tmpfs.h revision 1.33.4.2 1 1.33.4.2 simonb /* $NetBSD: tmpfs.h,v 1.33.4.2 2008/07/28 14:37:35 simonb Exp $ */
2 1.1 jmmv
3 1.1 jmmv /*
4 1.30 ad * Copyright (c) 2005, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1 jmmv * All rights reserved.
6 1.1 jmmv *
7 1.1 jmmv * This code is derived from software contributed to The NetBSD Foundation
8 1.6 jmmv * by Julio M. Merino Vidal, developed as part of Google's Summer of Code
9 1.6 jmmv * 2005 program.
10 1.1 jmmv *
11 1.1 jmmv * Redistribution and use in source and binary forms, with or without
12 1.1 jmmv * modification, are permitted provided that the following conditions
13 1.1 jmmv * are met:
14 1.1 jmmv * 1. Redistributions of source code must retain the above copyright
15 1.1 jmmv * notice, this list of conditions and the following disclaimer.
16 1.1 jmmv * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jmmv * notice, this list of conditions and the following disclaimer in the
18 1.1 jmmv * documentation and/or other materials provided with the distribution.
19 1.1 jmmv *
20 1.1 jmmv * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 jmmv * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 jmmv * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 jmmv * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 jmmv * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 jmmv * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 jmmv * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 jmmv * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 jmmv * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 jmmv * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 jmmv * POSSIBILITY OF SUCH DAMAGE.
31 1.1 jmmv */
32 1.1 jmmv
33 1.10 christos #ifndef _FS_TMPFS_TMPFS_H_
34 1.10 christos #define _FS_TMPFS_TMPFS_H_
35 1.1 jmmv
36 1.1 jmmv #include <sys/dirent.h>
37 1.1 jmmv #include <sys/mount.h>
38 1.1 jmmv #include <sys/queue.h>
39 1.1 jmmv #include <sys/vnode.h>
40 1.1 jmmv
41 1.1 jmmv #include <fs/tmpfs/tmpfs_pool.h>
42 1.1 jmmv
43 1.1 jmmv /* --------------------------------------------------------------------- */
44 1.1 jmmv
45 1.1 jmmv /*
46 1.6 jmmv * Internal representation of a tmpfs directory entry.
47 1.1 jmmv */
48 1.1 jmmv struct tmpfs_dirent {
49 1.1 jmmv TAILQ_ENTRY(tmpfs_dirent) td_entries;
50 1.6 jmmv
51 1.6 jmmv /* Length of the name stored in this directory entry. This avoids
52 1.6 jmmv * the need to recalculate it every time the name is used. */
53 1.1 jmmv uint16_t td_namelen;
54 1.6 jmmv
55 1.6 jmmv /* The name of the entry, allocated from a string pool. This
56 1.6 jmmv * string is not required to be zero-terminated; therefore, the
57 1.6 jmmv * td_namelen field must always be used when accessing its value. */
58 1.1 jmmv char * td_name;
59 1.6 jmmv
60 1.6 jmmv /* Pointer to the node this entry refers to. */
61 1.1 jmmv struct tmpfs_node * td_node;
62 1.1 jmmv };
63 1.6 jmmv
64 1.6 jmmv /* A directory in tmpfs holds a sorted list of directory entries, which in
65 1.6 jmmv * turn point to other files (which can be directories themselves).
66 1.6 jmmv *
67 1.6 jmmv * In tmpfs, this list is managed by a tail queue, whose head is defined by
68 1.6 jmmv * the struct tmpfs_dir type.
69 1.6 jmmv *
70 1.6 jmmv * It is imporant to notice that directories do not have entries for . and
71 1.6 jmmv * .. as other file systems do. These can be generated when requested
72 1.6 jmmv * based on information available by other means, such as the pointer to
73 1.6 jmmv * the node itself in the former case or the pointer to the parent directory
74 1.6 jmmv * in the latter case. This is done to simplify tmpfs's code and, more
75 1.6 jmmv * importantly, to remove redundancy. */
76 1.1 jmmv TAILQ_HEAD(tmpfs_dir, tmpfs_dirent);
77 1.1 jmmv
78 1.22 jmmv /* Each entry in a directory has a cookie that identifies it. Cookies
79 1.22 jmmv * supersede offsets within directories because, given how tmpfs stores
80 1.22 jmmv * directories in memory, there is no such thing as an offset. (Emulating
81 1.22 jmmv * a real offset could be very difficult.)
