udf_subr.c revision 1.104.2.4 1 /* $NetBSD: udf_subr.c,v 1.104.2.4 2011/05/19 03:43:02 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.104.2.4 2011/05/19 03:43:02 rmind Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 struct partinfo dpart;
192 struct mmc_discinfo *di;
193 int error;
194
195 DPRINTF(VOLUMES, ("read/update disc info\n"));
196 di = &ump->discinfo;
197 memset(di, 0, sizeof(struct mmc_discinfo));
198
199 /* check if we're on a MMC capable device, i.e. CD/DVD */
200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 if (error == 0) {
202 udf_dump_discinfo(ump);
203 return 0;
204 }
205
206 /* disc partition support */
207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 if (error)
209 return ENODEV;
210
211 /* set up a disc info profile for partitions */
212 di->mmc_profile = 0x01; /* disc type */
213 di->mmc_class = MMC_CLASS_DISC;
214 di->disc_state = MMC_STATE_CLOSED;
215 di->last_session_state = MMC_STATE_CLOSED;
216 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
217 di->link_block_penalty = 0;
218
219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 di->mmc_cap = di->mmc_cur;
222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223
224 /* TODO problem with last_possible_lba on resizable VND; request */
225 di->last_possible_lba = dpart.part->p_size;
226 di->sector_size = dpart.disklab->d_secsize;
227
228 di->num_sessions = 1;
229 di->num_tracks = 1;
230
231 di->first_track = 1;
232 di->first_track_last_session = di->last_track_last_session = 1;
233
234 udf_dump_discinfo(ump);
235 return 0;
236 }
237
238
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 struct vnode *devvp = ump->devvp;
243 struct mmc_discinfo *di = &ump->discinfo;
244 int error, class;
245
246 DPRINTF(VOLUMES, ("read track info\n"));
247
248 class = di->mmc_class;
249 if (class != MMC_CLASS_DISC) {
250 /* tracknr specified in struct ti */
251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 return error;
253 }
254
255 /* disc partition support */
256 if (ti->tracknr != 1)
257 return EIO;
258
259 /* create fake ti (TODO check for resized vnds) */
260 ti->sessionnr = 1;
261
262 ti->track_mode = 0; /* XXX */
263 ti->data_mode = 0; /* XXX */
264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265
266 ti->track_start = 0;
267 ti->packet_size = 1;
268
269 /* TODO support for resizable vnd */
270 ti->track_size = di->last_possible_lba;
271 ti->next_writable = di->last_possible_lba;
272 ti->last_recorded = ti->next_writable;
273 ti->free_blocks = 0;
274
275 return 0;
276 }
277
278
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 struct mmc_writeparams mmc_writeparams;
283 int error;
284
285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 return 0;
287
288 /*
289 * only CD burning normally needs setting up, but other disc types
290 * might need other settings to be made. The MMC framework will set up
291 * the nessisary recording parameters according to the disc
292 * characteristics read in. Modifications can be made in the discinfo
293 * structure passed to change the nature of the disc.
294 */
295
296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
299
300 /*
301 * UDF dictates first track to determine track mode for the whole
302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 * To prevent problems with a `reserved' track in front we start with
304 * the 2nd track and if that is not valid, go for the 1st.
305 */
306 mmc_writeparams.tracknr = 2;
307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
309
310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 FKIOCTL, NOCRED);
312 if (error) {
313 mmc_writeparams.tracknr = 1;
314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 &mmc_writeparams, FKIOCTL, NOCRED);
316 }
317 return error;
318 }
319
320
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 struct mmc_op mmc_op;
325
326 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327
328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 return 0;
330
331 /* discs are done now */
332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 return 0;
334
335 memset(&mmc_op, 0, sizeof(struct mmc_op));
336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337
338 /* ignore return code */
339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340
341 return 0;
342 }
343
344 /* --------------------------------------------------------------------- */
345
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 int *first_tracknr, int *last_tracknr)
350 {
351 struct mmc_trackinfo trackinfo;
352 uint32_t tracknr, start_track, num_tracks;
353 int error;
354
355 /* if negative, sessionnr is relative to last session */
356 if (args->sessionnr < 0) {
357 args->sessionnr += ump->discinfo.num_sessions;
358 }
359
360 /* sanity */
361 if (args->sessionnr < 0)
362 args->sessionnr = 0;
363 if (args->sessionnr > ump->discinfo.num_sessions)
364 args->sessionnr = ump->discinfo.num_sessions;
365
366 /* search the tracks for this session, zero session nr indicates last */
367 if (args->sessionnr == 0)
368 args->sessionnr = ump->discinfo.num_sessions;
369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 args->sessionnr--;
371
372 /* sanity again */
373 if (args->sessionnr < 0)
374 args->sessionnr = 0;
375
376 /* search the first and last track of the specified session */
377 num_tracks = ump->discinfo.num_tracks;
378 start_track = ump->discinfo.first_track;
379
380 /* search for first track of this session */
381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 /* get track info */
383 trackinfo.tracknr = tracknr;
384 error = udf_update_trackinfo(ump, &trackinfo);
385 if (error)
386 return error;
387
388 if (trackinfo.sessionnr == args->sessionnr)
389 break;
390 }
391 *first_tracknr = tracknr;
392
393 /* search for last track of this session */
394 for (;tracknr <= num_tracks; tracknr++) {
395 /* get track info */
396 trackinfo.tracknr = tracknr;
397 error = udf_update_trackinfo(ump, &trackinfo);
398 if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 tracknr--;
400 break;
401 }
402 }
403 if (tracknr > num_tracks)
404 tracknr--;
405
406 *last_tracknr = tracknr;
407
408 if (*last_tracknr < *first_tracknr) {
409 printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 "drive returned garbage\n");
411 return EINVAL;
412 }
413
414 assert(*last_tracknr >= *first_tracknr);
415 return 0;
416 }
417
418
419 /*
420 * NOTE: this is the only routine in this file that directly peeks into the
421 * metadata file but since its at a larval state of the mount it can't hurt.
422 *
423 * XXX candidate for udf_allocation.c
424 * XXX clean me up!, change to new node reading code.
425 */
426
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 struct mmc_trackinfo *trackinfo)
430 {
431 struct part_desc *part;
432 struct file_entry *fe;
433 struct extfile_entry *efe;
434 struct short_ad *s_ad;
435 struct long_ad *l_ad;
436 uint32_t track_start, track_end;
437 uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 uint32_t sector_size, len, alloclen, plb_num;
439 uint8_t *pos;
440 int addr_type, icblen, icbflags, flags;
441
442 /* get our track extents */
443 track_start = trackinfo->track_start;
444 track_end = track_start + trackinfo->track_size;
445
446 /* get our base partition extent */
447 KASSERT(ump->node_part == ump->fids_part);
448 part = ump->partitions[ump->vtop[ump->node_part]];
449 phys_part_start = udf_rw32(part->start_loc);
450 phys_part_end = phys_part_start + udf_rw32(part->part_len);
451
452 /* no use if its outside the physical partition */
453 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 return;
455
456 /*
457 * now follow all extents in the fe/efe to see if they refer to this
458 * track
459 */
460
461 sector_size = ump->discinfo.sector_size;
462
463 /* XXX should we claim exclusive access to the metafile ? */
464 /* TODO: move to new node read code */
465 fe = ump->metadata_node->fe;
466 efe = ump->metadata_node->efe;
467 if (fe) {
468 alloclen = udf_rw32(fe->l_ad);
469 pos = &fe->data[0] + udf_rw32(fe->l_ea);
470 icbflags = udf_rw16(fe->icbtag.flags);
471 } else {
472 assert(efe);
473 alloclen = udf_rw32(efe->l_ad);
474 pos = &efe->data[0] + udf_rw32(efe->l_ea);
475 icbflags = udf_rw16(efe->icbtag.flags);
476 }
477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478
479 while (alloclen) {
480 if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 icblen = sizeof(struct short_ad);
482 s_ad = (struct short_ad *) pos;
483 len = udf_rw32(s_ad->len);
484 plb_num = udf_rw32(s_ad->lb_num);
485 } else {
486 /* should not be present, but why not */
487 icblen = sizeof(struct long_ad);
488 l_ad = (struct long_ad *) pos;
489 len = udf_rw32(l_ad->len);
490 plb_num = udf_rw32(l_ad->loc.lb_num);
491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 }
493 /* process extent */
494 flags = UDF_EXT_FLAGS(len);
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_size, packet_size, lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 lb_size = udf_rw32(ump->logical_vol->lb_size);
1291 packet_size = ump->data_track.packet_size; /* XXX data track */
1292
1293 /* search smallest extent */
1294 trace = &ump->lvint_trace[0];
1295 minext = trace->end - trace->start;
1296 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1297 trace = &ump->lvint_trace[ext];
1298 extlen = trace->end - trace->start;
1299 if (extlen == 0)
1300 break;
1301 minext = MIN(minext, extlen);
1302 }
1303 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1304 /* no sense wiping all */
1305 if (losing == minext)
1306 losing--;
1307
1308 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1309
1310 /* get buffer for pieces */
1311 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1312
1313 in_ext = 0;
1314 in_pos = losing;
1315 in_trace = &ump->lvint_trace[in_ext];
1316 in_len = in_trace->end - in_trace->start;
1317 out_ext = 0;
1318 out_wpos = 0;
1319 out_trace = &ump->lvint_trace[out_ext];
1320 out_len = out_trace->end - out_trace->start;
1321
1322 last_dscr = NULL;
1323 for(;;) {
1324 out_trace->pos = out_wpos;
1325 out_trace->wpos = out_trace->pos;
1326 if (in_pos >= in_len) {
1327 in_ext++;
1328 in_pos = 0;
1329 in_trace = &ump->lvint_trace[in_ext];
1330 in_len = in_trace->end - in_trace->start;
1331 }
1332 if (out_wpos >= out_len) {
1333 out_ext++;
1334 out_wpos = 0;
1335 out_trace = &ump->lvint_trace[out_ext];
1336 out_len = out_trace->end - out_trace->start;
1337 }
1338 /* copy overlap contents */
1339 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1340 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1341 if (cpy_len == 0)
1342 break;
1343
1344 /* copy */
1345 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1346 for (cnt = 0; cnt < cpy_len; cnt++) {
1347 /* read in our integrity descriptor */
1348 lb_num = in_trace->start + in_pos + cnt;
1349 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1350 &dscr);
1351 if (error) {
1352 /* copy last one */
1353 dscr = last_dscr;
1354 }
1355 bufs[cnt] = dscr;
1356 if (!error) {
1357 if (dscr == NULL) {
1358 out_trace->pos = out_wpos + cnt;
1359 out_trace->wpos = out_trace->pos;
1360 break; /* empty terminates */
1361 }
1362 dscr_type = udf_rw16(dscr->tag.id);
1363 if (dscr_type == TAGID_TERM) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* clean terminator */
1367 }
1368 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1369 panic( "UDF integrity sequence "
1370 "corrupted while mounted!\n");
1371 }
1372 last_dscr = dscr;
1373 }
1374 }
1375
1376 /* patch up if first entry was on error */
1377 if (bufs[0] == NULL) {
1378 for (cnt = 0; cnt < cpy_len; cnt++)
1379 if (bufs[cnt] != NULL)
1380 break;
1381 last_dscr = bufs[cnt];
1382 for (; cnt > 0; cnt--) {
1383 bufs[cnt] = last_dscr;
1384 }
1385 }
1386
1387 /* glue + write out */
1388 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1389 for (cnt = 0; cnt < cpy_len; cnt++) {
1390 lb_num = out_trace->start + out_wpos + cnt;
1391 lvint = &bufs[cnt]->lvid;
1392
1393 /* set continuation */
1394 len = 0;
1395 start = 0;
1396 if (out_wpos + cnt == out_len) {
1397 /* get continuation */
1398 trace = &ump->lvint_trace[out_ext+1];
1399 len = trace->end - trace->start;
1400 start = trace->start;
1401 }
1402 lvint->next_extent.len = udf_rw32(len);
1403 lvint->next_extent.loc = udf_rw32(start);
1404
1405 lb_num = trace->start + trace->wpos;
1406 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1407 bufs[cnt], lb_num, lb_num);
1408 DPRINTFIF(VOLUMES, error,
1409 ("error writing lvint lb_num\n"));
1410 }
1411
1412 /* free non repeating descriptors */
1413 last_dscr = NULL;
1414 for (cnt = 0; cnt < cpy_len; cnt++) {
1415 if (bufs[cnt] != last_dscr)
1416 free(bufs[cnt], M_UDFVOLD);
1417 last_dscr = bufs[cnt];
1418 }
1419
1420 /* advance */
1421 in_pos += cpy_len;
1422 out_wpos += cpy_len;
1423 }
1424
1425 free(bufs, M_TEMP);
1426
1427 return 0;
1428 }
1429
1430
1431 static int
1432 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1433 {
1434 struct udf_lvintq *trace;
1435 struct timeval now_v;
1436 struct timespec now_s;
1437 uint32_t sector;
1438 int logvol_integrity;
1439 int space, error;
1440
1441 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1442
1443 again:
1444 /* get free space in last chunk */
1445 trace = ump->lvint_trace;
1446 while (trace->wpos > (trace->end - trace->start)) {
1447 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1448 "wpos = %d\n", trace->start, trace->end,
1449 trace->pos, trace->wpos));
1450 trace++;
1451 }
1452
1453 /* check if there is space to append */
1454 space = (trace->end - trace->start) - trace->wpos;
1455 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1456 "space = %d\n", trace->start, trace->end, trace->pos,
1457 trace->wpos, space));
1458
1459 /* get state */
1460 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1461 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1462 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1463 /* TODO extent LVINT space if possible */
1464 return EROFS;
1465 }
1466 }
1467
1468 if (space < 1) {
1469 if (lvflag & UDF_APPENDONLY_LVINT)
1470 return EROFS;
1471 /* loose history by re-writing extents */
1472 error = udf_loose_lvint_history(ump);
1473 if (error)
1474 return error;
1475 goto again;
1476 }
1477
1478 /* update our integrity descriptor to identify us and timestamp it */
1479 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1480 microtime(&now_v);
1481 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1482 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1483 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1484 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1485
1486 /* writeout integrity descriptor */
1487 sector = trace->start + trace->wpos;
1488 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1489 (union dscrptr *) ump->logvol_integrity,
1490 sector, sector);
1491 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1492 if (error)
1493 return error;
1494
1495 /* advance write position */
1496 trace->wpos++; space--;
1497 if (space >= 1) {
1498 /* append terminator */
1499 sector = trace->start + trace->wpos;
1500 error = udf_write_terminator(ump, sector);
1501
1502 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1503 }
1504
1505 space = (trace->end - trace->start) - trace->wpos;
1506 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1507 "space = %d\n", trace->start, trace->end, trace->pos,
1508 trace->wpos, space));
1509 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1510 "successfull\n"));
1511
1512 return error;
1513 }
1514
1515 /* --------------------------------------------------------------------- */
1516
1517 static int
1518 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1519 {
1520 union dscrptr *dscr;
1521 /* struct udf_args *args = &ump->mount_args; */
1522 struct part_desc *partd;
1523 struct part_hdr_desc *parthdr;
1524 struct udf_bitmap *bitmap;
1525 uint32_t phys_part;
1526 uint32_t lb_num, len;
1527 int error, dscr_type;
1528
1529 /* unallocated space map */
1530 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1531 partd = ump->partitions[phys_part];
1532 if (partd == NULL)
1533 continue;
1534 parthdr = &partd->_impl_use.part_hdr;
1535
1536 lb_num = udf_rw32(partd->start_loc);
1537 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1538 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1539 if (len == 0)
1540 continue;
1541
1542 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1543 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1544 if (!error && dscr) {
1545 /* analyse */
1546 dscr_type = udf_rw16(dscr->tag.id);
1547 if (dscr_type == TAGID_SPACE_BITMAP) {
1548 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1549 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1550
1551 /* fill in ump->part_unalloc_bits */
1552 bitmap = &ump->part_unalloc_bits[phys_part];
1553 bitmap->blob = (uint8_t *) dscr;
1554 bitmap->bits = dscr->sbd.data;
1555 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1556 bitmap->pages = NULL; /* TODO */
1557 bitmap->data_pos = 0;
1558 bitmap->metadata_pos = 0;
1559 } else {
1560 free(dscr, M_UDFVOLD);
1561
1562 printf( "UDF mount: error reading unallocated "
1563 "space bitmap\n");
1564 return EROFS;
1565 }
1566 } else {
1567 /* blank not allowed */
1568 printf("UDF mount: blank unallocated space bitmap\n");
1569 return EROFS;
1570 }
1571 }
1572
1573 /* unallocated space table (not supported) */
1574 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1575 partd = ump->partitions[phys_part];
1576 if (partd == NULL)
1577 continue;
1578 parthdr = &partd->_impl_use.part_hdr;
1579
1580 len = udf_rw32(parthdr->unalloc_space_table.len);
1581 if (len) {
1582 printf("UDF mount: space tables not supported\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* freed space map */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 /* freed space map */
1595 lb_num = udf_rw32(partd->start_loc);
1596 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1597 len = udf_rw32(parthdr->freed_space_bitmap.len);
1598 if (len == 0)
1599 continue;
1600
1601 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1602 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1603 if (!error && dscr) {
1604 /* analyse */
1605 dscr_type = udf_rw16(dscr->tag.id);
1606 if (dscr_type == TAGID_SPACE_BITMAP) {
1607 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1608 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1609
1610 /* fill in ump->part_freed_bits */
1611 bitmap = &ump->part_unalloc_bits[phys_part];
1612 bitmap->blob = (uint8_t *) dscr;
1613 bitmap->bits = dscr->sbd.data;
1614 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1615 bitmap->pages = NULL; /* TODO */
1616 bitmap->data_pos = 0;
1617 bitmap->metadata_pos = 0;
1618 } else {
1619 free(dscr, M_UDFVOLD);
1620
1621 printf( "UDF mount: error reading freed "
1622 "space bitmap\n");
1623 return EROFS;
1624 }
1625 } else {
1626 /* blank not allowed */
1627 printf("UDF mount: blank freed space bitmap\n");
1628 return EROFS;
1629 }
1630 }
1631
1632 /* freed space table (not supported) */
1633 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1634 partd = ump->partitions[phys_part];
1635 if (partd == NULL)
1636 continue;
1637 parthdr = &partd->_impl_use.part_hdr;
1638
1639 len = udf_rw32(parthdr->freed_space_table.len);
1640 if (len) {
1641 printf("UDF mount: space tables not supported\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 return 0;
1647 }
1648
1649
1650 /* TODO implement async writeout */
1651 int
1652 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1653 {
1654 union dscrptr *dscr;
1655 /* struct udf_args *args = &ump->mount_args; */
1656 struct part_desc *partd;
1657 struct part_hdr_desc *parthdr;
1658 uint32_t phys_part;
1659 uint32_t lb_num, len, ptov;
1660 int error_all, error;
1661
1662 error_all = 0;
1663 /* unallocated space map */
1664 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1665 partd = ump->partitions[phys_part];
1666 if (partd == NULL)
1667 continue;
1668 parthdr = &partd->_impl_use.part_hdr;
1669
1670 ptov = udf_rw32(partd->start_loc);
1671 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1672 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1673 if (len == 0)
1674 continue;
1675
1676 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1677 lb_num + ptov));
1678 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1679 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1680 (union dscrptr *) dscr,
1681 ptov + lb_num, lb_num);
1682 if (error) {
1683 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1684 error_all = error;
1685 }
1686 }
1687
1688 /* freed space map */
1689 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1690 partd = ump->partitions[phys_part];
1691 if (partd == NULL)
1692 continue;
1693 parthdr = &partd->_impl_use.part_hdr;
1694
1695 /* freed space map */
1696 ptov = udf_rw32(partd->start_loc);
1697 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1698 len = udf_rw32(parthdr->freed_space_bitmap.len);
1699 if (len == 0)
1700 continue;
1701
1702 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1703 lb_num + ptov));
1704 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1705 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1706 (union dscrptr *) dscr,
1707 ptov + lb_num, lb_num);
1708 if (error) {
1709 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1710 error_all = error;
1711 }
1712 }
1713
1714 return error_all;
1715 }
1716
1717
1718 static int
1719 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1720 {
1721 struct udf_node *bitmap_node;
1722 union dscrptr *dscr;
1723 struct udf_bitmap *bitmap;
1724 uint64_t inflen;
1725 int error, dscr_type;
1726
1727 bitmap_node = ump->metadatabitmap_node;
1728
1729 /* only read in when metadata bitmap node is read in */
1730 if (bitmap_node == NULL)
1731 return 0;
1732
1733 if (bitmap_node->fe) {
1734 inflen = udf_rw64(bitmap_node->fe->inf_len);
1735 } else {
1736 KASSERT(bitmap_node->efe);
1737 inflen = udf_rw64(bitmap_node->efe->inf_len);
1738 }
1739
1740 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1741 "%"PRIu64" bytes\n", inflen));
1742
1743 /* allocate space for bitmap */
1744 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1745 if (!dscr)
1746 return ENOMEM;
1747
1748 /* set vnode type to regular file or we can't read from it! */
1749 bitmap_node->vnode->v_type = VREG;
1750
1751 /* read in complete metadata bitmap file */
1752 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1753 dscr,
1754 inflen, 0,
1755 UIO_SYSSPACE,
1756 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1757 NULL, NULL);
1758 if (error) {
1759 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1760 goto errorout;
1761 }
1762
1763 /* analyse */
1764 dscr_type = udf_rw16(dscr->tag.id);
1765 if (dscr_type == TAGID_SPACE_BITMAP) {
1766 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1767 ump->metadata_unalloc_dscr = &dscr->sbd;
1768
1769 /* fill in bitmap bits */
1770 bitmap = &ump->metadata_unalloc_bits;
1771 bitmap->blob = (uint8_t *) dscr;
1772 bitmap->bits = dscr->sbd.data;
1773 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1774 bitmap->pages = NULL; /* TODO */
1775 bitmap->data_pos = 0;
1776 bitmap->metadata_pos = 0;
1777 } else {
1778 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1779 goto errorout;
1780 }
1781
1782 return 0;
1783
1784 errorout:
1785 free(dscr, M_UDFVOLD);
1786 printf( "UDF mount: error reading unallocated "
1787 "space bitmap for metadata partition\n");
1788 return EROFS;
1789 }
1790
1791
1792 int
1793 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1794 {
1795 struct udf_node *bitmap_node;
1796 union dscrptr *dscr;
1797 uint64_t inflen, new_inflen;
1798 int dummy, error;
1799
1800 bitmap_node = ump->metadatabitmap_node;
1801
1802 /* only write out when metadata bitmap node is known */
1803 if (bitmap_node == NULL)
1804 return 0;
1805
1806 if (bitmap_node->fe) {
1807 inflen = udf_rw64(bitmap_node->fe->inf_len);
1808 } else {
1809 KASSERT(bitmap_node->efe);
1810 inflen = udf_rw64(bitmap_node->efe->inf_len);
1811 }
1812
1813 /* reduce length to zero */
1814 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1815 new_inflen = udf_tagsize(dscr, 1);
1816
1817 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1818 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1819
1820 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1821 if (error)
1822 printf("Error resizing metadata space bitmap\n");
1823
1824 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1825 dscr,
1826 new_inflen, 0,
1827 UIO_SYSSPACE,
1828 IO_ALTSEMANTICS, FSCRED,
1829 NULL, NULL);
1830
1831 bitmap_node->i_flags |= IN_MODIFIED;
1832 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1833
1834 error = VOP_FSYNC(bitmap_node->vnode,
1835 FSCRED, FSYNC_WAIT, 0, 0);
1836
1837 if (error)
1838 printf( "Error writing out metadata partition unalloced "
1839 "space bitmap!\n");
1840
1841 return error;
1842 }
1843
1844
1845 /* --------------------------------------------------------------------- */
1846
1847 /*
1848 * Checks if ump's vds information is correct and complete
1849 */
1850
1851 int
1852 udf_process_vds(struct udf_mount *ump) {
1853 union udf_pmap *mapping;
1854 /* struct udf_args *args = &ump->mount_args; */
1855 struct logvol_int_desc *lvint;
1856 struct udf_logvol_info *lvinfo;
1857 uint32_t n_pm, mt_l;
1858 uint8_t *pmap_pos;
1859 char *domain_name, *map_name;
1860 const char *check_name;
1861 char bits[128];
1862 int pmap_stype, pmap_size;
1863 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1864 int n_phys, n_virt, n_spar, n_meta;
1865 int len, error;
1866
1867 if (ump == NULL)
1868 return ENOENT;
1869
1870 /* we need at least an anchor (trivial, but for safety) */
1871 if (ump->anchors[0] == NULL)
1872 return EINVAL;
1873
1874 /* we need at least one primary and one logical volume descriptor */
1875 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1876 return EINVAL;
1877
1878 /* we need at least one partition descriptor */
1879 if (ump->partitions[0] == NULL)
1880 return EINVAL;
1881
1882 /* check logical volume sector size verses device sector size */
1883 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1884 printf("UDF mount: format violation, lb_size != sector size\n");
1885 return EINVAL;
1886 }
1887
1888 /* check domain name */
1889 domain_name = ump->logical_vol->domain_id.id;
1890 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1891 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1892 return EINVAL;
1893 }
1894
1895 /* retrieve logical volume integrity sequence */
1896 error = udf_retrieve_lvint(ump);
1897
1898 /*
1899 * We need at least one logvol integrity descriptor recorded. Note
1900 * that its OK to have an open logical volume integrity here. The VAT
1901 * will close/update the integrity.
