udf_allocation.c revision 1.35 1 /* $NetBSD: udf_allocation.c,v 1.35 2013/10/18 19:56:55 christos Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29 #include <sys/cdefs.h>
30 #ifndef lint
31 __KERNEL_RCSID(0, "$NetBSD: udf_allocation.c,v 1.35 2013/10/18 19:56:55 christos Exp $");
32 #endif /* not lint */
33
34
35 #if defined(_KERNEL_OPT)
36 #include "opt_compat_netbsd.h"
37 #endif
38
39 /* TODO strip */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <sys/kthread.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64
65 #include "udf.h"
66 #include "udf_subr.h"
67 #include "udf_bswap.h"
68
69
70 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
71
72 static void udf_record_allocation_in_node(struct udf_mount *ump,
73 struct buf *buf, uint16_t vpart_num, uint64_t *mapping,
74 struct long_ad *node_ad_cpy);
75
76 static void udf_collect_free_space_for_vpart(struct udf_mount *ump,
77 uint16_t vpart_num, uint32_t num_lb);
78
79 static int udf_ads_merge(uint32_t max_len, uint32_t lb_size, struct long_ad *a1, struct long_ad *a2);
80 static void udf_wipe_adslots(struct udf_node *udf_node);
81 static void udf_count_alloc_exts(struct udf_node *udf_node);
82
83
84 /* --------------------------------------------------------------------- */
85
86 #if 0
87 #if 1
88 static void
89 udf_node_dump(struct udf_node *udf_node) {
90 struct file_entry *fe;
91 struct extfile_entry *efe;
92 struct icb_tag *icbtag;
93 struct long_ad s_ad;
94 uint64_t inflen;
95 uint32_t icbflags, addr_type;
96 uint32_t len, lb_num;
97 uint32_t flags;
98 int part_num;
99 int lb_size, eof, slot;
100
101 if ((udf_verbose & UDF_DEBUG_NODEDUMP) == 0)
102 return;
103
104 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
105
106 fe = udf_node->fe;
107 efe = udf_node->efe;
108 if (fe) {
109 icbtag = &fe->icbtag;
110 inflen = udf_rw64(fe->inf_len);
111 } else {
112 icbtag = &efe->icbtag;
113 inflen = udf_rw64(efe->inf_len);
114 }
115
116 icbflags = udf_rw16(icbtag->flags);
117 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
118
119 printf("udf_node_dump %p :\n", udf_node);
120
121 if (addr_type == UDF_ICB_INTERN_ALLOC) {
122 printf("\tIntern alloc, len = %"PRIu64"\n", inflen);
123 return;
124 }
125
126 printf("\tInflen = %"PRIu64"\n", inflen);
127 printf("\t\t");
128
129 slot = 0;
130 for (;;) {
131 udf_get_adslot(udf_node, slot, &s_ad, &eof);
132 if (eof)
133 break;
134 part_num = udf_rw16(s_ad.loc.part_num);
135 lb_num = udf_rw32(s_ad.loc.lb_num);
136 len = udf_rw32(s_ad.len);
137 flags = UDF_EXT_FLAGS(len);
138 len = UDF_EXT_LEN(len);
139
140 printf("[");
141 if (part_num >= 0)
142 printf("part %d, ", part_num);
143 printf("lb_num %d, len %d", lb_num, len);
144 if (flags)
145 printf(", flags %d", flags>>30);
146 printf("] ");
147
148 if (flags == UDF_EXT_REDIRECT) {
149 printf("\n\textent END\n\tallocation extent\n\t\t");
150 }
151
152 slot++;
153 }
154 printf("\n\tl_ad END\n\n");
155 }
156 #else
157 #define udf_node_dump(a)
158 #endif
159
160
161 static void
162 udf_assert_allocated(struct udf_mount *ump, uint16_t vpart_num,
163 uint32_t lb_num, uint32_t num_lb)
164 {
165 struct udf_bitmap *bitmap;
166 struct part_desc *pdesc;
167 uint32_t ptov;
168 uint32_t bitval;
169 uint8_t *bpos;
170 int bit;
171 int phys_part;
172 int ok;
173
174 DPRINTF(PARANOIA, ("udf_assert_allocated: check virt lbnum %d "
175 "part %d + %d sect\n", lb_num, vpart_num, num_lb));
176
177 /* get partition backing up this vpart_num */
178 pdesc = ump->partitions[ump->vtop[vpart_num]];
179
180 switch (ump->vtop_tp[vpart_num]) {
181 case UDF_VTOP_TYPE_PHYS :
182 case UDF_VTOP_TYPE_SPARABLE :
183 /* free space to freed or unallocated space bitmap */
184 ptov = udf_rw32(pdesc->start_loc);
185 phys_part = ump->vtop[vpart_num];
186
187 /* use unallocated bitmap */
188 bitmap = &ump->part_unalloc_bits[phys_part];
189
190 /* if no bitmaps are defined, bail out */
191 if (bitmap->bits == NULL)
192 break;
193
194 /* check bits */
195 KASSERT(bitmap->bits);
196 ok = 1;
197 bpos = bitmap->bits + lb_num/8;
198 bit = lb_num % 8;
199 while (num_lb > 0) {
200 bitval = (1 << bit);
201 DPRINTF(PARANOIA, ("XXX : check %d, %p, bit %d\n",
202 lb_num, bpos, bit));
203 KASSERT(bitmap->bits + lb_num/8 == bpos);
204 if (*bpos & bitval) {
205 printf("\tlb_num %d is NOT marked busy\n",
206 lb_num);
207 ok = 0;
208 }
209 lb_num++; num_lb--;
210 bit = (bit + 1) % 8;
211 if (bit == 0)
212 bpos++;
213 }
214 if (!ok) {
215 /* KASSERT(0); */
216 }
217
218 break;
219 case UDF_VTOP_TYPE_VIRT :
220 /* TODO check space */
221 KASSERT(num_lb == 1);
222 break;
223 case UDF_VTOP_TYPE_META :
224 /* TODO check space in the metadata bitmap */
225 default:
226 /* not implemented */
227 break;
228 }
229 }
230
231
232 static void
233 udf_node_sanity_check(struct udf_node *udf_node,
234 uint64_t *cnt_inflen, uint64_t *cnt_logblksrec)
235 {
236 union dscrptr *dscr;
237 struct file_entry *fe;
238 struct extfile_entry *efe;
239 struct icb_tag *icbtag;
240 struct long_ad s_ad;
241 uint64_t inflen, logblksrec;
242 uint32_t icbflags, addr_type;
243 uint32_t len, lb_num, l_ea, l_ad, max_l_ad;
244 uint16_t part_num;
245 uint8_t *data_pos;
246 int dscr_size, lb_size, flags, whole_lb;
247 int i, slot, eof;
248
249 // KASSERT(mutex_owned(&udf_node->ump->allocate_mutex));
250
251 if (1)
252 udf_node_dump(udf_node);
253
254 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
255
256 fe = udf_node->fe;
257 efe = udf_node->efe;
258 if (fe) {
259 dscr = (union dscrptr *) fe;
260 icbtag = &fe->icbtag;
261 inflen = udf_rw64(fe->inf_len);
262 dscr_size = sizeof(struct file_entry) -1;
263 logblksrec = udf_rw64(fe->logblks_rec);
264 l_ad = udf_rw32(fe->l_ad);
265 l_ea = udf_rw32(fe->l_ea);
266 } else {
267 dscr = (union dscrptr *) efe;
268 icbtag = &efe->icbtag;
269 inflen = udf_rw64(efe->inf_len);
270 dscr_size = sizeof(struct extfile_entry) -1;
271 logblksrec = udf_rw64(efe->logblks_rec);
272 l_ad = udf_rw32(efe->l_ad);
273 l_ea = udf_rw32(efe->l_ea);
274 }
275 data_pos = (uint8_t *) dscr + dscr_size + l_ea;
276 max_l_ad = lb_size - dscr_size - l_ea;
277 icbflags = udf_rw16(icbtag->flags);
278 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
279
280 /* check if tail is zero */
281 DPRINTF(PARANOIA, ("Sanity check blank tail\n"));
282 for (i = l_ad; i < max_l_ad; i++) {
283 if (data_pos[i] != 0)
284 printf( "sanity_check: violation: node byte %d "
285 "has value %d\n", i, data_pos[i]);
286 }
287
288 /* reset counters */
289 *cnt_inflen = 0;
290 *cnt_logblksrec = 0;
291
292 if (addr_type == UDF_ICB_INTERN_ALLOC) {
293 KASSERT(l_ad <= max_l_ad);
294 KASSERT(l_ad == inflen);
295 *cnt_inflen = inflen;
296 return;
297 }
298
299 /* start counting */
300 whole_lb = 1;
301 slot = 0;
302 for (;;) {
303 udf_get_adslot(udf_node, slot, &s_ad, &eof);
304 if (eof)
305 break;
306 KASSERT(whole_lb == 1);
307
308 part_num = udf_rw16(s_ad.loc.part_num);
309 lb_num = udf_rw32(s_ad.loc.lb_num);
310 len = udf_rw32(s_ad.len);
311 flags = UDF_EXT_FLAGS(len);
312 len = UDF_EXT_LEN(len);
313
314 if (flags != UDF_EXT_REDIRECT) {
315 *cnt_inflen += len;
316 if (flags == UDF_EXT_ALLOCATED) {
317 *cnt_logblksrec += (len + lb_size -1) / lb_size;
318 }
319 } else {
320 KASSERT(len == lb_size);
321 }
322 /* check allocation */
323 if (flags == UDF_EXT_ALLOCATED)
324 udf_assert_allocated(udf_node->ump, part_num, lb_num,
325 (len + lb_size - 1) / lb_size);
326
327 /* check whole lb */
328 whole_lb = ((len % lb_size) == 0);
329
330 slot++;
331 }
332 /* rest should be zero (ad_off > l_ad < max_l_ad - adlen) */
333
334 KASSERT(*cnt_inflen == inflen);
335 KASSERT(*cnt_logblksrec == logblksrec);
336
337 // KASSERT(mutex_owned(&udf_node->ump->allocate_mutex));
338 }
339 #else
340 static void
341 udf_node_sanity_check(struct udf_node *udf_node,
342 uint64_t *cnt_inflen, uint64_t *cnt_logblksrec) {
343 struct file_entry *fe;
344 struct extfile_entry *efe;
345 uint64_t inflen, logblksrec;
346
347 fe = udf_node->fe;
348 efe = udf_node->efe;
349 if (fe) {
350 inflen = udf_rw64(fe->inf_len);
351 logblksrec = udf_rw64(fe->logblks_rec);
352 } else {
353 inflen = udf_rw64(efe->inf_len);
354 logblksrec = udf_rw64(efe->logblks_rec);
355 }
356 *cnt_logblksrec = logblksrec;
357 *cnt_inflen = inflen;
358 }
359 #endif
360
361 /* --------------------------------------------------------------------- */
362
363 void
364 udf_calc_freespace(struct udf_mount *ump, uint64_t *sizeblks, uint64_t *freeblks)
365 {
366 struct logvol_int_desc *lvid;
367 uint32_t *pos1, *pos2;
368 int vpart, num_vpart;
369
370 lvid = ump->logvol_integrity;
371 *freeblks = *sizeblks = 0;
372
373 /*
374 * Sequentials media report free space directly (CD/DVD/BD-R), for the
375 * other media we need the logical volume integrity.
376 *
377 * We sum all free space up here regardless of type.
378 */
379
380 KASSERT(lvid);
381 num_vpart = udf_rw32(lvid->num_part);
382
383 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
384 /* use track info directly summing if there are 2 open */
385 /* XXX assumption at most two tracks open */
386 *freeblks = ump->data_track.free_blocks;
387 if (ump->data_track.tracknr != ump->metadata_track.tracknr)
388 *freeblks += ump->metadata_track.free_blocks;
389 *sizeblks = ump->discinfo.last_possible_lba;
390 } else {
391 /* free and used space for mountpoint based on logvol integrity */
392 for (vpart = 0; vpart < num_vpart; vpart++) {
393 pos1 = &lvid->tables[0] + vpart;
394 pos2 = &lvid->tables[0] + num_vpart + vpart;
395 if (udf_rw32(*pos1) != (uint32_t) -1) {
396 *freeblks += udf_rw32(*pos1);
397 *sizeblks += udf_rw32(*pos2);
398 }
399 }
400 }
401 /* adjust for accounted uncommitted blocks */
402 for (vpart = 0; vpart < num_vpart; vpart++)
403 *freeblks -= ump->uncommitted_lbs[vpart];
404
405 if (*freeblks > UDF_DISC_SLACK) {
406 *freeblks -= UDF_DISC_SLACK;
407 } else {
408 *freeblks = 0;
409 }
410 }
411
412
413 static void
414 udf_calc_vpart_freespace(struct udf_mount *ump, uint16_t vpart_num, uint64_t *freeblks)
415 {
416 struct logvol_int_desc *lvid;
417 uint32_t *pos1;
418
419 lvid = ump->logvol_integrity;
420 *freeblks = 0;
421
422 /*
423 * Sequentials media report free space directly (CD/DVD/BD-R), for the
424 * other media we need the logical volume integrity.
425 *
426 * We sum all free space up here regardless of type.
