udf_subr.c revision 1.107 1 /* $NetBSD: udf_subr.c,v 1.107 2010/07/21 17:52:11 hannken Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.107 2010/07/21 17:52:11 hannken Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref(vp); \
77 vput(vp); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 struct partinfo dpart;
192 struct mmc_discinfo *di;
193 int error;
194
195 DPRINTF(VOLUMES, ("read/update disc info\n"));
196 di = &ump->discinfo;
197 memset(di, 0, sizeof(struct mmc_discinfo));
198
199 /* check if we're on a MMC capable device, i.e. CD/DVD */
200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 if (error == 0) {
202 udf_dump_discinfo(ump);
203 return 0;
204 }
205
206 /* disc partition support */
207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 if (error)
209 return ENODEV;
210
211 /* set up a disc info profile for partitions */
212 di->mmc_profile = 0x01; /* disc type */
213 di->mmc_class = MMC_CLASS_DISC;
214 di->disc_state = MMC_STATE_CLOSED;
215 di->last_session_state = MMC_STATE_CLOSED;
216 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
217 di->link_block_penalty = 0;
218
219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 di->mmc_cap = di->mmc_cur;
222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223
224 /* TODO problem with last_possible_lba on resizable VND; request */
225 di->last_possible_lba = dpart.part->p_size;
226 di->sector_size = dpart.disklab->d_secsize;
227
228 di->num_sessions = 1;
229 di->num_tracks = 1;
230
231 di->first_track = 1;
232 di->first_track_last_session = di->last_track_last_session = 1;
233
234 udf_dump_discinfo(ump);
235 return 0;
236 }
237
238
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 struct vnode *devvp = ump->devvp;
243 struct mmc_discinfo *di = &ump->discinfo;
244 int error, class;
245
246 DPRINTF(VOLUMES, ("read track info\n"));
247
248 class = di->mmc_class;
249 if (class != MMC_CLASS_DISC) {
250 /* tracknr specified in struct ti */
251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 return error;
253 }
254
255 /* disc partition support */
256 if (ti->tracknr != 1)
257 return EIO;
258
259 /* create fake ti (TODO check for resized vnds) */
260 ti->sessionnr = 1;
261
262 ti->track_mode = 0; /* XXX */
263 ti->data_mode = 0; /* XXX */
264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265
266 ti->track_start = 0;
267 ti->packet_size = 1;
268
269 /* TODO support for resizable vnd */
270 ti->track_size = di->last_possible_lba;
271 ti->next_writable = di->last_possible_lba;
272 ti->last_recorded = ti->next_writable;
273 ti->free_blocks = 0;
274
275 return 0;
276 }
277
278
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 struct mmc_writeparams mmc_writeparams;
283 int error;
284
285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 return 0;
287
288 /*
289 * only CD burning normally needs setting up, but other disc types
290 * might need other settings to be made. The MMC framework will set up
291 * the nessisary recording parameters according to the disc
292 * characteristics read in. Modifications can be made in the discinfo
293 * structure passed to change the nature of the disc.
294 */
295
296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
299
300 /*
301 * UDF dictates first track to determine track mode for the whole
302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 * To prevent problems with a `reserved' track in front we start with
304 * the 2nd track and if that is not valid, go for the 1st.
305 */
306 mmc_writeparams.tracknr = 2;
307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
309
310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 FKIOCTL, NOCRED);
312 if (error) {
313 mmc_writeparams.tracknr = 1;
314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 &mmc_writeparams, FKIOCTL, NOCRED);
316 }
317 return error;
318 }
319
320
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 struct mmc_op mmc_op;
325
326 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327
328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 return 0;
330
331 /* discs are done now */
332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 return 0;
334
335 memset(&mmc_op, 0, sizeof(struct mmc_op));
336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337
338 /* ignore return code */
339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340
341 return 0;
342 }
343
344 /* --------------------------------------------------------------------- */
345
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 int *first_tracknr, int *last_tracknr)
350 {
351 struct mmc_trackinfo trackinfo;
352 uint32_t tracknr, start_track, num_tracks;
353 int error;
354
355 /* if negative, sessionnr is relative to last session */
356 if (args->sessionnr < 0) {
357 args->sessionnr += ump->discinfo.num_sessions;
358 }
359
360 /* sanity */
361 if (args->sessionnr < 0)
362 args->sessionnr = 0;
363 if (args->sessionnr > ump->discinfo.num_sessions)
364 args->sessionnr = ump->discinfo.num_sessions;
365
366 /* search the tracks for this session, zero session nr indicates last */
367 if (args->sessionnr == 0)
368 args->sessionnr = ump->discinfo.num_sessions;
369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 args->sessionnr--;
371
372 /* sanity again */
373 if (args->sessionnr < 0)
374 args->sessionnr = 0;
375
376 /* search the first and last track of the specified session */
377 num_tracks = ump->discinfo.num_tracks;
378 start_track = ump->discinfo.first_track;
379
380 /* search for first track of this session */
381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 /* get track info */
383 trackinfo.tracknr = tracknr;
384 error = udf_update_trackinfo(ump, &trackinfo);
385 if (error)
386 return error;
387
388 if (trackinfo.sessionnr == args->sessionnr)
389 break;
390 }
391 *first_tracknr = tracknr;
392
393 /* search for last track of this session */
394 for (;tracknr <= num_tracks; tracknr++) {
395 /* get track info */
396 trackinfo.tracknr = tracknr;
397 error = udf_update_trackinfo(ump, &trackinfo);
398 if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 tracknr--;
400 break;
401 }
402 }
403 if (tracknr > num_tracks)
404 tracknr--;
405
406 *last_tracknr = tracknr;
407
408 if (*last_tracknr < *first_tracknr) {
409 printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 "drive returned garbage\n");
411 return EINVAL;
412 }
413
414 assert(*last_tracknr >= *first_tracknr);
415 return 0;
416 }
417
418
419 /*
420 * NOTE: this is the only routine in this file that directly peeks into the
421 * metadata file but since its at a larval state of the mount it can't hurt.
422 *
423 * XXX candidate for udf_allocation.c
424 * XXX clean me up!, change to new node reading code.
425 */
426
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 struct mmc_trackinfo *trackinfo)
430 {
431 struct part_desc *part;
432 struct file_entry *fe;
433 struct extfile_entry *efe;
434 struct short_ad *s_ad;
435 struct long_ad *l_ad;
436 uint32_t track_start, track_end;
437 uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 uint32_t sector_size, len, alloclen, plb_num;
439 uint8_t *pos;
440 int addr_type, icblen, icbflags, flags;
441
442 /* get our track extents */
443 track_start = trackinfo->track_start;
444 track_end = track_start + trackinfo->track_size;
445
446 /* get our base partition extent */
447 KASSERT(ump->node_part == ump->fids_part);
448 part = ump->partitions[ump->node_part];
449 phys_part_start = udf_rw32(part->start_loc);
450 phys_part_end = phys_part_start + udf_rw32(part->part_len);
451
452 /* no use if its outside the physical partition */
453 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 return;
455
456 /*
457 * now follow all extents in the fe/efe to see if they refer to this
458 * track
459 */
460
461 sector_size = ump->discinfo.sector_size;
462
463 /* XXX should we claim exclusive access to the metafile ? */
464 /* TODO: move to new node read code */
465 fe = ump->metadata_node->fe;
466 efe = ump->metadata_node->efe;
467 if (fe) {
468 alloclen = udf_rw32(fe->l_ad);
469 pos = &fe->data[0] + udf_rw32(fe->l_ea);
470 icbflags = udf_rw16(fe->icbtag.flags);
471 } else {
472 assert(efe);
473 alloclen = udf_rw32(efe->l_ad);
474 pos = &efe->data[0] + udf_rw32(efe->l_ea);
475 icbflags = udf_rw16(efe->icbtag.flags);
476 }
477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478
479 while (alloclen) {
480 if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 icblen = sizeof(struct short_ad);
482 s_ad = (struct short_ad *) pos;
483 len = udf_rw32(s_ad->len);
484 plb_num = udf_rw32(s_ad->lb_num);
485 } else {
486 /* should not be present, but why not */
487 icblen = sizeof(struct long_ad);
488 l_ad = (struct long_ad *) pos;
489 len = udf_rw32(l_ad->len);
490 plb_num = udf_rw32(l_ad->loc.lb_num);
491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 }
493 /* process extent */
494 flags = UDF_EXT_FLAGS(len);
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986 /* --------------------------------------------------------------------- */
987
988 /* we dont try to be smart; we just record the parts */
989 #define UDF_UPDATE_DSCR(name, dscr) \
990 if (name) \
991 free(name, M_UDFVOLD); \
992 name = dscr;
993
994 static int
995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
996 {
997 struct part_desc *part;
998 uint16_t phys_part, raw_phys_part;
999
1000 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1001 udf_rw16(dscr->tag.id)));
1002 switch (udf_rw16(dscr->tag.id)) {
1003 case TAGID_PRI_VOL : /* primary partition */
1004 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1005 break;
1006 case TAGID_LOGVOL : /* logical volume */
1007 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1008 break;
1009 case TAGID_UNALLOC_SPACE : /* unallocated space */
1010 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1011 break;
1012 case TAGID_IMP_VOL : /* implementation */
1013 /* XXX do we care about multiple impl. descr ? */
1014 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1015 break;
1016 case TAGID_PARTITION : /* physical partition */
1017 /* not much use if its not allocated */
1018 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1019 free(dscr, M_UDFVOLD);
1020 break;
1021 }
1022
1023 /*
1024 * BUGALERT: some rogue implementations use random physical
1025 * partition numbers to break other implementations so lookup
1026 * the number.
