nfs_clvnops.c revision 1.3 1 /* $NetBSD: nfs_clvnops.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $ */
2 /*-
3 * Copyright (c) 1989, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * This code is derived from software contributed to Berkeley by
7 * Rick Macklem at The University of Guelph.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * from nfs_vnops.c 8.16 (Berkeley) 5/27/95
34 */
35
36 #include <sys/cdefs.h>
37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clvnops.c 304026 2016-08-12 22:44:59Z rmacklem "); */
38 __RCSID("$NetBSD: nfs_clvnops.c,v 1.3 2016/11/18 08:31:30 pgoyette Exp $");
39
40 /*
41 * vnode op calls for Sun NFS version 2, 3 and 4
42 */
43
44 #include "opt_inet.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/systm.h>
49 #include <sys/resourcevar.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/jail.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/socket.h>
59 #include <sys/vnode.h>
60 #include <sys/dirent.h>
61 #include <sys/fcntl.h>
62 #include <sys/lockf.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/signalvar.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_object.h>
70
71 #include <fs/nfs/nfsport.h>
72 #include <fs/nfsclient/nfsnode.h>
73 #include <fs/nfsclient/nfsmount.h>
74 #include <fs/nfsclient/nfs.h>
75 #include <fs/nfsclient/nfs_kdtrace.h>
76
77 #include <net/if.h>
78 #include <netinet/in.h>
79 #include <netinet/in_var.h>
80
81 #include <nfs/nfs_lock.h>
82
83 #ifdef KDTRACE_HOOKS
84 #include <sys/dtrace_bsd.h>
85
86 dtrace_nfsclient_accesscache_flush_probe_func_t
87 dtrace_nfscl_accesscache_flush_done_probe;
88 uint32_t nfscl_accesscache_flush_done_id;
89
90 dtrace_nfsclient_accesscache_get_probe_func_t
91 dtrace_nfscl_accesscache_get_hit_probe,
92 dtrace_nfscl_accesscache_get_miss_probe;
93 uint32_t nfscl_accesscache_get_hit_id;
94 uint32_t nfscl_accesscache_get_miss_id;
95
96 dtrace_nfsclient_accesscache_load_probe_func_t
97 dtrace_nfscl_accesscache_load_done_probe;
98 uint32_t nfscl_accesscache_load_done_id;
99 #endif /* !KDTRACE_HOOKS */
100
101 /* Defs */
102 #define TRUE 1
103 #define FALSE 0
104
105 extern struct nfsstatsv1 nfsstatsv1;
106 extern int nfsrv_useacl;
107 extern int nfscl_debuglevel;
108 MALLOC_DECLARE(M_NEWNFSREQ);
109
110 /*
111 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
112 * calls are not in getblk() and brelse() so that they would not be necessary
113 * here.
114 */
115 #ifndef B_VMIO
116 #define vfs_busy_pages(bp, f)
117 #endif
118
119 static vop_read_t nfsfifo_read;
120 static vop_write_t nfsfifo_write;
121 static vop_close_t nfsfifo_close;
122 static int nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *,
123 struct thread *);
124 static vop_lookup_t nfs_lookup;
125 static vop_create_t nfs_create;
126 static vop_mknod_t nfs_mknod;
127 static vop_open_t nfs_open;
128 static vop_pathconf_t nfs_pathconf;
129 static vop_close_t nfs_close;
130 static vop_access_t nfs_access;
131 static vop_getattr_t nfs_getattr;
132 static vop_setattr_t nfs_setattr;
133 static vop_read_t nfs_read;
134 static vop_fsync_t nfs_fsync;
135 static vop_remove_t nfs_remove;
136 static vop_link_t nfs_link;
137 static vop_rename_t nfs_rename;
138 static vop_mkdir_t nfs_mkdir;
139 static vop_rmdir_t nfs_rmdir;
140 static vop_symlink_t nfs_symlink;
141 static vop_readdir_t nfs_readdir;
142 static vop_strategy_t nfs_strategy;
143 static int nfs_lookitup(struct vnode *, char *, int,
144 struct ucred *, struct thread *, struct nfsnode **);
145 static int nfs_sillyrename(struct vnode *, struct vnode *,
146 struct componentname *);
147 static vop_access_t nfsspec_access;
148 static vop_readlink_t nfs_readlink;
149 static vop_print_t nfs_print;
150 static vop_advlock_t nfs_advlock;
151 static vop_advlockasync_t nfs_advlockasync;
152 static vop_getacl_t nfs_getacl;
153 static vop_setacl_t nfs_setacl;
154
155 /*
156 * Global vfs data structures for nfs
157 */
158 struct vop_vector newnfs_vnodeops = {
159 .vop_default = &default_vnodeops,
160 .vop_access = nfs_access,
161 .vop_advlock = nfs_advlock,
162 .vop_advlockasync = nfs_advlockasync,
163 .vop_close = nfs_close,
164 .vop_create = nfs_create,
165 .vop_fsync = nfs_fsync,
166 .vop_getattr = nfs_getattr,
167 .vop_getpages = ncl_getpages,
168 .vop_putpages = ncl_putpages,
169 .vop_inactive = ncl_inactive,
170 .vop_link = nfs_link,
171 .vop_lookup = nfs_lookup,
172 .vop_mkdir = nfs_mkdir,
173 .vop_mknod = nfs_mknod,
174 .vop_open = nfs_open,
175 .vop_pathconf = nfs_pathconf,
176 .vop_print = nfs_print,
177 .vop_read = nfs_read,
178 .vop_readdir = nfs_readdir,
179 .vop_readlink = nfs_readlink,
180 .vop_reclaim = ncl_reclaim,
181 .vop_remove = nfs_remove,
182 .vop_rename = nfs_rename,
183 .vop_rmdir = nfs_rmdir,
184 .vop_setattr = nfs_setattr,
185 .vop_strategy = nfs_strategy,
186 .vop_symlink = nfs_symlink,
187 .vop_write = ncl_write,
188 .vop_getacl = nfs_getacl,
189 .vop_setacl = nfs_setacl,
190 };
191
192 struct vop_vector newnfs_fifoops = {
193 .vop_default = &fifo_specops,
194 .vop_access = nfsspec_access,
195 .vop_close = nfsfifo_close,
196 .vop_fsync = nfs_fsync,
197 .vop_getattr = nfs_getattr,
198 .vop_inactive = ncl_inactive,
199 .vop_print = nfs_print,
200 .vop_read = nfsfifo_read,
201 .vop_reclaim = ncl_reclaim,
202 .vop_setattr = nfs_setattr,
203 .vop_write = nfsfifo_write,
204 };
205
206 static int nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
207 struct componentname *cnp, struct vattr *vap);
208 static int nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
209 int namelen, struct ucred *cred, struct thread *td);
210 static int nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp,
211 char *fnameptr, int fnamelen, struct vnode *tdvp, struct vnode *tvp,
212 char *tnameptr, int tnamelen, struct ucred *cred, struct thread *td);
213 static int nfs_renameit(struct vnode *sdvp, struct vnode *svp,
214 struct componentname *scnp, struct sillyrename *sp);
215
216 /*
217 * Global variables
218 */
219 #define DIRHDSIZ (sizeof (struct dirent) - (MAXNAMLEN + 1))
220
221 SYSCTL_DECL(_vfs_nfs);
222
223 static int nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
224 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
225 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
226
227 static int nfs_prime_access_cache = 0;
228 SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
229 &nfs_prime_access_cache, 0,
230 "Prime NFS ACCESS cache when fetching attributes");
231
232 static int newnfs_commit_on_close = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, commit_on_close, CTLFLAG_RW,
234 &newnfs_commit_on_close, 0, "write+commit on close, else only write");
235
236 static int nfs_clean_pages_on_close = 1;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
238 &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
239
240 int newnfs_directio_enable = 0;
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
242 &newnfs_directio_enable, 0, "Enable NFS directio");
243
244 int nfs_keep_dirty_on_error;
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_keep_dirty_on_error, CTLFLAG_RW,
246 &nfs_keep_dirty_on_error, 0, "Retry pageout if error returned");
247
248 /*
249 * This sysctl allows other processes to mmap a file that has been opened
250 * O_DIRECT by a process. In general, having processes mmap the file while
251 * Direct IO is in progress can lead to Data Inconsistencies. But, we allow
252 * this by default to prevent DoS attacks - to prevent a malicious user from
253 * opening up files O_DIRECT preventing other users from mmap'ing these
254 * files. "Protected" environments where stricter consistency guarantees are
255 * required can disable this knob. The process that opened the file O_DIRECT
256 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
257 * meaningful.
258 */
259 int newnfs_directio_allow_mmap = 1;
260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
261 &newnfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
262
263 #define NFSACCESS_ALL (NFSACCESS_READ | NFSACCESS_MODIFY \
264 | NFSACCESS_EXTEND | NFSACCESS_EXECUTE \
265 | NFSACCESS_DELETE | NFSACCESS_LOOKUP)
266
267 /*
268 * SMP Locking Note :
269 * The list of locks after the description of the lock is the ordering
270 * of other locks acquired with the lock held.
271 * np->n_mtx : Protects the fields in the nfsnode.
272 VM Object Lock
273 VI_MTX (acquired indirectly)
274 * nmp->nm_mtx : Protects the fields in the nfsmount.
275 rep->r_mtx
276 * ncl_iod_mutex : Global lock, protects shared nfsiod state.
277 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
278 nmp->nm_mtx
279 rep->r_mtx
280 * rep->r_mtx : Protects the fields in an nfsreq.
281 */
282
283 static int
284 nfs34_access_otw(struct vnode *vp, int wmode, struct thread *td,
285 struct ucred *cred, u_int32_t *retmode)
286 {
287 int error = 0, attrflag, i, lrupos;
288 u_int32_t rmode;
289 struct nfsnode *np = VTONFS(vp);
290 struct nfsvattr nfsva;
291
292 error = nfsrpc_accessrpc(vp, wmode, cred, td, &nfsva, &attrflag,
293 &rmode, NULL);
294 if (attrflag)
295 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
296 if (!error) {
297 lrupos = 0;
298 mtx_lock(&np->n_mtx);
299 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
300 if (np->n_accesscache[i].uid == cred->cr_uid) {
301 np->n_accesscache[i].mode = rmode;
302 np->n_accesscache[i].stamp = time_second;
303 break;
304 }
305 if (i > 0 && np->n_accesscache[i].stamp <
306 np->n_accesscache[lrupos].stamp)
307 lrupos = i;
308 }
309 if (i == NFS_ACCESSCACHESIZE) {
310 np->n_accesscache[lrupos].uid = cred->cr_uid;
311 np->n_accesscache[lrupos].mode = rmode;
312 np->n_accesscache[lrupos].stamp = time_second;
313 }
314 mtx_unlock(&np->n_mtx);
315 if (retmode != NULL)
316 *retmode = rmode;
317 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
318 } else if (NFS_ISV4(vp)) {
319 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
320 }
321 #ifdef KDTRACE_HOOKS
322 if (error != 0)
323 KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
324 error);
325 #endif
326 return (error);
327 }
328
329 /*
330 * nfs access vnode op.
331 * For nfs version 2, just return ok. File accesses may fail later.
332 * For nfs version 3, use the access rpc to check accessibility. If file modes
333 * are changed on the server, accesses might still fail later.
334 */
335 static int
336 nfs_access(struct vop_access_args *ap)
337 {
338 struct vnode *vp = ap->a_vp;
339 int error = 0, i, gotahit;
340 u_int32_t mode, wmode, rmode;
341 int v34 = NFS_ISV34(vp);
342 struct nfsnode *np = VTONFS(vp);
343
344 /*
345 * Disallow write attempts on filesystems mounted read-only;
346 * unless the file is a socket, fifo, or a block or character
347 * device resident on the filesystem.
348 */
349 if ((ap->a_accmode & (VWRITE | VAPPEND | VWRITE_NAMED_ATTRS |
350 VDELETE_CHILD | VWRITE_ATTRIBUTES | VDELETE | VWRITE_ACL |
351 VWRITE_OWNER)) != 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) {
352 switch (vp->v_type) {
353 case VREG:
354 case VDIR:
355 case VLNK:
356 return (EROFS);
357 default:
358 break;
359 }
360 }
361 /*
362 * For nfs v3 or v4, check to see if we have done this recently, and if
363 * so return our cached result instead of making an ACCESS call.
364 * If not, do an access rpc, otherwise you are stuck emulating
365 * ufs_access() locally using the vattr. This may not be correct,
366 * since the server may apply other access criteria such as
367 * client uid-->server uid mapping that we do not know about.
368 */
369 if (v34) {
370 if (ap->a_accmode & VREAD)
371 mode = NFSACCESS_READ;
372 else
373 mode = 0;
374 if (vp->v_type != VDIR) {
375 if (ap->a_accmode & VWRITE)
376 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
377 if (ap->a_accmode & VAPPEND)
378 mode |= NFSACCESS_EXTEND;
379 if (ap->a_accmode & VEXEC)
380 mode |= NFSACCESS_EXECUTE;
381 if (ap->a_accmode & VDELETE)
382 mode |= NFSACCESS_DELETE;
383 } else {
384 if (ap->a_accmode & VWRITE)
385 mode |= (NFSACCESS_MODIFY | NFSACCESS_EXTEND);
386 if (ap->a_accmode & VAPPEND)
387 mode |= NFSACCESS_EXTEND;
388 if (ap->a_accmode & VEXEC)
389 mode |= NFSACCESS_LOOKUP;
390 if (ap->a_accmode & VDELETE)
391 mode |= NFSACCESS_DELETE;
392 if (ap->a_accmode & VDELETE_CHILD)
393 mode |= NFSACCESS_MODIFY;
394 }
395 /* XXX safety belt, only make blanket request if caching */
396 if (nfsaccess_cache_timeout > 0) {
397 wmode = NFSACCESS_READ | NFSACCESS_MODIFY |
398 NFSACCESS_EXTEND | NFSACCESS_EXECUTE |
399 NFSACCESS_DELETE | NFSACCESS_LOOKUP;
400 } else {
401 wmode = mode;
402 }
403
404 /*
405 * Does our cached result allow us to give a definite yes to
406 * this request?
407 */
408 gotahit = 0;
409 mtx_lock(&np->n_mtx);
410 for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
411 if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
412 if (time_second < (np->n_accesscache[i].stamp
413 + nfsaccess_cache_timeout) &&
414 (np->n_accesscache[i].mode & mode) == mode) {
415 NFSINCRGLOBAL(nfsstatsv1.accesscache_hits);
416 gotahit = 1;
417 }
418 break;
419 }
420 }
421 mtx_unlock(&np->n_mtx);
422 #ifdef KDTRACE_HOOKS
423 if (gotahit != 0)
424 KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
425 ap->a_cred->cr_uid, mode);
426 else
427 KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
428 ap->a_cred->cr_uid, mode);
429 #endif
430 if (gotahit == 0) {
431 /*
432 * Either a no, or a don't know. Go to the wire.
433 */
434 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
435 error = nfs34_access_otw(vp, wmode, ap->a_td,
436 ap->a_cred, &rmode);
437 if (!error &&
438 (rmode & mode) != mode)
439 error = EACCES;
440 }
441 return (error);
442 } else {
443 if ((error = nfsspec_access(ap)) != 0) {
444 return (error);
445 }
446 /*
447 * Attempt to prevent a mapped root from accessing a file
448 * which it shouldn't. We try to read a byte from the file
449 * if the user is root and the file is not zero length.
450 * After calling nfsspec_access, we should have the correct
451 * file size cached.
