nfs_clport.c revision 1.1.1.1.12.1 1 /* $NetBSD: nfs_clport.c,v 1.1.1.1.12.1 2016/12/05 10:55:25 skrll Exp $ */
2 /*-
3 * Copyright (c) 1989, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Rick Macklem at The University of Guelph.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 */
34
35 #include <sys/cdefs.h>
36 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clport.c 299413 2016-05-11 06:35:46Z kib "); */
37 __RCSID("$NetBSD: nfs_clport.c,v 1.1.1.1.12.1 2016/12/05 10:55:25 skrll Exp $");
38
39 #include "opt_inet.h"
40 #include "opt_inet6.h"
41
42 #include <sys/capsicum.h>
43
44 /*
45 * generally, I don't like #includes inside .h files, but it seems to
46 * be the easiest way to handle the port.
47 */
48 #include <sys/fail.h>
49 #include <sys/hash.h>
50 #include <sys/sysctl.h>
51 #include <fs/nfs/nfsport.h>
52 #include <netinet/in_fib.h>
53 #include <netinet/if_ether.h>
54 #include <netinet6/ip6_var.h>
55 #include <net/if_types.h>
56
57 #include <fs/nfsclient/nfs_kdtrace.h>
58
59 #ifdef KDTRACE_HOOKS
60 dtrace_nfsclient_attrcache_flush_probe_func_t
61 dtrace_nfscl_attrcache_flush_done_probe;
62 uint32_t nfscl_attrcache_flush_done_id;
63
64 dtrace_nfsclient_attrcache_get_hit_probe_func_t
65 dtrace_nfscl_attrcache_get_hit_probe;
66 uint32_t nfscl_attrcache_get_hit_id;
67
68 dtrace_nfsclient_attrcache_get_miss_probe_func_t
69 dtrace_nfscl_attrcache_get_miss_probe;
70 uint32_t nfscl_attrcache_get_miss_id;
71
72 dtrace_nfsclient_attrcache_load_probe_func_t
73 dtrace_nfscl_attrcache_load_done_probe;
74 uint32_t nfscl_attrcache_load_done_id;
75 #endif /* !KDTRACE_HOOKS */
76
77 extern u_int32_t newnfs_true, newnfs_false, newnfs_xdrneg1;
78 extern struct vop_vector newnfs_vnodeops;
79 extern struct vop_vector newnfs_fifoops;
80 extern uma_zone_t newnfsnode_zone;
81 extern struct buf_ops buf_ops_newnfs;
82 extern int ncl_pbuf_freecnt;
83 extern short nfsv4_cbport;
84 extern int nfscl_enablecallb;
85 extern int nfs_numnfscbd;
86 extern int nfscl_inited;
87 struct mtx nfs_clstate_mutex;
88 struct mtx ncl_iod_mutex;
89 NFSDLOCKMUTEX;
90
91 extern void (*ncl_call_invalcaches)(struct vnode *);
92
93 SYSCTL_DECL(_vfs_nfs);
94 static int ncl_fileid_maxwarnings = 10;
95 SYSCTL_INT(_vfs_nfs, OID_AUTO, fileid_maxwarnings, CTLFLAG_RWTUN,
96 &ncl_fileid_maxwarnings, 0,
97 "Limit fileid corruption warnings; 0 is off; -1 is unlimited");
98 static volatile int ncl_fileid_nwarnings;
99
100 static void nfscl_warn_fileid(struct nfsmount *, struct nfsvattr *,
101 struct nfsvattr *);
102
103 /*
104 * Comparison function for vfs_hash functions.
105 */
106 int
107 newnfs_vncmpf(struct vnode *vp, void *arg)
108 {
109 struct nfsfh *nfhp = (struct nfsfh *)arg;
110 struct nfsnode *np = VTONFS(vp);
111
112 if (np->n_fhp->nfh_len != nfhp->nfh_len ||
113 NFSBCMP(np->n_fhp->nfh_fh, nfhp->nfh_fh, nfhp->nfh_len))
114 return (1);
115 return (0);
116 }
117
118 /*
119 * Look up a vnode/nfsnode by file handle.
120 * Callers must check for mount points!!
121 * In all cases, a pointer to a
122 * nfsnode structure is returned.
123 * This variant takes a "struct nfsfh *" as second argument and uses
124 * that structure up, either by hanging off the nfsnode or FREEing it.
125 */
126 int
127 nfscl_nget(struct mount *mntp, struct vnode *dvp, struct nfsfh *nfhp,
128 struct componentname *cnp, struct thread *td, struct nfsnode **npp,
129 void *stuff, int lkflags)
130 {
131 struct nfsnode *np, *dnp;
132 struct vnode *vp, *nvp;
133 struct nfsv4node *newd, *oldd;
134 int error;
135 u_int hash;
136 struct nfsmount *nmp;
137
138 nmp = VFSTONFS(mntp);
139 dnp = VTONFS(dvp);
140 *npp = NULL;
141
142 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len, FNV1_32_INIT);
143
144 error = vfs_hash_get(mntp, hash, lkflags,
145 td, &nvp, newnfs_vncmpf, nfhp);
146 if (error == 0 && nvp != NULL) {
147 /*
148 * I believe there is a slight chance that vgonel() could
149 * get called on this vnode between when NFSVOPLOCK() drops
150 * the VI_LOCK() and vget() acquires it again, so that it
151 * hasn't yet had v_usecount incremented. If this were to
152 * happen, the VI_DOOMED flag would be set, so check for
153 * that here. Since we now have the v_usecount incremented,
154 * we should be ok until we vrele() it, if the VI_DOOMED
155 * flag isn't set now.
156 */
157 VI_LOCK(nvp);
158 if ((nvp->v_iflag & VI_DOOMED)) {
159 VI_UNLOCK(nvp);
160 vrele(nvp);
161 error = ENOENT;
162 } else {
163 VI_UNLOCK(nvp);
164 }
165 }
166 if (error) {
167 FREE((caddr_t)nfhp, M_NFSFH);
168 return (error);
169 }
170 if (nvp != NULL) {
171 np = VTONFS(nvp);
172 /*
173 * For NFSv4, check to see if it is the same name and
174 * replace the name, if it is different.
