Home | History | Annotate | Line # | Download | only in udf
udf_strat_sequential.c revision 1.13
      1 /* $NetBSD: udf_strat_sequential.c,v 1.13 2014/03/23 09:34:42 christos Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #ifndef lint
     31 __KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.13 2014/03/23 09:34:42 christos Exp $");
     32 #endif /* not lint */
     33 
     34 
     35 #if defined(_KERNEL_OPT)
     36 #include "opt_compat_netbsd.h"
     37 #endif
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/sysctl.h>
     42 #include <sys/namei.h>
     43 #include <sys/proc.h>
     44 #include <sys/kernel.h>
     45 #include <sys/vnode.h>
     46 #include <miscfs/genfs/genfs_node.h>
     47 #include <sys/mount.h>
     48 #include <sys/buf.h>
     49 #include <sys/file.h>
     50 #include <sys/device.h>
     51 #include <sys/disklabel.h>
     52 #include <sys/ioctl.h>
     53 #include <sys/malloc.h>
     54 #include <sys/dirent.h>
     55 #include <sys/stat.h>
     56 #include <sys/conf.h>
     57 #include <sys/kauth.h>
     58 #include <sys/kthread.h>
     59 #include <dev/clock_subr.h>
     60 
     61 #include <fs/udf/ecma167-udf.h>
     62 #include <fs/udf/udf_mount.h>
     63 
     64 #include "udf.h"
     65 #include "udf_subr.h"
     66 #include "udf_bswap.h"
     67 
     68 
     69 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
     70 #define PRIV(ump) ((struct strat_private *) ump->strategy_private)
     71 
     72 /* --------------------------------------------------------------------- */
     73 
     74 /* BUFQ's */
     75 #define UDF_SHED_MAX 3
     76 
     77 #define UDF_SHED_READING	0
     78 #define UDF_SHED_WRITING	1
     79 #define UDF_SHED_SEQWRITING	2
     80 
     81 struct strat_private {
     82 	struct pool		 desc_pool;	 	/* node descriptors */
     83 
     84 	lwp_t			*queue_lwp;
     85 	kcondvar_t		 discstrat_cv;		/* to wait on       */
     86 	kmutex_t		 discstrat_mutex;	/* disc strategy    */
     87 
     88 	int			 run_thread;		/* thread control */
     89 	int			 cur_queue;
     90 
     91 	struct disk_strategy	 old_strategy_setting;
     92 	struct bufq_state	*queues[UDF_SHED_MAX];
     93 	struct timespec		 last_queued[UDF_SHED_MAX];
     94 };
     95 
     96 
     97 /* --------------------------------------------------------------------- */
     98 
     99 static void
    100 udf_wr_nodedscr_callback(struct buf *buf)
    101 {
    102 	struct udf_node *udf_node;
    103 
    104 	KASSERT(buf);
    105 	KASSERT(buf->b_data);
    106 
    107 	/* called when write action is done */
    108 	DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
    109 
    110 	udf_node = VTOI(buf->b_vp);
    111 	if (udf_node == NULL) {
    112 		putiobuf(buf);
    113 		printf("udf_wr_node_callback: NULL node?\n");
    114 		return;
    115 	}
    116 
    117 	/* XXX right flags to mark dirty again on error? */
    118 	if (buf->b_error) {
    119 		udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
    120 		/* XXX TODO reshedule on error */
    121 	}
    122 
    123 	/* decrement outstanding_nodedscr */
    124 	KASSERT(udf_node->outstanding_nodedscr >= 1);
    125 	udf_node->outstanding_nodedscr--;
    126 	if (udf_node->outstanding_nodedscr == 0) {
    127 		/* first unlock the node */
    128 		UDF_UNLOCK_NODE(udf_node, 0);
    129 		wakeup(&udf_node->outstanding_nodedscr);
    130 	}
    131 
    132 	/* unreference the vnode so it can be recycled */
    133 	holdrele(udf_node->vnode);
    134 
    135 	putiobuf(buf);
    136 }
    137 
    138 /* --------------------------------------------------------------------- */
    139 
    140 static int
    141 udf_create_logvol_dscr_seq(struct udf_strat_args *args)
    142 {
    143 	union dscrptr   **dscrptr = &args->dscr;