452 */
453 mtx_lock(&np->n_mtx);
454 if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
455 && VTONFS(vp)->n_size > 0) {
456 struct iovec aiov;
457 struct uio auio;
458 char buf[1];
459
460 mtx_unlock(&np->n_mtx);
461 aiov.iov_base = buf;
462 aiov.iov_len = 1;
463 auio.uio_iov = &aiov;
464 auio.uio_iovcnt = 1;
465 auio.uio_offset = 0;
466 auio.uio_resid = 1;
467 auio.uio_segflg = UIO_SYSSPACE;
468 auio.uio_rw = UIO_READ;
469 auio.uio_td = ap->a_td;
470
471 if (vp->v_type == VREG)
472 error = ncl_readrpc(vp, &auio, ap->a_cred);
473 else if (vp->v_type == VDIR) {
474 char* bp;
475 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
476 aiov.iov_base = bp;
477 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
478 error = ncl_readdirrpc(vp, &auio, ap->a_cred,
479 ap->a_td);
480 free(bp, M_TEMP);
481 } else if (vp->v_type == VLNK)
482 error = ncl_readlinkrpc(vp, &auio, ap->a_cred);
483 else
484 error = EACCES;
485 } else
486 mtx_unlock(&np->n_mtx);
487 return (error);
488 }
489 }
490
491
492 /*
493 * nfs open vnode op
494 * Check to see if the type is ok
495 * and that deletion is not in progress.
496 * For paged in text files, you will need to flush the page cache
497 * if consistency is lost.
498 */
499 /* ARGSUSED */
500 static int
501 nfs_open(struct vop_open_args *ap)
502 {
503 struct vnode *vp = ap->a_vp;
504 struct nfsnode *np = VTONFS(vp);
505 struct vattr vattr;
506 int error;
507 int fmode = ap->a_mode;
508 struct ucred *cred;
509
510 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
511 return (EOPNOTSUPP);
512
513 /*
514 * For NFSv4, we need to do the Open Op before cache validation,
515 * so that we conform to RFC3530 Sec. 9.3.1.
516 */
517 if (NFS_ISV4(vp)) {
518 error = nfsrpc_open(vp, fmode, ap->a_cred, ap->a_td);
519 if (error) {
520 error = nfscl_maperr(ap->a_td, error, (uid_t)0,
521 (gid_t)0);
522 return (error);
523 }
524 }
525
526 /*
527 * Now, if this Open will be doing reading, re-validate/flush the
528 * cache, so that Close/Open coherency is maintained.
529 */
530 mtx_lock(&np->n_mtx);
531 if (np->n_flag & NMODIFIED) {
532 mtx_unlock(&np->n_mtx);
533 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
534 if (error == EINTR || error == EIO) {
535 if (NFS_ISV4(vp))
536 (void) nfsrpc_close(vp, 0, ap->a_td);
537 return (error);
538 }
539 mtx_lock(&np->n_mtx);
540 np->n_attrstamp = 0;
541 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
542 if (vp->v_type == VDIR)
543 np->n_direofoffset = 0;
544 mtx_unlock(&np->n_mtx);
545 error = VOP_GETATTR(vp, &vattr, ap->a_cred);
546 if (error) {
547 if (NFS_ISV4(vp))
548 (void) nfsrpc_close(vp, 0, ap->a_td);
549 return (error);
550 }
551 mtx_lock(&np->n_mtx);
552 np->n_mtime = vattr.va_mtime;
553 if (NFS_ISV4(vp))
554 np->n_change = vattr.va_filerev;
555 } else {
556 mtx_unlock(&np->n_mtx);
557 error = VOP_GETATTR(vp, &vattr, ap->a_cred);
558 if (error) {
559 if (NFS_ISV4(vp))
560 (void) nfsrpc_close(vp, 0, ap->a_td);
561 return (error);
562 }
563 mtx_lock(&np->n_mtx);
564 if ((NFS_ISV4(vp) && np->n_change != vattr.va_filerev) ||
565 NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
566 if (vp->v_type == VDIR)
567 np->n_direofoffset = 0;
568 mtx_unlock(&np->n_mtx);
569 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
570 if (error == EINTR || error == EIO) {
571 if (NFS_ISV4(vp))
572 (void) nfsrpc_close(vp, 0, ap->a_td);
573 return (error);
574 }
575 mtx_lock(&np->n_mtx);
576 np->n_mtime = vattr.va_mtime;
577 if (NFS_ISV4(vp))
578 np->n_change = vattr.va_filerev;
579 }
580 }
581
582 /*
583 * If the object has >= 1 O_DIRECT active opens, we disable caching.
584 */
585 if (newnfs_directio_enable && (fmode & O_DIRECT) &&
586 (vp->v_type == VREG)) {
587 if (np->n_directio_opens == 0) {
588 mtx_unlock(&np->n_mtx);
589 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
590 if (error) {
591 if (NFS_ISV4(vp))
592 (void) nfsrpc_close(vp, 0, ap->a_td);
593 return (error);
594 }
595 mtx_lock(&np->n_mtx);
596 np->n_flag |= NNONCACHE;
597 }
598 np->n_directio_opens++;
599 }
600
601 /* If opened for writing via NFSv4.1 or later, mark that for pNFS. */
602 if (NFSHASPNFS(VFSTONFS(vp->v_mount)) && (fmode & FWRITE) != 0)
603 np->n_flag |= NWRITEOPENED;
604
605 /*
606 * If this is an open for writing, capture a reference to the
607 * credentials, so they can be used by ncl_putpages(). Using
608 * these write credentials is preferable to the credentials of
609 * whatever thread happens to be doing the VOP_PUTPAGES() since
610 * the write RPCs are less likely to fail with EACCES.
611 */
612 if ((fmode & FWRITE) != 0) {
613 cred = np->n_writecred;
614 np->n_writecred = crhold(ap->a_cred);
615 } else
616 cred = NULL;
617 mtx_unlock(&np->n_mtx);
618
619 if (cred != NULL)
620 crfree(cred);
621 vnode_create_vobject(vp, vattr.va_size, ap->a_td);
622 return (0);
623 }
624
625 /*
626 * nfs close vnode op
627 * What an NFS client should do upon close after writing is a debatable issue.
628 * Most NFS clients push delayed writes to the server upon close, basically for
629 * two reasons:
630 * 1 - So that any write errors may be reported back to the client process
631 * doing the close system call. By far the two most likely errors are
632 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
633 * 2 - To put a worst case upper bound on cache inconsistency between
634 * multiple clients for the file.
635 * There is also a consistency problem for Version 2 of the protocol w.r.t.
636 * not being able to tell if other clients are writing a file concurrently,
637 * since there is no way of knowing if the changed modify time in the reply
638 * is only due to the write for this client.
639 * (NFS Version 3 provides weak cache consistency data in the reply that
640 * should be sufficient to detect and handle this case.)
641 *
642 * The current code does the following:
643 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
644 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
645 * or commit them (this satisfies 1 and 2 except for the
646 * case where the server crashes after this close but
647 * before the commit RPC, which is felt to be "good
648 * enough". Changing the last argument to ncl_flush() to
649 * a 1 would force a commit operation, if it is felt a
650 * commit is necessary now.
651 * for NFS Version 4 - flush the dirty buffers and commit them, if
652 * nfscl_mustflush() says this is necessary.
653 * It is necessary if there is no write delegation held,
654 * in order to satisfy open/close coherency.
655 * If the file isn't cached on local stable storage,
656 * it may be necessary in order to detect "out of space"
657 * errors from the server, if the write delegation
658 * issued by the server doesn't allow the file to grow.
659 */
660 /* ARGSUSED */
661 static int
662 nfs_close(struct vop_close_args *ap)
663 {
664 struct vnode *vp = ap->a_vp;
665 struct nfsnode *np = VTONFS(vp);
666 struct nfsvattr nfsva;
667 struct ucred *cred;
668 int error = 0, ret, localcred = 0;
669 int fmode = ap->a_fflag;
670
671 if ((vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF))
672 return (0);
673 /*
674 * During shutdown, a_cred isn't valid, so just use root.
675 */
676 if (ap->a_cred == NOCRED) {
677 cred = newnfs_getcred();
678 localcred = 1;
679 } else {
680 cred = ap->a_cred;
681 }
682 if (vp->v_type == VREG) {
683 /*
684 * Examine and clean dirty pages, regardless of NMODIFIED.
685 * This closes a major hole in close-to-open consistency.
686 * We want to push out all dirty pages (and buffers) on
687 * close, regardless of whether they were dirtied by
688 * mmap'ed writes or via write().
689 */
690 if (nfs_clean_pages_on_close && vp->v_object) {
691 VM_OBJECT_WLOCK(vp->v_object);
692 vm_object_page_clean(vp->v_object, 0, 0, 0);
693 VM_OBJECT_WUNLOCK(vp->v_object);
694 }
695 mtx_lock(&np->n_mtx);
696 if (np->n_flag & NMODIFIED) {
697 mtx_unlock(&np->n_mtx);
698 if (NFS_ISV3(vp)) {
699 /*
700 * Under NFSv3 we have dirty buffers to dispose of. We
701 * must flush them to the NFS server. We have the option
702 * of waiting all the way through the commit rpc or just
703 * waiting for the initial write. The default is to only
704 * wait through the initial write so the data is in the
705 * server's cache, which is roughly similar to the state
706 * a standard disk subsystem leaves the file in on close().
707 *
708 * We cannot clear the NMODIFIED bit in np->n_flag due to
709 * potential races with other processes, and certainly
710 * cannot clear it if we don't commit.
711 * These races occur when there is no longer the old
712 * traditional vnode locking implemented for Vnode Ops.
713 */
714 int cm = newnfs_commit_on_close ? 1 : 0;
715 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td, cm, 0);
716 /* np->n_flag &= ~NMODIFIED; */
717 } else if (NFS_ISV4(vp)) {
718 if (nfscl_mustflush(vp) != 0) {
719 int cm = newnfs_commit_on_close ? 1 : 0;
720 error = ncl_flush(vp, MNT_WAIT, cred, ap->a_td,
721 cm, 0);
722 /*
723 * as above w.r.t races when clearing
724 * NMODIFIED.
725 * np->n_flag &= ~NMODIFIED;
726 */
727 }
728 } else
729 error = ncl_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
730 mtx_lock(&np->n_mtx);
731 }
732 /*
733 * Invalidate the attribute cache in all cases.
734 * An open is going to fetch fresh attrs any way, other procs
735 * on this node that have file open will be forced to do an
736 * otw attr fetch, but this is safe.
737 * --> A user found that their RPC count dropped by 20% when
738 * this was commented out and I can't see any requirement
739 * for it, so I've disabled it when negative lookups are
740 * enabled. (What does this have to do with negative lookup
741 * caching? Well nothing, except it was reported by the
742 * same user that needed negative lookup caching and I wanted
743 * there to be a way to disable it to see if it
744 * is the cause of some caching/coherency issue that might
745 * crop up.)
746 */
747 if (VFSTONFS(vp->v_mount)->nm_negnametimeo == 0) {
748 np->n_attrstamp = 0;
749 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
750 }
751 if (np->n_flag & NWRITEERR) {
752 np->n_flag &= ~NWRITEERR;
753 error = np->n_error;
754 }
755 mtx_unlock(&np->n_mtx);
756 }
757
758 if (NFS_ISV4(vp)) {
759 /*
760 * Get attributes so "change" is up to date.
761 */
762 if (error == 0 && nfscl_mustflush(vp) != 0 &&
763 vp->v_type == VREG &&
764 (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOCTO) == 0) {
765 ret = nfsrpc_getattr(vp, cred, ap->a_td, &nfsva,
766 NULL);
767 if (!ret) {
768 np->n_change = nfsva.na_filerev;
769 (void) nfscl_loadattrcache(&vp, &nfsva, NULL,
770 NULL, 0, 0);
771 }
772 }
773
774 /*
775 * and do the close.
776 */
777 ret = nfsrpc_close(vp, 0, ap->a_td);
778 if (!error && ret)
779 error = ret;
780 if (error)
781 error = nfscl_maperr(ap->a_td, error, (uid_t)0,
782 (gid_t)0);
783 }
784 if (newnfs_directio_enable)
785 KASSERT((np->n_directio_asyncwr == 0),
786 ("nfs_close: dirty unflushed (%d) directio buffers\n",
787 np->n_directio_asyncwr));
788 if (newnfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
789 mtx_lock(&np->n_mtx);
790 KASSERT((np->n_directio_opens > 0),
791 ("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
792 np->n_directio_opens--;
793 if (np->n_directio_opens == 0)
794 np->n_flag &= ~NNONCACHE;
795 mtx_unlock(&np->n_mtx);
796 }
797 if (localcred)
798 NFSFREECRED(cred);
799 return (error);
800 }
801
802 /*
803 * nfs getattr call from vfs.
804 */
805 static int
806 nfs_getattr(struct vop_getattr_args *ap)
807 {
808 struct vnode *vp = ap->a_vp;
809 struct thread *td = curthread; /* XXX */
810 struct nfsnode *np = VTONFS(vp);
811 int error = 0;
812 struct nfsvattr nfsva;
813 struct vattr *vap = ap->a_vap;
814 struct vattr vattr;
815
816 /*
817 * Update local times for special files.
818 */
819 mtx_lock(&np->n_mtx);
820 if (np->n_flag & (NACC | NUPD))
821 np->n_flag |= NCHG;
822 mtx_unlock(&np->n_mtx);
823 /*
824 * First look in the cache.
825 */
826 if (ncl_getattrcache(vp, &vattr) == 0) {
827 vap->va_type = vattr.va_type;
828 vap->va_mode = vattr.va_mode;
829 vap->va_nlink = vattr.va_nlink;
830 vap->va_uid = vattr.va_uid;
831 vap->va_gid = vattr.va_gid;
832 vap->va_fsid = vattr.va_fsid;
833 vap->va_fileid = vattr.va_fileid;
834 vap->va_size = vattr.va_size;
835 vap->va_blocksize = vattr.va_blocksize;
836 vap->va_atime = vattr.va_atime;
837 vap->va_mtime = vattr.va_mtime;
838 vap->va_ctime = vattr.va_ctime;
839 vap->va_gen = vattr.va_gen;
840 vap->va_flags = vattr.va_flags;
841 vap->va_rdev = vattr.va_rdev;
842 vap->va_bytes = vattr.va_bytes;
843 vap->va_filerev = vattr.va_filerev;
844 /*
845 * Get the local modify time for the case of a write
846 * delegation.
847 */
848 nfscl_deleggetmodtime(vp, &vap->va_mtime);
849 return (0);
850 }
851
852 if (NFS_ISV34(vp) && nfs_prime_access_cache &&
853 nfsaccess_cache_timeout > 0) {
854 NFSINCRGLOBAL(nfsstatsv1.accesscache_misses);
855 nfs34_access_otw(vp, NFSACCESS_ALL, td, ap->a_cred, NULL);
856 if (ncl_getattrcache(vp, ap->a_vap) == 0) {
857 nfscl_deleggetmodtime(vp, &ap->a_vap->va_mtime);
858 return (0);
859 }
860 }
861 error = nfsrpc_getattr(vp, ap->a_cred, td, &nfsva, NULL);
862 if (!error)
863 error = nfscl_loadattrcache(&vp, &nfsva, vap, NULL, 0, 0);
864 if (!error) {
865 /*
866 * Get the local modify time for the case of a write
867 * delegation.
868 */
869 nfscl_deleggetmodtime(vp, &vap->va_mtime);
870 } else if (NFS_ISV4(vp)) {
871 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
872 }
873 return (error);
874 }
875
876 /*
877 * nfs setattr call.