427 */
428
429 KASSERT(lvid);
430 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
431 /* XXX assumption at most two tracks open */
432 if (vpart_num == ump->data_part) {
433 *freeblks = ump->data_track.free_blocks;
434 } else {
435 *freeblks = ump->metadata_track.free_blocks;
436 }
437 } else {
438 /* free and used space for mountpoint based on logvol integrity */
439 pos1 = &lvid->tables[0] + vpart_num;
440 if (udf_rw32(*pos1) != (uint32_t) -1)
441 *freeblks += udf_rw32(*pos1);
442 }
443
444 /* adjust for accounted uncommitted blocks */
445 if (*freeblks > ump->uncommitted_lbs[vpart_num]) {
446 *freeblks -= ump->uncommitted_lbs[vpart_num];
447 } else {
448 *freeblks = 0;
449 }
450 }
451
452 /* --------------------------------------------------------------------- */
453
454 int
455 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
456 uint32_t *lb_numres, uint32_t *extres)
457 {
458 struct part_desc *pdesc;
459 struct spare_map_entry *sme;
460 struct long_ad s_icb_loc;
461 uint64_t foffset, end_foffset;
462 uint32_t lb_size, len;
463 uint32_t lb_num, lb_rel, lb_packet;
464 uint32_t udf_rw32_lbmap, ext_offset;
465 uint16_t vpart;
466 int rel, part, error, eof, slot, flags;
467
468 assert(ump && icb_loc && lb_numres);
469
470 vpart = udf_rw16(icb_loc->loc.part_num);
471 lb_num = udf_rw32(icb_loc->loc.lb_num);
472 if (vpart > UDF_VTOP_RAWPART)
473 return EINVAL;
474
475 translate_again:
476 part = ump->vtop[vpart];
477 pdesc = ump->partitions[part];
478
479 switch (ump->vtop_tp[vpart]) {
480 case UDF_VTOP_TYPE_RAW :
481 /* 1:1 to the end of the device */
482 *lb_numres = lb_num;
483 *extres = INT_MAX;
484 return 0;
485 case UDF_VTOP_TYPE_PHYS :
486 /* transform into its disc logical block */
487 if (lb_num > udf_rw32(pdesc->part_len))
488 return EINVAL;
489 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
490
491 /* extent from here to the end of the partition */
492 *extres = udf_rw32(pdesc->part_len) - lb_num;
493 return 0;
494 case UDF_VTOP_TYPE_VIRT :
495 /* only maps one logical block, lookup in VAT */
496 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
497 return EINVAL;
498
499 /* lookup in virtual allocation table file */
500 mutex_enter(&ump->allocate_mutex);
501 error = udf_vat_read(ump->vat_node,
502 (uint8_t *) &udf_rw32_lbmap, 4,
503 ump->vat_offset + lb_num * 4);
504 mutex_exit(&ump->allocate_mutex);
505
506 if (error)
507 return error;
508
509 lb_num = udf_rw32(udf_rw32_lbmap);
510
511 /* transform into its disc logical block */
512 if (lb_num > udf_rw32(pdesc->part_len))
513 return EINVAL;
514 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
515
516 /* just one logical block */
517 *extres = 1;
518 return 0;
519 case UDF_VTOP_TYPE_SPARABLE :
520 /* check if the packet containing the lb_num is remapped */
521 lb_packet = lb_num / ump->sparable_packet_size;
522 lb_rel = lb_num % ump->sparable_packet_size;
523
524 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
525 sme = &ump->sparing_table->entries[rel];
526 if (lb_packet == udf_rw32(sme->org)) {
527 /* NOTE maps to absolute disc logical block! */
528 *lb_numres = udf_rw32(sme->map) + lb_rel;
529 *extres = ump->sparable_packet_size - lb_rel;
530 return 0;
531 }
532 }
533
534 /* transform into its disc logical block */
535 if (lb_num > udf_rw32(pdesc->part_len))
536 return EINVAL;
537 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
538
539 /* rest of block */
540 *extres = ump->sparable_packet_size - lb_rel;
541 return 0;
542 case UDF_VTOP_TYPE_META :
543 /* we have to look into the file's allocation descriptors */
544
545 /* use metadatafile allocation mutex */
546 lb_size = udf_rw32(ump->logical_vol->lb_size);
547
548 UDF_LOCK_NODE(ump->metadata_node, 0);
549
550 /* get first overlapping extent */
551 foffset = 0;
552 slot = 0;
553 for (;;) {
554 udf_get_adslot(ump->metadata_node,
555 slot, &s_icb_loc, &eof);
556 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, "
557 "len = %d, lb_num = %d, part = %d\n",
558 slot, eof,
559 UDF_EXT_FLAGS(udf_rw32(s_icb_loc.len)),
560 UDF_EXT_LEN(udf_rw32(s_icb_loc.len)),
561 udf_rw32(s_icb_loc.loc.lb_num),
562 udf_rw16(s_icb_loc.loc.part_num)));
563 if (eof) {
564 DPRINTF(TRANSLATE,
565 ("Meta partition translation "
566 "failed: can't seek location\n"));
567 UDF_UNLOCK_NODE(ump->metadata_node, 0);
568 return EINVAL;
569 }
570 len = udf_rw32(s_icb_loc.len);
571 flags = UDF_EXT_FLAGS(len);
572 len = UDF_EXT_LEN(len);
573
574 if (flags == UDF_EXT_REDIRECT) {
575 slot++;
576 continue;
577 }
578
579 end_foffset = foffset + len;
580
581 if (end_foffset > (uint64_t) lb_num * lb_size)
582 break; /* found */
583 foffset = end_foffset;
584 slot++;
585 }
586 /* found overlapping slot */
587 ext_offset = lb_num * lb_size - foffset;
588
589 /* process extent offset */
590 lb_num = udf_rw32(s_icb_loc.loc.lb_num);
591 vpart = udf_rw16(s_icb_loc.loc.part_num);
592 lb_num += (ext_offset + lb_size -1) / lb_size;
593 ext_offset = 0;
594
595 UDF_UNLOCK_NODE(ump->metadata_node, 0);
596 if (flags != UDF_EXT_ALLOCATED) {
597 DPRINTF(TRANSLATE, ("Metadata partition translation "
598 "failed: not allocated\n"));
599 return EINVAL;
600 }
601
602 /*
603 * vpart and lb_num are updated, translate again since we
604 * might be mapped on sparable media
605 */
606 goto translate_again;
607 default:
608 printf("UDF vtop translation scheme %d unimplemented yet\n",
609 ump->vtop_tp[vpart]);
610 }
611
612 return EINVAL;
613 }
614
615
616 /* XXX provisional primitive braindead version */
617 /* TODO use ext_res */
618 void
619 udf_translate_vtop_list(struct udf_mount *ump, uint32_t sectors,
620 uint16_t vpart_num, uint64_t *lmapping, uint64_t *pmapping)
621 {
622 struct long_ad loc;
623 uint32_t lb_numres, ext_res;
624 int sector;
625
626 for (sector = 0; sector < sectors; sector++) {
627 memset(&loc, 0, sizeof(struct long_ad));
628 loc.loc.part_num = udf_rw16(vpart_num);
629 loc.loc.lb_num = udf_rw32(*lmapping);
630 udf_translate_vtop(ump, &loc, &lb_numres, &ext_res);
631 *pmapping = lb_numres;
632 lmapping++; pmapping++;
633 }
634 }
635
636
637 /* --------------------------------------------------------------------- */
638
639 /*
640 * Translate an extent (in logical_blocks) into logical block numbers; used
641 * for read and write operations. DOESNT't check extents.
642 */
643
644 int
645 udf_translate_file_extent(struct udf_node *udf_node,
646 uint32_t from, uint32_t num_lb,
647 uint64_t *map)
648 {
649 struct udf_mount *ump;
650 struct icb_tag *icbtag;
651 struct long_ad t_ad, s_ad;
652 uint64_t transsec;
653 uint64_t foffset, end_foffset;
654 uint32_t transsec32;
655 uint32_t lb_size;
656 uint32_t ext_offset;
657 uint32_t lb_num, len;
658 uint32_t overlap, translen;
659 uint16_t vpart_num;
660 int eof, error, flags;
661 int slot, addr_type, icbflags;
662
663 if (!udf_node)
664 return ENOENT;
665
666 KASSERT(num_lb > 0);
667
668 UDF_LOCK_NODE(udf_node, 0);
669
670 /* initialise derivative vars */
671 ump = udf_node->ump;
672 lb_size = udf_rw32(ump->logical_vol->lb_size);
673
674 if (udf_node->fe) {
675 icbtag = &udf_node->fe->icbtag;
676 } else {
677 icbtag = &udf_node->efe->icbtag;
678 }
679 icbflags = udf_rw16(icbtag->flags);
680 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
681
682 /* do the work */
683 if (addr_type == UDF_ICB_INTERN_ALLOC) {
684 *map = UDF_TRANS_INTERN;
685 UDF_UNLOCK_NODE(udf_node, 0);
686 return 0;
687 }
688
689 /* find first overlapping extent */
690 foffset = 0;
691 slot = 0;
692 for (;;) {
693 udf_get_adslot(udf_node, slot, &s_ad, &eof);
694 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
695 "lb_num = %d, part = %d\n", slot, eof,
696 UDF_EXT_FLAGS(udf_rw32(s_ad.len)),
697 UDF_EXT_LEN(udf_rw32(s_ad.len)),
698 udf_rw32(s_ad.loc.lb_num),
699 udf_rw16(s_ad.loc.part_num)));
700 if (eof) {
701 DPRINTF(TRANSLATE,
702 ("Translate file extent "
703 "failed: can't seek location\n"));
704 UDF_UNLOCK_NODE(udf_node, 0);
705 return EINVAL;
706 }
707 len = udf_rw32(s_ad.len);
708 flags = UDF_EXT_FLAGS(len);
709 len = UDF_EXT_LEN(len);
710 lb_num = udf_rw32(s_ad.loc.lb_num);
711
712 if (flags == UDF_EXT_REDIRECT) {
713 slot++;
714 continue;
715 }
716
717 end_foffset = foffset + len;
718
719 if (end_foffset > (uint64_t) from * lb_size)
720 break; /* found */
721 foffset = end_foffset;
722 slot++;
723 }
724 /* found overlapping slot */
725 ext_offset = (uint64_t) from * lb_size - foffset;
726
727 for (;;) {
728 udf_get_adslot(udf_node, slot, &s_ad, &eof);
729 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
730 "lb_num = %d, part = %d\n", slot, eof,
731 UDF_EXT_FLAGS(udf_rw32(s_ad.len)),
732 UDF_EXT_LEN(udf_rw32(s_ad.len)),
733 udf_rw32(s_ad.loc.lb_num),
734 udf_rw16(s_ad.loc.part_num)));
735 if (eof) {
736 DPRINTF(TRANSLATE,
737 ("Translate file extent "
738 "failed: past eof\n"));
739 UDF_UNLOCK_NODE(udf_node, 0);
740 return EINVAL;
741 }
742
743 len = udf_rw32(s_ad.len);
744 flags = UDF_EXT_FLAGS(len);
745 len = UDF_EXT_LEN(len);
746
747 lb_num = udf_rw32(s_ad.loc.lb_num);
748 vpart_num = udf_rw16(s_ad.loc.part_num);
749
750 end_foffset = foffset + len;
751
752 /* process extent, don't forget to advance on ext_offset! */
753 lb_num += (ext_offset + lb_size -1) / lb_size;
754 overlap = (len - ext_offset + lb_size -1) / lb_size;
755 ext_offset = 0;
756
757 /*
758 * note that the while(){} is nessisary for the extent that
759 * the udf_translate_vtop() returns doens't have to span the
760 * whole extent.
761 */
762
763 overlap = MIN(overlap, num_lb);
764 while (overlap && (flags != UDF_EXT_REDIRECT)) {
765 switch (flags) {
766 case UDF_EXT_FREE :
767 case UDF_EXT_ALLOCATED_BUT_NOT_USED :
768 transsec = UDF_TRANS_ZERO;
769 translen = overlap;
770 while (overlap && num_lb && translen) {
771 *map++ = transsec;
772 lb_num++;
773 overlap--; num_lb--; translen--;
774 }
775 break;
776 case UDF_EXT_ALLOCATED :
777 t_ad.loc.lb_num = udf_rw32(lb_num);
778 t_ad.loc.part_num = udf_rw16(vpart_num);
779 error = udf_translate_vtop(ump,
780 &t_ad, &transsec32, &translen);
781 transsec = transsec32;
782 if (error) {
783 UDF_UNLOCK_NODE(udf_node, 0);
784 return error;
785 }
786 while (overlap && num_lb && translen) {
787 *map++ = transsec;
788 lb_num++; transsec++;
789 overlap--; num_lb--; translen--;
790 }
791 break;
792 default:
793 DPRINTF(TRANSLATE,
794 ("Translate file extent "
795 "failed: bad flags %x\n", flags));
796 UDF_UNLOCK_NODE(udf_node, 0);
797 return EINVAL;
798 }
799 }
800 if (num_lb == 0)
801 break;
802
803 if (flags != UDF_EXT_REDIRECT)
804 foffset = end_foffset;
805 slot++;
806 }
807 UDF_UNLOCK_NODE(udf_node, 0);
808
809 return 0;
810 }
811
812 /* --------------------------------------------------------------------- */
813
814 static int
815 udf_search_free_vatloc(struct udf_mount *ump, uint32_t *lbnumres)
816 {
817 uint32_t lb_size, lb_num, lb_map, udf_rw32_lbmap;
818 uint8_t *blob;
819 int entry, chunk, found, error;
820
821 KASSERT(ump);
822 KASSERT(ump->logical_vol);
823
824 lb_size = udf_rw32(ump->logical_vol->lb_size);
825 blob = malloc(lb_size, M_UDFTEMP, M_WAITOK);
826
827 /* TODO static allocation of search chunk */
828
829 lb_num = MIN(ump->vat_entries, ump->vat_last_free_lb);
830 found = 0;
831 error = 0;
832 entry = 0;
833 do {
834 chunk = MIN(lb_size, (ump->vat_entries - lb_num) * 4);
835 if (chunk <= 0)
836 break;
837 /* load in chunk */
838 error = udf_vat_read(ump->vat_node, blob, chunk,
839 ump->vat_offset + lb_num * 4);
840
841 if (error)
842 break;
843
844 /* search this chunk */
845 for (entry=0; entry < chunk /4; entry++, lb_num++) {
846 udf_rw32_lbmap = *((uint32_t *) (blob + entry * 4));
847 lb_map = udf_rw32(udf_rw32_lbmap);
848 if (lb_map == 0xffffffff) {
849 found = 1;
850 break;
851 }
852 }
853 } while (!found);
854 if (error) {
855 printf("udf_search_free_vatloc: error reading in vat chunk "
856 "(lb %d, size %d)\n", lb_num, chunk);
857 }
858
859 if (!found) {
860 /* extend VAT */
861 DPRINTF(WRITE, ("udf_search_free_vatloc: extending\n"));
862 lb_num = ump->vat_entries;
863 ump->vat_entries++;
864 }
865
866 /* mark entry with initialiser just in case */
867 lb_map = udf_rw32(0xfffffffe);
868 udf_vat_write(ump->vat_node, (uint8_t *) &lb_map, 4,
869 ump->vat_offset + lb_num *4);
870 ump->vat_last_free_lb = lb_num;
871
872 free(blob, M_UDFTEMP);
873 *lbnumres = lb_num;
874 return 0;
875 }
876
877
878 static void
879 udf_bitmap_allocate(struct udf_bitmap *bitmap, int ismetadata,
880 uint32_t *num_lb, uint64_t *lmappos)
881 {
882 uint32_t offset, lb_num, bit;
883 int32_t diff;
884 uint8_t *bpos;
885 int pass;
886
887 if (!ismetadata) {
888 /* heuristic to keep the two pointers not too close */
889 diff = bitmap->data_pos - bitmap->metadata_pos;
890 if ((diff >= 0) && (diff < 1024))
891 bitmap->data_pos = bitmap->metadata_pos + 1024;
892 }
893 offset = ismetadata ? bitmap->metadata_pos : bitmap->data_pos;
894 offset &= ~7;
895 for (pass = 0; pass < 2; pass++) {
896 if (offset >= bitmap->max_offset)
897 offset = 0;
898
899 while (offset < bitmap->max_offset) {
900 if (*num_lb == 0)
901 break;
902
903 /* use first bit not set */
904 bpos = bitmap->bits + offset/8;
905 bit = ffs(*bpos); /* returns 0 or 1..8 */
906 if (bit == 0) {
907 offset += 8;
908 continue;
909 }
910
911 /* check for ffs overshoot */
912 if (offset + bit-1 >= bitmap->max_offset) {
913 offset = bitmap->max_offset;
914 break;
915 }
916
917 DPRINTF(PARANOIA, ("XXX : allocate %d, %p, bit %d\n",
918 offset + bit -1, bpos, bit-1));
919 *bpos &= ~(1 << (bit-1));
920 lb_num = offset + bit-1;
921 *lmappos++ = lb_num;
922 *num_lb = *num_lb - 1;
923 // offset = (offset & ~7);
924 }
925 }
926
927 if (ismetadata) {
928 bitmap->metadata_pos = offset;
929 } else {
930 bitmap->data_pos = offset;
931 }
932 }
933
934
935 static void
936 udf_bitmap_free(struct udf_bitmap *bitmap, uint32_t lb_num, uint32_t num_lb)
937 {
938 uint32_t offset;
939 uint32_t bit, bitval;
940 uint8_t *bpos;
941
942 offset = lb_num;
943
944 /* starter bits */
945 bpos = bitmap->bits + offset/8;
946 bit = offset % 8;
947 while ((bit != 0) && (num_lb > 0)) {
948 bitval = (1 << bit);
949 KASSERT((*bpos & bitval) == 0);
950 DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n",
951 offset, bpos, bit));
952 *bpos |= bitval;
953 offset++; num_lb--;
954 bit = (bit + 1) % 8;
955 }
956 if (num_lb == 0)
957 return;
958
959 /* whole bytes */
960 KASSERT(bit == 0);
961 bpos = bitmap->bits + offset / 8;
962 while (num_lb >= 8) {
963 KASSERT((*bpos == 0));
964 DPRINTF(PARANOIA, ("XXX : free %d + 8, %p\n", offset, bpos));
965 *bpos = 255;
966 offset += 8; num_lb -= 8;
967 bpos++;
968 }
969
970 /* stop bits */
971 KASSERT(num_lb < 8);
972 bit = 0;
973 while (num_lb > 0) {
974 bitval = (1 << bit);
975 KASSERT((*bpos & bitval) == 0);
976 DPRINTF(PARANOIA, ("XXX : free %d, %p, %d\n",
977 offset, bpos, bit));
978 *bpos |= bitval;
979 offset++; num_lb--;
980 bit = (bit + 1) % 8;
981 }
982 }
983
984
985 static uint32_t
986 udf_bitmap_check_trunc_free(struct udf_bitmap *bitmap, uint32_t to_trunc)
987 {
988 uint32_t seq_free, offset;
989 uint8_t *bpos;
990 uint8_t bit, bitval;
991
992 DPRINTF(RESERVE, ("\ttrying to trunc %d bits from bitmap\n", to_trunc));
993 offset = bitmap->max_offset - to_trunc;
994
995 /* starter bits (if any) */
996 bpos = bitmap->bits + offset/8;
997 bit = offset % 8;
998 seq_free = 0;
999 while (to_trunc > 0) {
1000 seq_free++;
1001 bitval = (1 << bit);
1002 if (!(*bpos & bitval))
1003 seq_free = 0;
1004 offset++; to_trunc--;
1005 bit++;
1006 if (bit == 8) {
1007 bpos++;
1008 bit = 0;
1009 }
1010 }
1011
1012 DPRINTF(RESERVE, ("\tfound %d sequential free bits in bitmap\n", seq_free));
1013 return seq_free;
1014 }
1015
1016 /* --------------------------------------------------------------------- */
1017
1018 /*
1019 * We check for overall disc space with a margin to prevent critical
1020 * conditions. If disc space is low we try to force a sync() to improve our
1021 * estimates. When confronted with meta-data partition size shortage we know
1022 * we have to check if it can be extended and we need to extend it when
1023 * needed.