    144 	struct udf_mount *ump = args->ump;
    145 	struct strat_private *priv = PRIV(ump);
    146 	uint32_t lb_size;
    147 
    148 	lb_size = udf_rw32(ump->logical_vol->lb_size);
    149 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
    150 	memset(*dscrptr, 0, lb_size);
    151 
    152 	return 0;
    153 }
    154 
    155 
    156 static void
    157 udf_free_logvol_dscr_seq(struct udf_strat_args *args)
    158 {
    159 	union dscrptr    *dscr = args->dscr;
    160 	struct udf_mount *ump  = args->ump;
    161 	struct strat_private *priv = PRIV(ump);
    162 
    163 	pool_put(&priv->desc_pool, dscr);
    164 }
    165 
    166 
    167 static int
    168 udf_read_logvol_dscr_seq(struct udf_strat_args *args)
    169 {
    170 	union dscrptr   **dscrptr = &args->dscr;
    171 	union dscrptr    *tmpdscr;
    172 	struct udf_mount *ump = args->ump;
    173 	struct long_ad   *icb = args->icb;
    174 	struct strat_private *priv = PRIV(ump);
    175 	uint32_t lb_size;
    176 	uint32_t sector, dummy;
    177 	int error;
    178 
    179 	lb_size = udf_rw32(ump->logical_vol->lb_size);
    180 
    181 	error = udf_translate_vtop(ump, icb, &sector, &dummy);
    182 	if (error)
    183 		return error;
    184 
    185 	/* try to read in fe/efe */
    186 	error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
    187 	if (error)
    188 		return error;
    189 
    190 	*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
    191 	memcpy(*dscrptr, tmpdscr, lb_size);
    192 	free(tmpdscr, M_UDFTEMP);
    193 
    194 	return 0;
    195 }
    196 
    197 
    198 static int
    199 udf_write_logvol_dscr_seq(struct udf_strat_args *args)
    200 {
    201 	union dscrptr    *dscr     = args->dscr;
    202 	struct udf_mount *ump      = args->ump;
    203 	struct udf_node  *udf_node = args->udf_node;
    204 	struct long_ad   *icb      = args->icb;
    205 	int               waitfor  = args->waitfor;
    206 	uint32_t logsectornr, sectornr, dummy;
    207 	int error, vpart;
    208 
    209 	/*
    210 	 * we have to decide if we write it out sequential or at its fixed
    211 	 * position by examining the partition its (to be) written on.
    212 	 */
    213 	vpart       = udf_rw16(udf_node->loc.loc.part_num);
    214 	logsectornr = udf_rw32(icb->loc.lb_num);
    215 	sectornr    = 0;
    216 	if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
    217 		error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
    218 		if (error)
    219 			goto out;
    220 	}
    221 
    222 	/* add reference to the vnode to prevent recycling */
    223 	vhold(udf_node->vnode);
    224 
    225 	if (waitfor) {
    226 		DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
    227 
    228 		error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
    229 			dscr, sectornr, logsectornr);
    230 	} else {
    231 		DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
    232 
    233 		error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
    234 			dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
    235 		/* will be UNLOCKED in call back */
    236 		return error;
    237 	}
    238 
    239 	holdrele(udf_node->vnode);
    240 out:
    241 	udf_node->outstanding_nodedscr--;
    242 	if (udf_node->outstanding_nodedscr == 0) {
    243 		UDF_UNLOCK_NODE(udf_node, 0);
    244 		wakeup(&udf_node->outstanding_nodedscr);
    245 	}
    246 
    247 	return error;
    248 }
    249 
    250 /* --------------------------------------------------------------------- */
    251 
    252 /*
    253  * Main file-system specific sheduler. Due to the nature of optical media
    254  * sheduling can't be performed in the traditional way. Most OS
    255  * implementations i've seen thus read or write a file atomically giving all
    256  * kinds of side effects.