878 */
879 static int
880 nfs_setattr(struct vop_setattr_args *ap)
881 {
882 struct vnode *vp = ap->a_vp;
883 struct nfsnode *np = VTONFS(vp);
884 struct thread *td = curthread; /* XXX */
885 struct vattr *vap = ap->a_vap;
886 int error = 0;
887 u_quad_t tsize;
888
889 #ifndef nolint
890 tsize = (u_quad_t)0;
891 #endif
892
893 /*
894 * Setting of flags and marking of atimes are not supported.
895 */
896 if (vap->va_flags != VNOVAL)
897 return (EOPNOTSUPP);
898
899 /*
900 * Disallow write attempts if the filesystem is mounted read-only.
901 */
902 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
903 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
904 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
905 (vp->v_mount->mnt_flag & MNT_RDONLY))
906 return (EROFS);
907 if (vap->va_size != VNOVAL) {
908 switch (vp->v_type) {
909 case VDIR:
910 return (EISDIR);
911 case VCHR:
912 case VBLK:
913 case VSOCK:
914 case VFIFO:
915 if (vap->va_mtime.tv_sec == VNOVAL &&
916 vap->va_atime.tv_sec == VNOVAL &&
917 vap->va_mode == (mode_t)VNOVAL &&
918 vap->va_uid == (uid_t)VNOVAL &&
919 vap->va_gid == (gid_t)VNOVAL)
920 return (0);
921 vap->va_size = VNOVAL;
922 break;
923 default:
924 /*
925 * Disallow write attempts if the filesystem is
926 * mounted read-only.
927 */
928 if (vp->v_mount->mnt_flag & MNT_RDONLY)
929 return (EROFS);
930 /*
931 * We run vnode_pager_setsize() early (why?),
932 * we must set np->n_size now to avoid vinvalbuf
933 * V_SAVE races that might setsize a lower
934 * value.
935 */
936 mtx_lock(&np->n_mtx);
937 tsize = np->n_size;
938 mtx_unlock(&np->n_mtx);
939 error = ncl_meta_setsize(vp, ap->a_cred, td,
940 vap->va_size);
941 mtx_lock(&np->n_mtx);
942 if (np->n_flag & NMODIFIED) {
943 tsize = np->n_size;
944 mtx_unlock(&np->n_mtx);
945 if (vap->va_size == 0)
946 error = ncl_vinvalbuf(vp, 0, td, 1);
947 else
948 error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
949 if (error) {
950 vnode_pager_setsize(vp, tsize);
951 return (error);
952 }
953 /*
954 * Call nfscl_delegmodtime() to set the modify time
955 * locally, as required.
956 */
957 nfscl_delegmodtime(vp);
958 } else
959 mtx_unlock(&np->n_mtx);
960 /*
961 * np->n_size has already been set to vap->va_size
962 * in ncl_meta_setsize(). We must set it again since
963 * nfs_loadattrcache() could be called through
964 * ncl_meta_setsize() and could modify np->n_size.
965 */
966 mtx_lock(&np->n_mtx);
967 np->n_vattr.na_size = np->n_size = vap->va_size;
968 mtx_unlock(&np->n_mtx);
969 }
970 } else {
971 mtx_lock(&np->n_mtx);
972 if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
973 (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
974 mtx_unlock(&np->n_mtx);
975 if ((error = ncl_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
976 (error == EINTR || error == EIO))
977 return (error);
978 } else
979 mtx_unlock(&np->n_mtx);
980 }
981 error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
982 if (error && vap->va_size != VNOVAL) {
983 mtx_lock(&np->n_mtx);
984 np->n_size = np->n_vattr.na_size = tsize;
985 vnode_pager_setsize(vp, tsize);
986 mtx_unlock(&np->n_mtx);
987 }
988 return (error);
989 }
990
991 /*
992 * Do an nfs setattr rpc.
993 */
994 static int
995 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred,
996 struct thread *td)
997 {
998 struct nfsnode *np = VTONFS(vp);
999 int error, ret, attrflag, i;
1000 struct nfsvattr nfsva;
1001
1002 if (NFS_ISV34(vp)) {
1003 mtx_lock(&np->n_mtx);
1004 for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
1005 np->n_accesscache[i].stamp = 0;
1006 np->n_flag |= NDELEGMOD;
1007 mtx_unlock(&np->n_mtx);
1008 KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
1009 }
1010 error = nfsrpc_setattr(vp, vap, NULL, cred, td, &nfsva, &attrflag,
1011 NULL);
1012 if (attrflag) {
1013 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1014 if (ret && !error)
1015 error = ret;
1016 }
1017 if (error && NFS_ISV4(vp))
1018 error = nfscl_maperr(td, error, vap->va_uid, vap->va_gid);
1019 return (error);
1020 }
1021
1022 /*
1023 * nfs lookup call, one step at a time...
1024 * First look in cache
1025 * If not found, unlock the directory nfsnode and do the rpc
1026 */
1027 static int
1028 nfs_lookup(struct vop_lookup_args *ap)
1029 {
1030 struct componentname *cnp = ap->a_cnp;
1031 struct vnode *dvp = ap->a_dvp;
1032 struct vnode **vpp = ap->a_vpp;
1033 struct mount *mp = dvp->v_mount;
1034 int flags = cnp->cn_flags;
1035 struct vnode *newvp;
1036 struct nfsmount *nmp;
1037 struct nfsnode *np, *newnp;
1038 int error = 0, attrflag, dattrflag, ltype, ncticks;
1039 struct thread *td = cnp->cn_thread;
1040 struct nfsfh *nfhp;
1041 struct nfsvattr dnfsva, nfsva;
1042 struct vattr vattr;
1043 struct timespec nctime;
1044
1045 *vpp = NULLVP;
1046 if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
1047 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
1048 return (EROFS);
1049 if (dvp->v_type != VDIR)
1050 return (ENOTDIR);
1051 nmp = VFSTONFS(mp);
1052 np = VTONFS(dvp);
1053
1054 /* For NFSv4, wait until any remove is done. */
1055 mtx_lock(&np->n_mtx);
1056 while (NFSHASNFSV4(nmp) && (np->n_flag & NREMOVEINPROG)) {
1057 np->n_flag |= NREMOVEWANT;
1058 (void) msleep((caddr_t)np, &np->n_mtx, PZERO, "nfslkup", 0);
1059 }
1060 mtx_unlock(&np->n_mtx);
1061
1062 if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0)
1063 return (error);
1064 error = cache_lookup(dvp, vpp, cnp, &nctime, &ncticks);
1065 if (error > 0 && error != ENOENT)
1066 return (error);
1067 if (error == -1) {
1068 /*
1069 * Lookups of "." are special and always return the
1070 * current directory. cache_lookup() already handles
1071 * associated locking bookkeeping, etc.
1072 */
1073 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
1074 /* XXX: Is this really correct? */
1075 if (cnp->cn_nameiop != LOOKUP &&
1076 (flags & ISLASTCN))
1077 cnp->cn_flags |= SAVENAME;
1078 return (0);
1079 }
1080
1081 /*
1082 * We only accept a positive hit in the cache if the
1083 * change time of the file matches our cached copy.
1084 * Otherwise, we discard the cache entry and fallback
1085 * to doing a lookup RPC. We also only trust cache
1086 * entries for less than nm_nametimeo seconds.
1087 *
1088 * To better handle stale file handles and attributes,
1089 * clear the attribute cache of this node if it is a
1090 * leaf component, part of an open() call, and not
1091 * locally modified before fetching the attributes.
1092 * This should allow stale file handles to be detected
1093 * here where we can fall back to a LOOKUP RPC to
1094 * recover rather than having nfs_open() detect the
1095 * stale file handle and failing open(2) with ESTALE.
1096 */
1097 newvp = *vpp;
1098 newnp = VTONFS(newvp);
1099 if (!(nmp->nm_flag & NFSMNT_NOCTO) &&
1100 (flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1101 !(newnp->n_flag & NMODIFIED)) {
1102 mtx_lock(&newnp->n_mtx);
1103 newnp->n_attrstamp = 0;
1104 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1105 mtx_unlock(&newnp->n_mtx);
1106 }
1107 if (nfscl_nodeleg(newvp, 0) == 0 ||
1108 ((u_int)(ticks - ncticks) < (nmp->nm_nametimeo * hz) &&
1109 VOP_GETATTR(newvp, &vattr, cnp->cn_cred) == 0 &&
1110 timespeccmp(&vattr.va_ctime, &nctime, ==))) {
1111 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1112 if (cnp->cn_nameiop != LOOKUP &&
1113 (flags & ISLASTCN))
1114 cnp->cn_flags |= SAVENAME;
1115 return (0);
1116 }
1117 cache_purge(newvp);
1118 if (dvp != newvp)
1119 vput(newvp);
1120 else
1121 vrele(newvp);
1122 *vpp = NULLVP;
1123 } else if (error == ENOENT) {
1124 if (dvp->v_iflag & VI_DOOMED)
1125 return (ENOENT);
1126 /*
1127 * We only accept a negative hit in the cache if the
1128 * modification time of the parent directory matches
1129 * the cached copy in the name cache entry.
1130 * Otherwise, we discard all of the negative cache
1131 * entries for this directory. We also only trust
1132 * negative cache entries for up to nm_negnametimeo
1133 * seconds.
1134 */
1135 if ((u_int)(ticks - ncticks) < (nmp->nm_negnametimeo * hz) &&
1136 VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
1137 timespeccmp(&vattr.va_mtime, &nctime, ==)) {
1138 NFSINCRGLOBAL(nfsstatsv1.lookupcache_hits);
1139 return (ENOENT);
1140 }
1141 cache_purge_negative(dvp);
1142 }
1143
1144 error = 0;
1145 newvp = NULLVP;
1146 NFSINCRGLOBAL(nfsstatsv1.lookupcache_misses);
1147 error = nfsrpc_lookup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1148 cnp->cn_cred, td, &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1149 NULL);
1150 if (dattrflag)
1151 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1152 if (error) {
1153 if (newvp != NULLVP) {
1154 vput(newvp);
1155 *vpp = NULLVP;
1156 }
1157
1158 if (error != ENOENT) {
1159 if (NFS_ISV4(dvp))
1160 error = nfscl_maperr(td, error, (uid_t)0,
1161 (gid_t)0);
1162 return (error);
1163 }
1164
1165 /* The requested file was not found. */
1166 if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1167 (flags & ISLASTCN)) {
1168 /*
1169 * XXX: UFS does a full VOP_ACCESS(dvp,
1170 * VWRITE) here instead of just checking
1171 * MNT_RDONLY.
1172 */
1173 if (mp->mnt_flag & MNT_RDONLY)
1174 return (EROFS);
1175 cnp->cn_flags |= SAVENAME;
1176 return (EJUSTRETURN);
1177 }
1178
1179 if ((cnp->cn_flags & MAKEENTRY) != 0 && dattrflag) {
1180 /*
1181 * Cache the modification time of the parent
1182 * directory from the post-op attributes in
1183 * the name cache entry. The negative cache
1184 * entry will be ignored once the directory
1185 * has changed. Don't bother adding the entry
1186 * if the directory has already changed.
1187 */
1188 mtx_lock(&np->n_mtx);
1189 if (timespeccmp(&np->n_vattr.na_mtime,
1190 &dnfsva.na_mtime, ==)) {
1191 mtx_unlock(&np->n_mtx);
1192 cache_enter_time(dvp, NULL, cnp,
1193 &dnfsva.na_mtime, NULL);
1194 } else
1195 mtx_unlock(&np->n_mtx);
1196 }
1197 return (ENOENT);
1198 }
1199
1200 /*
1201 * Handle RENAME case...
1202 */
1203 if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1204 if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1205 FREE((caddr_t)nfhp, M_NFSFH);
1206 return (EISDIR);
1207 }
1208 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1209 LK_EXCLUSIVE);
1210 if (error)
1211 return (error);
1212 newvp = NFSTOV(np);
1213 if (attrflag)
1214 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1215 0, 1);
1216 *vpp = newvp;
1217 cnp->cn_flags |= SAVENAME;
1218 return (0);
1219 }
1220
1221 if (flags & ISDOTDOT) {
1222 ltype = NFSVOPISLOCKED(dvp);
1223 error = vfs_busy(mp, MBF_NOWAIT);
1224 if (error != 0) {
1225 vfs_ref(mp);
1226 NFSVOPUNLOCK(dvp, 0);
1227 error = vfs_busy(mp, 0);
1228 NFSVOPLOCK(dvp, ltype | LK_RETRY);
1229 vfs_rel(mp);
1230 if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1231 vfs_unbusy(mp);
1232 error = ENOENT;
1233 }
1234 if (error != 0)
1235 return (error);
1236 }
1237 NFSVOPUNLOCK(dvp, 0);
1238 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1239 cnp->cn_lkflags);
1240 if (error == 0)
1241 newvp = NFSTOV(np);
1242 vfs_unbusy(mp);
1243 if (newvp != dvp)
1244 NFSVOPLOCK(dvp, ltype | LK_RETRY);
1245 if (dvp->v_iflag & VI_DOOMED) {
1246 if (error == 0) {
1247 if (newvp == dvp)
1248 vrele(newvp);
1249 else
1250 vput(newvp);
1251 }
1252 error = ENOENT;
1253 }
1254 if (error != 0)
1255 return (error);
1256 if (attrflag)
1257 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1258 0, 1);
1259 } else if (NFS_CMPFH(np, nfhp->nfh_fh, nfhp->nfh_len)) {
1260 FREE((caddr_t)nfhp, M_NFSFH);
1261 VREF(dvp);
1262 newvp = dvp;
1263 if (attrflag)
1264 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1265 0, 1);
1266 } else {
1267 error = nfscl_nget(mp, dvp, nfhp, cnp, td, &np, NULL,
1268 cnp->cn_lkflags);
1269 if (error)
1270 return (error);
1271 newvp = NFSTOV(np);
1272 if (attrflag)
1273 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1274 0, 1);
1275 else if ((flags & (ISLASTCN | ISOPEN)) == (ISLASTCN | ISOPEN) &&
1276 !(np->n_flag & NMODIFIED)) {
1277 /*
1278 * Flush the attribute cache when opening a
1279 * leaf node to ensure that fresh attributes
1280 * are fetched in nfs_open() since we did not
1281 * fetch attributes from the LOOKUP reply.
1282 */
1283 mtx_lock(&np->n_mtx);
1284 np->n_attrstamp = 0;
1285 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(newvp);
1286 mtx_unlock(&np->n_mtx);
1287 }
1288 }
1289 if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1290 cnp->cn_flags |= SAVENAME;
1291 if ((cnp->cn_flags & MAKEENTRY) &&
1292 (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN)) &&
1293 attrflag != 0 && (newvp->v_type != VDIR || dattrflag != 0))
1294 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1295 newvp->v_type != VDIR ? NULL : &dnfsva.na_ctime);
1296 *vpp = newvp;
1297 return (0);
1298 }
1299
1300 /*
1301 * nfs read call.
1302 * Just call ncl_bioread() to do the work.
1303 */
1304 static int
1305 nfs_read(struct vop_read_args *ap)
1306 {
1307 struct vnode *vp = ap->a_vp;
1308
1309 switch (vp->v_type) {
1310 case VREG:
1311 return (ncl_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1312 case VDIR:
1313 return (EISDIR);
1314 default:
1315 return (EOPNOTSUPP);
1316 }
1317 }
1318
1319 /*
1320 * nfs readlink call
1321 */
1322 static int
1323 nfs_readlink(struct vop_readlink_args *ap)
1324 {
1325 struct vnode *vp = ap->a_vp;
1326
1327 if (vp->v_type != VLNK)
1328 return (EINVAL);
1329 return (ncl_bioread(vp, ap->a_uio, 0, ap->a_cred));
1330 }
1331
1332 /*
1333 * Do a readlink rpc.
