udf_subr.c revision 1.14 1 1.14 reinoud /* $NetBSD: udf_subr.c,v 1.14 2006/08/22 16:52:41 reinoud Exp $ */
2 1.1 reinoud
3 1.1 reinoud /*
4 1.1 reinoud * Copyright (c) 2006 Reinoud Zandijk
5 1.1 reinoud * All rights reserved.
6 1.1 reinoud *
7 1.1 reinoud * Redistribution and use in source and binary forms, with or without
8 1.1 reinoud * modification, are permitted provided that the following conditions
9 1.1 reinoud * are met:
10 1.1 reinoud * 1. Redistributions of source code must retain the above copyright
11 1.1 reinoud * notice, this list of conditions and the following disclaimer.
12 1.1 reinoud * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 reinoud * notice, this list of conditions and the following disclaimer in the
14 1.1 reinoud * documentation and/or other materials provided with the distribution.
15 1.1 reinoud * 3. All advertising materials mentioning features or use of this software
16 1.1 reinoud * must display the following acknowledgement:
17 1.1 reinoud * This product includes software developed for the
18 1.1 reinoud * NetBSD Project. See http://www.NetBSD.org/ for
19 1.1 reinoud * information about NetBSD.
20 1.1 reinoud * 4. The name of the author may not be used to endorse or promote products
21 1.1 reinoud * derived from this software without specific prior written permission.
22 1.1 reinoud *
23 1.1 reinoud * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.1 reinoud * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.1 reinoud * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 reinoud * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.1 reinoud * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 1.1 reinoud * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 1.1 reinoud * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 1.1 reinoud * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 1.1 reinoud * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 1.1 reinoud * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 reinoud *
34 1.1 reinoud */
35 1.1 reinoud
36 1.1 reinoud
37 1.1 reinoud #include <sys/cdefs.h>
38 1.1 reinoud #ifndef lint
39 1.14 reinoud __RCSID("$NetBSD: udf_subr.c,v 1.14 2006/08/22 16:52:41 reinoud Exp $");
40 1.1 reinoud #endif /* not lint */
41 1.1 reinoud
42 1.1 reinoud
43 1.1 reinoud #if defined(_KERNEL_OPT)
44 1.1 reinoud #include "opt_quota.h"
45 1.1 reinoud #include "opt_compat_netbsd.h"
46 1.1 reinoud #endif
47 1.1 reinoud
48 1.1 reinoud #include <sys/param.h>
49 1.1 reinoud #include <sys/systm.h>
50 1.1 reinoud #include <sys/sysctl.h>
51 1.1 reinoud #include <sys/namei.h>
52 1.1 reinoud #include <sys/proc.h>
53 1.1 reinoud #include <sys/kernel.h>
54 1.1 reinoud #include <sys/vnode.h>
55 1.1 reinoud #include <miscfs/genfs/genfs_node.h>
56 1.1 reinoud #include <sys/mount.h>
57 1.1 reinoud #include <sys/buf.h>
58 1.1 reinoud #include <sys/file.h>
59 1.1 reinoud #include <sys/device.h>
60 1.1 reinoud #include <sys/disklabel.h>
61 1.1 reinoud #include <sys/ioctl.h>
62 1.1 reinoud #include <sys/malloc.h>
63 1.1 reinoud #include <sys/dirent.h>
64 1.1 reinoud #include <sys/stat.h>
65 1.1 reinoud #include <sys/conf.h>
66 1.8 christos #include <sys/kauth.h>
67 1.1 reinoud
68 1.1 reinoud #include <fs/udf/ecma167-udf.h>
69 1.1 reinoud #include <fs/udf/udf_mount.h>
70 1.1 reinoud
71 1.1 reinoud #include "udf.h"
72 1.1 reinoud #include "udf_subr.h"
73 1.1 reinoud #include "udf_bswap.h"
74 1.1 reinoud
75 1.1 reinoud
76 1.1 reinoud #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77 1.1 reinoud
78 1.1 reinoud
79 1.1 reinoud /* predefines */
80 1.1 reinoud
81 1.1 reinoud
82 1.1 reinoud #if 0
83 1.1 reinoud {
84 1.1 reinoud int i, j, dlen;
85 1.1 reinoud uint8_t *blob;
86 1.1 reinoud
87 1.1 reinoud blob = (uint8_t *) fid;
88 1.1 reinoud dlen = file_size - (*offset);
89 1.1 reinoud
90 1.1 reinoud printf("blob = %p\n", blob);
91 1.1 reinoud printf("dump of %d bytes\n", dlen);
92 1.1 reinoud
93 1.1 reinoud for (i = 0; i < dlen; i+ = 16) {
94 1.1 reinoud printf("%04x ", i);
95 1.1 reinoud for (j = 0; j < 16; j++) {
96 1.1 reinoud if (i+j < dlen) {
97 1.1 reinoud printf("%02x ", blob[i+j]);
98 1.1 reinoud } else {
99 1.1 reinoud printf(" ");
100 1.9 christos }
101 1.9 christos }
102 1.1 reinoud for (j = 0; j < 16; j++) {
103 1.1 reinoud if (i+j < dlen) {
104 1.1 reinoud if (blob[i+j]>32 && blob[i+j]! = 127) {
105 1.1 reinoud printf("%c", blob[i+j]);
106 1.1 reinoud } else {
107 1.1 reinoud printf(".");
108 1.9 christos }
109 1.9 christos }
110 1.9 christos }
111 1.1 reinoud printf("\n");
112 1.9 christos }
113 1.1 reinoud printf("\n");
114 1.9 christos }
115 1.1 reinoud Debugger();
116 1.1 reinoud #endif
117 1.1 reinoud
118 1.1 reinoud
119 1.1 reinoud /* --------------------------------------------------------------------- */
120 1.1 reinoud
121 1.1 reinoud /* STUB */
122 1.1 reinoud
123 1.1 reinoud static int
124 1.1 reinoud udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 1.1 reinoud {
126 1.1 reinoud int sector_size = ump->discinfo.sector_size;
127 1.1 reinoud int blks = sector_size / DEV_BSIZE;
128 1.1 reinoud
129 1.1 reinoud /* NOTE bread() checks if block is in cache or not */
130 1.1 reinoud return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 1.1 reinoud }
132 1.1 reinoud
133 1.1 reinoud
134 1.1 reinoud /* --------------------------------------------------------------------- */
135 1.1 reinoud
136 1.1 reinoud /*
137 1.1 reinoud * Check if the blob starts with a good UDF tag. Tags are protected by a
138 1.1 reinoud * checksum over the reader except one byte at position 4 that is the checksum
139 1.1 reinoud * itself.
140 1.1 reinoud */
141 1.1 reinoud
142 1.1 reinoud int
143 1.1 reinoud udf_check_tag(void *blob)
144 1.1 reinoud {
145 1.1 reinoud struct desc_tag *tag = blob;
146 1.1 reinoud uint8_t *pos, sum, cnt;
147 1.1 reinoud
148 1.1 reinoud /* check TAG header checksum */
149 1.1 reinoud pos = (uint8_t *) tag;
150 1.1 reinoud sum = 0;
151 1.1 reinoud
152 1.1 reinoud for(cnt = 0; cnt < 16; cnt++) {
153 1.1 reinoud if (cnt != 4)
154 1.1 reinoud sum += *pos;
155 1.1 reinoud pos++;
156 1.1 reinoud }
157 1.1 reinoud if (sum != tag->cksum) {
158 1.1 reinoud /* bad tag header checksum; this is not a valid tag */
159 1.1 reinoud return EINVAL;
160 1.1 reinoud }
161 1.1 reinoud
162 1.1 reinoud return 0;
163 1.1 reinoud }
164 1.1 reinoud
165 1.1 reinoud /* --------------------------------------------------------------------- */
166 1.1 reinoud
167 1.1 reinoud /*
168 1.1 reinoud * check tag payload will check descriptor CRC as specified.
169 1.1 reinoud * If the descriptor is too short, it will return EIO otherwise EINVAL.
170 1.1 reinoud */
171 1.1 reinoud
172 1.1 reinoud int
173 1.1 reinoud udf_check_tag_payload(void *blob, uint32_t max_length)
174 1.1 reinoud {
175 1.1 reinoud struct desc_tag *tag = blob;
176 1.1 reinoud uint16_t crc, crc_len;
177 1.1 reinoud
178 1.1 reinoud crc_len = udf_rw16(tag->desc_crc_len);
179 1.1 reinoud
180 1.1 reinoud /* check payload CRC if applicable */
181 1.1 reinoud if (crc_len == 0)
182 1.1 reinoud return 0;
183 1.1 reinoud
184 1.1 reinoud if (crc_len > max_length)
185 1.1 reinoud return EIO;
186 1.1 reinoud
187 1.1 reinoud crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 1.1 reinoud if (crc != udf_rw16(tag->desc_crc)) {
189 1.1 reinoud /* bad payload CRC; this is a broken tag */
190 1.1 reinoud return EINVAL;
191 1.9 christos }
192 1.1 reinoud
193 1.1 reinoud return 0;
194 1.1 reinoud }
195 1.1 reinoud
196 1.1 reinoud /* --------------------------------------------------------------------- */
197 1.1 reinoud
198 1.1 reinoud int
199 1.1 reinoud udf_validate_tag_sum(void *blob)
200 1.1 reinoud {
201 1.1 reinoud struct desc_tag *tag = blob;
202 1.1 reinoud uint8_t *pos, sum, cnt;
203 1.1 reinoud
204 1.1 reinoud /* calculate TAG header checksum */
205 1.1 reinoud pos = (uint8_t *) tag;
206 1.1 reinoud sum = 0;
207 1.1 reinoud
208 1.1 reinoud for(cnt = 0; cnt < 16; cnt++) {
209 1.1 reinoud if (cnt != 4) sum += *pos;
210 1.1 reinoud pos++;
211 1.9 christos }
212 1.1 reinoud tag->cksum = sum; /* 8 bit */
213 1.1 reinoud
214 1.1 reinoud return 0;
215 1.1 reinoud }
216 1.1 reinoud
217 1.1 reinoud /* --------------------------------------------------------------------- */
218 1.1 reinoud
219 1.6 snj /* assumes sector number of descriptor to be saved already present */
220 1.1 reinoud
221 1.1 reinoud int
222 1.1 reinoud udf_validate_tag_and_crc_sums(void *blob)
223 1.1 reinoud {
224 1.1 reinoud struct desc_tag *tag = blob;
225 1.1 reinoud uint8_t *btag = (uint8_t *) tag;
226 1.1 reinoud uint16_t crc, crc_len;
227 1.1 reinoud
228 1.1 reinoud crc_len = udf_rw16(tag->desc_crc_len);
229 1.1 reinoud
230 1.1 reinoud /* check payload CRC if applicable */
231 1.1 reinoud if (crc_len > 0) {
232 1.1 reinoud crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 1.1 reinoud tag->desc_crc = udf_rw16(crc);
234 1.9 christos }
235 1.1 reinoud
236 1.1 reinoud /* calculate TAG header checksum */
237 1.1 reinoud return udf_validate_tag_sum(blob);
238 1.1 reinoud }
239 1.1 reinoud
240 1.1 reinoud /* --------------------------------------------------------------------- */
241 1.1 reinoud
242 1.1 reinoud /*
243 1.1 reinoud * XXX note the different semantics from udfclient: for FIDs it still rounds
244 1.1 reinoud * up to sectors. Use udf_fidsize() for a correct length.
245 1.1 reinoud */
246 1.1 reinoud
247 1.1 reinoud int
248 1.1 reinoud udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 1.1 reinoud {
250 1.1 reinoud uint32_t size, tag_id, num_secs, elmsz;
251 1.1 reinoud
252 1.1 reinoud tag_id = udf_rw16(dscr->tag.id);
253 1.1 reinoud
254 1.1 reinoud switch (tag_id) {
255 1.1 reinoud case TAGID_LOGVOL :
256 1.1 reinoud size = sizeof(struct logvol_desc) - 1;
257 1.1 reinoud size += udf_rw32(dscr->lvd.mt_l);
258 1.1 reinoud break;
259 1.1 reinoud case TAGID_UNALLOC_SPACE :
260 1.1 reinoud elmsz = sizeof(struct extent_ad);
261 1.1 reinoud size = sizeof(struct unalloc_sp_desc) - elmsz;
262 1.1 reinoud size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 1.1 reinoud break;
264 1.1 reinoud case TAGID_FID :
265 1.1 reinoud size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 1.1 reinoud size = (size + 3) & ~3;
267 1.1 reinoud break;
268 1.1 reinoud case TAGID_LOGVOL_INTEGRITY :
269 1.1 reinoud size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 1.1 reinoud size += udf_rw32(dscr->lvid.l_iu);
271 1.1 reinoud size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 1.1 reinoud break;
273 1.1 reinoud case TAGID_SPACE_BITMAP :
274 1.1 reinoud size = sizeof(struct space_bitmap_desc) - 1;
275 1.1 reinoud size += udf_rw32(dscr->sbd.num_bytes);
276 1.1 reinoud break;
277 1.1 reinoud case TAGID_SPARING_TABLE :
278 1.1 reinoud elmsz = sizeof(struct spare_map_entry);
279 1.1 reinoud size = sizeof(struct udf_sparing_table) - elmsz;
280 1.1 reinoud size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 1.1 reinoud break;
282 1.1 reinoud case TAGID_FENTRY :
283 1.1 reinoud size = sizeof(struct file_entry);
284 1.1 reinoud size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 1.1 reinoud break;
286 1.1 reinoud case TAGID_EXTFENTRY :
287 1.1 reinoud size = sizeof(struct extfile_entry);
288 1.1 reinoud size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 1.1 reinoud break;
290 1.1 reinoud case TAGID_FSD :
291 1.1 reinoud size = sizeof(struct fileset_desc);
292 1.1 reinoud break;
293 1.1 reinoud default :
294 1.1 reinoud size = sizeof(union dscrptr);
295 1.1 reinoud break;
296 1.9 christos }
297 1.1 reinoud
298 1.1 reinoud if ((size == 0) || (udf_sector_size == 0)) return 0;
299 1.1 reinoud
300 1.1 reinoud /* round up in sectors */
301 1.1 reinoud num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 1.1 reinoud return num_secs * udf_sector_size;
303 1.1 reinoud }
304 1.1 reinoud
305 1.1 reinoud
306 1.1 reinoud static int
307 1.1 reinoud udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 1.1 reinoud {
309 1.1 reinoud uint32_t size;
310 1.1 reinoud
311 1.1 reinoud if (udf_rw16(fid->tag.id) != TAGID_FID)
312 1.1 reinoud panic("got udf_fidsize on non FID\n");
313 1.1 reinoud
314 1.1 reinoud size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 1.1 reinoud size = (size + 3) & ~3;
316 1.1 reinoud
317 1.1 reinoud return size;
318 1.1 reinoud }
319 1.1 reinoud
320 1.1 reinoud /* --------------------------------------------------------------------- */
321 1.1 reinoud
322 1.1 reinoud /*
323 1.1 reinoud * Problem with read_descriptor are long descriptors spanning more than one
324 1.1 reinoud * sector. Luckily long descriptors can't be in `logical space'.
325 1.1 reinoud *
326 1.1 reinoud * Size of allocated piece is returned in multiple of sector size due to
327 1.1 reinoud * udf_calc_udf_malloc_size().
328 1.1 reinoud */
329 1.1 reinoud
330 1.1 reinoud int
331 1.1 reinoud udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 1.1 reinoud struct malloc_type *mtype, union dscrptr **dstp)
333 1.1 reinoud {
334 1.1 reinoud union dscrptr *src, *dst;
335 1.1 reinoud struct buf *bp;
336 1.1 reinoud uint8_t *pos;
337 1.1 reinoud int blks, blk, dscrlen;
338 1.1 reinoud int i, error, sector_size;
339 1.1 reinoud
340 1.1 reinoud sector_size = ump->discinfo.sector_size;
341 1.1 reinoud
342 1.1 reinoud *dstp = dst = NULL;
343 1.1 reinoud dscrlen = sector_size;
344 1.1 reinoud
345 1.1 reinoud /* read initial piece */
346 1.1 reinoud error = udf_bread(ump, sector, &bp);
347 1.1 reinoud DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348 1.1 reinoud
349 1.1 reinoud if (!error) {
350 1.1 reinoud /* check if its a valid tag */
351 1.1 reinoud error = udf_check_tag(bp->b_data);
352 1.1 reinoud if (error) {
353 1.1 reinoud /* check if its an empty block */
354 1.1 reinoud pos = bp->b_data;
355 1.1 reinoud for (i = 0; i < sector_size; i++, pos++) {
356 1.1 reinoud if (*pos) break;
357 1.9 christos }
358 1.1 reinoud if (i == sector_size) {
359 1.1 reinoud /* return no error but with no dscrptr */
360 1.1 reinoud /* dispose first block */
361 1.1 reinoud brelse(bp);
362 1.1 reinoud return 0;
363 1.9 christos }
364 1.9 christos }
365 1.9 christos }
366 1.1 reinoud DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 1.1 reinoud if (!error) {
368 1.1 reinoud src = (union dscrptr *) bp->b_data;
369 1.1 reinoud dscrlen = udf_tagsize(src, sector_size);
370 1.1 reinoud dst = malloc(dscrlen, mtype, M_WAITOK);
371 1.1 reinoud memcpy(dst, src, dscrlen);
372 1.9 christos }
373 1.1 reinoud /* dispose first block */
374 1.1 reinoud bp->b_flags |= B_AGE;
375 1.1 reinoud brelse(bp);
376 1.1 reinoud
377 1.1 reinoud if (!error && (dscrlen > sector_size)) {
378 1.1 reinoud DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 1.1 reinoud /*
380 1.1 reinoud * Read the rest of descriptor. Since it is only used at mount
381 1.1 reinoud * time its overdone to define and use a specific udf_breadn
382 1.1 reinoud * for this alone.