175 */
176 oldd = newd = NULL;
177 if ((nmp->nm_flag & NFSMNT_NFSV4) && np->n_v4 != NULL &&
178 nvp->v_type == VREG &&
179 (np->n_v4->n4_namelen != cnp->cn_namelen ||
180 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
181 cnp->cn_namelen) ||
182 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
183 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
184 dnp->n_fhp->nfh_len))) {
185 MALLOC(newd, struct nfsv4node *,
186 sizeof (struct nfsv4node) + dnp->n_fhp->nfh_len +
187 + cnp->cn_namelen - 1, M_NFSV4NODE, M_WAITOK);
188 NFSLOCKNODE(np);
189 if (newd != NULL && np->n_v4 != NULL && nvp->v_type == VREG
190 && (np->n_v4->n4_namelen != cnp->cn_namelen ||
191 NFSBCMP(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
192 cnp->cn_namelen) ||
193 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
194 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
195 dnp->n_fhp->nfh_len))) {
196 oldd = np->n_v4;
197 np->n_v4 = newd;
198 newd = NULL;
199 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
200 np->n_v4->n4_namelen = cnp->cn_namelen;
201 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
202 dnp->n_fhp->nfh_len);
203 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
204 cnp->cn_namelen);
205 }
206 NFSUNLOCKNODE(np);
207 }
208 if (newd != NULL)
209 FREE((caddr_t)newd, M_NFSV4NODE);
210 if (oldd != NULL)
211 FREE((caddr_t)oldd, M_NFSV4NODE);
212 *npp = np;
213 FREE((caddr_t)nfhp, M_NFSFH);
214 return (0);
215 }
216 np = uma_zalloc(newnfsnode_zone, M_WAITOK | M_ZERO);
217
218 error = getnewvnode(nfs_vnode_tag, mntp, &newnfs_vnodeops, &nvp);
219 if (error) {
220 uma_zfree(newnfsnode_zone, np);
221 FREE((caddr_t)nfhp, M_NFSFH);
222 return (error);
223 }
224 vp = nvp;
225 KASSERT(vp->v_bufobj.bo_bsize != 0, ("nfscl_nget: bo_bsize == 0"));
226 vp->v_bufobj.bo_ops = &buf_ops_newnfs;
227 vp->v_data = np;
228 np->n_vnode = vp;
229 /*
230 * Initialize the mutex even if the vnode is going to be a loser.
231 * This simplifies the logic in reclaim, which can then unconditionally
232 * destroy the mutex (in the case of the loser, or if hash_insert
233 * happened to return an error no special casing is needed).
234 */
235 mtx_init(&np->n_mtx, "NEWNFSnode lock", NULL, MTX_DEF | MTX_DUPOK);
236
237 /*
238 * Are we getting the root? If so, make sure the vnode flags
239 * are correct
240 */
241 if ((nfhp->nfh_len == nmp->nm_fhsize) &&
242 !bcmp(nfhp->nfh_fh, nmp->nm_fh, nfhp->nfh_len)) {
243 if (vp->v_type == VNON)
244 vp->v_type = VDIR;
245 vp->v_vflag |= VV_ROOT;
246 }
247
248 np->n_fhp = nfhp;
249 /*
250 * For NFSv4, we have to attach the directory file handle and
251 * file name, so that Open Ops can be done later.
252 */
253 if (nmp->nm_flag & NFSMNT_NFSV4) {
254 MALLOC(np->n_v4, struct nfsv4node *, sizeof (struct nfsv4node)
255 + dnp->n_fhp->nfh_len + cnp->cn_namelen - 1, M_NFSV4NODE,
256 M_WAITOK);
257 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
258 np->n_v4->n4_namelen = cnp->cn_namelen;
259 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
260 dnp->n_fhp->nfh_len);
261 NFSBCOPY(cnp->cn_nameptr, NFS4NODENAME(np->n_v4),
262 cnp->cn_namelen);
263 } else {
264 np->n_v4 = NULL;
265 }
266
267 /*
268 * NFS supports recursive and shared locking.
269 */
270 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
271 VN_LOCK_AREC(vp);
272 VN_LOCK_ASHARE(vp);
273 error = insmntque(vp, mntp);
274 if (error != 0) {
275 *npp = NULL;
276 mtx_destroy(&np->n_mtx);
277 FREE((caddr_t)nfhp, M_NFSFH);
278 if (np->n_v4 != NULL)
279 FREE((caddr_t)np->n_v4, M_NFSV4NODE);
280 uma_zfree(newnfsnode_zone, np);
281 return (error);
282 }
283 error = vfs_hash_insert(vp, hash, lkflags,
284 td, &nvp, newnfs_vncmpf, nfhp);
285 if (error)
286 return (error);
287 if (nvp != NULL) {
288 *npp = VTONFS(nvp);
289 /* vfs_hash_insert() vput()'s the losing vnode */
290 return (0);
291 }
292 *npp = np;
293
294 return (0);
295 }
296
297 /*
298 * Another variant of nfs_nget(). This one is only used by reopen. It
299 * takes almost the same args as nfs_nget(), but only succeeds if an entry
300 * exists in the cache. (Since files should already be "open" with a
301 * vnode ref cnt on the node when reopen calls this, it should always
302 * succeed.)
303 * Also, don't get a vnode lock, since it may already be locked by some
304 * other process that is handling it. This is ok, since all other threads
305 * on the client are blocked by the nfsc_lock being exclusively held by the
306 * caller of this function.
307 */
308 int
309 nfscl_ngetreopen(struct mount *mntp, u_int8_t *fhp, int fhsize,
310 struct thread *td, struct nfsnode **npp)
311 {
312 struct vnode *nvp;
313 u_int hash;
314 struct nfsfh *nfhp;
315 int error;
316
317 *npp = NULL;
318 /* For forced dismounts, just return error. */
319 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
320 return (EINTR);
321 MALLOC(nfhp, struct nfsfh *, sizeof (struct nfsfh) + fhsize,
322 M_NFSFH, M_WAITOK);
323 bcopy(fhp, &nfhp->nfh_fh[0], fhsize);
324 nfhp->nfh_len = fhsize;
325
326 hash = fnv_32_buf(fhp, fhsize, FNV1_32_INIT);
327
328 /*
329 * First, try to get the vnode locked, but don't block for the lock.
330 */
331 error = vfs_hash_get(mntp, hash, (LK_EXCLUSIVE | LK_NOWAIT), td, &nvp,
332 newnfs_vncmpf, nfhp);
333 if (error == 0 && nvp != NULL) {
334 NFSVOPUNLOCK(nvp, 0);
335 } else if (error == EBUSY) {
336 /*
337 * It is safe so long as a vflush() with
338 * FORCECLOSE has not been done. Since the Renew thread is
339 * stopped and the MNTK_UNMOUNTF flag is set before doing
340 * a vflush() with FORCECLOSE, we should be ok here.