1334 * Called by ncl_doio() from below the buffer cache.
1335 */
1336 int
1337 ncl_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1338 {
1339 int error, ret, attrflag;
1340 struct nfsvattr nfsva;
1341
1342 error = nfsrpc_readlink(vp, uiop, cred, uiop->uio_td, &nfsva,
1343 &attrflag, NULL);
1344 if (attrflag) {
1345 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1346 if (ret && !error)
1347 error = ret;
1348 }
1349 if (error && NFS_ISV4(vp))
1350 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1351 return (error);
1352 }
1353
1354 /*
1355 * nfs read rpc call
1356 * Ditto above
1357 */
1358 int
1359 ncl_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1360 {
1361 int error, ret, attrflag;
1362 struct nfsvattr nfsva;
1363 struct nfsmount *nmp;
1364
1365 nmp = VFSTONFS(vnode_mount(vp));
1366 error = EIO;
1367 attrflag = 0;
1368 if (NFSHASPNFS(nmp))
1369 error = nfscl_doiods(vp, uiop, NULL, NULL,
1370 NFSV4OPEN_ACCESSREAD, cred, uiop->uio_td);
1371 NFSCL_DEBUG(4, "readrpc: aft doiods=%d\n", error);
1372 if (error != 0)
1373 error = nfsrpc_read(vp, uiop, cred, uiop->uio_td, &nfsva,
1374 &attrflag, NULL);
1375 if (attrflag) {
1376 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1377 if (ret && !error)
1378 error = ret;
1379 }
1380 if (error && NFS_ISV4(vp))
1381 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1382 return (error);
1383 }
1384
1385 /*
1386 * nfs write call
1387 */
1388 int
1389 ncl_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1390 int *iomode, int *must_commit, int called_from_strategy)
1391 {
1392 struct nfsvattr nfsva;
1393 int error, attrflag, ret;
1394 struct nfsmount *nmp;
1395
1396 nmp = VFSTONFS(vnode_mount(vp));
1397 error = EIO;
1398 attrflag = 0;
1399 if (NFSHASPNFS(nmp))
1400 error = nfscl_doiods(vp, uiop, iomode, must_commit,
1401 NFSV4OPEN_ACCESSWRITE, cred, uiop->uio_td);
1402 NFSCL_DEBUG(4, "writerpc: aft doiods=%d\n", error);
1403 if (error != 0)
1404 error = nfsrpc_write(vp, uiop, iomode, must_commit, cred,
1405 uiop->uio_td, &nfsva, &attrflag, NULL,
1406 called_from_strategy);
1407 if (attrflag) {
1408 if (VTONFS(vp)->n_flag & ND_NFSV4)
1409 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 1,
1410 1);
1411 else
1412 ret = nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
1413 1);
1414 if (ret && !error)
1415 error = ret;
1416 }
1417 if (DOINGASYNC(vp))
1418 *iomode = NFSWRITE_FILESYNC;
1419 if (error && NFS_ISV4(vp))
1420 error = nfscl_maperr(uiop->uio_td, error, (uid_t)0, (gid_t)0);
1421 return (error);
1422 }
1423
1424 /*
1425 * nfs mknod rpc
1426 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1427 * mode set to specify the file type and the size field for rdev.
1428 */
1429 static int
1430 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1431 struct vattr *vap)
1432 {
1433 struct nfsvattr nfsva, dnfsva;
1434 struct vnode *newvp = NULL;
1435 struct nfsnode *np = NULL, *dnp;
1436 struct nfsfh *nfhp;
1437 struct vattr vattr;
1438 int error = 0, attrflag, dattrflag;
1439 u_int32_t rdev;
1440
1441 if (vap->va_type == VCHR || vap->va_type == VBLK)
1442 rdev = vap->va_rdev;
1443 else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1444 rdev = 0xffffffff;
1445 else
1446 return (EOPNOTSUPP);
1447 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1448 return (error);
1449 error = nfsrpc_mknod(dvp, cnp->cn_nameptr, cnp->cn_namelen, vap,
1450 rdev, vap->va_type, cnp->cn_cred, cnp->cn_thread, &dnfsva,
1451 &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
1452 if (!error) {
1453 if (!nfhp)
1454 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1455 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1456 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1457 NULL);
1458 if (nfhp)
1459 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1460 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1461 }
1462 if (dattrflag)
1463 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1464 if (!error) {
1465 newvp = NFSTOV(np);
1466 if (attrflag != 0) {
1467 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1468 0, 1);
1469 if (error != 0)
1470 vput(newvp);
1471 }
1472 }
1473 if (!error) {
1474 *vpp = newvp;
1475 } else if (NFS_ISV4(dvp)) {
1476 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1477 vap->va_gid);
1478 }
1479 dnp = VTONFS(dvp);
1480 mtx_lock(&dnp->n_mtx);
1481 dnp->n_flag |= NMODIFIED;
1482 if (!dattrflag) {
1483 dnp->n_attrstamp = 0;
1484 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1485 }
1486 mtx_unlock(&dnp->n_mtx);
1487 return (error);
1488 }
1489
1490 /*
1491 * nfs mknod vop
1492 * just call nfs_mknodrpc() to do the work.
1493 */
1494 /* ARGSUSED */
1495 static int
1496 nfs_mknod(struct vop_mknod_args *ap)
1497 {
1498 return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1499 }
1500
1501 static struct mtx nfs_cverf_mtx;
1502 MTX_SYSINIT(nfs_cverf_mtx, &nfs_cverf_mtx, "NFS create verifier mutex",
1503 MTX_DEF);
1504
1505 static nfsquad_t
1506 nfs_get_cverf(void)
1507 {
1508 static nfsquad_t cverf;
1509 nfsquad_t ret;
1510 static int cverf_initialized = 0;
1511
1512 mtx_lock(&nfs_cverf_mtx);
1513 if (cverf_initialized == 0) {
1514 cverf.lval[0] = arc4random();
1515 cverf.lval[1] = arc4random();
1516 cverf_initialized = 1;
1517 } else
1518 cverf.qval++;
1519 ret = cverf;
1520 mtx_unlock(&nfs_cverf_mtx);
1521
1522 return (ret);
1523 }
1524
1525 /*
1526 * nfs file create call
1527 */
1528 static int
1529 nfs_create(struct vop_create_args *ap)
1530 {
1531 struct vnode *dvp = ap->a_dvp;
1532 struct vattr *vap = ap->a_vap;
1533 struct componentname *cnp = ap->a_cnp;
1534 struct nfsnode *np = NULL, *dnp;
1535 struct vnode *newvp = NULL;
1536 struct nfsmount *nmp;
1537 struct nfsvattr dnfsva, nfsva;
1538 struct nfsfh *nfhp;
1539 nfsquad_t cverf;
1540 int error = 0, attrflag, dattrflag, fmode = 0;
1541 struct vattr vattr;
1542
1543 /*
1544 * Oops, not for me..
1545 */
1546 if (vap->va_type == VSOCK)
1547 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1548
1549 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)))
1550 return (error);
1551 if (vap->va_vaflags & VA_EXCLUSIVE)
1552 fmode |= O_EXCL;
1553 dnp = VTONFS(dvp);
1554 nmp = VFSTONFS(vnode_mount(dvp));
1555 again:
1556 /* For NFSv4, wait until any remove is done. */
1557 mtx_lock(&dnp->n_mtx);
1558 while (NFSHASNFSV4(nmp) && (dnp->n_flag & NREMOVEINPROG)) {
1559 dnp->n_flag |= NREMOVEWANT;
1560 (void) msleep((caddr_t)dnp, &dnp->n_mtx, PZERO, "nfscrt", 0);
1561 }
1562 mtx_unlock(&dnp->n_mtx);
1563
1564 cverf = nfs_get_cverf();
1565 error = nfsrpc_create(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1566 vap, cverf, fmode, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva,
1567 &nfhp, &attrflag, &dattrflag, NULL);
1568 if (!error) {
1569 if (nfhp == NULL)
1570 (void) nfsrpc_lookup(dvp, cnp->cn_nameptr,
1571 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread,
1572 &dnfsva, &nfsva, &nfhp, &attrflag, &dattrflag,
1573 NULL);
1574 if (nfhp != NULL)
1575 error = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp,
1576 cnp->cn_thread, &np, NULL, LK_EXCLUSIVE);
1577 }
1578 if (dattrflag)
1579 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1580 if (!error) {
1581 newvp = NFSTOV(np);
1582 if (attrflag == 0)
1583 error = nfsrpc_getattr(newvp, cnp->cn_cred,
1584 cnp->cn_thread, &nfsva, NULL);
1585 if (error == 0)
1586 error = nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
1587 0, 1);
1588 }
1589 if (error) {
1590 if (newvp != NULL) {
1591 vput(newvp);
1592 newvp = NULL;
1593 }
1594 if (NFS_ISV34(dvp) && (fmode & O_EXCL) &&
1595 error == NFSERR_NOTSUPP) {
1596 fmode &= ~O_EXCL;
1597 goto again;
1598 }
1599 } else if (NFS_ISV34(dvp) && (fmode & O_EXCL)) {
1600 if (nfscl_checksattr(vap, &nfsva)) {
1601 error = nfsrpc_setattr(newvp, vap, NULL, cnp->cn_cred,
1602 cnp->cn_thread, &nfsva, &attrflag, NULL);
1603 if (error && (vap->va_uid != (uid_t)VNOVAL ||
1604 vap->va_gid != (gid_t)VNOVAL)) {
1605 /* try again without setting uid/gid */
1606 vap->va_uid = (uid_t)VNOVAL;
1607 vap->va_gid = (uid_t)VNOVAL;
1608 error = nfsrpc_setattr(newvp, vap, NULL,
1609 cnp->cn_cred, cnp->cn_thread, &nfsva,
1610 &attrflag, NULL);
1611 }
1612 if (attrflag)
1613 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
1614 NULL, 0, 1);
1615 if (error != 0)
1616 vput(newvp);
1617 }
1618 }
1619 if (!error) {
1620 if ((cnp->cn_flags & MAKEENTRY) && attrflag)
1621 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
1622 NULL);
1623 *ap->a_vpp = newvp;
1624 } else if (NFS_ISV4(dvp)) {
1625 error = nfscl_maperr(cnp->cn_thread, error, vap->va_uid,
1626 vap->va_gid);
1627 }
1628 mtx_lock(&dnp->n_mtx);
1629 dnp->n_flag |= NMODIFIED;
1630 if (!dattrflag) {
1631 dnp->n_attrstamp = 0;
1632 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1633 }
1634 mtx_unlock(&dnp->n_mtx);
1635 return (error);
1636 }
1637
1638 /*
1639 * nfs file remove call
1640 * To try and make nfs semantics closer to ufs semantics, a file that has
1641 * other processes using the vnode is renamed instead of removed and then
1642 * removed later on the last close.
1643 * - If v_usecount > 1
1644 * If a rename is not already in the works
1645 * call nfs_sillyrename() to set it up
1646 * else
1647 * do the remove rpc
1648 */
1649 static int
1650 nfs_remove(struct vop_remove_args *ap)
1651 {
1652 struct vnode *vp = ap->a_vp;
1653 struct vnode *dvp = ap->a_dvp;
1654 struct componentname *cnp = ap->a_cnp;
1655 struct nfsnode *np = VTONFS(vp);
1656 int error = 0;
1657 struct vattr vattr;
1658
1659 KASSERT((cnp->cn_flags & HASBUF) != 0, ("nfs_remove: no name"));
1660 KASSERT(vrefcnt(vp) > 0, ("nfs_remove: bad v_usecount"));
1661 if (vp->v_type == VDIR)
1662 error = EPERM;
1663 else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1664 VOP_GETATTR(vp, &vattr, cnp->cn_cred) == 0 &&
1665 vattr.va_nlink > 1)) {
1666 /*
1667 * Purge the name cache so that the chance of a lookup for
1668 * the name succeeding while the remove is in progress is
1669 * minimized. Without node locking it can still happen, such
1670 * that an I/O op returns ESTALE, but since you get this if
1671 * another host removes the file..
1672 */
1673 cache_purge(vp);
1674 /*
1675 * throw away biocache buffers, mainly to avoid
1676 * unnecessary delayed writes later.
1677 */
1678 error = ncl_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1679 /* Do the rpc */
1680 if (error != EINTR && error != EIO)
1681 error = nfs_removerpc(dvp, vp, cnp->cn_nameptr,
1682 cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1683 /*
1684 * Kludge City: If the first reply to the remove rpc is lost..
1685 * the reply to the retransmitted request will be ENOENT
1686 * since the file was in fact removed
1687 * Therefore, we cheat and return success.
1688 */
1689 if (error == ENOENT)
1690 error = 0;
1691 } else if (!np->n_sillyrename)
1692 error = nfs_sillyrename(dvp, vp, cnp);
1693 mtx_lock(&np->n_mtx);
1694 np->n_attrstamp = 0;
1695 mtx_unlock(&np->n_mtx);
1696 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1697 return (error);
1698 }
1699
1700 /*
1701 * nfs file remove rpc called from nfs_inactive
1702 */
1703 int
1704 ncl_removeit(struct sillyrename *sp, struct vnode *vp)
1705 {
1706 /*
1707 * Make sure that the directory vnode is still valid.
1708 * XXX we should lock sp->s_dvp here.
1709 */
1710 if (sp->s_dvp->v_type == VBAD)
1711 return (0);
1712 return (nfs_removerpc(sp->s_dvp, vp, sp->s_name, sp->s_namlen,
1713 sp->s_cred, NULL));
1714 }
1715
1716 /*
1717 * Nfs remove rpc, called from nfs_remove() and ncl_removeit().
1718 */
1719 static int
1720 nfs_removerpc(struct vnode *dvp, struct vnode *vp, char *name,
1721 int namelen, struct ucred *cred, struct thread *td)
1722 {
1723 struct nfsvattr dnfsva;
1724 struct nfsnode *dnp = VTONFS(dvp);
1725 int error = 0, dattrflag;
1726
1727 mtx_lock(&dnp->n_mtx);
1728 dnp->n_flag |= NREMOVEINPROG;
1729 mtx_unlock(&dnp->n_mtx);
1730 error = nfsrpc_remove(dvp, name, namelen, vp, cred, td, &dnfsva,
1731 &dattrflag, NULL);
1732 mtx_lock(&dnp->n_mtx);
1733 if ((dnp->n_flag & NREMOVEWANT)) {
1734 dnp->n_flag &= ~(NREMOVEWANT | NREMOVEINPROG);
1735 mtx_unlock(&dnp->n_mtx);
1736 wakeup((caddr_t)dnp);
1737 } else {
1738 dnp->n_flag &= ~NREMOVEINPROG;
1739 mtx_unlock(&dnp->n_mtx);
1740 }
1741 if (dattrflag)
1742 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
1743 mtx_lock(&dnp->n_mtx);
1744 dnp->n_flag |= NMODIFIED;
1745 if (!dattrflag) {
1746 dnp->n_attrstamp = 0;
1747 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1748 }
1749 mtx_unlock(&dnp->n_mtx);
1750 if (error && NFS_ISV4(dvp))
1751 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1752 return (error);
1753 }
1754
1755 /*
1756 * nfs file rename call
1757 */
1758 static int
1759 nfs_rename(struct vop_rename_args *ap)
1760 {
1761 struct vnode *fvp = ap->a_fvp;
1762 struct vnode *tvp = ap->a_tvp;
1763 struct vnode *fdvp = ap->a_fdvp;
1764 struct vnode *tdvp = ap->a_tdvp;
1765 struct componentname *tcnp = ap->a_tcnp;
1766 struct componentname *fcnp = ap->a_fcnp;
1767 struct nfsnode *fnp = VTONFS(ap->a_fvp);
1768 struct nfsnode *tdnp = VTONFS(ap->a_tdvp);
1769 struct nfsv4node *newv4 = NULL;
1770 int error;
1771
1772 KASSERT((tcnp->cn_flags & HASBUF) != 0 &&
1773 (fcnp->cn_flags & HASBUF) != 0, ("nfs_rename: no name"));
1774 /* Check for cross-device rename */
1775 if ((fvp->v_mount != tdvp->v_mount) ||
1776 (tvp && (fvp->v_mount != tvp->v_mount))) {
1777 error = EXDEV;
1778 goto out;
1779 }
1780
1781 if (fvp == tvp) {
1782 printf("nfs_rename: fvp == tvp (can't happen)\n");
1783 error = 0;
1784 goto out;
1785 }
1786 if ((error = NFSVOPLOCK(fvp, LK_EXCLUSIVE)) != 0)
1787 goto out;
1788
1789 /*
1790 * We have to flush B_DELWRI data prior to renaming
1791 * the file. If we don't, the delayed-write buffers
1792 * can be flushed out later after the file has gone stale
1793 * under NFSV3. NFSV2 does not have this problem because
1794 * ( as far as I can tell ) it flushes dirty buffers more
1795 * often.