82 1.31 jmmv *
83 1.22 jmmv * The '.', '..' and the end of directory markers have fixed cookies which
84 1.22 jmmv * cannot collide with the cookies generated by other entries. The cookies
85 1.22 jmmv * fot the other entries are generated based on the memory address on which
86 1.22 jmmv * stores their information is stored.
87 1.22 jmmv *
88 1.22 jmmv * Ideally, using the entry's memory pointer as the cookie would be enough
89 1.22 jmmv * to represent it and it wouldn't cause collisions in any system.
90 1.22 jmmv * Unfortunately, this results in "offsets" with very large values which
91 1.22 jmmv * later raise problems in the Linux compatibility layer (and maybe in other
92 1.22 jmmv * places) as described in PR kern/32034. Hence we need to workaround this
93 1.22 jmmv * with a rather ugly hack.
94 1.22 jmmv *
95 1.22 jmmv * Linux 32-bit binaries, unless built with _FILE_OFFSET_BITS=64, have off_t
96 1.22 jmmv * set to 'long', which is a 32-bit *signed* long integer. Regardless of
97 1.22 jmmv * the macro value, GLIBC (2.3 at least) always uses the getdents64
98 1.22 jmmv * system call (when calling readdir) which internally returns off64_t
99 1.22 jmmv * offsets. In order to make 32-bit binaries work, *GLIBC* converts the
100 1.22 jmmv * 64-bit values returned by the kernel to 32-bit ones and aborts with
101 1.22 jmmv * EOVERFLOW if the conversion results in values that won't fit in 32-bit
102 1.22 jmmv * integers (which it assumes is because the directory is extremely large).
103 1.22 jmmv * This wouldn't cause problems if we were dealing with unsigned integers,
104 1.22 jmmv * but as we have signed integers, this check fails due to sign expansion.
105 1.22 jmmv *
106 1.22 jmmv * For example, consider that the kernel returns the 0xc1234567 cookie to
107 1.22 jmmv * userspace in a off64_t integer. Later on, GLIBC casts this value to
108 1.22 jmmv * off_t (remember, signed) with code similar to:
109 1.22 jmmv * system call returns the offset in kernel_value;
110 1.22 jmmv * off_t casted_value = kernel_value;
111 1.22 jmmv * if (sizeof(off_t) != sizeof(off64_t) &&
112 1.22 jmmv * kernel_value != casted_value)
113 1.22 jmmv * error!
114 1.22 jmmv * In this case, casted_value still has 0xc1234567, but when it is compared
115 1.22 jmmv * for equality against kernel_value, it is promoted to a 64-bit integer and
116 1.22 jmmv * becomes 0xffffffffc1234567, which is different than 0x00000000c1234567.
117 1.22 jmmv * Then, GLIBC assumes this is because the directory is very large.
118 1.22 jmmv *
119 1.22 jmmv * Given that all the above happens in user-space, we have no control over
120 1.22 jmmv * it; therefore we must workaround the issue here. We do this by
121 1.22 jmmv * truncating the pointer value to a 32-bit integer and hope that there
122 1.22 jmmv * won't be collisions. In fact, this will not cause any problems in
123 1.22 jmmv * 32-bit platforms but some might arise in 64-bit machines (I'm not sure
124 1.22 jmmv * if they can happen at all in practice).
125 1.22 jmmv *
126 1.22 jmmv * XXX A nicer solution shall be attempted. */
127 1.4 yamt #define TMPFS_DIRCOOKIE_DOT 0
128 1.4 yamt #define TMPFS_DIRCOOKIE_DOTDOT 1
129 1.4 yamt #define TMPFS_DIRCOOKIE_EOF 2
130 1.22 jmmv static __inline
131 1.22 jmmv off_t
132 1.22 jmmv tmpfs_dircookie(struct tmpfs_dirent *de)
133 1.22 jmmv {
134 1.22 jmmv off_t cookie;
135 1.22 jmmv
136 1.22 jmmv cookie = ((off_t)(uintptr_t)de >> 1) & 0x7FFFFFFF;
137 1.22 jmmv KASSERT(cookie != TMPFS_DIRCOOKIE_DOT);
138 1.22 jmmv KASSERT(cookie != TMPFS_DIRCOOKIE_DOTDOT);
139 1.22 jmmv KASSERT(cookie != TMPFS_DIRCOOKIE_EOF);
140 1.22 jmmv
141 1.22 jmmv return cookie;
142 1.22 jmmv }
143 1.4 yamt
144 1.1 jmmv /* --------------------------------------------------------------------- */
145 1.1 jmmv
146 1.1 jmmv /*
147 1.6 jmmv * Internal representation of a tmpfs file system node.