341 */
342 if ((mntp->mnt_kern_flag & MNTK_UNMOUNTF))
343 error = EINTR;
344 else {
345 vfs_hash_ref(mntp, hash, td, &nvp, newnfs_vncmpf, nfhp);
346 if (nvp == NULL) {
347 error = ENOENT;
348 } else if ((nvp->v_iflag & VI_DOOMED) != 0) {
349 error = ENOENT;
350 vrele(nvp);
351 } else {
352 error = 0;
353 }
354 }
355 }
356 FREE(nfhp, M_NFSFH);
357 if (error)
358 return (error);
359 if (nvp != NULL) {
360 *npp = VTONFS(nvp);
361 return (0);
362 }
363 return (EINVAL);
364 }
365
366 static void
367 nfscl_warn_fileid(struct nfsmount *nmp, struct nfsvattr *oldnap,
368 struct nfsvattr *newnap)
369 {
370 int off;
371
372 if (ncl_fileid_maxwarnings >= 0 &&
373 ncl_fileid_nwarnings >= ncl_fileid_maxwarnings)
374 return;
375 off = 0;
376 if (ncl_fileid_maxwarnings >= 0) {
377 if (++ncl_fileid_nwarnings >= ncl_fileid_maxwarnings)
378 off = 1;
379 }
380
381 printf("newnfs: server '%s' error: fileid changed. "
382 "fsid %jx:%jx: expected fileid %#jx, got %#jx. "
383 "(BROKEN NFS SERVER OR MIDDLEWARE)\n",
384 nmp->nm_com.nmcom_hostname,
385 (uintmax_t)nmp->nm_fsid[0],
386 (uintmax_t)nmp->nm_fsid[1],
387 (uintmax_t)oldnap->na_fileid,
388 (uintmax_t)newnap->na_fileid);
389
390 if (off)
391 printf("newnfs: Logged %d times about fileid corruption; "
392 "going quiet to avoid spamming logs excessively. (Limit "
393 "is: %d).\n", ncl_fileid_nwarnings,
394 ncl_fileid_maxwarnings);
395 }
396
397 /*
398 * Load the attribute cache (that lives in the nfsnode entry) with
399 * the attributes of the second argument and
400 * Iff vaper not NULL
401 * copy the attributes to *vaper
402 * Similar to nfs_loadattrcache(), except the attributes are passed in
403 * instead of being parsed out of the mbuf list.
404 */
405 int
406 nfscl_loadattrcache(struct vnode **vpp, struct nfsvattr *nap, void *nvaper,
407 void *stuff, int writeattr, int dontshrink)
408 {
409 struct vnode *vp = *vpp;
410 struct vattr *vap, *nvap = &nap->na_vattr, *vaper = nvaper;
411 struct nfsnode *np;
412 struct nfsmount *nmp;
413 struct timespec mtime_save;
414 u_quad_t nsize;
415 int setnsize, error, force_fid_err;
416
417 error = 0;
418 setnsize = 0;
419 nsize = 0;
420
421 /*
422 * If v_type == VNON it is a new node, so fill in the v_type,
423 * n_mtime fields. Check to see if it represents a special
424 * device, and if so, check for a possible alias. Once the
425 * correct vnode has been obtained, fill in the rest of the
426 * information.
427 */
428 np = VTONFS(vp);
429 NFSLOCKNODE(np);
430 if (vp->v_type != nvap->va_type) {
431 vp->v_type = nvap->va_type;
432 if (vp->v_type == VFIFO)
433 vp->v_op = &newnfs_fifoops;
434 np->n_mtime = nvap->va_mtime;
435 }
436 nmp = VFSTONFS(vp->v_mount);
437 vap = &np->n_vattr.na_vattr;
438 mtime_save = vap->va_mtime;
439 if (writeattr) {
440 np->n_vattr.na_filerev = nap->na_filerev;
441 np->n_vattr.na_size = nap->na_size;
442 np->n_vattr.na_mtime = nap->na_mtime;
443 np->n_vattr.na_ctime = nap->na_ctime;
444 np->n_vattr.na_fsid = nap->na_fsid;
445 np->n_vattr.na_mode = nap->na_mode;
446 } else {
447 force_fid_err = 0;
448 KFAIL_POINT_ERROR(DEBUG_FP, nfscl_force_fileid_warning,
449 force_fid_err);
450 /*
451 * BROKEN NFS SERVER OR MIDDLEWARE
452 *
453 * Certain NFS servers (certain old proprietary filers ca.
454 * 2006) or broken middleboxes (e.g. WAN accelerator products)
455 * will respond to GETATTR requests with results for a
456 * different fileid.
457 *
458 * The WAN accelerator we've observed not only serves stale
459 * cache results for a given file, it also occasionally serves
460 * results for wholly different files. This causes surprising
461 * problems; for example the cached size attribute of a file
462 * may truncate down and then back up, resulting in zero
463 * regions in file contents read by applications. We observed
464 * this reliably with Clang and .c files during parallel build.
465 * A pcap revealed packet fragmentation and GETATTR RPC
466 * responses with wholly wrong fileids.
467 */
468 if ((np->n_vattr.na_fileid != 0 &&
469 np->n_vattr.na_fileid != nap->na_fileid) ||
470 force_fid_err) {
471 nfscl_warn_fileid(nmp, &np->n_vattr, nap);
472 error = EIDRM;
473 goto out;
474 }
475 NFSBCOPY((caddr_t)nap, (caddr_t)&np->n_vattr,
476 sizeof (struct nfsvattr));
477 }
478
479 /*
480 * For NFSv4, if the node's fsid is not equal to the mount point's
481 * fsid, return the low order 32bits of the node's fsid. This
482 * allows getcwd(3) to work. There is a chance that the fsid might
483 * be the same as a local fs, but since this is in an NFS mount
484 * point, I don't think that will cause any problems?
485 */
486 if (NFSHASNFSV4(nmp) && NFSHASHASSETFSID(nmp) &&
487 (nmp->nm_fsid[0] != np->n_vattr.na_filesid[0] ||
488 nmp->nm_fsid[1] != np->n_vattr.na_filesid[1])) {
489 /*
490 * va_fsid needs to be set to some value derived from
491 * np->n_vattr.na_filesid that is not equal
492 * vp->v_mount->mnt_stat.f_fsid[0], so that it changes
493 * from the value used for the top level server volume
494 * in the mounted subtree.
495 */
496 if (vp->v_mount->mnt_stat.f_fsid.val[0] !=
497 (uint32_t)np->n_vattr.na_filesid[0])
498 vap->va_fsid = (uint32_t)np->n_vattr.na_filesid[0];
499 else
500 vap->va_fsid = (uint32_t)hash32_buf(
501 np->n_vattr.na_filesid, 2 * sizeof(uint64_t), 0);
502 } else
503 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
504 np->n_attrstamp = time_second;
505 if (vap->va_size != np->n_size) {
506 if (vap->va_type == VREG) {
507 if (dontshrink && vap->va_size < np->n_size) {
508 /*
509 * We've been told not to shrink the file;
510 * zero np->n_attrstamp to indicate that
511 * the attributes are stale.
512 */
513 vap->va_size = np->n_size;
514 np->n_attrstamp = 0;
515 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
516 vnode_pager_setsize(vp, np->n_size);
517 } else if (np->n_flag & NMODIFIED) {
518 /*
519 * We've modified the file: Use the larger
520 * of our size, and the server's size.
521 */
522 if (vap->va_size < np->n_size) {
523 vap->va_size = np->n_size;
524 } else {
525 np->n_size = vap->va_size;
526 np->n_flag |= NSIZECHANGED;
527 }
528 vnode_pager_setsize(vp, np->n_size);
529 } else if (vap->va_size < np->n_size) {
530 /*
531 * When shrinking the size, the call to
532 * vnode_pager_setsize() cannot be done
533 * with the mutex held, so delay it until
534 * after the mtx_unlock call.
535 */
536 nsize = np->n_size = vap->va_size;
537 np->n_flag |= NSIZECHANGED;
538 setnsize = 1;
539 } else {
540 np->n_size = vap->va_size;
541 np->n_flag |= NSIZECHANGED;
542 vnode_pager_setsize(vp, np->n_size);
543 }
544 } else {
545 np->n_size = vap->va_size;
546 }
547 }
548 /*
549 * The following checks are added to prevent a race between (say)
550 * a READDIR+ and a WRITE.