1902 */
1903 if (ump->logvol_integrity == NULL)
1904 return EINVAL;
1905
1906 /* process derived structures */
1907 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1908 lvint = ump->logvol_integrity;
1909 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1910 ump->logvol_info = lvinfo;
1911
1912 /* TODO check udf versions? */
1913
1914 /*
1915 * check logvol mappings: effective virt->log partmap translation
1916 * check and recording of the mapping results. Saves expensive
1917 * strncmp() in tight places.
1918 */
1919 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1920 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1921 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1922 pmap_pos = ump->logical_vol->maps;
1923
1924 if (n_pm > UDF_PMAPS) {
1925 printf("UDF mount: too many mappings\n");
1926 return EINVAL;
1927 }
1928
1929 /* count types and set partition numbers */
1930 ump->data_part = ump->node_part = ump->fids_part = 0;
1931 n_phys = n_virt = n_spar = n_meta = 0;
1932 for (log_part = 0; log_part < n_pm; log_part++) {
1933 mapping = (union udf_pmap *) pmap_pos;
1934 pmap_stype = pmap_pos[0];
1935 pmap_size = pmap_pos[1];
1936 switch (pmap_stype) {
1937 case 1: /* physical mapping */
1938 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1939 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1940 pmap_type = UDF_VTOP_TYPE_PHYS;
1941 n_phys++;
1942 ump->data_part = log_part;
1943 ump->node_part = log_part;
1944 ump->fids_part = log_part;
1945 break;
1946 case 2: /* virtual/sparable/meta mapping */
1947 map_name = mapping->pm2.part_id.id;
1948 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1949 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1950 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1951 len = UDF_REGID_ID_SIZE;
1952
1953 check_name = "*UDF Virtual Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_VIRT;
1956 n_virt++;
1957 ump->node_part = log_part;
1958 break;
1959 }
1960 check_name = "*UDF Sparable Partition";
1961 if (strncmp(map_name, check_name, len) == 0) {
1962 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1963 n_spar++;
1964 ump->data_part = log_part;
1965 ump->node_part = log_part;
1966 ump->fids_part = log_part;
1967 break;
1968 }
1969 check_name = "*UDF Metadata Partition";
1970 if (strncmp(map_name, check_name, len) == 0) {
1971 pmap_type = UDF_VTOP_TYPE_META;
1972 n_meta++;
1973 ump->node_part = log_part;
1974 ump->fids_part = log_part;
1975 break;
1976 }
1977 break;
1978 default:
1979 return EINVAL;
1980 }
1981
1982 /*
1983 * BUGALERT: some rogue implementations use random physical
1984 * partition numbers to break other implementations so lookup
1985 * the number.
1986 */
1987 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1988
1989 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1990 raw_phys_part, phys_part, pmap_type));
1991
1992 if (phys_part == UDF_PARTITIONS)
1993 return EINVAL;
1994 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1995 return EINVAL;
1996
1997 ump->vtop [log_part] = phys_part;
1998 ump->vtop_tp[log_part] = pmap_type;
1999
2000 pmap_pos += pmap_size;
2001 }
2002 /* not winning the beauty contest */
2003 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2004
2005 /* test some basic UDF assertions/requirements */
2006 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2007 return EINVAL;
2008
2009 if (n_virt) {
2010 if ((n_phys == 0) || n_spar || n_meta)
2011 return EINVAL;
2012 }
2013 if (n_spar + n_phys == 0)
2014 return EINVAL;
2015
2016 /* select allocation type for each logical partition */
2017 for (log_part = 0; log_part < n_pm; log_part++) {
2018 maps_on = ump->vtop[log_part];
2019 switch (ump->vtop_tp[log_part]) {
2020 case UDF_VTOP_TYPE_PHYS :
2021 assert(maps_on == log_part);
2022 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 break;
2024 case UDF_VTOP_TYPE_VIRT :
2025 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2026 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2027 break;
2028 case UDF_VTOP_TYPE_SPARABLE :
2029 assert(maps_on == log_part);
2030 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2031 break;
2032 case UDF_VTOP_TYPE_META :
2033 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2034 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2035 /* special case for UDF 2.60 */
2036 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2037 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2038 }
2039 break;
2040 default:
2041 panic("bad alloction type in udf's ump->vtop\n");
2042 }
2043 }
2044
2045 /* determine logical volume open/closure actions */
2046 if (n_virt) {
2047 ump->lvopen = 0;
2048 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2049 ump->lvopen |= UDF_OPEN_SESSION ;
2050 ump->lvclose = UDF_WRITE_VAT;
2051 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2052 ump->lvclose |= UDF_CLOSE_SESSION;
2053 } else {
2054 /* `normal' rewritable or non sequential media */
2055 ump->lvopen = UDF_WRITE_LVINT;
2056 ump->lvclose = UDF_WRITE_LVINT;
2057 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2058 ump->lvopen |= UDF_APPENDONLY_LVINT;
2059 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2060 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2061 }
2062
2063 /*
2064 * Determine sheduler error behaviour. For virtual partitions, update
2065 * the trackinfo; for sparable partitions replace a whole block on the
2066 * sparable table. Allways requeue.
2067 */
2068 ump->lvreadwrite = 0;
2069 if (n_virt)
2070 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2071 if (n_spar)
2072 ump->lvreadwrite = UDF_REMAP_BLOCK;
2073
2074 /*
2075 * Select our sheduler
2076 */
2077 ump->strategy = &udf_strat_rmw;
2078 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2079 ump->strategy = &udf_strat_sequential;
2080 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2081 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2082 ump->strategy = &udf_strat_direct;
2083 if (n_spar)
2084 ump->strategy = &udf_strat_rmw;
2085
2086 #if 0
2087 /* read-only access won't benefit from the other shedulers */
2088 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2089 ump->strategy = &udf_strat_direct;
2090 #endif
2091
2092 /* print results */
2093 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2094 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2095 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2096 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2097 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2098 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2099
2100 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2101 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2102 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2103 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2104 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2105 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2106
2107 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2108 (ump->strategy == &udf_strat_direct) ? "Direct" :
2109 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2110 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2111
2112 /* signal its OK for now */
2113 return 0;
2114 }
2115
2116 /* --------------------------------------------------------------------- */
2117
2118 /*
2119 * Update logical volume name in all structures that keep a record of it. We
2120 * use memmove since each of them might be specified as a source.
2121 *
2122 * Note that it doesn't update the VAT structure!
2123 */
2124
2125 static void
2126 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2127 {
2128 struct logvol_desc *lvd = NULL;
2129 struct fileset_desc *fsd = NULL;
2130 struct udf_lv_info *lvi = NULL;
2131
2132 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2133 lvd = ump->logical_vol;
2134 fsd = ump->fileset_desc;
2135 if (ump->implementation)
2136 lvi = &ump->implementation->_impl_use.lv_info;
2137
2138 /* logvol's id might be specified as origional so use memmove here */
2139 memmove(lvd->logvol_id, logvol_id, 128);
2140 if (fsd)
2141 memmove(fsd->logvol_id, logvol_id, 128);
2142 if (lvi)
2143 memmove(lvi->logvol_id, logvol_id, 128);
2144 }
2145
2146 /* --------------------------------------------------------------------- */
2147
2148 void
2149 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2150 uint32_t sector)
2151 {
2152 assert(ump->logical_vol);
2153
2154 tag->id = udf_rw16(tagid);
2155 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2156 tag->cksum = 0;
2157 tag->reserved = 0;
2158 tag->serial_num = ump->logical_vol->tag.serial_num;
2159 tag->tag_loc = udf_rw32(sector);
2160 }
2161
2162
2163 uint64_t
2164 udf_advance_uniqueid(struct udf_mount *ump)
2165 {
2166 uint64_t unique_id;
2167
2168 mutex_enter(&ump->logvol_mutex);
2169 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2170 if (unique_id < 0x10)
2171 unique_id = 0x10;
2172 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2173 mutex_exit(&ump->logvol_mutex);
2174
2175 return unique_id;
2176 }
2177
2178
2179 static void
2180 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2181 {
2182 struct udf_mount *ump = udf_node->ump;
2183 uint32_t num_dirs, num_files;
2184 int udf_file_type;
2185
2186 /* get file type */
2187 if (udf_node->fe) {
2188 udf_file_type = udf_node->fe->icbtag.file_type;
2189 } else {
2190 udf_file_type = udf_node->efe->icbtag.file_type;
2191 }
2192
2193 /* adjust file count */
2194 mutex_enter(&ump->allocate_mutex);
2195 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2196 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2197 ump->logvol_info->num_directories =
2198 udf_rw32((num_dirs + sign));
2199 } else {
2200 num_files = udf_rw32(ump->logvol_info->num_files);
2201 ump->logvol_info->num_files =
2202 udf_rw32((num_files + sign));
2203 }
2204 mutex_exit(&ump->allocate_mutex);
2205 }
2206
2207
2208 void
2209 udf_osta_charset(struct charspec *charspec)
2210 {
2211 memset(charspec, 0, sizeof(struct charspec));
2212 charspec->type = 0;
2213 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2214 }
2215
2216
2217 /* first call udf_set_regid and then the suffix */
2218 void
2219 udf_set_regid(struct regid *regid, char const *name)
2220 {
2221 memset(regid, 0, sizeof(struct regid));
2222 regid->flags = 0; /* not dirty and not protected */
2223 strcpy((char *) regid->id, name);
2224 }
2225
2226
2227 void
2228 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 uint16_t *ver;
2231
2232 ver = (uint16_t *) regid->id_suffix;
2233 *ver = ump->logvol_info->min_udf_readver;
2234 }
2235
2236
2237 void
2238 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2239 {
2240 uint16_t *ver;
2241
2242 ver = (uint16_t *) regid->id_suffix;
2243 *ver = ump->logvol_info->min_udf_readver;
2244
2245 regid->id_suffix[2] = 4; /* unix */
2246 regid->id_suffix[3] = 8; /* NetBSD */
2247 }
2248
2249
2250 void
2251 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2252 {
2253 regid->id_suffix[0] = 4; /* unix */
2254 regid->id_suffix[1] = 8; /* NetBSD */
2255 }
2256
2257
2258 void
2259 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2260 {
2261 regid->id_suffix[0] = APP_VERSION_MAIN;
2262 regid->id_suffix[1] = APP_VERSION_SUB;
2263 }
2264
2265 static int
2266 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2267 struct long_ad *parent, uint64_t unique_id)
2268 {
2269 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2270 int fidsize = 40;
2271
2272 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2273 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2274 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2275 fid->icb = *parent;
2276 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2277 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2278 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2279
2280 return fidsize;
2281 }
2282
2283 /* --------------------------------------------------------------------- */
2284
2285 /*
2286 * Extended attribute support. UDF knows of 3 places for extended attributes:
2287 *
2288 * (a) inside the file's (e)fe in the length of the extended attribute area
2289 * before the allocation descriptors/filedata
2290 *
2291 * (b) in a file referenced by (e)fe->ext_attr_icb and
2292 *
2293 * (c) in the e(fe)'s associated stream directory that can hold various
2294 * sub-files. In the stream directory a few fixed named subfiles are reserved
2295 * for NT/Unix ACL's and OS/2 attributes.
2296 *
2297 * NOTE: Extended attributes are read randomly but allways written
2298 * *atomicaly*. For ACL's this interface is propably different but not known
2299 * to me yet.
2300 *
2301 * Order of extended attributes in a space :
2302 * ECMA 167 EAs
2303 * Non block aligned Implementation Use EAs
2304 * Block aligned Implementation Use EAs
2305 * Application Use EAs
2306 */
2307
2308 static int
2309 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2310 {
2311 uint16_t *spos;
2312
2313 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2314 /* checksum valid? */
2315 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2316 spos = (uint16_t *) implext->data;
2317 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2318 return EINVAL;
2319 }
2320 return 0;
2321 }
2322
2323 static void
2324 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2325 {
2326 uint16_t *spos;
2327
2328 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2329 /* set checksum */
2330 spos = (uint16_t *) implext->data;
2331 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2332 }
2333 }
2334
2335
2336 int
2337 udf_extattr_search_intern(struct udf_node *node,
2338 uint32_t sattr, char const *sattrname,
2339 uint32_t *offsetp, uint32_t *lengthp)
2340 {
2341 struct extattrhdr_desc *eahdr;
2342 struct extattr_entry *attrhdr;
2343 struct impl_extattr_entry *implext;
2344 uint32_t offset, a_l, sector_size;
2345 int32_t l_ea;
2346 uint8_t *pos;
2347 int error;
2348
2349 /* get mountpoint */
2350 sector_size = node->ump->discinfo.sector_size;
2351
2352 /* get information from fe/efe */
2353 if (node->fe) {
2354 l_ea = udf_rw32(node->fe->l_ea);
2355 eahdr = (struct extattrhdr_desc *) node->fe->data;
2356 } else {
2357 assert(node->efe);
2358 l_ea = udf_rw32(node->efe->l_ea);
2359 eahdr = (struct extattrhdr_desc *) node->efe->data;
2360 }
2361
2362 /* something recorded here? */
2363 if (l_ea == 0)
2364 return ENOENT;
2365
2366 /* check extended attribute tag; what to do if it fails? */
2367 error = udf_check_tag(eahdr);
2368 if (error)
2369 return EINVAL;
2370 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2371 return EINVAL;
2372 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2373 if (error)
2374 return EINVAL;
2375
2376 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2377
2378 /* looking for Ecma-167 attributes? */
2379 offset = sizeof(struct extattrhdr_desc);
2380
2381 /* looking for either implemenation use or application use */
2382 if (sattr == 2048) { /* [4/48.10.8] */
2383 offset = udf_rw32(eahdr->impl_attr_loc);
2384 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2385 return ENOENT;
2386 }
2387 if (sattr == 65536) { /* [4/48.10.9] */
2388 offset = udf_rw32(eahdr->appl_attr_loc);
2389 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2390 return ENOENT;
2391 }
2392
2393 /* paranoia check offset and l_ea */
2394 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2395 return EINVAL;
2396
2397 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2398
2399 /* find our extended attribute */
2400 l_ea -= offset;
2401 pos = (uint8_t *) eahdr + offset;
2402
2403 while (l_ea >= sizeof(struct extattr_entry)) {
2404 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2405 attrhdr = (struct extattr_entry *) pos;
2406 implext = (struct impl_extattr_entry *) pos;
2407
2408 /* get complete attribute length and check for roque values */
2409 a_l = udf_rw32(attrhdr->a_l);
2410 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2411 udf_rw32(attrhdr->type),
2412 attrhdr->subtype, a_l, l_ea));
2413 if ((a_l == 0) || (a_l > l_ea))
2414 return EINVAL;
2415
2416 if (attrhdr->type != sattr)
2417 goto next_attribute;
2418
2419 /* we might have found it! */
2420 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2421 *offsetp = offset;
2422 *lengthp = a_l;
2423 return 0; /* success */
2424 }
2425
2426 /*
2427 * Implementation use and application use extended attributes
2428 * have a name to identify. They share the same structure only
2429 * UDF implementation use extended attributes have a checksum
2430 * we need to check
2431 */
2432
2433 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2434 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2435 /* we have found our appl/implementation attribute */
2436 *offsetp = offset;
2437 *lengthp = a_l;
2438 return 0; /* success */
2439 }
2440
2441 next_attribute:
2442 /* next attribute */
2443 pos += a_l;
2444 l_ea -= a_l;
2445 offset += a_l;
2446 }
2447 /* not found */
2448 return ENOENT;
2449 }
2450
2451
2452 static void
2453 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2454 struct extattr_entry *extattr)
2455 {
2456 struct file_entry *fe;
2457 struct extfile_entry *efe;
2458 struct extattrhdr_desc *extattrhdr;
2459 struct impl_extattr_entry *implext;
2460 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2461 uint32_t *l_eap, l_ad;
2462 uint16_t *spos;
2463 uint8_t *bpos, *data;
2464
2465 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2466 fe = &dscr->fe;
2467 data = fe->data;
2468 l_eap = &fe->l_ea;
2469 l_ad = udf_rw32(fe->l_ad);
2470 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2471 efe = &dscr->efe;
2472 data = efe->data;
2473 l_eap = &efe->l_ea;
2474 l_ad = udf_rw32(efe->l_ad);
2475 } else {
2476 panic("Bad tag passed to udf_extattr_insert_internal");
2477 }
2478
2479 /* can't append already written to file descriptors yet */
2480 assert(l_ad == 0);
2481
2482 /* should have a header! */
2483 extattrhdr = (struct extattrhdr_desc *) data;
2484 l_ea = udf_rw32(*l_eap);
2485 if (l_ea == 0) {
2486 /* create empty extended attribute header */
2487 exthdr_len = sizeof(struct extattrhdr_desc);
2488
2489 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2490 /* loc */ 0);
2491 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2492 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2493 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2494
2495 /* record extended attribute header length */
2496 l_ea = exthdr_len;
2497 *l_eap = udf_rw32(l_ea);
2498 }
2499
2500 /* extract locations */
2501 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2502 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2503 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2504 impl_attr_loc = l_ea;
2505 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2506 appl_attr_loc = l_ea;
2507
2508 /* Ecma 167 EAs */
2509 if (udf_rw32(extattr->type) < 2048) {
2510 assert(impl_attr_loc == l_ea);
2511 assert(appl_attr_loc == l_ea);
2512 }
2513
2514 /* implementation use extended attributes */
2515 if (udf_rw32(extattr->type) == 2048) {
2516 assert(appl_attr_loc == l_ea);
2517
2518 /* calculate and write extended attribute header checksum */
2519 implext = (struct impl_extattr_entry *) extattr;
2520 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2521 spos = (uint16_t *) implext->data;
2522 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2523 }
2524
2525 /* application use extended attributes */
2526 assert(udf_rw32(extattr->type) != 65536);
2527 assert(appl_attr_loc == l_ea);
2528
2529 /* append the attribute at the end of the current space */
2530 bpos = data + udf_rw32(*l_eap);
2531 a_l = udf_rw32(extattr->a_l);
2532
2533 /* update impl. attribute locations */
2534 if (udf_rw32(extattr->type) < 2048) {
2535 impl_attr_loc = l_ea + a_l;
2536 appl_attr_loc = l_ea + a_l;
2537 }
2538 if (udf_rw32(extattr->type) == 2048) {
2539 appl_attr_loc = l_ea + a_l;
2540 }
2541
2542 /* copy and advance */
2543 memcpy(bpos, extattr, a_l);
2544 l_ea += a_l;
2545 *l_eap = udf_rw32(l_ea);
2546
2547 /* do the `dance` again backwards */
2548 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2549 if (impl_attr_loc == l_ea)
2550 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2551 if (appl_attr_loc == l_ea)
2552 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2553 }
2554
2555 /* store offsets */
2556 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2557 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2558 }
2559
2560
2561 /* --------------------------------------------------------------------- */
2562
2563 static int
2564 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2565 {
2566 struct udf_mount *ump;
2567 struct udf_logvol_info *lvinfo;
2568 struct impl_extattr_entry *implext;
2569 struct vatlvext_extattr_entry lvext;
2570 const char *extstr = "*UDF VAT LVExtension";
2571 uint64_t vat_uniqueid;
2572 uint32_t offset, a_l;
2573 uint8_t *ea_start, *lvextpos;
2574 int error;
2575
2576 /* get mountpoint and lvinfo */
2577 ump = vat_node->ump;
2578 lvinfo = ump->logvol_info;
2579
2580 /* get information from fe/efe */
2581 if (vat_node->fe) {
2582 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2583 ea_start = vat_node->fe->data;
2584 } else {
2585 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2586 ea_start = vat_node->efe->data;
2587 }
2588
2589 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2590 if (error)
2591 return error;
2592
2593 implext = (struct impl_extattr_entry *) (ea_start + offset);
2594 error = udf_impl_extattr_check(implext);
2595 if (error)
2596 return error;
2597
2598 /* paranoia */
2599 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2600 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2601 return EINVAL;
2602 }
2603
2604 /*
2605 * we have found our "VAT LVExtension attribute. BUT due to a
2606 * bug in the specification it might not be word aligned so
2607 * copy first to avoid panics on some machines (!!)