383 1.1 reinoud */
384 1.1 reinoud blks = (dscrlen + sector_size -1) / sector_size;
385 1.1 reinoud for (blk = 1; blk < blks; blk++) {
386 1.1 reinoud error = udf_bread(ump, sector + blk, &bp);
387 1.1 reinoud if (error) {
388 1.1 reinoud brelse(bp);
389 1.1 reinoud break;
390 1.9 christos }
391 1.1 reinoud pos = (uint8_t *) dst + blk*sector_size;
392 1.1 reinoud memcpy(pos, bp->b_data, sector_size);
393 1.1 reinoud
394 1.1 reinoud /* dispose block */
395 1.1 reinoud bp->b_flags |= B_AGE;
396 1.1 reinoud brelse(bp);
397 1.9 christos }
398 1.1 reinoud DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 1.1 reinoud error));
400 1.9 christos }
401 1.1 reinoud if (!error) {
402 1.1 reinoud error = udf_check_tag_payload(dst, dscrlen);
403 1.1 reinoud DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 1.9 christos }
405 1.1 reinoud if (error && dst) {
406 1.1 reinoud free(dst, mtype);
407 1.1 reinoud dst = NULL;
408 1.9 christos }
409 1.1 reinoud *dstp = dst;
410 1.1 reinoud
411 1.1 reinoud return error;
412 1.1 reinoud }
413 1.1 reinoud
414 1.1 reinoud /* --------------------------------------------------------------------- */
415 1.1 reinoud #ifdef DEBUG
416 1.1 reinoud static void
417 1.1 reinoud udf_dump_discinfo(struct udf_mount *ump)
418 1.1 reinoud {
419 1.1 reinoud char bits[128];
420 1.1 reinoud struct mmc_discinfo *di = &ump->discinfo;
421 1.1 reinoud
422 1.1 reinoud if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 1.1 reinoud return;
424 1.1 reinoud
425 1.1 reinoud printf("Device/media info :\n");
426 1.1 reinoud printf("\tMMC profile 0x%02x\n", di->mmc_profile);
427 1.1 reinoud printf("\tderived class %d\n", di->mmc_class);
428 1.1 reinoud printf("\tsector size %d\n", di->sector_size);
429 1.1 reinoud printf("\tdisc state %d\n", di->disc_state);
430 1.1 reinoud printf("\tlast ses state %d\n", di->last_session_state);
431 1.1 reinoud printf("\tbg format state %d\n", di->bg_format_state);
432 1.1 reinoud printf("\tfrst track %d\n", di->first_track);
433 1.1 reinoud printf("\tfst on last ses %d\n", di->first_track_last_session);
434 1.1 reinoud printf("\tlst on last ses %d\n", di->last_track_last_session);
435 1.1 reinoud printf("\tlink block penalty %d\n", di->link_block_penalty);
436 1.1 reinoud bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 1.1 reinoud sizeof(bits));
438 1.1 reinoud printf("\tdisc flags %s\n", bits);
439 1.1 reinoud printf("\tdisc id %x\n", di->disc_id);
440 1.1 reinoud printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
441 1.1 reinoud
442 1.1 reinoud printf("\tnum sessions %d\n", di->num_sessions);
443 1.1 reinoud printf("\tnum tracks %d\n", di->num_tracks);
444 1.1 reinoud
445 1.1 reinoud bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 1.1 reinoud printf("\tcapabilities cur %s\n", bits);
447 1.1 reinoud bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 1.1 reinoud printf("\tcapabilities cap %s\n", bits);
449 1.1 reinoud }
450 1.1 reinoud #else
451 1.1 reinoud #define udf_dump_discinfo(a);
452 1.1 reinoud #endif
453 1.1 reinoud
454 1.1 reinoud /* not called often */
455 1.1 reinoud int
456 1.1 reinoud udf_update_discinfo(struct udf_mount *ump)
457 1.1 reinoud {
458 1.1 reinoud struct vnode *devvp = ump->devvp;
459 1.1 reinoud struct partinfo dpart;
460 1.1 reinoud struct mmc_discinfo *di;
461 1.1 reinoud int error;
462 1.1 reinoud
463 1.1 reinoud DPRINTF(VOLUMES, ("read/update disc info\n"));
464 1.1 reinoud di = &ump->discinfo;
465 1.1 reinoud memset(di, 0, sizeof(struct mmc_discinfo));
466 1.1 reinoud
467 1.1 reinoud /* check if we're on a MMC capable device, i.e. CD/DVD */
468 1.1 reinoud error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 1.1 reinoud if (error == 0) {
470 1.1 reinoud udf_dump_discinfo(ump);
471 1.1 reinoud return 0;
472 1.9 christos }
473 1.1 reinoud
474 1.1 reinoud /* disc partition support */
475 1.1 reinoud error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 1.1 reinoud if (error)
477 1.1 reinoud return ENODEV;
478 1.1 reinoud
479 1.1 reinoud /* set up a disc info profile for partitions */
480 1.1 reinoud di->mmc_profile = 0x01; /* disc type */
481 1.1 reinoud di->mmc_class = MMC_CLASS_DISC;
482 1.1 reinoud di->disc_state = MMC_STATE_CLOSED;
483 1.1 reinoud di->last_session_state = MMC_STATE_CLOSED;
484 1.1 reinoud di->bg_format_state = MMC_BGFSTATE_COMPLETED;
485 1.1 reinoud di->link_block_penalty = 0;
486 1.1 reinoud
487 1.1 reinoud di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 1.4 reinoud MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 1.1 reinoud di->mmc_cap = di->mmc_cur;
490 1.1 reinoud di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491 1.1 reinoud
492 1.1 reinoud /* TODO problem with last_possible_lba on resizable VND; request */
493 1.1 reinoud di->last_possible_lba = dpart.part->p_size;
494 1.1 reinoud di->sector_size = dpart.disklab->d_secsize;
495 1.1 reinoud di->blockingnr = 1;
496 1.1 reinoud
497 1.1 reinoud di->num_sessions = 1;
498 1.1 reinoud di->num_tracks = 1;
499 1.1 reinoud
500 1.1 reinoud di->first_track = 1;
501 1.1 reinoud di->first_track_last_session = di->last_track_last_session = 1;
502 1.1 reinoud
503 1.1 reinoud udf_dump_discinfo(ump);
504 1.1 reinoud return 0;
505 1.1 reinoud }
506 1.1 reinoud
507 1.1 reinoud /* --------------------------------------------------------------------- */
508 1.1 reinoud
509 1.1 reinoud int
510 1.1 reinoud udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 1.1 reinoud {
512 1.1 reinoud struct vnode *devvp = ump->devvp;
513 1.1 reinoud struct mmc_discinfo *di = &ump->discinfo;
514 1.1 reinoud int error, class;
515 1.1 reinoud
516 1.1 reinoud DPRINTF(VOLUMES, ("read track info\n"));
517 1.1 reinoud
518 1.1 reinoud class = di->mmc_class;
519 1.1 reinoud if (class != MMC_CLASS_DISC) {
520 1.1 reinoud /* tracknr specified in struct ti */
521 1.1 reinoud error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 1.1 reinoud NOCRED, NULL);
523 1.1 reinoud return error;
524 1.9 christos }
525 1.1 reinoud
526 1.1 reinoud /* disc partition support */
527 1.1 reinoud if (ti->tracknr != 1)
528 1.1 reinoud return EIO;
529 1.1 reinoud
530 1.1 reinoud /* create fake ti (TODO check for resized vnds) */
531 1.1 reinoud ti->sessionnr = 1;
532 1.1 reinoud
533 1.1 reinoud ti->track_mode = 0; /* XXX */
534 1.1 reinoud ti->data_mode = 0; /* XXX */
535 1.1 reinoud ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536 1.1 reinoud
537 1.1 reinoud ti->track_start = 0;
538 1.1 reinoud ti->packet_size = 1;
539 1.1 reinoud
540 1.1 reinoud /* TODO support for resizable vnd */
541 1.1 reinoud ti->track_size = di->last_possible_lba;
542 1.1 reinoud ti->next_writable = di->last_possible_lba;
543 1.1 reinoud ti->last_recorded = ti->next_writable;
544 1.1 reinoud ti->free_blocks = 0;
545 1.1 reinoud
546 1.1 reinoud return 0;
547 1.1 reinoud }
548 1.1 reinoud
549 1.1 reinoud /* --------------------------------------------------------------------- */
550 1.1 reinoud
551 1.1 reinoud /* track/session searching for mounting */
552 1.1 reinoud
553 1.1 reinoud static int
554 1.1 reinoud udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 1.1 reinoud int *first_tracknr, int *last_tracknr)
556 1.1 reinoud {
557 1.1 reinoud struct mmc_trackinfo trackinfo;
558 1.1 reinoud uint32_t tracknr, start_track, num_tracks;
559 1.1 reinoud int error;
560 1.1 reinoud
561 1.1 reinoud /* if negative, sessionnr is relative to last session */
562 1.1 reinoud if (args->sessionnr < 0) {
563 1.1 reinoud args->sessionnr += ump->discinfo.num_sessions;
564 1.1 reinoud /* sanity */
565 1.1 reinoud if (args->sessionnr < 0)
566 1.1 reinoud args->sessionnr = 0;
567 1.9 christos }
568 1.1 reinoud
569 1.1 reinoud /* sanity */
570 1.1 reinoud if (args->sessionnr > ump->discinfo.num_sessions)
571 1.1 reinoud args->sessionnr = ump->discinfo.num_sessions;
572 1.1 reinoud
573 1.1 reinoud /* search the tracks for this session, zero session nr indicates last */
574 1.1 reinoud if (args->sessionnr == 0) {
575 1.1 reinoud args->sessionnr = ump->discinfo.num_sessions;
576 1.1 reinoud if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 1.1 reinoud args->sessionnr--;
578 1.1 reinoud }
579 1.9 christos }
580 1.1 reinoud
581 1.1 reinoud /* search the first and last track of the specified session */
582 1.1 reinoud num_tracks = ump->discinfo.num_tracks;
583 1.1 reinoud start_track = ump->discinfo.first_track;
584 1.1 reinoud
585 1.1 reinoud /* search for first track of this session */
586 1.1 reinoud for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 1.1 reinoud /* get track info */
588 1.1 reinoud trackinfo.tracknr = tracknr;
589 1.1 reinoud error = udf_update_trackinfo(ump, &trackinfo);
590 1.1 reinoud if (error)
591 1.1 reinoud return error;
592 1.1 reinoud
593 1.1 reinoud if (trackinfo.sessionnr == args->sessionnr)
594 1.1 reinoud break;
595 1.1 reinoud }
596 1.1 reinoud *first_tracknr = tracknr;
597 1.1 reinoud
598 1.1 reinoud /* search for last track of this session */
599 1.1 reinoud for (;tracknr <= num_tracks; tracknr++) {
600 1.1 reinoud /* get track info */
601 1.1 reinoud trackinfo.tracknr = tracknr;
602 1.1 reinoud error = udf_update_trackinfo(ump, &trackinfo);
603 1.1 reinoud if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 1.1 reinoud tracknr--;
605 1.1 reinoud break;
606 1.9 christos }
607 1.9 christos }
608 1.1 reinoud if (tracknr > num_tracks)
609 1.1 reinoud tracknr--;
610 1.1 reinoud
611 1.1 reinoud *last_tracknr = tracknr;
612 1.1 reinoud
613 1.1 reinoud assert(*last_tracknr >= *first_tracknr);
614 1.1 reinoud return 0;
615 1.1 reinoud }
616 1.1 reinoud
617 1.1 reinoud /* --------------------------------------------------------------------- */
618 1.1 reinoud
619 1.1 reinoud static int
620 1.1 reinoud udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 1.1 reinoud {
622 1.1 reinoud int error;
623 1.1 reinoud
624 1.1 reinoud error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 1.1 reinoud (union dscrptr **) dst);
626 1.1 reinoud if (!error) {
627 1.1 reinoud /* blank terminator blocks are not allowed here */
628 1.1 reinoud if (*dst == NULL)
629 1.1 reinoud return ENOENT;
630 1.1 reinoud if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 1.1 reinoud error = ENOENT;
632 1.1 reinoud free(*dst, M_UDFVOLD);
633 1.1 reinoud *dst = NULL;
634 1.1 reinoud DPRINTF(VOLUMES, ("Not an anchor\n"));
635 1.9 christos }
636 1.9 christos }
637 1.1 reinoud
638 1.1 reinoud return error;
639 1.1 reinoud }
640 1.1 reinoud
641 1.1 reinoud
642 1.1 reinoud int
643 1.1 reinoud udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 1.1 reinoud {
645 1.1 reinoud struct mmc_trackinfo first_track;
646 1.1 reinoud struct mmc_trackinfo last_track;
647 1.1 reinoud struct anchor_vdp **anchorsp;
648 1.1 reinoud uint32_t track_start;
649 1.1 reinoud uint32_t track_end;
650 1.1 reinoud uint32_t positions[4];
651 1.1 reinoud int first_tracknr, last_tracknr;
652 1.1 reinoud int error, anch, ok, first_anchor;
653 1.1 reinoud
654 1.1 reinoud /* search the first and last track of the specified session */
655 1.1 reinoud error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 1.1 reinoud if (!error) {
657 1.1 reinoud first_track.tracknr = first_tracknr;
658 1.1 reinoud error = udf_update_trackinfo(ump, &first_track);
659 1.9 christos }
660 1.1 reinoud if (!error) {
661 1.1 reinoud last_track.tracknr = last_tracknr;
662 1.1 reinoud error = udf_update_trackinfo(ump, &last_track);
663 1.9 christos }
664 1.1 reinoud if (error) {
665 1.1 reinoud printf("UDF mount: reading disc geometry failed\n");
666 1.1 reinoud return 0;
667 1.9 christos }
668 1.1 reinoud
669 1.1 reinoud track_start = first_track.track_start;
670 1.1 reinoud
671 1.1 reinoud /* `end' is not as straitforward as start. */
672 1.1 reinoud track_end = last_track.track_start
673 1.1 reinoud + last_track.track_size - last_track.free_blocks - 1;
674 1.1 reinoud
675 1.1 reinoud if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 1.1 reinoud /* end of track is not straitforward here */
677 1.1 reinoud if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 1.1 reinoud track_end = last_track.last_recorded;
679 1.1 reinoud else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 1.1 reinoud track_end = last_track.next_writable
681 1.1 reinoud - ump->discinfo.link_block_penalty;
682 1.9 christos }
683 1.1 reinoud
684 1.1 reinoud /* its no use reading a blank track */
685 1.1 reinoud first_anchor = 0;
686 1.1 reinoud if (first_track.flags & MMC_TRACKINFO_BLANK)
687 1.1 reinoud first_anchor = 1;
688 1.1 reinoud
689 1.1 reinoud /* read anchors start+256, start+512, end-256, end */
690 1.1 reinoud positions[0] = track_start+256;
691 1.1 reinoud positions[1] = track_end-256;
692 1.1 reinoud positions[2] = track_end;
693 1.1 reinoud positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
694 1.1 reinoud /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
695 1.1 reinoud
696 1.1 reinoud ok = 0;
697 1.1 reinoud anchorsp = ump->anchors;
698 1.1 reinoud for (anch = first_anchor; anch < 4; anch++) {
699 1.1 reinoud DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
700 1.1 reinoud positions[anch]));
701 1.1 reinoud error = udf_read_anchor(ump, positions[anch], anchorsp);
702 1.1 reinoud if (!error) {
703 1.1 reinoud anchorsp++;
704 1.1 reinoud ok++;
705 1.9 christos }
706 1.9 christos }
707 1.1 reinoud
708 1.13 reinoud /* VATs are only recorded on sequential media, but initialise */
709 1.13 reinoud ump->first_possible_vat_location = track_start + 256 + 1;
710 1.14 reinoud ump->last_possible_vat_location = track_end
711 1.14 reinoud + ump->discinfo.blockingnr;
712 1.13 reinoud
713 1.1 reinoud return ok;
714 1.1 reinoud }
715 1.1 reinoud
716 1.1 reinoud /* --------------------------------------------------------------------- */
717 1.1 reinoud
718 1.1 reinoud /* we dont try to be smart; we just record the parts */
719 1.1 reinoud #define UDF_UPDATE_DSCR(name, dscr) \
720 1.1 reinoud if (name) \
721 1.1 reinoud free(name, M_UDFVOLD); \
722 1.1 reinoud name = dscr;
723 1.1 reinoud
724 1.1 reinoud static int
725 1.1 reinoud udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
726 1.1 reinoud {
727 1.1 reinoud uint16_t partnr;
728 1.1 reinoud
729 1.1 reinoud DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
730 1.1 reinoud udf_rw16(dscr->tag.id)));
731 1.1 reinoud switch (udf_rw16(dscr->tag.id)) {
732 1.1 reinoud case TAGID_PRI_VOL : /* primary partition */
733 1.1 reinoud UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
734 1.1 reinoud break;
735 1.1 reinoud case TAGID_LOGVOL : /* logical volume */
736 1.1 reinoud UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
737 1.1 reinoud break;
738 1.1 reinoud case TAGID_UNALLOC_SPACE : /* unallocated space */
739 1.1 reinoud UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
740 1.1 reinoud break;
741 1.1 reinoud case TAGID_IMP_VOL : /* implementation */
742 1.1 reinoud /* XXX do we care about multiple impl. descr ? */
743 1.1 reinoud UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
744 1.1 reinoud break;
745 1.1 reinoud case TAGID_PARTITION : /* physical partition */
746 1.1 reinoud /* not much use if its not allocated */
747 1.1 reinoud if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
748 1.1 reinoud free(dscr, M_UDFVOLD);
749 1.1 reinoud break;
750 1.9 christos }
751 1.1 reinoud
752 1.1 reinoud /* check partnr boundaries */
753 1.1 reinoud partnr = udf_rw16(dscr->pd.part_num);
754 1.1 reinoud if (partnr >= UDF_PARTITIONS)
755 1.1 reinoud return EINVAL;
756 1.1 reinoud
757 1.1 reinoud UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
758 1.1 reinoud break;
759 1.1 reinoud case TAGID_VOL : /* volume space extender; rare */
760 1.1 reinoud DPRINTF(VOLUMES, ("VDS extender ignored\n"));
761 1.1 reinoud free(dscr, M_UDFVOLD);
762 1.1 reinoud break;
763 1.1 reinoud default :
764 1.1 reinoud DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
765 1.1 reinoud udf_rw16(dscr->tag.id)));
766 1.1 reinoud free(dscr, M_UDFVOLD);
767 1.9 christos }
768 1.1 reinoud
769 1.1 reinoud return 0;
770 1.1 reinoud }
771 1.1 reinoud #undef UDF_UPDATE_DSCR
772 1.1 reinoud
773 1.1 reinoud /* --------------------------------------------------------------------- */
774 1.1 reinoud
775 1.1 reinoud static int
776 1.1 reinoud udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
777 1.1 reinoud {
778 1.1 reinoud union dscrptr *dscr;
779 1.1 reinoud uint32_t sector_size, dscr_size;
780 1.1 reinoud int error;
781 1.1 reinoud
782 1.1 reinoud sector_size = ump->discinfo.sector_size;
783 1.1 reinoud
784 1.1 reinoud /* loc is sectornr, len is in bytes */
785 1.1 reinoud error = EIO;
786 1.1 reinoud while (len) {
787 1.1 reinoud error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
788 1.1 reinoud if (error)
789 1.1 reinoud return error;
790 1.1 reinoud
791 1.1 reinoud /* blank block is a terminator */
792 1.1 reinoud if (dscr == NULL)
793 1.1 reinoud return 0;
794 1.1 reinoud
795 1.1 reinoud /* TERM descriptor is a terminator */
796 1.1 reinoud if (udf_rw16(dscr->tag.id) == TAGID_TERM)
797 1.1 reinoud return 0;
798 1.1 reinoud
799 1.1 reinoud /* process all others */
800 1.1 reinoud dscr_size = udf_tagsize(dscr, sector_size);
801 1.1 reinoud error = udf_process_vds_descriptor(ump, dscr);
802 1.1 reinoud if (error) {
803 1.1 reinoud free(dscr, M_UDFVOLD);
804 1.1 reinoud break;
805 1.9 christos }
806 1.1 reinoud assert((dscr_size % sector_size) == 0);
807 1.1 reinoud
808 1.1 reinoud len -= dscr_size;
809 1.1 reinoud loc += dscr_size / sector_size;
810 1.9 christos }
811 1.1 reinoud
812 1.1 reinoud return error;
813 1.1 reinoud }
814 1.1 reinoud
815 1.1 reinoud
816 1.1 reinoud int
817 1.1 reinoud udf_read_vds_space(struct udf_mount *ump)
818 1.1 reinoud {
819 1.1 reinoud struct anchor_vdp *anchor, *anchor2;
820 1.1 reinoud size_t size;
821 1.1 reinoud uint32_t main_loc, main_len;
822 1.1 reinoud uint32_t reserve_loc, reserve_len;
823 1.1 reinoud int error;
824 1.1 reinoud
825 1.1 reinoud /*
826 1.1 reinoud * read in VDS space provided by the anchors; if one descriptor read
827 1.1 reinoud * fails, try the mirror sector.