551 * READDIR+, WRITE requests sent out.
552 * READDIR+ resp, WRITE resp received on client.
553 * However, the WRITE resp was handled before the READDIR+ resp
554 * causing the post op attrs from the write to be loaded first
555 * and the attrs from the READDIR+ to be loaded later. If this
556 * happens, we have stale attrs loaded into the attrcache.
557 * We detect this by for the mtime moving back. We invalidate the
558 * attrcache when this happens.
559 */
560 if (timespeccmp(&mtime_save, &vap->va_mtime, >)) {
561 /* Size changed or mtime went backwards */
562 np->n_attrstamp = 0;
563 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
564 }
565 if (vaper != NULL) {
566 NFSBCOPY((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
567 if (np->n_flag & NCHG) {
568 if (np->n_flag & NACC)
569 vaper->va_atime = np->n_atim;
570 if (np->n_flag & NUPD)
571 vaper->va_mtime = np->n_mtim;
572 }
573 }
574
575 out:
576 #ifdef KDTRACE_HOOKS
577 if (np->n_attrstamp != 0)
578 KDTRACE_NFS_ATTRCACHE_LOAD_DONE(vp, vap, error);
579 #endif
580 NFSUNLOCKNODE(np);
581 if (setnsize)
582 vnode_pager_setsize(vp, nsize);
583 return (error);
584 }
585
586 /*
587 * Fill in the client id name. For these bytes:
588 * 1 - they must be unique
589 * 2 - they should be persistent across client reboots
590 * 1 is more critical than 2
591 * Use the mount point's unique id plus either the uuid or, if that
592 * isn't set, random junk.
593 */
594 void
595 nfscl_fillclid(u_int64_t clval, char *uuid, u_int8_t *cp, u_int16_t idlen)
596 {
597 int uuidlen;
598
599 /*
600 * First, put in the 64bit mount point identifier.
601 */
602 if (idlen >= sizeof (u_int64_t)) {
603 NFSBCOPY((caddr_t)&clval, cp, sizeof (u_int64_t));
604 cp += sizeof (u_int64_t);
605 idlen -= sizeof (u_int64_t);
606 }
607
608 /*
609 * If uuid is non-zero length, use it.
610 */
611 uuidlen = strlen(uuid);
612 if (uuidlen > 0 && idlen >= uuidlen) {
613 NFSBCOPY(uuid, cp, uuidlen);
614 cp += uuidlen;
615 idlen -= uuidlen;
616 }
617
618 /*
619 * This only normally happens if the uuid isn't set.
620 */
621 while (idlen > 0) {
622 *cp++ = (u_int8_t)(arc4random() % 256);
623 idlen--;
624 }
625 }
626
627 /*
628 * Fill in a lock owner name. For now, pid + the process's creation time.
629 */
630 void
631 nfscl_filllockowner(void *id, u_int8_t *cp, int flags)
632 {
633 union {
634 u_int32_t lval;
635 u_int8_t cval[4];
636 } tl;
637 struct proc *p;
638
639 if (id == NULL) {
640 printf("NULL id\n");
641 bzero(cp, NFSV4CL_LOCKNAMELEN);
642 return;
643 }
644 if ((flags & F_POSIX) != 0) {
645 p = (struct proc *)id;
646 tl.lval = p->p_pid;
647 *cp++ = tl.cval[0];
648 *cp++ = tl.cval[1];
649 *cp++ = tl.cval[2];
650 *cp++ = tl.cval[3];
651 tl.lval = p->p_stats->p_start.tv_sec;
652 *cp++ = tl.cval[0];
653 *cp++ = tl.cval[1];
654 *cp++ = tl.cval[2];
655 *cp++ = tl.cval[3];
656 tl.lval = p->p_stats->p_start.tv_usec;
657 *cp++ = tl.cval[0];
658 *cp++ = tl.cval[1];
659 *cp++ = tl.cval[2];
660 *cp = tl.cval[3];
661 } else if ((flags & F_FLOCK) != 0) {
662 bcopy(&id, cp, sizeof(id));
663 bzero(&cp[sizeof(id)], NFSV4CL_LOCKNAMELEN - sizeof(id));
664 } else {
665 printf("nfscl_filllockowner: not F_POSIX or F_FLOCK\n");
666 bzero(cp, NFSV4CL_LOCKNAMELEN);
667 }
668 }
669
670 /*
671 * Find the parent process for the thread passed in as an argument.
672 * If none exists, return NULL, otherwise return a thread for the parent.
673 * (Can be any of the threads, since it is only used for td->td_proc.)
674 */
675 NFSPROC_T *
676 nfscl_getparent(struct thread *td)
677 {
678 struct proc *p;
679 struct thread *ptd;
680
681 if (td == NULL)
682 return (NULL);
683 p = td->td_proc;
684 if (p->p_pid == 0)
685 return (NULL);
686 p = p->p_pptr;
687 if (p == NULL)
688 return (NULL);
689 ptd = TAILQ_FIRST(&p->p_threads);
690 return (ptd);
691 }
692
693 /*
694 * Start up the renew kernel thread.
695 */
696 static void
697 start_nfscl(void *arg)
698 {
699 struct nfsclclient *clp;
700 struct thread *td;
701
702 clp = (struct nfsclclient *)arg;
703 td = TAILQ_FIRST(&clp->nfsc_renewthread->p_threads);
704 nfscl_renewthread(clp, td);
705 kproc_exit(0);
706 }
707
708 void
709 nfscl_start_renewthread(struct nfsclclient *clp)
710 {
711
712 kproc_create(start_nfscl, (void *)clp, &clp->nfsc_renewthread, 0, 0,
713 "nfscl");
714 }
715
716 /*
717 * Handle wcc_data.
718 * For NFSv4, it assumes that nfsv4_wccattr() was used to set up the getattr
719 * as the first Op after PutFH.
720 * (For NFSv4, the postop attributes are after the Op, so they can't be
721 * parsed here. A separate call to nfscl_postop_attr() is required.)
722 */
723 int
724 nfscl_wcc_data(struct nfsrv_descript *nd, struct vnode *vp,
725 struct nfsvattr *nap, int *flagp, int *wccflagp, void *stuff)
726 {
727 u_int32_t *tl;
728 struct nfsnode *np = VTONFS(vp);
729 struct nfsvattr nfsva;
730 int error = 0;
731
732 if (wccflagp != NULL)
733 *wccflagp = 0;
734 if (nd->nd_flag & ND_NFSV3) {
735 *flagp = 0;
736 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
737 if (*tl == newnfs_true) {
738 NFSM_DISSECT(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
739 if (wccflagp != NULL) {
740 mtx_lock(&np->n_mtx);
741 *wccflagp = (np->n_mtime.tv_sec ==
742 fxdr_unsigned(u_int32_t, *(tl + 2)) &&
743 np->n_mtime.tv_nsec ==
744 fxdr_unsigned(u_int32_t, *(tl + 3)));
745 mtx_unlock(&np->n_mtx);
746 }
747 }
748 error = nfscl_postop_attr(nd, nap, flagp, stuff);
749 } else if ((nd->nd_flag & (ND_NOMOREDATA | ND_NFSV4 | ND_V4WCCATTR))
750 == (ND_NFSV4 | ND_V4WCCATTR)) {
751 error = nfsv4_loadattr(nd, NULL, &nfsva, NULL,
752 NULL, 0, NULL, NULL, NULL, NULL, NULL, 0,
753 NULL, NULL, NULL, NULL, NULL);
754 if (error)
755 return (error);
756 /*
757 * Get rid of Op# and status for next op.