1027 */
1028 raw_phys_part = udf_rw16(dscr->pd.part_num);
1029 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1030 part = ump->partitions[phys_part];
1031 if (part == NULL)
1032 break;
1033 if (udf_rw16(part->part_num) == raw_phys_part)
1034 break;
1035 }
1036 if (phys_part == UDF_PARTITIONS) {
1037 free(dscr, M_UDFVOLD);
1038 return EINVAL;
1039 }
1040
1041 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1042 break;
1043 case TAGID_VOL : /* volume space extender; rare */
1044 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1045 free(dscr, M_UDFVOLD);
1046 break;
1047 default :
1048 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1049 udf_rw16(dscr->tag.id)));
1050 free(dscr, M_UDFVOLD);
1051 }
1052
1053 return 0;
1054 }
1055 #undef UDF_UPDATE_DSCR
1056
1057 /* --------------------------------------------------------------------- */
1058
1059 static int
1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1061 {
1062 union dscrptr *dscr;
1063 uint32_t sector_size, dscr_size;
1064 int error;
1065
1066 sector_size = ump->discinfo.sector_size;
1067
1068 /* loc is sectornr, len is in bytes */
1069 error = EIO;
1070 while (len) {
1071 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1072 if (error)
1073 return error;
1074
1075 /* blank block is a terminator */
1076 if (dscr == NULL)
1077 return 0;
1078
1079 /* TERM descriptor is a terminator */
1080 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1081 free(dscr, M_UDFVOLD);
1082 return 0;
1083 }
1084
1085 /* process all others */
1086 dscr_size = udf_tagsize(dscr, sector_size);
1087 error = udf_process_vds_descriptor(ump, dscr);
1088 if (error) {
1089 free(dscr, M_UDFVOLD);
1090 break;
1091 }
1092 assert((dscr_size % sector_size) == 0);
1093
1094 len -= dscr_size;
1095 loc += dscr_size / sector_size;
1096 }
1097
1098 return error;
1099 }
1100
1101
1102 int
1103 udf_read_vds_space(struct udf_mount *ump)
1104 {
1105 /* struct udf_args *args = &ump->mount_args; */
1106 struct anchor_vdp *anchor, *anchor2;
1107 size_t size;
1108 uint32_t main_loc, main_len;
1109 uint32_t reserve_loc, reserve_len;
1110 int error;
1111
1112 /*
1113 * read in VDS space provided by the anchors; if one descriptor read
1114 * fails, try the mirror sector.
1115 *
1116 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1117 * avoids the `compatibility features' of DirectCD that may confuse
1118 * stuff completely.
1119 */
1120
1121 anchor = ump->anchors[0];
1122 anchor2 = ump->anchors[1];
1123 assert(anchor);
1124
1125 if (anchor2) {
1126 size = sizeof(struct extent_ad);
1127 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1128 anchor = anchor2;
1129 /* reserve is specified to be a literal copy of main */
1130 }
1131
1132 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1133 main_len = udf_rw32(anchor->main_vds_ex.len);
1134
1135 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1136 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1137
1138 error = udf_read_vds_extent(ump, main_loc, main_len);
1139 if (error) {
1140 printf("UDF mount: reading in reserve VDS extent\n");
1141 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1142 }
1143
1144 return error;
1145 }
1146
1147 /* --------------------------------------------------------------------- */
1148
1149 /*
1150 * Read in the logical volume integrity sequence pointed to by our logical
1151 * volume descriptor. Its a sequence that can be extended using fields in the
1152 * integrity descriptor itself. On sequential media only one is found, on
1153 * rewritable media a sequence of descriptors can be found as a form of
1154 * history keeping and on non sequential write-once media the chain is vital
1155 * to allow more and more descriptors to be written. The last descriptor
1156 * written in an extent needs to claim space for a new extent.
1157 */
1158
1159 static int
1160 udf_retrieve_lvint(struct udf_mount *ump)
1161 {
1162 union dscrptr *dscr;
1163 struct logvol_int_desc *lvint;
1164 struct udf_lvintq *trace;
1165 uint32_t lb_size, lbnum, len;
1166 int dscr_type, error, trace_len;
1167
1168 lb_size = udf_rw32(ump->logical_vol->lb_size);
1169 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1170 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1171
1172 /* clean trace */
1173 memset(ump->lvint_trace, 0,
1174 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1175
1176 trace_len = 0;
1177 trace = ump->lvint_trace;
1178 trace->start = lbnum;
1179 trace->end = lbnum + len/lb_size;
1180 trace->pos = 0;
1181 trace->wpos = 0;
1182
1183 lvint = NULL;
1184 dscr = NULL;
1185 error = 0;
1186 while (len) {
1187 trace->pos = lbnum - trace->start;
1188 trace->wpos = trace->pos + 1;
1189
1190 /* read in our integrity descriptor */
1191 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1192 if (!error) {
1193 if (dscr == NULL) {
1194 trace->wpos = trace->pos;
1195 break; /* empty terminates */
1196 }
1197 dscr_type = udf_rw16(dscr->tag.id);
1198 if (dscr_type == TAGID_TERM) {
1199 trace->wpos = trace->pos;
1200 break; /* clean terminator */
1201 }
1202 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1203 /* fatal... corrupt disc */
1204 error = ENOENT;
1205 break;
1206 }
1207 if (lvint)
1208 free(lvint, M_UDFVOLD);
1209 lvint = &dscr->lvid;
1210 dscr = NULL;
1211 } /* else hope for the best... maybe the next is ok */
1212
1213 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1214 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1215
1216 /* proceed sequential */
1217 lbnum += 1;
1218 len -= lb_size;
1219
1220 /* are we linking to a new piece? */
1221 if (dscr && lvint->next_extent.len) {
1222 len = udf_rw32(lvint->next_extent.len);
1223 lbnum = udf_rw32(lvint->next_extent.loc);
1224
1225 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1226 /* IEK! segment link full... */
1227 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1228 error = EINVAL;
1229 } else {
1230 trace++;
1231 trace_len++;
1232
1233 trace->start = lbnum;
1234 trace->end = lbnum + len/lb_size;
1235 trace->pos = 0;
1236 trace->wpos = 0;
1237 }
1238 }
1239 }
1240
1241 /* clean up the mess, esp. when there is an error */
1242 if (dscr)
1243 free(dscr, M_UDFVOLD);
1244
1245 if (error && lvint) {
1246 free(lvint, M_UDFVOLD);
1247 lvint = NULL;
1248 }
1249
1250 if (!lvint)
1251 error = ENOENT;
1252
1253 ump->logvol_integrity = lvint;
1254 return error;
1255 }
1256
1257
1258 static int
1259 udf_loose_lvint_history(struct udf_mount *ump)
1260 {
1261 union dscrptr **bufs, *dscr, *last_dscr;
1262 struct udf_lvintq *trace, *in_trace, *out_trace;
1263 struct logvol_int_desc *lvint;
1264 uint32_t in_ext, in_pos, in_len;
1265 uint32_t out_ext, out_wpos, out_len;
1266 uint32_t lb_size, packet_size, lb_num;
1267 uint32_t len, start;
1268 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1269 int losing;
1270 int error;
1271
1272 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1273
1274 lb_size = udf_rw32(ump->logical_vol->lb_size);
1275 packet_size = ump->data_track.packet_size; /* XXX data track */
1276
1277 /* search smallest extent */
1278 trace = &ump->lvint_trace[0];
1279 minext = trace->end - trace->start;
1280 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1281 trace = &ump->lvint_trace[ext];
1282 extlen = trace->end - trace->start;
1283 if (extlen == 0)
1284 break;
1285 minext = MIN(minext, extlen);
1286 }
1287 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1288 /* no sense wiping all */
1289 if (losing == minext)
1290 losing--;
1291
1292 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1293
1294 /* get buffer for pieces */
1295 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1296
1297 in_ext = 0;
1298 in_pos = losing;
1299 in_trace = &ump->lvint_trace[in_ext];
1300 in_len = in_trace->end - in_trace->start;
1301 out_ext = 0;
1302 out_wpos = 0;
1303 out_trace = &ump->lvint_trace[out_ext];
1304 out_len = out_trace->end - out_trace->start;
1305
1306 last_dscr = NULL;
1307 for(;;) {
1308 out_trace->pos = out_wpos;
1309 out_trace->wpos = out_trace->pos;
1310 if (in_pos >= in_len) {
1311 in_ext++;
1312 in_pos = 0;
1313 in_trace = &ump->lvint_trace[in_ext];
1314 in_len = in_trace->end - in_trace->start;
1315 }
1316 if (out_wpos >= out_len) {
1317 out_ext++;
1318 out_wpos = 0;
1319 out_trace = &ump->lvint_trace[out_ext];
1320 out_len = out_trace->end - out_trace->start;
