROR;
1672 bp->b_error = error;
1673 }
1674 } else {
1675 /*
1676 * If we only need to commit, try to commit
1677 */
1678 if (bp->b_flags & B_NEEDCOMMIT) {
1679 int retv;
1680 off_t off;
1681
1682 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1683 retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1684 bp->b_wcred, td);
1685 if (retv == 0) {
1686 bp->b_dirtyoff = bp->b_dirtyend = 0;
1687 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1688 bp->b_resid = 0;
1689 bufdone(bp);
1690 return (0);
1691 }
1692 if (retv == NFSERR_STALEWRITEVERF) {
1693 ncl_clearcommit(vp->v_mount);
1694 }
1695 }
1696
1697 /*
1698 * Setup for actual write
1699 */
1700 mtx_lock(&np->n_mtx);
1701 if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1702 bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1703 mtx_unlock(&np->n_mtx);
1704
1705 if (bp->b_dirtyend > bp->b_dirtyoff) {
1706 io.iov_len = uiop->uio_resid = bp->b_dirtyend
1707 - bp->b_dirtyoff;
1708 uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1709 + bp->b_dirtyoff;
1710 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1711 uiop->uio_rw = UIO_WRITE;
1712 NFSINCRGLOBAL(nfsstatsv1.write_bios);
1713
1714 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1715 iomode = NFSWRITE_UNSTABLE;
1716 else
1717 iomode = NFSWRITE_FILESYNC;
1718
1719 error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1720 called_from_strategy);
1721
1722 /*
1723 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1724 * to cluster the buffers needing commit. This will allow
1725 * the system to submit a single commit rpc for the whole
1726 * cluster. We can do this even if the buffer is not 100%
1727 * dirty (relative to the NFS blocksize), so we optimize the
1728 * append-to-file-case.
1729 *
1730 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1731 * cleared because write clustering only works for commit
1732 * rpc's, not for the data portion of the write).
1733 */
1734
1735 if (!error && iomode == NFSWRITE_UNSTABLE) {
1736 bp->b_flags |= B_NEEDCOMMIT;
1737 if (bp->b_dirtyoff == 0
1738 && bp->b_dirtyend == bp->b_bcount)
1739 bp->b_flags |= B_CLUSTEROK;
1740 } else {
1741 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1742 }
1743
1744 /*
1745 * For an interrupted write, the buffer is still valid
1746 * and the write hasn't been pushed to the server yet,
1747 * so we can't set BIO_ERROR and report the interruption
1748 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1749 * is not relevant, so the rpc attempt is essentially
1750 * a noop. For the case of a V3 write rpc not being
1751 * committed to stable storage, the block is still
1752 * dirty and requires either a commit rpc or another
1753 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1754 * the block is reused. This is indicated by setting
1755 * the B_DELWRI and B_NEEDCOMMIT flags.
1756 *
1757 * EIO is returned by ncl_writerpc() to indicate a recoverable
1758 * write error and is handled as above, except that
1759 * B_EINTR isn't set. One cause of this is a stale stateid
1760 * error for the RPC that indicates recovery is required,
1761 * when called with called_from_strategy != 0.
1762 *
1763 * If the buffer is marked B_PAGING, it does not reside on
1764 * the vp's paging queues so we cannot call bdirty(). The
1765 * bp in this case is not an NFS cache block so we should
1766 * be safe. XXX
1767 *
1768 * The logic below breaks up errors into recoverable and
1769 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1770 * and keep the buffer around for potential write retries.
1771 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1772 * and save the error in the nfsnode. This is less than ideal
1773 * but necessary. Keeping such buffers around could potentially
1774 * cause buffer exhaustion eventually (they can never be written
1775 * out, so will get constantly be re-dirtied). It also causes
1776 * all sorts of vfs panics. For non-recoverable write errors,
1777 * also invalidate the attrcache, so we'll be forced to go over
1778 * the wire for this object, returning an error to user on next
1779 * call (most of the time).
1780 */
1781 if (error == EINTR || error == EIO || error == ETIMEDOUT
1782 || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1783 int s;
1784
1785 s = splbio();
1786 bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1787 if ((bp->b_flags & B_PAGING) == 0) {
1788 bdirty(bp);
1789 bp->b_flags &= ~B_DONE;
1790 }
1791 if ((error == EINTR || error == ETIMEDOUT) &&
1792 (bp->b_flags & B_ASYNC) == 0)
1793 bp->b_flags |= B_EINTR;
1794 splx(s);
1795 } else {
1796 if (error) {
1797 bp->b_ioflags |= BIO_ERROR;
1798 bp->b_flags |= B_INVAL;
1799 bp->b_error = np->n_error = error;
1800 mtx_lock(&np->n_mtx);
1801 np->n_flag |= NWRITEERR;
1802 np->n_attrstamp = 0;
1803 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1804 mtx_unlock(&np->n_mtx);
1805 }
1806 bp->b_dirtyoff = bp->b_dirtyend = 0;
1807 }
1808 } else {
1809 bp->b_resid = 0;
1810 bufdone(bp);
1811 return (0);
1812 }
1813 }
1814 bp->b_resid = uiop->uio_resid;
1815 if (must_commit)
1816 ncl_clearcommit(vp->v_mount);
1817 bufdone(bp);
1818 return (error);
1819 }
1820
1821 /*
1822 * Used to aid in handling ftruncate() operations on the NFS client side.
1823 * Truncation creates a number of special problems for NFS. We have to
1824 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1825 * we have to properly handle VM pages or (potentially dirty) buffers
1826 * that straddle the truncation point.
1827 */
1828
1829 int
1830 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1831 {
1832 struct nfsnode *np = VTONFS(vp);
1833 u_quad_t tsize;
1834 int biosize = vp->v_bufobj.bo_bsize;
1835 int error = 0;
1836
1837 mtx_lock(&np->n_mtx);
1838 tsize = np->n_size;
1839 np->n_size = nsize;
1840 mtx_unlock(&np->n_mtx);
1841
1842 if (nsize < tsize) {
1843 struct buf *bp;
1844 daddr_t lbn;
1845 int bufsize;
1846
1847 /*
1848 * vtruncbuf() doesn't get the buffer overlapping the
1849 * truncation point. We may have a B_DELWRI and/or B_CACHE
1850 * buffer that now needs to be truncated.
1851 */
1852 error = vtruncbuf(vp, cred, nsize, biosize);
1853 lbn = nsize / biosize;
1854 bufsize = nsize - (lbn * biosize);
1855 bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1856 if (!bp)
1857 return EINTR;
1858 if (bp->b_dirtyoff > bp->b_bcount)
1859 bp->b_dirtyoff = bp->b_bcount;
1860 if (bp->b_dirtyend > bp->b_bcount)
1861 bp->b_dirtyend = bp->b_bcount;
1862 bp->b_flags |= B_RELBUF; /* don't leave garbage around */
1863 brelse(bp);
1864 } else {
1865 vnode_pager_setsize(vp, nsize);
1866 }
1867 return(error);
1868 }
1869
1870