    257  *
    258  * This implementation uses a kernel thread to shedule the queued requests in
    259  * such a way that is semi-optimal for optical media; this means aproximately
    260  * (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
    261  * time.
    262  */
    263 
    264 static void
    265 udf_queuebuf_seq(struct udf_strat_args *args)
    266 {
    267 	struct udf_mount *ump = args->ump;
    268 	struct buf *nestbuf = args->nestbuf;
    269 	struct strat_private *priv = PRIV(ump);
    270 	int queue;
    271 	int what;
    272 
    273 	KASSERT(ump);
    274 	KASSERT(nestbuf);
    275 	KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
    276 
    277 	what = nestbuf->b_udf_c_type;
    278 	queue = UDF_SHED_READING;
    279 	if ((nestbuf->b_flags & B_READ) == 0) {
    280 		/* writing */
    281 		queue = UDF_SHED_SEQWRITING;
    282 		if (what == UDF_C_ABSOLUTE)
    283 			queue = UDF_SHED_WRITING;
    284 	}
    285 
    286 	/* use our own sheduler lists for more complex sheduling */
    287 	mutex_enter(&priv->discstrat_mutex);
    288 		bufq_put(priv->queues[queue], nestbuf);
    289 		vfs_timestamp(&priv->last_queued[queue]);
    290 	mutex_exit(&priv->discstrat_mutex);
    291 
    292 	/* signal our thread that there might be something to do */
    293 	cv_signal(&priv->discstrat_cv);
    294 }
    295 
    296 /* --------------------------------------------------------------------- */
    297 
    298 /* TODO convert to lb_size */
    299 static void
    300 udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
    301 {
    302 	union dscrptr    *fdscr = (union dscrptr *) buf->b_data;
    303 	struct vnode     *vp = buf->b_vp;
    304 	struct udf_node  *udf_node = VTOI(vp);
    305 	uint32_t lb_num;
    306 	uint32_t udf_rw32_lbmap;
    307 	int c_type = buf->b_udf_c_type;
    308 	int error;
    309 
    310 	/* only interested when we're using a VAT */
    311 	KASSERT(ump->vat_node);
    312 	KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
    313 
    314 	/* only nodes are recorded in the VAT */
    315 	/* NOTE: and the fileset descriptor (FIXME ?) */
    316 	if (c_type != UDF_C_NODE)
    317 		return;
    318 
    319 	udf_rw32_lbmap = udf_rw32(lb_map);
    320 
    321 	/* if we're the VAT itself, only update our assigned sector number */
    322 	if (udf_node == ump->vat_node) {
    323 		fdscr->tag.tag_loc = udf_rw32_lbmap;
    324 		udf_validate_tag_sum(fdscr);
    325 		DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
    326 			udf_rw32(udf_rw32_lbmap)));
    327 		/* no use mapping the VAT node in the VAT */
    328 		return;
    329 	}
    330 
    331 	/* record new position in VAT file */
    332 	lb_num = udf_rw32(fdscr->tag.tag_loc);
    333 
    334 	/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
    335 
    336 	DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
    337 			lb_num, lb_map));
    338 
    339 	/* VAT should be the longer than this write, can't go wrong */
    340 	KASSERT(lb_num <= ump->vat_entries);
    341 
    342 	mutex_enter(&ump->allocate_mutex);
    343 	error = udf_vat_write(ump->vat_node,
    344 			(uint8_t *) &udf_rw32_lbmap, 4,
    345 			ump->vat_offset + lb_num * 4);
    346 	mutex_exit(&ump->allocate_mutex);
    347 
    348 	if (error)
    349 		panic( "udf_VAT_mapping_update: HELP! i couldn't "
    350 			"write in the VAT file ?\n");
    351 }
    352 
    353 
    354 static void
    355 udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
    356 {
    357 	union dscrptr *dscr;
    358 	struct long_ad *node_ad_cpy;
    359 	struct part_desc *pdesc;
    360 	uint64_t *lmapping, *lmappos;
    361 	uint32_t sectornr, bpos;
    362 	uint32_t ptov;
    363 	uint16_t vpart_num;
    364 	uint8_t *fidblk;
    365 	int sector_size = ump->discinfo.sector_size;
    366 	int blks = sector_size / DEV_BSIZE;
    367 	int len, buf_len;
    368 
    369 	/* if reading, just pass to the device's STRATEGY */
    370 	if (queue == UDF_SHED_READING) {
    371 		DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