1321 }
1322 /* copy overlap contents */
1323 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1324 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1325 if (cpy_len == 0)
1326 break;
1327
1328 /* copy */
1329 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1330 for (cnt = 0; cnt < cpy_len; cnt++) {
1331 /* read in our integrity descriptor */
1332 lb_num = in_trace->start + in_pos + cnt;
1333 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1334 &dscr);
1335 if (error) {
1336 /* copy last one */
1337 dscr = last_dscr;
1338 }
1339 bufs[cnt] = dscr;
1340 if (!error) {
1341 if (dscr == NULL) {
1342 out_trace->pos = out_wpos + cnt;
1343 out_trace->wpos = out_trace->pos;
1344 break; /* empty terminates */
1345 }
1346 dscr_type = udf_rw16(dscr->tag.id);
1347 if (dscr_type == TAGID_TERM) {
1348 out_trace->pos = out_wpos + cnt;
1349 out_trace->wpos = out_trace->pos;
1350 break; /* clean terminator */
1351 }
1352 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1353 panic( "UDF integrity sequence "
1354 "corrupted while mounted!\n");
1355 }
1356 last_dscr = dscr;
1357 }
1358 }
1359
1360 /* patch up if first entry was on error */
1361 if (bufs[0] == NULL) {
1362 for (cnt = 0; cnt < cpy_len; cnt++)
1363 if (bufs[cnt] != NULL)
1364 break;
1365 last_dscr = bufs[cnt];
1366 for (; cnt > 0; cnt--) {
1367 bufs[cnt] = last_dscr;
1368 }
1369 }
1370
1371 /* glue + write out */
1372 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1373 for (cnt = 0; cnt < cpy_len; cnt++) {
1374 lb_num = out_trace->start + out_wpos + cnt;
1375 lvint = &bufs[cnt]->lvid;
1376
1377 /* set continuation */
1378 len = 0;
1379 start = 0;
1380 if (out_wpos + cnt == out_len) {
1381 /* get continuation */
1382 trace = &ump->lvint_trace[out_ext+1];
1383 len = trace->end - trace->start;
1384 start = trace->start;
1385 }
1386 lvint->next_extent.len = udf_rw32(len);
1387 lvint->next_extent.loc = udf_rw32(start);
1388
1389 lb_num = trace->start + trace->wpos;
1390 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 bufs[cnt], lb_num, lb_num);
1392 DPRINTFIF(VOLUMES, error,
1393 ("error writing lvint lb_num\n"));
1394 }
1395
1396 /* free non repeating descriptors */
1397 last_dscr = NULL;
1398 for (cnt = 0; cnt < cpy_len; cnt++) {
1399 if (bufs[cnt] != last_dscr)
1400 free(bufs[cnt], M_UDFVOLD);
1401 last_dscr = bufs[cnt];
1402 }
1403
1404 /* advance */
1405 in_pos += cpy_len;
1406 out_wpos += cpy_len;
1407 }
1408
1409 free(bufs, M_TEMP);
1410
1411 return 0;
1412 }
1413
1414
1415 static int
1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1417 {
1418 struct udf_lvintq *trace;
1419 struct timeval now_v;
1420 struct timespec now_s;
1421 uint32_t sector;
1422 int logvol_integrity;
1423 int space, error;
1424
1425 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1426
1427 again:
1428 /* get free space in last chunk */
1429 trace = ump->lvint_trace;
1430 while (trace->wpos > (trace->end - trace->start)) {
1431 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1432 "wpos = %d\n", trace->start, trace->end,
1433 trace->pos, trace->wpos));
1434 trace++;
1435 }
1436
1437 /* check if there is space to append */
1438 space = (trace->end - trace->start) - trace->wpos;
1439 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1440 "space = %d\n", trace->start, trace->end, trace->pos,
1441 trace->wpos, space));
1442
1443 /* get state */
1444 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1445 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1446 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1447 /* don't allow this logvol to be opened */
1448 /* TODO extent LVINT space if possible */
1449 return EROFS;
1450 }
1451 }
1452
1453 if (space < 1) {
1454 if (lvflag & UDF_APPENDONLY_LVINT)
1455 return EROFS;
1456 /* loose history by re-writing extents */
1457 error = udf_loose_lvint_history(ump);
1458 if (error)
1459 return error;
1460 goto again;
1461 }
1462
1463 /* update our integrity descriptor to identify us and timestamp it */
1464 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1465 microtime(&now_v);
1466 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1467 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1468 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1469 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1470
1471 /* writeout integrity descriptor */
1472 sector = trace->start + trace->wpos;
1473 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1474 (union dscrptr *) ump->logvol_integrity,
1475 sector, sector);
1476 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1477 if (error)
1478 return error;
1479
1480 /* advance write position */
1481 trace->wpos++; space--;
1482 if (space >= 1) {
1483 /* append terminator */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_terminator(ump, sector);
1486
1487 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1488 }
1489
1490 space = (trace->end - trace->start) - trace->wpos;
1491 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1492 "space = %d\n", trace->start, trace->end, trace->pos,
1493 trace->wpos, space));
1494 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1495 "successfull\n"));
1496
1497 return error;
1498 }
1499
1500 /* --------------------------------------------------------------------- */
1501
1502 static int
1503 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1504 {
1505 union dscrptr *dscr;
1506 /* struct udf_args *args = &ump->mount_args; */
1507 struct part_desc *partd;
1508 struct part_hdr_desc *parthdr;
1509 struct udf_bitmap *bitmap;
1510 uint32_t phys_part;
1511 uint32_t lb_num, len;
1512 int error, dscr_type;
1513
1514 /* unallocated space map */
1515 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1516 partd = ump->partitions[phys_part];
1517 if (partd == NULL)
1518 continue;
1519 parthdr = &partd->_impl_use.part_hdr;
1520
1521 lb_num = udf_rw32(partd->start_loc);
1522 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1523 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1524 if (len == 0)
1525 continue;
1526
1527 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1528 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1529 if (!error && dscr) {
1530 /* analyse */
1531 dscr_type = udf_rw16(dscr->tag.id);
1532 if (dscr_type == TAGID_SPACE_BITMAP) {
1533 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1534 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1535
1536 /* fill in ump->part_unalloc_bits */
1537 bitmap = &ump->part_unalloc_bits[phys_part];
1538 bitmap->blob = (uint8_t *) dscr;
1539 bitmap->bits = dscr->sbd.data;
1540 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1541 bitmap->pages = NULL; /* TODO */
1542 bitmap->data_pos = 0;
1543 bitmap->metadata_pos = 0;
1544 } else {
1545 free(dscr, M_UDFVOLD);
1546
1547 printf( "UDF mount: error reading unallocated "
1548 "space bitmap\n");
1549 return EROFS;
1550 }
1551 } else {
1552 /* blank not allowed */
1553 printf("UDF mount: blank unallocated space bitmap\n");
1554 return EROFS;
1555 }
1556 }
1557
1558 /* unallocated space table (not supported) */
1559 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1560 partd = ump->partitions[phys_part];
1561 if (partd == NULL)
1562 continue;
1563 parthdr = &partd->_impl_use.part_hdr;
1564
1565 len = udf_rw32(parthdr->unalloc_space_table.len);
1566 if (len) {
1567 printf("UDF mount: space tables not supported\n");
1568 return EROFS;
1569 }
1570 }
1571
1572 /* freed space map */
1573 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1574 partd = ump->partitions[phys_part];
1575 if (partd == NULL)
1576 continue;
1577 parthdr = &partd->_impl_use.part_hdr;
1578
1579 /* freed space map */
1580 lb_num = udf_rw32(partd->start_loc);
1581 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1582 len = udf_rw32(parthdr->freed_space_bitmap.len);
1583 if (len == 0)
1584 continue;
1585
1586 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1587 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1588 if (!error && dscr) {
1589 /* analyse */
1590 dscr_type = udf_rw16(dscr->tag.id);
1591 if (dscr_type == TAGID_SPACE_BITMAP) {
1592 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1593 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1594
1595 /* fill in ump->part_freed_bits */
1596 bitmap = &ump->part_unalloc_bits[phys_part];