1796 *
1797 * Skip the rename operation if the fsync fails, this can happen
1798 * due to the server's volume being full, when we pushed out data
1799 * that was written back to our cache earlier. Not checking for
1800 * this condition can result in potential (silent) data loss.
1801 */
1802 error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1803 NFSVOPUNLOCK(fvp, 0);
1804 if (!error && tvp)
1805 error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1806 if (error)
1807 goto out;
1808
1809 /*
1810 * If the tvp exists and is in use, sillyrename it before doing the
1811 * rename of the new file over it.
1812 * XXX Can't sillyrename a directory.
1813 */
1814 if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1815 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1816 vput(tvp);
1817 tvp = NULL;
1818 }
1819
1820 error = nfs_renamerpc(fdvp, fvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1821 tdvp, tvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1822 tcnp->cn_thread);
1823
1824 if (error == 0 && NFS_ISV4(tdvp)) {
1825 /*
1826 * For NFSv4, check to see if it is the same name and
1827 * replace the name, if it is different.
1828 */
1829 MALLOC(newv4, struct nfsv4node *,
1830 sizeof (struct nfsv4node) +
1831 tdnp->n_fhp->nfh_len + tcnp->cn_namelen - 1,
1832 M_NFSV4NODE, M_WAITOK);
1833 mtx_lock(&tdnp->n_mtx);
1834 mtx_lock(&fnp->n_mtx);
1835 if (fnp->n_v4 != NULL && fvp->v_type == VREG &&
1836 (fnp->n_v4->n4_namelen != tcnp->cn_namelen ||
1837 NFSBCMP(tcnp->cn_nameptr, NFS4NODENAME(fnp->n_v4),
1838 tcnp->cn_namelen) ||
1839 tdnp->n_fhp->nfh_len != fnp->n_v4->n4_fhlen ||
1840 NFSBCMP(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1841 tdnp->n_fhp->nfh_len))) {
1842 #ifdef notdef
1843 { char nnn[100]; int nnnl;
1844 nnnl = (tcnp->cn_namelen < 100) ? tcnp->cn_namelen : 99;
1845 bcopy(tcnp->cn_nameptr, nnn, nnnl);
1846 nnn[nnnl] = '\0';
1847 printf("ren replace=%s\n",nnn);
1848 }
1849 #endif
1850 FREE((caddr_t)fnp->n_v4, M_NFSV4NODE);
1851 fnp->n_v4 = newv4;
1852 newv4 = NULL;
1853 fnp->n_v4->n4_fhlen = tdnp->n_fhp->nfh_len;
1854 fnp->n_v4->n4_namelen = tcnp->cn_namelen;
1855 NFSBCOPY(tdnp->n_fhp->nfh_fh, fnp->n_v4->n4_data,
1856 tdnp->n_fhp->nfh_len);
1857 NFSBCOPY(tcnp->cn_nameptr,
1858 NFS4NODENAME(fnp->n_v4), tcnp->cn_namelen);
1859 }
1860 mtx_unlock(&tdnp->n_mtx);
1861 mtx_unlock(&fnp->n_mtx);
1862 if (newv4 != NULL)
1863 FREE((caddr_t)newv4, M_NFSV4NODE);
1864 }
1865
1866 if (fvp->v_type == VDIR) {
1867 if (tvp != NULL && tvp->v_type == VDIR)
1868 cache_purge(tdvp);
1869 cache_purge(fdvp);
1870 }
1871
1872 out:
1873 if (tdvp == tvp)
1874 vrele(tdvp);
1875 else
1876 vput(tdvp);
1877 if (tvp)
1878 vput(tvp);
1879 vrele(fdvp);
1880 vrele(fvp);
1881 /*
1882 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1883 */
1884 if (error == ENOENT)
1885 error = 0;
1886 return (error);
1887 }
1888
1889 /*
1890 * nfs file rename rpc called from nfs_remove() above
1891 */
1892 static int
1893 nfs_renameit(struct vnode *sdvp, struct vnode *svp, struct componentname *scnp,
1894 struct sillyrename *sp)
1895 {
1896
1897 return (nfs_renamerpc(sdvp, svp, scnp->cn_nameptr, scnp->cn_namelen,
1898 sdvp, NULL, sp->s_name, sp->s_namlen, scnp->cn_cred,
1899 scnp->cn_thread));
1900 }
1901
1902 /*
1903 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1904 */
1905 static int
1906 nfs_renamerpc(struct vnode *fdvp, struct vnode *fvp, char *fnameptr,
1907 int fnamelen, struct vnode *tdvp, struct vnode *tvp, char *tnameptr,
1908 int tnamelen, struct ucred *cred, struct thread *td)
1909 {
1910 struct nfsvattr fnfsva, tnfsva;
1911 struct nfsnode *fdnp = VTONFS(fdvp);
1912 struct nfsnode *tdnp = VTONFS(tdvp);
1913 int error = 0, fattrflag, tattrflag;
1914
1915 error = nfsrpc_rename(fdvp, fvp, fnameptr, fnamelen, tdvp, tvp,
1916 tnameptr, tnamelen, cred, td, &fnfsva, &tnfsva, &fattrflag,
1917 &tattrflag, NULL, NULL);
1918 mtx_lock(&fdnp->n_mtx);
1919 fdnp->n_flag |= NMODIFIED;
1920 if (fattrflag != 0) {
1921 mtx_unlock(&fdnp->n_mtx);
1922 (void) nfscl_loadattrcache(&fdvp, &fnfsva, NULL, NULL, 0, 1);
1923 } else {
1924 fdnp->n_attrstamp = 0;
1925 mtx_unlock(&fdnp->n_mtx);
1926 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1927 }
1928 mtx_lock(&tdnp->n_mtx);
1929 tdnp->n_flag |= NMODIFIED;
1930 if (tattrflag != 0) {
1931 mtx_unlock(&tdnp->n_mtx);
1932 (void) nfscl_loadattrcache(&tdvp, &tnfsva, NULL, NULL, 0, 1);
1933 } else {
1934 tdnp->n_attrstamp = 0;
1935 mtx_unlock(&tdnp->n_mtx);
1936 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1937 }
1938 if (error && NFS_ISV4(fdvp))
1939 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
1940 return (error);
1941 }
1942
1943 /*
1944 * nfs hard link create call
1945 */
1946 static int
1947 nfs_link(struct vop_link_args *ap)
1948 {
1949 struct vnode *vp = ap->a_vp;
1950 struct vnode *tdvp = ap->a_tdvp;
1951 struct componentname *cnp = ap->a_cnp;
1952 struct nfsnode *np, *tdnp;
1953 struct nfsvattr nfsva, dnfsva;
1954 int error = 0, attrflag, dattrflag;
1955
1956 /*
1957 * Push all writes to the server, so that the attribute cache
1958 * doesn't get "out of sync" with the server.
1959 * XXX There should be a better way!
1960 */
1961 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1962
1963 error = nfsrpc_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_namelen,
1964 cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &attrflag,
1965 &dattrflag, NULL);
1966 tdnp = VTONFS(tdvp);
1967 mtx_lock(&tdnp->n_mtx);
1968 tdnp->n_flag |= NMODIFIED;
1969 if (dattrflag != 0) {
1970 mtx_unlock(&tdnp->n_mtx);
1971 (void) nfscl_loadattrcache(&tdvp, &dnfsva, NULL, NULL, 0, 1);
1972 } else {
1973 tdnp->n_attrstamp = 0;
1974 mtx_unlock(&tdnp->n_mtx);
1975 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1976 }
1977 if (attrflag)
1978 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
1979 else {
1980 np = VTONFS(vp);
1981 mtx_lock(&np->n_mtx);
1982 np->n_attrstamp = 0;
1983 mtx_unlock(&np->n_mtx);
1984 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1985 }
1986 /*
1987 * If negative lookup caching is enabled, I might as well
1988 * add an entry for this node. Not necessary for correctness,
1989 * but if negative caching is enabled, then the system
1990 * must care about lookup caching hit rate, so...
1991 */
1992 if (VFSTONFS(vp->v_mount)->nm_negnametimeo != 0 &&
1993 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
1994 cache_enter_time(tdvp, vp, cnp, &nfsva.na_ctime, NULL);
1995 }
1996 if (error && NFS_ISV4(vp))
1997 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
1998 (gid_t)0);
1999 return (error);
2000 }
2001
2002 /*
2003 * nfs symbolic link create call
2004 */
2005 static int
2006 nfs_symlink(struct vop_symlink_args *ap)
2007 {
2008 struct vnode *dvp = ap->a_dvp;
2009 struct vattr *vap = ap->a_vap;
2010 struct componentname *cnp = ap->a_cnp;
2011 struct nfsvattr nfsva, dnfsva;
2012 struct nfsfh *nfhp;
2013 struct nfsnode *np = NULL, *dnp;
2014 struct vnode *newvp = NULL;
2015 int error = 0, attrflag, dattrflag, ret;
2016
2017 vap->va_type = VLNK;
2018 error = nfsrpc_symlink(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2019 ap->a_target, vap, cnp->cn_cred, cnp->cn_thread, &dnfsva,
2020 &nfsva, &nfhp, &attrflag, &dattrflag, NULL);
2021 if (nfhp) {
2022 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2023 &np, NULL, LK_EXCLUSIVE);
2024 if (!ret)
2025 newvp = NFSTOV(np);
2026 else if (!error)
2027 error = ret;
2028 }
2029 if (newvp != NULL) {
2030 if (attrflag)
2031 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2032 0, 1);
2033 } else if (!error) {
2034 /*
2035 * If we do not have an error and we could not extract the
2036 * newvp from the response due to the request being NFSv2, we
2037 * have to do a lookup in order to obtain a newvp to return.
2038 */
2039 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2040 cnp->cn_cred, cnp->cn_thread, &np);
2041 if (!error)
2042 newvp = NFSTOV(np);
2043 }
2044 if (error) {
2045 if (newvp)
2046 vput(newvp);
2047 if (NFS_ISV4(dvp))
2048 error = nfscl_maperr(cnp->cn_thread, error,
2049 vap->va_uid, vap->va_gid);
2050 } else {
2051 *ap->a_vpp = newvp;
2052 }
2053
2054 dnp = VTONFS(dvp);
2055 mtx_lock(&dnp->n_mtx);
2056 dnp->n_flag |= NMODIFIED;
2057 if (dattrflag != 0) {
2058 mtx_unlock(&dnp->n_mtx);
2059 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2060 } else {
2061 dnp->n_attrstamp = 0;
2062 mtx_unlock(&dnp->n_mtx);
2063 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2064 }
2065 /*
2066 * If negative lookup caching is enabled, I might as well
2067 * add an entry for this node. Not necessary for correctness,
2068 * but if negative caching is enabled, then the system
2069 * must care about lookup caching hit rate, so...
2070 */
2071 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2072 (cnp->cn_flags & MAKEENTRY) && attrflag != 0 && error == 0) {
2073 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime, NULL);
2074 }
2075 return (error);
2076 }
2077
2078 /*
2079 * nfs make dir call
2080 */
2081 static int
2082 nfs_mkdir(struct vop_mkdir_args *ap)
2083 {
2084 struct vnode *dvp = ap->a_dvp;
2085 struct vattr *vap = ap->a_vap;
2086 struct componentname *cnp = ap->a_cnp;
2087 struct nfsnode *np = NULL, *dnp;
2088 struct vnode *newvp = NULL;
2089 struct vattr vattr;
2090 struct nfsfh *nfhp;
2091 struct nfsvattr nfsva, dnfsva;
2092 int error = 0, attrflag, dattrflag, ret;
2093
2094 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2095 return (error);
2096 vap->va_type = VDIR;
2097 error = nfsrpc_mkdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2098 vap, cnp->cn_cred, cnp->cn_thread, &dnfsva, &nfsva, &nfhp,
2099 &attrflag, &dattrflag, NULL);
2100 dnp = VTONFS(dvp);
2101 mtx_lock(&dnp->n_mtx);
2102 dnp->n_flag |= NMODIFIED;
2103 if (dattrflag != 0) {
2104 mtx_unlock(&dnp->n_mtx);
2105 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2106 } else {
2107 dnp->n_attrstamp = 0;
2108 mtx_unlock(&dnp->n_mtx);
2109 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2110 }
2111 if (nfhp) {
2112 ret = nfscl_nget(dvp->v_mount, dvp, nfhp, cnp, cnp->cn_thread,
2113 &np, NULL, LK_EXCLUSIVE);
2114 if (!ret) {
2115 newvp = NFSTOV(np);
2116 if (attrflag)
2117 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL,
2118 NULL, 0, 1);
2119 } else if (!error)
2120 error = ret;
2121 }
2122 if (!error && newvp == NULL) {
2123 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2124 cnp->cn_cred, cnp->cn_thread, &np);
2125 if (!error) {
2126 newvp = NFSTOV(np);
2127 if (newvp->v_type != VDIR)
2128 error = EEXIST;
2129 }
2130 }
2131 if (error) {
2132 if (newvp)
2133 vput(newvp);
2134 if (NFS_ISV4(dvp))
2135 error = nfscl_maperr(cnp->cn_thread, error,
2136 vap->va_uid, vap->va_gid);
2137 } else {
2138 /*
2139 * If negative lookup caching is enabled, I might as well
2140 * add an entry for this node. Not necessary for correctness,
2141 * but if negative caching is enabled, then the system
2142 * must care about lookup caching hit rate, so...