2608 */
2609 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2610 lvextpos = implext->data + udf_rw32(implext->iu_l);
2611 memcpy(&lvext, lvextpos, sizeof(lvext));
2612
2613 /* check if it was updated the last time */
2614 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2615 lvinfo->num_files = lvext.num_files;
2616 lvinfo->num_directories = lvext.num_directories;
2617 udf_update_logvolname(ump, lvext.logvol_id);
2618 } else {
2619 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2620 /* replace VAT LVExt by free space EA */
2621 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2622 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2623 udf_calc_impl_extattr_checksum(implext);
2624 }
2625
2626 return 0;
2627 }
2628
2629
2630 static int
2631 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2632 {
2633 struct udf_mount *ump;
2634 struct udf_logvol_info *lvinfo;
2635 struct impl_extattr_entry *implext;
2636 struct vatlvext_extattr_entry lvext;
2637 const char *extstr = "*UDF VAT LVExtension";
2638 uint64_t vat_uniqueid;
2639 uint32_t offset, a_l;
2640 uint8_t *ea_start, *lvextpos;
2641 int error;
2642
2643 /* get mountpoint and lvinfo */
2644 ump = vat_node->ump;
2645 lvinfo = ump->logvol_info;
2646
2647 /* get information from fe/efe */
2648 if (vat_node->fe) {
2649 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2650 ea_start = vat_node->fe->data;
2651 } else {
2652 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2653 ea_start = vat_node->efe->data;
2654 }
2655
2656 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2657 if (error)
2658 return error;
2659 /* found, it existed */
2660
2661 /* paranoia */
2662 implext = (struct impl_extattr_entry *) (ea_start + offset);
2663 error = udf_impl_extattr_check(implext);
2664 if (error) {
2665 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2666 return error;
2667 }
2668 /* it is correct */
2669
2670 /*
2671 * we have found our "VAT LVExtension attribute. BUT due to a
2672 * bug in the specification it might not be word aligned so
2673 * copy first to avoid panics on some machines (!!)
2674 */
2675 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2676 lvextpos = implext->data + udf_rw32(implext->iu_l);
2677
2678 lvext.unique_id_chk = vat_uniqueid;
2679 lvext.num_files = lvinfo->num_files;
2680 lvext.num_directories = lvinfo->num_directories;
2681 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2682
2683 memcpy(lvextpos, &lvext, sizeof(lvext));
2684
2685 return 0;
2686 }
2687
2688 /* --------------------------------------------------------------------- */
2689
2690 int
2691 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2692 {
2693 struct udf_mount *ump = vat_node->ump;
2694
2695 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2696 return EINVAL;
2697
2698 memcpy(blob, ump->vat_table + offset, size);
2699 return 0;
2700 }
2701
2702 int
2703 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2704 {
2705 struct udf_mount *ump = vat_node->ump;
2706 uint32_t offset_high;
2707 uint8_t *new_vat_table;
2708
2709 /* extent VAT allocation if needed */
2710 offset_high = offset + size;
2711 if (offset_high >= ump->vat_table_alloc_len) {
2712 /* realloc */
2713 new_vat_table = realloc(ump->vat_table,
2714 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2715 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2716 if (!new_vat_table) {
2717 printf("udf_vat_write: can't extent VAT, out of mem\n");
2718 return ENOMEM;
2719 }
2720 ump->vat_table = new_vat_table;
2721 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2722 }
2723 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2724
2725 memcpy(ump->vat_table + offset, blob, size);
2726 return 0;
2727 }
2728
2729 /* --------------------------------------------------------------------- */
2730
2731 /* TODO support previous VAT location writeout */
2732 static int
2733 udf_update_vat_descriptor(struct udf_mount *ump)
2734 {
2735 struct udf_node *vat_node = ump->vat_node;
2736 struct udf_logvol_info *lvinfo = ump->logvol_info;
2737 struct icb_tag *icbtag;
2738 struct udf_oldvat_tail *oldvat_tl;
2739 struct udf_vat *vat;
2740 uint64_t unique_id;
2741 uint32_t lb_size;
2742 uint8_t *raw_vat;
2743 int filetype, error;
2744
2745 KASSERT(vat_node);
2746 KASSERT(lvinfo);
2747 lb_size = udf_rw32(ump->logical_vol->lb_size);
2748
2749 /* get our new unique_id */
2750 unique_id = udf_advance_uniqueid(ump);
2751
2752 /* get information from fe/efe */
2753 if (vat_node->fe) {
2754 icbtag = &vat_node->fe->icbtag;
2755 vat_node->fe->unique_id = udf_rw64(unique_id);
2756 } else {
2757 icbtag = &vat_node->efe->icbtag;
2758 vat_node->efe->unique_id = udf_rw64(unique_id);
2759 }
2760
2761 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2762 filetype = icbtag->file_type;
2763 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2764
2765 /* allocate piece to process head or tail of VAT file */
2766 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2767
2768 if (filetype == 0) {
2769 /*
2770 * Update "*UDF VAT LVExtension" extended attribute from the
2771 * lvint if present.
2772 */
2773 udf_update_vat_extattr_from_lvid(vat_node);
2774
2775 /* setup identifying regid */
2776 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2777 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2778
2779 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2780 udf_add_udf_regid(ump, &oldvat_tl->id);
2781 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2782
2783 /* write out new tail of virtual allocation table file */
2784 error = udf_vat_write(vat_node, raw_vat,
2785 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2786 } else {
2787 /* compose the VAT2 header */
2788 vat = (struct udf_vat *) raw_vat;
2789 memset(vat, 0, sizeof(struct udf_vat));
2790
2791 vat->header_len = udf_rw16(152); /* as per spec */
2792 vat->impl_use_len = udf_rw16(0);
2793 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2794 vat->prev_vat = udf_rw32(0xffffffff);
2795 vat->num_files = lvinfo->num_files;
2796 vat->num_directories = lvinfo->num_directories;
2797 vat->min_udf_readver = lvinfo->min_udf_readver;
2798 vat->min_udf_writever = lvinfo->min_udf_writever;
2799 vat->max_udf_writever = lvinfo->max_udf_writever;
2800
2801 error = udf_vat_write(vat_node, raw_vat,
2802 sizeof(struct udf_vat), 0);
2803 }
2804 free(raw_vat, M_TEMP);
2805
2806 return error; /* success! */
2807 }
2808
2809
2810 int
2811 udf_writeout_vat(struct udf_mount *ump)
2812 {
2813 struct udf_node *vat_node = ump->vat_node;
2814 uint32_t vat_length;
2815 int error;
2816
2817 KASSERT(vat_node);
2818
2819 DPRINTF(CALL, ("udf_writeout_vat\n"));
2820
2821 // mutex_enter(&ump->allocate_mutex);
2822 udf_update_vat_descriptor(ump);
2823
2824 /* write out the VAT contents ; TODO intelligent writing */
2825 vat_length = ump->vat_table_len;
2826 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2827 ump->vat_table, ump->vat_table_len, 0,
2828 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2829 if (error) {
2830 printf("udf_writeout_vat: failed to write out VAT contents\n");
2831 goto out;
2832 }
2833
2834 // mutex_exit(&ump->allocate_mutex);
2835
2836 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2837 error = VOP_FSYNC(ump->vat_node->vnode,
2838 FSCRED, FSYNC_WAIT, 0, 0);
2839 if (error)
2840 printf("udf_writeout_vat: error writing VAT node!\n");
2841 out:
2842
2843 return error;
2844 }
2845
2846 /* --------------------------------------------------------------------- */
2847
2848 /*
2849 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2850 * descriptor. If OK, read in complete VAT file.
2851 */
2852
2853 static int
2854 udf_check_for_vat(struct udf_node *vat_node)
2855 {
2856 struct udf_mount *ump;
2857 struct icb_tag *icbtag;
2858 struct timestamp *mtime;
2859 struct udf_vat *vat;
2860 struct udf_oldvat_tail *oldvat_tl;
2861 struct udf_logvol_info *lvinfo;
2862 uint64_t unique_id;
2863 uint32_t vat_length;
2864 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2865 uint32_t sector_size;
2866 uint32_t *raw_vat;
2867 uint8_t *vat_table;
2868 char *regid_name;
2869 int filetype;
2870 int error;
2871
2872 /* vat_length is really 64 bits though impossible */
2873
2874 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2875 if (!vat_node)
2876 return ENOENT;
2877
2878 /* get mount info */
2879 ump = vat_node->ump;
2880 sector_size = udf_rw32(ump->logical_vol->lb_size);
2881
2882 /* check assertions */
2883 assert(vat_node->fe || vat_node->efe);
2884 assert(ump->logvol_integrity);
2885
2886 /* set vnode type to regular file or we can't read from it! */
2887 vat_node->vnode->v_type = VREG;
2888
2889 /* get information from fe/efe */
2890 if (vat_node->fe) {
2891 vat_length = udf_rw64(vat_node->fe->inf_len);
2892 icbtag = &vat_node->fe->icbtag;
2893 mtime = &vat_node->fe->mtime;
2894 unique_id = udf_rw64(vat_node->fe->unique_id);
2895 } else {
2896 vat_length = udf_rw64(vat_node->efe->inf_len);
2897 icbtag = &vat_node->efe->icbtag;
2898 mtime = &vat_node->efe->mtime;
2899 unique_id = udf_rw64(vat_node->efe->unique_id);
2900 }
2901
2902 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2903 filetype = icbtag->file_type;
2904 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2905 return ENOENT;
2906
2907 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2908
2909 vat_table_alloc_len =
2910 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2911 * UDF_VAT_CHUNKSIZE;
2912
2913 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2914 M_CANFAIL | M_WAITOK);
2915 if (vat_table == NULL) {
2916 printf("allocation of %d bytes failed for VAT\n",
2917 vat_table_alloc_len);
2918 return ENOMEM;
2919 }
2920
2921 /* allocate piece to read in head or tail of VAT file */
2922 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2923
2924 /*
2925 * check contents of the file if its the old 1.50 VAT table format.
2926 * Its notoriously broken and allthough some implementations support an
2927 * extention as defined in the UDF 1.50 errata document, its doubtfull
2928 * to be useable since a lot of implementations don't maintain it.
2929 */
2930 lvinfo = ump->logvol_info;
2931
2932 if (filetype == 0) {
2933 /* definition */
2934 vat_offset = 0;
2935 vat_entries = (vat_length-36)/4;
2936
2937 /* read in tail of virtual allocation table file */
2938 error = vn_rdwr(UIO_READ, vat_node->vnode,
2939 (uint8_t *) raw_vat,
2940 sizeof(struct udf_oldvat_tail),
2941 vat_entries * 4,
2942 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2943 NULL, NULL);
2944 if (error)
2945 goto out;
2946
2947 /* check 1.50 VAT */
2948 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2949 regid_name = (char *) oldvat_tl->id.id;
2950 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2951 if (error) {
2952 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2953 error = ENOENT;
2954 goto out;
2955 }
2956
2957 /*
2958 * update LVID from "*UDF VAT LVExtension" extended attribute
2959 * if present.
2960 */
2961 udf_update_lvid_from_vat_extattr(vat_node);
2962 } else {
2963 /* read in head of virtual allocation table file */
2964 error = vn_rdwr(UIO_READ, vat_node->vnode,
2965 (uint8_t *) raw_vat,
2966 sizeof(struct udf_vat), 0,
2967 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2968 NULL, NULL);
2969 if (error)
2970 goto out;
2971
2972 /* definition */
2973 vat = (struct udf_vat *) raw_vat;
2974 vat_offset = vat->header_len;
2975 vat_entries = (vat_length - vat_offset)/4;
2976
2977 assert(lvinfo);
2978 lvinfo->num_files = vat->num_files;
2979 lvinfo->num_directories = vat->num_directories;
2980 lvinfo->min_udf_readver = vat->min_udf_readver;
2981 lvinfo->min_udf_writever = vat->min_udf_writever;
2982 lvinfo->max_udf_writever = vat->max_udf_writever;
2983
2984 udf_update_logvolname(ump, vat->logvol_id);
2985 }
2986
2987 /* read in complete VAT file */
2988 error = vn_rdwr(UIO_READ, vat_node->vnode,
2989 vat_table,
2990 vat_length, 0,
2991 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2992 NULL, NULL);
2993 if (error)
2994 printf("read in of complete VAT file failed (error %d)\n",
2995 error);
2996 if (error)
2997 goto out;
2998
2999 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3000 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3001 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3002 ump->logvol_integrity->time = *mtime;
3003
3004 ump->vat_table_len = vat_length;
3005 ump->vat_table_alloc_len = vat_table_alloc_len;
3006 ump->vat_table = vat_table;
3007 ump->vat_offset = vat_offset;
3008 ump->vat_entries = vat_entries;
3009 ump->vat_last_free_lb = 0; /* start at beginning */
3010
3011 out:
3012 if (error) {
3013 if (vat_table)
3014 free(vat_table, M_UDFVOLD);
3015 }
3016 free(raw_vat, M_TEMP);
3017
3018 return error;
3019 }
3020
3021 /* --------------------------------------------------------------------- */
3022
3023 static int
3024 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3025 {
3026 struct udf_node *vat_node;
3027 struct long_ad icb_loc;
3028 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3029 int error;
3030
3031 /* mapping info not needed */
3032 mapping = mapping;
3033
3034 vat_loc = ump->last_possible_vat_location;
3035 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3036
3037 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3038 vat_loc, early_vat_loc));
3039 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3040 late_vat_loc = vat_loc + 1024;
3041
3042 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3043 vat_loc, early_vat_loc));
3044
3045 /* start looking from the end of the range */
3046 do {
3047 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3048 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3049 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3050
3051 error = udf_get_node(ump, &icb_loc, &vat_node);
3052 if (!error) {
3053 error = udf_check_for_vat(vat_node);
3054 DPRINTFIF(VOLUMES, !error,
3055 ("VAT accepted at %d\n", vat_loc));
3056 if (!error)
3057 break;
3058 }
3059 if (vat_node) {
3060 vput(vat_node->vnode);
3061 vat_node = NULL;
3062 }
3063 vat_loc--; /* walk backwards */
3064 } while (vat_loc >= early_vat_loc);
3065
3066 /* keep our VAT node around */
3067 if (vat_node) {
3068 UDF_SET_SYSTEMFILE(vat_node->vnode);
3069 ump->vat_node = vat_node;
3070 }
3071
3072 return error;
3073 }
3074
3075 /* --------------------------------------------------------------------- */
3076
3077 static int
3078 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3079 {
3080 union dscrptr *dscr;
3081 struct part_map_spare *pms = &mapping->pms;
3082 uint32_t lb_num;
3083 int spar, error;
3084
3085 /*
3086 * The partition mapping passed on to us specifies the information we
3087 * need to locate and initialise the sparable partition mapping
3088 * information we need.
3089 */
3090
3091 DPRINTF(VOLUMES, ("Read sparable table\n"));
3092 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3093 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3094
3095 for (spar = 0; spar < pms->n_st; spar++) {
3096 lb_num = pms->st_loc[spar];
3097 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3098 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3099 if (!error && dscr) {
3100 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3101 if (ump->sparing_table)
3102 free(ump->sparing_table, M_UDFVOLD);
3103 ump->sparing_table = &dscr->spt;
3104 dscr = NULL;
3105 DPRINTF(VOLUMES,
3106 ("Sparing table accepted (%d entries)\n",
3107 udf_rw16(ump->sparing_table->rt_l)));
3108 break; /* we're done */
3109 }
3110 }
3111 if (dscr)
3112 free(dscr, M_UDFVOLD);
3113 }
3114
3115 if (ump->sparing_table)
3116 return 0;
3117
3118 return ENOENT;
3119 }
3120
3121 /* --------------------------------------------------------------------- */
3122
3123 static int
3124 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3125 {
3126 struct part_map_meta *pmm = &mapping->pmm;
3127 struct long_ad icb_loc;
3128 struct vnode *vp;
3129 uint16_t raw_phys_part, phys_part;
3130 int error;
3131
3132 /*
3133 * BUGALERT: some rogue implementations use random physical
3134 * partition numbers to break other implementations so lookup
3135 * the number.
3136 */
3137
3138 /* extract our allocation parameters set up on format */
3139 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3140 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3141 ump->metadata_flags = mapping->pmm.flags;
3142
3143 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3144 raw_phys_part = udf_rw16(pmm->part_num);
3145 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3146
3147 icb_loc.loc.part_num = udf_rw16(phys_part);
3148
3149 DPRINTF(VOLUMES, ("Metadata file\n"));
3150 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3151 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3152 if (ump->metadata_node) {
3153 vp = ump->metadata_node->vnode;
3154 UDF_SET_SYSTEMFILE(vp);
3155 }
3156
3157 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3158 if (icb_loc.loc.lb_num != -1) {
3159 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3160 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3161 if (ump->metadatamirror_node) {
3162 vp = ump->metadatamirror_node->vnode;
3163 UDF_SET_SYSTEMFILE(vp);
3164 }
3165 }
3166
3167 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3168 if (icb_loc.loc.lb_num != -1) {
3169 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3170 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3171 if (ump->metadatabitmap_node) {
3172 vp = ump->metadatabitmap_node->vnode;
3173 UDF_SET_SYSTEMFILE(vp);
3174 }
3175 }
3176
3177 /* if we're mounting read-only we relax the requirements */
3178 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3179 error = EFAULT;
3180 if (ump->metadata_node)
3181 error = 0;
3182 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3183 printf( "udf mount: Metadata file not readable, "
3184 "substituting Metadata copy file\n");
3185 ump->metadata_node = ump->metadatamirror_node;
3186 ump->metadatamirror_node = NULL;
3187 error = 0;
3188 }
3189 } else {
3190 /* mounting read/write */
3191 /* XXX DISABLED! metadata writing is not working yet XXX */
3192 if (error)
3193 error = EROFS;
3194 }
3195 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3196 "metadata files\n"));
3197 return error;
3198 }
3199
3200 /* --------------------------------------------------------------------- */
3201
3202 int
3203 udf_read_vds_tables(struct udf_mount *ump)
3204 {
3205 union udf_pmap *mapping;
3206 /* struct udf_args *args = &ump->mount_args; */
3207 uint32_t n_pm, mt_l;
3208 uint32_t log_part;
3209 uint8_t *pmap_pos;
3210 int pmap_size;
3211 int error;
3212
3213 /* Iterate (again) over the part mappings for locations */
3214 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3215 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3216 pmap_pos = ump->logical_vol->maps;
3217
3218 for (log_part = 0; log_part < n_pm; log_part++) {
3219 mapping = (union udf_pmap *) pmap_pos;
3220 switch (ump->vtop_tp[log_part]) {
3221 case UDF_VTOP_TYPE_PHYS :
3222 /* nothing */
3223 break;
3224 case UDF_VTOP_TYPE_VIRT :
3225 /* search and load VAT */
3226 error = udf_search_vat(ump, mapping);
3227 if (error)
3228 return ENOENT;
3229 break;
3230 case UDF_VTOP_TYPE_SPARABLE :
3231 /* load one of the sparable tables */
3232 error = udf_read_sparables(ump, mapping);
3233 if (error)
3234 return ENOENT;
3235 break;
3236 case UDF_VTOP_TYPE_META :
3237 /* load the associated file descriptors */
3238 error = udf_read_metadata_nodes(ump, mapping);
3239 if (error)
3240 return ENOENT;
3241 break;
3242 default:
3243 break;
3244 }
3245 pmap_size = pmap_pos[1];
3246 pmap_pos += pmap_size;
3247 }
3248
3249 /* read in and check unallocated and free space info if writing */
3250 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3251 error = udf_read_physical_partition_spacetables(ump);
3252 if (error)
3253 return error;
3254
3255 /* also read in metadata partition spacebitmap if defined */
3256 error = udf_read_metadata_partition_spacetable(ump);
3257 return error;
3258 }
3259
3260 return 0;
3261 }
3262
3263 /* --------------------------------------------------------------------- */
3264
3265 int
3266 udf_read_rootdirs(struct udf_mount *ump)
3267 {
3268 union dscrptr *dscr;
3269 /* struct udf_args *args = &ump->mount_args; */
3270 struct udf_node *rootdir_node, *streamdir_node;
3271 struct long_ad fsd_loc, *dir_loc;
3272 uint32_t lb_num, dummy;
3273 uint32_t fsd_len;
3274 int dscr_type;
3275 int error;
3276
3277 /* TODO implement FSD reading in separate function like integrity? */
3278 /* get fileset descriptor sequence */
3279 fsd_loc = ump->logical_vol->lv_fsd_loc;
3280 fsd_len = udf_rw32(fsd_loc.len);
3281
3282 dscr = NULL;
3283 error = 0;
3284 while (fsd_len || error) {
3285 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3286 /* translate fsd_loc to lb_num */
3287 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3288 if (error)
3289 break;
3290 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3291 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3292 /* end markers */
3293 if (error || (dscr == NULL))
3294 break;
3295
3296 /* analyse */
3297 dscr_type = udf_rw16(dscr->tag.id);
3298 if (dscr_type == TAGID_TERM)
3299 break;
3300 if (dscr_type != TAGID_FSD) {
3301 free(dscr, M_UDFVOLD);
3302 return ENOENT;
3303 }
3304
3305 /*
3306 * TODO check for multiple fileset descriptors; its only
3307 * picking the last now. Also check for FSD
3308 * correctness/interpretability
3309 */
3310
3311 /* update */
3312 if (ump->fileset_desc) {
3313 free(ump->fileset_desc, M_UDFVOLD);
3314 }
3315 ump->fileset_desc = &dscr->fsd;
3316 dscr = NULL;
3317
3318 /* continue to the next fsd */
3319 fsd_len -= ump->discinfo.sector_size;
3320 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3321
3322 /* follow up to fsd->next_ex (long_ad) if its not null */
3323 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3324 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3325 fsd_loc = ump->fileset_desc->next_ex;
3326 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3327 }
3328 }
3329 if (dscr)
3330 free(dscr, M_UDFVOLD);
3331
3332 /* there has to be one */
3333 if (ump->fileset_desc == NULL)
3334 return ENOENT;
3335
3336 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3337 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3338 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3339
3340 /*
3341 * Now the FSD is known, read in the rootdirectory and if one exists,
3342 * the system stream dir. Some files in the system streamdir are not
3343 * wanted in this implementation since they are not maintained. If
3344 * writing is enabled we'll delete these files if they exist.