1597 bitmap->blob = (uint8_t *) dscr;
1598 bitmap->bits = dscr->sbd.data;
1599 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1600 bitmap->pages = NULL; /* TODO */
1601 bitmap->data_pos = 0;
1602 bitmap->metadata_pos = 0;
1603 } else {
1604 free(dscr, M_UDFVOLD);
1605
1606 printf( "UDF mount: error reading freed "
1607 "space bitmap\n");
1608 return EROFS;
1609 }
1610 } else {
1611 /* blank not allowed */
1612 printf("UDF mount: blank freed space bitmap\n");
1613 return EROFS;
1614 }
1615 }
1616
1617 /* freed space table (not supported) */
1618 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1619 partd = ump->partitions[phys_part];
1620 if (partd == NULL)
1621 continue;
1622 parthdr = &partd->_impl_use.part_hdr;
1623
1624 len = udf_rw32(parthdr->freed_space_table.len);
1625 if (len) {
1626 printf("UDF mount: space tables not supported\n");
1627 return EROFS;
1628 }
1629 }
1630
1631 return 0;
1632 }
1633
1634
1635 /* TODO implement async writeout */
1636 int
1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1638 {
1639 union dscrptr *dscr;
1640 /* struct udf_args *args = &ump->mount_args; */
1641 struct part_desc *partd;
1642 struct part_hdr_desc *parthdr;
1643 uint32_t phys_part;
1644 uint32_t lb_num, len, ptov;
1645 int error_all, error;
1646
1647 error_all = 0;
1648 /* unallocated space map */
1649 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1650 partd = ump->partitions[phys_part];
1651 if (partd == NULL)
1652 continue;
1653 parthdr = &partd->_impl_use.part_hdr;
1654
1655 ptov = udf_rw32(partd->start_loc);
1656 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1657 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1658 if (len == 0)
1659 continue;
1660
1661 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1662 lb_num + ptov));
1663 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1664 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1665 (union dscrptr *) dscr,
1666 ptov + lb_num, lb_num);
1667 if (error) {
1668 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1669 error_all = error;
1670 }
1671 }
1672
1673 /* freed space map */
1674 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1675 partd = ump->partitions[phys_part];
1676 if (partd == NULL)
1677 continue;
1678 parthdr = &partd->_impl_use.part_hdr;
1679
1680 /* freed space map */
1681 ptov = udf_rw32(partd->start_loc);
1682 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1683 len = udf_rw32(parthdr->freed_space_bitmap.len);
1684 if (len == 0)
1685 continue;
1686
1687 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1688 lb_num + ptov));
1689 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1690 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1691 (union dscrptr *) dscr,
1692 ptov + lb_num, lb_num);
1693 if (error) {
1694 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1695 error_all = error;
1696 }
1697 }
1698
1699 return error_all;
1700 }
1701
1702
1703 static int
1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1705 {
1706 struct udf_node *bitmap_node;
1707 union dscrptr *dscr;
1708 struct udf_bitmap *bitmap;
1709 uint64_t inflen;
1710 int error, dscr_type;
1711
1712 bitmap_node = ump->metadatabitmap_node;
1713
1714 /* only read in when metadata bitmap node is read in */
1715 if (bitmap_node == NULL)
1716 return 0;
1717
1718 if (bitmap_node->fe) {
1719 inflen = udf_rw64(bitmap_node->fe->inf_len);
1720 } else {
1721 KASSERT(bitmap_node->efe);
1722 inflen = udf_rw64(bitmap_node->efe->inf_len);
1723 }
1724
1725 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1726 "%"PRIu64" bytes\n", inflen));
1727
1728 /* allocate space for bitmap */
1729 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1730 if (!dscr)
1731 return ENOMEM;
1732
1733 /* set vnode type to regular file or we can't read from it! */
1734 bitmap_node->vnode->v_type = VREG;
1735
1736 /* read in complete metadata bitmap file */
1737 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1738 dscr,
1739 inflen, 0,
1740 UIO_SYSSPACE,
1741 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1742 NULL, NULL);
1743 if (error) {
1744 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1745 goto errorout;
1746 }
1747
1748 /* analyse */
1749 dscr_type = udf_rw16(dscr->tag.id);
1750 if (dscr_type == TAGID_SPACE_BITMAP) {
1751 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1752 ump->metadata_unalloc_dscr = &dscr->sbd;
1753
1754 /* fill in bitmap bits */
1755 bitmap = &ump->metadata_unalloc_bits;
1756 bitmap->blob = (uint8_t *) dscr;
1757 bitmap->bits = dscr->sbd.data;
1758 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1759 bitmap->pages = NULL; /* TODO */
1760 bitmap->data_pos = 0;
1761 bitmap->metadata_pos = 0;
1762 } else {
1763 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1764 goto errorout;
1765 }
1766
1767 return 0;
1768
1769 errorout:
1770 free(dscr, M_UDFVOLD);
1771 printf( "UDF mount: error reading unallocated "
1772 "space bitmap for metadata partition\n");
1773 return EROFS;
1774 }
1775
1776
1777 int
1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1779 {
1780 struct udf_node *bitmap_node;
1781 union dscrptr *dscr;
1782 uint64_t inflen, new_inflen;
1783 int dummy, error;
1784
1785 bitmap_node = ump->metadatabitmap_node;
1786
1787 /* only write out when metadata bitmap node is known */
1788 if (bitmap_node == NULL)
1789 return 0;
1790
1791 if (bitmap_node->fe) {
1792 inflen = udf_rw64(bitmap_node->fe->inf_len);
1793 } else {
1794 KASSERT(bitmap_node->efe);
1795 inflen = udf_rw64(bitmap_node->efe->inf_len);
1796 }
1797
1798 /* reduce length to zero */
1799 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1800 new_inflen = udf_tagsize(dscr, 1);
1801
1802 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1803 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1804
1805 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1806 if (error)
1807 printf("Error resizing metadata space bitmap\n");
1808
1809 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1810 dscr,
1811 new_inflen, 0,
1812 UIO_SYSSPACE,
1813 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1814 NULL, NULL);
1815
1816 bitmap_node->i_flags |= IN_MODIFIED;
1817 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1818
1819 error = VOP_FSYNC(bitmap_node->vnode,
1820 FSCRED, FSYNC_WAIT, 0, 0);
1821
1822 if (error)
1823 printf( "Error writing out metadata partition unalloced "
1824 "space bitmap!\n");
1825
1826 return error;
1827 }
1828
1829
1830 /* --------------------------------------------------------------------- */
1831
1832 /*
1833 * Checks if ump's vds information is correct and complete
1834 */
1835
1836 int
1837 udf_process_vds(struct udf_mount *ump) {
1838 union udf_pmap *mapping;
1839 /* struct udf_args *args = &ump->mount_args; */
1840 struct logvol_int_desc *lvint;
1841 struct udf_logvol_info *lvinfo;
1842 struct part_desc *part;
1843 uint32_t n_pm, mt_l;
1844 uint8_t *pmap_pos;
1845 char *domain_name, *map_name;
1846 const char *check_name;
1847 char bits[128];
1848 int pmap_stype, pmap_size;
1849 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1850 int n_phys, n_virt, n_spar, n_meta;
1851 int len, error;
1852
1853 if (ump == NULL)
1854 return ENOENT;
1855
1856 /* we need at least an anchor (trivial, but for safety) */
1857 if (ump->anchors[0] == NULL)
1858 return EINVAL;
1859
1860 /* we need at least one primary and one logical volume descriptor */
1861 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1862 return EINVAL;
1863
1864 /* we need at least one partition descriptor */
1865 if (ump->partitions[0] == NULL)
1866 return EINVAL;
1867
1868 /* check logical volume sector size verses device sector size */
1869 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1870 printf("UDF mount: format violation, lb_size != sector size\n");
1871 return EINVAL;
1872 }
1873
1874 /* check domain name */
1875 domain_name = ump->logical_vol->domain_id.id;
1876 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1877 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1878 return EINVAL;
1879 }
1880
1881 /* retrieve logical volume integrity sequence */
1882 error = udf_retrieve_lvint(ump);
1883
1884 /*
1885 * We need at least one logvol integrity descriptor recorded. Note
1886 * that its OK to have an open logical volume integrity here. The VAT
1887 * will close/update the integrity.