148 1.6 jmmv *
149 1.6 jmmv * This structure is splitted in two parts: one holds attributes common
150 1.6 jmmv * to all file types and the other holds data that is only applicable to
151 1.6 jmmv * a particular type. The code must be careful to only access those
152 1.6 jmmv * attributes that are actually allowed by the node's type.
153 1.1 jmmv */
154 1.1 jmmv struct tmpfs_node {
155 1.6 jmmv /* Doubly-linked list entry which links all existing nodes for a
156 1.6 jmmv * single file system. This is provided to ease the removal of
157 1.6 jmmv * all nodes during the unmount operation. */
158 1.1 jmmv LIST_ENTRY(tmpfs_node) tn_entries;
159 1.1 jmmv
160 1.6 jmmv /* The node's type. Any of 'VBLK', 'VCHR', 'VDIR', 'VFIFO',
161 1.6 jmmv * 'VLNK', 'VREG' and 'VSOCK' is allowed. The usage of vnode
162 1.6 jmmv * types instead of a custom enumeration is to make things simpler
163 1.6 jmmv * and faster, as we do not need to convert between two types. */
164 1.1 jmmv enum vtype tn_type;
165 1.6 jmmv
166 1.6 jmmv /* Node identifier. */
167 1.1 jmmv ino_t tn_id;
168 1.1 jmmv
169 1.6 jmmv /* Node's internal status. This is used by several file system
170 1.6 jmmv * operations to do modifications to the node in a delayed
171 1.6 jmmv * fashion. */
172 1.6 jmmv int tn_status;
173 1.1 jmmv #define TMPFS_NODE_ACCESSED (1 << 1)
174 1.1 jmmv #define TMPFS_NODE_MODIFIED (1 << 2)
175 1.1 jmmv #define TMPFS_NODE_CHANGED (1 << 3)
176 1.1 jmmv
177 1.6 jmmv /* The node size. It does not necessarily match the real amount
178 1.6 jmmv * of memory consumed by it. */
179 1.1 jmmv off_t tn_size;
180 1.1 jmmv
181 1.6 jmmv /* Generic node attributes. */
182 1.1 jmmv uid_t tn_uid;
183 1.1 jmmv gid_t tn_gid;
184 1.1 jmmv mode_t tn_mode;
185 1.1 jmmv int tn_flags;
186 1.1 jmmv nlink_t tn_links;
187 1.1 jmmv struct timespec tn_atime;
188 1.1 jmmv struct timespec tn_mtime;
189 1.1 jmmv struct timespec tn_ctime;
190 1.1 jmmv struct timespec tn_birthtime;
191 1.1 jmmv unsigned long tn_gen;
192 1.1 jmmv
193 1.8 jmmv /* Head of byte-level lock list (used by tmpfs_advlock). */
194 1.8 jmmv struct lockf * tn_lockf;
195 1.8 jmmv
196 1.6 jmmv /* As there is a single vnode for each active file within the
197 1.6 jmmv * system, care has to be taken to avoid allocating more than one
198 1.6 jmmv * vnode per file. In order to do this, a bidirectional association
199 1.6 jmmv * is kept between vnodes and nodes.
200 1.6 jmmv *
201 1.6 jmmv * Whenever a vnode is allocated, its v_data field is updated to
202 1.6 jmmv * point to the node it references. At the same time, the node's
203 1.6 jmmv * tn_vnode field is modified to point to the new vnode representing
204 1.6 jmmv * it. Further attempts to allocate a vnode for this same node will
205 1.6 jmmv * result in returning a new reference to the value stored in
206 1.6 jmmv * tn_vnode.