    372 			"b_resid %d, b_bcount %d, b_bufsize %d\n",
    373 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
    374 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
    375 		VOP_STRATEGY(ump->devvp, buf);
    376 		return;
    377 	}
    378 
    379 	if (queue == UDF_SHED_WRITING) {
    380 		DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
    381 			"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
    382 			buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
    383 			buf->b_resid, buf->b_bcount, buf->b_bufsize));
    384 		KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
    385 
    386 		// udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
    387 		VOP_STRATEGY(ump->devvp, buf);
    388 		return;
    389 	}
    390 
    391 	KASSERT(queue == UDF_SHED_SEQWRITING);
    392 	DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
    393 		"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
    394 		buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
    395 		buf->b_bufsize));
    396 
    397 	/*
    398 	 * Buffers should not have been allocated to disc addresses yet on
    399 	 * this queue. Note that a buffer can get multiple extents allocated.
    400 	 *
    401 	 * lmapping contains lb_num relative to base partition.
    402 	 */
    403 	lmapping    = ump->la_lmapping;
    404 	node_ad_cpy = ump->la_node_ad_cpy;
    405 
    406 	/* logically allocate buf and map it in the file */
    407 	udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
    408 
    409 	/*
    410 	 * NOTE We are using the knowledge here that sequential media will
    411 	 * always be mapped linearly. Thus no use to explicitly translate the
    412 	 * lmapping list.
    413 	 */
    414 
    415 	/* calculate offset from physical base partition */
    416 	pdesc = ump->partitions[ump->vtop[vpart_num]];
    417 	ptov  = udf_rw32(pdesc->start_loc);
    418 
    419 	/* set buffers blkno to the physical block number */
    420 	buf->b_blkno = (*lmapping + ptov) * blks;
    421 
    422 	/* fixate floating descriptors */
    423 	if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
    424 		/* set our tag location to the absolute position */
    425 		dscr = (union dscrptr *) buf->b_data;
    426 		dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
    427 		udf_validate_tag_and_crc_sums(dscr);
    428 	}
    429 
    430 	/* update mapping in the VAT */
    431 	if (buf->b_udf_c_type == UDF_C_NODE) {
    432 		udf_VAT_mapping_update(ump, buf, *lmapping);
    433 		udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
    434 	}
    435 
    436 	/* if we have FIDs, fixup using the new allocation table */
    437 	if (buf->b_udf_c_type == UDF_C_FIDS) {
    438 		buf_len = buf->b_bcount;
    439 		bpos = 0;
    440 		lmappos = lmapping;
    441 		while (buf_len) {
    442 			sectornr = *lmappos++;
    443 			len = MIN(buf_len, sector_size);
    444 			fidblk = (uint8_t *) buf->b_data + bpos;
    445 			udf_fixup_fid_block(fidblk, sector_size,
    446 				0, len, sectornr);
    447 			bpos += len;
    448 			buf_len -= len;
    449 		}
    450 	}
    451 
    452 	VOP_STRATEGY(ump->devvp, buf);
    453 }
    454 
    455 
    456 static void
    457 udf_doshedule(struct udf_mount *ump)
    458 {
    459 	struct buf *buf;
    460 	struct timespec now, *last;
    461 	struct strat_private *priv = PRIV(ump);
    462 	void (*b_callback)(struct buf *);
    463 	int new_queue;
    464 	int error;
    465 
    466 	buf = bufq_get(priv->queues[priv->cur_queue]);
    467 	if (buf) {
    468 		/* transfer from the current queue to the device queue */
    469 		mutex_exit(&priv->discstrat_mutex);
    470 
    471 		/* transform buffer to synchronous; XXX needed? */
    472 		b_callback = buf->b_iodone;
    473 		buf->b_iodone = NULL;
    474 		CLR(buf->b_flags, B_ASYNC);
    475 
    476 		/* issue and wait on completion */
    477 		udf_issue_buf(ump, priv->cur_queue, buf);
    478 		biowait(buf);
    479 
    480 		mutex_enter(&priv->discstrat_mutex);
    481 
    482 		/* if there is an error, repair this error, otherwise propagate */