1888 */
1889 if (ump->logvol_integrity == NULL)
1890 return EINVAL;
1891
1892 /* process derived structures */
1893 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1894 lvint = ump->logvol_integrity;
1895 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1896 ump->logvol_info = lvinfo;
1897
1898 /* TODO check udf versions? */
1899
1900 /*
1901 * check logvol mappings: effective virt->log partmap translation
1902 * check and recording of the mapping results. Saves expensive
1903 * strncmp() in tight places.
1904 */
1905 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1906 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1907 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1908 pmap_pos = ump->logical_vol->maps;
1909
1910 if (n_pm > UDF_PMAPS) {
1911 printf("UDF mount: too many mappings\n");
1912 return EINVAL;
1913 }
1914
1915 /* count types and set partition numbers */
1916 ump->data_part = ump->node_part = ump->fids_part = 0;
1917 n_phys = n_virt = n_spar = n_meta = 0;
1918 for (log_part = 0; log_part < n_pm; log_part++) {
1919 mapping = (union udf_pmap *) pmap_pos;
1920 pmap_stype = pmap_pos[0];
1921 pmap_size = pmap_pos[1];
1922 switch (pmap_stype) {
1923 case 1: /* physical mapping */
1924 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1925 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1926 pmap_type = UDF_VTOP_TYPE_PHYS;
1927 n_phys++;
1928 ump->data_part = log_part;
1929 ump->node_part = log_part;
1930 ump->fids_part = log_part;
1931 break;
1932 case 2: /* virtual/sparable/meta mapping */
1933 map_name = mapping->pm2.part_id.id;
1934 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1935 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1936 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1937 len = UDF_REGID_ID_SIZE;
1938
1939 check_name = "*UDF Virtual Partition";
1940 if (strncmp(map_name, check_name, len) == 0) {
1941 pmap_type = UDF_VTOP_TYPE_VIRT;
1942 n_virt++;
1943 ump->node_part = log_part;
1944 break;
1945 }
1946 check_name = "*UDF Sparable Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1949 n_spar++;
1950 ump->data_part = log_part;
1951 ump->node_part = log_part;
1952 ump->fids_part = log_part;
1953 break;
1954 }
1955 check_name = "*UDF Metadata Partition";
1956 if (strncmp(map_name, check_name, len) == 0) {
1957 pmap_type = UDF_VTOP_TYPE_META;
1958 n_meta++;
1959 ump->node_part = log_part;
1960 ump->fids_part = log_part;
1961 break;
1962 }
1963 break;
1964 default:
1965 return EINVAL;
1966 }
1967
1968 /*
1969 * BUGALERT: some rogue implementations use random physical
1970 * partition numbers to break other implementations so lookup
1971 * the number.
1972 */
1973 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1974 part = ump->partitions[phys_part];
1975 if (part == NULL)
1976 continue;
1977 if (udf_rw16(part->part_num) == raw_phys_part)
1978 break;
1979 }
1980
1981 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1982 raw_phys_part, phys_part, pmap_type));
1983
1984 if (phys_part == UDF_PARTITIONS)
1985 return EINVAL;
1986 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1987 return EINVAL;
1988
1989 ump->vtop [log_part] = phys_part;
1990 ump->vtop_tp[log_part] = pmap_type;
1991
1992 pmap_pos += pmap_size;
1993 }
1994 /* not winning the beauty contest */
1995 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1996
1997 /* test some basic UDF assertions/requirements */
1998 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1999 return EINVAL;
2000
2001 if (n_virt) {
2002 if ((n_phys == 0) || n_spar || n_meta)
2003 return EINVAL;
2004 }
2005 if (n_spar + n_phys == 0)
2006 return EINVAL;
2007
2008 /* select allocation type for each logical partition */
2009 for (log_part = 0; log_part < n_pm; log_part++) {
2010 maps_on = ump->vtop[log_part];
2011 switch (ump->vtop_tp[log_part]) {
2012 case UDF_VTOP_TYPE_PHYS :
2013 assert(maps_on == log_part);
2014 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2015 break;
2016 case UDF_VTOP_TYPE_VIRT :
2017 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2018 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2019 break;
2020 case UDF_VTOP_TYPE_SPARABLE :
2021 assert(maps_on == log_part);
2022 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 break;
2024 case UDF_VTOP_TYPE_META :
2025 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2026 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2027 /* special case for UDF 2.60 */
2028 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2029 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2030 }
2031 break;
2032 default:
2033 panic("bad alloction type in udf's ump->vtop\n");
2034 }
2035 }
2036
2037 /* determine logical volume open/closure actions */
2038 if (n_virt) {
2039 ump->lvopen = 0;
2040 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2041 ump->lvopen |= UDF_OPEN_SESSION ;
2042 ump->lvclose = UDF_WRITE_VAT;
2043 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2044 ump->lvclose |= UDF_CLOSE_SESSION;
2045 } else {
2046 /* `normal' rewritable or non sequential media */
2047 ump->lvopen = UDF_WRITE_LVINT;
2048 ump->lvclose = UDF_WRITE_LVINT;
2049 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2050 ump->lvopen |= UDF_APPENDONLY_LVINT;
2051 }
2052
2053 /*
2054 * Determine sheduler error behaviour. For virtual partitions, update
2055 * the trackinfo; for sparable partitions replace a whole block on the
2056 * sparable table. Allways requeue.
2057 */
2058 ump->lvreadwrite = 0;
2059 if (n_virt)
2060 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2061 if (n_spar)
2062 ump->lvreadwrite = UDF_REMAP_BLOCK;
2063
2064 /*
2065 * Select our sheduler
2066 */
2067 ump->strategy = &udf_strat_rmw;
2068 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2069 ump->strategy = &udf_strat_sequential;
2070 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2071 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2072 ump->strategy = &udf_strat_direct;
2073 if (n_spar)
2074 ump->strategy = &udf_strat_rmw;
2075
2076 #if 0
2077 /* read-only access won't benefit from the other shedulers */
2078 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2079 ump->strategy = &udf_strat_direct;
2080 #endif
2081
2082 /* print results */
2083 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2084 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2085 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2086 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2087 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2088 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2089
2090 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2091 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2092 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2093 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2094 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2095 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2096
2097 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2098 (ump->strategy == &udf_strat_direct) ? "Direct" :
2099 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2100 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2101
2102 /* signal its OK for now */
2103 return 0;
2104 }
2105
2106 /* --------------------------------------------------------------------- */
2107
2108 /*
2109 * Update logical volume name in all structures that keep a record of it. We
2110 * use memmove since each of them might be specified as a source.