1024 *
1025 * A 2nd strategy we could use when disc space is getting low on a disc
1026 * formatted with a meta-data partition is to see if there are sparse areas in
1027 * the meta-data partition and free blocks there for extra data.
1028 */
1029
1030 void
1031 udf_do_reserve_space(struct udf_mount *ump, struct udf_node *udf_node,
1032 uint16_t vpart_num, uint32_t num_lb)
1033 {
1034 ump->uncommitted_lbs[vpart_num] += num_lb;
1035 if (udf_node)
1036 udf_node->uncommitted_lbs += num_lb;
1037 }
1038
1039
1040 void
1041 udf_do_unreserve_space(struct udf_mount *ump, struct udf_node *udf_node,
1042 uint16_t vpart_num, uint32_t num_lb)
1043 {
1044 ump->uncommitted_lbs[vpart_num] -= num_lb;
1045 if (ump->uncommitted_lbs[vpart_num] < 0) {
1046 DPRINTF(RESERVE, ("UDF: underflow on partition reservation, "
1047 "part %d: %d\n", vpart_num,
1048 ump->uncommitted_lbs[vpart_num]));
1049 ump->uncommitted_lbs[vpart_num] = 0;
1050 }
1051 if (udf_node) {
1052 udf_node->uncommitted_lbs -= num_lb;
1053 if (udf_node->uncommitted_lbs < 0) {
1054 DPRINTF(RESERVE, ("UDF: underflow of node "
1055 "reservation : %d\n",
1056 udf_node->uncommitted_lbs));
1057 udf_node->uncommitted_lbs = 0;
1058 }
1059 }
1060 }
1061
1062
1063 int
1064 udf_reserve_space(struct udf_mount *ump, struct udf_node *udf_node,
1065 int udf_c_type, uint16_t vpart_num, uint32_t num_lb, int can_fail)
1066 {
1067 uint64_t freeblks;
1068 uint64_t slack;
1069 int i, error;
1070
1071 slack = 0;
1072 if (can_fail)
1073 slack = UDF_DISC_SLACK;
1074
1075 error = 0;
1076 mutex_enter(&ump->allocate_mutex);
1077
1078 /* check if there is enough space available */
1079 for (i = 0; i < 3; i++) { /* XXX arbitrary number */
1080 udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
1081 if (num_lb + slack < freeblks)
1082 break;
1083 /* issue SYNC */
1084 DPRINTF(RESERVE, ("udf_reserve_space: issuing sync\n"));
1085 mutex_exit(&ump->allocate_mutex);
1086 udf_do_sync(ump, FSCRED, 0);
1087 mutex_enter(&mntvnode_lock);
1088 /* 1/8 second wait */
1089 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
1090 hz/8);
1091 mutex_exit(&mntvnode_lock);
1092 mutex_enter(&ump->allocate_mutex);
1093 }
1094
1095 /* check if there is enough space available now */
1096 udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
1097 if (num_lb + slack >= freeblks) {
1098 DPRINTF(RESERVE, ("udf_reserve_space: try to redistribute "
1099 "partition space\n"));
1100 DPRINTF(RESERVE, ("\tvpart %d, type %d is full\n",
1101 vpart_num, ump->vtop_alloc[vpart_num]));
1102 /* Try to redistribute space if possible */
1103 udf_collect_free_space_for_vpart(ump, vpart_num, num_lb + slack);
1104 }
1105
1106 /* check if there is enough space available now */
1107 udf_calc_vpart_freespace(ump, vpart_num, &freeblks);
1108 if (num_lb + slack <= freeblks) {
1109 udf_do_reserve_space(ump, udf_node, vpart_num, num_lb);
1110 } else {
1111 DPRINTF(RESERVE, ("udf_reserve_space: out of disc space\n"));
1112 error = ENOSPC;
1113 }
1114
1115 mutex_exit(&ump->allocate_mutex);
1116 return error;
1117 }
1118
1119
1120 void
1121 udf_cleanup_reservation(struct udf_node *udf_node)
1122 {
1123 struct udf_mount *ump = udf_node->ump;
1124 int vpart_num;
1125
1126 mutex_enter(&ump->allocate_mutex);
1127
1128 /* compensate for overlapping blocks */
1129 DPRINTF(RESERVE, ("UDF: overlapped %d blocks in count\n", udf_node->uncommitted_lbs));
1130
1131 vpart_num = udf_get_record_vpart(ump, udf_get_c_type(udf_node));
1132 udf_do_unreserve_space(ump, udf_node, vpart_num, udf_node->uncommitted_lbs);
1133
1134 DPRINTF(RESERVE, ("\ttotal now %d\n", ump->uncommitted_lbs[vpart_num]));
1135
1136 /* sanity */
1137 if (ump->uncommitted_lbs[vpart_num] < 0)
1138 ump->uncommitted_lbs[vpart_num] = 0;
1139
1140 mutex_exit(&ump->allocate_mutex);
1141 }
1142
1143 /* --------------------------------------------------------------------- */
1144
1145 /*
1146 * Allocate an extent of given length on given virt. partition. It doesn't
1147 * have to be one stretch.
1148 */
1149
1150 int
1151 udf_allocate_space(struct udf_mount *ump, struct udf_node *udf_node,
1152 int udf_c_type, uint16_t vpart_num, uint32_t num_lb, uint64_t *lmapping)
1153 {
1154 struct mmc_trackinfo *alloc_track, *other_track;
1155 struct udf_bitmap *bitmap;
1156 struct part_desc *pdesc;
1157 struct logvol_int_desc *lvid;
1158 uint64_t *lmappos;
1159 uint32_t ptov, lb_num, *freepos, free_lbs;
1160 int lb_size, alloc_num_lb;
1161 int alloc_type, error;
1162 int is_node;
1163
1164 DPRINTF(CALL, ("udf_allocate_space(ctype %d, vpart %d, num_lb %d\n",
1165 udf_c_type, vpart_num, num_lb));
1166 mutex_enter(&ump->allocate_mutex);
1167
1168 lb_size = udf_rw32(ump->logical_vol->lb_size);
1169 KASSERT(lb_size == ump->discinfo.sector_size);
1170
1171 alloc_type = ump->vtop_alloc[vpart_num];
1172 is_node = (udf_c_type == UDF_C_NODE);
1173
1174 lmappos = lmapping;
1175 error = 0;
1176 switch (alloc_type) {
1177 case UDF_ALLOC_VAT :
1178 /* search empty slot in VAT file */
1179 KASSERT(num_lb == 1);
1180 error = udf_search_free_vatloc(ump, &lb_num);
1181 if (!error) {
1182 *lmappos = lb_num;
1183
1184 /* reserve on the backing sequential partition since
1185 * that partition is credited back later */
1186 udf_do_reserve_space(ump, udf_node,
1187 ump->vtop[vpart_num], num_lb);
1188 }
1189 break;
1190 case UDF_ALLOC_SEQUENTIAL :
1191 /* sequential allocation on recordable media */
1192 /* get partition backing up this vpart_num_num */
1193 pdesc = ump->partitions[ump->vtop[vpart_num]];
1194
1195 /* calculate offset from physical base partition */
1196 ptov = udf_rw32(pdesc->start_loc);
1197
1198 /* get our track descriptors */
1199 if (vpart_num == ump->node_part) {
1200 alloc_track = &ump->metadata_track;
1201 other_track = &ump->data_track;
1202 } else {
1203 alloc_track = &ump->data_track;
1204 other_track = &ump->metadata_track;
1205 }
1206
1207 /* allocate */
1208 for (lb_num = 0; lb_num < num_lb; lb_num++) {
1209 *lmappos++ = alloc_track->next_writable - ptov;
1210 alloc_track->next_writable++;
1211 alloc_track->free_blocks--;
1212 }
1213
1214 /* keep other track up-to-date */
1215 if (alloc_track->tracknr == other_track->tracknr)
1216 memcpy(other_track, alloc_track,
1217 sizeof(struct mmc_trackinfo));
1218 break;
1219 case UDF_ALLOC_SPACEMAP :
1220 /* try to allocate on unallocated bits */
1221 alloc_num_lb = num_lb;
1222 bitmap = &ump->part_unalloc_bits[vpart_num];
1223 udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos);
1224 ump->lvclose |= UDF_WRITE_PART_BITMAPS;
1225
1226 /* have we allocated all? */
1227 if (alloc_num_lb) {
1228 /* TODO convert freed to unalloc and try again */
1229 /* free allocated piece for now */
1230 lmappos = lmapping;
1231 for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) {
1232 udf_bitmap_free(bitmap, *lmappos++, 1);
1233 }
1234 error = ENOSPC;
1235 }
1236 if (!error) {
1237 /* adjust freecount */
1238 lvid = ump->logvol_integrity;
1239 freepos = &lvid->tables[0] + vpart_num;
1240 free_lbs = udf_rw32(*freepos);
1241 *freepos = udf_rw32(free_lbs - num_lb);
1242 }
1243 break;
1244 case UDF_ALLOC_METABITMAP : /* UDF 2.50, 2.60 BluRay-RE */
1245 /* allocate on metadata unallocated bits */
1246 alloc_num_lb = num_lb;
1247 bitmap = &ump->metadata_unalloc_bits;
1248 udf_bitmap_allocate(bitmap, is_node, &alloc_num_lb, lmappos);
1249 ump->lvclose |= UDF_WRITE_PART_BITMAPS;
1250
1251 /* have we allocated all? */
1252 if (alloc_num_lb) {
1253 /* YIKES! TODO we need to extend the metadata partition */
1254 /* free allocated piece for now */
1255 lmappos = lmapping;
1256 for (lb_num=0; lb_num < num_lb-alloc_num_lb; lb_num++) {
1257 udf_bitmap_free(bitmap, *lmappos++, 1);
1258 }
1259 error = ENOSPC;
1260 }
1261 if (!error) {
1262 /* adjust freecount */
1263 lvid = ump->logvol_integrity;
1264 freepos = &lvid->tables[0] + vpart_num;
1265 free_lbs = udf_rw32(*freepos);
1266 *freepos = udf_rw32(free_lbs - num_lb);
1267 }
1268 break;
1269 case UDF_ALLOC_METASEQUENTIAL : /* UDF 2.60 BluRay-R */
1270 case UDF_ALLOC_RELAXEDSEQUENTIAL : /* UDF 2.50/~meta BluRay-R */
1271 printf("ALERT: udf_allocate_space : allocation %d "
1272 "not implemented yet!\n", alloc_type);
1273 /* TODO implement, doesn't have to be contiguous */
1274 error = ENOSPC;
1275 break;
1276 }
1277
1278 if (!error) {
1279 /* credit our partition since we have committed the space */
1280 udf_do_unreserve_space(ump, udf_node, vpart_num, num_lb);
1281 }
1282
1283 #ifdef DEBUG
1284 if (udf_verbose & UDF_DEBUG_ALLOC) {
1285 lmappos = lmapping;
1286 printf("udf_allocate_space, allocated logical lba :\n");
1287 for (lb_num = 0; lb_num < num_lb; lb_num++) {
1288 printf("%s %"PRIu64, (lb_num > 0)?",":"",
1289 *lmappos++);
1290 }
1291 printf("\n");
1292 }
1293 #endif
1294 mutex_exit(&ump->allocate_mutex);
1295
1296 return error;
1297 }
1298
1299 /* --------------------------------------------------------------------- */
1300
1301 void
1302 udf_free_allocated_space(struct udf_mount *ump, uint32_t lb_num,
1303 uint16_t vpart_num, uint32_t num_lb)
1304 {
1305 struct udf_bitmap *bitmap;
1306 struct logvol_int_desc *lvid;
1307 uint32_t lb_map, udf_rw32_lbmap;
1308 uint32_t *freepos, free_lbs;
1309 int phys_part;
1310 int error;
1311
1312 DPRINTF(ALLOC, ("udf_free_allocated_space: freeing virt lbnum %d "
1313 "part %d + %d sect\n", lb_num, vpart_num, num_lb));
1314
1315 /* no use freeing zero length */
1316 if (num_lb == 0)
1317 return;
1318
1319 mutex_enter(&ump->allocate_mutex);
1320
1321 switch (ump->vtop_tp[vpart_num]) {
1322 case UDF_VTOP_TYPE_PHYS :
1323 case UDF_VTOP_TYPE_SPARABLE :
1324 /* free space to freed or unallocated space bitmap */
1325 phys_part = ump->vtop[vpart_num];
1326
1327 /* first try freed space bitmap */
1328 bitmap = &ump->part_freed_bits[phys_part];
1329
1330 /* if not defined, use unallocated bitmap */
1331 if (bitmap->bits == NULL)
1332 bitmap = &ump->part_unalloc_bits[phys_part];
1333
1334 /* if no bitmaps are defined, bail out; XXX OK? */
1335 if (bitmap->bits == NULL)
1336 break;
1337
1338 /* free bits if its defined */
1339 KASSERT(bitmap->bits);
1340 ump->lvclose |= UDF_WRITE_PART_BITMAPS;
1341 udf_bitmap_free(bitmap, lb_num, num_lb);
1342
1343 /* adjust freecount */
1344 lvid = ump->logvol_integrity;
1345 freepos = &lvid->tables[0] + vpart_num;
1346 free_lbs = udf_rw32(*freepos);
1347 *freepos = udf_rw32(free_lbs + num_lb);
1348 break;
1349 case UDF_VTOP_TYPE_VIRT :
1350 /* free this VAT entry */
1351 KASSERT(num_lb == 1);
1352
1353 lb_map = 0xffffffff;
1354 udf_rw32_lbmap = udf_rw32(lb_map);
1355 error = udf_vat_write(ump->vat_node,
1356 (uint8_t *) &udf_rw32_lbmap, 4,
1357 ump->vat_offset + lb_num * 4);
1358 KASSERT(error == 0);
1359 ump->vat_last_free_lb = MIN(ump->vat_last_free_lb, lb_num);
1360 break;
1361 case UDF_VTOP_TYPE_META :
1362 /* free space in the metadata bitmap */
1363 bitmap = &ump->metadata_unalloc_bits;
1364 KASSERT(bitmap->bits);
1365
1366 ump->lvclose |= UDF_WRITE_PART_BITMAPS;
1367 udf_bitmap_free(bitmap, lb_num, num_lb);
1368
1369 /* adjust freecount */
1370 lvid = ump->logvol_integrity;
1371 freepos = &lvid->tables[0] + vpart_num;
1372 free_lbs = udf_rw32(*freepos);
1373 *freepos = udf_rw32(free_lbs + num_lb);
1374 break;
1375 default:
1376 printf("ALERT: udf_free_allocated_space : allocation %d "
1377 "not implemented yet!\n", ump->vtop_tp[vpart_num]);
1378 break;
1379 }
1380
1381 mutex_exit(&ump->allocate_mutex);
1382 }
1383
1384 /* --------------------------------------------------------------------- */
1385
1386 /*
1387 * Special function to synchronise the metadatamirror file when they change on
1388 * resizing. When the metadatafile is actually duplicated, this action is a
1389 * no-op since they describe different extents on the disc.