828 1.1 reinoud *
829 1.1 reinoud * check if 2nd anchor is different from 1st; if so, go for 2nd. This
830 1.1 reinoud * avoids the `compatibility features' of DirectCD that may confuse
831 1.1 reinoud * stuff completely.
832 1.1 reinoud */
833 1.1 reinoud
834 1.1 reinoud anchor = ump->anchors[0];
835 1.1 reinoud anchor2 = ump->anchors[1];
836 1.1 reinoud assert(anchor);
837 1.1 reinoud
838 1.1 reinoud if (anchor2) {
839 1.1 reinoud size = sizeof(struct extent_ad);
840 1.1 reinoud if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
841 1.1 reinoud anchor = anchor2;
842 1.1 reinoud /* reserve is specified to be a literal copy of main */
843 1.9 christos }
844 1.1 reinoud
845 1.1 reinoud main_loc = udf_rw32(anchor->main_vds_ex.loc);
846 1.1 reinoud main_len = udf_rw32(anchor->main_vds_ex.len);
847 1.1 reinoud
848 1.1 reinoud reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
849 1.1 reinoud reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
850 1.1 reinoud
851 1.1 reinoud error = udf_read_vds_extent(ump, main_loc, main_len);
852 1.1 reinoud if (error) {
853 1.1 reinoud printf("UDF mount: reading in reserve VDS extent\n");
854 1.1 reinoud error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
855 1.9 christos }
856 1.1 reinoud
857 1.1 reinoud return error;
858 1.1 reinoud }
859 1.1 reinoud
860 1.1 reinoud /* --------------------------------------------------------------------- */
861 1.1 reinoud
862 1.1 reinoud /*
863 1.1 reinoud * Read in the logical volume integrity sequence pointed to by our logical
864 1.1 reinoud * volume descriptor. Its a sequence that can be extended using fields in the
865 1.1 reinoud * integrity descriptor itself. On sequential media only one is found, on
866 1.1 reinoud * rewritable media a sequence of descriptors can be found as a form of
867 1.1 reinoud * history keeping and on non sequential write-once media the chain is vital
868 1.1 reinoud * to allow more and more descriptors to be written. The last descriptor
869 1.1 reinoud * written in an extent needs to claim space for a new extent.
870 1.1 reinoud */
871 1.1 reinoud
872 1.1 reinoud static int
873 1.1 reinoud udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
874 1.1 reinoud {
875 1.1 reinoud union dscrptr *dscr;
876 1.1 reinoud struct logvol_int_desc *lvint;
877 1.1 reinoud uint32_t sector_size, sector, len;
878 1.1 reinoud int dscr_type, error;
879 1.1 reinoud
880 1.1 reinoud sector_size = ump->discinfo.sector_size;
881 1.1 reinoud len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
882 1.1 reinoud sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
883 1.1 reinoud
884 1.1 reinoud lvint = NULL;
885 1.1 reinoud dscr = NULL;
886 1.1 reinoud error = 0;
887 1.1 reinoud while (len) {
888 1.1 reinoud /* read in our integrity descriptor */
889 1.1 reinoud error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
890 1.1 reinoud if (!error) {
891 1.1 reinoud if (dscr == NULL)
892 1.1 reinoud break; /* empty terminates */
893 1.1 reinoud dscr_type = udf_rw16(dscr->tag.id);
894 1.1 reinoud if (dscr_type == TAGID_TERM) {
895 1.1 reinoud break; /* clean terminator */
896 1.9 christos }
897 1.1 reinoud if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
898 1.1 reinoud /* fatal... corrupt disc */
899 1.1 reinoud error = ENOENT;
900 1.1 reinoud break;
901 1.9 christos }
902 1.1 reinoud if (lvint)
903 1.1 reinoud free(lvint, M_UDFVOLD);
904 1.1 reinoud lvint = &dscr->lvid;
905 1.1 reinoud dscr = NULL;
906 1.9 christos } /* else hope for the best... maybe the next is ok */
907 1.1 reinoud
908 1.1 reinoud DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
909 1.1 reinoud udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
910 1.1 reinoud
911 1.1 reinoud /* proceed sequential */
912 1.1 reinoud sector += 1;
913 1.1 reinoud len -= sector_size;
914 1.1 reinoud
915 1.1 reinoud /* are we linking to a new piece? */
916 1.1 reinoud if (lvint->next_extent.len) {
917 1.1 reinoud len = udf_rw32(lvint->next_extent.len);
918 1.1 reinoud sector = udf_rw32(lvint->next_extent.loc);
919 1.9 christos }
920 1.9 christos }
921 1.1 reinoud
922 1.1 reinoud /* clean up the mess, esp. when there is an error */
923 1.1 reinoud if (dscr)
924 1.1 reinoud free(dscr, M_UDFVOLD);
925 1.3 reinoud
926 1.3 reinoud if (error && lvint) {
927 1.1 reinoud free(lvint, M_UDFVOLD);
928 1.3 reinoud lvint = NULL;
929 1.9 christos }
930 1.1 reinoud
931 1.1 reinoud if (!lvint)
932 1.1 reinoud error = ENOENT;
933 1.1 reinoud
934 1.3 reinoud *lvintp = lvint;
935 1.1 reinoud return error;
936 1.1 reinoud }
937 1.1 reinoud
938 1.1 reinoud /* --------------------------------------------------------------------- */
939 1.1 reinoud
940 1.1 reinoud /*
941 1.1 reinoud * Checks if ump's vds information is correct and complete
942 1.1 reinoud */
943 1.1 reinoud
944 1.1 reinoud int
945 1.1 reinoud udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
946 1.1 reinoud union udf_pmap *mapping;
947 1.1 reinoud struct logvol_int_desc *lvint;
948 1.1 reinoud struct udf_logvol_info *lvinfo;
949 1.1 reinoud uint32_t n_pm, mt_l;
950 1.1 reinoud uint8_t *pmap_pos;
951 1.1 reinoud char *domain_name, *map_name;
952 1.1 reinoud const char *check_name;
953 1.1 reinoud int pmap_stype, pmap_size;
954 1.1 reinoud int pmap_type, log_part, phys_part;
955 1.1 reinoud int n_phys, n_virt, n_spar, n_meta;
956 1.1 reinoud int len, error;
957 1.1 reinoud
958 1.1 reinoud if (ump == NULL)
959 1.1 reinoud return ENOENT;
960 1.1 reinoud
961 1.1 reinoud /* we need at least an anchor (trivial, but for safety) */
962 1.1 reinoud if (ump->anchors[0] == NULL)
963 1.1 reinoud return EINVAL;
964 1.1 reinoud
965 1.1 reinoud /* we need at least one primary and one logical volume descriptor */
966 1.1 reinoud if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
967 1.1 reinoud return EINVAL;
968 1.1 reinoud
969 1.1 reinoud /* we need at least one partition descriptor */
970 1.1 reinoud if (ump->partitions[0] == NULL)
971 1.1 reinoud return EINVAL;
972 1.1 reinoud
973 1.1 reinoud /* check logical volume sector size verses device sector size */
974 1.1 reinoud if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
975 1.1 reinoud printf("UDF mount: format violation, lb_size != sector size\n");
976 1.1 reinoud return EINVAL;
977 1.9 christos }
978 1.1 reinoud
979 1.1 reinoud domain_name = ump->logical_vol->domain_id.id;
980 1.1 reinoud if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
981 1.1 reinoud printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
982 1.1 reinoud return EINVAL;
983 1.9 christos }
984 1.1 reinoud
985 1.1 reinoud /* retrieve logical volume integrity sequence */
986 1.1 reinoud error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
987 1.1 reinoud
988 1.1 reinoud /*
989 1.1 reinoud * We need at least one logvol integrity descriptor recorded. Note
990 1.1 reinoud * that its OK to have an open logical volume integrity here. The VAT
991 1.1 reinoud * will close/update the integrity.
992 1.1 reinoud */
993 1.1 reinoud if (ump->logvol_integrity == NULL)
994 1.1 reinoud return EINVAL;
995 1.1 reinoud
996 1.1 reinoud /* process derived structures */
997 1.1 reinoud n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
998 1.1 reinoud lvint = ump->logvol_integrity;
999 1.1 reinoud lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1000 1.1 reinoud ump->logvol_info = lvinfo;
1001 1.1 reinoud
1002 1.1 reinoud /* TODO check udf versions? */
1003 1.1 reinoud
1004 1.1 reinoud /*
1005 1.1 reinoud * check logvol mappings: effective virt->log partmap translation
1006 1.1 reinoud * check and recording of the mapping results. Saves expensive
1007 1.1 reinoud * strncmp() in tight places.
1008 1.1 reinoud */
1009 1.1 reinoud DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1010 1.1 reinoud n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1011 1.1 reinoud mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1012 1.1 reinoud pmap_pos = ump->logical_vol->maps;
1013 1.1 reinoud
1014 1.1 reinoud if (n_pm > UDF_PMAPS) {
1015 1.1 reinoud printf("UDF mount: too many mappings\n");
1016 1.1 reinoud return EINVAL;
1017 1.9 christos }
1018 1.1 reinoud
1019 1.1 reinoud n_phys = n_virt = n_spar = n_meta = 0;
1020 1.1 reinoud for (log_part = 0; log_part < n_pm; log_part++) {
1021 1.1 reinoud mapping = (union udf_pmap *) pmap_pos;
1022 1.1 reinoud pmap_stype = pmap_pos[0];
1023 1.1 reinoud pmap_size = pmap_pos[1];
1024 1.1 reinoud switch (pmap_stype) {
1025 1.1 reinoud case 1: /* physical mapping */
1026 1.1 reinoud /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1027 1.1 reinoud phys_part = udf_rw16(mapping->pm1.part_num);
1028 1.1 reinoud pmap_type = UDF_VTOP_TYPE_PHYS;
1029 1.1 reinoud n_phys++;
1030 1.1 reinoud break;
1031 1.1 reinoud case 2: /* virtual/sparable/meta mapping */
1032 1.1 reinoud map_name = mapping->pm2.part_id.id;
1033 1.1 reinoud /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1034 1.1 reinoud phys_part = udf_rw16(mapping->pm2.part_num);
1035 1.1 reinoud pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1036 1.1 reinoud len = UDF_REGID_ID_SIZE;
1037 1.1 reinoud
1038 1.1 reinoud check_name = "*UDF Virtual Partition";
1039 1.1 reinoud if (strncmp(map_name, check_name, len) == 0) {
1040 1.1 reinoud pmap_type = UDF_VTOP_TYPE_VIRT;
1041 1.1 reinoud n_virt++;
1042 1.1 reinoud break;
1043 1.9 christos }
1044 1.1 reinoud check_name = "*UDF Sparable Partition";
1045 1.1 reinoud if (strncmp(map_name, check_name, len) == 0) {
1046 1.1 reinoud pmap_type = UDF_VTOP_TYPE_SPARABLE;
1047 1.1 reinoud n_spar++;
1048 1.1 reinoud break;
1049 1.9 christos }
1050 1.1 reinoud check_name = "*UDF Metadata Partition";
1051 1.1 reinoud if (strncmp(map_name, check_name, len) == 0) {
1052 1.1 reinoud pmap_type = UDF_VTOP_TYPE_META;
1053 1.1 reinoud n_meta++;
1054 1.1 reinoud break;
1055 1.9 christos }
1056 1.1 reinoud break;
1057 1.1 reinoud default:
1058 1.1 reinoud return EINVAL;
1059 1.9 christos }
1060 1.1 reinoud
1061 1.1 reinoud DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1062 1.1 reinoud pmap_type));
1063 1.1 reinoud if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1064 1.1 reinoud return EINVAL;
1065 1.1 reinoud
1066 1.1 reinoud ump->vtop [log_part] = phys_part;
1067 1.1 reinoud ump->vtop_tp[log_part] = pmap_type;
1068 1.1 reinoud
1069 1.1 reinoud pmap_pos += pmap_size;
1070 1.9 christos }
1071 1.1 reinoud /* not winning the beauty contest */
1072 1.1 reinoud ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1073 1.1 reinoud
1074 1.1 reinoud /* test some basic UDF assertions/requirements */
1075 1.1 reinoud if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1076 1.1 reinoud return EINVAL;
1077 1.1 reinoud
1078 1.1 reinoud if (n_virt) {
1079 1.1 reinoud if ((n_phys == 0) || n_spar || n_meta)
1080 1.1 reinoud return EINVAL;
1081 1.9 christos }
1082 1.1 reinoud if (n_spar + n_phys == 0)
1083 1.1 reinoud return EINVAL;
1084 1.1 reinoud
1085 1.1 reinoud /* vat's can only be on a sequential media */
1086 1.1 reinoud ump->data_alloc = UDF_ALLOC_SPACEMAP;
1087 1.1 reinoud if (n_virt)
1088 1.1 reinoud ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1089 1.1 reinoud
1090 1.1 reinoud ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1091 1.1 reinoud if (n_virt)
1092 1.1 reinoud ump->meta_alloc = UDF_ALLOC_VAT;
1093 1.1 reinoud if (n_meta)
1094 1.1 reinoud ump->meta_alloc = UDF_ALLOC_METABITMAP;
1095 1.1 reinoud
1096 1.1 reinoud /* special cases for pseudo-overwrite */
1097 1.1 reinoud if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1098 1.1 reinoud ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1099 1.1 reinoud if (n_meta) {
1100 1.1 reinoud ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1101 1.1 reinoud } else {
1102 1.1 reinoud ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1103 1.9 christos }
1104 1.9 christos }
1105 1.1 reinoud
1106 1.1 reinoud DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1107 1.1 reinoud ump->data_alloc, ump->meta_alloc));
1108 1.1 reinoud /* TODO determine partitions to write data and metadata ? */
1109 1.1 reinoud
1110 1.1 reinoud /* signal its OK for now */
1111 1.1 reinoud return 0;
1112 1.1 reinoud }
1113 1.1 reinoud
1114 1.1 reinoud /* --------------------------------------------------------------------- */
1115 1.1 reinoud
1116 1.1 reinoud /*
1117 1.1 reinoud * Read in complete VAT file and check if its indeed a VAT file descriptor
1118 1.1 reinoud */
1119 1.1 reinoud
1120 1.1 reinoud static int
1121 1.1 reinoud udf_check_for_vat(struct udf_node *vat_node)
1122 1.1 reinoud {
1123 1.1 reinoud struct udf_mount *ump;
1124 1.1 reinoud struct icb_tag *icbtag;
1125 1.1 reinoud struct timestamp *mtime;
1126 1.1 reinoud struct regid *regid;
1127 1.1 reinoud struct udf_vat *vat;
1128 1.1 reinoud struct udf_logvol_info *lvinfo;
1129 1.1 reinoud uint32_t vat_length, alloc_length;
1130 1.1 reinoud uint32_t vat_offset, vat_entries;
1131 1.1 reinoud uint32_t sector_size;
1132 1.1 reinoud uint32_t sectors;
1133 1.1 reinoud uint32_t *raw_vat;
1134 1.1 reinoud char *regid_name;
1135 1.1 reinoud int filetype;
1136 1.1 reinoud int error;
1137 1.1 reinoud
1138 1.1 reinoud /* vat_length is really 64 bits though impossible */
1139 1.1 reinoud
1140 1.1 reinoud DPRINTF(VOLUMES, ("Checking for VAT\n"));
1141 1.1 reinoud if (!vat_node)
1142 1.1 reinoud return ENOENT;
1143 1.1 reinoud
1144 1.1 reinoud /* get mount info */
1145 1.1 reinoud ump = vat_node->ump;
1146 1.1 reinoud
1147 1.1 reinoud /* check assertions */
1148 1.1 reinoud assert(vat_node->fe || vat_node->efe);
1149 1.1 reinoud assert(ump->logvol_integrity);
1150 1.1 reinoud
1151 1.1 reinoud /* get information from fe/efe */
1152 1.1 reinoud if (vat_node->fe) {
1153 1.1 reinoud vat_length = udf_rw64(vat_node->fe->inf_len);
1154 1.1 reinoud icbtag = &vat_node->fe->icbtag;
1155 1.1 reinoud mtime = &vat_node->fe->mtime;
1156 1.1 reinoud } else {
1157 1.1 reinoud vat_length = udf_rw64(vat_node->efe->inf_len);
1158 1.1 reinoud icbtag = &vat_node->efe->icbtag;
1159 1.1 reinoud mtime = &vat_node->efe->mtime;
1160 1.9 christos }
1161 1.1 reinoud
1162 1.1 reinoud /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1163 1.1 reinoud filetype = icbtag->file_type;
1164 1.1 reinoud if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1165 1.1 reinoud return ENOENT;
1166 1.1 reinoud
1167 1.1 reinoud DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1168 1.1 reinoud /* place a sanity check on the length; currently 1Mb in size */
1169 1.1 reinoud if (vat_length > 1*1024*1024)
1170 1.1 reinoud return ENOENT;
1171 1.1 reinoud
1172 1.1 reinoud /* get sector size */
1173 1.1 reinoud sector_size = vat_node->ump->discinfo.sector_size;
1174 1.1 reinoud
1175 1.1 reinoud /* calculate how many sectors to read in and how much to allocate */
1176 1.1 reinoud sectors = (vat_length + sector_size -1) / sector_size;
1177 1.1 reinoud alloc_length = (sectors + 2) * sector_size;
1178 1.1 reinoud
1179 1.1 reinoud /* try to allocate the space */
1180 1.1 reinoud ump->vat_table_alloc_length = alloc_length;
1181 1.1 reinoud ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1182 1.1 reinoud if (!ump->vat_table)
1183 1.1 reinoud return ENOMEM; /* impossible to allocate */
1184 1.1 reinoud DPRINTF(VOLUMES, ("\talloced fine\n"));
1185 1.1 reinoud
1186 1.1 reinoud /* read it in! */
1187 1.1 reinoud raw_vat = (uint32_t *) ump->vat_table;
1188 1.1 reinoud error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1189 1.1 reinoud if (error) {
1190 1.1 reinoud DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1191 1.1 reinoud /* not completely readable... :( bomb out */
1192 1.1 reinoud free(ump->vat_table, M_UDFMNT);
1193 1.1 reinoud ump->vat_table = NULL;
1194 1.1 reinoud return error;
1195 1.9 christos }
1196 1.1 reinoud DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1197 1.1 reinoud
1198 1.1 reinoud /*
1199 1.1 reinoud * check contents of the file if its the old 1.50 VAT table format.