    483 		if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
    484 			/* check what we need to do */
    485 			panic("UDF write error, can't handle yet!\n");
    486 		}
    487 
    488 		/* propagate result to higher layers */
    489 		if (b_callback) {
    490 			buf->b_iodone = b_callback;
    491 			(*buf->b_iodone)(buf);
    492 		}
    493 
    494 		return;
    495 	}
    496 
    497 	/* Check if we're idling in this state */
    498 	vfs_timestamp(&now);
    499 	last = &priv->last_queued[priv->cur_queue];
    500 	if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
    501 		/* dont switch too fast for CD media; its expensive in time */
    502 		if (now.tv_sec - last->tv_sec < 3)
    503 			return;
    504 	}
    505 
    506 	/* check if we can/should switch */
    507 	new_queue = priv->cur_queue;
    508 
    509 	if (bufq_peek(priv->queues[UDF_SHED_READING]))
    510 		new_queue = UDF_SHED_READING;
    511 	if (bufq_peek(priv->queues[UDF_SHED_WRITING]))		/* only for unmount */
    512 		new_queue = UDF_SHED_WRITING;
    513 	if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
    514 		new_queue = UDF_SHED_SEQWRITING;
    515 	if (priv->cur_queue == UDF_SHED_READING) {
    516 		if (new_queue == UDF_SHED_SEQWRITING) {
    517 			/* TODO use flag to signal if this is needed */
    518 			mutex_exit(&priv->discstrat_mutex);
    519 
    520 			/* update trackinfo for data and metadata */
    521 			error = udf_update_trackinfo(ump,
    522 					&ump->data_track);
    523 			assert(error == 0);
    524 			error = udf_update_trackinfo(ump,
    525 					&ump->metadata_track);
    526 			assert(error == 0);
    527 			mutex_enter(&priv->discstrat_mutex);
    528 			__USE(error);
    529 		}
    530 	}
    531 
    532 	if (new_queue != priv->cur_queue) {
    533 		DPRINTF(SHEDULE, ("switching from %d to %d\n",
    534 			priv->cur_queue, new_queue));
    535 	}
    536 
    537 	priv->cur_queue = new_queue;
    538 }
    539 
    540 
    541 static void
    542 udf_discstrat_thread(void *arg)
    543 {
    544 	struct udf_mount *ump = (struct udf_mount *) arg;
    545 	struct strat_private *priv = PRIV(ump);
    546 	int empty;
    547 
    548 	empty = 1;
    549 	mutex_enter(&priv->discstrat_mutex);
    550 	while (priv->run_thread || !empty) {
    551 		/* process the current selected queue */
    552 		udf_doshedule(ump);
    553 		empty  = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
    554 		empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
    555 		empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
    556 
    557 		/* wait for more if needed */
    558 		if (empty)
    559 			cv_timedwait(&priv->discstrat_cv,
    560 				&priv->discstrat_mutex, hz/8);
    561 	}
    562 	mutex_exit(&priv->discstrat_mutex);
    563 
    564 	wakeup(&priv->run_thread);
    565 	kthread_exit(0);
    566 	/* not reached */
    567 }
    568 
    569 /* --------------------------------------------------------------------- */
    570 
    571 static void
    572 udf_discstrat_init_seq(struct udf_strat_args *args)
    573 {
    574 	struct udf_mount *ump = args->ump;
    575 	struct strat_private *priv = PRIV(ump);
    576 	struct disk_strategy dkstrat;
    577 	uint32_t lb_size;
    578 
    579 	KASSERT(ump);
    580 	KASSERT(ump->logical_vol);
    581 	KASSERT(priv == NULL);
    582 
    583 	lb_size = udf_rw32(ump->logical_vol->lb_size);
    584 	KASSERT(lb_size > 0);
    585 
    586 	/* initialise our memory space */
    587 	ump->strategy_private = malloc(sizeof(struct strat_private),
    588 		M_UDFTEMP, M_WAITOK);
    589 	priv = ump->strategy_private;
    590 	memset(priv, 0 , sizeof(struct strat_private));
    591 
    592 	/* initialise locks */
    593 	cv_init(&priv->discstrat_cv, "udfstrat");
    594 	mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
    595 
    596 	/*
    597 	 * Initialise pool for descriptors associated with nodes. This is done
    598 	 * in lb_size units though currently lb_size is dictated to be
    599 	 * sector_size.