1390 */
1391
1392 void
1393 udf_synchronise_metadatamirror_node(struct udf_mount *ump)
1394 {
1395 struct udf_node *meta_node, *metamirror_node;
1396 struct long_ad s_ad;
1397 uint32_t len, flags;
1398 int slot, cpy_slot;
1399 int error, eof;
1400
1401 if (ump->metadata_flags & METADATA_DUPLICATED)
1402 return;
1403
1404 meta_node = ump->metadata_node;
1405 metamirror_node = ump->metadatamirror_node;
1406
1407 /* 1) wipe mirror node */
1408 udf_wipe_adslots(metamirror_node);
1409
1410 /* 2) copy all node descriptors from the meta_node */
1411 slot = 0;
1412 cpy_slot = 0;
1413 for (;;) {
1414 udf_get_adslot(meta_node, slot, &s_ad, &eof);
1415 if (eof)
1416 break;
1417 len = udf_rw32(s_ad.len);
1418 flags = UDF_EXT_FLAGS(len);
1419 len = UDF_EXT_LEN(len);
1420
1421 if (flags == UDF_EXT_REDIRECT) {
1422 slot++;
1423 continue;
1424 }
1425
1426 error = udf_append_adslot(metamirror_node, &cpy_slot, &s_ad);
1427 if (error) {
1428 /* WTF, this shouldn't happen, what to do now? */
1429 panic("udf_synchronise_metadatamirror_node failed!");
1430 }
1431 cpy_slot++;
1432 slot++;
1433 }
1434
1435 /* 3) adjust metamirror_node size */
1436 if (meta_node->fe) {
1437 KASSERT(metamirror_node->fe);
1438 metamirror_node->fe->inf_len = meta_node->fe->inf_len;
1439 } else {
1440 KASSERT(meta_node->efe);
1441 KASSERT(metamirror_node->efe);
1442 metamirror_node->efe->inf_len = meta_node->efe->inf_len;
1443 metamirror_node->efe->obj_size = meta_node->efe->obj_size;
1444 }
1445
1446 /* for sanity */
1447 udf_count_alloc_exts(metamirror_node);
1448 }
1449
1450 /* --------------------------------------------------------------------- */
1451
1452 /*
1453 * When faced with an out of space but there is still space available on other
1454 * partitions, try to redistribute the space. This is only defined for media
1455 * using Metadata partitions.
1456 *
1457 * There are two formats to deal with. Either its a `normal' metadata
1458 * partition and we can move blocks between a metadata bitmap and its
1459 * companion data spacemap OR its a UDF 2.60 formatted BluRay-R disc with POW
1460 * and a metadata partition.
1461 */
1462
1463 /* implementation limit: ump->datapart is the companion partition */
1464 static uint32_t
1465 udf_trunc_metadatapart(struct udf_mount *ump, uint32_t num_lb)
1466 {
1467 struct udf_node *bitmap_node;
1468 struct udf_bitmap *bitmap;
1469 struct space_bitmap_desc *sbd, *new_sbd;
1470 struct logvol_int_desc *lvid;
1471 uint64_t inf_len;
1472 uint64_t meta_free_lbs, data_free_lbs, to_trunc;
1473 uint32_t *freepos, *sizepos;
1474 uint32_t unit, lb_size;
1475 uint16_t meta_vpart_num, data_vpart_num, num_vpart;
1476 int err;
1477
1478 unit = ump->metadata_alloc_unit_size;
1479 lb_size = udf_rw32(ump->logical_vol->lb_size);
1480 lvid = ump->logvol_integrity;
1481
1482 /* XXX
1483 *
1484 * the following checks will fail for BD-R UDF 2.60! but they are
1485 * read-only for now anyway! Its even doubtfull if it is to be allowed
1486 * for these discs.
1487 */
1488
1489 /* lookup vpart for metadata partition */
1490 meta_vpart_num = ump->node_part;
1491 KASSERT(ump->vtop_alloc[meta_vpart_num] == UDF_ALLOC_METABITMAP);
1492
1493 /* lookup vpart for data partition */
1494 data_vpart_num = ump->data_part;
1495 KASSERT(ump->vtop_alloc[data_vpart_num] == UDF_ALLOC_SPACEMAP);
1496
1497 udf_calc_vpart_freespace(ump, data_vpart_num, &data_free_lbs);
1498 udf_calc_vpart_freespace(ump, meta_vpart_num, &meta_free_lbs);
1499
1500 DPRINTF(RESERVE, ("\tfree space on data partition %"PRIu64" blks\n", data_free_lbs));
1501 DPRINTF(RESERVE, ("\tfree space on metadata partition %"PRIu64" blks\n", meta_free_lbs));
1502
1503 /* give away some of the free meta space, in unit block sizes */
1504 to_trunc = meta_free_lbs/4; /* give out a quarter */
1505 to_trunc = MAX(to_trunc, num_lb);
1506 to_trunc = unit * ((to_trunc + unit-1) / unit); /* round up */
1507
1508 /* scale down if needed and bail out when out of space */
1509 if (to_trunc >= meta_free_lbs)
1510 return num_lb;
1511
1512 /* check extent of bits marked free at the end of the map */
1513 bitmap = &ump->metadata_unalloc_bits;
1514 to_trunc = udf_bitmap_check_trunc_free(bitmap, to_trunc);
1515 to_trunc = unit * (to_trunc / unit); /* round down again */
1516 if (to_trunc == 0)
1517 return num_lb;
1518
1519 DPRINTF(RESERVE, ("\ttruncating %"PRIu64" lbs from the metadata bitmap\n",
1520 to_trunc));
1521
1522 /* get length of the metadata bitmap node file */
1523 bitmap_node = ump->metadatabitmap_node;
1524 if (bitmap_node->fe) {
1525 inf_len = udf_rw64(bitmap_node->fe->inf_len);
1526 } else {
1527 KASSERT(bitmap_node->efe);
1528 inf_len = udf_rw64(bitmap_node->efe->inf_len);
1529 }
1530 inf_len -= to_trunc/8;
1531
1532 /* as per [UDF 2.60/2.2.13.6] : */
1533 /* 1) update the SBD in the metadata bitmap file */
1534 sbd = (struct space_bitmap_desc *) bitmap->blob;
1535 sbd->num_bits = udf_rw32(udf_rw32(sbd->num_bits) - to_trunc);
1536 sbd->num_bytes = udf_rw32(udf_rw32(sbd->num_bytes) - to_trunc/8);
1537 bitmap->max_offset = udf_rw32(sbd->num_bits);
1538
1539 num_vpart = udf_rw32(lvid->num_part);
1540 freepos = &lvid->tables[0] + meta_vpart_num;
1541 sizepos = &lvid->tables[0] + num_vpart + meta_vpart_num;
1542 *freepos = udf_rw32(*freepos) - to_trunc;
1543 *sizepos = udf_rw32(*sizepos) - to_trunc;
1544
1545 /* realloc bitmap for better memory usage */
1546 new_sbd = realloc(sbd, inf_len, M_UDFVOLD,
1547 M_CANFAIL | M_WAITOK);
1548 if (new_sbd) {
1549 /* update pointers */
1550 ump->metadata_unalloc_dscr = new_sbd;
1551 bitmap->blob = (uint8_t *) new_sbd;
1552 }
1553 ump->lvclose |= UDF_WRITE_PART_BITMAPS;
1554
1555 /*
1556 * The truncated space is secured now and can't be allocated anymore.
1557 * Release the allocate mutex so we can shrink the nodes the normal
1558 * way.
1559 */
1560 mutex_exit(&ump->allocate_mutex);
1561
1562 /* 2) trunc the metadata bitmap information file, freeing blocks */
1563 err = udf_shrink_node(bitmap_node, inf_len);
1564 KASSERT(err == 0);
1565
1566 /* 3) trunc the metadata file and mirror file, freeing blocks */
1567 inf_len = (uint64_t) udf_rw32(sbd->num_bits) * lb_size; /* [4/14.12.4] */
1568 err = udf_shrink_node(ump->metadata_node, inf_len);
1569 KASSERT(err == 0);
1570 if (ump->metadatamirror_node) {
1571 if (ump->metadata_flags & METADATA_DUPLICATED) {
1572 err = udf_shrink_node(ump->metadatamirror_node, inf_len);
1573 } else {
1574 /* extents will be copied on writeout */
1575 }
1576 KASSERT(err == 0);
1577 }
1578 ump->lvclose |= UDF_WRITE_METAPART_NODES;
1579
1580 /* relock before exit */
1581 mutex_enter(&ump->allocate_mutex);
1582
1583 if (to_trunc > num_lb)
1584 return 0;
1585 return num_lb - to_trunc;
1586 }
1587
1588
1589 static void
1590 udf_sparsify_metadatapart(struct udf_mount *ump, uint32_t num_lb)
1591 {
1592 /* NOT IMPLEMENTED, fail */
1593 }
1594
1595
1596 static void
1597 udf_collect_free_space_for_vpart(struct udf_mount *ump,
1598 uint16_t vpart_num, uint32_t num_lb)
1599 {
1600 /* allocate mutex is helt */
1601
1602 /* only defined for metadata partitions */
1603 if (ump->vtop_tp[ump->node_part] != UDF_VTOP_TYPE_META) {
1604 DPRINTF(RESERVE, ("\tcan't grow/shrink; no metadata partitioning\n"));
1605 return;
1606 }
1607
1608 /* UDF 2.60 BD-R+POW? */
1609 if (ump->vtop_alloc[ump->node_part] == UDF_ALLOC_METASEQUENTIAL) {
1610 DPRINTF(RESERVE, ("\tUDF 2.60 BD-R+POW track grow not implemented yet\n"));
1611 return;
1612 }
1613
1614 if (ump->vtop_tp[vpart_num] == UDF_VTOP_TYPE_META) {
1615 /* try to grow the meta partition */
1616 DPRINTF(RESERVE, ("\ttrying to grow the meta partition\n"));
1617 /* as per [UDF 2.60/2.2.13.5] : extend bitmap and metadata file(s) */
1618 DPRINTF(NOTIMPL, ("\tgrowing meta partition not implemented yet\n"));
1619 } else {
1620 /* try to shrink the metadata partition */
1621 DPRINTF(RESERVE, ("\ttrying to shrink the meta partition\n"));
1622 /* as per [UDF 2.60/2.2.13.6] : either trunc or make sparse */
1623 num_lb = udf_trunc_metadatapart(ump, num_lb);
1624 if (num_lb)
1625 udf_sparsify_metadatapart(ump, num_lb);
1626 }
1627
1628 /* allocate mutex should still be helt */
1629 }
1630
1631 /* --------------------------------------------------------------------- */
1632
1633 /*
1634 * Allocate a buf on disc for direct write out. The space doesn't have to be
1635 * contiguous as the caller takes care of this.
1636 */
1637
1638 void
1639 udf_late_allocate_buf(struct udf_mount *ump, struct buf *buf,
1640 uint64_t *lmapping, struct long_ad *node_ad_cpy, uint16_t *vpart_nump)
1641 {
1642 struct udf_node *udf_node = VTOI(buf->b_vp);
1643 int lb_size, udf_c_type;
1644 int vpart_num, num_lb;
1645 int error, s;
1646
1647 /*
1648 * for each sector in the buf, allocate a sector on disc and record
1649 * its position in the provided mapping array.
1650 *
1651 * If its userdata or FIDs, record its location in its node.
1652 */
1653
1654 lb_size = udf_rw32(ump->logical_vol->lb_size);
1655 num_lb = (buf->b_bcount + lb_size -1) / lb_size;
1656 udf_c_type = buf->b_udf_c_type;
1657
1658 KASSERT(lb_size == ump->discinfo.sector_size);
1659
1660 /* select partition to record the buffer on */
1661 vpart_num = *vpart_nump = udf_get_record_vpart(ump, udf_c_type);
1662
1663 if (udf_c_type == UDF_C_NODE) {
1664 /* if not VAT, its allready allocated */
1665 if (ump->vtop_alloc[ump->node_part] != UDF_ALLOC_VAT)
1666 return;
1667
1668 /* allocate on its backing sequential partition */
1669 vpart_num = ump->data_part;
1670 }
1671
1672 /* XXX can this still happen? */
1673 /* do allocation on the selected partition */
1674 error = udf_allocate_space(ump, udf_node, udf_c_type,
1675 vpart_num, num_lb, lmapping);
1676 if (error) {
1677 /*
1678 * ARGH! we haven't done our accounting right! it should
1679 * allways succeed.