1200 1.1 reinoud * Its notoriously broken and allthough some implementations support an
1201 1.1 reinoud * extention as defined in the UDF 1.50 errata document, its doubtfull
1202 1.1 reinoud * to be useable since a lot of implementations don't maintain it.
1203 1.1 reinoud */
1204 1.1 reinoud lvinfo = ump->logvol_info;
1205 1.1 reinoud
1206 1.1 reinoud if (filetype == 0) {
1207 1.1 reinoud /* definition */
1208 1.1 reinoud vat_offset = 0;
1209 1.1 reinoud vat_entries = (vat_length-36)/4;
1210 1.1 reinoud
1211 1.1 reinoud /* check 1.50 VAT */
1212 1.1 reinoud regid = (struct regid *) (raw_vat + vat_entries);
1213 1.1 reinoud regid_name = (char *) regid->id;
1214 1.1 reinoud error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1215 1.1 reinoud if (error) {
1216 1.1 reinoud DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1217 1.1 reinoud free(ump->vat_table, M_UDFMNT);
1218 1.1 reinoud ump->vat_table = NULL;
1219 1.1 reinoud return ENOENT;
1220 1.9 christos }
1221 1.1 reinoud /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1222 1.1 reinoud } else {
1223 1.1 reinoud vat = (struct udf_vat *) raw_vat;
1224 1.1 reinoud
1225 1.1 reinoud /* definition */
1226 1.1 reinoud vat_offset = vat->header_len;
1227 1.1 reinoud vat_entries = (vat_length - vat_offset)/4;
1228 1.1 reinoud
1229 1.1 reinoud assert(lvinfo);
1230 1.1 reinoud lvinfo->num_files = vat->num_files;
1231 1.1 reinoud lvinfo->num_directories = vat->num_directories;
1232 1.1 reinoud lvinfo->min_udf_readver = vat->min_udf_readver;
1233 1.1 reinoud lvinfo->min_udf_writever = vat->min_udf_writever;
1234 1.1 reinoud lvinfo->max_udf_writever = vat->max_udf_writever;
1235 1.9 christos }
1236 1.1 reinoud
1237 1.1 reinoud ump->vat_offset = vat_offset;
1238 1.1 reinoud ump->vat_entries = vat_entries;
1239 1.1 reinoud
1240 1.1 reinoud DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1241 1.1 reinoud ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1242 1.1 reinoud ump->logvol_integrity->time = *mtime;
1243 1.1 reinoud
1244 1.1 reinoud return 0; /* success! */
1245 1.1 reinoud }
1246 1.1 reinoud
1247 1.1 reinoud /* --------------------------------------------------------------------- */
1248 1.1 reinoud
1249 1.1 reinoud static int
1250 1.1 reinoud udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1251 1.1 reinoud {
1252 1.1 reinoud struct udf_node *vat_node;
1253 1.1 reinoud struct long_ad icb_loc;
1254 1.1 reinoud uint32_t early_vat_loc, late_vat_loc, vat_loc;
1255 1.1 reinoud int error;
1256 1.1 reinoud
1257 1.1 reinoud /* mapping info not needed */
1258 1.1 reinoud mapping = mapping;
1259 1.1 reinoud
1260 1.13 reinoud vat_loc = ump->last_possible_vat_location;
1261 1.14 reinoud early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1262 1.13 reinoud early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1263 1.1 reinoud late_vat_loc = vat_loc + 1024;
1264 1.1 reinoud
1265 1.1 reinoud /* TODO first search last sector? */
1266 1.1 reinoud do {
1267 1.1 reinoud DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1268 1.1 reinoud icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1269 1.1 reinoud icb_loc.loc.lb_num = udf_rw32(vat_loc);
1270 1.1 reinoud
1271 1.1 reinoud error = udf_get_node(ump, &icb_loc, &vat_node);
1272 1.1 reinoud if (!error) error = udf_check_for_vat(vat_node);
1273 1.1 reinoud if (!error) break;
1274 1.1 reinoud if (vat_node) {
1275 1.1 reinoud vput(vat_node->vnode);
1276 1.1 reinoud udf_dispose_node(vat_node);
1277 1.9 christos }
1278 1.1 reinoud vat_loc--; /* walk backwards */
1279 1.1 reinoud } while (vat_loc >= early_vat_loc);
1280 1.1 reinoud
1281 1.1 reinoud /* we don't need our VAT node anymore */
1282 1.1 reinoud if (vat_node) {
1283 1.1 reinoud vput(vat_node->vnode);
1284 1.1 reinoud udf_dispose_node(vat_node);
1285 1.9 christos }
1286 1.1 reinoud
1287 1.1 reinoud return error;
1288 1.1 reinoud }
1289 1.1 reinoud
1290 1.1 reinoud /* --------------------------------------------------------------------- */
1291 1.1 reinoud
1292 1.1 reinoud static int
1293 1.1 reinoud udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1294 1.1 reinoud {
1295 1.1 reinoud union dscrptr *dscr;
1296 1.1 reinoud struct part_map_spare *pms = (struct part_map_spare *) mapping;
1297 1.1 reinoud uint32_t lb_num;
1298 1.1 reinoud int spar, error;
1299 1.1 reinoud
1300 1.1 reinoud /*
1301 1.1 reinoud * The partition mapping passed on to us specifies the information we
1302 1.1 reinoud * need to locate and initialise the sparable partition mapping
1303 1.1 reinoud * information we need.
1304 1.1 reinoud */
1305 1.1 reinoud
1306 1.1 reinoud DPRINTF(VOLUMES, ("Read sparable table\n"));
1307 1.1 reinoud ump->sparable_packet_len = udf_rw16(pms->packet_len);
1308 1.1 reinoud for (spar = 0; spar < pms->n_st; spar++) {
1309 1.1 reinoud lb_num = pms->st_loc[spar];
1310 1.1 reinoud DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1311 1.1 reinoud error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1312 1.1 reinoud if (!error && dscr) {
1313 1.1 reinoud if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1314 1.1 reinoud if (ump->sparing_table)
1315 1.1 reinoud free(ump->sparing_table, M_UDFVOLD);
1316 1.1 reinoud ump->sparing_table = &dscr->spt;
1317 1.1 reinoud dscr = NULL;
1318 1.1 reinoud DPRINTF(VOLUMES,
1319 1.1 reinoud ("Sparing table accepted (%d entries)\n",
1320 1.1 reinoud udf_rw16(ump->sparing_table->rt_l)));
1321 1.1 reinoud break; /* we're done */
1322 1.9 christos }
1323 1.9 christos }
1324 1.1 reinoud if (dscr)
1325 1.1 reinoud free(dscr, M_UDFVOLD);
1326 1.9 christos }
1327 1.1 reinoud
1328 1.1 reinoud if (ump->sparing_table)
1329 1.1 reinoud return 0;
1330 1.1 reinoud
1331 1.1 reinoud return ENOENT;
1332 1.1 reinoud }
1333 1.1 reinoud
1334 1.1 reinoud /* --------------------------------------------------------------------- */
1335 1.1 reinoud
1336 1.1 reinoud int
1337 1.1 reinoud udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1338 1.1 reinoud {
1339 1.1 reinoud union udf_pmap *mapping;
1340 1.1 reinoud uint32_t n_pm, mt_l;
1341 1.1 reinoud uint32_t log_part;
1342 1.1 reinoud uint8_t *pmap_pos;
1343 1.1 reinoud int pmap_size;
1344 1.1 reinoud int error;
1345 1.1 reinoud
1346 1.1 reinoud /* We have to iterate again over the part mappings for locations */
1347 1.1 reinoud n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1348 1.1 reinoud mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1349 1.1 reinoud pmap_pos = ump->logical_vol->maps;
1350 1.1 reinoud
1351 1.1 reinoud for (log_part = 0; log_part < n_pm; log_part++) {
1352 1.1 reinoud mapping = (union udf_pmap *) pmap_pos;
1353 1.1 reinoud switch (ump->vtop_tp[log_part]) {
1354 1.1 reinoud case UDF_VTOP_TYPE_PHYS :
1355 1.1 reinoud /* nothing */
1356 1.1 reinoud break;
1357 1.1 reinoud case UDF_VTOP_TYPE_VIRT :
1358 1.1 reinoud /* search and load VAT */
1359 1.1 reinoud error = udf_search_vat(ump, mapping);
1360 1.1 reinoud if (error)
1361 1.1 reinoud return ENOENT;
1362 1.1 reinoud break;
1363 1.1 reinoud case UDF_VTOP_TYPE_SPARABLE :
1364 1.1 reinoud /* load one of the sparable tables */
1365 1.1 reinoud error = udf_read_sparables(ump, mapping);
1366 1.1 reinoud break;
1367 1.1 reinoud case UDF_VTOP_TYPE_META :
1368 1.3 reinoud /* TODO load metafile and metabitmapfile FE/EFEs */
1369 1.1 reinoud break;
1370 1.1 reinoud default:
1371 1.1 reinoud break;
1372 1.9 christos }
1373 1.1 reinoud pmap_size = pmap_pos[1];
1374 1.1 reinoud pmap_pos += pmap_size;
1375 1.9 christos }
1376 1.1 reinoud
1377 1.1 reinoud return 0;
1378 1.1 reinoud }
1379 1.1 reinoud
1380 1.1 reinoud /* --------------------------------------------------------------------- */
1381 1.1 reinoud
1382 1.1 reinoud int
1383 1.1 reinoud udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1384 1.1 reinoud {
1385 1.1 reinoud struct udf_node *rootdir_node, *streamdir_node;
1386 1.1 reinoud union dscrptr *dscr;
1387 1.1 reinoud struct long_ad fsd_loc, *dir_loc;
1388 1.1 reinoud uint32_t lb_num, dummy;
1389 1.1 reinoud uint32_t fsd_len;
1390 1.1 reinoud int dscr_type;
1391 1.1 reinoud int error;
1392 1.1 reinoud
1393 1.1 reinoud /* TODO implement FSD reading in seperate function like integrity? */
1394 1.1 reinoud /* get fileset descriptor sequence */
1395 1.1 reinoud fsd_loc = ump->logical_vol->lv_fsd_loc;
1396 1.1 reinoud fsd_len = udf_rw32(fsd_loc.len);
1397 1.1 reinoud
1398 1.1 reinoud dscr = NULL;
1399 1.1 reinoud error = 0;
1400 1.1 reinoud while (fsd_len || error) {
1401 1.1 reinoud DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1402 1.1 reinoud /* translate fsd_loc to lb_num */
1403 1.1 reinoud error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1404 1.1 reinoud if (error)
1405 1.1 reinoud break;
1406 1.1 reinoud DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1407 1.1 reinoud error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1408 1.1 reinoud /* end markers */
1409 1.1 reinoud if (error || (dscr == NULL))
1410 1.1 reinoud break;
1411 1.1 reinoud
1412 1.1 reinoud /* analyse */
1413 1.1 reinoud dscr_type = udf_rw16(dscr->tag.id);
1414 1.1 reinoud if (dscr_type == TAGID_TERM)
1415 1.1 reinoud break;
1416 1.1 reinoud if (dscr_type != TAGID_FSD) {
1417 1.1 reinoud free(dscr, M_UDFVOLD);
1418 1.1 reinoud return ENOENT;
1419 1.9 christos }
1420 1.1 reinoud
1421 1.1 reinoud /*
1422 1.1 reinoud * TODO check for multiple fileset descriptors; its only
1423 1.1 reinoud * picking the last now. Also check for FSD
1424 1.1 reinoud * correctness/interpretability
1425 1.1 reinoud */
1426 1.1 reinoud
1427 1.1 reinoud /* update */
1428 1.1 reinoud if (ump->fileset_desc) {
1429 1.1 reinoud free(ump->fileset_desc, M_UDFVOLD);
1430 1.9 christos }
1431 1.1 reinoud ump->fileset_desc = &dscr->fsd;
1432 1.1 reinoud dscr = NULL;
1433 1.1 reinoud
1434 1.1 reinoud /* continue to the next fsd */
1435 1.1 reinoud fsd_len -= ump->discinfo.sector_size;
1436 1.1 reinoud fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1437 1.1 reinoud
1438 1.1 reinoud /* follow up to fsd->next_ex (long_ad) if its not null */
1439 1.1 reinoud if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1440 1.1 reinoud DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1441 1.1 reinoud fsd_loc = ump->fileset_desc->next_ex;
1442 1.1 reinoud fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1443 1.9 christos }
1444 1.9 christos }
1445 1.1 reinoud if (dscr)
1446 1.1 reinoud free(dscr, M_UDFVOLD);
1447 1.1 reinoud
1448 1.1 reinoud /* there has to be one */
1449 1.1 reinoud if (ump->fileset_desc == NULL)
1450 1.1 reinoud return ENOENT;
1451 1.1 reinoud
1452 1.1 reinoud DPRINTF(VOLUMES, ("FSD read in fine\n"));
1453 1.1 reinoud
1454 1.1 reinoud /*
1455 1.1 reinoud * Now the FSD is known, read in the rootdirectory and if one exists,
1456 1.1 reinoud * the system stream dir. Some files in the system streamdir are not
1457 1.1 reinoud * wanted in this implementation since they are not maintained. If
1458 1.1 reinoud * writing is enabled we'll delete these files if they exist.
1459 1.1 reinoud */
1460 1.1 reinoud
1461 1.1 reinoud rootdir_node = streamdir_node = NULL;
1462 1.1 reinoud dir_loc = NULL;
1463 1.1 reinoud
1464 1.1 reinoud /* try to read in the rootdir */
1465 1.1 reinoud dir_loc = &ump->fileset_desc->rootdir_icb;
1466 1.1 reinoud error = udf_get_node(ump, dir_loc, &rootdir_node);
1467 1.1 reinoud if (error)
1468 1.1 reinoud return ENOENT;
1469 1.1 reinoud
1470 1.1 reinoud /* aparently it read in fine */
1471 1.1 reinoud
1472 1.1 reinoud /*
1473 1.1 reinoud * Try the system stream directory; not very likely in the ones we
1474 1.1 reinoud * test, but for completeness.