2111 *
2112 * Note that it doesn't update the VAT structure!
2113 */
2114
2115 static void
2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2117 {
2118 struct logvol_desc *lvd = NULL;
2119 struct fileset_desc *fsd = NULL;
2120 struct udf_lv_info *lvi = NULL;
2121
2122 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2123 lvd = ump->logical_vol;
2124 fsd = ump->fileset_desc;
2125 if (ump->implementation)
2126 lvi = &ump->implementation->_impl_use.lv_info;
2127
2128 /* logvol's id might be specified as origional so use memmove here */
2129 memmove(lvd->logvol_id, logvol_id, 128);
2130 if (fsd)
2131 memmove(fsd->logvol_id, logvol_id, 128);
2132 if (lvi)
2133 memmove(lvi->logvol_id, logvol_id, 128);
2134 }
2135
2136 /* --------------------------------------------------------------------- */
2137
2138 void
2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2140 uint32_t sector)
2141 {
2142 assert(ump->logical_vol);
2143
2144 tag->id = udf_rw16(tagid);
2145 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2146 tag->cksum = 0;
2147 tag->reserved = 0;
2148 tag->serial_num = ump->logical_vol->tag.serial_num;
2149 tag->tag_loc = udf_rw32(sector);
2150 }
2151
2152
2153 uint64_t
2154 udf_advance_uniqueid(struct udf_mount *ump)
2155 {
2156 uint64_t unique_id;
2157
2158 mutex_enter(&ump->logvol_mutex);
2159 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2160 if (unique_id < 0x10)
2161 unique_id = 0x10;
2162 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2163 mutex_exit(&ump->logvol_mutex);
2164
2165 return unique_id;
2166 }
2167
2168
2169 static void
2170 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2171 {
2172 struct udf_mount *ump = udf_node->ump;
2173 uint32_t num_dirs, num_files;
2174 int udf_file_type;
2175
2176 /* get file type */
2177 if (udf_node->fe) {
2178 udf_file_type = udf_node->fe->icbtag.file_type;
2179 } else {
2180 udf_file_type = udf_node->efe->icbtag.file_type;
2181 }
2182
2183 /* adjust file count */
2184 mutex_enter(&ump->allocate_mutex);
2185 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2186 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2187 ump->logvol_info->num_directories =
2188 udf_rw32((num_dirs + sign));
2189 } else {
2190 num_files = udf_rw32(ump->logvol_info->num_files);
2191 ump->logvol_info->num_files =
2192 udf_rw32((num_files + sign));
2193 }
2194 mutex_exit(&ump->allocate_mutex);
2195 }
2196
2197
2198 void
2199 udf_osta_charset(struct charspec *charspec)
2200 {
2201 memset(charspec, 0, sizeof(struct charspec));
2202 charspec->type = 0;
2203 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2204 }
2205
2206
2207 /* first call udf_set_regid and then the suffix */
2208 void
2209 udf_set_regid(struct regid *regid, char const *name)
2210 {
2211 memset(regid, 0, sizeof(struct regid));
2212 regid->flags = 0; /* not dirty and not protected */
2213 strcpy((char *) regid->id, name);
2214 }
2215
2216
2217 void
2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2219 {
2220 uint16_t *ver;
2221
2222 ver = (uint16_t *) regid->id_suffix;
2223 *ver = ump->logvol_info->min_udf_readver;
2224 }
2225
2226
2227 void
2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 uint16_t *ver;
2231
2232 ver = (uint16_t *) regid->id_suffix;
2233 *ver = ump->logvol_info->min_udf_readver;
2234
2235 regid->id_suffix[2] = 4; /* unix */
2236 regid->id_suffix[3] = 8; /* NetBSD */
2237 }
2238
2239
2240 void
2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2242 {
2243 regid->id_suffix[0] = 4; /* unix */
2244 regid->id_suffix[1] = 8; /* NetBSD */
2245 }
2246
2247
2248 void
2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2250 {
2251 regid->id_suffix[0] = APP_VERSION_MAIN;
2252 regid->id_suffix[1] = APP_VERSION_SUB;
2253 }
2254
2255 static int
2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2257 struct long_ad *parent, uint64_t unique_id)
2258 {
2259 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2260 int fidsize = 40;
2261
2262 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2263 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2264 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2265 fid->icb = *parent;
2266 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2267 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2268 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2269
2270 return fidsize;
2271 }
2272
2273 /* --------------------------------------------------------------------- */
2274
2275 /*
2276 * Extended attribute support. UDF knows of 3 places for extended attributes:
2277 *
2278 * (a) inside the file's (e)fe in the length of the extended attribute area
2279 * before the allocation descriptors/filedata
2280 *
2281 * (b) in a file referenced by (e)fe->ext_attr_icb and
2282 *
2283 * (c) in the e(fe)'s associated stream directory that can hold various
2284 * sub-files. In the stream directory a few fixed named subfiles are reserved
2285 * for NT/Unix ACL's and OS/2 attributes.
2286 *
2287 * NOTE: Extended attributes are read randomly but allways written
2288 * *atomicaly*. For ACL's this interface is propably different but not known
2289 * to me yet.
2290 *
2291 * Order of extended attributes in a space :
2292 * ECMA 167 EAs
2293 * Non block aligned Implementation Use EAs
2294 * Block aligned Implementation Use EAs
2295 * Application Use EAs
2296 */
2297
2298 static int
2299 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2300 {
2301 uint16_t *spos;
2302
2303 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2304 /* checksum valid? */
2305 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2306 spos = (uint16_t *) implext->data;
2307 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2308 return EINVAL;
2309 }
2310 return 0;
2311 }
2312
2313 static void
2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2315 {
2316 uint16_t *spos;
2317
2318 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2319 /* set checksum */
2320 spos = (uint16_t *) implext->data;
2321 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2322 }
2323 }
2324
2325
2326 int
2327 udf_extattr_search_intern(struct udf_node *node,
2328 uint32_t sattr, char const *sattrname,
2329 uint32_t *offsetp, uint32_t *lengthp)
2330 {
2331 struct extattrhdr_desc *eahdr;
2332 struct extattr_entry *attrhdr;
2333 struct impl_extattr_entry *implext;
2334 uint32_t offset, a_l, sector_size;
2335 int32_t l_ea;
2336 uint8_t *pos;
2337 int error;
2338
2339 /* get mountpoint */
2340 sector_size = node->ump->discinfo.sector_size;
2341
2342 /* get information from fe/efe */
2343 if (node->fe) {
2344 l_ea = udf_rw32(node->fe->l_ea);
2345 eahdr = (struct extattrhdr_desc *) node->fe->data;
2346 } else {
2347 assert(node->efe);
2348 l_ea = udf_rw32(node->efe->l_ea);
2349 eahdr = (struct extattrhdr_desc *) node->efe->data;
2350 }
2351
2352 /* something recorded here? */
2353 if (l_ea == 0)
2354 return ENOENT;
2355
2356 /* check extended attribute tag; what to do if it fails? */
2357 error = udf_check_tag(eahdr);
2358 if (error)
2359 return EINVAL;
2360 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2361 return EINVAL;
2362 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2363 if (error)
2364 return EINVAL;
2365
2366 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2367
2368 /* looking for Ecma-167 attributes? */
2369 offset = sizeof(struct extattrhdr_desc);
2370
2371 /* looking for either implemenation use or application use */
2372 if (sattr == 2048) { /* [4/48.10.8] */
2373 offset = udf_rw32(eahdr->impl_attr_loc);
2374 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2375 return ENOENT;
2376 }
2377 if (sattr == 65536) { /* [4/48.10.9] */
2378 offset = udf_rw32(eahdr->appl_attr_loc);
2379 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2380 return ENOENT;
2381 }
2382
2383 /* paranoia check offset and l_ea */
2384 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2385 return EINVAL;
2386
2387 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2388
2389 /* find our extended attribute */
2390 l_ea -= offset;
2391 pos = (uint8_t *) eahdr + offset;
2392
2393 while (l_ea >= sizeof(struct extattr_entry)) {
2394 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2395 attrhdr = (struct extattr_entry *) pos;
2396 implext = (struct impl_extattr_entry *) pos;