758 */
759 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
760 if (*++tl)
761 nd->nd_flag |= ND_NOMOREDATA;
762 if (wccflagp != NULL &&
763 nfsva.na_vattr.va_mtime.tv_sec != 0) {
764 mtx_lock(&np->n_mtx);
765 *wccflagp = (np->n_mtime.tv_sec ==
766 nfsva.na_vattr.va_mtime.tv_sec &&
767 np->n_mtime.tv_nsec ==
768 nfsva.na_vattr.va_mtime.tv_sec);
769 mtx_unlock(&np->n_mtx);
770 }
771 }
772 nfsmout:
773 return (error);
774 }
775
776 /*
777 * Get postop attributes.
778 */
779 int
780 nfscl_postop_attr(struct nfsrv_descript *nd, struct nfsvattr *nap, int *retp,
781 void *stuff)
782 {
783 u_int32_t *tl;
784 int error = 0;
785
786 *retp = 0;
787 if (nd->nd_flag & ND_NOMOREDATA)
788 return (error);
789 if (nd->nd_flag & ND_NFSV3) {
790 NFSM_DISSECT(tl, u_int32_t *, NFSX_UNSIGNED);
791 *retp = fxdr_unsigned(int, *tl);
792 } else if (nd->nd_flag & ND_NFSV4) {
793 /*
794 * For NFSv4, the postop attr are at the end, so no point
795 * in looking if nd_repstat != 0.
796 */
797 if (!nd->nd_repstat) {
798 NFSM_DISSECT(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
799 if (*(tl + 1))
800 /* should never happen since nd_repstat != 0 */
801 nd->nd_flag |= ND_NOMOREDATA;
802 else
803 *retp = 1;
804 }
805 } else if (!nd->nd_repstat) {
806 /* For NFSv2, the attributes are here iff nd_repstat == 0 */
807 *retp = 1;
808 }
809 if (*retp) {
810 error = nfsm_loadattr(nd, nap);
811 if (error)
812 *retp = 0;
813 }
814 nfsmout:
815 return (error);
816 }
817
818 /*
819 * Fill in the setable attributes. The full argument indicates whether
820 * to fill in them all or just mode and time.
821 */
822 void
823 nfscl_fillsattr(struct nfsrv_descript *nd, struct vattr *vap,
824 struct vnode *vp, int flags, u_int32_t rdev)
825 {
826 u_int32_t *tl;
827 struct nfsv2_sattr *sp;
828 nfsattrbit_t attrbits;
829
830 switch (nd->nd_flag & (ND_NFSV2 | ND_NFSV3 | ND_NFSV4)) {
831 case ND_NFSV2:
832 NFSM_BUILD(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
833 if (vap->va_mode == (mode_t)VNOVAL)
834 sp->sa_mode = newnfs_xdrneg1;
835 else
836 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
837 if (vap->va_uid == (uid_t)VNOVAL)
838 sp->sa_uid = newnfs_xdrneg1;
839 else
840 sp->sa_uid = txdr_unsigned(vap->va_uid);
841 if (vap->va_gid == (gid_t)VNOVAL)
842 sp->sa_gid = newnfs_xdrneg1;
843 else
844 sp->sa_gid = txdr_unsigned(vap->va_gid);
845 if (flags & NFSSATTR_SIZE0)
846 sp->sa_size = 0;
847 else if (flags & NFSSATTR_SIZENEG1)
848 sp->sa_size = newnfs_xdrneg1;
849 else if (flags & NFSSATTR_SIZERDEV)
850 sp->sa_size = txdr_unsigned(rdev);
851 else
852 sp->sa_size = txdr_unsigned(vap->va_size);
853 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
854 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
855 break;
856 case ND_NFSV3:
857 if (vap->va_mode != (mode_t)VNOVAL) {
858 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
859 *tl++ = newnfs_true;
860 *tl = txdr_unsigned(vap->va_mode);
861 } else {
862 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
863 *tl = newnfs_false;
864 }
865 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL) {
866 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
867 *tl++ = newnfs_true;
868 *tl = txdr_unsigned(vap->va_uid);
869 } else {
870 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
871 *tl = newnfs_false;
872 }
873 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL) {
874 NFSM_BUILD(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
875 *tl++ = newnfs_true;
876 *tl = txdr_unsigned(vap->va_gid);
877 } else {
878 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
879 *tl = newnfs_false;
880 }
881 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL) {
882 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
883 *tl++ = newnfs_true;
884 txdr_hyper(vap->va_size, tl);
885 } else {
886 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
887 *tl = newnfs_false;
888 }
889 if (vap->va_atime.tv_sec != VNOVAL) {
890 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
891 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
892 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
893 txdr_nfsv3time(&vap->va_atime, tl);
894 } else {
895 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
896 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
897 }
898 } else {
899 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
900 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
901 }
902 if (vap->va_mtime.tv_sec != VNOVAL) {
903 if ((vap->va_vaflags & VA_UTIMES_NULL) == 0) {
904 NFSM_BUILD(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
905 *tl++ = txdr_unsigned(NFSV3SATTRTIME_TOCLIENT);
906 txdr_nfsv3time(&vap->va_mtime, tl);
907 } else {
908 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
909 *tl = txdr_unsigned(NFSV3SATTRTIME_TOSERVER);
910 }
911 } else {
912 NFSM_BUILD(tl, u_int32_t *, NFSX_UNSIGNED);
913 *tl = txdr_unsigned(NFSV3SATTRTIME_DONTCHANGE);
914 }
915 break;
916 case ND_NFSV4:
917 NFSZERO_ATTRBIT(&attrbits);
918 if (vap->va_mode != (mode_t)VNOVAL)
919 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_MODE);
920 if ((flags & NFSSATTR_FULL) && vap->va_uid != (uid_t)VNOVAL)
921 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNER);
922 if ((flags & NFSSATTR_FULL) && vap->va_gid != (gid_t)VNOVAL)
923 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_OWNERGROUP);
924 if ((flags & NFSSATTR_FULL) && vap->va_size != VNOVAL)
925 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_SIZE);
926 if (vap->va_atime.tv_sec != VNOVAL)
927 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEACCESSSET);
928 if (vap->va_mtime.tv_sec != VNOVAL)
929 NFSSETBIT_ATTRBIT(&attrbits, NFSATTRBIT_TIMEMODIFYSET);
930 (void) nfsv4_fillattr(nd, vp->v_mount, vp, NULL, vap, NULL, 0,
931 &attrbits, NULL, NULL, 0, 0, 0, 0, (uint64_t)0);
932 break;
933 }
934 }
935
936 /*
937 * nfscl_request() - mostly a wrapper for newnfs_request().