1680 */
1681 panic("UDF disc allocation accounting gone wrong");
1682 }
1683
1684 /* If its userdata or FIDs, record its allocation in its node. */
1685 if ((udf_c_type == UDF_C_USERDATA) ||
1686 (udf_c_type == UDF_C_FIDS) ||
1687 (udf_c_type == UDF_C_METADATA_SBM))
1688 {
1689 udf_record_allocation_in_node(ump, buf, vpart_num, lmapping,
1690 node_ad_cpy);
1691 /* decrement our outstanding bufs counter */
1692 s = splbio();
1693 udf_node->outstanding_bufs--;
1694 splx(s);
1695 }
1696 }
1697
1698 /* --------------------------------------------------------------------- */
1699
1700 /*
1701 * Try to merge a1 with the new piece a2. udf_ads_merge returns error when not
1702 * possible (anymore); a2 returns the rest piece.
1703 */
1704
1705 static int
1706 udf_ads_merge(uint32_t max_len, uint32_t lb_size, struct long_ad *a1, struct long_ad *a2)
1707 {
1708 uint32_t merge_len;
1709 uint32_t a1_len, a2_len;
1710 uint32_t a1_flags, a2_flags;
1711 uint32_t a1_lbnum, a2_lbnum;
1712 uint16_t a1_part, a2_part;
1713
1714 a1_flags = UDF_EXT_FLAGS(udf_rw32(a1->len));
1715 a1_len = UDF_EXT_LEN(udf_rw32(a1->len));
1716 a1_lbnum = udf_rw32(a1->loc.lb_num);
1717 a1_part = udf_rw16(a1->loc.part_num);
1718
1719 a2_flags = UDF_EXT_FLAGS(udf_rw32(a2->len));
1720 a2_len = UDF_EXT_LEN(udf_rw32(a2->len));
1721 a2_lbnum = udf_rw32(a2->loc.lb_num);
1722 a2_part = udf_rw16(a2->loc.part_num);
1723
1724 /* defines same space */
1725 if (a1_flags != a2_flags)
1726 return 1;
1727
1728 if (a1_flags != UDF_EXT_FREE) {
1729 /* the same partition */
1730 if (a1_part != a2_part)
1731 return 1;
1732
1733 /* a2 is successor of a1 */
1734 if (a1_lbnum * lb_size + a1_len != a2_lbnum * lb_size)
1735 return 1;
1736 }
1737
1738 /* merge as most from a2 if possible */
1739 merge_len = MIN(a2_len, max_len - a1_len);
1740 a1_len += merge_len;
1741 a2_len -= merge_len;
1742 a2_lbnum += merge_len/lb_size;
1743
1744 a1->len = udf_rw32(a1_len | a1_flags);
1745 a2->len = udf_rw32(a2_len | a2_flags);
1746 a2->loc.lb_num = udf_rw32(a2_lbnum);
1747
1748 if (a2_len > 0)
1749 return 1;
1750
1751 /* there is space over to merge */
1752 return 0;
1753 }
1754
1755 /* --------------------------------------------------------------------- */
1756
1757 static void
1758 udf_wipe_adslots(struct udf_node *udf_node)
1759 {
1760 struct file_entry *fe;
1761 struct extfile_entry *efe;
1762 struct alloc_ext_entry *ext;
1763 uint32_t lb_size, dscr_size, l_ea, max_l_ad, crclen;
1764 uint8_t *data_pos;
1765 int extnr;
1766
1767 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
1768
1769 fe = udf_node->fe;
1770 efe = udf_node->efe;
1771 if (fe) {
1772 dscr_size = sizeof(struct file_entry) -1;
1773 l_ea = udf_rw32(fe->l_ea);
1774 data_pos = (uint8_t *) fe + dscr_size + l_ea;
1775 } else {
1776 dscr_size = sizeof(struct extfile_entry) -1;
1777 l_ea = udf_rw32(efe->l_ea);
1778 data_pos = (uint8_t *) efe + dscr_size + l_ea;
1779 }
1780 max_l_ad = lb_size - dscr_size - l_ea;
1781
1782 /* wipe fe/efe */
1783 memset(data_pos, 0, max_l_ad);
1784 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea;
1785 if (fe) {
1786 fe->l_ad = udf_rw32(0);
1787 fe->logblks_rec = udf_rw64(0);
1788 fe->tag.desc_crc_len = udf_rw16(crclen);
1789 } else {
1790 efe->l_ad = udf_rw32(0);
1791 efe->logblks_rec = udf_rw64(0);
1792 efe->tag.desc_crc_len = udf_rw16(crclen);
1793 }
1794
1795 /* wipe all allocation extent entries */
1796 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
1797 ext = udf_node->ext[extnr];
1798 dscr_size = sizeof(struct alloc_ext_entry) -1;
1799 data_pos = (uint8_t *) ext->data;
1800 max_l_ad = lb_size - dscr_size;
1801 memset(data_pos, 0, max_l_ad);
1802 ext->l_ad = udf_rw32(0);
1803
1804 crclen = dscr_size - UDF_DESC_TAG_LENGTH;
1805 ext->tag.desc_crc_len = udf_rw16(crclen);
1806 }
1807 udf_node->i_flags |= IN_NODE_REBUILD;
1808 }
1809
1810 /* --------------------------------------------------------------------- */
1811
1812 void
1813 udf_get_adslot(struct udf_node *udf_node, int slot, struct long_ad *icb,
1814 int *eof) {
1815 struct file_entry *fe;
1816 struct extfile_entry *efe;
1817 struct alloc_ext_entry *ext;
1818 struct icb_tag *icbtag;
1819 struct short_ad *short_ad;
1820 struct long_ad *long_ad, l_icb;
1821 uint32_t offset;
1822 uint32_t dscr_size, l_ea, l_ad, flags;
1823 uint8_t *data_pos;
1824 int icbflags, addr_type, adlen, extnr;
1825
1826 fe = udf_node->fe;
1827 efe = udf_node->efe;
1828 if (fe) {
1829 icbtag = &fe->icbtag;
1830 dscr_size = sizeof(struct file_entry) -1;
1831 l_ea = udf_rw32(fe->l_ea);
1832 l_ad = udf_rw32(fe->l_ad);
1833 data_pos = (uint8_t *) fe + dscr_size + l_ea;
1834 } else {
1835 icbtag = &efe->icbtag;
1836 dscr_size = sizeof(struct extfile_entry) -1;
1837 l_ea = udf_rw32(efe->l_ea);
1838 l_ad = udf_rw32(efe->l_ad);
1839 data_pos = (uint8_t *) efe + dscr_size + l_ea;
1840 }
1841
1842 icbflags = udf_rw16(icbtag->flags);
1843 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1844
1845 /* just in case we're called on an intern, its EOF */
1846 if (addr_type == UDF_ICB_INTERN_ALLOC) {
1847 memset(icb, 0, sizeof(struct long_ad));
1848 *eof = 1;
1849 return;
1850 }
1851
1852 adlen = 0;
1853 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1854 adlen = sizeof(struct short_ad);
1855 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
1856 adlen = sizeof(struct long_ad);
1857 }
1858
1859 /* if offset too big, we go to the allocation extensions */
1860 offset = slot * adlen;
1861 extnr = -1;
1862 while (offset >= l_ad) {
1863 /* check if our last entry is a redirect */
1864 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1865 short_ad = (struct short_ad *) (data_pos + l_ad-adlen);
1866 l_icb.len = short_ad->len;
1867 l_icb.loc.part_num = udf_node->loc.loc.part_num;
1868 l_icb.loc.lb_num = short_ad->lb_num;
1869 } else {
1870 KASSERT(addr_type == UDF_ICB_LONG_ALLOC);
1871 long_ad = (struct long_ad *) (data_pos + l_ad-adlen);
1872 l_icb = *long_ad;
1873 }
1874 flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len));
1875 if (flags != UDF_EXT_REDIRECT) {
1876 l_ad = 0; /* force EOF */
1877 break;
1878 }
1879
1880 /* advance to next extent */
1881 extnr++;
1882 if (extnr >= udf_node->num_extensions) {
1883 l_ad = 0; /* force EOF */
1884 break;
1885 }
1886 offset = offset - l_ad;
1887 ext = udf_node->ext[extnr];
1888 dscr_size = sizeof(struct alloc_ext_entry) -1;
1889 l_ad = udf_rw32(ext->l_ad);
1890 data_pos = (uint8_t *) ext + dscr_size;
1891 }
1892
1893 /* XXX l_ad == 0 should be enough to check */
1894 *eof = (offset >= l_ad) || (l_ad == 0);
1895 if (*eof) {
1896 DPRINTF(PARANOIDADWLK, ("returning EOF, extnr %d, offset %d, "
1897 "l_ad %d\n", extnr, offset, l_ad));
1898 memset(icb, 0, sizeof(struct long_ad));
1899 return;
1900 }
1901
1902 /* get the element */
1903 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1904 short_ad = (struct short_ad *) (data_pos + offset);
1905 icb->len = short_ad->len;
1906 icb->loc.part_num = udf_node->loc.loc.part_num;
1907 icb->loc.lb_num = short_ad->lb_num;
1908 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
1909 long_ad = (struct long_ad *) (data_pos + offset);
1910 *icb = *long_ad;
1911 }
1912 DPRINTF(PARANOIDADWLK, ("returning element : v %d, lb %d, len %d, "
1913 "flags %d\n", icb->loc.part_num, icb->loc.lb_num,
1914 UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len)));
1915 }
1916
1917 /* --------------------------------------------------------------------- */
1918
1919 int
1920 udf_append_adslot(struct udf_node *udf_node, int *slot, struct long_ad *icb) {
1921 struct udf_mount *ump = udf_node->ump;
1922 union dscrptr *dscr, *extdscr;
1923 struct file_entry *fe;
1924 struct extfile_entry *efe;
1925 struct alloc_ext_entry *ext;
1926 struct icb_tag *icbtag;
1927 struct short_ad *short_ad;
1928 struct long_ad *long_ad, o_icb, l_icb;
1929 uint64_t logblks_rec, *logblks_rec_p;
1930 uint64_t lmapping;
1931 uint32_t offset, rest, len, lb_num;
1932 uint32_t lb_size, dscr_size, l_ea, l_ad, *l_ad_p, max_l_ad, crclen;
1933 uint32_t flags;
1934 uint16_t vpart_num;
1935 uint8_t *data_pos;
1936 int icbflags, addr_type, adlen, extnr;
1937 int error;
1938
1939 lb_size = udf_rw32(ump->logical_vol->lb_size);
1940 vpart_num = udf_rw16(udf_node->loc.loc.part_num);
1941
1942 /* determine what descriptor we are in */
1943 fe = udf_node->fe;
1944 efe = udf_node->efe;
1945 if (fe) {
1946 icbtag = &fe->icbtag;
1947 dscr = (union dscrptr *) fe;
1948 dscr_size = sizeof(struct file_entry) -1;
1949
1950 l_ea = udf_rw32(fe->l_ea);
1951 l_ad_p = &fe->l_ad;
1952 logblks_rec_p = &fe->logblks_rec;
1953 } else {
1954 icbtag = &efe->icbtag;
1955 dscr = (union dscrptr *) efe;
1956 dscr_size = sizeof(struct extfile_entry) -1;
1957
1958 l_ea = udf_rw32(efe->l_ea);
1959 l_ad_p = &efe->l_ad;
1960 logblks_rec_p = &efe->logblks_rec;
1961 }
1962 data_pos = (uint8_t *) dscr + dscr_size + l_ea;
1963 max_l_ad = lb_size - dscr_size - l_ea;
1964
1965 icbflags = udf_rw16(icbtag->flags);
1966 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1967
1968 /* just in case we're called on an intern, its EOF */
1969 if (addr_type == UDF_ICB_INTERN_ALLOC) {
1970 panic("udf_append_adslot on UDF_ICB_INTERN_ALLOC\n");
1971 }
1972
1973 adlen = 0;
1974 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1975 adlen = sizeof(struct short_ad);
1976 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
1977 adlen = sizeof(struct long_ad);
1978 }
1979
1980 /* clean up given long_ad since it can be a synthesized one */
1981 flags = UDF_EXT_FLAGS(udf_rw32(icb->len));
1982 if (flags == UDF_EXT_FREE) {
1983 icb->loc.part_num = udf_rw16(0);
1984 icb->loc.lb_num = udf_rw32(0);
1985 }
1986
1987 /* if offset too big, we go to the allocation extensions */
1988 l_ad = udf_rw32(*l_ad_p);
1989 offset = (*slot) * adlen;
1990 extnr = -1;
1991 while (offset >= l_ad) {
1992 /* check if our last entry is a redirect */
1993 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1994 short_ad = (struct short_ad *) (data_pos + l_ad-adlen);
1995 l_icb.len = short_ad->len;
1996 l_icb.loc.part_num = udf_node->loc.loc.part_num;
1997 l_icb.loc.lb_num = short_ad->lb_num;
1998 } else {
1999 KASSERT(addr_type == UDF_ICB_LONG_ALLOC);
2000 long_ad = (struct long_ad *) (data_pos + l_ad-adlen);
2001 l_icb = *long_ad;
2002 }
2003 flags = UDF_EXT_FLAGS(udf_rw32(l_icb.len));
2004 if (flags != UDF_EXT_REDIRECT) {
2005 /* only one past the last one is adressable */
2006 break;
2007 }
2008
2009 /* advance to next extent */
2010 extnr++;
2011 KASSERT(extnr < udf_node->num_extensions);
2012 offset = offset - l_ad;
2013
2014 ext = udf_node->ext[extnr];
2015 dscr = (union dscrptr *) ext;
2016 dscr_size = sizeof(struct alloc_ext_entry) -1;
2017 max_l_ad = lb_size - dscr_size;
2018 l_ad_p = &ext->l_ad;
2019 l_ad = udf_rw32(*l_ad_p);
2020 data_pos = (uint8_t *) ext + dscr_size;
2021 }
2022 DPRINTF(PARANOIDADWLK, ("append, ext %d, offset %d, l_ad %d\n",
2023 extnr, offset, udf_rw32(*l_ad_p)));
2024 KASSERT(l_ad == udf_rw32(*l_ad_p));
2025
2026 /* offset is offset within the current (E)FE/AED */
2027 l_ad = udf_rw32(*l_ad_p);
2028 crclen = udf_rw16(dscr->tag.desc_crc_len);
2029 logblks_rec = udf_rw64(*logblks_rec_p);
2030
2031 /* overwriting old piece? */
2032 if (offset < l_ad) {
2033 /* overwrite entry; compensate for the old element */
2034 if (addr_type == UDF_ICB_SHORT_ALLOC) {
2035 short_ad = (struct short_ad *) (data_pos + offset);
2036 o_icb.len = short_ad->len;
2037 o_icb.loc.part_num = udf_rw16(0); /* ignore */
2038 o_icb.loc.lb_num = short_ad->lb_num;
2039 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
2040 long_ad = (struct long_ad *) (data_pos + offset);
2041 o_icb = *long_ad;
2042 } else {