207 1.6 jmmv *
208 1.6 jmmv * May be NULL when the node is unused (that is, no vnode has been
209 1.6 jmmv * allocated for it or it has been reclaimed). */
210 1.30 ad kmutex_t tn_vlock;
211 1.1 jmmv struct vnode * tn_vnode;
212 1.1 jmmv
213 1.1 jmmv union {
214 1.1 jmmv /* Valid when tn_type == VBLK || tn_type == VCHR. */
215 1.1 jmmv struct {
216 1.1 jmmv dev_t tn_rdev;
217 1.15 jmmv } tn_dev;
218 1.1 jmmv
219 1.1 jmmv /* Valid when tn_type == VDIR. */
220 1.1 jmmv struct {
221 1.6 jmmv /* Pointer to the parent directory. The root
222 1.6 jmmv * directory has a pointer to itself in this field;
223 1.6 jmmv * this property identifies the root node. */
224 1.1 jmmv struct tmpfs_node * tn_parent;
225 1.6 jmmv
226 1.6 jmmv /* Head of a tail-queue that links the contents of
227 1.6 jmmv * the directory together. See above for a
228 1.6 jmmv * description of its contents. */
229 1.1 jmmv struct tmpfs_dir tn_dir;
230 1.1 jmmv
231 1.6 jmmv /* Number and pointer of the first directory entry
232 1.6 jmmv * returned by the readdir operation if it were
233 1.6 jmmv * called again to continue reading data from the
234 1.6 jmmv * same directory as before. This is used to speed
235 1.6 jmmv * up reads of long directories, assuming that no
236 1.6 jmmv * more than one read is in progress at a given time.
237 1.6 jmmv * Otherwise, these values are discarded and a linear
238 1.6 jmmv * scan is performed from the beginning up to the
239 1.6 jmmv * point where readdir starts returning values. */
240 1.4 yamt off_t tn_readdir_lastn;
241 1.1 jmmv struct tmpfs_dirent * tn_readdir_lastp;
242 1.15 jmmv } tn_dir;
243 1.1 jmmv
244 1.1 jmmv /* Valid when tn_type == VLNK. */
245 1.15 jmmv struct tn_lnk {
246 1.6 jmmv /* The link's target, allocated from a string pool. */
247 1.1 jmmv char * tn_link;
248 1.15 jmmv } tn_lnk;
249 1.1 jmmv
250 1.1 jmmv /* Valid when tn_type == VREG. */
251 1.15 jmmv struct tn_reg {
252 1.6 jmmv /* The contents of regular files stored in a tmpfs
253 1.6 jmmv * file system are represented by a single anonymous
254 1.6 jmmv * memory object (aobj, for short). The aobj provides
255 1.6 jmmv * direct access to any position within the file,
256 1.6 jmmv * because its contents are always mapped in a
257 1.6 jmmv * contiguous region of virtual memory. It is a task
258 1.6 jmmv * of the memory management subsystem (see uvm(9)) to
259 1.6 jmmv * issue the required page ins or page outs whenever
260 1.6 jmmv * a position within the file is accessed. */
261 1.1 jmmv struct uvm_object * tn_aobj;
262 1.1 jmmv size_t tn_aobj_pages;
263 1.15 jmmv } tn_reg;
264 1.15 jmmv } tn_spec;
265 1.1 jmmv };
266 1.20 yamt
267 1.1 jmmv LIST_HEAD(tmpfs_node_list, tmpfs_node);
268 1.1 jmmv
269 1.1 jmmv /* --------------------------------------------------------------------- */
270 1.1 jmmv
271 1.1 jmmv /*
272 1.6 jmmv * Internal representation of a tmpfs mount point.
273 1.1 jmmv */
274 1.1 jmmv struct tmpfs_mount {
275 1.6 jmmv /* Maximum number of memory pages available for use by the file
276 1.6 jmmv * system, set during mount time. This variable must never be
277 1.24 jmmv * used directly as it may be bigger than the current amount of
278 1.6 jmmv * free memory; in the extreme case, it will hold the SIZE_MAX
279 1.6 jmmv * value. Instead, use the TMPFS_PAGES_MAX macro. */
280 1.32 jmmv unsigned int tm_pages_max;
281 1.6 jmmv
282 1.6 jmmv /* Number of pages in use by the file system. Cannot be bigger
283 1.6 jmmv * than the value returned by TMPFS_PAGES_MAX in any case. */
284 1.32 jmmv unsigned int tm_pages_used;
285 1.1 jmmv
286 1.6 jmmv /* Pointer to the node representing the root directory of this
287 1.6 jmmv * file system. */
288 1.1 jmmv struct tmpfs_node * tm_root;
289 1.1 jmmv
290 1.6 jmmv /* Maximum number of possible nodes for this file system; set
291 1.6 jmmv * during mount time. We need a hard limit on the maximum number
292 1.6 jmmv * of nodes to avoid allocating too much of them; their objects
293 1.6 jmmv * cannot be released until the file system is unmounted.