    600 	 */
    601 	pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
    602 	    IPL_NONE);
    603 
    604 	/*
    605 	 * remember old device strategy method and explicit set method
    606 	 * `discsort' since we have our own more complex strategy that is not
    607 	 * implementable on the CD device and other strategies will get in the
    608 	 * way.
    609 	 */
    610 	memset(&priv->old_strategy_setting, 0,
    611 		sizeof(struct disk_strategy));
    612 	VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
    613 		FREAD | FKIOCTL, NOCRED);
    614 	memset(&dkstrat, 0, sizeof(struct disk_strategy));
    615 	strcpy(dkstrat.dks_name, "discsort");
    616 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
    617 		NOCRED);
    618 
    619 	/* initialise our internal sheduler */
    620 	priv->cur_queue = UDF_SHED_READING;
    621 	bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
    622 		BUFQ_SORT_RAWBLOCK);
    623 	bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
    624 		BUFQ_SORT_RAWBLOCK);
    625 	bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
    626 	vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
    627 	vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
    628 	vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
    629 
    630 	/* create our disk strategy thread */
    631 	priv->run_thread = 1;
    632 	if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
    633 		udf_discstrat_thread, ump, &priv->queue_lwp,
    634 		"%s", "udf_rw")) {
    635 		panic("fork udf_rw");
    636 	}
    637 }
    638 
    639 
    640 static void
    641 udf_discstrat_finish_seq(struct udf_strat_args *args)
    642 {
    643 	struct udf_mount *ump = args->ump;
    644 	struct strat_private *priv = PRIV(ump);
    645 	int error;
    646 
    647 	if (ump == NULL)
    648 		return;
    649 
    650 	/* stop our sheduling thread */
    651 	KASSERT(priv->run_thread == 1);
    652 	priv->run_thread = 0;
    653 	wakeup(priv->queue_lwp);
    654 	do {
    655 		error = tsleep(&priv->run_thread, PRIBIO+1,
    656 			"udfshedfin", hz);
    657 	} while (error);
    658 	/* kthread should be finished now */
    659 
    660 	/* set back old device strategy method */
    661 	VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
    662 			FWRITE, NOCRED);
    663 
    664 	/* destroy our pool */
    665 	pool_destroy(&priv->desc_pool);
    666 
    667 	mutex_destroy(&priv->discstrat_mutex);
    668 	cv_destroy(&priv->discstrat_cv);
    669 
    670 	/* free our private space */
    671 	free(ump->strategy_private, M_UDFTEMP);
    672 	ump->strategy_private = NULL;
    673 }
    674 
    675 /* --------------------------------------------------------------------- */
    676 
    677 struct udf_strategy udf_strat_sequential =
    678 {
    679 	udf_create_logvol_dscr_seq,
    680 	udf_free_logvol_dscr_seq,
    681 	udf_read_logvol_dscr_seq,
    682 	udf_write_logvol_dscr_seq,
    683 	udf_queuebuf_seq,
    684 	udf_discstrat_init_seq,
    685 	udf_discstrat_finish_seq
    686 };
    687 
    688 
    689