938 */
939 int
940 nfscl_request(struct nfsrv_descript *nd, struct vnode *vp, NFSPROC_T *p,
941 struct ucred *cred, void *stuff)
942 {
943 int ret, vers;
944 struct nfsmount *nmp;
945
946 nmp = VFSTONFS(vp->v_mount);
947 if (nd->nd_flag & ND_NFSV4)
948 vers = NFS_VER4;
949 else if (nd->nd_flag & ND_NFSV3)
950 vers = NFS_VER3;
951 else
952 vers = NFS_VER2;
953 ret = newnfs_request(nd, nmp, NULL, &nmp->nm_sockreq, vp, p, cred,
954 NFS_PROG, vers, NULL, 1, NULL, NULL);
955 return (ret);
956 }
957
958 /*
959 * fill in this bsden's variant of statfs using nfsstatfs.
960 */
961 void
962 nfscl_loadsbinfo(struct nfsmount *nmp, struct nfsstatfs *sfp, void *statfs)
963 {
964 struct statfs *sbp = (struct statfs *)statfs;
965
966 if (nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_NFSV4)) {
967 sbp->f_bsize = NFS_FABLKSIZE;
968 sbp->f_blocks = sfp->sf_tbytes / NFS_FABLKSIZE;
969 sbp->f_bfree = sfp->sf_fbytes / NFS_FABLKSIZE;
970 /*
971 * Although sf_abytes is uint64_t and f_bavail is int64_t,
972 * the value after dividing by NFS_FABLKSIZE is small
973 * enough that it will fit in 63bits, so it is ok to
974 * assign it to f_bavail without fear that it will become
975 * negative.
976 */
977 sbp->f_bavail = sfp->sf_abytes / NFS_FABLKSIZE;
978 sbp->f_files = sfp->sf_tfiles;
979 /* Since f_ffree is int64_t, clip it to 63bits. */
980 if (sfp->sf_ffiles > INT64_MAX)
981 sbp->f_ffree = INT64_MAX;
982 else
983 sbp->f_ffree = sfp->sf_ffiles;
984 } else if ((nmp->nm_flag & NFSMNT_NFSV4) == 0) {
985 /*
986 * The type casts to (int32_t) ensure that this code is
987 * compatible with the old NFS client, in that it will
988 * propagate bit31 to the high order bits. This may or may
989 * not be correct for NFSv2, but since it is a legacy
990 * environment, I'd rather retain backwards compatibility.
991 */
992 sbp->f_bsize = (int32_t)sfp->sf_bsize;
993 sbp->f_blocks = (int32_t)sfp->sf_blocks;
994 sbp->f_bfree = (int32_t)sfp->sf_bfree;
995 sbp->f_bavail = (int32_t)sfp->sf_bavail;
996 sbp->f_files = 0;
997 sbp->f_ffree = 0;
998 }
999 }
1000
1001 /*
1002 * Use the fsinfo stuff to update the mount point.
1003 */
1004 void
1005 nfscl_loadfsinfo(struct nfsmount *nmp, struct nfsfsinfo *fsp)
1006 {
1007
1008 if ((nmp->nm_wsize == 0 || fsp->fs_wtpref < nmp->nm_wsize) &&
1009 fsp->fs_wtpref >= NFS_FABLKSIZE)
1010 nmp->nm_wsize = (fsp->fs_wtpref + NFS_FABLKSIZE - 1) &
1011 ~(NFS_FABLKSIZE - 1);
1012 if (fsp->fs_wtmax < nmp->nm_wsize && fsp->fs_wtmax > 0) {
1013 nmp->nm_wsize = fsp->fs_wtmax & ~(NFS_FABLKSIZE - 1);
1014 if (nmp->nm_wsize == 0)
1015 nmp->nm_wsize = fsp->fs_wtmax;
1016 }
1017 if (nmp->nm_wsize < NFS_FABLKSIZE)
1018 nmp->nm_wsize = NFS_FABLKSIZE;
1019 if ((nmp->nm_rsize == 0 || fsp->fs_rtpref < nmp->nm_rsize) &&
1020 fsp->fs_rtpref >= NFS_FABLKSIZE)
1021 nmp->nm_rsize = (fsp->fs_rtpref + NFS_FABLKSIZE - 1) &
1022 ~(NFS_FABLKSIZE - 1);
1023 if (fsp->fs_rtmax < nmp->nm_rsize && fsp->fs_rtmax > 0) {
1024 nmp->nm_rsize = fsp->fs_rtmax & ~(NFS_FABLKSIZE - 1);
1025 if (nmp->nm_rsize == 0)
1026 nmp->nm_rsize = fsp->fs_rtmax;
1027 }
1028 if (nmp->nm_rsize < NFS_FABLKSIZE)
1029 nmp->nm_rsize = NFS_FABLKSIZE;
1030 if ((nmp->nm_readdirsize == 0 || fsp->fs_dtpref < nmp->nm_readdirsize)
1031 && fsp->fs_dtpref >= NFS_DIRBLKSIZ)
1032 nmp->nm_readdirsize = (fsp->fs_dtpref + NFS_DIRBLKSIZ - 1) &
1033 ~(NFS_DIRBLKSIZ - 1);
1034 if (fsp->fs_rtmax < nmp->nm_readdirsize && fsp->fs_rtmax > 0) {
1035 nmp->nm_readdirsize = fsp->fs_rtmax & ~(NFS_DIRBLKSIZ - 1);
1036 if (nmp->nm_readdirsize == 0)
1037 nmp->nm_readdirsize = fsp->fs_rtmax;
1038 }
1039 if (nmp->nm_readdirsize < NFS_DIRBLKSIZ)
1040 nmp->nm_readdirsize = NFS_DIRBLKSIZ;
1041 if (fsp->fs_maxfilesize > 0 &&
1042 fsp->fs_maxfilesize < nmp->nm_maxfilesize)
1043 nmp->nm_maxfilesize = fsp->fs_maxfilesize;
1044 nmp->nm_mountp->mnt_stat.f_iosize = newnfs_iosize(nmp);
1045 nmp->nm_state |= NFSSTA_GOTFSINFO;
1046 }
1047
1048 /*
1049 * Lookups source address which should be used to communicate with
1050 * @nmp and stores it inside @pdst.
1051 *
1052 * Returns 0 on success.