3345 */
3346
3347 rootdir_node = streamdir_node = NULL;
3348 dir_loc = NULL;
3349
3350 /* try to read in the rootdir */
3351 dir_loc = &ump->fileset_desc->rootdir_icb;
3352 error = udf_get_node(ump, dir_loc, &rootdir_node);
3353 if (error)
3354 return ENOENT;
3355
3356 /* aparently it read in fine */
3357
3358 /*
3359 * Try the system stream directory; not very likely in the ones we
3360 * test, but for completeness.
3361 */
3362 dir_loc = &ump->fileset_desc->streamdir_icb;
3363 if (udf_rw32(dir_loc->len)) {
3364 printf("udf_read_rootdirs: streamdir defined ");
3365 error = udf_get_node(ump, dir_loc, &streamdir_node);
3366 if (error) {
3367 printf("but error in streamdir reading\n");
3368 } else {
3369 printf("but ignored\n");
3370 /*
3371 * TODO process streamdir `baddies' i.e. files we dont
3372 * want if R/W
3373 */
3374 }
3375 }
3376
3377 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3378
3379 /* release the vnodes again; they'll be auto-recycled later */
3380 if (streamdir_node) {
3381 vput(streamdir_node->vnode);
3382 }
3383 if (rootdir_node) {
3384 vput(rootdir_node->vnode);
3385 }
3386
3387 return 0;
3388 }
3389
3390 /* --------------------------------------------------------------------- */
3391
3392 /* To make absolutely sure we are NOT returning zero, add one :) */
3393
3394 long
3395 udf_get_node_id(const struct long_ad *icbptr)
3396 {
3397 /* ought to be enough since each mountpoint has its own chain */
3398 return udf_rw32(icbptr->loc.lb_num) + 1;
3399 }
3400
3401
3402 int
3403 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3404 {
3405 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3406 return -1;
3407 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3408 return 1;
3409
3410 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3411 return -1;
3412 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3413 return 1;
3414
3415 return 0;
3416 }
3417
3418
3419 static int
3420 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3421 {
3422 const struct udf_node *a_node = a;
3423 const struct udf_node *b_node = b;
3424
3425 return udf_compare_icb(&a_node->loc, &b_node->loc);
3426 }
3427
3428
3429 static int
3430 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3431 {
3432 const struct udf_node *a_node = a;
3433 const struct long_ad * const icb = key;
3434
3435 return udf_compare_icb(&a_node->loc, icb);
3436 }
3437
3438
3439 static const rb_tree_ops_t udf_node_rbtree_ops = {
3440 .rbto_compare_nodes = udf_compare_rbnodes,
3441 .rbto_compare_key = udf_compare_rbnode_icb,
3442 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3443 .rbto_context = NULL
3444 };
3445
3446
3447 void
3448 udf_init_nodes_tree(struct udf_mount *ump)
3449 {
3450
3451 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3452 }
3453
3454
3455 static struct udf_node *
3456 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3457 {
3458 struct udf_node *udf_node;
3459 struct vnode *vp;
3460
3461 loop:
3462 mutex_enter(&ump->ihash_lock);
3463
3464 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3465 if (udf_node) {
3466 vp = udf_node->vnode;
3467 assert(vp);
3468 mutex_enter(vp->v_interlock);
3469 mutex_exit(&ump->ihash_lock);
3470 if (vget(vp, LK_EXCLUSIVE))
3471 goto loop;
3472 return udf_node;
3473 }
3474 mutex_exit(&ump->ihash_lock);
3475
3476 return NULL;
3477 }
3478
3479
3480 static void
3481 udf_register_node(struct udf_node *udf_node)
3482 {
3483 struct udf_mount *ump = udf_node->ump;
3484
3485 /* add node to the rb tree */
3486 mutex_enter(&ump->ihash_lock);
3487 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3488 mutex_exit(&ump->ihash_lock);
3489 }
3490
3491
3492 static void
3493 udf_deregister_node(struct udf_node *udf_node)
3494 {
3495 struct udf_mount *ump = udf_node->ump;
3496
3497 /* remove node from the rb tree */
3498 mutex_enter(&ump->ihash_lock);
3499 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3500 mutex_exit(&ump->ihash_lock);
3501 }
3502
3503 /* --------------------------------------------------------------------- */
3504
3505 static int
3506 udf_validate_session_start(struct udf_mount *ump)
3507 {
3508 struct mmc_trackinfo trackinfo;
3509 struct vrs_desc *vrs;
3510 uint32_t tracknr, sessionnr, sector, sector_size;
3511 uint32_t iso9660_vrs, write_track_start;
3512 uint8_t *buffer, *blank, *pos;
3513 int blks, max_sectors, vrs_len;
3514 int error;
3515
3516 /* disc appendable? */
3517 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3518 return EROFS;
3519
3520 /* already written here? if so, there should be an ISO VDS */
3521 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3522 return 0;
3523
3524 /*
3525 * Check if the first track of the session is blank and if so, copy or
3526 * create a dummy ISO descriptor so the disc is valid again.
3527 */
3528
3529 tracknr = ump->discinfo.first_track_last_session;
3530 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3531 trackinfo.tracknr = tracknr;
3532 error = udf_update_trackinfo(ump, &trackinfo);
3533 if (error)
3534 return error;
3535
3536 udf_dump_trackinfo(&trackinfo);
3537 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3538 KASSERT(trackinfo.sessionnr > 1);
3539
3540 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3541 write_track_start = trackinfo.next_writable;
3542
3543 /* we have to copy the ISO VRS from a former session */
3544 DPRINTF(VOLUMES, ("validate_session_start: "
3545 "blank or reserved track, copying VRS\n"));
3546
3547 /* sessionnr should be the session we're mounting */
3548 sessionnr = ump->mount_args.sessionnr;
3549
3550 /* start at the first track */
3551 tracknr = ump->discinfo.first_track;
3552 while (tracknr <= ump->discinfo.num_tracks) {
3553 trackinfo.tracknr = tracknr;
3554 error = udf_update_trackinfo(ump, &trackinfo);
3555 if (error) {
3556 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3557 return error;
3558 }
3559 if (trackinfo.sessionnr == sessionnr)
3560 break;
3561 tracknr++;
3562 }
3563 if (trackinfo.sessionnr != sessionnr) {
3564 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3565 return ENOENT;
3566 }
3567
3568 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3569 udf_dump_trackinfo(&trackinfo);
3570
3571 /*
3572 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3573 * minimum ISO `sector size' 2048
3574 */
3575 sector_size = ump->discinfo.sector_size;
3576 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3577 + trackinfo.track_start;
3578
3579 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3580 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3581 blks = MAX(1, 2048 / sector_size);
3582
3583 error = 0;
3584 for (sector = 0; sector < max_sectors; sector += blks) {
3585 pos = buffer + sector * sector_size;
3586 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3587 iso9660_vrs + sector, blks);
3588 if (error)
3589 break;
3590 /* check this ISO descriptor */
3591 vrs = (struct vrs_desc *) pos;
3592 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3593 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3594 continue;
3595 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3596 continue;
3597 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3598 continue;
3599 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3600 continue;
3601 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3602 continue;
3603 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3604 break;
3605 /* now what? for now, end of sequence */
3606 break;
3607 }
3608 vrs_len = sector + blks;
3609 if (error) {
3610 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3611 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3612
3613 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3614
3615 vrs = (struct vrs_desc *) (buffer);
3616 vrs->struct_type = 0;
3617 vrs->version = 1;
3618 memcpy(vrs->identifier,VRS_BEA01, 5);
3619
3620 vrs = (struct vrs_desc *) (buffer + 2048);
3621 vrs->struct_type = 0;
3622 vrs->version = 1;
3623 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3624 memcpy(vrs->identifier,VRS_NSR02, 5);
3625 } else {
3626 memcpy(vrs->identifier,VRS_NSR03, 5);
3627 }
3628
3629 vrs = (struct vrs_desc *) (buffer + 4096);
3630 vrs->struct_type = 0;
3631 vrs->version = 1;
3632 memcpy(vrs->identifier, VRS_TEA01, 5);
3633
3634 vrs_len = 3*blks;
3635 }
3636
3637 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3638
3639 /*
3640 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3641 * minimum ISO `sector size' 2048
3642 */
3643 sector_size = ump->discinfo.sector_size;
3644 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3645 + write_track_start;
3646
3647 /* write out 32 kb */
3648 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3649 memset(blank, 0, sector_size);
3650 error = 0;
3651 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3652 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3653 blank, sector, 1);
3654 if (error)
3655 break;
3656 }
3657 if (!error) {
3658 /* write out our ISO VRS */
3659 KASSERT(sector == iso9660_vrs);
3660 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3661 sector, vrs_len);
3662 sector += vrs_len;
3663 }
3664 if (!error) {
3665 /* fill upto the first anchor at S+256 */
3666 for (; sector < write_track_start+256; sector++) {
3667 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3668 blank, sector, 1);
3669 if (error)
3670 break;
3671 }
3672 }
3673 if (!error) {
3674 /* write out anchor; write at ABSOLUTE place! */
3675 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3676 (union dscrptr *) ump->anchors[0], sector, sector);
3677 if (error)
3678 printf("writeout of anchor failed!\n");
3679 }
3680
3681 free(blank, M_TEMP);
3682 free(buffer, M_TEMP);
3683
3684 if (error)
3685 printf("udf_open_session: error writing iso vrs! : "
3686 "leaving disc in compromised state!\n");
3687
3688 /* synchronise device caches */
3689 (void) udf_synchronise_caches(ump);
3690
3691 return error;
3692 }
3693
3694
3695 int
3696 udf_open_logvol(struct udf_mount *ump)
3697 {
3698 int logvol_integrity;
3699 int error;
3700
3701 /* already/still open? */
3702 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3703 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3704 return 0;
3705
3706 /* can we open it ? */
3707 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3708 return EROFS;
3709
3710 /* setup write parameters */
3711 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3712 if ((error = udf_setup_writeparams(ump)) != 0)
3713 return error;
3714
3715 /* determine data and metadata tracks (most likely same) */
3716 error = udf_search_writing_tracks(ump);
3717 if (error) {
3718 /* most likely lack of space */
3719 printf("udf_open_logvol: error searching writing tracks\n");
3720 return EROFS;
3721 }
3722
3723 /* writeout/update lvint on disc or only in memory */
3724 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3725 if (ump->lvopen & UDF_OPEN_SESSION) {
3726 /* TODO optional track reservation opening */
3727 error = udf_validate_session_start(ump);
3728 if (error)
3729 return error;
3730
3731 /* determine data and metadata tracks again */
3732 error = udf_search_writing_tracks(ump);
3733 }
3734
3735 /* mark it open */
3736 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3737
3738 /* do we need to write it out? */
3739 if (ump->lvopen & UDF_WRITE_LVINT) {
3740 error = udf_writeout_lvint(ump, ump->lvopen);
3741 /* if we couldn't write it mark it closed again */
3742 if (error) {
3743 ump->logvol_integrity->integrity_type =
3744 udf_rw32(UDF_INTEGRITY_CLOSED);
3745 return error;
3746 }
3747 }
3748
3749 return 0;
3750 }
3751
3752
3753 int
3754 udf_close_logvol(struct udf_mount *ump, int mntflags)
3755 {
3756 struct vnode *devvp = ump->devvp;
3757 struct mmc_op mmc_op;
3758 int logvol_integrity;
3759 int error = 0, error1 = 0, error2 = 0;
3760 int tracknr;
3761 int nvats, n, nok;
3762
3763 /* already/still closed? */
3764 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3765 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3766 return 0;
3767
3768 /* writeout/update lvint or write out VAT */
3769 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3770 #ifdef DIAGNOSTIC
3771 if (ump->lvclose & UDF_CLOSE_SESSION)
3772 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3773 #endif
3774
3775 if (ump->lvclose & UDF_WRITE_VAT) {
3776 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3777
3778 /* write out the VAT data and all its descriptors */
3779 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3780 udf_writeout_vat(ump);
3781 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3782
3783 (void) VOP_FSYNC(ump->vat_node->vnode,
3784 FSCRED, FSYNC_WAIT, 0, 0);
3785
3786 if (ump->lvclose & UDF_CLOSE_SESSION) {
3787 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3788 "as requested\n"));
3789 }
3790
3791 /* at least two DVD packets and 3 CD-R packets */
3792 nvats = 32;
3793
3794 #if notyet
3795 /*
3796 * TODO calculate the available space and if the disc is
3797 * allmost full, write out till end-256-1 with banks, write
3798 * AVDP and fill up with VATs, then close session and close
3799 * disc.
3800 */
3801 if (ump->lvclose & UDF_FINALISE_DISC) {
3802 error = udf_write_phys_dscr_sync(ump, NULL,
3803 UDF_C_FLOAT_DSCR,
3804 (union dscrptr *) ump->anchors[0],
3805 0, 0);
3806 if (error)
3807 printf("writeout of anchor failed!\n");
3808
3809 /* pad space with VAT ICBs */
3810 nvats = 256;
3811 }
3812 #endif
3813
3814 /* write out a number of VAT nodes */
3815 nok = 0;
3816 for (n = 0; n < nvats; n++) {
3817 /* will now only write last FE/EFE */
3818 ump->vat_node->i_flags |= IN_MODIFIED;
3819 error = VOP_FSYNC(ump->vat_node->vnode,
3820 FSCRED, FSYNC_WAIT, 0, 0);
3821 if (!error)
3822 nok++;
3823 }
3824 if (nok < 14) {
3825 /* arbitrary; but at least one or two CD frames */
3826 printf("writeout of at least 14 VATs failed\n");
3827 return error;
3828 }
3829 }
3830
3831 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3832
3833 /* finish closing of session */
3834 if (ump->lvclose & UDF_CLOSE_SESSION) {
3835 error = udf_validate_session_start(ump);
3836 if (error)
3837 return error;
3838
3839 (void) udf_synchronise_caches(ump);
3840
3841 /* close all associated tracks */
3842 tracknr = ump->discinfo.first_track_last_session;
3843 error = 0;
3844 while (tracknr <= ump->discinfo.last_track_last_session) {
3845 DPRINTF(VOLUMES, ("\tclosing possible open "
3846 "track %d\n", tracknr));
3847 memset(&mmc_op, 0, sizeof(mmc_op));
3848 mmc_op.operation = MMC_OP_CLOSETRACK;
3849 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3850 mmc_op.tracknr = tracknr;
3851 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3852 FKIOCTL, NOCRED);
3853 if (error)
3854 printf("udf_close_logvol: closing of "
3855 "track %d failed\n", tracknr);
3856 tracknr ++;
3857 }
3858 if (!error) {
3859 DPRINTF(VOLUMES, ("closing session\n"));
3860 memset(&mmc_op, 0, sizeof(mmc_op));
3861 mmc_op.operation = MMC_OP_CLOSESESSION;
3862 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3863 mmc_op.sessionnr = ump->discinfo.num_sessions;
3864 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3865 FKIOCTL, NOCRED);
3866 if (error)
3867 printf("udf_close_logvol: closing of session"
3868 "failed\n");
3869 }
3870 if (!error)
3871 ump->lvopen |= UDF_OPEN_SESSION;
3872 if (error) {
3873 printf("udf_close_logvol: leaving disc as it is\n");
3874 ump->lvclose &= ~UDF_FINALISE_DISC;
3875 }
3876 }
3877
3878 if (ump->lvclose & UDF_FINALISE_DISC) {
3879 memset(&mmc_op, 0, sizeof(mmc_op));
3880 mmc_op.operation = MMC_OP_FINALISEDISC;
3881 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3882 mmc_op.sessionnr = ump->discinfo.num_sessions;
3883 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3884 FKIOCTL, NOCRED);
3885 if (error)
3886 printf("udf_close_logvol: finalising disc"
3887 "failed\n");
3888 }
3889
3890 /* write out partition bitmaps if requested */
3891 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3892 /* sync writeout metadata spacetable if existing */
3893 error1 = udf_write_metadata_partition_spacetable(ump, true);
3894 if (error1)
3895 printf( "udf_close_logvol: writeout of metadata space "
3896 "bitmap failed\n");
3897
3898 /* sync writeout partition spacetables */
3899 error2 = udf_write_physical_partition_spacetables(ump, true);
3900 if (error2)
3901 printf( "udf_close_logvol: writeout of space tables "
3902 "failed\n");
3903
3904 if (error1 || error2)
3905 return (error1 | error2);
3906
3907 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3908 }
3909
3910 /* write out metadata partition nodes if requested */
3911 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3912 /* sync writeout metadata descriptor node */
3913 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3914 if (error1)
3915 printf( "udf_close_logvol: writeout of metadata partition "
3916 "node failed\n");
3917
3918 /* duplicate metadata partition descriptor if needed */
3919 udf_synchronise_metadatamirror_node(ump);
3920
3921 /* sync writeout metadatamirror descriptor node */
3922 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3923 if (error2)
3924 printf( "udf_close_logvol: writeout of metadata partition "
3925 "mirror node failed\n");
3926
3927 if (error1 || error2)
3928 return (error1 | error2);
3929
3930 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3931 }
3932
3933 /* mark it closed */
3934 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3935
3936 /* do we need to write out the logical volume integrity? */
3937 if (ump->lvclose & UDF_WRITE_LVINT)
3938 error = udf_writeout_lvint(ump, ump->lvopen);
3939 if (error) {
3940 /* HELP now what? mark it open again for now */
3941 ump->logvol_integrity->integrity_type =
3942 udf_rw32(UDF_INTEGRITY_OPEN);
3943 return error;
3944 }
3945
3946 (void) udf_synchronise_caches(ump);
3947
3948 return 0;
3949 }
3950
3951 /* --------------------------------------------------------------------- */
3952
3953 /*
3954 * Genfs interfacing
3955 *
3956 * static const struct genfs_ops udf_genfsops = {
3957 * .gop_size = genfs_size,
3958 * size of transfers
3959 * .gop_alloc = udf_gop_alloc,
3960 * allocate len bytes at offset
3961 * .gop_write = genfs_gop_write,
3962 * putpages interface code
3963 * .gop_markupdate = udf_gop_markupdate,
3964 * set update/modify flags etc.
3965 * }
3966 */
3967
3968 /*
3969 * Genfs interface. These four functions are the only ones defined though not
3970 * documented... great....
3971 */
3972
3973 /*
3974 * Called for allocating an extent of the file either by VOP_WRITE() or by
3975 * genfs filling up gaps.