2043 panic("Invalid address type in udf_append_adslot\n");
2044 }
2045
2046 len = udf_rw32(o_icb.len);
2047 if (UDF_EXT_FLAGS(len) == UDF_EXT_ALLOCATED) {
2048 /* adjust counts */
2049 len = UDF_EXT_LEN(len);
2050 logblks_rec -= (len + lb_size -1) / lb_size;
2051 }
2052 }
2053
2054 /* check if we're not appending a redirection */
2055 flags = UDF_EXT_FLAGS(udf_rw32(icb->len));
2056 KASSERT(flags != UDF_EXT_REDIRECT);
2057
2058 /* round down available space */
2059 rest = adlen * ((max_l_ad - offset) / adlen);
2060 if (rest <= adlen) {
2061 /* have to append aed, see if we already have a spare one */
2062 extnr++;
2063 ext = udf_node->ext[extnr];
2064 l_icb = udf_node->ext_loc[extnr];
2065 if (ext == NULL) {
2066 DPRINTF(ALLOC,("adding allocation extent %d\n", extnr));
2067
2068 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
2069 vpart_num, 1, /* can fail */ false);
2070 if (error) {
2071 printf("UDF: couldn't reserve space for AED!\n");
2072 return error;
2073 }
2074 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
2075 vpart_num, 1, &lmapping);
2076 lb_num = lmapping;
2077 if (error)
2078 panic("UDF: couldn't allocate AED!\n");
2079
2080 /* initialise pointer to location */
2081 memset(&l_icb, 0, sizeof(struct long_ad));
2082 l_icb.len = udf_rw32(lb_size | UDF_EXT_REDIRECT);
2083 l_icb.loc.lb_num = udf_rw32(lb_num);
2084 l_icb.loc.part_num = udf_rw16(vpart_num);
2085
2086 /* create new aed descriptor */
2087 udf_create_logvol_dscr(ump, udf_node, &l_icb, &extdscr);
2088 ext = &extdscr->aee;
2089
2090 udf_inittag(ump, &ext->tag, TAGID_ALLOCEXTENT, lb_num);
2091 dscr_size = sizeof(struct alloc_ext_entry) -1;
2092 max_l_ad = lb_size - dscr_size;
2093 memset(ext->data, 0, max_l_ad);
2094 ext->l_ad = udf_rw32(0);
2095 ext->tag.desc_crc_len =
2096 udf_rw16(dscr_size - UDF_DESC_TAG_LENGTH);
2097
2098 /* declare aed */
2099 udf_node->num_extensions++;
2100 udf_node->ext_loc[extnr] = l_icb;
2101 udf_node->ext[extnr] = ext;
2102 }
2103 /* add redirect and adjust l_ad and crclen for old descr */
2104 if (addr_type == UDF_ICB_SHORT_ALLOC) {
2105 short_ad = (struct short_ad *) (data_pos + offset);
2106 short_ad->len = l_icb.len;
2107 short_ad->lb_num = l_icb.loc.lb_num;
2108 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
2109 long_ad = (struct long_ad *) (data_pos + offset);
2110 *long_ad = l_icb;
2111 }
2112 l_ad += adlen;
2113 crclen += adlen;
2114 dscr->tag.desc_crc_len = udf_rw16(crclen);
2115 *l_ad_p = udf_rw32(l_ad);
2116
2117 /* advance to the new extension */
2118 KASSERT(ext != NULL);
2119 dscr = (union dscrptr *) ext;
2120 dscr_size = sizeof(struct alloc_ext_entry) -1;
2121 max_l_ad = lb_size - dscr_size;
2122 data_pos = (uint8_t *) dscr + dscr_size;
2123
2124 l_ad_p = &ext->l_ad;
2125 l_ad = udf_rw32(*l_ad_p);
2126 crclen = udf_rw16(dscr->tag.desc_crc_len);
2127 offset = 0;
2128
2129 /* adjust callees slot count for link insert */
2130 *slot += 1;
2131 }
2132
2133 /* write out the element */
2134 DPRINTF(PARANOIDADWLK, ("adding element : %p : v %d, lb %d, "
2135 "len %d, flags %d\n", data_pos + offset,
2136 icb->loc.part_num, icb->loc.lb_num,
2137 UDF_EXT_LEN(icb->len), UDF_EXT_FLAGS(icb->len)));
2138 if (addr_type == UDF_ICB_SHORT_ALLOC) {
2139 short_ad = (struct short_ad *) (data_pos + offset);
2140 short_ad->len = icb->len;
2141 short_ad->lb_num = icb->loc.lb_num;
2142 } else if (addr_type == UDF_ICB_LONG_ALLOC) {
2143 long_ad = (struct long_ad *) (data_pos + offset);
2144 *long_ad = *icb;
2145 }
2146
2147 /* adjust logblks recorded count */
2148 len = udf_rw32(icb->len);
2149 flags = UDF_EXT_FLAGS(len);
2150 if (flags == UDF_EXT_ALLOCATED)
2151 logblks_rec += (UDF_EXT_LEN(len) + lb_size -1) / lb_size;
2152 *logblks_rec_p = udf_rw64(logblks_rec);
2153
2154 /* adjust l_ad and crclen when needed */
2155 if (offset >= l_ad) {
2156 l_ad += adlen;
2157 crclen += adlen;
2158 dscr->tag.desc_crc_len = udf_rw16(crclen);
2159 *l_ad_p = udf_rw32(l_ad);
2160 }
2161
2162 return 0;
2163 }
2164
2165 /* --------------------------------------------------------------------- */
2166
2167 static void
2168 udf_count_alloc_exts(struct udf_node *udf_node)
2169 {
2170 struct long_ad s_ad;
2171 uint32_t lb_num, len, flags;
2172 uint16_t vpart_num;
2173 int slot, eof;
2174 int num_extents, extnr;
2175
2176 if (udf_node->num_extensions == 0)
2177 return;
2178
2179 /* count number of allocation extents in use */
2180 num_extents = 0;
2181 slot = 0;
2182 for (;;) {
2183 udf_get_adslot(udf_node, slot, &s_ad, &eof);
2184 if (eof)
2185 break;
2186 len = udf_rw32(s_ad.len);
2187 flags = UDF_EXT_FLAGS(len);
2188
2189 if (flags == UDF_EXT_REDIRECT)
2190 num_extents++;
2191
2192 slot++;
2193 }
2194
2195 DPRINTF(ALLOC, ("udf_count_alloc_ext counted %d live extents\n",
2196 num_extents));
2197
2198 /* XXX choice: we could delay freeing them on node writeout */
2199 /* free excess entries */
2200 extnr = num_extents;
2201 for (;extnr < udf_node->num_extensions; extnr++) {
2202 DPRINTF(ALLOC, ("freeing alloc ext %d\n", extnr));
2203 /* free dscriptor */
2204 s_ad = udf_node->ext_loc[extnr];
2205 udf_free_logvol_dscr(udf_node->ump, &s_ad,
2206 udf_node->ext[extnr]);
2207 udf_node->ext[extnr] = NULL;
2208
2209 /* free disc space */
2210 lb_num = udf_rw32(s_ad.loc.lb_num);
2211 vpart_num = udf_rw16(s_ad.loc.part_num);
2212 udf_free_allocated_space(udf_node->ump, lb_num, vpart_num, 1);
2213
2214 memset(&udf_node->ext_loc[extnr], 0, sizeof(struct long_ad));
2215 }
2216
2217 /* set our new number of allocation extents */
2218 udf_node->num_extensions = num_extents;
2219 }
2220
2221
2222 /* --------------------------------------------------------------------- */
2223
2224 /*
2225 * Adjust the node's allocation descriptors to reflect the new mapping; do
2226 * take note that we might glue to existing allocation descriptors.
2227 *
2228 * XXX Note there can only be one allocation being recorded/mount; maybe
2229 * explicit allocation in shedule thread?
2230 */
2231
2232 static void
2233 udf_record_allocation_in_node(struct udf_mount *ump, struct buf *buf,
2234 uint16_t vpart_num, uint64_t *mapping, struct long_ad *node_ad_cpy)
2235 {
2236 struct vnode *vp = buf->b_vp;
2237 struct udf_node *udf_node = VTOI(vp);
2238 struct file_entry *fe;
2239 struct extfile_entry *efe;
2240 struct icb_tag *icbtag;
2241 struct long_ad s_ad, c_ad;
2242 uint64_t inflen, from, till;
2243 uint64_t foffset, end_foffset, restart_foffset;
2244 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
2245 uint32_t max_len;
2246 uint32_t num_lb, len, flags, lb_num;
2247 uint32_t run_start;
2248 uint32_t slot_offset, replace_len, replace;
2249 int addr_type, icbflags;
2250 // int udf_c_type = buf->b_udf_c_type;
2251 int lb_size, run_length, eof;
2252 int slot, cpy_slot, cpy_slots, restart_slot;
2253 int error;
2254
2255 DPRINTF(ALLOC, ("udf_record_allocation_in_node\n"));
2256
2257 #if 0
2258 /* XXX disable sanity check for now */
2259 /* sanity check ... should be panic ? */
2260 if ((udf_c_type != UDF_C_USERDATA) && (udf_c_type != UDF_C_FIDS))
2261 return;
2262 #endif
2263
2264 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
2265 max_len = ((UDF_EXT_MAXLEN / lb_size) * lb_size);
2266
2267 /* do the job */
2268 UDF_LOCK_NODE(udf_node, 0); /* XXX can deadlock ? */
2269 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
2270
2271 fe = udf_node->fe;
2272 efe = udf_node->efe;
2273 if (fe) {
2274 icbtag = &fe->icbtag;
2275 inflen = udf_rw64(fe->inf_len);
2276 } else {
2277 icbtag = &efe->icbtag;
2278 inflen = udf_rw64(efe->inf_len);
2279 }
2280
2281 /* do check if `till' is not past file information length */
2282 from = buf->b_lblkno * lb_size;
2283 till = MIN(inflen, from + buf->b_resid);
2284
2285 num_lb = (till - from + lb_size -1) / lb_size;
2286
2287 DPRINTF(ALLOC, ("record allocation from %"PRIu64" + %d\n", from, buf->b_bcount));
2288
2289 icbflags = udf_rw16(icbtag->flags);
2290 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2291
2292 if (addr_type == UDF_ICB_INTERN_ALLOC) {
2293 /* nothing to do */
2294 /* XXX clean up rest of node? just in case? */
2295 UDF_UNLOCK_NODE(udf_node, 0);
2296 return;
2297 }
2298
2299 slot = 0;
2300 cpy_slot = 0;
2301 foffset = 0;
2302
2303 /* 1) copy till first overlap piece to the rewrite buffer */
2304 for (;;) {
2305 udf_get_adslot(udf_node, slot, &s_ad, &eof);
2306 if (eof) {
2307 DPRINTF(WRITE,
2308 ("Record allocation in node "
2309 "failed: encountered EOF\n"));
2310 UDF_UNLOCK_NODE(udf_node, 0);
2311 buf->b_error = EINVAL;
2312 return;
2313 }
2314 len = udf_rw32(s_ad.len);
2315 flags = UDF_EXT_FLAGS(len);
2316 len = UDF_EXT_LEN(len);
2317
2318 if (flags == UDF_EXT_REDIRECT) {
2319 slot++;
2320 continue;
2321 }
2322
2323 end_foffset = foffset + len;
2324 if (end_foffset > from)
2325 break; /* found */
2326
2327 node_ad_cpy[cpy_slot++] = s_ad;
2328
2329 DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d "
2330 "-> stack\n",
2331 udf_rw16(s_ad.loc.part_num),
2332 udf_rw32(s_ad.loc.lb_num),
2333 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2334 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2335
2336 foffset = end_foffset;
2337 slot++;
2338 }
2339 restart_slot = slot;
2340 restart_foffset = foffset;
2341
2342 /* 2) trunc overlapping slot at overlap and copy it */
2343 slot_offset = from - foffset;
2344 if (slot_offset > 0) {
2345 DPRINTF(ALLOC, ("\tslot_offset = %d, flags = %d (%d)\n",
2346 slot_offset, flags >> 30, flags));
2347
2348 s_ad.len = udf_rw32(slot_offset | flags);
2349 node_ad_cpy[cpy_slot++] = s_ad;
2350
2351 DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d "
2352 "-> stack\n",
2353 udf_rw16(s_ad.loc.part_num),
2354 udf_rw32(s_ad.loc.lb_num),
2355 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2356 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2357 }
2358 foffset += slot_offset;
2359
2360 /* 3) insert new mappings */
2361 memset(&s_ad, 0, sizeof(struct long_ad));
2362 lb_num = 0;
2363 for (lb_num = 0; lb_num < num_lb; lb_num++) {
2364 run_start = mapping[lb_num];
2365 run_length = 1;
2366 while (lb_num < num_lb-1) {
2367 if (mapping[lb_num+1] != mapping[lb_num]+1)
2368 if (mapping[lb_num+1] != mapping[lb_num])
2369 break;
2370 run_length++;
2371 lb_num++;
2372 }
2373 /* insert slot for this mapping */
2374 len = run_length * lb_size;
2375
2376 /* bounds checking */
2377 if (foffset + len > till)
2378 len = till - foffset;
2379 KASSERT(foffset + len <= inflen);
2380
2381 s_ad.len = udf_rw32(len | UDF_EXT_ALLOCATED);
2382 s_ad.loc.part_num = udf_rw16(vpart_num);
2383 s_ad.loc.lb_num = udf_rw32(run_start);
2384
2385 foffset += len;
2386
2387 /* paranoia */
2388 if (len == 0) {
2389 DPRINTF(WRITE,
2390 ("Record allocation in node "
2391 "failed: insert failed\n"));
2392 UDF_UNLOCK_NODE(udf_node, 0);
2393 buf->b_error = EINVAL;
2394 return;
2395 }
2396 node_ad_cpy[cpy_slot++] = s_ad;
2397
2398 DPRINTF(ALLOC, ("\t3: insert new mapping vp %d lb %d, len %d, "
2399 "flags %d -> stack\n",
2400 udf_rw16(s_ad.loc.part_num), udf_rw32(s_ad.loc.lb_num),
2401 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2402 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2403 }
2404
2405 /* 4) pop replaced length */
2406 slot = restart_slot;
2407 foffset = restart_foffset;
2408
2409 replace_len = till - foffset; /* total amount of bytes to pop */
2410 slot_offset = from - foffset; /* offset in first encounted slot */
2411 KASSERT((slot_offset % lb_size) == 0);
2412
2413 for (;;) {
2414 udf_get_adslot(udf_node, slot, &s_ad, &eof);
2415 if (eof)
2416 break;
2417
2418 len = udf_rw32(s_ad.len);
2419 flags = UDF_EXT_FLAGS(len);
2420 len = UDF_EXT_LEN(len);
2421 lb_num = udf_rw32(s_ad.loc.lb_num);
2422
2423 if (flags == UDF_EXT_REDIRECT) {
2424 slot++;