2143 */
2144 if (VFSTONFS(dvp->v_mount)->nm_negnametimeo != 0 &&
2145 (cnp->cn_flags & MAKEENTRY) &&
2146 attrflag != 0 && dattrflag != 0)
2147 cache_enter_time(dvp, newvp, cnp, &nfsva.na_ctime,
2148 &dnfsva.na_ctime);
2149 *ap->a_vpp = newvp;
2150 }
2151 return (error);
2152 }
2153
2154 /*
2155 * nfs remove directory call
2156 */
2157 static int
2158 nfs_rmdir(struct vop_rmdir_args *ap)
2159 {
2160 struct vnode *vp = ap->a_vp;
2161 struct vnode *dvp = ap->a_dvp;
2162 struct componentname *cnp = ap->a_cnp;
2163 struct nfsnode *dnp;
2164 struct nfsvattr dnfsva;
2165 int error, dattrflag;
2166
2167 if (dvp == vp)
2168 return (EINVAL);
2169 error = nfsrpc_rmdir(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2170 cnp->cn_cred, cnp->cn_thread, &dnfsva, &dattrflag, NULL);
2171 dnp = VTONFS(dvp);
2172 mtx_lock(&dnp->n_mtx);
2173 dnp->n_flag |= NMODIFIED;
2174 if (dattrflag != 0) {
2175 mtx_unlock(&dnp->n_mtx);
2176 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2177 } else {
2178 dnp->n_attrstamp = 0;
2179 mtx_unlock(&dnp->n_mtx);
2180 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2181 }
2182
2183 cache_purge(dvp);
2184 cache_purge(vp);
2185 if (error && NFS_ISV4(dvp))
2186 error = nfscl_maperr(cnp->cn_thread, error, (uid_t)0,
2187 (gid_t)0);
2188 /*
2189 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2190 */
2191 if (error == ENOENT)
2192 error = 0;
2193 return (error);
2194 }
2195
2196 /*
2197 * nfs readdir call
2198 */
2199 static int
2200 nfs_readdir(struct vop_readdir_args *ap)
2201 {
2202 struct vnode *vp = ap->a_vp;
2203 struct nfsnode *np = VTONFS(vp);
2204 struct uio *uio = ap->a_uio;
2205 ssize_t tresid, left;
2206 int error = 0;
2207 struct vattr vattr;
2208
2209 if (ap->a_eofflag != NULL)
2210 *ap->a_eofflag = 0;
2211 if (vp->v_type != VDIR)
2212 return(EPERM);
2213
2214 /*
2215 * First, check for hit on the EOF offset cache
2216 */
2217 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2218 (np->n_flag & NMODIFIED) == 0) {
2219 if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2220 mtx_lock(&np->n_mtx);
2221 if ((NFS_ISV4(vp) && np->n_change == vattr.va_filerev) ||
2222 !NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2223 mtx_unlock(&np->n_mtx);
2224 NFSINCRGLOBAL(nfsstatsv1.direofcache_hits);
2225 if (ap->a_eofflag != NULL)
2226 *ap->a_eofflag = 1;
2227 return (0);
2228 } else
2229 mtx_unlock(&np->n_mtx);
2230 }
2231 }
2232
2233 /*
2234 * NFS always guarantees that directory entries don't straddle
2235 * DIRBLKSIZ boundaries. As such, we need to limit the size
2236 * to an exact multiple of DIRBLKSIZ, to avoid copying a partial
2237 * directory entry.
2238 */
2239 left = uio->uio_resid % DIRBLKSIZ;
2240 if (left == uio->uio_resid)
2241 return (EINVAL);
2242 uio->uio_resid -= left;
2243
2244 /*
2245 * Call ncl_bioread() to do the real work.
2246 */
2247 tresid = uio->uio_resid;
2248 error = ncl_bioread(vp, uio, 0, ap->a_cred);
2249
2250 if (!error && uio->uio_resid == tresid) {
2251 NFSINCRGLOBAL(nfsstatsv1.direofcache_misses);
2252 if (ap->a_eofflag != NULL)
2253 *ap->a_eofflag = 1;
2254 }
2255
2256 /* Add the partial DIRBLKSIZ (left) back in. */
2257 uio->uio_resid += left;
2258 return (error);
2259 }
2260
2261 /*
2262 * Readdir rpc call.
2263 * Called from below the buffer cache by ncl_doio().
2264 */
2265 int
2266 ncl_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2267 struct thread *td)
2268 {
2269 struct nfsvattr nfsva;
2270 nfsuint64 *cookiep, cookie;
2271 struct nfsnode *dnp = VTONFS(vp);
2272 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2273 int error = 0, eof, attrflag;
2274
2275 KASSERT(uiop->uio_iovcnt == 1 &&
2276 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2277 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2278 ("nfs readdirrpc bad uio"));
2279
2280 /*
2281 * If there is no cookie, assume directory was stale.
2282 */
2283 ncl_dircookie_lock(dnp);
2284 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2285 if (cookiep) {
2286 cookie = *cookiep;
2287 ncl_dircookie_unlock(dnp);
2288 } else {
2289 ncl_dircookie_unlock(dnp);
2290 return (NFSERR_BAD_COOKIE);
2291 }
2292
2293 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2294 (void)ncl_fsinfo(nmp, vp, cred, td);
2295
2296 error = nfsrpc_readdir(vp, uiop, &cookie, cred, td, &nfsva,
2297 &attrflag, &eof, NULL);
2298 if (attrflag)
2299 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2300
2301 if (!error) {
2302 /*
2303 * We are now either at the end of the directory or have filled
2304 * the block.
2305 */
2306 if (eof)
2307 dnp->n_direofoffset = uiop->uio_offset;
2308 else {
2309 if (uiop->uio_resid > 0)
2310 printf("EEK! readdirrpc resid > 0\n");
2311 ncl_dircookie_lock(dnp);
2312 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2313 *cookiep = cookie;
2314 ncl_dircookie_unlock(dnp);
2315 }
2316 } else if (NFS_ISV4(vp)) {
2317 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2318 }
2319 return (error);
2320 }
2321
2322 /*
2323 * NFS V3 readdir plus RPC. Used in place of ncl_readdirrpc().
2324 */
2325 int
2326 ncl_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
2327 struct thread *td)
2328 {
2329 struct nfsvattr nfsva;
2330 nfsuint64 *cookiep, cookie;
2331 struct nfsnode *dnp = VTONFS(vp);
2332 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2333 int error = 0, attrflag, eof;
2334
2335 KASSERT(uiop->uio_iovcnt == 1 &&
2336 (uiop->uio_offset & (DIRBLKSIZ - 1)) == 0 &&
2337 (uiop->uio_resid & (DIRBLKSIZ - 1)) == 0,
2338 ("nfs readdirplusrpc bad uio"));
2339
2340 /*
2341 * If there is no cookie, assume directory was stale.
2342 */
2343 ncl_dircookie_lock(dnp);
2344 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 0);
2345 if (cookiep) {
2346 cookie = *cookiep;
2347 ncl_dircookie_unlock(dnp);
2348 } else {
2349 ncl_dircookie_unlock(dnp);
2350 return (NFSERR_BAD_COOKIE);
2351 }
2352
2353 if (NFSHASNFSV3(nmp) && !NFSHASGOTFSINFO(nmp))
2354 (void)ncl_fsinfo(nmp, vp, cred, td);
2355 error = nfsrpc_readdirplus(vp, uiop, &cookie, cred, td, &nfsva,
2356 &attrflag, &eof, NULL);
2357 if (attrflag)
2358 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0, 1);
2359
2360 if (!error) {
2361 /*
2362 * We are now either at end of the directory or have filled the
2363 * the block.
2364 */
2365 if (eof)
2366 dnp->n_direofoffset = uiop->uio_offset;
2367 else {
2368 if (uiop->uio_resid > 0)
2369 printf("EEK! readdirplusrpc resid > 0\n");
2370 ncl_dircookie_lock(dnp);
2371 cookiep = ncl_getcookie(dnp, uiop->uio_offset, 1);
2372 *cookiep = cookie;
2373 ncl_dircookie_unlock(dnp);
2374 }
2375 } else if (NFS_ISV4(vp)) {
2376 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2377 }
2378 return (error);
2379 }
2380
2381 /*
2382 * Silly rename. To make the NFS filesystem that is stateless look a little
2383 * more like the "ufs" a remove of an active vnode is translated to a rename
2384 * to a funny looking filename that is removed by nfs_inactive on the
2385 * nfsnode. There is the potential for another process on a different client
2386 * to create the same funny name between the nfs_lookitup() fails and the
2387 * nfs_rename() completes, but...
2388 */
2389 static int
2390 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2391 {
2392 struct sillyrename *sp;
2393 struct nfsnode *np;
2394 int error;
2395 short pid;
2396 unsigned int lticks;
2397
2398 cache_purge(dvp);
2399 np = VTONFS(vp);
2400 KASSERT(vp->v_type != VDIR, ("nfs: sillyrename dir"));
2401 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2402 M_NEWNFSREQ, M_WAITOK);
2403 sp->s_cred = crhold(cnp->cn_cred);
2404 sp->s_dvp = dvp;
2405 VREF(dvp);
2406
2407 /*
2408 * Fudge together a funny name.
2409 * Changing the format of the funny name to accommodate more
2410 * sillynames per directory.
2411 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2412 * CPU ticks since boot.
2413 */
2414 pid = cnp->cn_thread->td_proc->p_pid;
2415 lticks = (unsigned int)ticks;
2416 for ( ; ; ) {
2417 sp->s_namlen = snprintf(sp->s_name, sizeof(sp->s_name),
2418 ".nfs.%08x.%04x4.4", lticks,
2419 pid);
2420 if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2421 cnp->cn_thread, NULL))
2422 break;
2423 lticks++;
2424 }
2425 error = nfs_renameit(dvp, vp, cnp, sp);
2426 if (error)
2427 goto bad;
2428 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2429 cnp->cn_thread, &np);
2430 np->n_sillyrename = sp;
2431 return (0);
2432 bad:
2433 vrele(sp->s_dvp);
2434 crfree(sp->s_cred);
2435 free((caddr_t)sp, M_NEWNFSREQ);
2436 return (error);
2437 }
2438
2439 /*
2440 * Look up a file name and optionally either update the file handle or
2441 * allocate an nfsnode, depending on the value of npp.
2442 * npp == NULL --> just do the lookup
2443 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2444 * handled too
2445 * *npp != NULL --> update the file handle in the vnode
2446 */
2447 static int
2448 nfs_lookitup(struct vnode *dvp, char *name, int len, struct ucred *cred,
2449 struct thread *td, struct nfsnode **npp)
2450 {
2451 struct vnode *newvp = NULL, *vp;
2452 struct nfsnode *np, *dnp = VTONFS(dvp);
2453 struct nfsfh *nfhp, *onfhp;
2454 struct nfsvattr nfsva, dnfsva;
2455 struct componentname cn;
2456 int error = 0, attrflag, dattrflag;
2457 u_int hash;
2458
2459 error = nfsrpc_lookup(dvp, name, len, cred, td, &dnfsva, &nfsva,
2460 &nfhp, &attrflag, &dattrflag, NULL);
2461 if (dattrflag)
2462 (void) nfscl_loadattrcache(&dvp, &dnfsva, NULL, NULL, 0, 1);
2463 if (npp && !error) {
2464 if (*npp != NULL) {
2465 np = *npp;
2466 vp = NFSTOV(np);
2467 /*
2468 * For NFSv4, check to see if it is the same name and
2469 * replace the name, if it is different.
2470 */
2471 if (np->n_v4 != NULL && nfsva.na_type == VREG &&
2472 (np->n_v4->n4_namelen != len ||
2473 NFSBCMP(name, NFS4NODENAME(np->n_v4), len) ||
2474 dnp->n_fhp->nfh_len != np->n_v4->n4_fhlen ||
2475 NFSBCMP(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2476 dnp->n_fhp->nfh_len))) {
2477 #ifdef notdef
2478 { char nnn[100]; int nnnl;
2479 nnnl = (len < 100) ? len : 99;
2480 bcopy(name, nnn, nnnl);
2481 nnn[nnnl] = '\0';
2482 printf("replace=%s\n",nnn);
2483 }
2484 #endif
2485 FREE((caddr_t)np->n_v4, M_NFSV4NODE);
2486 MALLOC(np->n_v4, struct nfsv4node *,
2487 sizeof (struct nfsv4node) +
2488 dnp->n_fhp->nfh_len + len - 1,
2489 M_NFSV4NODE, M_WAITOK);
2490 np->n_v4->n4_fhlen = dnp->n_fhp->nfh_len;
2491 np->n_v4->n4_namelen = len;
2492 NFSBCOPY(dnp->n_fhp->nfh_fh, np->n_v4->n4_data,
2493 dnp->n_fhp->nfh_len);
2494 NFSBCOPY(name, NFS4NODENAME(np->n_v4), len);
2495 }
2496 hash = fnv_32_buf(nfhp->nfh_fh, nfhp->nfh_len,
2497 FNV1_32_INIT);
2498 onfhp = np->n_fhp;
2499 /*
2500 * Rehash node for new file handle.
2501 */
2502 vfs_hash_rehash(vp, hash);
2503 np->n_fhp = nfhp;
2504 if (onfhp != NULL)
2505 FREE((caddr_t)onfhp, M_NFSFH);
2506 newvp = NFSTOV(np);
2507 } else if (NFS_CMPFH(dnp, nfhp->nfh_fh, nfhp->nfh_len)) {
2508 FREE((caddr_t)nfhp, M_NFSFH);
2509 VREF(dvp);
2510 newvp = dvp;
2511 } else {
2512 cn.cn_nameptr = name;
2513 cn.cn_namelen = len;
2514 error = nfscl_nget(dvp->v_mount, dvp, nfhp, &cn, td,
2515 &np, NULL, LK_EXCLUSIVE);
2516 if (error)
2517 return (error);
2518 newvp = NFSTOV(np);
2519 }
2520 if (!attrflag && *npp == NULL) {
2521 if (newvp == dvp)
2522 vrele(newvp);
2523 else
2524 vput(newvp);
2525 return (ENOENT);
2526 }
2527 if (attrflag)
2528 (void) nfscl_loadattrcache(&newvp, &nfsva, NULL, NULL,
2529 0, 1);
2530 }
2531 if (npp && *npp == NULL) {
2532 if (error) {
2533 if (newvp) {
2534 if (newvp == dvp)
2535 vrele(newvp);
2536 else
2537 vput(newvp);
2538 }
2539 } else
2540 *npp = np;
2541 }
2542 if (error && NFS_ISV4(dvp))
2543 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2544 return (error);
2545 }
2546
2547 /*
2548 * Nfs Version 3 and 4 commit rpc
2549 */
2550 int
2551 ncl_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2552 struct thread *td)
2553 {
2554 struct nfsvattr nfsva;
2555 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2556 int error, attrflag;
2557
2558 mtx_lock(&nmp->nm_mtx);
2559 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2560 mtx_unlock(&nmp->nm_mtx);
2561 return (0);
2562 }
2563 mtx_unlock(&nmp->nm_mtx);
2564 error = nfsrpc_commit(vp, offset, cnt, cred, td, &nfsva,
2565 &attrflag, NULL);
2566 if (attrflag != 0)
2567 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL,
2568 0, 1);
2569 if (error != 0 && NFS_ISV4(vp))
2570 error = nfscl_maperr(td, error, (uid_t)0, (gid_t)0);
2571 return (error);
2572 }
2573
2574 /*
2575 * Strategy routine.
2576 * For async requests when nfsiod(s) are running, queue the request by
2577 * calling ncl_asyncio(), otherwise just all ncl_doio() to do the
2578 * request.
2579 */
2580 static int
2581 nfs_strategy(struct vop_strategy_args *ap)
2582 {
2583 struct buf *bp = ap->a_bp;
2584 struct ucred *cr;
2585
2586 KASSERT(!(bp->b_flags & B_DONE),
2587 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2588 BUF_ASSERT_HELD(bp);
2589
2590 if (bp->b_iocmd == BIO_READ)
2591 cr = bp->b_rcred;
2592 else
2593 cr = bp->b_wcred;
2594
2595 /*
2596 * If the op is asynchronous and an i/o daemon is waiting
2597 * queue the request, wake it up and wait for completion
2598 * otherwise just do it ourselves.