3976 */
3977 static int
3978 udf_gop_alloc(struct vnode *vp, off_t off,
3979 off_t len, int flags, kauth_cred_t cred)
3980 {
3981 struct udf_node *udf_node = VTOI(vp);
3982 struct udf_mount *ump = udf_node->ump;
3983 uint64_t lb_start, lb_end;
3984 uint32_t lb_size, num_lb;
3985 int udf_c_type, vpart_num, can_fail;
3986 int error;
3987
3988 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3989 off, len, flags? "SYNC":"NONE"));
3990
3991 /*
3992 * request the pages of our vnode and see how many pages will need to
3993 * be allocated and reserve that space
3994 */
3995 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3996 lb_start = off / lb_size;
3997 lb_end = (off + len + lb_size -1) / lb_size;
3998 num_lb = lb_end - lb_start;
3999
4000 udf_c_type = udf_get_c_type(udf_node);
4001 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4002
4003 /* all requests can fail */
4004 can_fail = true;
4005
4006 /* fid's (directories) can't fail */
4007 if (udf_c_type == UDF_C_FIDS)
4008 can_fail = false;
4009
4010 /* system files can't fail */
4011 if (vp->v_vflag & VV_SYSTEM)
4012 can_fail = false;
4013
4014 error = udf_reserve_space(ump, udf_node, udf_c_type,
4015 vpart_num, num_lb, can_fail);
4016
4017 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4018 lb_start, lb_end, num_lb));
4019
4020 return error;
4021 }
4022
4023
4024 /*
4025 * callback from genfs to update our flags
4026 */
4027 static void
4028 udf_gop_markupdate(struct vnode *vp, int flags)
4029 {
4030 struct udf_node *udf_node = VTOI(vp);
4031 u_long mask = 0;
4032
4033 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4034 mask = IN_ACCESS;
4035 }
4036 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4037 if (vp->v_type == VREG) {
4038 mask |= IN_CHANGE | IN_UPDATE;
4039 } else {
4040 mask |= IN_MODIFY;
4041 }
4042 }
4043 if (mask) {
4044 udf_node->i_flags |= mask;
4045 }
4046 }
4047
4048
4049 static const struct genfs_ops udf_genfsops = {
4050 .gop_size = genfs_size,
4051 .gop_alloc = udf_gop_alloc,
4052 .gop_write = genfs_gop_write_rwmap,
4053 .gop_markupdate = udf_gop_markupdate,
4054 };
4055
4056
4057 /* --------------------------------------------------------------------- */
4058
4059 int
4060 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4061 {
4062 union dscrptr *dscr;
4063 int error;
4064
4065 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4066 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4067
4068 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4069 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4070 (void) udf_validate_tag_and_crc_sums(dscr);
4071
4072 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4073 dscr, sector, sector);
4074
4075 free(dscr, M_TEMP);
4076
4077 return error;
4078 }
4079
4080
4081 /* --------------------------------------------------------------------- */
4082
4083 /* UDF<->unix converters */
4084
4085 /* --------------------------------------------------------------------- */
4086
4087 static mode_t
4088 udf_perm_to_unix_mode(uint32_t perm)
4089 {
4090 mode_t mode;
4091
4092 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4093 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4094 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4095
4096 return mode;
4097 }
4098
4099 /* --------------------------------------------------------------------- */
4100
4101 static uint32_t
4102 unix_mode_to_udf_perm(mode_t mode)
4103 {
4104 uint32_t perm;
4105
4106 perm = ((mode & S_IRWXO) );
4107 perm |= ((mode & S_IRWXG) << 2);
4108 perm |= ((mode & S_IRWXU) << 4);
4109 perm |= ((mode & S_IWOTH) << 3);
4110 perm |= ((mode & S_IWGRP) << 5);
4111 perm |= ((mode & S_IWUSR) << 7);
4112
4113 return perm;
4114 }
4115
4116 /* --------------------------------------------------------------------- */
4117
4118 static uint32_t
4119 udf_icb_to_unix_filetype(uint32_t icbftype)
4120 {
4121 switch (icbftype) {
4122 case UDF_ICB_FILETYPE_DIRECTORY :
4123 case UDF_ICB_FILETYPE_STREAMDIR :
4124 return S_IFDIR;
4125 case UDF_ICB_FILETYPE_FIFO :
4126 return S_IFIFO;
4127 case UDF_ICB_FILETYPE_CHARDEVICE :
4128 return S_IFCHR;
4129 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4130 return S_IFBLK;
4131 case UDF_ICB_FILETYPE_RANDOMACCESS :
4132 case UDF_ICB_FILETYPE_REALTIME :
4133 return S_IFREG;
4134 case UDF_ICB_FILETYPE_SYMLINK :
4135 return S_IFLNK;
4136 case UDF_ICB_FILETYPE_SOCKET :
4137 return S_IFSOCK;
4138 }
4139 /* no idea what this is */
4140 return 0;
4141 }
4142
4143 /* --------------------------------------------------------------------- */
4144
4145 void
4146 udf_to_unix_name(char *result, int result_len, char *id, int len,
4147 struct charspec *chsp)
4148 {
4149 uint16_t *raw_name, *unix_name;
4150 uint16_t *inchp, ch;
4151 uint8_t *outchp;
4152 const char *osta_id = "OSTA Compressed Unicode";
4153 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4154
4155 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4156 unix_name = raw_name + 1024; /* split space in half */
4157 assert(sizeof(char) == sizeof(uint8_t));
4158 outchp = (uint8_t *) result;
4159
4160 is_osta_typ0 = (chsp->type == 0);
4161 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4162 if (is_osta_typ0) {
4163 /* TODO clean up */
4164 *raw_name = *unix_name = 0;
4165 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4166 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4167 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4168 /* output UTF8 */
4169 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4170 ch = *inchp;
4171 nout = wput_utf8(outchp, result_len, ch);
4172 outchp += nout; result_len -= nout;
4173 if (!ch) break;
4174 }
4175 *outchp++ = 0;
4176 } else {
4177 /* assume 8bit char length byte latin-1 */
4178 assert(*id == 8);
4179 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4180 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4181 }
4182 free(raw_name, M_UDFTEMP);
4183 }
4184
4185 /* --------------------------------------------------------------------- */
4186
4187 void
4188 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4189 struct charspec *chsp)
4190 {
4191 uint16_t *raw_name;
4192 uint16_t *outchp;
4193 const char *inchp;
4194 const char *osta_id = "OSTA Compressed Unicode";
4195 int udf_chars, is_osta_typ0, bits;
4196 size_t cnt;
4197
4198 /* allocate temporary unicode-16 buffer */
4199 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4200
4201 /* convert utf8 to unicode-16 */
4202 *raw_name = 0;
4203 inchp = name;
4204 outchp = raw_name;
4205 bits = 8;
4206 for (cnt = name_len, udf_chars = 0; cnt;) {
4207 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4208 *outchp = wget_utf8(&inchp, &cnt);
4209 if (*outchp > 0xff)
4210 bits=16;
4211 outchp++;
4212 udf_chars++;
4213 }
4214 /* null terminate just in case */
4215 *outchp++ = 0;
4216
4217 is_osta_typ0 = (chsp->type == 0);
4218 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4219 if (is_osta_typ0) {
4220 udf_chars = udf_CompressUnicode(udf_chars, bits,
4221 (unicode_t *) raw_name,
4222 (byte *) result);
4223 } else {
4224 printf("unix to udf name: no CHSP0 ?\n");
4225 /* XXX assume 8bit char length byte latin-1 */
4226 *result++ = 8; udf_chars = 1;
4227 strncpy(result, name + 1, name_len);
4228 udf_chars += name_len;
4229 }
4230 *result_len = udf_chars;
4231 free(raw_name, M_UDFTEMP);
4232 }
4233
4234 /* --------------------------------------------------------------------- */
4235
4236 void
4237 udf_timestamp_to_timespec(struct udf_mount *ump,
4238 struct timestamp *timestamp,
4239 struct timespec *timespec)
4240 {
4241 struct clock_ymdhms ymdhms;
4242 uint32_t usecs, secs, nsecs;
4243 uint16_t tz;
4244
4245 /* fill in ymdhms structure from timestamp */
4246 memset(&ymdhms, 0, sizeof(ymdhms));
4247 ymdhms.dt_year = udf_rw16(timestamp->year);
4248 ymdhms.dt_mon = timestamp->month;
4249 ymdhms.dt_day = timestamp->day;
4250 ymdhms.dt_wday = 0; /* ? */
4251 ymdhms.dt_hour = timestamp->hour;
4252 ymdhms.dt_min = timestamp->minute;
4253 ymdhms.dt_sec = timestamp->second;
4254
4255 secs = clock_ymdhms_to_secs(&ymdhms);
4256 usecs = timestamp->usec +
4257 100*timestamp->hund_usec + 10000*timestamp->centisec;
4258 nsecs = usecs * 1000;
4259
4260 /*
4261 * Calculate the time zone. The timezone is 12 bit signed 2's
4262 * compliment, so we gotta do some extra magic to handle it right.
4263 */
4264 tz = udf_rw16(timestamp->type_tz);
4265 tz &= 0x0fff; /* only lower 12 bits are significant */
4266 if (tz & 0x0800) /* sign extention */
4267 tz |= 0xf000;
4268
4269 /* TODO check timezone conversion */
4270 /* check if we are specified a timezone to convert */
4271 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4272 if ((int16_t) tz != -2047)
4273 secs -= (int16_t) tz * 60;
4274 } else {
4275 secs -= ump->mount_args.gmtoff;
4276 }
4277
4278 timespec->tv_sec = secs;
4279 timespec->tv_nsec = nsecs;
4280 }
4281
4282
4283 void
4284 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4285 {
4286 struct clock_ymdhms ymdhms;
4287 uint32_t husec, usec, csec;
4288
4289 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4290
4291 usec = timespec->tv_nsec / 1000;
4292 husec = usec / 100;
4293 usec -= husec * 100; /* only 0-99 in usec */
4294 csec = husec / 100; /* only 0-99 in csec */
4295 husec -= csec * 100; /* only 0-99 in husec */
4296
4297 /* set method 1 for CUT/GMT */
4298 timestamp->type_tz = udf_rw16((1<<12) + 0);
4299 timestamp->year = udf_rw16(ymdhms.dt_year);
4300 timestamp->month = ymdhms.dt_mon;
4301 timestamp->day = ymdhms.dt_day;
4302 timestamp->hour = ymdhms.dt_hour;
4303 timestamp->minute = ymdhms.dt_min;
4304 timestamp->second = ymdhms.dt_sec;
4305 timestamp->centisec = csec;
4306 timestamp->hund_usec = husec;
4307 timestamp->usec = usec;
4308 }
4309
4310 /* --------------------------------------------------------------------- */
4311
4312 /*
4313 * Attribute and filetypes converters with get/set pairs
4314 */
4315
4316 uint32_t
4317 udf_getaccessmode(struct udf_node *udf_node)
4318 {
4319 struct file_entry *fe = udf_node->fe;
4320 struct extfile_entry *efe = udf_node->efe;
4321 uint32_t udf_perm, icbftype;
4322 uint32_t mode, ftype;
4323 uint16_t icbflags;
4324
4325 UDF_LOCK_NODE(udf_node, 0);
4326 if (fe) {
4327 udf_perm = udf_rw32(fe->perm);
4328 icbftype = fe->icbtag.file_type;
4329 icbflags = udf_rw16(fe->icbtag.flags);
4330 } else {
4331 assert(udf_node->efe);
4332 udf_perm = udf_rw32(efe->perm);
4333 icbftype = efe->icbtag.file_type;
4334 icbflags = udf_rw16(efe->icbtag.flags);
4335 }
4336
4337 mode = udf_perm_to_unix_mode(udf_perm);
4338 ftype = udf_icb_to_unix_filetype(icbftype);
4339
4340 /* set suid, sgid, sticky from flags in fe/efe */
4341 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4342 mode |= S_ISUID;
4343 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4344 mode |= S_ISGID;
4345 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4346 mode |= S_ISVTX;
4347
4348 UDF_UNLOCK_NODE(udf_node, 0);
4349
4350 return mode | ftype;
4351 }
4352
4353
4354 void
4355 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4356 {
4357 struct file_entry *fe = udf_node->fe;
4358 struct extfile_entry *efe = udf_node->efe;
4359 uint32_t udf_perm;
4360 uint16_t icbflags;
4361
4362 UDF_LOCK_NODE(udf_node, 0);
4363 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4364 if (fe) {
4365 icbflags = udf_rw16(fe->icbtag.flags);
4366 } else {
4367 icbflags = udf_rw16(efe->icbtag.flags);
4368 }
4369
4370 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4371 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4372 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4373 if (mode & S_ISUID)
4374 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4375 if (mode & S_ISGID)
4376 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4377 if (mode & S_ISVTX)
4378 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4379
4380 if (fe) {
4381 fe->perm = udf_rw32(udf_perm);
4382 fe->icbtag.flags = udf_rw16(icbflags);
4383 } else {
4384 efe->perm = udf_rw32(udf_perm);
4385 efe->icbtag.flags = udf_rw16(icbflags);
4386 }
4387
4388 UDF_UNLOCK_NODE(udf_node, 0);
4389 }
4390
4391
4392 void
4393 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4394 {
4395 struct udf_mount *ump = udf_node->ump;
4396 struct file_entry *fe = udf_node->fe;
4397 struct extfile_entry *efe = udf_node->efe;
4398 uid_t uid;
4399 gid_t gid;
4400
4401 UDF_LOCK_NODE(udf_node, 0);
4402 if (fe) {
4403 uid = (uid_t)udf_rw32(fe->uid);
4404 gid = (gid_t)udf_rw32(fe->gid);
4405 } else {
4406 assert(udf_node->efe);
4407 uid = (uid_t)udf_rw32(efe->uid);
4408 gid = (gid_t)udf_rw32(efe->gid);
4409 }
4410
4411 /* do the uid/gid translation game */
4412 if (uid == (uid_t) -1)
4413 uid = ump->mount_args.anon_uid;
4414 if (gid == (gid_t) -1)
4415 gid = ump->mount_args.anon_gid;
4416
4417 *uidp = uid;
4418 *gidp = gid;
4419
4420 UDF_UNLOCK_NODE(udf_node, 0);
4421 }
4422
4423
4424 void
4425 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4426 {
4427 struct udf_mount *ump = udf_node->ump;
4428 struct file_entry *fe = udf_node->fe;
4429 struct extfile_entry *efe = udf_node->efe;
4430 uid_t nobody_uid;
4431 gid_t nobody_gid;
4432
4433 UDF_LOCK_NODE(udf_node, 0);
4434
4435 /* do the uid/gid translation game */
4436 nobody_uid = ump->mount_args.nobody_uid;
4437 nobody_gid = ump->mount_args.nobody_gid;
4438 if (uid == nobody_uid)
4439 uid = (uid_t) -1;
4440 if (gid == nobody_gid)
4441 gid = (gid_t) -1;
4442
4443 if (fe) {
4444 fe->uid = udf_rw32((uint32_t) uid);
4445 fe->gid = udf_rw32((uint32_t) gid);
4446 } else {
4447 efe->uid = udf_rw32((uint32_t) uid);
4448 efe->gid = udf_rw32((uint32_t) gid);
4449 }
4450
4451 UDF_UNLOCK_NODE(udf_node, 0);
4452 }
4453
4454
4455 /* --------------------------------------------------------------------- */
4456
4457
4458 static int
4459 dirhash_fill(struct udf_node *dir_node)
4460 {
4461 struct vnode *dvp = dir_node->vnode;
4462 struct dirhash *dirh;
4463 struct file_entry *fe = dir_node->fe;
4464 struct extfile_entry *efe = dir_node->efe;
4465 struct fileid_desc *fid;
4466 struct dirent *dirent;
4467 uint64_t file_size, pre_diroffset, diroffset;
4468 uint32_t lb_size;
4469 int error;
4470
4471 /* make sure we have a dirhash to work on */
4472 dirh = dir_node->dir_hash;
4473 KASSERT(dirh);
4474 KASSERT(dirh->refcnt > 0);
4475
4476 if (dirh->flags & DIRH_BROKEN)
4477 return EIO;
4478 if (dirh->flags & DIRH_COMPLETE)
4479 return 0;
4480
4481 /* make sure we have a clean dirhash to add to */
4482 dirhash_purge_entries(dirh);
4483
4484 /* get directory filesize */
4485 if (fe) {
4486 file_size = udf_rw64(fe->inf_len);
4487 } else {
4488 assert(efe);
4489 file_size = udf_rw64(efe->inf_len);
4490 }
4491
4492 /* allocate temporary space for fid */
4493 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4494 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4495
4496 /* allocate temporary space for dirent */
4497 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4498
4499 error = 0;
4500 diroffset = 0;
4501 while (diroffset < file_size) {
4502 /* transfer a new fid/dirent */
4503 pre_diroffset = diroffset;
4504 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4505 if (error) {
4506 /* TODO what to do? continue but not add? */
4507 dirh->flags |= DIRH_BROKEN;
4508 dirhash_purge_entries(dirh);
4509 break;
4510 }
4511
4512 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4513 /* register deleted extent for reuse */
4514 dirhash_enter_freed(dirh, pre_diroffset,
4515 udf_fidsize(fid));
4516 } else {
4517 /* append to the dirhash */
4518 dirhash_enter(dirh, dirent, pre_diroffset,
4519 udf_fidsize(fid), 0);
4520 }
4521 }
4522 dirh->flags |= DIRH_COMPLETE;
4523
4524 free(fid, M_UDFTEMP);
4525 free(dirent, M_UDFTEMP);
4526
4527 return error;
4528 }
4529
4530
4531 /* --------------------------------------------------------------------- */
4532
4533 /*
4534 * Directory read and manipulation functions.
4535 *
4536 */
4537
4538 int
4539 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4540 struct long_ad *icb_loc, int *found)
4541 {
4542 struct udf_node *dir_node = VTOI(vp);
4543 struct dirhash *dirh;
4544 struct dirhash_entry *dirh_ep;
4545 struct fileid_desc *fid;
4546 struct dirent *dirent;
4547 uint64_t diroffset;
4548 uint32_t lb_size;
4549 int hit, error;
4550
4551 /* set default return */
4552 *found = 0;
4553
4554 /* get our dirhash and make sure its read in */
4555 dirhash_get(&dir_node->dir_hash);
4556 error = dirhash_fill(dir_node);
4557 if (error) {
4558 dirhash_put(dir_node->dir_hash);
4559 return error;
4560 }
4561 dirh = dir_node->dir_hash;
4562
4563 /* allocate temporary space for fid */
4564 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4565 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4566 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4567
4568 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4569 namelen, namelen, name));
4570
4571 /* search our dirhash hits */
4572 memset(icb_loc, 0, sizeof(*icb_loc));
4573 dirh_ep = NULL;
4574 for (;;) {
4575 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4576 /* if no hit, abort the search */
4577 if (!hit)
4578 break;
4579
4580 /* check this hit */
4581 diroffset = dirh_ep->offset;
4582
4583 /* transfer a new fid/dirent */
4584 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4585 if (error)
4586 break;
4587
4588 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4589 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4590
4591 /* see if its our entry */
4592 #ifdef DIAGNOSTIC
4593 if (dirent->d_namlen != namelen) {
4594 printf("WARNING: dirhash_lookup() returned wrong "
4595 "d_namelen: %d and ought to be %d\n",
4596 dirent->d_namlen, namelen);
4597 printf("\tlooked for `%s' and got `%s'\n",
4598 name, dirent->d_name);
4599 }
4600 #endif
4601 if (strncmp(dirent->d_name, name, namelen) == 0) {
4602 *found = 1;
4603 *icb_loc = fid->icb;
4604 break;
4605 }
4606 }
4607 free(fid, M_UDFTEMP);
4608 free(dirent, M_UDFTEMP);
4609
4610 dirhash_put(dir_node->dir_hash);
4611
4612 return error;
4613 }
4614
4615 /* --------------------------------------------------------------------- */
4616
4617 static int
4618 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4619 struct long_ad *node_icb, struct long_ad *parent_icb,
4620 uint64_t parent_unique_id)
4621 {
4622 struct timespec now;
4623 struct icb_tag *icb;
4624 struct filetimes_extattr_entry *ft_extattr;
4625 uint64_t unique_id;
4626 uint32_t fidsize, lb_num;
4627 uint8_t *bpos;
4628 int crclen, attrlen;
4629
4630 lb_num = udf_rw32(node_icb->loc.lb_num);
4631 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4632 icb = &fe->icbtag;
4633
4634 /*
4635 * Always use strategy type 4 unless on WORM wich we don't support
4636 * (yet). Fill in defaults and set for internal allocation of data.