2425 continue;
2426 }
2427
2428 DPRINTF(ALLOC, ("\t4i: got slot %d, slot_offset %d, "
2429 "replace_len %d, "
2430 "vp %d, lb %d, len %d, flags %d\n",
2431 slot, slot_offset, replace_len,
2432 udf_rw16(s_ad.loc.part_num),
2433 udf_rw32(s_ad.loc.lb_num),
2434 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2435 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2436
2437 /* adjust for slot offset */
2438 if (slot_offset) {
2439 DPRINTF(ALLOC, ("\t4s: skipping %d\n", slot_offset));
2440 lb_num += slot_offset / lb_size;
2441 len -= slot_offset;
2442 foffset += slot_offset;
2443 replace_len -= slot_offset;
2444
2445 /* mark adjusted */
2446 slot_offset = 0;
2447 }
2448
2449 /* advance for (the rest of) this slot */
2450 replace = MIN(len, replace_len);
2451 DPRINTF(ALLOC, ("\t4d: replacing %d\n", replace));
2452
2453 /* advance for this slot */
2454 if (replace) {
2455 /* note: dont round DOWN on num_lb since we then
2456 * forget the last partial one */
2457 num_lb = (replace + lb_size - 1) / lb_size;
2458 if (flags != UDF_EXT_FREE) {
2459 udf_free_allocated_space(ump, lb_num,
2460 udf_rw16(s_ad.loc.part_num), num_lb);
2461 }
2462 lb_num += num_lb;
2463 len -= replace;
2464 foffset += replace;
2465 replace_len -= replace;
2466 }
2467
2468 /* do we have a slot tail ? */
2469 if (len) {
2470 KASSERT(foffset % lb_size == 0);
2471
2472 /* we arrived at our point, push remainder */
2473 s_ad.len = udf_rw32(len | flags);
2474 s_ad.loc.lb_num = udf_rw32(lb_num);
2475 if (flags == UDF_EXT_FREE)
2476 s_ad.loc.lb_num = udf_rw32(0);
2477 node_ad_cpy[cpy_slot++] = s_ad;
2478 foffset += len;
2479 slot++;
2480
2481 DPRINTF(ALLOC, ("\t4: vp %d, lb %d, len %d, flags %d "
2482 "-> stack\n",
2483 udf_rw16(s_ad.loc.part_num),
2484 udf_rw32(s_ad.loc.lb_num),
2485 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2486 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2487 break;
2488 }
2489
2490 slot++;
2491 }
2492
2493 /* 5) copy remainder */
2494 for (;;) {
2495 udf_get_adslot(udf_node, slot, &s_ad, &eof);
2496 if (eof)
2497 break;
2498
2499 len = udf_rw32(s_ad.len);
2500 flags = UDF_EXT_FLAGS(len);
2501 len = UDF_EXT_LEN(len);
2502
2503 if (flags == UDF_EXT_REDIRECT) {
2504 slot++;
2505 continue;
2506 }
2507
2508 node_ad_cpy[cpy_slot++] = s_ad;
2509
2510 DPRINTF(ALLOC, ("\t5: insert new mapping "
2511 "vp %d lb %d, len %d, flags %d "
2512 "-> stack\n",
2513 udf_rw16(s_ad.loc.part_num),
2514 udf_rw32(s_ad.loc.lb_num),
2515 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2516 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2517
2518 slot++;
2519 }
2520
2521 /* 6) reset node descriptors */
2522 udf_wipe_adslots(udf_node);
2523
2524 /* 7) copy back extents; merge when possible. Recounting on the fly */
2525 cpy_slots = cpy_slot;
2526
2527 c_ad = node_ad_cpy[0];
2528 slot = 0;
2529 DPRINTF(ALLOC, ("\t7s: stack -> got mapping vp %d "
2530 "lb %d, len %d, flags %d\n",
2531 udf_rw16(c_ad.loc.part_num),
2532 udf_rw32(c_ad.loc.lb_num),
2533 UDF_EXT_LEN(udf_rw32(c_ad.len)),
2534 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
2535
2536 for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) {
2537 s_ad = node_ad_cpy[cpy_slot];
2538
2539 DPRINTF(ALLOC, ("\t7i: stack -> got mapping vp %d "
2540 "lb %d, len %d, flags %d\n",
2541 udf_rw16(s_ad.loc.part_num),
2542 udf_rw32(s_ad.loc.lb_num),
2543 UDF_EXT_LEN(udf_rw32(s_ad.len)),
2544 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
2545
2546 /* see if we can merge */
2547 if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
2548 /* not mergable (anymore) */
2549 DPRINTF(ALLOC, ("\t7: appending vp %d lb %d, "
2550 "len %d, flags %d\n",
2551 udf_rw16(c_ad.loc.part_num),
2552 udf_rw32(c_ad.loc.lb_num),
2553 UDF_EXT_LEN(udf_rw32(c_ad.len)),
2554 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
2555
2556 error = udf_append_adslot(udf_node, &slot, &c_ad);
2557 if (error) {
2558 buf->b_error = error;
2559 goto out;
2560 }
2561 c_ad = s_ad;
2562 slot++;
2563 }
2564 }
2565
2566 /* 8) push rest slot (if any) */
2567 if (UDF_EXT_LEN(c_ad.len) > 0) {
2568 DPRINTF(ALLOC, ("\t8: last append vp %d lb %d, "
2569 "len %d, flags %d\n",
2570 udf_rw16(c_ad.loc.part_num),
2571 udf_rw32(c_ad.loc.lb_num),
2572 UDF_EXT_LEN(udf_rw32(c_ad.len)),
2573 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
2574
2575 error = udf_append_adslot(udf_node, &slot, &c_ad);
2576 if (error) {
2577 buf->b_error = error;
2578 goto out;
2579 }
2580 }
2581
2582 out:
2583 udf_count_alloc_exts(udf_node);
2584
2585 /* the node's descriptors should now be sane */
2586 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
2587 UDF_UNLOCK_NODE(udf_node, 0);
2588
2589 KASSERT(orig_inflen == new_inflen);
2590 KASSERT(new_lbrec >= orig_lbrec);
2591
2592 return;
2593 }
2594
2595 /* --------------------------------------------------------------------- */
2596
2597 int
2598 udf_grow_node(struct udf_node *udf_node, uint64_t new_size)
2599 {
2600 struct vnode *vp = udf_node->vnode;
2601 struct udf_mount *ump = udf_node->ump;
2602 struct file_entry *fe;
2603 struct extfile_entry *efe;
2604 struct icb_tag *icbtag;
2605 struct long_ad c_ad, s_ad;
2606 uint64_t size_diff, old_size, inflen, objsize, chunk, append_len;
2607 uint64_t foffset, end_foffset;
2608 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
2609 uint32_t lb_size, unit_size, dscr_size, crclen, lastblock_grow;
2610 uint32_t icbflags, len, flags, max_len;
2611 uint32_t max_l_ad, l_ad, l_ea;
2612 uint16_t my_part, dst_part;
2613 uint8_t *evacuated_data;
2614 int addr_type;
2615 int slot;
2616 int eof, error;
2617
2618 DPRINTF(ALLOC, ("udf_grow_node\n"));
2619
2620 UDF_LOCK_NODE(udf_node, 0);
2621 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
2622
2623 lb_size = udf_rw32(ump->logical_vol->lb_size);
2624
2625 /* max_len in unit's IFF its a metadata node or metadata mirror node */
2626 unit_size = lb_size;
2627 if ((udf_node == ump->metadata_node) || (udf_node == ump->metadatamirror_node))
2628 unit_size = ump->metadata_alloc_unit_size * lb_size;
2629 max_len = ((UDF_EXT_MAXLEN / unit_size) * unit_size);
2630
2631 fe = udf_node->fe;
2632 efe = udf_node->efe;
2633 if (fe) {
2634 icbtag = &fe->icbtag;
2635 inflen = udf_rw64(fe->inf_len);
2636 objsize = inflen;
2637 dscr_size = sizeof(struct file_entry) -1;
2638 l_ea = udf_rw32(fe->l_ea);
2639 l_ad = udf_rw32(fe->l_ad);
2640 } else {
2641 icbtag = &efe->icbtag;
2642 inflen = udf_rw64(efe->inf_len);
2643 objsize = udf_rw64(efe->obj_size);
2644 dscr_size = sizeof(struct extfile_entry) -1;
2645 l_ea = udf_rw32(efe->l_ea);
2646 l_ad = udf_rw32(efe->l_ad);
2647 }
2648 max_l_ad = lb_size - dscr_size - l_ea;
2649
2650 icbflags = udf_rw16(icbtag->flags);
2651 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2652
2653 old_size = inflen;
2654 size_diff = new_size - old_size;
2655
2656 DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size));
2657
2658 evacuated_data = NULL;
2659 if (addr_type == UDF_ICB_INTERN_ALLOC) {
2660 if (l_ad + size_diff <= max_l_ad) {
2661 /* only reflect size change directly in the node */
2662 inflen += size_diff;
2663 objsize += size_diff;
2664 l_ad += size_diff;
2665 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
2666 if (fe) {
2667 fe->inf_len = udf_rw64(inflen);
2668 fe->l_ad = udf_rw32(l_ad);
2669 fe->tag.desc_crc_len = udf_rw16(crclen);
2670 } else {
2671 efe->inf_len = udf_rw64(inflen);
2672 efe->obj_size = udf_rw64(objsize);
2673 efe->l_ad = udf_rw32(l_ad);
2674 efe->tag.desc_crc_len = udf_rw16(crclen);
2675 }
2676 error = 0;
2677
2678 /* set new size for uvm */
2679 uvm_vnp_setwritesize(vp, new_size);
2680 uvm_vnp_setsize(vp, new_size);
2681
2682 #if 0
2683 /* zero append space in buffer */
2684 ubc_zerorange(&vp->v_uobj, old_size,
2685 new_size - old_size, UBC_UNMAP_FLAG(vp));
2686 #endif
2687
2688 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
2689
2690 /* unlock */
2691 UDF_UNLOCK_NODE(udf_node, 0);
2692
2693 KASSERT(new_inflen == orig_inflen + size_diff);
2694 KASSERT(new_lbrec == orig_lbrec);
2695 KASSERT(new_lbrec == 0);
2696 return 0;
2697 }
2698
2699 DPRINTF(ALLOC, ("\tCONVERT from internal\n"));
2700
2701 if (old_size > 0) {
2702 /* allocate some space and copy in the stuff to keep */
2703 evacuated_data = malloc(lb_size, M_UDFTEMP, M_WAITOK);
2704 memset(evacuated_data, 0, lb_size);
2705
2706 /* node is locked, so safe to exit mutex */
2707 UDF_UNLOCK_NODE(udf_node, 0);
2708
2709 /* read in using the `normal' vn_rdwr() */
2710 error = vn_rdwr(UIO_READ, udf_node->vnode,
2711 evacuated_data, old_size, 0,
2712 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
2713 FSCRED, NULL, NULL);
2714
2715 /* enter again */
2716 UDF_LOCK_NODE(udf_node, 0);
2717 }
2718
2719 /* convert to a normal alloc and select type */
2720 my_part = udf_rw16(udf_node->loc.loc.part_num);
2721 dst_part = udf_get_record_vpart(ump, udf_get_c_type(udf_node));
2722 addr_type = UDF_ICB_SHORT_ALLOC;
2723 if (dst_part != my_part)
2724 addr_type = UDF_ICB_LONG_ALLOC;
2725
2726 icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2727 icbflags |= addr_type;
2728 icbtag->flags = udf_rw16(icbflags);
2729
2730 /* wipe old descriptor space */
2731 udf_wipe_adslots(udf_node);
2732
2733 memset(&c_ad, 0, sizeof(struct long_ad));
2734 c_ad.len = udf_rw32(old_size | UDF_EXT_FREE);
2735 c_ad.loc.part_num = udf_rw16(0); /* not relevant */
2736 c_ad.loc.lb_num = udf_rw32(0); /* not relevant */
2737
2738 slot = 0;
2739 } else {
2740 /* goto the last entry (if any) */
2741 slot = 0;
2742 foffset = 0;
2743 memset(&c_ad, 0, sizeof(struct long_ad));
2744 for (;;) {
2745 udf_get_adslot(udf_node, slot, &c_ad, &eof);
2746 if (eof)
2747 break;
2748
2749 len = udf_rw32(c_ad.len);
2750 flags = UDF_EXT_FLAGS(len);
2751 len = UDF_EXT_LEN(len);
2752
2753 end_foffset = foffset + len;
2754 if (flags != UDF_EXT_REDIRECT)
2755 foffset = end_foffset;
2756
2757 slot++;
2758 }
2759 /* at end of adslots */
2760
2761 /* special case if the old size was zero, then there is no last slot */
2762 if (old_size == 0) {
2763 c_ad.len = udf_rw32(0 | UDF_EXT_FREE);
2764 c_ad.loc.part_num = udf_rw16(0); /* not relevant */
2765 c_ad.loc.lb_num = udf_rw32(0); /* not relevant */
2766 } else {
2767 /* refetch last slot */
2768 slot--;
2769 udf_get_adslot(udf_node, slot, &c_ad, &eof);
2770 }
2771 }
2772
2773 /*
2774 * If the length of the last slot is not a multiple of lb_size, adjust
2775 * length so that it is; don't forget to adjust `append_len'! relevant for
2776 * extending existing files
2777 */
2778 len = udf_rw32(c_ad.len);
2779 flags = UDF_EXT_FLAGS(len);
2780 len = UDF_EXT_LEN(len);
2781
2782 lastblock_grow = 0;
2783 if (len % lb_size > 0) {
2784 lastblock_grow = lb_size - (len % lb_size);
2785 lastblock_grow = MIN(size_diff, lastblock_grow);
2786 len += lastblock_grow;
2787 c_ad.len = udf_rw32(len | flags);
2788
2789 /* TODO zero appened space in buffer! */
2790 /* using ubc_zerorange(&vp->v_uobj, old_size, */
2791 /* new_size - old_size, UBC_UNMAP_FLAG(vp)); ? */
2792 }
2793 memset(&s_ad, 0, sizeof(struct long_ad));
2794
2795 /* size_diff can be bigger than allowed, so grow in chunks */
2796 append_len = size_diff - lastblock_grow;
2797 while (append_len > 0) {
2798 chunk = MIN(append_len, max_len);
2799 s_ad.len = udf_rw32(chunk | UDF_EXT_FREE);
2800 s_ad.loc.part_num = udf_rw16(0);
2801 s_ad.loc.lb_num = udf_rw32(0);
2802
2803 if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
2804 /* not mergable (anymore) */
2805 error = udf_append_adslot(udf_node, &slot, &c_ad);
2806 if (error)
2807 goto errorout;
2808 slot++;
2809 c_ad = s_ad;
2810 memset(&s_ad, 0, sizeof(struct long_ad));
2811 }
2812 append_len -= chunk;
2813 }
2814