294 1.6 jmmv * Otherwise, we could easily run out of memory by creating lots
295 1.6 jmmv * of empty files and then simply removing them. */
296 1.32 jmmv unsigned int tm_nodes_max;
297 1.6 jmmv
298 1.6 jmmv /* Number of nodes currently allocated. This number only grows.
299 1.6 jmmv * When it reaches tm_nodes_max, no more new nodes can be allocated.
300 1.6 jmmv * Of course, the old, unused ones can be reused. */
301 1.32 jmmv unsigned int tm_nodes_cnt;
302 1.6 jmmv
303 1.30 ad /* Node list. */
304 1.30 ad kmutex_t tm_lock;
305 1.30 ad struct tmpfs_node_list tm_nodes;
306 1.1 jmmv
307 1.6 jmmv /* Pools used to store file system meta data. These are not shared
308 1.6 jmmv * across several instances of tmpfs for the reasons described in
309 1.6 jmmv * tmpfs_pool.c. */
310 1.1 jmmv struct tmpfs_pool tm_dirent_pool;
311 1.1 jmmv struct tmpfs_pool tm_node_pool;
312 1.1 jmmv struct tmpfs_str_pool tm_str_pool;
313 1.1 jmmv };
314 1.1 jmmv
315 1.1 jmmv /* --------------------------------------------------------------------- */
316 1.1 jmmv
317 1.1 jmmv /*
318 1.1 jmmv * This structure maps a file identifier to a tmpfs node. Used by the
319 1.1 jmmv * NFS code.
320 1.1 jmmv */
321 1.1 jmmv struct tmpfs_fid {
322 1.1 jmmv uint16_t tf_len;
323 1.1 jmmv uint16_t tf_pad;
324 1.18 riz uint32_t tf_gen;
325 1.1 jmmv ino_t tf_id;
326 1.1 jmmv };
327 1.1 jmmv
328 1.1 jmmv /* --------------------------------------------------------------------- */
329 1.1 jmmv
330 1.1 jmmv /*
331 1.1 jmmv * Prototypes for tmpfs_subr.c.
332 1.1 jmmv */
333 1.1 jmmv
334 1.1 jmmv int tmpfs_alloc_node(struct tmpfs_mount *, enum vtype,
335 1.1 jmmv uid_t uid, gid_t gid, mode_t mode, struct tmpfs_node *,
336 1.29 pooka char *, dev_t, struct tmpfs_node **);
337 1.1 jmmv void tmpfs_free_node(struct tmpfs_mount *, struct tmpfs_node *);
338 1.1 jmmv int tmpfs_alloc_dirent(struct tmpfs_mount *, struct tmpfs_node *,
339 1.1 jmmv const char *, uint16_t, struct tmpfs_dirent **);
340 1.1 jmmv void tmpfs_free_dirent(struct tmpfs_mount *, struct tmpfs_dirent *,
341 1.25 thorpej bool);
342 1.1 jmmv int tmpfs_alloc_vp(struct mount *, struct tmpfs_node *, struct vnode **);
343 1.1 jmmv void tmpfs_free_vp(struct vnode *);
344 1.1 jmmv int tmpfs_alloc_file(struct vnode *, struct vnode **, struct vattr *,
345 1.1 jmmv struct componentname *, char *);
346 1.1 jmmv void tmpfs_dir_attach(struct vnode *, struct tmpfs_dirent *);
347 1.1 jmmv void tmpfs_dir_detach(struct vnode *, struct tmpfs_dirent *);
348 1.1 jmmv struct tmpfs_dirent * tmpfs_dir_lookup(struct tmpfs_node *node,
349 1.1 jmmv struct componentname *cnp);
350 1.1 jmmv int tmpfs_dir_getdotdent(struct tmpfs_node *, struct uio *);
351 1.1 jmmv int tmpfs_dir_getdotdotdent(struct tmpfs_node *, struct uio *);
352 1.4 yamt struct tmpfs_dirent * tmpfs_dir_lookupbycookie(struct tmpfs_node *, off_t);