2397
2398 /* get complete attribute length and check for roque values */
2399 a_l = udf_rw32(attrhdr->a_l);
2400 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2401 udf_rw32(attrhdr->type),
2402 attrhdr->subtype, a_l, l_ea));
2403 if ((a_l == 0) || (a_l > l_ea))
2404 return EINVAL;
2405
2406 if (attrhdr->type != sattr)
2407 goto next_attribute;
2408
2409 /* we might have found it! */
2410 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2411 *offsetp = offset;
2412 *lengthp = a_l;
2413 return 0; /* success */
2414 }
2415
2416 /*
2417 * Implementation use and application use extended attributes
2418 * have a name to identify. They share the same structure only
2419 * UDF implementation use extended attributes have a checksum
2420 * we need to check
2421 */
2422
2423 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2424 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2425 /* we have found our appl/implementation attribute */
2426 *offsetp = offset;
2427 *lengthp = a_l;
2428 return 0; /* success */
2429 }
2430
2431 next_attribute:
2432 /* next attribute */
2433 pos += a_l;
2434 l_ea -= a_l;
2435 offset += a_l;
2436 }
2437 /* not found */
2438 return ENOENT;
2439 }
2440
2441
2442 static void
2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2444 struct extattr_entry *extattr)
2445 {
2446 struct file_entry *fe;
2447 struct extfile_entry *efe;
2448 struct extattrhdr_desc *extattrhdr;
2449 struct impl_extattr_entry *implext;
2450 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2451 uint32_t *l_eap, l_ad;
2452 uint16_t *spos;
2453 uint8_t *bpos, *data;
2454
2455 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2456 fe = &dscr->fe;
2457 data = fe->data;
2458 l_eap = &fe->l_ea;
2459 l_ad = udf_rw32(fe->l_ad);
2460 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2461 efe = &dscr->efe;
2462 data = efe->data;
2463 l_eap = &efe->l_ea;
2464 l_ad = udf_rw32(efe->l_ad);
2465 } else {
2466 panic("Bad tag passed to udf_extattr_insert_internal");
2467 }
2468
2469 /* can't append already written to file descriptors yet */
2470 assert(l_ad == 0);
2471
2472 /* should have a header! */
2473 extattrhdr = (struct extattrhdr_desc *) data;
2474 l_ea = udf_rw32(*l_eap);
2475 if (l_ea == 0) {
2476 /* create empty extended attribute header */
2477 exthdr_len = sizeof(struct extattrhdr_desc);
2478
2479 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2480 /* loc */ 0);
2481 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2482 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2483 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2484
2485 /* record extended attribute header length */
2486 l_ea = exthdr_len;
2487 *l_eap = udf_rw32(l_ea);
2488 }
2489
2490 /* extract locations */
2491 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2492 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2493 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2494 impl_attr_loc = l_ea;
2495 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 appl_attr_loc = l_ea;
2497
2498 /* Ecma 167 EAs */
2499 if (udf_rw32(extattr->type) < 2048) {
2500 assert(impl_attr_loc == l_ea);
2501 assert(appl_attr_loc == l_ea);
2502 }
2503
2504 /* implementation use extended attributes */
2505 if (udf_rw32(extattr->type) == 2048) {
2506 assert(appl_attr_loc == l_ea);
2507
2508 /* calculate and write extended attribute header checksum */
2509 implext = (struct impl_extattr_entry *) extattr;
2510 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2511 spos = (uint16_t *) implext->data;
2512 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2513 }
2514
2515 /* application use extended attributes */
2516 assert(udf_rw32(extattr->type) != 65536);
2517 assert(appl_attr_loc == l_ea);
2518
2519 /* append the attribute at the end of the current space */
2520 bpos = data + udf_rw32(*l_eap);
2521 a_l = udf_rw32(extattr->a_l);
2522
2523 /* update impl. attribute locations */
2524 if (udf_rw32(extattr->type) < 2048) {
2525 impl_attr_loc = l_ea + a_l;
2526 appl_attr_loc = l_ea + a_l;
2527 }
2528 if (udf_rw32(extattr->type) == 2048) {
2529 appl_attr_loc = l_ea + a_l;
2530 }
2531
2532 /* copy and advance */
2533 memcpy(bpos, extattr, a_l);
2534 l_ea += a_l;
2535 *l_eap = udf_rw32(l_ea);
2536
2537 /* do the `dance` again backwards */
2538 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2539 if (impl_attr_loc == l_ea)
2540 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2541 if (appl_attr_loc == l_ea)
2542 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2543 }
2544
2545 /* store offsets */
2546 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2547 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2548 }
2549
2550
2551 /* --------------------------------------------------------------------- */
2552
2553 static int
2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2555 {
2556 struct udf_mount *ump;
2557 struct udf_logvol_info *lvinfo;
2558 struct impl_extattr_entry *implext;
2559 struct vatlvext_extattr_entry lvext;
2560 const char *extstr = "*UDF VAT LVExtension";
2561 uint64_t vat_uniqueid;
2562 uint32_t offset, a_l;
2563 uint8_t *ea_start, *lvextpos;
2564 int error;
2565
2566 /* get mountpoint and lvinfo */
2567 ump = vat_node->ump;
2568 lvinfo = ump->logvol_info;
2569
2570 /* get information from fe/efe */
2571 if (vat_node->fe) {
2572 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2573 ea_start = vat_node->fe->data;
2574 } else {
2575 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2576 ea_start = vat_node->efe->data;
2577 }
2578
2579 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2580 if (error)
2581 return error;
2582
2583 implext = (struct impl_extattr_entry *) (ea_start + offset);
2584 error = udf_impl_extattr_check(implext);
2585 if (error)
2586 return error;
2587
2588 /* paranoia */
2589 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2590 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2591 return EINVAL;
2592 }
2593
2594 /*
2595 * we have found our "VAT LVExtension attribute. BUT due to a
2596 * bug in the specification it might not be word aligned so
2597 * copy first to avoid panics on some machines (!!)
2598 */
2599 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2600 lvextpos = implext->data + udf_rw32(implext->iu_l);
2601 memcpy(&lvext, lvextpos, sizeof(lvext));
2602
2603 /* check if it was updated the last time */
2604 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2605 lvinfo->num_files = lvext.num_files;
2606 lvinfo->num_directories = lvext.num_directories;
2607 udf_update_logvolname(ump, lvext.logvol_id);
2608 } else {
2609 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2610 /* replace VAT LVExt by free space EA */
2611 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2612 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2613 udf_calc_impl_extattr_checksum(implext);
2614 }
2615
2616 return 0;
2617 }
2618
2619
2620 static int
2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2622 {
2623 struct udf_mount *ump;
2624 struct udf_logvol_info *lvinfo;
2625 struct impl_extattr_entry *implext;
2626 struct vatlvext_extattr_entry lvext;
2627 const char *extstr = "*UDF VAT LVExtension";
2628 uint64_t vat_uniqueid;
2629 uint32_t offset, a_l;
2630 uint8_t *ea_start, *lvextpos;
2631 int error;
2632
2633 /* get mountpoint and lvinfo */
2634 ump = vat_node->ump;
2635 lvinfo = ump->logvol_info;
2636
2637 /* get information from fe/efe */
2638 if (vat_node->fe) {
2639 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2640 ea_start = vat_node->fe->data;
2641 } else {
2642 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2643 ea_start = vat_node->efe->data;
2644 }
2645
2646 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2647 if (error)
2648 return error;
2649 /* found, it existed */
2650
2651 /* paranoia */
2652 implext = (struct impl_extattr_entry *) (ea_start + offset);
2653 error = udf_impl_extattr_check(implext);
2654 if (error) {
2655 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2656 return error;
2657 }
2658 /* it is correct */
2659
2660 /*
2661 * we have found our "VAT LVExtension attribute. BUT due to a
2662 * bug in the specification it might not be word aligned so
2663 * copy first to avoid panics on some machines (!!)