1475 1.1 reinoud */
1476 1.1 reinoud dir_loc = &ump->fileset_desc->streamdir_icb;
1477 1.1 reinoud if (udf_rw32(dir_loc->len)) {
1478 1.1 reinoud error = udf_get_node(ump, dir_loc, &streamdir_node);
1479 1.1 reinoud if (error)
1480 1.1 reinoud printf("udf mount: streamdir defined but ignored\n");
1481 1.1 reinoud if (!error) {
1482 1.1 reinoud /*
1483 1.1 reinoud * TODO process streamdir `baddies' i.e. files we dont
1484 1.1 reinoud * want if R/W
1485 1.1 reinoud */
1486 1.9 christos }
1487 1.9 christos }
1488 1.1 reinoud
1489 1.1 reinoud DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1490 1.1 reinoud
1491 1.1 reinoud /* release the vnodes again; they'll be auto-recycled later */
1492 1.1 reinoud if (streamdir_node) {
1493 1.1 reinoud vput(streamdir_node->vnode);
1494 1.9 christos }
1495 1.1 reinoud if (rootdir_node) {
1496 1.1 reinoud vput(rootdir_node->vnode);
1497 1.9 christos }
1498 1.1 reinoud
1499 1.1 reinoud return 0;
1500 1.1 reinoud }
1501 1.1 reinoud
1502 1.1 reinoud /* --------------------------------------------------------------------- */
1503 1.1 reinoud
1504 1.1 reinoud int
1505 1.1 reinoud udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1506 1.1 reinoud uint32_t *lb_numres, uint32_t *extres)
1507 1.1 reinoud {
1508 1.1 reinoud struct part_desc *pdesc;
1509 1.1 reinoud struct spare_map_entry *sme;
1510 1.1 reinoud uint32_t *trans;
1511 1.1 reinoud uint32_t lb_num, lb_rel, lb_packet;
1512 1.1 reinoud int rel, vpart, part;
1513 1.1 reinoud
1514 1.1 reinoud assert(ump && icb_loc && lb_numres);
1515 1.1 reinoud
1516 1.1 reinoud vpart = udf_rw16(icb_loc->loc.part_num);
1517 1.1 reinoud lb_num = udf_rw32(icb_loc->loc.lb_num);
1518 1.1 reinoud if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1519 1.1 reinoud return EINVAL;
1520 1.1 reinoud
1521 1.1 reinoud switch (ump->vtop_tp[vpart]) {
1522 1.1 reinoud case UDF_VTOP_TYPE_RAW :
1523 1.1 reinoud /* 1:1 to the end of the device */
1524 1.1 reinoud *lb_numres = lb_num;
1525 1.1 reinoud *extres = INT_MAX;
1526 1.1 reinoud return 0;
1527 1.1 reinoud case UDF_VTOP_TYPE_PHYS :
1528 1.1 reinoud /* transform into its disc logical block */
1529 1.1 reinoud part = ump->vtop[vpart];
1530 1.1 reinoud pdesc = ump->partitions[part];
1531 1.1 reinoud if (lb_num > udf_rw32(pdesc->part_len))
1532 1.1 reinoud return EINVAL;
1533 1.1 reinoud *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1534 1.1 reinoud
1535 1.1 reinoud /* extent from here to the end of the partition */
1536 1.1 reinoud *extres = udf_rw32(pdesc->part_len) - lb_num;
1537 1.1 reinoud return 0;
1538 1.1 reinoud case UDF_VTOP_TYPE_VIRT :
1539 1.1 reinoud /* only maps one sector, lookup in VAT */
1540 1.1 reinoud if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1541 1.1 reinoud return EINVAL;
1542 1.1 reinoud
1543 1.1 reinoud /* lookup in virtual allocation table */
1544 1.1 reinoud trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1545 1.1 reinoud lb_num = udf_rw32(trans[lb_num]);
1546 1.1 reinoud
1547 1.1 reinoud /* transform into its disc logical block */
1548 1.1 reinoud part = ump->vtop[vpart];
1549 1.1 reinoud pdesc = ump->partitions[part];
1550 1.1 reinoud if (lb_num > udf_rw32(pdesc->part_len))
1551 1.1 reinoud return EINVAL;
1552 1.1 reinoud *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1553 1.1 reinoud
1554 1.1 reinoud /* just one logical block */
1555 1.1 reinoud *extres = 1;
1556 1.1 reinoud return 0;
1557 1.1 reinoud case UDF_VTOP_TYPE_SPARABLE :
1558 1.1 reinoud /* check if the packet containing the lb_num is remapped */
1559 1.1 reinoud lb_packet = lb_num / ump->sparable_packet_len;
1560 1.1 reinoud lb_rel = lb_num % ump->sparable_packet_len;
1561 1.1 reinoud
1562 1.1 reinoud for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1563 1.1 reinoud sme = &ump->sparing_table->entries[rel];
1564 1.1 reinoud if (lb_packet == udf_rw32(sme->org)) {
1565 1.1 reinoud /* NOTE maps to absolute disc logical block! */
1566 1.1 reinoud *lb_numres = udf_rw32(sme->map) + lb_rel;
1567 1.1 reinoud *extres = ump->sparable_packet_len - lb_rel;
1568 1.1 reinoud return 0;
1569 1.9 christos }
1570 1.9 christos }
1571 1.1 reinoud
1572 1.1 reinoud /* transform into its disc logical block */
1573 1.1 reinoud part = ump->vtop[vpart];
1574 1.1 reinoud pdesc = ump->partitions[part];
1575 1.1 reinoud if (lb_num > udf_rw32(pdesc->part_len))
1576 1.1 reinoud return EINVAL;
1577 1.1 reinoud *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1578 1.1 reinoud
1579 1.1 reinoud /* rest of block */
1580 1.1 reinoud *extres = ump->sparable_packet_len - lb_rel;
1581 1.1 reinoud return 0;
1582 1.1 reinoud case UDF_VTOP_TYPE_META :
1583 1.1 reinoud default:
1584 1.1 reinoud printf("UDF vtop translation scheme %d unimplemented yet\n",
1585 1.1 reinoud ump->vtop_tp[vpart]);
1586 1.9 christos }
1587 1.1 reinoud
1588 1.1 reinoud return EINVAL;
1589 1.1 reinoud }
1590 1.1 reinoud
1591 1.1 reinoud /* --------------------------------------------------------------------- */
1592 1.1 reinoud
1593 1.1 reinoud /* To make absolutely sure we are NOT returning zero, add one :) */
1594 1.1 reinoud
1595 1.1 reinoud long
1596 1.1 reinoud udf_calchash(struct long_ad *icbptr)
1597 1.1 reinoud {
1598 1.1 reinoud /* ought to be enough since each mountpoint has its own chain */
1599 1.1 reinoud return udf_rw32(icbptr->loc.lb_num) + 1;
1600 1.1 reinoud }
1601 1.1 reinoud
1602 1.1 reinoud /* --------------------------------------------------------------------- */
1603 1.1 reinoud
1604 1.1 reinoud static struct udf_node *
1605 1.1 reinoud udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1606 1.1 reinoud {
1607 1.1 reinoud struct udf_node *unp;
1608 1.1 reinoud struct vnode *vp;
1609 1.1 reinoud uint32_t hashline;
1610 1.1 reinoud
1611 1.1 reinoud loop:
1612 1.1 reinoud simple_lock(&ump->ihash_slock);
1613 1.1 reinoud
1614 1.1 reinoud hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1615 1.1 reinoud LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1616 1.1 reinoud assert(unp);
1617 1.1 reinoud if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1618 1.1 reinoud unp->loc.loc.part_num == icbptr->loc.part_num) {
1619 1.1 reinoud vp = unp->vnode;
1620 1.1 reinoud assert(vp);
1621 1.1 reinoud simple_lock(&vp->v_interlock);
1622 1.1 reinoud simple_unlock(&ump->ihash_slock);
1623 1.1 reinoud if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1624 1.1 reinoud goto loop;
1625 1.1 reinoud return unp;
1626 1.9 christos }
1627 1.9 christos }
1628 1.1 reinoud simple_unlock(&ump->ihash_slock);
1629 1.1 reinoud
1630 1.1 reinoud return NULL;
1631 1.9 christos }
1632 1.1 reinoud
1633 1.1 reinoud /* --------------------------------------------------------------------- */
1634 1.1 reinoud
1635 1.1 reinoud static void
1636 1.1 reinoud udf_hashins(struct udf_node *unp)
1637 1.1 reinoud {
1638 1.1 reinoud struct udf_mount *ump;
1639 1.1 reinoud uint32_t hashline;
1640 1.1 reinoud
1641 1.1 reinoud ump = unp->ump;
1642 1.1 reinoud simple_lock(&ump->ihash_slock);
1643 1.1 reinoud
1644 1.1 reinoud hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1645 1.1 reinoud LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1646 1.1 reinoud
1647 1.1 reinoud simple_unlock(&ump->ihash_slock);
1648 1.1 reinoud }
1649 1.1 reinoud
1650 1.1 reinoud /* --------------------------------------------------------------------- */
1651 1.1 reinoud
1652 1.1 reinoud static void
1653 1.1 reinoud udf_hashrem(struct udf_node *unp)
1654 1.1 reinoud {
1655 1.1 reinoud struct udf_mount *ump;
1656 1.1 reinoud
1657 1.1 reinoud ump = unp->ump;
1658 1.1 reinoud simple_lock(&ump->ihash_slock);
1659 1.1 reinoud
1660 1.1 reinoud LIST_REMOVE(unp, hashchain);
1661 1.1 reinoud
1662 1.1 reinoud simple_unlock(&ump->ihash_slock);
1663 1.1 reinoud }
1664 1.1 reinoud
1665 1.1 reinoud /* --------------------------------------------------------------------- */
1666 1.1 reinoud
1667 1.1 reinoud int
1668 1.1 reinoud udf_dispose_locked_node(struct udf_node *node)
1669 1.1 reinoud {
1670 1.1 reinoud if (!node)
1671 1.1 reinoud return 0;
1672 1.1 reinoud if (node->vnode)
1673 1.1 reinoud VOP_UNLOCK(node->vnode, 0);
1674 1.1 reinoud return udf_dispose_node(node);
1675 1.1 reinoud }
1676 1.1 reinoud
1677 1.1 reinoud /* --------------------------------------------------------------------- */
1678 1.1 reinoud
1679 1.1 reinoud int
1680 1.1 reinoud udf_dispose_node(struct udf_node *node)
1681 1.1 reinoud {
1682 1.1 reinoud struct vnode *vp;
1683 1.1 reinoud
1684 1.1 reinoud DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1685 1.1 reinoud if (!node) {
1686 1.1 reinoud DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1687 1.1 reinoud return 0;
1688 1.9 christos }
1689 1.1 reinoud
1690 1.1 reinoud vp = node->vnode;
1691 1.1 reinoud
1692 1.1 reinoud /* TODO extended attributes and streamdir */
1693 1.1 reinoud
1694 1.1 reinoud /* remove from our hash lookup table */
1695 1.1 reinoud udf_hashrem(node);
1696 1.1 reinoud
1697 1.1 reinoud /* dissociate our udf_node from the vnode */
1698 1.1 reinoud vp->v_data = NULL;
1699 1.1 reinoud
1700 1.1 reinoud /* free associated memory and the node itself */
1701 1.1 reinoud if (node->fe)
1702 1.14 reinoud pool_put(node->ump->desc_pool, node->fe);
1703 1.1 reinoud if (node->efe)
1704 1.14 reinoud pool_put(node->ump->desc_pool, node->efe);
1705 1.1 reinoud pool_put(&udf_node_pool, node);
1706 1.1 reinoud
1707 1.1 reinoud return 0;
1708 1.1 reinoud }
1709 1.1 reinoud
1710 1.1 reinoud /* --------------------------------------------------------------------- */
1711 1.1 reinoud
1712 1.1 reinoud /*
1713 1.1 reinoud * Genfs interfacing
1714 1.1 reinoud *
1715 1.1 reinoud * static const struct genfs_ops udffs_genfsops = {
1716 1.1 reinoud * .gop_size = genfs_size,
1717 1.1 reinoud * size of transfers
1718 1.1 reinoud * .gop_alloc = udf_gop_alloc,
1719 1.1 reinoud * unknown
1720 1.1 reinoud * .gop_write = genfs_gop_write,
1721 1.1 reinoud * putpages interface code
1722 1.1 reinoud * .gop_markupdate = udf_gop_markupdate,
1723 1.1 reinoud * set update/modify flags etc.
1724 1.9 christos * }
1725 1.1 reinoud */
1726 1.1 reinoud
1727 1.1 reinoud /*
1728 1.1 reinoud * Genfs interface. These four functions are the only ones defined though not
1729 1.1 reinoud * documented... great.... why is chosen for the `.' initialisers i dont know
1730 1.1 reinoud * but other filingsystems seem to use it this way.
1731 1.1 reinoud */
1732 1.1 reinoud
1733 1.1 reinoud static int
1734 1.1 reinoud udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1735 1.7 elad kauth_cred_t cred)
1736 1.1 reinoud {
1737 1.1 reinoud return 0;
1738 1.1 reinoud }
1739 1.1 reinoud
1740 1.1 reinoud
1741 1.1 reinoud static void
1742 1.1 reinoud udf_gop_markupdate(struct vnode *vp, int flags)
1743 1.1 reinoud {
1744 1.1 reinoud struct udf_node *udf_node = VTOI(vp);
1745 1.1 reinoud u_long mask;
1746 1.1 reinoud
1747 1.1 reinoud udf_node = udf_node; /* shut up gcc */
1748 1.1 reinoud
1749 1.1 reinoud mask = 0;
1750 1.1 reinoud #ifdef notyet
1751 1.1 reinoud if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1752 1.1 reinoud mask = UDF_SET_ACCESS;
1753 1.1 reinoud }
1754 1.1 reinoud if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1755 1.1 reinoud mask |= UDF_SET_UPDATE;
1756 1.1 reinoud }
1757 1.1 reinoud if (mask) {
1758 1.1 reinoud udf_node->update_flag |= mask;
1759 1.1 reinoud }
1760 1.1 reinoud #endif
1761 1.1 reinoud /* msdosfs doesn't do it, but shouldn't we update the times here? */
1762 1.1 reinoud }
1763 1.1 reinoud
1764 1.1 reinoud
1765 1.1 reinoud static const struct genfs_ops udf_genfsops = {
1766 1.1 reinoud .gop_size = genfs_size,
1767 1.1 reinoud .gop_alloc = udf_gop_alloc,
1768 1.1 reinoud .gop_write = genfs_gop_write,
1769 1.1 reinoud .gop_markupdate = udf_gop_markupdate,
1770 1.1 reinoud };
1771 1.1 reinoud
1772 1.1 reinoud /* --------------------------------------------------------------------- */
1773 1.1 reinoud
1774 1.1 reinoud /*
1775 1.1 reinoud * Each node can have an attached streamdir node though not
1776 1.1 reinoud * recursively. These are otherwise known as named substreams/named
1777 1.1 reinoud * extended attributes that have no size limitations.
1778 1.1 reinoud *
1779 1.1 reinoud * `Normal' extended attributes are indicated with a number and are recorded
1780 1.1 reinoud * in either the fe/efe descriptor itself for small descriptors or recorded in
1781 1.1 reinoud * the attached extended attribute file. Since this file can get fragmented,
1782 1.1 reinoud * care ought to be taken.