4637 */
4638 icb->strat_type = udf_rw16(4);
4639 icb->max_num_entries = udf_rw16(1);
4640 icb->file_type = file_type; /* 8 bit */
4641 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4642
4643 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4644 fe->link_cnt = udf_rw16(0); /* explicit setting */
4645
4646 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4647
4648 vfs_timestamp(&now);
4649 udf_timespec_to_timestamp(&now, &fe->atime);
4650 udf_timespec_to_timestamp(&now, &fe->attrtime);
4651 udf_timespec_to_timestamp(&now, &fe->mtime);
4652
4653 udf_set_regid(&fe->imp_id, IMPL_NAME);
4654 udf_add_impl_regid(ump, &fe->imp_id);
4655
4656 unique_id = udf_advance_uniqueid(ump);
4657 fe->unique_id = udf_rw64(unique_id);
4658 fe->l_ea = udf_rw32(0);
4659
4660 /* create extended attribute to record our creation time */
4661 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4662 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4663 memset(ft_extattr, 0, attrlen);
4664 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4665 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4666 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4667 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4668 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4669 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4670
4671 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4672 (struct extattr_entry *) ft_extattr);
4673 free(ft_extattr, M_UDFTEMP);
4674
4675 /* if its a directory, create '..' */
4676 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4677 fidsize = 0;
4678 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4679 fidsize = udf_create_parentfid(ump,
4680 (struct fileid_desc *) bpos, parent_icb,
4681 parent_unique_id);
4682 }
4683
4684 /* record fidlength information */
4685 fe->inf_len = udf_rw64(fidsize);
4686 fe->l_ad = udf_rw32(fidsize);
4687 fe->logblks_rec = udf_rw64(0); /* intern */
4688
4689 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4690 crclen += udf_rw32(fe->l_ea) + fidsize;
4691 fe->tag.desc_crc_len = udf_rw16(crclen);
4692
4693 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4694
4695 return fidsize;
4696 }
4697
4698 /* --------------------------------------------------------------------- */
4699
4700 static int
4701 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4702 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4703 uint64_t parent_unique_id)
4704 {
4705 struct timespec now;
4706 struct icb_tag *icb;
4707 uint64_t unique_id;
4708 uint32_t fidsize, lb_num;
4709 uint8_t *bpos;
4710 int crclen;
4711
4712 lb_num = udf_rw32(node_icb->loc.lb_num);
4713 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4714 icb = &efe->icbtag;
4715
4716 /*
4717 * Always use strategy type 4 unless on WORM wich we don't support
4718 * (yet). Fill in defaults and set for internal allocation of data.
4719 */
4720 icb->strat_type = udf_rw16(4);
4721 icb->max_num_entries = udf_rw16(1);
4722 icb->file_type = file_type; /* 8 bit */
4723 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4724
4725 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4726 efe->link_cnt = udf_rw16(0); /* explicit setting */
4727
4728 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4729
4730 vfs_timestamp(&now);
4731 udf_timespec_to_timestamp(&now, &efe->ctime);
4732 udf_timespec_to_timestamp(&now, &efe->atime);
4733 udf_timespec_to_timestamp(&now, &efe->attrtime);
4734 udf_timespec_to_timestamp(&now, &efe->mtime);
4735
4736 udf_set_regid(&efe->imp_id, IMPL_NAME);
4737 udf_add_impl_regid(ump, &efe->imp_id);
4738
4739 unique_id = udf_advance_uniqueid(ump);
4740 efe->unique_id = udf_rw64(unique_id);
4741 efe->l_ea = udf_rw32(0);
4742
4743 /* if its a directory, create '..' */
4744 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4745 fidsize = 0;
4746 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4747 fidsize = udf_create_parentfid(ump,
4748 (struct fileid_desc *) bpos, parent_icb,
4749 parent_unique_id);
4750 }
4751
4752 /* record fidlength information */
4753 efe->obj_size = udf_rw64(fidsize);
4754 efe->inf_len = udf_rw64(fidsize);
4755 efe->l_ad = udf_rw32(fidsize);
4756 efe->logblks_rec = udf_rw64(0); /* intern */
4757
4758 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4759 crclen += udf_rw32(efe->l_ea) + fidsize;
4760 efe->tag.desc_crc_len = udf_rw16(crclen);
4761
4762 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4763
4764 return fidsize;
4765 }
4766
4767 /* --------------------------------------------------------------------- */
4768
4769 int
4770 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4771 struct udf_node *udf_node, struct componentname *cnp)
4772 {
4773 struct vnode *dvp = dir_node->vnode;
4774 struct dirhash *dirh;
4775 struct dirhash_entry *dirh_ep;
4776 struct file_entry *fe = dir_node->fe;
4777 struct extfile_entry *efe = dir_node->efe;
4778 struct fileid_desc *fid;
4779 struct dirent *dirent;
4780 uint64_t file_size, diroffset;
4781 uint32_t lb_size, fidsize;
4782 int found, error;
4783 char const *name = cnp->cn_nameptr;
4784 int namelen = cnp->cn_namelen;
4785 int hit, refcnt;
4786
4787 /* get our dirhash and make sure its read in */
4788 dirhash_get(&dir_node->dir_hash);
4789 error = dirhash_fill(dir_node);
4790 if (error) {
4791 dirhash_put(dir_node->dir_hash);
4792 return error;
4793 }
4794 dirh = dir_node->dir_hash;
4795
4796 /* get directory filesize */
4797 if (fe) {
4798 file_size = udf_rw64(fe->inf_len);
4799 } else {
4800 assert(efe);
4801 file_size = udf_rw64(efe->inf_len);
4802 }
4803
4804 /* allocate temporary space for fid */
4805 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4806 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4807 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4808
4809 /* search our dirhash hits */
4810 found = 0;
4811 dirh_ep = NULL;
4812 for (;;) {
4813 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4814 /* if no hit, abort the search */
4815 if (!hit)
4816 break;
4817
4818 /* check this hit */
4819 diroffset = dirh_ep->offset;
4820
4821 /* transfer a new fid/dirent */
4822 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4823 if (error)
4824 break;
4825
4826 /* see if its our entry */
4827 KASSERT(dirent->d_namlen == namelen);
4828 if (strncmp(dirent->d_name, name, namelen) == 0) {
4829 found = 1;
4830 break;
4831 }
4832 }
4833
4834 if (!found)
4835 error = ENOENT;
4836 if (error)
4837 goto error_out;
4838
4839 /* mark deleted */
4840 fid->file_char |= UDF_FILE_CHAR_DEL;
4841 #ifdef UDF_COMPLETE_DELETE
4842 memset(&fid->icb, 0, sizeof(fid->icb));
4843 #endif
4844 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4845
4846 /* get size of fid and compensate for the read_fid_stream advance */
4847 fidsize = udf_fidsize(fid);
4848 diroffset -= fidsize;
4849
4850 /* write out */
4851 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4852 fid, fidsize, diroffset,
4853 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4854 FSCRED, NULL, NULL);
4855 if (error)
4856 goto error_out;
4857
4858 /* get reference count of attached node */
4859 if (udf_node->fe) {
4860 refcnt = udf_rw16(udf_node->fe->link_cnt);
4861 } else {
4862 KASSERT(udf_node->efe);
4863 refcnt = udf_rw16(udf_node->efe->link_cnt);
4864 }
4865 #ifdef UDF_COMPLETE_DELETE
4866 /* substract reference counter in attached node */
4867 refcnt -= 1;
4868 if (udf_node->fe) {
4869 udf_node->fe->link_cnt = udf_rw16(refcnt);
4870 } else {
4871 udf_node->efe->link_cnt = udf_rw16(refcnt);
4872 }
4873
4874 /* prevent writeout when refcnt == 0 */
4875 if (refcnt == 0)
4876 udf_node->i_flags |= IN_DELETED;
4877
4878 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4879 int drefcnt;
4880
4881 /* substract reference counter in directory node */
4882 /* note subtract 2 (?) for its was also backreferenced */
4883 if (dir_node->fe) {
4884 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4885 drefcnt -= 1;
4886 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4887 } else {
4888 KASSERT(dir_node->efe);
4889 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4890 drefcnt -= 1;
4891 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4892 }
4893 }
4894
4895 udf_node->i_flags |= IN_MODIFIED;
4896 dir_node->i_flags |= IN_MODIFIED;
4897 #endif
4898 /* if it is/was a hardlink adjust the file count */
4899 if (refcnt > 0)
4900 udf_adjust_filecount(udf_node, -1);
4901
4902 /* remove from the dirhash */
4903 dirhash_remove(dirh, dirent, diroffset,
4904 udf_fidsize(fid));
4905
4906 error_out:
4907 free(fid, M_UDFTEMP);
4908 free(dirent, M_UDFTEMP);
4909
4910 dirhash_put(dir_node->dir_hash);
4911
4912 return error;
4913 }
4914
4915 /* --------------------------------------------------------------------- */
4916
4917 int
4918 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4919 struct udf_node *new_parent_node)
4920 {
4921 struct vnode *dvp = dir_node->vnode;
4922 struct dirhash *dirh;
4923 struct dirhash_entry *dirh_ep;
4924 struct file_entry *fe;
4925 struct extfile_entry *efe;
4926 struct fileid_desc *fid;
4927 struct dirent *dirent;
4928 uint64_t file_size, diroffset;
4929 uint64_t new_parent_unique_id;
4930 uint32_t lb_size, fidsize;
4931 int found, error;
4932 char const *name = "..";
4933 int namelen = 2;
4934 int hit;
4935
4936 /* get our dirhash and make sure its read in */
4937 dirhash_get(&dir_node->dir_hash);
4938 error = dirhash_fill(dir_node);
4939 if (error) {
4940 dirhash_put(dir_node->dir_hash);
4941 return error;
4942 }
4943 dirh = dir_node->dir_hash;
4944
4945 /* get new parent's unique ID */
4946 fe = new_parent_node->fe;
4947 efe = new_parent_node->efe;
4948 if (fe) {
4949 new_parent_unique_id = udf_rw64(fe->unique_id);
4950 } else {
4951 assert(efe);
4952 new_parent_unique_id = udf_rw64(efe->unique_id);
4953 }
4954
4955 /* get directory filesize */
4956 fe = dir_node->fe;
4957 efe = dir_node->efe;
4958 if (fe) {
4959 file_size = udf_rw64(fe->inf_len);
4960 } else {
4961 assert(efe);
4962 file_size = udf_rw64(efe->inf_len);
4963 }
4964
4965 /* allocate temporary space for fid */
4966 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4967 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4968 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4969
4970 /*
4971 * NOTE the standard does not dictate the FID entry '..' should be
4972 * first, though in practice it will most likely be.
4973 */
4974
4975 /* search our dirhash hits */
4976 found = 0;
4977 dirh_ep = NULL;
4978 for (;;) {
4979 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4980 /* if no hit, abort the search */
4981 if (!hit)
4982 break;
4983
4984 /* check this hit */
4985 diroffset = dirh_ep->offset;
4986
4987 /* transfer a new fid/dirent */
4988 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4989 if (error)
4990 break;
4991
4992 /* see if its our entry */
4993 KASSERT(dirent->d_namlen == namelen);
4994 if (strncmp(dirent->d_name, name, namelen) == 0) {
4995 found = 1;
4996 break;
4997 }
4998 }
4999
5000 if (!found)
5001 error = ENOENT;
5002 if (error)
5003 goto error_out;
5004
5005 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5006 fid->icb = new_parent_node->write_loc;
5007 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5008
5009 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5010
5011 /* get size of fid and compensate for the read_fid_stream advance */
5012 fidsize = udf_fidsize(fid);
5013 diroffset -= fidsize;
5014
5015 /* write out */
5016 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5017 fid, fidsize, diroffset,
5018 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5019 FSCRED, NULL, NULL);
5020
5021 /* nothing to be done in the dirhash */
5022
5023 error_out:
5024 free(fid, M_UDFTEMP);
5025 free(dirent, M_UDFTEMP);
5026
5027 dirhash_put(dir_node->dir_hash);
5028
5029 return error;
5030 }
5031
5032 /* --------------------------------------------------------------------- */
5033
5034 /*
5035 * We are not allowed to split the fid tag itself over an logical block so
5036 * check the space remaining in the logical block.
5037 *
5038 * We try to select the smallest candidate for recycling or when none is
5039 * found, append a new one at the end of the directory.
5040 */
5041
5042 int
5043 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5044 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5045 {
5046 struct vnode *dvp = dir_node->vnode;
5047 struct dirhash *dirh;
5048 struct dirhash_entry *dirh_ep;
5049 struct fileid_desc *fid;
5050 struct icb_tag *icbtag;
5051 struct charspec osta_charspec;
5052 struct dirent dirent;
5053 uint64_t unique_id, dir_size;
5054 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5055 uint32_t chosen_size, chosen_size_diff;
5056 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5057 int file_char, refcnt, icbflags, addr_type, hit, error;
5058
5059 /* get our dirhash and make sure its read in */
5060 dirhash_get(&dir_node->dir_hash);
5061 error = dirhash_fill(dir_node);
5062 if (error) {
5063 dirhash_put(dir_node->dir_hash);
5064 return error;
5065 }
5066 dirh = dir_node->dir_hash;
5067
5068 /* get info */
5069 lb_size = udf_rw32(ump->logical_vol->lb_size);
5070 udf_osta_charset(&osta_charspec);
5071
5072 if (dir_node->fe) {
5073 dir_size = udf_rw64(dir_node->fe->inf_len);
5074 icbtag = &dir_node->fe->icbtag;
5075 } else {
5076 dir_size = udf_rw64(dir_node->efe->inf_len);
5077 icbtag = &dir_node->efe->icbtag;
5078 }
5079
5080 icbflags = udf_rw16(icbtag->flags);
5081 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5082
5083 if (udf_node->fe) {
5084 unique_id = udf_rw64(udf_node->fe->unique_id);
5085 refcnt = udf_rw16(udf_node->fe->link_cnt);
5086 } else {
5087 unique_id = udf_rw64(udf_node->efe->unique_id);
5088 refcnt = udf_rw16(udf_node->efe->link_cnt);
5089 }
5090
5091 if (refcnt > 0) {
5092 unique_id = udf_advance_uniqueid(ump);
5093 udf_adjust_filecount(udf_node, 1);
5094 }
5095
5096 /* determine file characteristics */
5097 file_char = 0; /* visible non deleted file and not stream metadata */
5098 if (vap->va_type == VDIR)
5099 file_char = UDF_FILE_CHAR_DIR;
5100
5101 /* malloc scrap buffer */
5102 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5103
5104 /* calculate _minimum_ fid size */
5105 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5106 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5107 fidsize = UDF_FID_SIZE + fid->l_fi;
5108 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5109
5110 /* find position that will fit the FID */
5111 chosen_fid_pos = dir_size;
5112 chosen_size = 0;
5113 chosen_size_diff = UINT_MAX;
5114
5115 /* shut up gcc */
5116 dirent.d_namlen = 0;
5117
5118 /* search our dirhash hits */
5119 error = 0;
5120 dirh_ep = NULL;
5121 for (;;) {
5122 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5123 /* if no hit, abort the search */
5124 if (!hit)
5125 break;
5126
5127 /* check this hit for size */
5128 this_fidsize = dirh_ep->entry_size;
5129
5130 /* check this hit */
5131 fid_pos = dirh_ep->offset;
5132 end_fid_pos = fid_pos + this_fidsize;
5133 size_diff = this_fidsize - fidsize;
5134 lb_rest = lb_size - (end_fid_pos % lb_size);
5135
5136 #ifndef UDF_COMPLETE_DELETE
5137 /* transfer a new fid/dirent */
5138 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5139 if (error)
5140 goto error_out;
5141
5142 /* only reuse entries that are wiped */
5143 /* check if the len + loc are marked zero */
5144 if (udf_rw32(fid->icb.len) != 0)
5145 continue;
5146 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5147 continue;
5148 if (udf_rw16(fid->icb.loc.part_num) != 0)
5149 continue;
5150 #endif /* UDF_COMPLETE_DELETE */
5151
5152 /* select if not splitting the tag and its smaller */
5153 if ((size_diff >= 0) &&
5154 (size_diff < chosen_size_diff) &&
5155 (lb_rest >= sizeof(struct desc_tag)))
5156 {
5157 /* UDF 2.3.4.2+3 specifies rules for iu size */
5158 if ((size_diff == 0) || (size_diff >= 32)) {
5159 chosen_fid_pos = fid_pos;
5160 chosen_size = this_fidsize;
5161 chosen_size_diff = size_diff;
5162 }
5163 }
5164 }
5165
5166
5167 /* extend directory if no other candidate found */
5168 if (chosen_size == 0) {
5169 chosen_fid_pos = dir_size;
5170 chosen_size = fidsize;
5171 chosen_size_diff = 0;
5172
5173 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5174 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5175 /* pre-grow directory to see if we're to switch */
5176 udf_grow_node(dir_node, dir_size + chosen_size);
5177
5178 icbflags = udf_rw16(icbtag->flags);
5179 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5180 }
5181
5182 /* make sure the next fid desc_tag won't be splitted */
5183 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5184 end_fid_pos = chosen_fid_pos + chosen_size;
5185 lb_rest = lb_size - (end_fid_pos % lb_size);
5186
5187 /* pad with implementation use regid if needed */
5188 if (lb_rest < sizeof(struct desc_tag))
5189 chosen_size += 32;
5190 }
5191 }
5192 chosen_size_diff = chosen_size - fidsize;
5193
5194 /* populate the FID */
5195 memset(fid, 0, lb_size);
5196 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5197 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5198 fid->file_char = file_char;
5199 fid->icb = udf_node->loc;
5200 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5201 fid->l_iu = udf_rw16(0);
5202
5203 if (chosen_size > fidsize) {
5204 /* insert implementation-use regid to space it correctly */
5205 fid->l_iu = udf_rw16(chosen_size_diff);
5206
5207 /* set implementation use */
5208 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5209 udf_add_impl_regid(ump, (struct regid *) fid->data);
5210 }
5211
5212 /* fill in name */
5213 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5214 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5215
5216 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5217 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5218
5219 /* writeout FID/update parent directory */
5220 error = vn_rdwr(UIO_WRITE, dvp,
5221 fid, chosen_size, chosen_fid_pos,
5222 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5223 FSCRED, NULL, NULL);
5224
5225 if (error)
5226 goto error_out;
5227
5228 /* add reference counter in attached node */
5229 if (udf_node->fe) {
5230 refcnt = udf_rw16(udf_node->fe->link_cnt);
5231 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5232 } else {
5233 KASSERT(udf_node->efe);
5234 refcnt = udf_rw16(udf_node->efe->link_cnt);
5235 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5236 }
5237
5238 /* mark not deleted if it was... just in case, but do warn */
5239 if (udf_node->i_flags & IN_DELETED) {
5240 printf("udf: warning, marking a file undeleted\n");
5241 udf_node->i_flags &= ~IN_DELETED;
5242 }
5243
5244 if (file_char & UDF_FILE_CHAR_DIR) {
5245 /* add reference counter in directory node for '..' */
5246 if (dir_node->fe) {
5247 refcnt = udf_rw16(dir_node->fe->link_cnt);
5248 refcnt++;
5249 dir_node->fe->link_cnt = udf_rw16(refcnt);
5250 } else {
5251 KASSERT(dir_node->efe);
5252 refcnt = udf_rw16(dir_node->efe->link_cnt);
5253 refcnt++;
5254 dir_node->efe->link_cnt = udf_rw16(refcnt);
5255 }
5256 }
5257
5258 /* append to the dirhash */
5259 /* NOTE do not use dirent anymore or it won't match later! */
5260 udf_to_unix_name(dirent.d_name, MAXNAMLEN,
5261 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5262 dirent.d_namlen = strlen(dirent.d_name);
5263 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5264 udf_fidsize(fid), 1);
5265
5266 /* note updates */
5267 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5268 /* VN_KNOTE(udf_node, ...) */
5269 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5270
5271 error_out:
5272 free(fid, M_TEMP);
5273
5274 dirhash_put(dir_node->dir_hash);
5275
5276 return error;
5277 }
5278
5279 /* --------------------------------------------------------------------- */
5280
5281 /*
5282 * Each node can have an attached streamdir node though not recursively. These
5283 * are otherwise known as named substreams/named extended attributes that have
5284 * no size limitations.
5285 *
5286 * `Normal' extended attributes are indicated with a number and are recorded
5287 * in either the fe/efe descriptor itself for small descriptors or recorded in
5288 * the attached extended attribute file. Since these spaces can get
5289 * fragmented, care ought to be taken.
5290 *
5291 * Since the size of the space reserved for allocation descriptors is limited,
5292 * there is a mechanim provided for extending this space; this is done by a
5293 * special extent to allow schrinking of the allocations without breaking the
5294 * linkage to the allocation extent descriptor.