2599 */
2600 if ((bp->b_flags & B_ASYNC) == 0 ||
2601 ncl_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2602 (void) ncl_doio(ap->a_vp, bp, cr, curthread, 1);
2603 return (0);
2604 }
2605
2606 /*
2607 * fsync vnode op. Just call ncl_flush() with commit == 1.
2608 */
2609 /* ARGSUSED */
2610 static int
2611 nfs_fsync(struct vop_fsync_args *ap)
2612 {
2613
2614 if (ap->a_vp->v_type != VREG) {
2615 /*
2616 * For NFS, metadata is changed synchronously on the server,
2617 * so there is nothing to flush. Also, ncl_flush() clears
2618 * the NMODIFIED flag and that shouldn't be done here for
2619 * directories.
2620 */
2621 return (0);
2622 }
2623 return (ncl_flush(ap->a_vp, ap->a_waitfor, NULL, ap->a_td, 1, 0));
2624 }
2625
2626 /*
2627 * Flush all the blocks associated with a vnode.
2628 * Walk through the buffer pool and push any dirty pages
2629 * associated with the vnode.
2630 * If the called_from_renewthread argument is TRUE, it has been called
2631 * from the NFSv4 renew thread and, as such, cannot block indefinitely
2632 * waiting for a buffer write to complete.
2633 */
2634 int
2635 ncl_flush(struct vnode *vp, int waitfor, struct ucred *cred, struct thread *td,
2636 int commit, int called_from_renewthread)
2637 {
2638 struct nfsnode *np = VTONFS(vp);
2639 struct buf *bp;
2640 int i;
2641 struct buf *nbp;
2642 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2643 int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2644 int passone = 1, trycnt = 0;
2645 u_quad_t off, endoff, toff;
2646 struct ucred* wcred = NULL;
2647 struct buf **bvec = NULL;
2648 struct bufobj *bo;
2649 #ifndef NFS_COMMITBVECSIZ
2650 #define NFS_COMMITBVECSIZ 20
2651 #endif
2652 struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2653 int bvecsize = 0, bveccount;
2654
2655 if (called_from_renewthread != 0)
2656 slptimeo = hz;
2657 if (nmp->nm_flag & NFSMNT_INT)
2658 slpflag = PCATCH;
2659 if (!commit)
2660 passone = 0;
2661 bo = &vp->v_bufobj;
2662 /*
2663 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2664 * server, but has not been committed to stable storage on the server
2665 * yet. On the first pass, the byte range is worked out and the commit
2666 * rpc is done. On the second pass, ncl_writebp() is called to do the
2667 * job.
2668 */
2669 again:
2670 off = (u_quad_t)-1;
2671 endoff = 0;
2672 bvecpos = 0;
2673 if (NFS_ISV34(vp) && commit) {
2674 if (bvec != NULL && bvec != bvec_on_stack)
2675 free(bvec, M_TEMP);
2676 /*
2677 * Count up how many buffers waiting for a commit.
2678 */
2679 bveccount = 0;
2680 BO_LOCK(bo);
2681 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2682 if (!BUF_ISLOCKED(bp) &&
2683 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2684 == (B_DELWRI | B_NEEDCOMMIT))
2685 bveccount++;
2686 }
2687 /*
2688 * Allocate space to remember the list of bufs to commit. It is
2689 * important to use M_NOWAIT here to avoid a race with nfs_write.
2690 * If we can't get memory (for whatever reason), we will end up
2691 * committing the buffers one-by-one in the loop below.
2692 */
2693 if (bveccount > NFS_COMMITBVECSIZ) {
2694 /*
2695 * Release the vnode interlock to avoid a lock
2696 * order reversal.
2697 */
2698 BO_UNLOCK(bo);
2699 bvec = (struct buf **)
2700 malloc(bveccount * sizeof(struct buf *),
2701 M_TEMP, M_NOWAIT);
2702 BO_LOCK(bo);
2703 if (bvec == NULL) {
2704 bvec = bvec_on_stack;
2705 bvecsize = NFS_COMMITBVECSIZ;
2706 } else
2707 bvecsize = bveccount;
2708 } else {
2709 bvec = bvec_on_stack;
2710 bvecsize = NFS_COMMITBVECSIZ;
2711 }
2712 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2713 if (bvecpos >= bvecsize)
2714 break;
2715 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2716 nbp = TAILQ_NEXT(bp, b_bobufs);
2717 continue;
2718 }
2719 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2720 (B_DELWRI | B_NEEDCOMMIT)) {
2721 BUF_UNLOCK(bp);
2722 nbp = TAILQ_NEXT(bp, b_bobufs);
2723 continue;
2724 }
2725 BO_UNLOCK(bo);
2726 bremfree(bp);
2727 /*
2728 * Work out if all buffers are using the same cred
2729 * so we can deal with them all with one commit.
2730 *
2731 * NOTE: we are not clearing B_DONE here, so we have
2732 * to do it later on in this routine if we intend to
2733 * initiate I/O on the bp.
2734 *
2735 * Note: to avoid loopback deadlocks, we do not
2736 * assign b_runningbufspace.
2737 */
2738 if (wcred == NULL)
2739 wcred = bp->b_wcred;
2740 else if (wcred != bp->b_wcred)
2741 wcred = NOCRED;
2742 vfs_busy_pages(bp, 1);
2743
2744 BO_LOCK(bo);
2745 /*
2746 * bp is protected by being locked, but nbp is not
2747 * and vfs_busy_pages() may sleep. We have to
2748 * recalculate nbp.
2749 */
2750 nbp = TAILQ_NEXT(bp, b_bobufs);
2751
2752 /*
2753 * A list of these buffers is kept so that the
2754 * second loop knows which buffers have actually
2755 * been committed. This is necessary, since there
2756 * may be a race between the commit rpc and new
2757 * uncommitted writes on the file.
2758 */
2759 bvec[bvecpos++] = bp;
2760 toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2761 bp->b_dirtyoff;
2762 if (toff < off)
2763 off = toff;
2764 toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2765 if (toff > endoff)
2766 endoff = toff;
2767 }
2768 BO_UNLOCK(bo);
2769 }
2770 if (bvecpos > 0) {
2771 /*
2772 * Commit data on the server, as required.
2773 * If all bufs are using the same wcred, then use that with
2774 * one call for all of them, otherwise commit each one
2775 * separately.
2776 */
2777 if (wcred != NOCRED)
2778 retv = ncl_commit(vp, off, (int)(endoff - off),
2779 wcred, td);
2780 else {
2781 retv = 0;
2782 for (i = 0; i < bvecpos; i++) {
2783 off_t off, size;
2784 bp = bvec[i];
2785 off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2786 bp->b_dirtyoff;
2787 size = (u_quad_t)(bp->b_dirtyend
2788 - bp->b_dirtyoff);
2789 retv = ncl_commit(vp, off, (int)size,
2790 bp->b_wcred, td);
2791 if (retv) break;
2792 }
2793 }
2794
2795 if (retv == NFSERR_STALEWRITEVERF)
2796 ncl_clearcommit(vp->v_mount);
2797
2798 /*
2799 * Now, either mark the blocks I/O done or mark the
2800 * blocks dirty, depending on whether the commit
2801 * succeeded.
2802 */
2803 for (i = 0; i < bvecpos; i++) {
2804 bp = bvec[i];
2805 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
2806 if (retv) {
2807 /*
2808 * Error, leave B_DELWRI intact
2809 */
2810 vfs_unbusy_pages(bp);
2811 brelse(bp);
2812 } else {
2813 /*
2814 * Success, remove B_DELWRI ( bundirty() ).
2815 *
2816 * b_dirtyoff/b_dirtyend seem to be NFS
2817 * specific. We should probably move that
2818 * into bundirty(). XXX
2819 */
2820 bufobj_wref(bo);
2821 bp->b_flags |= B_ASYNC;
2822 bundirty(bp);
2823 bp->b_flags &= ~B_DONE;
2824 bp->b_ioflags &= ~BIO_ERROR;
2825 bp->b_dirtyoff = bp->b_dirtyend = 0;
2826 bufdone(bp);
2827 }
2828 }
2829 }
2830
2831 /*
2832 * Start/do any write(s) that are required.
2833 */
2834 loop:
2835 BO_LOCK(bo);
2836 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2837 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2838 if (waitfor != MNT_WAIT || passone)
2839 continue;
2840
2841 error = BUF_TIMELOCK(bp,
2842 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2843 BO_LOCKPTR(bo), "nfsfsync", slpflag, slptimeo);
2844 if (error == 0) {
2845 BUF_UNLOCK(bp);
2846 goto loop;
2847 }
2848 if (error == ENOLCK) {
2849 error = 0;
2850 goto loop;
2851 }
2852 if (called_from_renewthread != 0) {
2853 /*
2854 * Return EIO so the flush will be retried
2855 * later.
2856 */
2857 error = EIO;
2858 goto done;
2859 }
2860 if (newnfs_sigintr(nmp, td)) {
2861 error = EINTR;
2862 goto done;
2863 }
2864 if (slpflag == PCATCH) {
2865 slpflag = 0;
2866 slptimeo = 2 * hz;
2867 }
2868 goto loop;
2869 }
2870 if ((bp->b_flags & B_DELWRI) == 0)
2871 panic("nfs_fsync: not dirty");
2872 if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2873 BUF_UNLOCK(bp);
2874 continue;
2875 }
2876 BO_UNLOCK(bo);
2877 bremfree(bp);
2878 if (passone || !commit)
2879 bp->b_flags |= B_ASYNC;
2880 else
2881 bp->b_flags |= B_ASYNC;
2882 bwrite(bp);
2883 if (newnfs_sigintr(nmp, td)) {
2884 error = EINTR;
2885 goto done;
2886 }
2887 goto loop;
2888 }
2889 if (passone) {
2890 passone = 0;
2891 BO_UNLOCK(bo);
2892 goto again;
2893 }
2894 if (waitfor == MNT_WAIT) {
2895 while (bo->bo_numoutput) {
2896 error = bufobj_wwait(bo, slpflag, slptimeo);
2897 if (error) {
2898 BO_UNLOCK(bo);
2899 if (called_from_renewthread != 0) {
2900 /*
2901 * Return EIO so that the flush will be
2902 * retried later.
2903 */
2904 error = EIO;
2905 goto done;
2906 }
2907 error = newnfs_sigintr(nmp, td);
2908 if (error)
2909 goto done;
2910 if (slpflag == PCATCH) {
2911 slpflag = 0;
2912 slptimeo = 2 * hz;
2913 }
2914 BO_LOCK(bo);
2915 }
2916 }
2917 if (bo->bo_dirty.bv_cnt != 0 && commit) {
2918 BO_UNLOCK(bo);
2919 goto loop;
2920 }
2921 /*
2922 * Wait for all the async IO requests to drain
2923 */
2924 BO_UNLOCK(bo);
2925 mtx_lock(&np->n_mtx);
2926 while (np->n_directio_asyncwr > 0) {
2927 np->n_flag |= NFSYNCWAIT;
2928 error = newnfs_msleep(td, &np->n_directio_asyncwr,
2929 &np->n_mtx, slpflag | (PRIBIO + 1),
2930 "nfsfsync", 0);
2931 if (error) {
2932 if (newnfs_sigintr(nmp, td)) {
2933 mtx_unlock(&np->n_mtx);
2934 error = EINTR;
2935 goto done;
2936 }
2937 }
2938 }
2939 mtx_unlock(&np->n_mtx);
2940 } else
2941 BO_UNLOCK(bo);
2942 if (NFSHASPNFS(nmp)) {
2943 nfscl_layoutcommit(vp, td);
2944 /*
2945 * Invalidate the attribute cache, since writes to a DS
2946 * won't update the size attribute.
2947 */
2948 mtx_lock(&np->n_mtx);
2949 np->n_attrstamp = 0;
2950 } else
2951 mtx_lock(&np->n_mtx);
2952 if (np->n_flag & NWRITEERR) {
2953 error = np->n_error;
2954 np->n_flag &= ~NWRITEERR;
2955 }
2956 if (commit && bo->bo_dirty.bv_cnt == 0 &&
2957 bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
2958 np->n_flag &= ~NMODIFIED;
2959 mtx_unlock(&np->n_mtx);
2960 done:
2961 if (bvec != NULL && bvec != bvec_on_stack)
2962 free(bvec, M_TEMP);
2963 if (error == 0 && commit != 0 && waitfor == MNT_WAIT &&
2964 (bo->bo_dirty.bv_cnt != 0 || bo->bo_numoutput != 0 ||
2965 np->n_directio_asyncwr != 0) && trycnt++ < 5) {
2966 /* try, try again... */
2967 passone = 1;
2968 wcred = NULL;
2969 bvec = NULL;
2970 bvecsize = 0;
2971 printf("try%d\n", trycnt);
2972 goto again;
2973 }
2974 return (error);
2975 }
2976
2977 /*
2978 * NFS advisory byte-level locks.
2979 */
2980 static int
2981 nfs_advlock(struct vop_advlock_args *ap)
2982 {
2983 struct vnode *vp = ap->a_vp;
2984 struct ucred *cred;
2985 struct nfsnode *np = VTONFS(ap->a_vp);
2986 struct proc *p = (struct proc *)ap->a_id;
2987 struct thread *td = curthread; /* XXX */
2988 struct vattr va;
2989 int ret, error = EOPNOTSUPP;
2990 u_quad_t size;
2991
2992 if (NFS_ISV4(vp) && (ap->a_flags & (F_POSIX | F_FLOCK)) != 0) {
2993 if (vp->v_type != VREG)
2994 return (EINVAL);
2995 if ((ap->a_flags & F_POSIX) != 0)
2996 cred = p->p_ucred;
2997 else
2998 cred = td->td_ucred;
2999 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3000 if (vp->v_iflag & VI_DOOMED) {
3001 NFSVOPUNLOCK(vp, 0);
3002 return (EBADF);
3003 }
3004
3005 /*
3006 * If this is unlocking a write locked region, flush and
3007 * commit them before unlocking. This is required by
3008 * RFC3530 Sec. 9.3.2.
3009 */
3010 if (ap->a_op == F_UNLCK &&
3011 nfscl_checkwritelocked(vp, ap->a_fl, cred, td, ap->a_id,
3012 ap->a_flags))
3013 (void) ncl_flush(vp, MNT_WAIT, cred, td, 1, 0);
3014
3015 /*
3016 * Loop around doing the lock op, while a blocking lock
3017 * must wait for the lock op to succeed.
3018 */
3019 do {
3020 ret = nfsrpc_advlock(vp, np->n_size, ap->a_op,
3021 ap->a_fl, 0, cred, td, ap->a_id, ap->a_flags);
3022 if (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3023 ap->a_op == F_SETLK) {
3024 NFSVOPUNLOCK(vp, 0);
3025 error = nfs_catnap(PZERO | PCATCH, ret,
3026 "ncladvl");
3027 if (error)
3028 return (EINTR);
3029 NFSVOPLOCK(vp, LK_EXCLUSIVE | LK_RETRY);
3030 if (vp->v_iflag & VI_DOOMED) {
3031 NFSVOPUNLOCK(vp, 0);
3032 return (EBADF);
3033 }
3034 }
3035 } while (ret == NFSERR_DENIED && (ap->a_flags & F_WAIT) &&
3036 ap->a_op == F_SETLK);
3037 if (ret == NFSERR_DENIED) {
3038 NFSVOPUNLOCK(vp, 0);
3039 return (EAGAIN);
3040 } else if (ret == EINVAL || ret == EBADF || ret == EINTR) {
3041 NFSVOPUNLOCK(vp, 0);
3042 return (ret);
3043 } else if (ret != 0) {
3044 NFSVOPUNLOCK(vp, 0);
3045 return (EACCES);
3046 }
3047
3048 /*
3049 * Now, if we just got a lock, invalidate data in the buffer
3050 * cache, as required, so that the coherency conforms with
3051 * RFC3530 Sec. 9.3.2.