2815 /* if there is a rest piece in the accumulator, append it */
2816 if (UDF_EXT_LEN(udf_rw32(c_ad.len)) > 0) {
2817 error = udf_append_adslot(udf_node, &slot, &c_ad);
2818 if (error)
2819 goto errorout;
2820 slot++;
2821 }
2822
2823 /* if there is a rest piece that didn't fit, append it */
2824 if (UDF_EXT_LEN(udf_rw32(s_ad.len)) > 0) {
2825 error = udf_append_adslot(udf_node, &slot, &s_ad);
2826 if (error)
2827 goto errorout;
2828 slot++;
2829 }
2830
2831 inflen += size_diff;
2832 objsize += size_diff;
2833 if (fe) {
2834 fe->inf_len = udf_rw64(inflen);
2835 } else {
2836 efe->inf_len = udf_rw64(inflen);
2837 efe->obj_size = udf_rw64(objsize);
2838 }
2839 error = 0;
2840
2841 if (evacuated_data) {
2842 /* set new write size for uvm */
2843 uvm_vnp_setwritesize(vp, old_size);
2844
2845 /* write out evacuated data */
2846 error = vn_rdwr(UIO_WRITE, udf_node->vnode,
2847 evacuated_data, old_size, 0,
2848 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
2849 FSCRED, NULL, NULL);
2850 uvm_vnp_setsize(vp, old_size);
2851 }
2852
2853 errorout:
2854 if (evacuated_data)
2855 free(evacuated_data, M_UDFTEMP);
2856
2857 udf_count_alloc_exts(udf_node);
2858
2859 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
2860 UDF_UNLOCK_NODE(udf_node, 0);
2861
2862 KASSERT(new_inflen == orig_inflen + size_diff);
2863 KASSERT(new_lbrec == orig_lbrec);
2864
2865 return error;
2866 }
2867
2868 /* --------------------------------------------------------------------- */
2869
2870 int
2871 udf_shrink_node(struct udf_node *udf_node, uint64_t new_size)
2872 {
2873 struct vnode *vp = udf_node->vnode;
2874 struct udf_mount *ump = udf_node->ump;
2875 struct file_entry *fe;
2876 struct extfile_entry *efe;
2877 struct icb_tag *icbtag;
2878 struct long_ad c_ad, s_ad, *node_ad_cpy;
2879 uint64_t size_diff, old_size, inflen, objsize;
2880 uint64_t foffset, end_foffset;
2881 uint64_t orig_inflen, orig_lbrec, new_inflen, new_lbrec;
2882 uint32_t lb_size, unit_size, dscr_size, crclen;
2883 uint32_t slot_offset, slot_offset_lb;
2884 uint32_t len, flags, max_len;
2885 uint32_t num_lb, lb_num;
2886 uint32_t max_l_ad, l_ad, l_ea;
2887 uint16_t vpart_num;
2888 uint8_t *data_pos;
2889 int icbflags, addr_type;
2890 int slot, cpy_slot, cpy_slots;
2891 int eof, error;
2892
2893 DPRINTF(ALLOC, ("udf_shrink_node\n"));
2894
2895 UDF_LOCK_NODE(udf_node, 0);
2896 udf_node_sanity_check(udf_node, &orig_inflen, &orig_lbrec);
2897
2898 lb_size = udf_rw32(ump->logical_vol->lb_size);
2899
2900 /* max_len in unit's IFF its a metadata node or metadata mirror node */
2901 unit_size = lb_size;
2902 if ((udf_node == ump->metadata_node) || (udf_node == ump->metadatamirror_node))
2903 unit_size = ump->metadata_alloc_unit_size * lb_size;
2904 max_len = ((UDF_EXT_MAXLEN / unit_size) * unit_size);
2905
2906 /* do the work */
2907 fe = udf_node->fe;
2908 efe = udf_node->efe;
2909 if (fe) {
2910 icbtag = &fe->icbtag;
2911 inflen = udf_rw64(fe->inf_len);
2912 objsize = inflen;
2913 dscr_size = sizeof(struct file_entry) -1;
2914 l_ea = udf_rw32(fe->l_ea);
2915 l_ad = udf_rw32(fe->l_ad);
2916 data_pos = (uint8_t *) fe + dscr_size + l_ea;
2917 } else {
2918 icbtag = &efe->icbtag;
2919 inflen = udf_rw64(efe->inf_len);
2920 objsize = udf_rw64(efe->obj_size);
2921 dscr_size = sizeof(struct extfile_entry) -1;
2922 l_ea = udf_rw32(efe->l_ea);
2923 l_ad = udf_rw32(efe->l_ad);
2924 data_pos = (uint8_t *) efe + dscr_size + l_ea;
2925 }
2926 max_l_ad = lb_size - dscr_size - l_ea;
2927
2928 icbflags = udf_rw16(icbtag->flags);
2929 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2930
2931 old_size = inflen;
2932 size_diff = old_size - new_size;
2933
2934 DPRINTF(ALLOC, ("\tfrom %"PRIu64" to %"PRIu64"\n", old_size, new_size));
2935
2936 /* shrink the node to its new size */
2937 if (addr_type == UDF_ICB_INTERN_ALLOC) {
2938 /* only reflect size change directly in the node */
2939 KASSERT(new_size <= max_l_ad);
2940 inflen -= size_diff;
2941 objsize -= size_diff;
2942 l_ad -= size_diff;
2943 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
2944 if (fe) {
2945 fe->inf_len = udf_rw64(inflen);
2946 fe->l_ad = udf_rw32(l_ad);
2947 fe->tag.desc_crc_len = udf_rw16(crclen);
2948 } else {
2949 efe->inf_len = udf_rw64(inflen);
2950 efe->obj_size = udf_rw64(objsize);
2951 efe->l_ad = udf_rw32(l_ad);
2952 efe->tag.desc_crc_len = udf_rw16(crclen);
2953 }
2954 error = 0;
2955
2956 /* clear the space in the descriptor */
2957 KASSERT(old_size > new_size);
2958 memset(data_pos + new_size, 0, old_size - new_size);
2959
2960 /* TODO zero appened space in buffer! */
2961 /* using ubc_zerorange(&vp->v_uobj, old_size, */
2962 /* old_size - new_size, UBC_UNMAP_FLAG(vp)); ? */
2963
2964 /* set new size for uvm */
2965 uvm_vnp_setsize(vp, new_size);
2966
2967 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
2968 UDF_UNLOCK_NODE(udf_node, 0);
2969
2970 KASSERT(new_inflen == orig_inflen - size_diff);
2971 KASSERT(new_lbrec == orig_lbrec);
2972 KASSERT(new_lbrec == 0);
2973
2974 return 0;
2975 }
2976
2977 /* setup node cleanup extents copy space */
2978 node_ad_cpy = malloc(lb_size * UDF_MAX_ALLOC_EXTENTS,
2979 M_UDFMNT, M_WAITOK);
2980 memset(node_ad_cpy, 0, lb_size * UDF_MAX_ALLOC_EXTENTS);
2981
2982 /*
2983 * Shrink the node by releasing the allocations and truncate the last
2984 * allocation to the new size. If the new size fits into the
2985 * allocation descriptor itself, transform it into an
2986 * UDF_ICB_INTERN_ALLOC.
2987 */
2988 slot = 0;
2989 cpy_slot = 0;
2990 foffset = 0;
2991
2992 /* 1) copy till first overlap piece to the rewrite buffer */
2993 for (;;) {
2994 udf_get_adslot(udf_node, slot, &s_ad, &eof);
2995 if (eof) {
2996 DPRINTF(WRITE,
2997 ("Shrink node failed: "
2998 "encountered EOF\n"));
2999 error = EINVAL;
3000 goto errorout; /* panic? */
3001 }
3002 len = udf_rw32(s_ad.len);
3003 flags = UDF_EXT_FLAGS(len);
3004 len = UDF_EXT_LEN(len);
3005
3006 if (flags == UDF_EXT_REDIRECT) {
3007 slot++;
3008 continue;
3009 }
3010
3011 end_foffset = foffset + len;
3012 if (end_foffset > new_size)
3013 break; /* found */
3014
3015 node_ad_cpy[cpy_slot++] = s_ad;
3016
3017 DPRINTF(ALLOC, ("\t1: vp %d, lb %d, len %d, flags %d "
3018 "-> stack\n",
3019 udf_rw16(s_ad.loc.part_num),
3020 udf_rw32(s_ad.loc.lb_num),
3021 UDF_EXT_LEN(udf_rw32(s_ad.len)),
3022 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
3023
3024 foffset = end_foffset;
3025 slot++;
3026 }
3027 slot_offset = new_size - foffset;
3028
3029 /* 2) trunc overlapping slot at overlap and copy it */
3030 if (slot_offset > 0) {
3031 lb_num = udf_rw32(s_ad.loc.lb_num);
3032 vpart_num = udf_rw16(s_ad.loc.part_num);
3033
3034 if (flags == UDF_EXT_ALLOCATED) {
3035 /* calculate extent in lb, and offset in lb */
3036 num_lb = (len + lb_size -1) / lb_size;
3037 slot_offset_lb = (slot_offset + lb_size -1) / lb_size;
3038
3039 /* adjust our slot */
3040 lb_num += slot_offset_lb;
3041 num_lb -= slot_offset_lb;
3042
3043 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
3044 }
3045
3046 s_ad.len = udf_rw32(slot_offset | flags);
3047 node_ad_cpy[cpy_slot++] = s_ad;
3048 slot++;
3049
3050 DPRINTF(ALLOC, ("\t2: vp %d, lb %d, len %d, flags %d "
3051 "-> stack\n",
3052 udf_rw16(s_ad.loc.part_num),
3053 udf_rw32(s_ad.loc.lb_num),
3054 UDF_EXT_LEN(udf_rw32(s_ad.len)),
3055 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
3056 }
3057
3058 /* 3) delete remainder */
3059 for (;;) {
3060 udf_get_adslot(udf_node, slot, &s_ad, &eof);
3061 if (eof)
3062 break;
3063
3064 len = udf_rw32(s_ad.len);
3065 flags = UDF_EXT_FLAGS(len);
3066 len = UDF_EXT_LEN(len);
3067
3068 if (flags == UDF_EXT_REDIRECT) {
3069 slot++;
3070 continue;
3071 }
3072
3073 DPRINTF(ALLOC, ("\t3: delete remainder "
3074 "vp %d lb %d, len %d, flags %d\n",
3075 udf_rw16(s_ad.loc.part_num),
3076 udf_rw32(s_ad.loc.lb_num),
3077 UDF_EXT_LEN(udf_rw32(s_ad.len)),
3078 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
3079
3080 if (flags == UDF_EXT_ALLOCATED) {
3081 lb_num = udf_rw32(s_ad.loc.lb_num);
3082 vpart_num = udf_rw16(s_ad.loc.part_num);
3083 num_lb = (len + lb_size - 1) / lb_size;
3084
3085 udf_free_allocated_space(ump, lb_num, vpart_num,
3086 num_lb);
3087 }
3088
3089 slot++;
3090 }
3091
3092 /* 4) if it will fit into the descriptor then convert */
3093 if (new_size < max_l_ad) {
3094 /*
3095 * resque/evacuate old piece by reading it in, and convert it
3096 * to internal alloc.
3097 */
3098 if (new_size == 0) {
3099 /* XXX/TODO only for zero sizing now */
3100 udf_wipe_adslots(udf_node);
3101
3102 icbflags &= ~UDF_ICB_TAG_FLAGS_ALLOC_MASK;
3103 icbflags |= UDF_ICB_INTERN_ALLOC;
3104 icbtag->flags = udf_rw16(icbflags);
3105
3106 inflen -= size_diff; KASSERT(inflen == 0);
3107 objsize -= size_diff;
3108 l_ad = new_size;
3109 crclen = dscr_size - UDF_DESC_TAG_LENGTH + l_ea + l_ad;
3110 if (fe) {
3111 fe->inf_len = udf_rw64(inflen);
3112 fe->l_ad = udf_rw32(l_ad);
3113 fe->tag.desc_crc_len = udf_rw16(crclen);
3114 } else {
3115 efe->inf_len = udf_rw64(inflen);
3116 efe->obj_size = udf_rw64(objsize);
3117 efe->l_ad = udf_rw32(l_ad);
3118 efe->tag.desc_crc_len = udf_rw16(crclen);
3119 }
3120 /* eventually copy in evacuated piece */
3121 /* set new size for uvm */
3122 uvm_vnp_setsize(vp, new_size);
3123
3124 free(node_ad_cpy, M_UDFMNT);
3125 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
3126
3127 UDF_UNLOCK_NODE(udf_node, 0);
3128
3129 KASSERT(new_inflen == orig_inflen - size_diff);
3130 KASSERT(new_inflen == 0);
3131 KASSERT(new_lbrec == 0);
3132
3133 return 0;
3134 }
3135
3136 printf("UDF_SHRINK_NODE: could convert to internal alloc!\n");
3137 }
3138
3139 /* 5) reset node descriptors */
3140 udf_wipe_adslots(udf_node);
3141
3142 /* 6) copy back extents; merge when possible. Recounting on the fly */
3143 cpy_slots = cpy_slot;
3144
3145 c_ad = node_ad_cpy[0];
3146 slot = 0;
3147 for (cpy_slot = 1; cpy_slot < cpy_slots; cpy_slot++) {
3148 s_ad = node_ad_cpy[cpy_slot];
3149
3150 DPRINTF(ALLOC, ("\t6: stack -> got mapping vp %d "
3151 "lb %d, len %d, flags %d\n",
3152 udf_rw16(s_ad.loc.part_num),
3153 udf_rw32(s_ad.loc.lb_num),
3154 UDF_EXT_LEN(udf_rw32(s_ad.len)),
3155 UDF_EXT_FLAGS(udf_rw32(s_ad.len)) >> 30));
3156
3157 /* see if we can merge */
3158 if (udf_ads_merge(max_len, lb_size, &c_ad, &s_ad)) {
3159 /* not mergable (anymore) */
3160 DPRINTF(ALLOC, ("\t6: appending vp %d lb %d, "
3161 "len %d, flags %d\n",
3162 udf_rw16(c_ad.loc.part_num),
3163 udf_rw32(c_ad.loc.lb_num),
3164 UDF_EXT_LEN(udf_rw32(c_ad.len)),
3165 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
3166
3167 error = udf_append_adslot(udf_node, &slot, &c_ad);
3168 if (error)
3169 goto errorout; /* panic? */
3170 c_ad = s_ad;
3171 slot++;
3172 }
3173 }
3174
3175 /* 7) push rest slot (if any) */
3176 if (UDF_EXT_LEN(c_ad.len) > 0) {
3177 DPRINTF(ALLOC, ("\t7: last append vp %d lb %d, "
3178 "len %d, flags %d\n",
3179 udf_rw16(c_ad.loc.part_num),
3180 udf_rw32(c_ad.loc.lb_num),
3181 UDF_EXT_LEN(udf_rw32(c_ad.len)),
3182 UDF_EXT_FLAGS(udf_rw32(c_ad.len)) >> 30));
3183
3184 error = udf_append_adslot(udf_node, &slot, &c_ad);
3185 if (error)
3186 goto errorout; /* panic? */
3187 ;
3188 }
3189
3190 inflen -= size_diff;
3191 objsize -= size_diff;
3192 if (fe) {
3193 fe->inf_len = udf_rw64(inflen);
3194 } else {
3195 efe->inf_len = udf_rw64(inflen);
3196 efe->obj_size = udf_rw64(objsize);
3197 }
3198 error = 0;
3199
3200 /* set new size for uvm */
3201 uvm_vnp_setsize(vp, new_size);
3202
3203 errorout:
3204 free(node_ad_cpy, M_UDFMNT);
3205
3206 udf_count_alloc_exts(udf_node);
3207
3208 udf_node_sanity_check(udf_node, &new_inflen, &new_lbrec);
3209 UDF_UNLOCK_NODE(udf_node, 0);
3210
3211 KASSERT(new_inflen == orig_inflen - size_diff);
3212
3213 return error;
3214 }
3215
3216