1053 */
1054 u_int8_t *
1055 nfscl_getmyip(struct nfsmount *nmp, struct in6_addr *paddr, int *isinet6p)
1056 {
1057 #if defined(INET6) || defined(INET)
1058 int error, fibnum;
1059
1060 fibnum = curthread->td_proc->p_fibnum;
1061 #endif
1062 #ifdef INET
1063 if (nmp->nm_nam->sa_family == AF_INET) {
1064 struct sockaddr_in *sin;
1065 struct nhop4_extended nh_ext;
1066
1067 sin = (struct sockaddr_in *)nmp->nm_nam;
1068 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1069 error = fib4_lookup_nh_ext(fibnum, sin->sin_addr, 0, 0,
1070 &nh_ext);
1071 CURVNET_RESTORE();
1072 if (error != 0)
1073 return (NULL);
1074
1075 if ((ntohl(nh_ext.nh_src.s_addr) >> IN_CLASSA_NSHIFT) ==
1076 IN_LOOPBACKNET) {
1077 /* Ignore loopback addresses */
1078 return (NULL);
1079 }
1080
1081 *isinet6p = 0;
1082 *((struct in_addr *)paddr) = nh_ext.nh_src;
1083
1084 return (u_int8_t *)paddr;
1085 }
1086 #endif
1087 #ifdef INET6
1088 if (nmp->nm_nam->sa_family == AF_INET6) {
1089 struct sockaddr_in6 *sin6;
1090
1091 sin6 = (struct sockaddr_in6 *)nmp->nm_nam;
1092
1093 CURVNET_SET(CRED_TO_VNET(nmp->nm_sockreq.nr_cred));
1094 error = in6_selectsrc_addr(fibnum, &sin6->sin6_addr,
1095 sin6->sin6_scope_id, NULL, paddr, NULL);
1096 CURVNET_RESTORE();
1097 if (error != 0)
1098 return (NULL);
1099
1100 if (IN6_IS_ADDR_LOOPBACK(paddr))
1101 return (NULL);
1102
1103 /* Scope is embedded in */
1104 *isinet6p = 1;
1105
1106 return (u_int8_t *)paddr;
1107 }
1108 #endif
1109 return (NULL);
1110 }
1111
1112 /*
1113 * Copy NFS uid, gids from the cred structure.
1114 */
1115 void
1116 newnfs_copyincred(struct ucred *cr, struct nfscred *nfscr)
1117 {
1118 int i;
1119
1120 KASSERT(cr->cr_ngroups >= 0,
1121 ("newnfs_copyincred: negative cr_ngroups"));
1122 nfscr->nfsc_uid = cr->cr_uid;
1123 nfscr->nfsc_ngroups = MIN(cr->cr_ngroups, NFS_MAXGRPS + 1);
1124 for (i = 0; i < nfscr->nfsc_ngroups; i++)
1125 nfscr->nfsc_groups[i] = cr->cr_groups[i];
1126 }
1127
1128
1129 /*
1130 * Do any client specific initialization.
1131 */
1132 void
1133 nfscl_init(void)
1134 {
1135 static int inited = 0;
1136
1137 if (inited)
1138 return;
1139 inited = 1;
1140 nfscl_inited = 1;
1141 ncl_pbuf_freecnt = nswbuf / 2 + 1;
1142 }
1143
1144 /*
1145 * Check each of the attributes to be set, to ensure they aren't already
1146 * the correct value. Disable setting ones already correct.
1147 */
1148 int
1149 nfscl_checksattr(struct vattr *vap, struct nfsvattr *nvap)
1150 {
1151
1152 if (vap->va_mode != (mode_t)VNOVAL) {
1153 if (vap->va_mode == nvap->na_mode)
1154 vap->va_mode = (mode_t)VNOVAL;
1155 }
1156 if (vap->va_uid != (uid_t)VNOVAL) {
1157 if (vap->va_uid == nvap->na_uid)
1158 vap->va_uid = (uid_t)VNOVAL;
1159 }
1160 if (vap->va_gid != (gid_t)VNOVAL) {
1161 if (vap->va_gid == nvap->na_gid)
1162 vap->va_gid = (gid_t)VNOVAL;
1163 }
1164 if (vap->va_size != VNOVAL) {
1165 if (vap->va_size == nvap->na_size)
1166 vap->va_size = VNOVAL;
1167 }
1168
1169 /*
1170 * We are normally called with only a partially initialized
1171 * VAP. Since the NFSv3 spec says that server may use the
1172 * file attributes to store the verifier, the spec requires
1173 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1174 * in atime, but we can't really assume that all servers will
1175 * so we ensure that our SETATTR sets both atime and mtime.
1176 * Set the VA_UTIMES_NULL flag for this case, so that
1177 * the server's time will be used. This is needed to
1178 * work around a bug in some Solaris servers, where
1179 * setting the time TOCLIENT causes the Setattr RPC
1180 * to return NFS_OK, but not set va_mode.
1181 */
1182 if (vap->va_mtime.tv_sec == VNOVAL) {
1183 vfs_timestamp(&vap->va_mtime);
1184 vap->va_vaflags |= VA_UTIMES_NULL;
1185 }
1186 if (vap->va_atime.tv_sec == VNOVAL)
1187 vap->va_atime = vap->va_mtime;
1188 return (1);
1189 }
1190
1191 /*
1192 * Map nfsv4 errors to errno.h errors.
1193 * The uid and gid arguments are only used for NFSERR_BADOWNER and that
1194 * error should only be returned for the Open, Create and Setattr Ops.
1195 * As such, most calls can just pass in 0 for those arguments.
1196 */
1197 APPLESTATIC int
1198 nfscl_maperr(struct thread *td, int error, uid_t uid, gid_t gid)
1199 {
1200 struct proc *p;
1201
1202 if (error < 10000)
1203 return (error);
1204 if (td != NULL)
1205 p = td->td_proc;
1206 else
1207 p = NULL;
1208 switch (error) {
1209 case NFSERR_BADOWNER:
1210 tprintf(p, LOG_INFO,
1211 "No name and/or group mapping for uid,gid:(%d,%d)\n",
1212 uid, gid);
1213 return (EPERM);
1214 case NFSERR_BADNAME:
1215 case NFSERR_BADCHAR:
1216 printf("nfsv4 char/name not handled by server\n");
1217 return (ENOENT);
1218 case NFSERR_STALECLIENTID:
1219 case NFSERR_STALESTATEID:
1220 case NFSERR_EXPIRED:
1221 case NFSERR_BADSTATEID:
1222 case NFSERR_BADSESSION:
1223 printf("nfsv4 recover err returned %d\n", error);
1224 return (EIO);
1225 case NFSERR_BADHANDLE:
1226 case NFSERR_SERVERFAULT:
1227 case NFSERR_BADTYPE:
1228 case NFSERR_FHEXPIRED:
1229 case NFSERR_RESOURCE:
1230 case NFSERR_MOVED:
1231 case NFSERR_NOFILEHANDLE:
1232 case NFSERR_MINORVERMISMATCH:
1233 case NFSERR_OLDSTATEID:
1234 case NFSERR_BADSEQID:
1235 case NFSERR_LEASEMOVED:
1236 case NFSERR_RECLAIMBAD:
1237 case NFSERR_BADXDR:
1238 case NFSERR_OPILLEGAL:
1239 printf("nfsv4 client/server protocol prob err=%d\n",
1240 error);
1241 return (EIO);
1242 default:
1243 tprintf(p, LOG_INFO, "nfsv4 err=%d\n", error);
1244 return (EIO);
1245 };
1246 }
1247
1248 /*
1249 * Check to see if the process for this owner exists. Return 1 if it doesn't
1250 * and 0 otherwise.