353 1.4 yamt int tmpfs_dir_getdents(struct tmpfs_node *, struct uio *, off_t *);
354 1.1 jmmv int tmpfs_reg_resize(struct vnode *, off_t);
355 1.25 thorpej size_t tmpfs_mem_info(bool);
356 1.21 ad int tmpfs_chflags(struct vnode *, int, kauth_cred_t, struct lwp *);
357 1.21 ad int tmpfs_chmod(struct vnode *, mode_t, kauth_cred_t, struct lwp *);
358 1.21 ad int tmpfs_chown(struct vnode *, uid_t, gid_t, kauth_cred_t, struct lwp *);
359 1.21 ad int tmpfs_chsize(struct vnode *, u_quad_t, kauth_cred_t, struct lwp *);
360 1.33.4.1 simonb int tmpfs_chtimes(struct vnode *, const struct timespec *,
361 1.33.4.1 simonb const struct timespec *, const struct timespec *, int, kauth_cred_t,
362 1.33.4.1 simonb struct lwp *);
363 1.7 yamt void tmpfs_itimes(struct vnode *, const struct timespec *,
364 1.33.4.1 simonb const struct timespec *, const struct timespec *);
365 1.1 jmmv
366 1.9 yamt void tmpfs_update(struct vnode *, const struct timespec *,
367 1.33.4.1 simonb const struct timespec *, const struct timespec *, int);
368 1.9 yamt int tmpfs_truncate(struct vnode *, off_t);
369 1.9 yamt
370 1.1 jmmv /* --------------------------------------------------------------------- */
371 1.1 jmmv
372 1.1 jmmv /*
373 1.1 jmmv * Convenience macros to simplify some logical expressions.
374 1.1 jmmv */
375 1.1 jmmv #define IMPLIES(a, b) (!(a) || (b))
376 1.1 jmmv #define IFF(a, b) (IMPLIES(a, b) && IMPLIES(b, a))
377 1.1 jmmv
378 1.1 jmmv /* --------------------------------------------------------------------- */
379 1.1 jmmv
380 1.1 jmmv /*
381 1.1 jmmv * Checks that the directory entry pointed by 'de' matches the name 'name'
382 1.1 jmmv * with a length of 'len'.
383 1.1 jmmv */
384 1.1 jmmv #define TMPFS_DIRENT_MATCHES(de, name, len) \
385 1.1 jmmv (de->td_namelen == (uint16_t)len && \
386 1.1 jmmv memcmp((de)->td_name, (name), (de)->td_namelen) == 0)
387 1.1 jmmv
388 1.1 jmmv /* --------------------------------------------------------------------- */
389 1.1 jmmv
390 1.1 jmmv /*
391 1.1 jmmv * Ensures that the node pointed by 'node' is a directory and that its
392 1.1 jmmv * contents are consistent with respect to directories.
393 1.1 jmmv */
394 1.1 jmmv #define TMPFS_VALIDATE_DIR(node) \
395 1.1 jmmv KASSERT((node)->tn_type == VDIR); \
396 1.4 yamt KASSERT((node)->tn_size % sizeof(struct tmpfs_dirent) == 0); \
397 1.15 jmmv KASSERT((node)->tn_spec.tn_dir.tn_readdir_lastp == NULL || \
398 1.22 jmmv tmpfs_dircookie((node)->tn_spec.tn_dir.tn_readdir_lastp) == \
399 1.15 jmmv (node)->tn_spec.tn_dir.tn_readdir_lastn);
400 1.1 jmmv
401 1.1 jmmv /* --------------------------------------------------------------------- */
402 1.1 jmmv
403 1.1 jmmv /*
404 1.1 jmmv * Memory management stuff.
405 1.1 jmmv */
406 1.1 jmmv
407 1.1 jmmv /* Amount of memory pages to reserve for the system (e.g., to not use by
408 1.1 jmmv * tmpfs).