1783 1.1 reinoud */
1784 1.1 reinoud
1785 1.1 reinoud int
1786 1.1 reinoud udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1787 1.1 reinoud struct udf_node **noderes)
1788 1.1 reinoud {
1789 1.1 reinoud union dscrptr *dscr, *tmpdscr;
1790 1.1 reinoud struct udf_node *node;
1791 1.1 reinoud struct vnode *nvp;
1792 1.1 reinoud struct long_ad icb_loc;
1793 1.1 reinoud extern int (**udf_vnodeop_p)(void *);
1794 1.1 reinoud uint64_t file_size;
1795 1.1 reinoud uint32_t lb_size, sector, dummy;
1796 1.1 reinoud int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1797 1.1 reinoud int error;
1798 1.1 reinoud
1799 1.1 reinoud DPRINTF(NODE, ("udf_get_node called\n"));
1800 1.1 reinoud *noderes = node = NULL;
1801 1.1 reinoud
1802 1.1 reinoud /* lock to disallow simultanious creation of same node */
1803 1.1 reinoud lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1804 1.1 reinoud
1805 1.1 reinoud DPRINTF(NODE, ("\tlookup in hash table\n"));
1806 1.1 reinoud /* lookup in hash table */
1807 1.1 reinoud assert(ump);
1808 1.1 reinoud assert(node_icb_loc);
1809 1.1 reinoud node = udf_hashget(ump, node_icb_loc);
1810 1.1 reinoud if (node) {
1811 1.1 reinoud DPRINTF(NODE, ("\tgot it from the hash!\n"));
1812 1.1 reinoud /* vnode is returned locked */
1813 1.1 reinoud *noderes = node;
1814 1.1 reinoud lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1815 1.1 reinoud return 0;
1816 1.9 christos }
1817 1.1 reinoud
1818 1.1 reinoud /* garbage check: translate node_icb_loc to sectornr */
1819 1.1 reinoud error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1820 1.1 reinoud if (error) {
1821 1.1 reinoud /* no use, this will fail anyway */
1822 1.1 reinoud lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1823 1.1 reinoud return EINVAL;
1824 1.9 christos }
1825 1.1 reinoud
1826 1.1 reinoud /* build node (do initialise!) */
1827 1.1 reinoud node = pool_get(&udf_node_pool, PR_WAITOK);
1828 1.1 reinoud memset(node, 0, sizeof(struct udf_node));
1829 1.1 reinoud
1830 1.1 reinoud DPRINTF(NODE, ("\tget new vnode\n"));
1831 1.1 reinoud /* give it a vnode */
1832 1.1 reinoud error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1833 1.1 reinoud if (error) {
1834 1.1 reinoud pool_put(&udf_node_pool, node);
1835 1.1 reinoud lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1836 1.1 reinoud return error;
1837 1.9 christos }
1838 1.1 reinoud
1839 1.1 reinoud /* allways return locked vnode */
1840 1.1 reinoud if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1841 1.1 reinoud /* recycle vnode and unlock; simultanious will fail too */
1842 1.1 reinoud ungetnewvnode(nvp);
1843 1.1 reinoud lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1844 1.1 reinoud return error;
1845 1.9 christos }
1846 1.1 reinoud
1847 1.1 reinoud /* initialise crosslinks, note location of fe/efe for hashing */
1848 1.1 reinoud node->ump = ump;
1849 1.1 reinoud node->vnode = nvp;
1850 1.1 reinoud nvp->v_data = node;
1851 1.1 reinoud node->loc = *node_icb_loc;
1852 1.1 reinoud node->lockf = 0;
1853 1.1 reinoud
1854 1.1 reinoud /* insert into the hash lookup */
1855 1.1 reinoud udf_hashins(node);
1856 1.1 reinoud
1857 1.1 reinoud /* safe to unlock, the entry is in the hash table, vnode is locked */
1858 1.1 reinoud lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1859 1.1 reinoud
1860 1.1 reinoud icb_loc = *node_icb_loc;
1861 1.1 reinoud needs_indirect = 0;
1862 1.1 reinoud strat4096 = 0;
1863 1.1 reinoud udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1864 1.1 reinoud file_size = 0;
1865 1.1 reinoud lb_size = udf_rw32(ump->logical_vol->lb_size);
1866 1.1 reinoud
1867 1.1 reinoud do {
1868 1.1 reinoud error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
1869 1.1 reinoud if (error)
1870 1.1 reinoud break;
1871 1.1 reinoud
1872 1.1 reinoud /* try to read in fe/efe */
1873 1.1 reinoud error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1874 1.1 reinoud
1875 1.1 reinoud /* blank sector marks end of sequence, check this */
1876 1.1 reinoud if ((tmpdscr == NULL) && (!strat4096))
1877 1.1 reinoud error = ENOENT;
1878 1.1 reinoud
1879 1.1 reinoud /* break if read error or blank sector */
1880 1.1 reinoud if (error || (tmpdscr == NULL))
1881 1.1 reinoud break;
1882 1.1 reinoud
1883 1.1 reinoud /* process descriptor based on the descriptor type */
1884 1.1 reinoud dscr_type = udf_rw16(tmpdscr->tag.id);
1885 1.1 reinoud
1886 1.1 reinoud /* if dealing with an indirect entry, follow the link */
1887 1.1 reinoud if (dscr_type == TAGID_INDIRECT_ENTRY) {
1888 1.1 reinoud needs_indirect = 0;
1889 1.1 reinoud icb_loc = tmpdscr->inde.indirect_icb;
1890 1.1 reinoud free(tmpdscr, M_UDFTEMP);
1891 1.1 reinoud continue;
1892 1.9 christos }
1893 1.1 reinoud
1894 1.1 reinoud /* only file entries and extended file entries allowed here */
1895 1.1 reinoud if ((dscr_type != TAGID_FENTRY) &&
1896 1.1 reinoud (dscr_type != TAGID_EXTFENTRY)) {
1897 1.1 reinoud free(tmpdscr, M_UDFTEMP);
1898 1.1 reinoud error = ENOENT;
1899 1.1 reinoud break;
1900 1.9 christos }
1901 1.1 reinoud
1902 1.1 reinoud /* get descriptor space from our pool */
1903 1.1 reinoud KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1904 1.1 reinoud
1905 1.14 reinoud dscr = pool_get(ump->desc_pool, PR_WAITOK);
1906 1.1 reinoud memcpy(dscr, tmpdscr, lb_size);
1907 1.1 reinoud free(tmpdscr, M_UDFTEMP);
1908 1.1 reinoud
1909 1.1 reinoud /* record and process/update (ext)fentry */
1910 1.1 reinoud if (dscr_type == TAGID_FENTRY) {
1911 1.1 reinoud if (node->fe)
1912 1.14 reinoud pool_put(ump->desc_pool, node->fe);
1913 1.1 reinoud node->fe = &dscr->fe;
1914 1.1 reinoud strat = udf_rw16(node->fe->icbtag.strat_type);
1915 1.1 reinoud udf_file_type = node->fe->icbtag.file_type;
1916 1.1 reinoud file_size = udf_rw64(node->fe->inf_len);
1917 1.1 reinoud } else {
1918 1.1 reinoud if (node->efe)
1919 1.14 reinoud pool_put(ump->desc_pool, node->efe);
1920 1.1 reinoud node->efe = &dscr->efe;
1921 1.1 reinoud strat = udf_rw16(node->efe->icbtag.strat_type);
1922 1.1 reinoud udf_file_type = node->efe->icbtag.file_type;
1923 1.1 reinoud file_size = udf_rw64(node->efe->inf_len);
1924 1.9 christos }
1925 1.1 reinoud
1926 1.1 reinoud /* check recording strategy (structure) */
1927 1.1 reinoud
1928 1.1 reinoud /*
1929 1.1 reinoud * Strategy 4096 is a daisy linked chain terminating with an
1930 1.1 reinoud * unrecorded sector or a TERM descriptor. The next
1931 1.1 reinoud * descriptor is to be found in the sector that follows the
1932 1.1 reinoud * current sector.
1933 1.1 reinoud */
1934 1.1 reinoud if (strat == 4096) {
1935 1.1 reinoud strat4096 = 1;
1936 1.1 reinoud needs_indirect = 1;
1937 1.1 reinoud
1938 1.1 reinoud icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1939 1.9 christos }
1940 1.1 reinoud
1941 1.1 reinoud /*
1942 1.1 reinoud * Strategy 4 is the normal strategy and terminates, but if
1943 1.1 reinoud * we're in strategy 4096, we can't have strategy 4 mixed in
1944 1.1 reinoud */
1945 1.1 reinoud
1946 1.1 reinoud if (strat == 4) {
1947 1.1 reinoud if (strat4096) {
1948 1.1 reinoud error = EINVAL;
1949 1.1 reinoud break;
1950 1.9 christos }
1951 1.1 reinoud break; /* done */
1952 1.9 christos }
1953 1.1 reinoud } while (!error);
1954 1.1 reinoud
1955 1.1 reinoud if (error) {
1956 1.1 reinoud /* recycle udf_node */
1957 1.1 reinoud udf_dispose_node(node);
1958 1.1 reinoud
1959 1.1 reinoud /* recycle vnode */
1960 1.1 reinoud nvp->v_data = NULL;
1961 1.1 reinoud ungetnewvnode(nvp);
1962 1.1 reinoud
1963 1.1 reinoud return EINVAL; /* error code ok? */
1964 1.9 christos }
1965 1.1 reinoud
1966 1.1 reinoud /* post process and initialise node */
1967 1.1 reinoud
1968 1.1 reinoud /* assert no references to dscr anymore beyong this point */
1969 1.1 reinoud assert((node->fe) || (node->efe));
1970 1.1 reinoud dscr = NULL;
1971 1.1 reinoud
1972 1.1 reinoud /*
1973 1.1 reinoud * Record where to record an updated version of the descriptor. If
1974 1.1 reinoud * there is a sequence of indirect entries, icb_loc will have been
1975 1.1 reinoud * updated. Its the write disipline to allocate new space and to make
1976 1.1 reinoud * sure the chain is maintained.
1977 1.1 reinoud *
1978 1.1 reinoud * `needs_indirect' flags if the next location is to be filled with
1979 1.1 reinoud * with an indirect entry.
1980 1.1 reinoud */
1981 1.1 reinoud node->next_loc = icb_loc;
1982 1.1 reinoud node->needs_indirect = needs_indirect;
1983 1.1 reinoud
1984 1.1 reinoud /*
1985 1.1 reinoud * Translate UDF filetypes into vnode types.
1986 1.1 reinoud *
1987 1.1 reinoud * Systemfiles like the meta main and mirror files are not treated as
1988 1.1 reinoud * normal files, so we type them as having no type. UDF dictates that
1989 1.1 reinoud * they are not allowed to be visible.
1990 1.1 reinoud */
1991 1.1 reinoud
1992 1.1 reinoud /* TODO specfs, fifofs etc etc. vnops setting */
1993 1.1 reinoud switch (udf_file_type) {
1994 1.1 reinoud case UDF_ICB_FILETYPE_DIRECTORY :
1995 1.1 reinoud case UDF_ICB_FILETYPE_STREAMDIR :
1996 1.1 reinoud nvp->v_type = VDIR;
1997 1.1 reinoud break;
1998 1.1 reinoud case UDF_ICB_FILETYPE_BLOCKDEVICE :
1999 1.1 reinoud nvp->v_type = VBLK;
2000 1.1 reinoud break;
2001 1.1 reinoud case UDF_ICB_FILETYPE_CHARDEVICE :
2002 1.1 reinoud nvp->v_type = VCHR;
2003 1.1 reinoud break;
2004 1.1 reinoud case UDF_ICB_FILETYPE_SYMLINK :
2005 1.1 reinoud nvp->v_type = VLNK;
2006 1.1 reinoud break;
2007 1.1 reinoud case UDF_ICB_FILETYPE_META_MAIN :
2008 1.1 reinoud case UDF_ICB_FILETYPE_META_MIRROR :
2009 1.1 reinoud nvp->v_type = VNON;
2010 1.1 reinoud break;
2011 1.1 reinoud case UDF_ICB_FILETYPE_RANDOMACCESS :
2012 1.1 reinoud nvp->v_type = VREG;
2013 1.1 reinoud break;
2014 1.1 reinoud default:
2015 1.1 reinoud /* YIKES, either a block/char device, fifo or something else */
2016 1.1 reinoud nvp->v_type = VNON;
2017 1.9 christos }
2018 1.1 reinoud
2019 1.1 reinoud /* initialise genfs */
2020 1.1 reinoud genfs_node_init(nvp, &udf_genfsops);
2021 1.1 reinoud
2022 1.1 reinoud /* don't forget to set vnode's v_size */
2023 1.1 reinoud nvp->v_size = file_size;
2024 1.1 reinoud
2025 1.1 reinoud /* TODO ext attr and streamdir nodes */
2026 1.1 reinoud
2027 1.1 reinoud *noderes = node;
2028 1.1 reinoud
2029 1.1 reinoud return 0;
2030 1.1 reinoud }
2031 1.1 reinoud
2032 1.1 reinoud /* --------------------------------------------------------------------- */
2033 1.1 reinoud
2034 1.1 reinoud /* UDF<->unix converters */
2035 1.1 reinoud
2036 1.1 reinoud /* --------------------------------------------------------------------- */
2037 1.1 reinoud
2038 1.1 reinoud static mode_t
2039 1.1 reinoud udf_perm_to_unix_mode(uint32_t perm)
2040 1.1 reinoud {
2041 1.1 reinoud mode_t mode;
2042 1.1 reinoud
2043 1.1 reinoud mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2044 1.1 reinoud mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2045 1.1 reinoud mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2046 1.1 reinoud
2047 1.1 reinoud return mode;
2048 1.1 reinoud }
2049 1.1 reinoud
2050 1.1 reinoud /* --------------------------------------------------------------------- */
2051 1.1 reinoud
2052 1.1 reinoud #ifdef notyet
2053 1.1 reinoud static uint32_t
2054 1.1 reinoud unix_mode_to_udf_perm(mode_t mode)
2055 1.1 reinoud {
2056 1.1 reinoud uint32_t perm;
2057 1.1 reinoud
2058 1.1 reinoud perm = ((mode & S_IRWXO) );
2059 1.1 reinoud perm |= ((mode & S_IRWXG) << 2);
2060 1.1 reinoud perm |= ((mode & S_IRWXU) << 4);
2061 1.1 reinoud perm |= ((mode & S_IWOTH) << 3);
2062 1.1 reinoud perm |= ((mode & S_IWGRP) << 5);
2063 1.1 reinoud perm |= ((mode & S_IWUSR) << 7);
2064 1.1 reinoud
2065 1.1 reinoud return perm;
2066 1.1 reinoud }
2067 1.1 reinoud #endif
2068 1.1 reinoud
2069 1.1 reinoud /* --------------------------------------------------------------------- */
2070 1.1 reinoud
2071 1.1 reinoud static uint32_t
2072 1.1 reinoud udf_icb_to_unix_filetype(uint32_t icbftype)
2073 1.1 reinoud {
2074 1.1 reinoud switch (icbftype) {
2075 1.1 reinoud case UDF_ICB_FILETYPE_DIRECTORY :
2076 1.1 reinoud case UDF_ICB_FILETYPE_STREAMDIR :
2077 1.1 reinoud return S_IFDIR;
2078 1.1 reinoud case UDF_ICB_FILETYPE_FIFO :
2079 1.1 reinoud return S_IFIFO;
2080 1.1 reinoud case UDF_ICB_FILETYPE_CHARDEVICE :
2081 1.1 reinoud return S_IFCHR;
2082 1.1 reinoud case UDF_ICB_FILETYPE_BLOCKDEVICE :
2083 1.1 reinoud return S_IFBLK;
2084 1.1 reinoud case UDF_ICB_FILETYPE_RANDOMACCESS :
2085 1.1 reinoud return S_IFREG;
2086 1.1 reinoud case UDF_ICB_FILETYPE_SYMLINK :
2087 1.1 reinoud return S_IFLNK;
2088 1.1 reinoud case UDF_ICB_FILETYPE_SOCKET :
2089 1.1 reinoud return S_IFSOCK;
2090 1.9 christos }
2091 1.1 reinoud /* no idea what this is */
2092 1.1 reinoud return 0;
2093 1.1 reinoud }
2094 1.1 reinoud
2095 1.1 reinoud /* --------------------------------------------------------------------- */
2096 1.1 reinoud
2097 1.1 reinoud /* TODO KNF-ify */
2098 1.1 reinoud
2099 1.1 reinoud void
2100 1.1 reinoud udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2101 1.1 reinoud {
2102 1.9 christos uint16_t *raw_name, *unix_name;
2103 1.1 reinoud uint16_t *inchp, ch;
2104 1.1 reinoud uint8_t *outchp;
2105 1.1 reinoud int ucode_chars, nice_uchars;
2106 1.1 reinoud
2107 1.11 reinoud raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2108 1.11 reinoud unix_name = raw_name + 1024; /* split space in half */
2109 1.1 reinoud assert(sizeof(char) == sizeof(uint8_t));
2110 1.1 reinoud outchp = (uint8_t *) result;
2111 1.1 reinoud if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2112 1.1 reinoud *raw_name = *unix_name = 0;
2113 1.1 reinoud ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2114 1.1 reinoud ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2115 1.1 reinoud nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2116 1.1 reinoud for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2117 1.1 reinoud ch = *inchp;
2118 1.1 reinoud /* XXX sloppy unicode -> latin */
2119 1.1 reinoud *outchp++ = ch & 255;
2120 1.1 reinoud if (!ch) break;
2121 1.9 christos }
2122 1.1 reinoud *outchp++ = 0;
2123 1.1 reinoud } else {
2124 1.1 reinoud /* assume 8bit char length byte latin-1 */
2125 1.1 reinoud assert(*id == 8);
2126 1.1 reinoud strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2127 1.9 christos }
2128 1.9 christos free(raw_name, M_UDFTEMP);
2129 1.1 reinoud }
2130 1.1 reinoud
2131 1.1 reinoud /* --------------------------------------------------------------------- */
2132 1.1 reinoud
2133 1.1 reinoud /* TODO KNF-ify */
2134 1.1 reinoud
2135 1.1 reinoud void
2136 1.1 reinoud unix_to_udf_name(char *result, char *name,
2137 1.1 reinoud uint8_t *result_len, struct charspec *chsp)
2138 1.1 reinoud {
2139 1.9 christos uint16_t *raw_name;
2140 1.1 reinoud int udf_chars, name_len;
2141 1.1 reinoud char *inchp;
2142 1.1 reinoud uint16_t *outchp;
2143 1.1 reinoud
2144 1.9 christos raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2145 1.1 reinoud /* convert latin-1 or whatever to unicode-16 */
2146 1.1 reinoud *raw_name = 0;
2147 1.1 reinoud name_len = 0;
2148 1.1 reinoud inchp = name;
2149 1.1 reinoud outchp = raw_name;
2150 1.1 reinoud while (*inchp) {
2151 1.1 reinoud *outchp++ = (uint16_t) (*inchp++);
2152 1.1 reinoud name_len++;
2153 1.9 christos }
2154 1.1 reinoud
2155 1.1 reinoud if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2156 1.1 reinoud udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2157 1.1 reinoud } else {
2158 1.1 reinoud /* XXX assume 8bit char length byte latin-1 */
2159 1.1 reinoud *result++ = 8; udf_chars = 1;
2160 1.1 reinoud strncpy(result, name + 1, strlen(name+1));
2161 1.1 reinoud udf_chars += strlen(name);
2162 1.9 christos }
2163 1.1 reinoud *result_len = udf_chars;
2164 1.9 christos free(raw_name, M_UDFTEMP);
2165 1.1 reinoud }
2166 1.1 reinoud
2167 1.1 reinoud /* --------------------------------------------------------------------- */
2168 1.1 reinoud
2169 1.1 reinoud /*
2170 1.1 reinoud * Timestamp to timespec conversion code is taken with small modifications
2171 1.1 reinoud * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
2172 1.1 reinoud * permission from Scott.