5295 */
5296
5297 int
5298 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5299 struct udf_node **udf_noderes)
5300 {
5301 union dscrptr *dscr;
5302 struct udf_node *udf_node;
5303 struct vnode *nvp;
5304 struct long_ad icb_loc, last_fe_icb_loc;
5305 uint64_t file_size;
5306 uint32_t lb_size, sector, dummy;
5307 uint8_t *file_data;
5308 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5309 int slot, eof, error;
5310
5311 DPRINTF(NODE, ("udf_get_node called\n"));
5312 *udf_noderes = udf_node = NULL;
5313
5314 /* lock to disallow simultanious creation of same udf_node */
5315 mutex_enter(&ump->get_node_lock);
5316
5317 DPRINTF(NODE, ("\tlookup in hash table\n"));
5318 /* lookup in hash table */
5319 assert(ump);
5320 assert(node_icb_loc);
5321 udf_node = udf_node_lookup(ump, node_icb_loc);
5322 if (udf_node) {
5323 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5324 /* vnode is returned locked */
5325 *udf_noderes = udf_node;
5326 mutex_exit(&ump->get_node_lock);
5327 return 0;
5328 }
5329
5330 /* garbage check: translate udf_node_icb_loc to sectornr */
5331 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5332 if (error) {
5333 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5334 /* no use, this will fail anyway */
5335 mutex_exit(&ump->get_node_lock);
5336 return EINVAL;
5337 }
5338
5339 /* build udf_node (do initialise!) */
5340 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5341 memset(udf_node, 0, sizeof(struct udf_node));
5342
5343 DPRINTF(NODE, ("\tget new vnode\n"));
5344 /* give it a vnode */
5345 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp);
5346 if (error) {
5347 pool_put(&udf_node_pool, udf_node);
5348 mutex_exit(&ump->get_node_lock);
5349 return error;
5350 }
5351
5352 /* always return locked vnode */
5353 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5354 /* recycle vnode and unlock; simultanious will fail too */
5355 ungetnewvnode(nvp);
5356 mutex_exit(&ump->get_node_lock);
5357 return error;
5358 }
5359
5360 /* initialise crosslinks, note location of fe/efe for hashing */
5361 udf_node->ump = ump;
5362 udf_node->vnode = nvp;
5363 nvp->v_data = udf_node;
5364 udf_node->loc = *node_icb_loc;
5365 udf_node->lockf = 0;
5366 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5367 cv_init(&udf_node->node_lock, "udf_nlk");
5368 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5369 udf_node->outstanding_bufs = 0;
5370 udf_node->outstanding_nodedscr = 0;
5371 udf_node->uncommitted_lbs = 0;
5372
5373 /* check if we're fetching the root */
5374 if (ump->fileset_desc)
5375 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5376 sizeof(struct long_ad)) == 0)
5377 nvp->v_vflag |= VV_ROOT;
5378
5379 /* insert into the hash lookup */
5380 udf_register_node(udf_node);
5381
5382 /* safe to unlock, the entry is in the hash table, vnode is locked */
5383 mutex_exit(&ump->get_node_lock);
5384
5385 icb_loc = *node_icb_loc;
5386 needs_indirect = 0;
5387 strat4096 = 0;
5388 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5389 file_size = 0;
5390 file_data = NULL;
5391 lb_size = udf_rw32(ump->logical_vol->lb_size);
5392
5393 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5394 do {
5395 /* try to read in fe/efe */
5396 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5397
5398 /* blank sector marks end of sequence, check this */
5399 if ((dscr == NULL) && (!strat4096))
5400 error = ENOENT;
5401
5402 /* break if read error or blank sector */
5403 if (error || (dscr == NULL))
5404 break;
5405
5406 /* process descriptor based on the descriptor type */
5407 dscr_type = udf_rw16(dscr->tag.id);
5408 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5409
5410 /* if dealing with an indirect entry, follow the link */
5411 if (dscr_type == TAGID_INDIRECTENTRY) {
5412 needs_indirect = 0;
5413 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5414 icb_loc = dscr->inde.indirect_icb;
5415 continue;
5416 }
5417
5418 /* only file entries and extended file entries allowed here */
5419 if ((dscr_type != TAGID_FENTRY) &&
5420 (dscr_type != TAGID_EXTFENTRY)) {
5421 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5422 error = ENOENT;
5423 break;
5424 }
5425
5426 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5427
5428 /* choose this one */
5429 last_fe_icb_loc = icb_loc;
5430
5431 /* record and process/update (ext)fentry */
5432 file_data = NULL;
5433 if (dscr_type == TAGID_FENTRY) {
5434 if (udf_node->fe)
5435 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5436 udf_node->fe);
5437 udf_node->fe = &dscr->fe;
5438 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5439 udf_file_type = udf_node->fe->icbtag.file_type;
5440 file_size = udf_rw64(udf_node->fe->inf_len);
5441 file_data = udf_node->fe->data;
5442 } else {
5443 if (udf_node->efe)
5444 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5445 udf_node->efe);
5446 udf_node->efe = &dscr->efe;
5447 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5448 udf_file_type = udf_node->efe->icbtag.file_type;
5449 file_size = udf_rw64(udf_node->efe->inf_len);
5450 file_data = udf_node->efe->data;
5451 }
5452
5453 /* check recording strategy (structure) */
5454
5455 /*
5456 * Strategy 4096 is a daisy linked chain terminating with an
5457 * unrecorded sector or a TERM descriptor. The next
5458 * descriptor is to be found in the sector that follows the
5459 * current sector.
5460 */
5461 if (strat == 4096) {
5462 strat4096 = 1;
5463 needs_indirect = 1;
5464
5465 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5466 }
5467
5468 /*
5469 * Strategy 4 is the normal strategy and terminates, but if
5470 * we're in strategy 4096, we can't have strategy 4 mixed in
5471 */
5472
5473 if (strat == 4) {
5474 if (strat4096) {
5475 error = EINVAL;
5476 break;
5477 }
5478 break; /* done */
5479 }
5480 } while (!error);
5481
5482 /* first round of cleanup code */
5483 if (error) {
5484 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5485 /* recycle udf_node */
5486 udf_dispose_node(udf_node);
5487
5488 VOP_UNLOCK(nvp);
5489 nvp->v_data = NULL;
5490 ungetnewvnode(nvp);
5491
5492 return EINVAL; /* error code ok? */
5493 }
5494 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5495
5496 /* assert no references to dscr anymore beyong this point */
5497 assert((udf_node->fe) || (udf_node->efe));
5498 dscr = NULL;
5499
5500 /*
5501 * Remember where to record an updated version of the descriptor. If
5502 * there is a sequence of indirect entries, icb_loc will have been
5503 * updated. Its the write disipline to allocate new space and to make
5504 * sure the chain is maintained.
5505 *
5506 * `needs_indirect' flags if the next location is to be filled with
5507 * with an indirect entry.
5508 */
5509 udf_node->write_loc = icb_loc;
5510 udf_node->needs_indirect = needs_indirect;
5511
5512 /*
5513 * Go trough all allocations extents of this descriptor and when
5514 * encountering a redirect read in the allocation extension. These are
5515 * daisy-chained.
5516 */
5517 UDF_LOCK_NODE(udf_node, 0);
5518 udf_node->num_extensions = 0;
5519
5520 error = 0;
5521 slot = 0;
5522 for (;;) {
5523 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5524 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5525 "lb_num = %d, part = %d\n", slot, eof,
5526 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5527 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5528 udf_rw32(icb_loc.loc.lb_num),
5529 udf_rw16(icb_loc.loc.part_num)));
5530 if (eof)
5531 break;
5532 slot++;
5533
5534 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5535 continue;
5536
5537 DPRINTF(NODE, ("\tgot redirect extent\n"));
5538 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5539 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5540 "too many allocation extensions on "
5541 "udf_node\n"));
5542 error = EINVAL;
5543 break;
5544 }
5545
5546 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5547 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5548 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5549 "extension size in udf_node\n"));
5550 error = EINVAL;
5551 break;
5552 }
5553
5554 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5555 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5556 /* load in allocation extent */
5557 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5558 if (error || (dscr == NULL))
5559 break;
5560
5561 /* process read-in descriptor */
5562 dscr_type = udf_rw16(dscr->tag.id);
5563
5564 if (dscr_type != TAGID_ALLOCEXTENT) {
5565 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5566 error = ENOENT;
5567 break;
5568 }
5569
5570 DPRINTF(NODE, ("\trecording redirect extent\n"));
5571 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5572 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5573
5574 udf_node->num_extensions++;
5575
5576 } /* while */
5577 UDF_UNLOCK_NODE(udf_node, 0);
5578
5579 /* second round of cleanup code */
5580 if (error) {
5581 /* recycle udf_node */
5582 udf_dispose_node(udf_node);
5583
5584 VOP_UNLOCK(nvp);
5585 nvp->v_data = NULL;
5586 ungetnewvnode(nvp);
5587
5588 return EINVAL; /* error code ok? */
5589 }
5590
5591 DPRINTF(NODE, ("\tnode read in fine\n"));
5592
5593 /*
5594 * Translate UDF filetypes into vnode types.
5595 *
5596 * Systemfiles like the meta main and mirror files are not treated as
5597 * normal files, so we type them as having no type. UDF dictates that
5598 * they are not allowed to be visible.
5599 */
5600
5601 switch (udf_file_type) {
5602 case UDF_ICB_FILETYPE_DIRECTORY :
5603 case UDF_ICB_FILETYPE_STREAMDIR :
5604 nvp->v_type = VDIR;
5605 break;
5606 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5607 nvp->v_type = VBLK;
5608 break;
5609 case UDF_ICB_FILETYPE_CHARDEVICE :
5610 nvp->v_type = VCHR;
5611 break;
5612 case UDF_ICB_FILETYPE_SOCKET :
5613 nvp->v_type = VSOCK;
5614 break;
5615 case UDF_ICB_FILETYPE_FIFO :
5616 nvp->v_type = VFIFO;
5617 break;
5618 case UDF_ICB_FILETYPE_SYMLINK :
5619 nvp->v_type = VLNK;
5620 break;
5621 case UDF_ICB_FILETYPE_VAT :
5622 case UDF_ICB_FILETYPE_META_MAIN :
5623 case UDF_ICB_FILETYPE_META_MIRROR :
5624 nvp->v_type = VNON;
5625 break;
5626 case UDF_ICB_FILETYPE_RANDOMACCESS :
5627 case UDF_ICB_FILETYPE_REALTIME :
5628 nvp->v_type = VREG;
5629 break;
5630 default:
5631 /* YIKES, something else */
5632 nvp->v_type = VNON;
5633 }
5634
5635 /* TODO specfs, fifofs etc etc. vnops setting */
5636
5637 /* don't forget to set vnode's v_size */
5638 uvm_vnp_setsize(nvp, file_size);
5639
5640 /* TODO ext attr and streamdir udf_nodes */
5641
5642 *udf_noderes = udf_node;
5643
5644 return 0;
5645 }
5646
5647 /* --------------------------------------------------------------------- */
5648
5649 int
5650 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5651 {
5652 union dscrptr *dscr;
5653 struct long_ad *loc;
5654 int extnr, error;
5655
5656 DPRINTF(NODE, ("udf_writeout_node called\n"));
5657
5658 KASSERT(udf_node->outstanding_bufs == 0);
5659 KASSERT(udf_node->outstanding_nodedscr == 0);
5660
5661 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5662
5663 if (udf_node->i_flags & IN_DELETED) {
5664 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5665 udf_cleanup_reservation(udf_node);
5666 return 0;
5667 }
5668
5669 /* lock node; unlocked in callback */
5670 UDF_LOCK_NODE(udf_node, 0);
5671
5672 /* remove pending reservations, we're written out */
5673 udf_cleanup_reservation(udf_node);
5674
5675 /* at least one descriptor writeout */
5676 udf_node->outstanding_nodedscr = 1;
5677
5678 /* we're going to write out the descriptor so clear the flags */
5679 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5680
5681 /* if we were rebuild, write out the allocation extents */
5682 if (udf_node->i_flags & IN_NODE_REBUILD) {
5683 /* mark outstanding node descriptors and issue them */
5684 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5685 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5686 loc = &udf_node->ext_loc[extnr];
5687 dscr = (union dscrptr *) udf_node->ext[extnr];
5688 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5689 if (error)
5690 return error;
5691 }
5692 /* mark allocation extents written out */
5693 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5694 }
5695
5696 if (udf_node->fe) {
5697 KASSERT(udf_node->efe == NULL);
5698 dscr = (union dscrptr *) udf_node->fe;
5699 } else {
5700 KASSERT(udf_node->efe);
5701 KASSERT(udf_node->fe == NULL);
5702 dscr = (union dscrptr *) udf_node->efe;
5703 }
5704 KASSERT(dscr);
5705
5706 loc = &udf_node->write_loc;
5707 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5708
5709 return error;
5710 }
5711
5712 /* --------------------------------------------------------------------- */
5713
5714 int
5715 udf_dispose_node(struct udf_node *udf_node)
5716 {
5717 struct vnode *vp;
5718 int extnr;
5719
5720 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5721 if (!udf_node) {
5722 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5723 return 0;
5724 }
5725
5726 vp = udf_node->vnode;
5727 #ifdef DIAGNOSTIC
5728 if (vp->v_numoutput)
5729 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5730 "v_numoutput = %d", udf_node, vp->v_numoutput);
5731 #endif
5732
5733 udf_cleanup_reservation(udf_node);
5734
5735 /* TODO extended attributes and streamdir */
5736
5737 /* remove dirhash if present */
5738 dirhash_purge(&udf_node->dir_hash);
5739
5740 /* remove from our hash lookup table */
5741 udf_deregister_node(udf_node);
5742
5743 /* destroy our lock */
5744 mutex_destroy(&udf_node->node_mutex);
5745 cv_destroy(&udf_node->node_lock);
5746
5747 /* dissociate our udf_node from the vnode */
5748 genfs_node_destroy(udf_node->vnode);
5749 vp->v_data = NULL;
5750
5751 /* free associated memory and the node itself */
5752 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5753 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5754 udf_node->ext[extnr]);
5755 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5756 }
5757
5758 if (udf_node->fe)
5759 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5760 udf_node->fe);
5761 if (udf_node->efe)
5762 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5763 udf_node->efe);
5764
5765 udf_node->fe = (void *) 0xdeadaaaa;
5766 udf_node->efe = (void *) 0xdeadbbbb;
5767 udf_node->ump = (void *) 0xdeadbeef;
5768 pool_put(&udf_node_pool, udf_node);
5769
5770 return 0;
5771 }
5772
5773
5774
5775 /*
5776 * create a new node using the specified vnodeops, vap and cnp but with the
5777 * udf_file_type. This allows special files to be created. Use with care.
5778 */
5779
5780 static int
5781 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5782 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5783 {
5784 union dscrptr *dscr;
5785 struct udf_node *dir_node = VTOI(dvp);
5786 struct udf_node *udf_node;
5787 struct udf_mount *ump = dir_node->ump;
5788 struct vnode *nvp;
5789 struct long_ad node_icb_loc;
5790 uint64_t parent_unique_id;
5791 uint64_t lmapping;
5792 uint32_t lb_size, lb_num;
5793 uint16_t vpart_num;
5794 uid_t uid;
5795 gid_t gid, parent_gid;
5796 int fid_size, error;
5797
5798 lb_size = udf_rw32(ump->logical_vol->lb_size);
5799 *vpp = NULL;
5800
5801 /* allocate vnode */
5802 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp);
5803 if (error)
5804 return error;
5805
5806 /* lock node */
5807 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5808 if (error)
5809 goto error_out_unget;
5810
5811 /* reserve space for one logical block */
5812 vpart_num = ump->node_part;
5813 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5814 vpart_num, 1, /* can_fail */ true);
5815 if (error)
5816 goto error_out_unlock;
5817
5818 /* allocate node */
5819 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5820 vpart_num, 1, &lmapping);
5821 if (error)
5822 goto error_out_unreserve;
5823 lb_num = lmapping;
5824
5825 /* initialise pointer to location */
5826 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5827 node_icb_loc.len = udf_rw32(lb_size);
5828 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5829 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5830
5831 /* build udf_node (do initialise!) */
5832 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5833 memset(udf_node, 0, sizeof(struct udf_node));
5834
5835 /* initialise crosslinks, note location of fe/efe for hashing */
5836 /* bugalert: synchronise with udf_get_node() */
5837 udf_node->ump = ump;
5838 udf_node->vnode = nvp;
5839 nvp->v_data = udf_node;
5840 udf_node->loc = node_icb_loc;
5841 udf_node->write_loc = node_icb_loc;
5842 udf_node->lockf = 0;
5843 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5844 cv_init(&udf_node->node_lock, "udf_nlk");
5845 udf_node->outstanding_bufs = 0;
5846 udf_node->outstanding_nodedscr = 0;
5847 udf_node->uncommitted_lbs = 0;
5848
5849 /* initialise genfs */
5850 genfs_node_init(nvp, &udf_genfsops);
5851
5852 /* insert into the hash lookup */
5853 udf_register_node(udf_node);
5854
5855 /* get parent's unique ID for refering '..' if its a directory */
5856 if (dir_node->fe) {
5857 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5858 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5859 } else {
5860 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5861 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5862 }
5863
5864 /* get descriptor */
5865 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5866
5867 /* choose a fe or an efe for it */
5868 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5869 udf_node->fe = &dscr->fe;
5870 fid_size = udf_create_new_fe(ump, udf_node->fe,
5871 udf_file_type, &udf_node->loc,
5872 &dir_node->loc, parent_unique_id);
5873 /* TODO add extended attribute for creation time */
5874 } else {
5875 udf_node->efe = &dscr->efe;
5876 fid_size = udf_create_new_efe(ump, udf_node->efe,
5877 udf_file_type, &udf_node->loc,
5878 &dir_node->loc, parent_unique_id);
5879 }
5880 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5881
5882 /* update vnode's size and type */
5883 nvp->v_type = vap->va_type;
5884 uvm_vnp_setsize(nvp, fid_size);
5885
5886 /* set access mode */
5887 udf_setaccessmode(udf_node, vap->va_mode);
5888
5889 /* set ownership */
5890 uid = kauth_cred_geteuid(cnp->cn_cred);
5891 gid = parent_gid;
5892 udf_setownership(udf_node, uid, gid);
5893
5894 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5895 if (error) {
5896 /* free disc allocation for node */
5897 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5898
5899 /* recycle udf_node */
5900 udf_dispose_node(udf_node);
5901 vput(nvp);
5902
5903 *vpp = NULL;
5904 return error;
5905 }
5906
5907 /* adjust file count */
5908 udf_adjust_filecount(udf_node, 1);
5909
5910 /* return result */
5911 *vpp = nvp;
5912
5913 return 0;
5914
5915 error_out_unreserve:
5916 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5917
5918 error_out_unlock:
5919 VOP_UNLOCK(nvp);
5920
5921 error_out_unget:
5922 nvp->v_data = NULL;
5923 ungetnewvnode(nvp);
5924
5925 return error;
5926 }
5927
5928
5929 int
5930 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5931 struct componentname *cnp)
5932 {
5933 int (**vnodeops)(void *);
5934 int udf_file_type;
5935
5936 DPRINTF(NODE, ("udf_create_node called\n"));
5937
5938 /* what type are we creating ? */
5939 vnodeops = udf_vnodeop_p;
5940 /* start with a default */
5941 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5942
5943 *vpp = NULL;
5944
5945 switch (vap->va_type) {
5946 case VREG :
5947 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5948 break;
5949 case VDIR :
5950 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5951 break;
5952 case VLNK :
5953 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5954 break;
5955 case VBLK :
5956 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5957 /* specfs */
5958 return ENOTSUP;
5959 break;
5960 case VCHR :
5961 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5962 /* specfs */
5963 return ENOTSUP;
5964 break;
5965 case VFIFO :
5966 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5967 /* specfs */
5968 return ENOTSUP;
5969 break;
5970 case VSOCK :
5971 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5972 /* specfs */
5973 return ENOTSUP;
5974 break;
5975 case VNON :
5976 case VBAD :
5977 default :
5978 /* nothing; can we even create these? */
5979 return EINVAL;
5980 }
5981
5982 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5983 }
5984
5985 /* --------------------------------------------------------------------- */
5986
5987 static void
5988 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5989 {
5990 struct udf_mount *ump = udf_node->ump;
5991 uint32_t lb_size, lb_num, len, num_lb;
5992 uint16_t vpart_num;
5993
5994 /* is there really one? */
5995 if (mem == NULL)
5996 return;
5997
5998 /* got a descriptor here */
5999 len = UDF_EXT_LEN(udf_rw32(loc->len));
6000 lb_num = udf_rw32(loc->loc.lb_num);
6001 vpart_num = udf_rw16(loc->loc.part_num);
6002
6003 lb_size = udf_rw32(ump->logical_vol->lb_size);
6004 num_lb = (len + lb_size -1) / lb_size;
6005
6006 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
6007 }
6008
6009 void
6010 udf_delete_node(struct udf_node *udf_node)
6011 {
6012 void *dscr;
6013 struct udf_mount *ump;
6014 struct long_ad *loc;
6015 int extnr, lvint, dummy;
6016
6017 ump = udf_node->ump;
6018
6019 /* paranoia check on integrity; should be open!; we could panic */
6020 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6021 if (lvint == UDF_INTEGRITY_CLOSED)
6022 printf("\tIntegrity was CLOSED!\n");
6023
6024 /* whatever the node type, change its size to zero */
6025 (void) udf_resize_node(udf_node, 0, &dummy);
6026
6027 /* force it to be `clean'; no use writing it out */
6028 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6029 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6030
6031 /* adjust file count */
6032 udf_adjust_filecount(udf_node, -1);
6033
6034 /*
6035 * Free its allocated descriptors; memory will be released when
6036 * vop_reclaim() is called.