409 1.1 jmmv * XXX: Should this be tunable through sysctl, for instance? */
410 1.1 jmmv #define TMPFS_PAGES_RESERVED (4 * 1024 * 1024 / PAGE_SIZE)
411 1.1 jmmv
412 1.6 jmmv /* Returns the maximum size allowed for a tmpfs file system. This macro
413 1.6 jmmv * must be used instead of directly retrieving the value from tm_pages_max.
414 1.6 jmmv * The reason is that the size of a tmpfs file system is dynamic: it lets
415 1.6 jmmv * the user store files as long as there is enough free memory (including
416 1.6 jmmv * physical memory and swap space). Therefore, the amount of memory to be
417 1.6 jmmv * used is either the limit imposed by the user during mount time or the
418 1.6 jmmv * amount of available memory, whichever is lower. To avoid consuming all
419 1.6 jmmv * the memory for a given mount point, the system will always reserve a
420 1.6 jmmv * minimum of TMPFS_PAGES_RESERVED pages, which is also taken into account
421 1.6 jmmv * by this macro (see above). */
422 1.16 perry static __inline size_t
423 1.1 jmmv TMPFS_PAGES_MAX(struct tmpfs_mount *tmp)
424 1.1 jmmv {
425 1.1 jmmv size_t freepages;
426 1.1 jmmv
427 1.26 thorpej freepages = tmpfs_mem_info(false);
428 1.1 jmmv if (freepages < TMPFS_PAGES_RESERVED)
429 1.1 jmmv freepages = 0;
430 1.1 jmmv else
431 1.1 jmmv freepages -= TMPFS_PAGES_RESERVED;
432 1.1 jmmv
433 1.1 jmmv return MIN(tmp->tm_pages_max, freepages + tmp->tm_pages_used);
434 1.1 jmmv }
435 1.1 jmmv
436 1.6 jmmv /* Returns the available space for the given file system. */
437 1.30 ad #define TMPFS_PAGES_AVAIL(tmp) \
438 1.30 ad ((ssize_t)(TMPFS_PAGES_MAX(tmp) - (tmp)->tm_pages_used))
439 1.1 jmmv
440 1.1 jmmv /* --------------------------------------------------------------------- */
441 1.1 jmmv
442 1.1 jmmv /*
443 1.1 jmmv * Macros/functions to convert from generic data structures to tmpfs
444 1.1 jmmv * specific ones.
445 1.1 jmmv */
446 1.1 jmmv
447 1.16 perry static __inline
448 1.1 jmmv struct tmpfs_mount *
449 1.1 jmmv VFS_TO_TMPFS(struct mount *mp)
450 1.1 jmmv {
451 1.1 jmmv struct tmpfs_mount *tmp;
452 1.1 jmmv
453 1.14 christos #ifdef KASSERT
454 1.1 jmmv KASSERT((mp) != NULL && (mp)->mnt_data != NULL);
455 1.14 christos #endif
456 1.1 jmmv tmp = (struct tmpfs_mount *)(mp)->mnt_data;
457 1.1 jmmv return tmp;
458 1.1 jmmv }
459 1.1 jmmv
460 1.16 perry static __inline
461 1.1 jmmv struct tmpfs_node *
462 1.1 jmmv VP_TO_TMPFS_NODE(struct vnode *vp)
463 1.1 jmmv {
464 1.1 jmmv struct tmpfs_node *node;
465 1.1 jmmv
466 1.14 christos #ifdef KASSERT
467 1.1 jmmv KASSERT((vp) != NULL && (vp)->v_data != NULL);
468 1.14 christos #endif
469 1.1 jmmv node = (struct tmpfs_node *)vp->v_data;
470 1.1 jmmv return node;
471 1.1 jmmv }
472 1.1 jmmv
473 1.16 perry static __inline
474 1.1 jmmv struct tmpfs_node *
475 1.1 jmmv VP_TO_TMPFS_DIR(struct vnode *vp)
476 1.1 jmmv {
477 1.1 jmmv struct tmpfs_node *node;
478 1.1 jmmv
479 1.1 jmmv node = VP_TO_TMPFS_NODE(vp);
480 1.14 christos #ifdef KASSERT
481 1.1 jmmv TMPFS_VALIDATE_DIR(node);
482 1.14 christos #endif
483 1.1 jmmv return node;
484 1.1 jmmv }
485 1.10 christos #endif /* _FS_TMPFS_TMPFS_H_ */
486