2173 1.1 reinoud */
2174 1.1 reinoud
2175 1.1 reinoud static int mon_lens[2][12] = {
2176 1.1 reinoud {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2177 1.1 reinoud {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2178 1.1 reinoud };
2179 1.1 reinoud
2180 1.1 reinoud
2181 1.1 reinoud static int
2182 1.1 reinoud udf_isaleapyear(int year)
2183 1.1 reinoud {
2184 1.1 reinoud int i;
2185 1.1 reinoud
2186 1.1 reinoud i = (year % 4) ? 0 : 1;
2187 1.1 reinoud i &= (year % 100) ? 1 : 0;
2188 1.1 reinoud i |= (year % 400) ? 0 : 1;
2189 1.1 reinoud
2190 1.1 reinoud return i;
2191 1.1 reinoud }
2192 1.1 reinoud
2193 1.1 reinoud
2194 1.1 reinoud void
2195 1.1 reinoud udf_timestamp_to_timespec(struct udf_mount *ump,
2196 1.1 reinoud struct timestamp *timestamp,
2197 1.1 reinoud struct timespec *timespec)
2198 1.1 reinoud {
2199 1.1 reinoud uint32_t usecs, secs, nsecs;
2200 1.1 reinoud uint16_t tz;
2201 1.1 reinoud int i, lpyear, daysinyear, year;
2202 1.1 reinoud
2203 1.1 reinoud timespec->tv_sec = secs = 0;
2204 1.1 reinoud timespec->tv_nsec = nsecs = 0;
2205 1.1 reinoud
2206 1.1 reinoud /*
2207 1.1 reinoud * DirectCD seems to like using bogus year values.
2208 1.1 reinoud *
2209 1.1 reinoud * Distrust time->month especially, since it will be used for an array
2210 1.1 reinoud * index.
2211 1.1 reinoud */
2212 1.1 reinoud year = udf_rw16(timestamp->year);
2213 1.1 reinoud if ((year < 1970) || (timestamp->month > 12)) {
2214 1.1 reinoud return;
2215 1.1 reinoud }
2216 1.1 reinoud
2217 1.1 reinoud /* Calculate the time and day
2218 1.1 reinoud * Day is 1-31, Month is 1-12
2219 1.1 reinoud */
2220 1.1 reinoud
2221 1.1 reinoud usecs = timestamp->usec +
2222 1.1 reinoud 100*timestamp->hund_usec + 10000*timestamp->centisec;
2223 1.1 reinoud nsecs = usecs * 1000;
2224 1.1 reinoud secs = timestamp->second;
2225 1.1 reinoud secs += timestamp->minute * 60;
2226 1.1 reinoud secs += timestamp->hour * 3600;
2227 1.1 reinoud secs += (timestamp->day-1) * 3600 * 24;
2228 1.1 reinoud
2229 1.1 reinoud /* Calclulate the month */
2230 1.1 reinoud lpyear = udf_isaleapyear(year);
2231 1.1 reinoud for (i = 1; i < timestamp->month; i++)
2232 1.1 reinoud secs += mon_lens[lpyear][i-1] * 3600 * 24;
2233 1.1 reinoud
2234 1.1 reinoud for (i = 1970; i < year; i++) {
2235 1.1 reinoud daysinyear = udf_isaleapyear(i) + 365 ;
2236 1.1 reinoud secs += daysinyear * 3600 * 24;
2237 1.1 reinoud }
2238 1.1 reinoud
2239 1.1 reinoud /*
2240 1.1 reinoud * Calculate the time zone. The timezone is 12 bit signed 2's
2241 1.1 reinoud * compliment, so we gotta do some extra magic to handle it right.
2242 1.1 reinoud */
2243 1.1 reinoud tz = udf_rw16(timestamp->type_tz);
2244 1.1 reinoud tz &= 0x0fff; /* only lower 12 bits are significant */
2245 1.1 reinoud if (tz & 0x0800) /* sign extention */
2246 1.1 reinoud tz |= 0xf000;
2247 1.1 reinoud
2248 1.1 reinoud /* TODO check timezone conversion */
2249 1.1 reinoud /* check if we are specified a timezone to convert */
2250 1.1 reinoud if (udf_rw16(timestamp->type_tz) & 0x1000) {
2251 1.1 reinoud if ((int16_t) tz != -2047)
2252 1.1 reinoud secs -= (int16_t) tz * 60;
2253 1.1 reinoud } else {
2254 1.1 reinoud secs -= ump->mount_args.gmtoff;
2255 1.9 christos }
2256 1.1 reinoud
2257 1.1 reinoud timespec->tv_sec = secs;
2258 1.1 reinoud timespec->tv_nsec = nsecs;
2259 1.1 reinoud }
2260 1.1 reinoud
2261 1.1 reinoud /* --------------------------------------------------------------------- */
2262 1.1 reinoud
2263 1.1 reinoud /*
2264 1.1 reinoud * Attribute and filetypes converters with get/set pairs
2265 1.1 reinoud */
2266 1.1 reinoud
2267 1.1 reinoud uint32_t
2268 1.1 reinoud udf_getaccessmode(struct udf_node *udf_node)
2269 1.1 reinoud {
2270 1.1 reinoud struct file_entry *fe;
2271 1.1 reinoud struct extfile_entry *efe;
2272 1.1 reinoud uint32_t udf_perm, icbftype;
2273 1.1 reinoud uint32_t mode, ftype;
2274 1.1 reinoud uint16_t icbflags;
2275 1.1 reinoud
2276 1.1 reinoud if (udf_node->fe) {
2277 1.1 reinoud fe = udf_node->fe;
2278 1.1 reinoud udf_perm = udf_rw32(fe->perm);
2279 1.1 reinoud icbftype = fe->icbtag.file_type;
2280 1.1 reinoud icbflags = udf_rw16(fe->icbtag.flags);
2281 1.1 reinoud } else {
2282 1.1 reinoud assert(udf_node->efe);
2283 1.1 reinoud efe = udf_node->efe;
2284 1.1 reinoud udf_perm = udf_rw32(efe->perm);
2285 1.1 reinoud icbftype = efe->icbtag.file_type;
2286 1.1 reinoud icbflags = udf_rw16(efe->icbtag.flags);
2287 1.9 christos }
2288 1.1 reinoud
2289 1.1 reinoud mode = udf_perm_to_unix_mode(udf_perm);
2290 1.1 reinoud ftype = udf_icb_to_unix_filetype(icbftype);
2291 1.1 reinoud
2292 1.1 reinoud /* set suid, sgid, sticky from flags in fe/efe */
2293 1.1 reinoud if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2294 1.1 reinoud mode |= S_ISUID;
2295 1.1 reinoud if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2296 1.1 reinoud mode |= S_ISGID;
2297 1.1 reinoud if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2298 1.1 reinoud mode |= S_ISVTX;
2299 1.1 reinoud
2300 1.1 reinoud return mode | ftype;
2301 1.1 reinoud }
2302 1.1 reinoud
2303 1.1 reinoud /* --------------------------------------------------------------------- */
2304 1.1 reinoud
2305 1.1 reinoud /*
2306 1.1 reinoud * Directory read and manipulation functions
2307 1.1 reinoud */
2308 1.1 reinoud
2309 1.1 reinoud int
2310 1.1 reinoud udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2311 1.1 reinoud struct long_ad *icb_loc)
2312 1.1 reinoud {
2313 1.1 reinoud struct udf_node *dir_node = VTOI(vp);
2314 1.1 reinoud struct file_entry *fe;
2315 1.1 reinoud struct extfile_entry *efe;
2316 1.1 reinoud struct fileid_desc *fid;
2317 1.1 reinoud struct dirent dirent;
2318 1.1 reinoud uint64_t file_size, diroffset;
2319 1.1 reinoud uint32_t lb_size;
2320 1.1 reinoud int found, error;
2321 1.1 reinoud
2322 1.1 reinoud /* get directory filesize */
2323 1.1 reinoud if (dir_node->fe) {
2324 1.1 reinoud fe = dir_node->fe;
2325 1.1 reinoud file_size = udf_rw64(fe->inf_len);
2326 1.1 reinoud } else {
2327 1.1 reinoud assert(dir_node->efe);
2328 1.1 reinoud efe = dir_node->efe;
2329 1.1 reinoud file_size = udf_rw64(efe->inf_len);
2330 1.9 christos }
2331 1.1 reinoud
2332 1.1 reinoud /* allocate temporary space for fid */
2333 1.1 reinoud lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2334 1.1 reinoud fid = malloc(lb_size, M_TEMP, M_WAITOK);
2335 1.1 reinoud
2336 1.1 reinoud found = 0;
2337 1.1 reinoud diroffset = 0;
2338 1.1 reinoud while (!found && (diroffset < file_size)) {
2339 1.1 reinoud /* transfer a new fid/dirent */
2340 1.1 reinoud error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2341 1.1 reinoud if (error)
2342 1.1 reinoud break;
2343 1.1 reinoud
2344 1.1 reinoud /* skip deleted entries */
2345 1.1 reinoud if (fid->file_char & UDF_FILE_CHAR_DEL)
2346 1.1 reinoud continue;
2347 1.1 reinoud
2348 1.1 reinoud if ((strlen(dirent.d_name) == namelen) &&
2349 1.1 reinoud (strncmp(dirent.d_name, name, namelen) == 0)) {
2350 1.1 reinoud found = 1;
2351 1.1 reinoud *icb_loc = fid->icb;
2352 1.9 christos }
2353 1.9 christos }
2354 1.1 reinoud free(fid, M_TEMP);
2355 1.1 reinoud
2356 1.1 reinoud return found;
2357 1.1 reinoud }
2358 1.1 reinoud
2359 1.1 reinoud /* --------------------------------------------------------------------- */
2360 1.1 reinoud
2361 1.1 reinoud /*
2362 1.1 reinoud * Read one fid and process it into a dirent and advance to the next (*fid)
2363 1.1 reinoud * has to be allocated a logical block in size, (*dirent) struct dirent length
2364 1.1 reinoud */
2365 1.1 reinoud
2366 1.1 reinoud int
2367 1.1 reinoud udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2368 1.1 reinoud struct fileid_desc *fid, struct dirent *dirent)
2369 1.1 reinoud {
2370 1.1 reinoud struct udf_node *dir_node = VTOI(vp);
2371 1.1 reinoud struct udf_mount *ump = dir_node->ump;
2372 1.1 reinoud struct file_entry *fe;
2373 1.1 reinoud struct extfile_entry *efe;
2374 1.1 reinoud struct uio dir_uio;
2375 1.1 reinoud struct iovec dir_iovec;
2376 1.1 reinoud uint32_t entry_length, lb_size;
2377 1.1 reinoud uint64_t file_size;
2378 1.1 reinoud char *fid_name;
2379 1.1 reinoud int enough, error;
2380 1.1 reinoud
2381 1.1 reinoud assert(fid);
2382 1.1 reinoud assert(dirent);
2383 1.1 reinoud assert(dir_node);
2384 1.1 reinoud assert(offset);
2385 1.1 reinoud assert(*offset != 1);
2386 1.1 reinoud
2387 1.1 reinoud DPRINTF(FIDS, ("read_fid_stream called\n"));
2388 1.1 reinoud /* check if we're past the end of the directory */
2389 1.1 reinoud if (dir_node->fe) {
2390 1.1 reinoud fe = dir_node->fe;
2391 1.1 reinoud file_size = udf_rw64(fe->inf_len);
2392 1.1 reinoud } else {
2393 1.1 reinoud assert(dir_node->efe);
2394 1.1 reinoud efe = dir_node->efe;
2395 1.1 reinoud file_size = udf_rw64(efe->inf_len);
2396 1.9 christos }
2397 1.1 reinoud if (*offset >= file_size)
2398 1.1 reinoud return EINVAL;
2399 1.1 reinoud
2400 1.1 reinoud /* get maximum length of FID descriptor */
2401 1.1 reinoud lb_size = udf_rw32(ump->logical_vol->lb_size);
2402 1.1 reinoud
2403 1.1 reinoud /* initialise return values */
2404 1.1 reinoud entry_length = 0;
2405 1.1 reinoud memset(dirent, 0, sizeof(struct dirent));
2406 1.1 reinoud memset(fid, 0, lb_size);
2407 1.1 reinoud
2408 1.1 reinoud /* TODO use vn_rdwr instead of creating our own uio */
2409 1.1 reinoud /* read part of the directory */
2410 1.1 reinoud memset(&dir_uio, 0, sizeof(struct uio));
2411 1.1 reinoud dir_uio.uio_rw = UIO_READ; /* read into this space */
2412 1.1 reinoud dir_uio.uio_iovcnt = 1;
2413 1.1 reinoud dir_uio.uio_iov = &dir_iovec;
2414 1.5 yamt UIO_SETUP_SYSSPACE(&dir_uio);
2415 1.1 reinoud dir_iovec.iov_base = fid;
2416 1.1 reinoud dir_iovec.iov_len = lb_size;
2417 1.1 reinoud dir_uio.uio_offset = *offset;
2418 1.1 reinoud
2419 1.1 reinoud /* limit length of read in piece */
2420 1.1 reinoud dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2421 1.1 reinoud
2422 1.1 reinoud /* read the part into the fid space */
2423 1.1 reinoud error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2424 1.1 reinoud if (error)
2425 1.1 reinoud return error;
2426 1.1 reinoud
2427 1.1 reinoud /*
2428 1.1 reinoud * Check if we got a whole descriptor.
2429 1.1 reinoud * XXX Try to `resync' directory stream when something is very wrong.
2430 1.1 reinoud *
2431 1.1 reinoud */
2432 1.1 reinoud enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2433 1.1 reinoud if (!enough) {
2434 1.1 reinoud /* short dir ... */
2435 1.1 reinoud return EIO;
2436 1.9 christos }
2437 1.1 reinoud
2438 1.1 reinoud /* check if our FID header is OK */
2439 1.1 reinoud error = udf_check_tag(fid);
2440 1.1 reinoud DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2441 1.1 reinoud if (!error) {
2442 1.1 reinoud if (udf_rw16(fid->tag.id) != TAGID_FID)
2443 1.1 reinoud error = ENOENT;
2444 1.9 christos }
2445 1.1 reinoud DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2446 1.1 reinoud
2447 1.1 reinoud /* check for length */
2448 1.1 reinoud if (!error) {
2449 1.1 reinoud entry_length = udf_fidsize(fid, lb_size);
2450 1.1 reinoud enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2451 1.9 christos }
2452 1.1 reinoud DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2453 1.1 reinoud entry_length, enough?"yes":"no"));
2454 1.1 reinoud
2455 1.1 reinoud if (!enough) {
2456 1.1 reinoud /* short dir ... bomb out */
2457 1.1 reinoud return EIO;
2458 1.9 christos }
2459 1.1 reinoud
2460 1.1 reinoud /* check FID contents */
2461 1.1 reinoud if (!error) {
2462 1.1 reinoud error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2463 1.1 reinoud DPRINTF(FIDS, ("\tpayload checked ok\n"));
2464 1.9 christos }
2465 1.1 reinoud if (error) {
2466 1.1 reinoud /* note that is sometimes a bit quick to report */
2467 1.1 reinoud printf("BROKEN DIRECTORY ENTRY\n");
2468 1.1 reinoud /* RESYNC? */
2469 1.1 reinoud /* TODO: use udf_resync_fid_stream */
2470 1.1 reinoud return EIO;
2471 1.9 christos }
2472 1.1 reinoud DPRINTF(FIDS, ("\tinterpret FID\n"));
2473 1.1 reinoud
2474 1.1 reinoud /* we got a whole and valid descriptor! */
2475 1.1 reinoud
2476 1.1 reinoud /* create resulting dirent structure */
2477 1.1 reinoud fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2478 1.1 reinoud udf_to_unix_name(dirent->d_name,
2479 1.1 reinoud fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2480 1.1 reinoud
2481 1.1 reinoud /* '..' has no name, so provide one */
2482 1.1 reinoud if (fid->file_char & UDF_FILE_CHAR_PAR)
2483 1.1 reinoud strcpy(dirent->d_name, "..");
2484 1.1 reinoud
2485 1.1 reinoud dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2486 1.1 reinoud dirent->d_namlen = strlen(dirent->d_name);
2487 1.1 reinoud dirent->d_reclen = _DIRENT_SIZE(dirent);
2488 1.1 reinoud
2489 1.1 reinoud /*
2490 1.1 reinoud * Note that its not worth trying to go for the filetypes now... its
2491 1.1 reinoud * too expensive too
2492 1.1 reinoud */
2493 1.1 reinoud dirent->d_type = DT_UNKNOWN;
2494 1.1 reinoud
2495 1.1 reinoud /* initial guess for filetype we can make */
2496 1.1 reinoud if (fid->file_char & UDF_FILE_CHAR_DIR)
2497 1.1 reinoud dirent->d_type = DT_DIR;
2498 1.1 reinoud
2499 1.1 reinoud /* advance */
2500 1.1 reinoud *offset += entry_length;
2501 1.1 reinoud
2502 1.1 reinoud return error;
2503 1.1 reinoud }
2504 1.1 reinoud
2505 1.1 reinoud /* --------------------------------------------------------------------- */
2506 1.1 reinoud
2507 1.1 reinoud /*
2508 1.1 reinoud * block based file reading and writing
2509 1.1 reinoud */
2510 1.1 reinoud
2511 1.1 reinoud static int
2512 1.1 reinoud udf_read_internal(struct udf_node *node, uint8_t *blob)
2513 1.1 reinoud {
2514 1.1 reinoud struct udf_mount *ump;
2515 1.1 reinoud struct file_entry *fe;
2516 1.1 reinoud struct extfile_entry *efe;
2517 1.1 reinoud uint64_t inflen;
2518 1.1 reinoud uint32_t sector_size;
2519 1.1 reinoud uint8_t *pos;
2520 1.1 reinoud int icbflags, addr_type;
2521 1.1 reinoud
2522 1.1 reinoud /* shut up gcc */
2523 1.1 reinoud inflen = addr_type = icbflags = 0;
2524 1.1 reinoud pos = NULL;
2525 1.1 reinoud
2526 1.1 reinoud /* get extent and do some paranoia checks */
2527 1.1 reinoud ump = node->ump;
2528 1.1 reinoud sector_size = ump->discinfo.sector_size;
2529 1.1 reinoud
2530 1.1 reinoud fe = node->fe;
2531 1.1 reinoud efe = node->efe;
2532 1.1 reinoud if (fe) {
2533 1.1 reinoud inflen = udf_rw64(fe->inf_len);
2534 1.1 reinoud pos = &fe->data[0] + udf_rw32(fe->l_ea);
2535 1.1 reinoud icbflags = udf_rw16(fe->icbtag.flags);
2536 1.9 christos }
2537 1.1 reinoud if (efe) {
2538 1.1 reinoud inflen = udf_rw64(efe->inf_len);
2539 1.1 reinoud pos = &efe->data[0] + udf_rw32(efe->l_ea);
2540 1.1 reinoud icbflags = udf_rw16(efe->icbtag.flags);
2541 1.9 christos }
2542 1.1 reinoud addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2543 1.1 reinoud
2544 1.1 reinoud assert(addr_type == UDF_ICB_INTERN_ALLOC);
2545 1.1 reinoud assert(inflen < sector_size);
2546 1.1 reinoud
2547 1.1 reinoud /* copy out info */
2548 1.1 reinoud memset(blob, 0, sector_size);
2549 1.1 reinoud memcpy(blob, pos, inflen);
2550 1.1 reinoud
2551 1.1 reinoud return 0;
2552 1.1 reinoud }
2553 1.1 reinoud
2554 1.1 reinoud /* --------------------------------------------------------------------- */
2555 1.1 reinoud
2556 1.1 reinoud /*
2557 1.1 reinoud * Read file extent reads an extent specified in sectors from the file. It is
2558 1.1 reinoud * sector based; i.e. no `fancy' offsets.