3052 */
3053 if (ap->a_op == F_SETLK) {
3054 if ((np->n_flag & NMODIFIED) == 0) {
3055 np->n_attrstamp = 0;
3056 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3057 ret = VOP_GETATTR(vp, &va, cred);
3058 }
3059 if ((np->n_flag & NMODIFIED) || ret ||
3060 np->n_change != va.va_filerev) {
3061 (void) ncl_vinvalbuf(vp, V_SAVE, td, 1);
3062 np->n_attrstamp = 0;
3063 KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
3064 ret = VOP_GETATTR(vp, &va, cred);
3065 if (!ret) {
3066 np->n_mtime = va.va_mtime;
3067 np->n_change = va.va_filerev;
3068 }
3069 }
3070 /* Mark that a file lock has been acquired. */
3071 mtx_lock(&np->n_mtx);
3072 np->n_flag |= NHASBEENLOCKED;
3073 mtx_unlock(&np->n_mtx);
3074 }
3075 NFSVOPUNLOCK(vp, 0);
3076 return (0);
3077 } else if (!NFS_ISV4(vp)) {
3078 error = NFSVOPLOCK(vp, LK_SHARED);
3079 if (error)
3080 return (error);
3081 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3082 size = VTONFS(vp)->n_size;
3083 NFSVOPUNLOCK(vp, 0);
3084 error = lf_advlock(ap, &(vp->v_lockf), size);
3085 } else {
3086 if (nfs_advlock_p != NULL)
3087 error = nfs_advlock_p(ap);
3088 else {
3089 NFSVOPUNLOCK(vp, 0);
3090 error = ENOLCK;
3091 }
3092 }
3093 if (error == 0 && ap->a_op == F_SETLK) {
3094 error = NFSVOPLOCK(vp, LK_SHARED);
3095 if (error == 0) {
3096 /* Mark that a file lock has been acquired. */
3097 mtx_lock(&np->n_mtx);
3098 np->n_flag |= NHASBEENLOCKED;
3099 mtx_unlock(&np->n_mtx);
3100 NFSVOPUNLOCK(vp, 0);
3101 }
3102 }
3103 }
3104 return (error);
3105 }
3106
3107 /*
3108 * NFS advisory byte-level locks.
3109 */
3110 static int
3111 nfs_advlockasync(struct vop_advlockasync_args *ap)
3112 {
3113 struct vnode *vp = ap->a_vp;
3114 u_quad_t size;
3115 int error;
3116
3117 if (NFS_ISV4(vp))
3118 return (EOPNOTSUPP);
3119 error = NFSVOPLOCK(vp, LK_SHARED);
3120 if (error)
3121 return (error);
3122 if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3123 size = VTONFS(vp)->n_size;
3124 NFSVOPUNLOCK(vp, 0);
3125 error = lf_advlockasync(ap, &(vp->v_lockf), size);
3126 } else {
3127 NFSVOPUNLOCK(vp, 0);
3128 error = EOPNOTSUPP;
3129 }
3130 return (error);
3131 }
3132
3133 /*
3134 * Print out the contents of an nfsnode.
3135 */
3136 static int
3137 nfs_print(struct vop_print_args *ap)
3138 {
3139 struct vnode *vp = ap->a_vp;
3140 struct nfsnode *np = VTONFS(vp);
3141
3142 printf("\tfileid %ld fsid 0x%x", np->n_vattr.na_fileid,
3143 np->n_vattr.na_fsid);
3144 if (vp->v_type == VFIFO)
3145 fifo_printinfo(vp);
3146 printf("\n");
3147 return (0);
3148 }
3149
3150 /*
3151 * This is the "real" nfs::bwrite(struct buf*).
3152 * We set B_CACHE if this is a VMIO buffer.
3153 */
3154 int
3155 ncl_writebp(struct buf *bp, int force __unused, struct thread *td)
3156 {
3157 int s;
3158 int oldflags = bp->b_flags;
3159 #if 0
3160 int retv = 1;
3161 off_t off;
3162 #endif
3163
3164 BUF_ASSERT_HELD(bp);
3165
3166 if (bp->b_flags & B_INVAL) {
3167 brelse(bp);
3168 return(0);
3169 }
3170
3171 bp->b_flags |= B_CACHE;
3172
3173 /*
3174 * Undirty the bp. We will redirty it later if the I/O fails.
3175 */
3176
3177 s = splbio();
3178 bundirty(bp);
3179 bp->b_flags &= ~B_DONE;
3180 bp->b_ioflags &= ~BIO_ERROR;
3181 bp->b_iocmd = BIO_WRITE;
3182
3183 bufobj_wref(bp->b_bufobj);
3184 curthread->td_ru.ru_oublock++;
3185 splx(s);
3186
3187 /*
3188 * Note: to avoid loopback deadlocks, we do not
3189 * assign b_runningbufspace.
3190 */
3191 vfs_busy_pages(bp, 1);
3192
3193 BUF_KERNPROC(bp);
3194 bp->b_iooffset = dbtob(bp->b_blkno);
3195 bstrategy(bp);
3196
3197 if( (oldflags & B_ASYNC) == 0) {
3198 int rtval = bufwait(bp);
3199
3200 if (oldflags & B_DELWRI) {
3201 s = splbio();
3202 reassignbuf(bp);
3203 splx(s);
3204 }
3205 brelse(bp);
3206 return (rtval);
3207 }
3208
3209 return (0);
3210 }
3211
3212 /*
3213 * nfs special file access vnode op.
3214 * Essentially just get vattr and then imitate iaccess() since the device is
3215 * local to the client.
3216 */
3217 static int
3218 nfsspec_access(struct vop_access_args *ap)
3219 {
3220 struct vattr *vap;
3221 struct ucred *cred = ap->a_cred;
3222 struct vnode *vp = ap->a_vp;
3223 accmode_t accmode = ap->a_accmode;
3224 struct vattr vattr;
3225 int error;
3226
3227 /*
3228 * Disallow write attempts on filesystems mounted read-only;
3229 * unless the file is a socket, fifo, or a block or character
3230 * device resident on the filesystem.
3231 */
3232 if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3233 switch (vp->v_type) {
3234 case VREG:
3235 case VDIR:
3236 case VLNK:
3237 return (EROFS);
3238 default:
3239 break;
3240 }
3241 }
3242 vap = &vattr;
3243 error = VOP_GETATTR(vp, vap, cred);
3244 if (error)
3245 goto out;
3246 error = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3247 accmode, cred, NULL);
3248 out:
3249 return error;
3250 }
3251
3252 /*
3253 * Read wrapper for fifos.
3254 */
3255 static int
3256 nfsfifo_read(struct vop_read_args *ap)
3257 {
3258 struct nfsnode *np = VTONFS(ap->a_vp);
3259 int error;
3260
3261 /*
3262 * Set access flag.
3263 */
3264 mtx_lock(&np->n_mtx);
3265 np->n_flag |= NACC;
3266 vfs_timestamp(&np->n_atim);
3267 mtx_unlock(&np->n_mtx);
3268 error = fifo_specops.vop_read(ap);
3269 return error;
3270 }
3271
3272 /*
3273 * Write wrapper for fifos.
3274 */
3275 static int
3276 nfsfifo_write(struct vop_write_args *ap)
3277 {
3278 struct nfsnode *np = VTONFS(ap->a_vp);
3279
3280 /*
3281 * Set update flag.
3282 */
3283 mtx_lock(&np->n_mtx);
3284 np->n_flag |= NUPD;
3285 vfs_timestamp(&np->n_mtim);
3286 mtx_unlock(&np->n_mtx);
3287 return(fifo_specops.vop_write(ap));
3288 }
3289
3290 /*
3291 * Close wrapper for fifos.
3292 *
3293 * Update the times on the nfsnode then do fifo close.
3294 */
3295 static int
3296 nfsfifo_close(struct vop_close_args *ap)
3297 {
3298 struct vnode *vp = ap->a_vp;
3299 struct nfsnode *np = VTONFS(vp);
3300 struct vattr vattr;
3301 struct timespec ts;
3302
3303 mtx_lock(&np->n_mtx);
3304 if (np->n_flag & (NACC | NUPD)) {
3305 vfs_timestamp(&ts);
3306 if (np->n_flag & NACC)
3307 np->n_atim = ts;
3308 if (np->n_flag & NUPD)
3309 np->n_mtim = ts;
3310 np->n_flag |= NCHG;
3311 if (vrefcnt(vp) == 1 &&
3312 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3313 VATTR_NULL(&vattr);
3314 if (np->n_flag & NACC)
3315 vattr.va_atime = np->n_atim;
3316 if (np->n_flag & NUPD)
3317 vattr.va_mtime = np->n_mtim;
3318 mtx_unlock(&np->n_mtx);
3319 (void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3320 goto out;
3321 }
3322 }
3323 mtx_unlock(&np->n_mtx);
3324 out:
3325 return (fifo_specops.vop_close(ap));
3326 }
3327
3328 /*
3329 * Just call ncl_writebp() with the force argument set to 1.
3330 *
3331 * NOTE: B_DONE may or may not be set in a_bp on call.
3332 */
3333 static int
3334 nfs_bwrite(struct buf *bp)
3335 {
3336
3337 return (ncl_writebp(bp, 1, curthread));
3338 }
3339
3340 struct buf_ops buf_ops_newnfs = {
3341 .bop_name = "buf_ops_nfs",
3342 .bop_write = nfs_bwrite,
3343 .bop_strategy = bufstrategy,
3344 .bop_sync = bufsync,
3345 .bop_bdflush = bufbdflush,
3346 };
3347
3348 static int
3349 nfs_getacl(struct vop_getacl_args *ap)
3350 {
3351 int error;
3352
3353 if (ap->a_type != ACL_TYPE_NFS4)
3354 return (EOPNOTSUPP);
3355 error = nfsrpc_getacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3356 NULL);
3357 if (error > NFSERR_STALE) {
3358 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3359 error = EPERM;
3360 }
3361 return (error);
3362 }
3363
3364 static int
3365 nfs_setacl(struct vop_setacl_args *ap)
3366 {
3367 int error;
3368
3369 if (ap->a_type != ACL_TYPE_NFS4)
3370 return (EOPNOTSUPP);
3371 error = nfsrpc_setacl(ap->a_vp, ap->a_cred, ap->a_td, ap->a_aclp,
3372 NULL);
3373 if (error > NFSERR_STALE) {
3374 (void) nfscl_maperr(ap->a_td, error, (uid_t)0, (gid_t)0);
3375 error = EPERM;
3376 }
3377 return (error);
3378 }
3379
3380 /*
3381 * Return POSIX pathconf information applicable to nfs filesystems.
3382 */
3383 static int
3384 nfs_pathconf(struct vop_pathconf_args *ap)
3385 {
3386 struct nfsv3_pathconf pc;
3387 struct nfsvattr nfsva;
3388 struct vnode *vp = ap->a_vp;
3389 struct thread *td = curthread;
3390 int attrflag, error;
3391
3392 if ((NFS_ISV34(vp) && (ap->a_name == _PC_LINK_MAX ||
3393 ap->a_name == _PC_NAME_MAX || ap->a_name == _PC_CHOWN_RESTRICTED ||
3394 ap->a_name == _PC_NO_TRUNC)) ||
3395 (NFS_ISV4(vp) && ap->a_name == _PC_ACL_NFS4)) {
3396 /*
3397 * Since only the above 4 a_names are returned by the NFSv3
3398 * Pathconf RPC, there is no point in doing it for others.
3399 * For NFSv4, the Pathconf RPC (actually a Getattr Op.) can
3400 * be used for _PC_NFS4_ACL as well.
3401 */
3402 error = nfsrpc_pathconf(vp, &pc, td->td_ucred, td, &nfsva,
3403 &attrflag, NULL);
3404 if (attrflag != 0)
3405 (void) nfscl_loadattrcache(&vp, &nfsva, NULL, NULL, 0,
3406 1);
3407 if (error != 0)
3408 return (error);
3409 } else {
3410 /*
3411 * For NFSv2 (or NFSv3 when not one of the above 4 a_names),
3412 * just fake them.
3413 */
3414 pc.pc_linkmax = LINK_MAX;
3415 pc.pc_namemax = NFS_MAXNAMLEN;
3416 pc.pc_notrunc = 1;
3417 pc.pc_chownrestricted = 1;
3418 pc.pc_caseinsensitive = 0;
3419 pc.pc_casepreserving = 1;
3420 error = 0;
3421 }
3422 switch (ap->a_name) {
3423 case _PC_LINK_MAX:
3424 *ap->a_retval = pc.pc_linkmax;
3425 break;
3426 case _PC_NAME_MAX:
3427 *ap->a_retval = pc.pc_namemax;
3428 break;
3429 case _PC_PATH_MAX:
3430 *ap->a_retval = PATH_MAX;
3431 break;
3432 case _PC_PIPE_BUF:
3433 *ap->a_retval = PIPE_BUF;
3434 break;
3435 case _PC_CHOWN_RESTRICTED:
3436 *ap->a_retval = pc.pc_chownrestricted;
3437 break;
3438 case _PC_NO_TRUNC:
3439 *ap->a_retval = pc.pc_notrunc;
3440 break;
3441 case _PC_ACL_EXTENDED:
3442 *ap->a_retval = 0;
3443 break;
3444 case _PC_ACL_NFS4:
3445 if (NFS_ISV4(vp) && nfsrv_useacl != 0 && attrflag != 0 &&
3446 NFSISSET_ATTRBIT(&nfsva.na_suppattr, NFSATTRBIT_ACL))
3447 *ap->a_retval = 1;
3448 else
3449 *ap->a_retval = 0;
3450 break;
3451 case _PC_ACL_PATH_MAX:
3452 if (NFS_ISV4(vp))
3453 *ap->a_retval = ACL_MAX_ENTRIES;
3454 else
3455 *ap->a_retval = 3;
3456 break;
3457 case _PC_MAC_PRESENT:
3458 *ap->a_retval = 0;
3459 break;
3460 case _PC_ASYNC_IO:
3461 /* _PC_ASYNC_IO should have been handled by upper layers. */
3462 KASSERT(0, ("_PC_ASYNC_IO should not get here"));
3463 error = EINVAL;
3464 break;
3465 case _PC_PRIO_IO:
3466 *ap->a_retval = 0;
3467 break;
3468 case _PC_SYNC_IO:
3469 *ap->a_retval = 0;
3470 break;
3471 case _PC_ALLOC_SIZE_MIN:
3472 *ap->a_retval = vp->v_mount->mnt_stat.f_bsize;
3473 break;
3474 case _PC_FILESIZEBITS:
3475 if (NFS_ISV34(vp))
3476 *ap->a_retval = 64;
3477 else
3478 *ap->a_retval = 32;
3479 break;
3480 case _PC_REC_INCR_XFER_SIZE:
3481 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3482 break;
3483 case _PC_REC_MAX_XFER_SIZE:
3484 *ap->a_retval = -1; /* means ``unlimited'' */
3485 break;
3486 case _PC_REC_MIN_XFER_SIZE:
3487 *ap->a_retval = vp->v_mount->mnt_stat.f_iosize;
3488 break;
3489 case _PC_REC_XFER_ALIGN:
3490 *ap->a_retval = PAGE_SIZE;
3491 break;
3492 case _PC_SYMLINK_MAX:
3493 *ap->a_retval = NFS_MAXPATHLEN;
3494 break;
3495
3496 default:
3497 error = EINVAL;
3498 break;
3499 }
3500 return (error);
3501 }
3502
3503