1251 */
1252 int
1253 nfscl_procdoesntexist(u_int8_t *own)
1254 {
1255 union {
1256 u_int32_t lval;
1257 u_int8_t cval[4];
1258 } tl;
1259 struct proc *p;
1260 pid_t pid;
1261 int ret = 0;
1262
1263 tl.cval[0] = *own++;
1264 tl.cval[1] = *own++;
1265 tl.cval[2] = *own++;
1266 tl.cval[3] = *own++;
1267 pid = tl.lval;
1268 p = pfind_locked(pid);
1269 if (p == NULL)
1270 return (1);
1271 if (p->p_stats == NULL) {
1272 PROC_UNLOCK(p);
1273 return (0);
1274 }
1275 tl.cval[0] = *own++;
1276 tl.cval[1] = *own++;
1277 tl.cval[2] = *own++;
1278 tl.cval[3] = *own++;
1279 if (tl.lval != p->p_stats->p_start.tv_sec) {
1280 ret = 1;
1281 } else {
1282 tl.cval[0] = *own++;
1283 tl.cval[1] = *own++;
1284 tl.cval[2] = *own++;
1285 tl.cval[3] = *own;
1286 if (tl.lval != p->p_stats->p_start.tv_usec)
1287 ret = 1;
1288 }
1289 PROC_UNLOCK(p);
1290 return (ret);
1291 }
1292
1293 /*
1294 * - nfs pseudo system call for the client
1295 */
1296 /*
1297 * MPSAFE
1298 */
1299 static int
1300 nfssvc_nfscl(struct thread *td, struct nfssvc_args *uap)
1301 {
1302 struct file *fp;
1303 struct nfscbd_args nfscbdarg;
1304 struct nfsd_nfscbd_args nfscbdarg2;
1305 struct nameidata nd;
1306 struct nfscl_dumpmntopts dumpmntopts;
1307 cap_rights_t rights;
1308 char *buf;
1309 int error;
1310
1311 if (uap->flag & NFSSVC_CBADDSOCK) {
1312 error = copyin(uap->argp, (caddr_t)&nfscbdarg, sizeof(nfscbdarg));
1313 if (error)
1314 return (error);
1315 /*
1316 * Since we don't know what rights might be required,
1317 * pretend that we need them all. It is better to be too
1318 * careful than too reckless.
1319 */
1320 error = fget(td, nfscbdarg.sock,
1321 cap_rights_init(&rights, CAP_SOCK_CLIENT), &fp);
1322 if (error)
1323 return (error);
1324 if (fp->f_type != DTYPE_SOCKET) {
1325 fdrop(fp, td);
1326 return (EPERM);
1327 }
1328 error = nfscbd_addsock(fp);
1329 fdrop(fp, td);
1330 if (!error && nfscl_enablecallb == 0) {
1331 nfsv4_cbport = nfscbdarg.port;
1332 nfscl_enablecallb = 1;
1333 }
1334 } else if (uap->flag & NFSSVC_NFSCBD) {
1335 if (uap->argp == NULL)
1336 return (EINVAL);
1337 error = copyin(uap->argp, (caddr_t)&nfscbdarg2,
1338 sizeof(nfscbdarg2));
1339 if (error)
1340 return (error);
1341 error = nfscbd_nfsd(td, &nfscbdarg2);
1342 } else if (uap->flag & NFSSVC_DUMPMNTOPTS) {
1343 error = copyin(uap->argp, &dumpmntopts, sizeof(dumpmntopts));
1344 if (error == 0 && (dumpmntopts.ndmnt_blen < 256 ||
1345 dumpmntopts.ndmnt_blen > 1024))
1346 error = EINVAL;
1347 if (error == 0)
1348 error = nfsrv_lookupfilename(&nd,
1349 dumpmntopts.ndmnt_fname, td);
1350 if (error == 0 && strcmp(nd.ni_vp->v_mount->mnt_vfc->vfc_name,
1351 "nfs") != 0) {
1352 vput(nd.ni_vp);
1353 error = EINVAL;
1354 }
1355 if (error == 0) {
1356 buf = malloc(dumpmntopts.ndmnt_blen, M_TEMP, M_WAITOK);
1357 nfscl_retopts(VFSTONFS(nd.ni_vp->v_mount), buf,
1358 dumpmntopts.ndmnt_blen);
1359 vput(nd.ni_vp);
1360 error = copyout(buf, dumpmntopts.ndmnt_buf,
1361 dumpmntopts.ndmnt_blen);
1362 free(buf, M_TEMP);
1363 }
1364 } else {
1365 error = EINVAL;
1366 }
1367 return (error);
1368 }
1369
1370 extern int (*nfsd_call_nfscl)(struct thread *, struct nfssvc_args *);
1371
1372 /*
1373 * Called once to initialize data structures...
1374 */
1375 static int
1376 nfscl_modevent(module_t mod, int type, void *data)
1377 {
1378 int error = 0;
1379 static int loaded = 0;
1380
1381 switch (type) {
1382 case MOD_LOAD:
1383 if (loaded)
1384 return (0);
1385 newnfs_portinit();
1386 mtx_init(&nfs_clstate_mutex, "nfs_clstate_mutex", NULL,
1387 MTX_DEF);
1388 mtx_init(&ncl_iod_mutex, "ncl_iod_mutex", NULL, MTX_DEF);
1389 nfscl_init();
1390 NFSD_LOCK();
1391 nfsrvd_cbinit(0);
1392 NFSD_UNLOCK();
1393 ncl_call_invalcaches = ncl_invalcaches;
1394 nfsd_call_nfscl = nfssvc_nfscl;
1395 loaded = 1;
1396 break;
1397
1398 case MOD_UNLOAD:
1399 if (nfs_numnfscbd != 0) {
1400 error = EBUSY;
1401 break;
1402 }
1403
1404 /*
1405 * XXX: Unloading of nfscl module is unsupported.
1406 */
1407 #if 0
1408 ncl_call_invalcaches = NULL;
1409 nfsd_call_nfscl = NULL;
1410 /* and get rid of the mutexes */
1411 mtx_destroy(&nfs_clstate_mutex);
1412 mtx_destroy(&ncl_iod_mutex);
1413 loaded = 0;
1414 break;
1415 #else
1416 /* FALLTHROUGH */
1417 #endif
1418 default:
1419 error = EOPNOTSUPP;
1420 break;
1421 }
1422 return error;
1423 }
1424 static moduledata_t nfscl_mod = {
1425 "nfscl",
1426 nfscl_modevent,
1427 NULL,
1428 };
1429 DECLARE_MODULE(nfscl, nfscl_mod, SI_SUB_VFS, SI_ORDER_FIRST);
1430
1431 /* So that loader and kldload(2) can find us, wherever we are.. */
1432 MODULE_VERSION(nfscl, 1);
1433 MODULE_DEPEND(nfscl, nfscommon, 1, 1, 1);
1434 MODULE_DEPEND(nfscl, krpc, 1, 1, 1);
1435 MODULE_DEPEND(nfscl, nfssvc, 1, 1, 1);
1436 MODULE_DEPEND(nfscl, nfslock, 1, 1, 1);
1437
1438