2559 1.1 reinoud */
2560 1.1 reinoud
2561 1.1 reinoud int
2562 1.1 reinoud udf_read_file_extent(struct udf_node *node,
2563 1.1 reinoud uint32_t from, uint32_t sectors,
2564 1.1 reinoud uint8_t *blob)
2565 1.1 reinoud {
2566 1.1 reinoud struct buf buf;
2567 1.1 reinoud uint32_t sector_size;
2568 1.1 reinoud
2569 1.1 reinoud BUF_INIT(&buf);
2570 1.1 reinoud
2571 1.1 reinoud sector_size = node->ump->discinfo.sector_size;
2572 1.1 reinoud
2573 1.1 reinoud buf.b_bufsize = sectors * sector_size;
2574 1.1 reinoud buf.b_data = blob;
2575 1.1 reinoud buf.b_bcount = buf.b_bufsize;
2576 1.1 reinoud buf.b_resid = buf.b_bcount;
2577 1.1 reinoud buf.b_flags = B_BUSY | B_READ;
2578 1.1 reinoud buf.b_vp = node->vnode;
2579 1.1 reinoud buf.b_proc = NULL;
2580 1.1 reinoud
2581 1.1 reinoud buf.b_blkno = from;
2582 1.1 reinoud buf.b_lblkno = 0;
2583 1.1 reinoud BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2584 1.1 reinoud
2585 1.1 reinoud udf_read_filebuf(node, &buf);
2586 1.1 reinoud return biowait(&buf);
2587 1.1 reinoud }
2588 1.1 reinoud
2589 1.1 reinoud
2590 1.1 reinoud /* --------------------------------------------------------------------- */
2591 1.1 reinoud
2592 1.1 reinoud /*
2593 1.1 reinoud * Read file extent in the buffer.
2594 1.1 reinoud *
2595 1.1 reinoud * The splitup of the extent into seperate request-buffers is to minimise
2596 1.1 reinoud * copying around as much as possible.
2597 1.1 reinoud */
2598 1.1 reinoud
2599 1.1 reinoud
2600 1.12 reinoud /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2601 1.1 reinoud #define FILEBUFSECT 128
2602 1.1 reinoud
2603 1.1 reinoud void
2604 1.1 reinoud udf_read_filebuf(struct udf_node *node, struct buf *buf)
2605 1.1 reinoud {
2606 1.1 reinoud struct buf *nestbuf;
2607 1.10 christos uint64_t *mapping;
2608 1.1 reinoud uint64_t run_start;
2609 1.1 reinoud uint32_t sector_size;
2610 1.1 reinoud uint32_t buf_offset, sector, rbuflen, rblk;
2611 1.1 reinoud uint8_t *buf_pos;
2612 1.1 reinoud int error, run_length;
2613 1.1 reinoud
2614 1.1 reinoud uint32_t from;
2615 1.1 reinoud uint32_t sectors;
2616 1.1 reinoud
2617 1.1 reinoud sector_size = node->ump->discinfo.sector_size;
2618 1.1 reinoud
2619 1.1 reinoud from = buf->b_blkno;
2620 1.1 reinoud sectors = buf->b_bcount / sector_size;
2621 1.1 reinoud
2622 1.1 reinoud /* assure we have enough translation slots */
2623 1.1 reinoud KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2624 1.1 reinoud KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2625 1.1 reinoud
2626 1.1 reinoud if (sectors > FILEBUFSECT) {
2627 1.1 reinoud printf("udf_read_filebuf: implementation limit on bufsize\n");
2628 1.1 reinoud buf->b_error = EIO;
2629 1.1 reinoud buf->b_flags |= B_ERROR;
2630 1.1 reinoud biodone(buf);
2631 1.1 reinoud return;
2632 1.9 christos }
2633 1.1 reinoud
2634 1.10 christos mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2635 1.10 christos
2636 1.1 reinoud error = 0;
2637 1.1 reinoud DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2638 1.1 reinoud error = udf_translate_file_extent(node, from, sectors, mapping);
2639 1.1 reinoud if (error) {
2640 1.1 reinoud buf->b_error = error;
2641 1.1 reinoud buf->b_flags |= B_ERROR;
2642 1.1 reinoud biodone(buf);
2643 1.10 christos goto out;
2644 1.9 christos }
2645 1.1 reinoud DPRINTF(READ, ("\ttranslate extent went OK\n"));
2646 1.1 reinoud
2647 1.1 reinoud /* pre-check if internal or parts are zero */
2648 1.1 reinoud if (*mapping == UDF_TRANS_INTERN) {
2649 1.1 reinoud error = udf_read_internal(node, (uint8_t *) buf->b_data);
2650 1.1 reinoud if (error) {
2651 1.1 reinoud buf->b_error = error;
2652 1.1 reinoud buf->b_flags |= B_ERROR;
2653 1.9 christos }
2654 1.1 reinoud biodone(buf);
2655 1.10 christos goto out;
2656 1.9 christos }
2657 1.1 reinoud DPRINTF(READ, ("\tnot intern\n"));
2658 1.1 reinoud
2659 1.1 reinoud /* request read-in of data from disc sheduler */
2660 1.1 reinoud buf->b_resid = buf->b_bcount;
2661 1.1 reinoud for (sector = 0; sector < sectors; sector++) {
2662 1.1 reinoud buf_offset = sector * sector_size;
2663 1.1 reinoud buf_pos = (uint8_t *) buf->b_data + buf_offset;
2664 1.1 reinoud DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2665 1.1 reinoud
2666 1.1 reinoud switch (mapping[sector]) {
2667 1.1 reinoud case UDF_TRANS_UNMAPPED:
2668 1.1 reinoud case UDF_TRANS_ZERO:
2669 1.1 reinoud /* copy zero sector */
2670 1.1 reinoud memset(buf_pos, 0, sector_size);
2671 1.1 reinoud DPRINTF(READ, ("\treturning zero sector\n"));
2672 1.1 reinoud nestiobuf_done(buf, sector_size, 0);
2673 1.1 reinoud break;
2674 1.1 reinoud default :
2675 1.1 reinoud DPRINTF(READ, ("\tread sector "
2676 1.1 reinoud "%"PRIu64"\n", mapping[sector]));
2677 1.1 reinoud
2678 1.1 reinoud run_start = mapping[sector];
2679 1.1 reinoud run_length = 1;
2680 1.1 reinoud while (sector < sectors-1) {
2681 1.1 reinoud if (mapping[sector+1] != mapping[sector]+1)
2682 1.1 reinoud break;
2683 1.1 reinoud run_length++;
2684 1.1 reinoud sector++;
2685 1.9 christos }
2686 1.1 reinoud
2687 1.1 reinoud /*
2688 1.1 reinoud * nest an iobuf and mark it for async reading. Since
2689 1.1 reinoud * we're using nested buffers, they can't be cached by
2690 1.1 reinoud * design.
2691 1.1 reinoud */
2692 1.1 reinoud rbuflen = run_length * sector_size;
2693 1.1 reinoud rblk = run_start * (sector_size/DEV_BSIZE);
2694 1.1 reinoud
2695 1.1 reinoud nestbuf = getiobuf();
2696 1.1 reinoud nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2697 1.1 reinoud /* nestbuf is B_ASYNC */
2698 1.1 reinoud
2699 1.1 reinoud /* CD shedules on raw blkno */
2700 1.1 reinoud nestbuf->b_blkno = rblk;
2701 1.1 reinoud nestbuf->b_proc = NULL;
2702 1.1 reinoud nestbuf->b_cylinder = 0;
2703 1.1 reinoud nestbuf->b_rawblkno = rblk;
2704 1.1 reinoud VOP_STRATEGY(node->ump->devvp, nestbuf);
2705 1.9 christos }
2706 1.9 christos }
2707 1.10 christos out:
2708 1.1 reinoud DPRINTF(READ, ("\tend of read_filebuf\n"));
2709 1.10 christos free(mapping, M_TEMP);
2710 1.10 christos return;
2711 1.1 reinoud }
2712 1.1 reinoud #undef FILEBUFSECT
2713 1.1 reinoud
2714 1.1 reinoud
2715 1.1 reinoud /* --------------------------------------------------------------------- */
2716 1.1 reinoud
2717 1.1 reinoud /*
2718 1.1 reinoud * Translate an extent (in sectors) into sector numbers; used for read and
2719 1.1 reinoud * write operations. DOESNT't check extents.
2720 1.1 reinoud */
2721 1.1 reinoud
2722 1.1 reinoud int
2723 1.1 reinoud udf_translate_file_extent(struct udf_node *node,
2724 1.1 reinoud uint32_t from, uint32_t pages,
2725 1.1 reinoud uint64_t *map)
2726 1.1 reinoud {
2727 1.1 reinoud struct udf_mount *ump;
2728 1.1 reinoud struct file_entry *fe;
2729 1.1 reinoud struct extfile_entry *efe;
2730 1.1 reinoud struct short_ad *s_ad;
2731 1.1 reinoud struct long_ad *l_ad, t_ad;
2732 1.1 reinoud uint64_t transsec;
2733 1.1 reinoud uint32_t sector_size, transsec32;
2734 1.1 reinoud uint32_t overlap, translen;
2735 1.1 reinoud uint32_t vpart_num, lb_num, len, alloclen;
2736 1.1 reinoud uint8_t *pos;
2737 1.1 reinoud int error, flags, addr_type, icblen, icbflags;
2738 1.1 reinoud
2739 1.1 reinoud if (!node)
2740 1.1 reinoud return ENOENT;
2741 1.1 reinoud
2742 1.1 reinoud /* shut up gcc */
2743 1.1 reinoud alloclen = addr_type = icbflags = 0;
2744 1.1 reinoud pos = NULL;
2745 1.1 reinoud
2746 1.1 reinoud /* do the work */
2747 1.1 reinoud ump = node->ump;
2748 1.1 reinoud sector_size = ump->discinfo.sector_size;
2749 1.1 reinoud fe = node->fe;
2750 1.1 reinoud efe = node->efe;
2751 1.1 reinoud if (fe) {
2752 1.1 reinoud alloclen = udf_rw32(fe->l_ad);
2753 1.1 reinoud pos = &fe->data[0] + udf_rw32(fe->l_ea);
2754 1.1 reinoud icbflags = udf_rw16(fe->icbtag.flags);
2755 1.9 christos }
2756 1.1 reinoud if (efe) {
2757 1.1 reinoud alloclen = udf_rw32(efe->l_ad);
2758 1.1 reinoud pos = &efe->data[0] + udf_rw32(efe->l_ea);
2759 1.1 reinoud icbflags = udf_rw16(efe->icbtag.flags);
2760 1.9 christos }
2761 1.1 reinoud addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2762 1.1 reinoud
2763 1.1 reinoud DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2764 1.1 reinoud "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2765 1.1 reinoud
2766 1.1 reinoud vpart_num = udf_rw16(node->loc.loc.part_num);
2767 1.1 reinoud lb_num = len = icblen = 0; /* shut up gcc */
2768 1.1 reinoud while (pages && alloclen) {
2769 1.1 reinoud DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2770 1.1 reinoud switch (addr_type) {
2771 1.1 reinoud case UDF_ICB_INTERN_ALLOC :
2772 1.1 reinoud /* TODO check extents? */
2773 1.1 reinoud *map = UDF_TRANS_INTERN;
2774 1.1 reinoud return 0;
2775 1.1 reinoud case UDF_ICB_SHORT_ALLOC :
2776 1.1 reinoud icblen = sizeof(struct short_ad);
2777 1.1 reinoud s_ad = (struct short_ad *) pos;
2778 1.1 reinoud len = udf_rw32(s_ad->len);
2779 1.1 reinoud lb_num = udf_rw32(s_ad->lb_num);
2780 1.1 reinoud break;
2781 1.1 reinoud case UDF_ICB_LONG_ALLOC :
2782 1.1 reinoud icblen = sizeof(struct long_ad);
2783 1.1 reinoud l_ad = (struct long_ad *) pos;
2784 1.1 reinoud len = udf_rw32(l_ad->len);
2785 1.1 reinoud lb_num = udf_rw32(l_ad->loc.lb_num);
2786 1.1 reinoud vpart_num = udf_rw16(l_ad->loc.part_num);
2787 1.1 reinoud DPRINTFIF(TRANSLATE,
2788 1.1 reinoud (l_ad->impl.im_used.flags &
2789 1.1 reinoud UDF_ADIMP_FLAGS_EXTENT_ERASED),
2790 1.1 reinoud ("UDF: got an `extent erased' flag in long_ad\n"));
2791 1.1 reinoud break;
2792 1.1 reinoud default:
2793 1.1 reinoud /* can't be here */
2794 1.1 reinoud return EINVAL; /* for sure */
2795 1.9 christos }
2796 1.1 reinoud
2797 1.1 reinoud /* process extent */
2798 1.1 reinoud flags = UDF_EXT_FLAGS(len);
2799 1.1 reinoud len = UDF_EXT_LEN(len);
2800 1.1 reinoud
2801 1.1 reinoud overlap = (len + sector_size -1) / sector_size;
2802 1.1 reinoud if (from) {
2803 1.1 reinoud if (from > overlap) {
2804 1.1 reinoud from -= overlap;
2805 1.1 reinoud overlap = 0;
2806 1.1 reinoud } else {
2807 1.1 reinoud lb_num += from; /* advance in extent */
2808 1.1 reinoud overlap -= from;
2809 1.1 reinoud from = 0;
2810 1.9 christos }
2811 1.9 christos }
2812 1.1 reinoud
2813 1.1 reinoud overlap = MIN(overlap, pages);
2814 1.1 reinoud while (overlap) {
2815 1.1 reinoud switch (flags) {
2816 1.1 reinoud case UDF_EXT_REDIRECT :
2817 1.1 reinoud /* no support for allocation extentions yet */
2818 1.1 reinoud /* TODO support for allocation extention */
2819 1.1 reinoud return ENOENT;
2820 1.1 reinoud case UDF_EXT_FREED :
2821 1.1 reinoud case UDF_EXT_FREE :
2822 1.1 reinoud transsec = UDF_TRANS_ZERO;
2823 1.1 reinoud translen = overlap;
2824 1.1 reinoud while (overlap && pages && translen) {
2825 1.1 reinoud *map++ = transsec;
2826 1.1 reinoud overlap--; pages--; translen--;
2827 1.9 christos }
2828 1.1 reinoud break;
2829 1.1 reinoud case UDF_EXT_ALLOCATED :
2830 1.1 reinoud t_ad.loc.lb_num = udf_rw32(lb_num);
2831 1.1 reinoud t_ad.loc.part_num = udf_rw16(vpart_num);
2832 1.1 reinoud error = udf_translate_vtop(ump,
2833 1.1 reinoud &t_ad, &transsec32, &translen);
2834 1.1 reinoud transsec = transsec32;
2835 1.1 reinoud if (error)
2836 1.1 reinoud return error;
2837 1.1 reinoud while (overlap && pages && translen) {
2838 1.1 reinoud *map++ = transsec;
2839 1.1 reinoud transsec++;
2840 1.1 reinoud overlap--; pages--; translen--;
2841 1.9 christos }
2842 1.1 reinoud break;
2843 1.9 christos }
2844 1.9 christos }
2845 1.1 reinoud pos += icblen;
2846 1.1 reinoud alloclen -= icblen;
2847 1.9 christos }
2848 1.1 reinoud return 0;
2849 1.1 reinoud }
2850 1.1 reinoud
2851 1.1 reinoud /* --------------------------------------------------------------------- */
2852 1.1 reinoud
2853