6037 */
6038 loc = &udf_node->loc;
6039
6040 dscr = udf_node->fe;
6041 udf_free_descriptor_space(udf_node, loc, dscr);
6042 dscr = udf_node->efe;
6043 udf_free_descriptor_space(udf_node, loc, dscr);
6044
6045 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6046 dscr = udf_node->ext[extnr];
6047 loc = &udf_node->ext_loc[extnr];
6048 udf_free_descriptor_space(udf_node, loc, dscr);
6049 }
6050 }
6051
6052 /* --------------------------------------------------------------------- */
6053
6054 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6055 int
6056 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6057 {
6058 struct file_entry *fe = udf_node->fe;
6059 struct extfile_entry *efe = udf_node->efe;
6060 uint64_t file_size;
6061 int error;
6062
6063 if (fe) {
6064 file_size = udf_rw64(fe->inf_len);
6065 } else {
6066 assert(udf_node->efe);
6067 file_size = udf_rw64(efe->inf_len);
6068 }
6069
6070 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6071 file_size, new_size));
6072
6073 /* if not changing, we're done */
6074 if (file_size == new_size)
6075 return 0;
6076
6077 *extended = (new_size > file_size);
6078 if (*extended) {
6079 error = udf_grow_node(udf_node, new_size);
6080 } else {
6081 error = udf_shrink_node(udf_node, new_size);
6082 }
6083
6084 return error;
6085 }
6086
6087
6088 /* --------------------------------------------------------------------- */
6089
6090 void
6091 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6092 struct timespec *mod, struct timespec *birth)
6093 {
6094 struct timespec now;
6095 struct file_entry *fe;
6096 struct extfile_entry *efe;
6097 struct filetimes_extattr_entry *ft_extattr;
6098 struct timestamp *atime, *mtime, *attrtime, *ctime;
6099 struct timestamp fe_ctime;
6100 struct timespec cur_birth;
6101 uint32_t offset, a_l;
6102 uint8_t *filedata;
6103 int error;
6104
6105 /* protect against rogue values */
6106 if (!udf_node)
6107 return;
6108
6109 fe = udf_node->fe;
6110 efe = udf_node->efe;
6111
6112 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6113 return;
6114
6115 /* get descriptor information */
6116 if (fe) {
6117 atime = &fe->atime;
6118 mtime = &fe->mtime;
6119 attrtime = &fe->attrtime;
6120 filedata = fe->data;
6121
6122 /* initial save dummy setting */
6123 ctime = &fe_ctime;
6124
6125 /* check our extended attribute if present */
6126 error = udf_extattr_search_intern(udf_node,
6127 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6128 if (!error) {
6129 ft_extattr = (struct filetimes_extattr_entry *)
6130 (filedata + offset);
6131 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6132 ctime = &ft_extattr->times[0];
6133 }
6134 /* TODO create the extended attribute if not found ? */
6135 } else {
6136 assert(udf_node->efe);
6137 atime = &efe->atime;
6138 mtime = &efe->mtime;
6139 attrtime = &efe->attrtime;
6140 ctime = &efe->ctime;
6141 }
6142
6143 vfs_timestamp(&now);
6144
6145 /* set access time */
6146 if (udf_node->i_flags & IN_ACCESS) {
6147 if (acc == NULL)
6148 acc = &now;
6149 udf_timespec_to_timestamp(acc, atime);
6150 }
6151
6152 /* set modification time */
6153 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6154 if (mod == NULL)
6155 mod = &now;
6156 udf_timespec_to_timestamp(mod, mtime);
6157
6158 /* ensure birthtime is older than set modification! */
6159 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6160 if ((cur_birth.tv_sec > mod->tv_sec) ||
6161 ((cur_birth.tv_sec == mod->tv_sec) &&
6162 (cur_birth.tv_nsec > mod->tv_nsec))) {
6163 udf_timespec_to_timestamp(mod, ctime);
6164 }
6165 }
6166
6167 /* update birthtime if specified */
6168 /* XXX we asume here that given birthtime is older than mod */
6169 if (birth && (birth->tv_sec != VNOVAL)) {
6170 udf_timespec_to_timestamp(birth, ctime);
6171 }
6172
6173 /* set change time */
6174 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6175 udf_timespec_to_timestamp(&now, attrtime);
6176
6177 /* notify updates to the node itself */
6178 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6179 udf_node->i_flags |= IN_ACCESSED;
6180 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6181 udf_node->i_flags |= IN_MODIFIED;
6182
6183 /* clear modification flags */
6184 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6185 }
6186
6187 /* --------------------------------------------------------------------- */
6188
6189 int
6190 udf_update(struct vnode *vp, struct timespec *acc,
6191 struct timespec *mod, struct timespec *birth, int updflags)
6192 {
6193 union dscrptr *dscrptr;
6194 struct udf_node *udf_node = VTOI(vp);
6195 struct udf_mount *ump = udf_node->ump;
6196 struct regid *impl_id;
6197 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6198 int waitfor, flags;
6199
6200 #ifdef DEBUG
6201 char bits[128];
6202 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6203 updflags));
6204 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6205 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6206 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6207 #endif
6208
6209 /* set our times */
6210 udf_itimes(udf_node, acc, mod, birth);
6211
6212 /* set our implementation id */
6213 if (udf_node->fe) {
6214 dscrptr = (union dscrptr *) udf_node->fe;
6215 impl_id = &udf_node->fe->imp_id;
6216 } else {
6217 dscrptr = (union dscrptr *) udf_node->efe;
6218 impl_id = &udf_node->efe->imp_id;
6219 }
6220
6221 /* set our ID */
6222 udf_set_regid(impl_id, IMPL_NAME);
6223 udf_add_impl_regid(ump, impl_id);
6224
6225 /* update our crc! on RMW we are not allowed to change a thing */
6226 udf_validate_tag_and_crc_sums(dscrptr);
6227
6228 /* if called when mounted readonly, never write back */
6229 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6230 return 0;
6231
6232 /* check if the node is dirty 'enough'*/
6233 if (updflags & UPDATE_CLOSE) {
6234 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6235 } else {
6236 flags = udf_node->i_flags & IN_MODIFIED;
6237 }
6238 if (flags == 0)
6239 return 0;
6240
6241 /* determine if we need to write sync or async */
6242 waitfor = 0;
6243 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6244 /* sync mounted */
6245 waitfor = updflags & UPDATE_WAIT;
6246 if (updflags & UPDATE_DIROP)
6247 waitfor |= UPDATE_WAIT;
6248 }
6249 if (waitfor)
6250 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6251
6252 return 0;
6253 }
6254
6255
6256 /* --------------------------------------------------------------------- */
6257
6258
6259 /*
6260 * Read one fid and process it into a dirent and advance to the next (*fid)
6261 * has to be allocated a logical block in size, (*dirent) struct dirent length
6262 */
6263
6264 int
6265 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6266 struct fileid_desc *fid, struct dirent *dirent)
6267 {
6268 struct udf_node *dir_node = VTOI(vp);
6269 struct udf_mount *ump = dir_node->ump;
6270 struct file_entry *fe = dir_node->fe;
6271 struct extfile_entry *efe = dir_node->efe;
6272 uint32_t fid_size, lb_size;
6273 uint64_t file_size;
6274 char *fid_name;
6275 int enough, error;
6276
6277 assert(fid);
6278 assert(dirent);
6279 assert(dir_node);
6280 assert(offset);
6281 assert(*offset != 1);
6282
6283 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6284 /* check if we're past the end of the directory */
6285 if (fe) {
6286 file_size = udf_rw64(fe->inf_len);
6287 } else {
6288 assert(dir_node->efe);
6289 file_size = udf_rw64(efe->inf_len);
6290 }
6291 if (*offset >= file_size)
6292 return EINVAL;
6293
6294 /* get maximum length of FID descriptor */
6295 lb_size = udf_rw32(ump->logical_vol->lb_size);
6296
6297 /* initialise return values */
6298 fid_size = 0;
6299 memset(dirent, 0, sizeof(struct dirent));
6300 memset(fid, 0, lb_size);
6301
6302 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6303 if (!enough) {
6304 /* short dir ... */
6305 return EIO;
6306 }
6307
6308 error = vn_rdwr(UIO_READ, vp,
6309 fid, MIN(file_size - (*offset), lb_size), *offset,
6310 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6311 NULL, NULL);
6312 if (error)
6313 return error;
6314
6315 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6316 /*
6317 * Check if we got a whole descriptor.
6318 * TODO Try to `resync' directory stream when something is very wrong.
6319 */
6320
6321 /* check if our FID header is OK */
6322 error = udf_check_tag(fid);
6323 if (error) {
6324 goto brokendir;
6325 }
6326 DPRINTF(FIDS, ("\ttag check ok\n"));
6327
6328 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6329 error = EIO;
6330 goto brokendir;
6331 }
6332 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6333
6334 /* check for length */
6335 fid_size = udf_fidsize(fid);
6336 enough = (file_size - (*offset) >= fid_size);
6337 if (!enough) {
6338 error = EIO;
6339 goto brokendir;
6340 }
6341 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6342
6343 /* check FID contents */
6344 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6345 brokendir:
6346 if (error) {
6347 /* note that is sometimes a bit quick to report */
6348 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6349 /* RESYNC? */
6350 /* TODO: use udf_resync_fid_stream */
6351 return EIO;
6352 }
6353 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6354
6355 /* we got a whole and valid descriptor! */
6356 DPRINTF(FIDS, ("\tinterpret FID\n"));
6357
6358 /* create resulting dirent structure */
6359 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6360 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6361 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6362
6363 /* '..' has no name, so provide one */
6364 if (fid->file_char & UDF_FILE_CHAR_PAR)
6365 strcpy(dirent->d_name, "..");
6366
6367 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6368 dirent->d_namlen = strlen(dirent->d_name);
6369 dirent->d_reclen = _DIRENT_SIZE(dirent);
6370
6371 /*
6372 * Note that its not worth trying to go for the filetypes now... its
6373 * too expensive too
6374 */
6375 dirent->d_type = DT_UNKNOWN;
6376
6377 /* initial guess for filetype we can make */
6378 if (fid->file_char & UDF_FILE_CHAR_DIR)
6379 dirent->d_type = DT_DIR;
6380
6381 /* advance */
6382 *offset += fid_size;
6383
6384 return error;
6385 }
6386
6387
6388 /* --------------------------------------------------------------------- */
6389
6390 static void
6391 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6392 int pass, int *ndirty)
6393 {
6394 struct udf_node *udf_node, *n_udf_node;
6395 struct vnode *vp;
6396 int vdirty, error;
6397 int on_type, on_flags, on_vnode;
6398
6399 derailed:
6400 KASSERT(mutex_owned(&mntvnode_lock));
6401
6402 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6403 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6404 for (;udf_node; udf_node = n_udf_node) {
6405 DPRINTF(SYNC, ("."));
6406
6407 udf_node->i_flags &= ~IN_SYNCED;
6408 vp = udf_node->vnode;
6409
6410 mutex_enter(vp->v_interlock);
6411 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6412 udf_node, RB_DIR_RIGHT);
6413
6414 if (n_udf_node)
6415 n_udf_node->i_flags |= IN_SYNCED;
6416
6417 /* system nodes are not synced this way */
6418 if (vp->v_vflag & VV_SYSTEM) {
6419 mutex_exit(vp->v_interlock);
6420 continue;
6421 }
6422
6423 /* check if its dirty enough to even try */
6424 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6425 on_flags = ((udf_node->i_flags &
6426 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6427 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6428 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6429 if (on_type || (on_flags || on_vnode)) { /* XXX */
6430 /* not dirty (enough?) */
6431 mutex_exit(vp->v_interlock);
6432 continue;
6433 }
6434
6435 mutex_exit(&mntvnode_lock);
6436 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6437 if (error) {
6438 mutex_enter(&mntvnode_lock);
6439 if (error == ENOENT)
6440 goto derailed;
6441 *ndirty += 1;
6442 continue;
6443 }
6444
6445 switch (pass) {
6446 case 1:
6447 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6448 break;
6449 case 2:
6450 vdirty = vp->v_numoutput;
6451 if (vp->v_tag == VT_UDF)
6452 vdirty += udf_node->outstanding_bufs +
6453 udf_node->outstanding_nodedscr;
6454 if (vdirty == 0)
6455 VOP_FSYNC(vp, cred, 0,0,0);
6456 *ndirty += vdirty;
6457 break;
6458 case 3:
6459 vdirty = vp->v_numoutput;
6460 if (vp->v_tag == VT_UDF)
6461 vdirty += udf_node->outstanding_bufs +
6462 udf_node->outstanding_nodedscr;
6463 *ndirty += vdirty;
6464 break;
6465 }
6466
6467 vput(vp);
6468 mutex_enter(&mntvnode_lock);
6469 }
6470 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6471 }
6472
6473
6474 void
6475 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6476 {
6477 int dummy, ndirty;
6478
6479 mutex_enter(&mntvnode_lock);
6480 recount:
6481 dummy = 0;
6482 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6483 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6484 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6485
6486 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6487 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6488 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6489
6490 if (waitfor == MNT_WAIT) {
6491 ndirty = ump->devvp->v_numoutput;
6492 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6493 ndirty));
6494 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6495 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6496 ndirty));
6497
6498 if (ndirty) {
6499 /* 1/4 second wait */
6500 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6501 hz/4);
6502 goto recount;
6503 }
6504 }
6505
6506 mutex_exit(&mntvnode_lock);
6507 }
6508
6509 /* --------------------------------------------------------------------- */
6510
6511 /*
6512 * Read and write file extent in/from the buffer.
6513 *
6514 * The splitup of the extent into seperate request-buffers is to minimise
6515 * copying around as much as possible.
6516 *
6517 * block based file reading and writing
6518 */
6519
6520 static int
6521 udf_read_internal(struct udf_node *node, uint8_t *blob)
6522 {
6523 struct udf_mount *ump;
6524 struct file_entry *fe = node->fe;
6525 struct extfile_entry *efe = node->efe;
6526 uint64_t inflen;
6527 uint32_t sector_size;
6528 uint8_t *pos;
6529 int icbflags, addr_type;
6530
6531 /* get extent and do some paranoia checks */
6532 ump = node->ump;
6533 sector_size = ump->discinfo.sector_size;
6534
6535 if (fe) {
6536 inflen = udf_rw64(fe->inf_len);
6537 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6538 icbflags = udf_rw16(fe->icbtag.flags);
6539 } else {
6540 assert(node->efe);
6541 inflen = udf_rw64(efe->inf_len);
6542 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6543 icbflags = udf_rw16(efe->icbtag.flags);
6544 }
6545 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6546
6547 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6548 assert(inflen < sector_size);
6549
6550 /* copy out info */
6551 memset(blob, 0, sector_size);
6552 memcpy(blob, pos, inflen);
6553
6554 return 0;
6555 }
6556
6557
6558 static int
6559 udf_write_internal(struct udf_node *node, uint8_t *blob)
6560 {
6561 struct udf_mount *ump;
6562 struct file_entry *fe = node->fe;
6563 struct extfile_entry *efe = node->efe;
6564 uint64_t inflen;
6565 uint32_t sector_size;
6566 uint8_t *pos;
6567 int icbflags, addr_type;
6568
6569 /* get extent and do some paranoia checks */
6570 ump = node->ump;
6571 sector_size = ump->discinfo.sector_size;
6572
6573 if (fe) {
6574 inflen = udf_rw64(fe->inf_len);
6575 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6576 icbflags = udf_rw16(fe->icbtag.flags);
6577 } else {
6578 assert(node->efe);
6579 inflen = udf_rw64(efe->inf_len);
6580 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6581 icbflags = udf_rw16(efe->icbtag.flags);
6582 }
6583 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6584
6585 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6586 assert(inflen < sector_size);
6587
6588 /* copy in blob */
6589 /* memset(pos, 0, inflen); */
6590 memcpy(pos, blob, inflen);
6591
6592 return 0;
6593 }
6594
6595
6596 void
6597 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6598 {
6599 struct buf *nestbuf;
6600 struct udf_mount *ump = udf_node->ump;
6601 uint64_t *mapping;
6602 uint64_t run_start;
6603 uint32_t sector_size;
6604 uint32_t buf_offset, sector, rbuflen, rblk;
6605 uint32_t from, lblkno;
6606 uint32_t sectors;
6607 uint8_t *buf_pos;
6608 int error, run_length, what;
6609
6610 sector_size = udf_node->ump->discinfo.sector_size;
6611
6612 from = buf->b_blkno;
6613 sectors = buf->b_bcount / sector_size;
6614
6615 what = udf_get_c_type(udf_node);
6616
6617 /* assure we have enough translation slots */
6618 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6619 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6620
6621 if (sectors > UDF_MAX_MAPPINGS) {
6622 printf("udf_read_filebuf: implementation limit on bufsize\n");
6623 buf->b_error = EIO;
6624 biodone(buf);
6625 return;
6626 }
6627
6628 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6629
6630 error = 0;
6631 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6632 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6633 if (error) {
6634 buf->b_error = error;
6635 biodone(buf);
6636 goto out;
6637 }
6638 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6639
6640 /* pre-check if its an internal */
6641 if (*mapping == UDF_TRANS_INTERN) {
6642 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6643 if (error)
6644 buf->b_error = error;
6645 biodone(buf);
6646 goto out;
6647 }
6648 DPRINTF(READ, ("\tnot intern\n"));
6649
6650 #ifdef DEBUG
6651 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6652 printf("Returned translation table:\n");
6653 for (sector = 0; sector < sectors; sector++) {
6654 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6655 }
6656 }
6657 #endif
6658
6659 /* request read-in of data from disc sheduler */
6660 buf->b_resid = buf->b_bcount;
6661 for (sector = 0; sector < sectors; sector++) {
6662 buf_offset = sector * sector_size;
6663 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6664 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6665
6666 /* check if its zero or unmapped to stop reading */
6667 switch (mapping[sector]) {
6668 case UDF_TRANS_UNMAPPED:
6669 case UDF_TRANS_ZERO:
6670 /* copy zero sector TODO runlength like below */
6671 memset(buf_pos, 0, sector_size);
6672 DPRINTF(READ, ("\treturning zero sector\n"));
6673 nestiobuf_done(buf, sector_size, 0);
6674 break;
6675 default :
6676 DPRINTF(READ, ("\tread sector "
6677 "%"PRIu64"\n", mapping[sector]));
6678
6679 lblkno = from + sector;
6680 run_start = mapping[sector];
6681 run_length = 1;
6682 while (sector < sectors-1) {
6683 if (mapping[sector+1] != mapping[sector]+1)
6684 break;
6685 run_length++;
6686 sector++;
6687 }
6688
6689 /*
6690 * nest an iobuf and mark it for async reading. Since
6691 * we're using nested buffers, they can't be cached by
6692 * design.
6693 */
6694 rbuflen = run_length * sector_size;
6695 rblk = run_start * (sector_size/DEV_BSIZE);
6696
6697 nestbuf = getiobuf(NULL, true);
6698 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6699 /* nestbuf is B_ASYNC */
6700
6701 /* identify this nestbuf */
6702 nestbuf->b_lblkno = lblkno;
6703 assert(nestbuf->b_vp == udf_node->vnode);
6704
6705 /* CD shedules on raw blkno */
6706 nestbuf->b_blkno = rblk;
6707 nestbuf->b_proc = NULL;
6708 nestbuf->b_rawblkno = rblk;
6709 nestbuf->b_udf_c_type = what;
6710
6711 udf_discstrat_queuebuf(ump, nestbuf);
6712 }
6713 }
6714 out:
6715 /* if we're synchronously reading, wait for the completion */
6716 if ((buf->b_flags & B_ASYNC) == 0)
6717 biowait(buf);
6718
6719 DPRINTF(READ, ("\tend of read_filebuf\n"));
6720 free(mapping, M_TEMP);
6721 return;
6722 }
6723
6724
6725 void
6726 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6727 {
6728 struct buf *nestbuf;
6729 struct udf_mount *ump = udf_node->ump;
6730 uint64_t *mapping;
6731 uint64_t run_start;
6732 uint32_t lb_size;
6733 uint32_t buf_offset, lb_num, rbuflen, rblk;
6734 uint32_t from, lblkno;
6735 uint32_t num_lb;
6736 int error, run_length, what, s;
6737
6738 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6739
6740 from = buf->b_blkno;
6741 num_lb = buf->b_bcount / lb_size;
6742
6743 what = udf_get_c_type(udf_node);
6744
6745 /* assure we have enough translation slots */
6746 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6747 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6748
6749 if (num_lb > UDF_MAX_MAPPINGS) {
6750 printf("udf_write_filebuf: implementation limit on bufsize\n");
6751 buf->b_error = EIO;
6752 biodone(buf);
6753 return;
6754 }
6755
6756 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6757
6758 error = 0;
6759 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6760 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6761 if (error) {
6762 buf->b_error = error;
6763 biodone(buf);
6764 goto out;
6765 }
6766 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6767
6768 /* if its internally mapped, we can write it in the descriptor itself */
6769 if (*mapping == UDF_TRANS_INTERN) {
6770 /* TODO paranoia check if we ARE going to have enough space */
6771 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6772 if (error)
6773 buf->b_error = error;
6774 biodone(buf);
6775 goto out;
6776 }
6777 DPRINTF(WRITE, ("\tnot intern\n"));
6778
6779 /* request write out of data to disc sheduler */
6780 buf->b_resid = buf->b_bcount;
6781 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6782 buf_offset = lb_num * lb_size;
6783 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6784
6785 /*
6786 * Mappings are not that important here. Just before we write
6787 * the lb_num we late-allocate them when needed and update the
6788 * mapping in the udf_node.
6789 */
6790
6791 /* XXX why not ignore the mapping altogether ? */
6792 DPRINTF(WRITE, ("\twrite lb_num "
6793 "%"PRIu64, mapping[lb_num]));
6794
6795 lblkno = from + lb_num;
6796 run_start = mapping[lb_num];
6797 run_length = 1;
6798 while (lb_num < num_lb-1) {
6799 if (mapping[lb_num+1] != mapping[lb_num]+1)
6800 if (mapping[lb_num+1] != mapping[lb_num])
6801 break;
6802 run_length++;
6803 lb_num++;
6804 }
6805 DPRINTF(WRITE, ("+ %d\n", run_length));
6806
6807 /* nest an iobuf on the master buffer for the extent */
6808 rbuflen = run_length * lb_size;
6809 rblk = run_start * (lb_size/DEV_BSIZE);
6810
6811 nestbuf = getiobuf(NULL, true);
6812 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6813 /* nestbuf is B_ASYNC */
6814
6815 /* identify this nestbuf */
6816 nestbuf->b_lblkno = lblkno;
6817 KASSERT(nestbuf->b_vp == udf_node->vnode);
6818
6819 /* CD shedules on raw blkno */
6820 nestbuf->b_blkno = rblk;
6821 nestbuf->b_proc = NULL;
6822 nestbuf->b_rawblkno = rblk;
6823 nestbuf->b_udf_c_type = what;
6824
6825 /* increment our outstanding bufs counter */
6826 s = splbio();
6827 udf_node->outstanding_bufs++;
6828 splx(s);
6829
6830 udf_discstrat_queuebuf(ump, nestbuf);
6831 }
6832 out:
6833 /* if we're synchronously writing, wait for the completion */
6834 if ((buf->b_flags & B_ASYNC) == 0)
6835 biowait(buf);
6836
6837 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6838 free(mapping, M_TEMP);
6839 return;
6840 }
6841
6842 /* --------------------------------------------------------------------- */
6843
6844
6845