2664 */
2665 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2666 lvextpos = implext->data + udf_rw32(implext->iu_l);
2667
2668 lvext.unique_id_chk = vat_uniqueid;
2669 lvext.num_files = lvinfo->num_files;
2670 lvext.num_directories = lvinfo->num_directories;
2671 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2672
2673 memcpy(lvextpos, &lvext, sizeof(lvext));
2674
2675 return 0;
2676 }
2677
2678 /* --------------------------------------------------------------------- */
2679
2680 int
2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2682 {
2683 struct udf_mount *ump = vat_node->ump;
2684
2685 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2686 return EINVAL;
2687
2688 memcpy(blob, ump->vat_table + offset, size);
2689 return 0;
2690 }
2691
2692 int
2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2694 {
2695 struct udf_mount *ump = vat_node->ump;
2696 uint32_t offset_high;
2697 uint8_t *new_vat_table;
2698
2699 /* extent VAT allocation if needed */
2700 offset_high = offset + size;
2701 if (offset_high >= ump->vat_table_alloc_len) {
2702 /* realloc */
2703 new_vat_table = realloc(ump->vat_table,
2704 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2705 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2706 if (!new_vat_table) {
2707 printf("udf_vat_write: can't extent VAT, out of mem\n");
2708 return ENOMEM;
2709 }
2710 ump->vat_table = new_vat_table;
2711 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2712 }
2713 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2714
2715 memcpy(ump->vat_table + offset, blob, size);
2716 return 0;
2717 }
2718
2719 /* --------------------------------------------------------------------- */
2720
2721 /* TODO support previous VAT location writeout */
2722 static int
2723 udf_update_vat_descriptor(struct udf_mount *ump)
2724 {
2725 struct udf_node *vat_node = ump->vat_node;
2726 struct udf_logvol_info *lvinfo = ump->logvol_info;
2727 struct icb_tag *icbtag;
2728 struct udf_oldvat_tail *oldvat_tl;
2729 struct udf_vat *vat;
2730 uint64_t unique_id;
2731 uint32_t lb_size;
2732 uint8_t *raw_vat;
2733 int filetype, error;
2734
2735 KASSERT(vat_node);
2736 KASSERT(lvinfo);
2737 lb_size = udf_rw32(ump->logical_vol->lb_size);
2738
2739 /* get our new unique_id */
2740 unique_id = udf_advance_uniqueid(ump);
2741
2742 /* get information from fe/efe */
2743 if (vat_node->fe) {
2744 icbtag = &vat_node->fe->icbtag;
2745 vat_node->fe->unique_id = udf_rw64(unique_id);
2746 } else {
2747 icbtag = &vat_node->efe->icbtag;
2748 vat_node->efe->unique_id = udf_rw64(unique_id);
2749 }
2750
2751 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2752 filetype = icbtag->file_type;
2753 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2754
2755 /* allocate piece to process head or tail of VAT file */
2756 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2757
2758 if (filetype == 0) {
2759 /*
2760 * Update "*UDF VAT LVExtension" extended attribute from the
2761 * lvint if present.
2762 */
2763 udf_update_vat_extattr_from_lvid(vat_node);
2764
2765 /* setup identifying regid */
2766 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2767 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2768
2769 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2770 udf_add_udf_regid(ump, &oldvat_tl->id);
2771 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2772
2773 /* write out new tail of virtual allocation table file */
2774 error = udf_vat_write(vat_node, raw_vat,
2775 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2776 } else {
2777 /* compose the VAT2 header */
2778 vat = (struct udf_vat *) raw_vat;
2779 memset(vat, 0, sizeof(struct udf_vat));
2780
2781 vat->header_len = udf_rw16(152); /* as per spec */
2782 vat->impl_use_len = udf_rw16(0);
2783 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2784 vat->prev_vat = udf_rw32(0xffffffff);
2785 vat->num_files = lvinfo->num_files;
2786 vat->num_directories = lvinfo->num_directories;
2787 vat->min_udf_readver = lvinfo->min_udf_readver;
2788 vat->min_udf_writever = lvinfo->min_udf_writever;
2789 vat->max_udf_writever = lvinfo->max_udf_writever;
2790
2791 error = udf_vat_write(vat_node, raw_vat,
2792 sizeof(struct udf_vat), 0);
2793 }
2794 free(raw_vat, M_TEMP);
2795
2796 return error; /* success! */
2797 }
2798
2799
2800 int
2801 udf_writeout_vat(struct udf_mount *ump)
2802 {
2803 struct udf_node *vat_node = ump->vat_node;
2804 uint32_t vat_length;
2805 int error;
2806
2807 KASSERT(vat_node);
2808
2809 DPRINTF(CALL, ("udf_writeout_vat\n"));
2810
2811 // mutex_enter(&ump->allocate_mutex);
2812 udf_update_vat_descriptor(ump);
2813
2814 /* write out the VAT contents ; TODO intelligent writing */
2815 vat_length = ump->vat_table_len;
2816 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 ump->vat_table, ump->vat_table_len, 0,
2818 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2819 if (error) {
2820 printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 goto out;
2822 }
2823
2824 // mutex_exit(&ump->allocate_mutex);
2825
2826 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2827 error = VOP_FSYNC(ump->vat_node->vnode,
2828 FSCRED, FSYNC_WAIT, 0, 0);
2829 if (error)
2830 printf("udf_writeout_vat: error writing VAT node!\n");
2831 out:
2832
2833 return error;
2834 }
2835
2836 /* --------------------------------------------------------------------- */
2837
2838 /*
2839 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2840 * descriptor. If OK, read in complete VAT file.
2841 */
2842
2843 static int
2844 udf_check_for_vat(struct udf_node *vat_node)
2845 {
2846 struct udf_mount *ump;
2847 struct icb_tag *icbtag;
2848 struct timestamp *mtime;
2849 struct udf_vat *vat;
2850 struct udf_oldvat_tail *oldvat_tl;
2851 struct udf_logvol_info *lvinfo;
2852 uint64_t unique_id;
2853 uint32_t vat_length;
2854 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2855 uint32_t sector_size;
2856 uint32_t *raw_vat;
2857 uint8_t *vat_table;
2858 char *regid_name;
2859 int filetype;
2860 int error;
2861
2862 /* vat_length is really 64 bits though impossible */
2863
2864 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2865 if (!vat_node)
2866 return ENOENT;
2867
2868 /* get mount info */
2869 ump = vat_node->ump;
2870 sector_size = udf_rw32(ump->logical_vol->lb_size);
2871
2872 /* check assertions */
2873 assert(vat_node->fe || vat_node->efe);
2874 assert(ump->logvol_integrity);
2875
2876 /* set vnode type to regular file or we can't read from it! */
2877 vat_node->vnode->v_type = VREG;
2878
2879 /* get information from fe/efe */
2880 if (vat_node->fe) {
2881 vat_length = udf_rw64(vat_node->fe->inf_len);
2882 icbtag = &vat_node->fe->icbtag;
2883 mtime = &vat_node->fe->mtime;
2884 unique_id = udf_rw64(vat_node->fe->unique_id);
2885 } else {
2886 vat_length = udf_rw64(vat_node->efe->inf_len);
2887 icbtag = &vat_node->efe->icbtag;
2888 mtime = &vat_node->efe->mtime;
2889 unique_id = udf_rw64(vat_node->efe->unique_id);
2890 }
2891
2892 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2893 filetype = icbtag->file_type;
2894 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2895 return ENOENT;
2896
2897 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2898
2899 vat_table_alloc_len =
2900 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2901 * UDF_VAT_CHUNKSIZE;
2902
2903 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2904 M_CANFAIL | M_WAITOK);
2905 if (vat_table == NULL) {
2906 printf("allocation of %d bytes failed for VAT\n",
2907 vat_table_alloc_len);
2908 return ENOMEM;
2909 }
2910
2911 /* allocate piece to read in head or tail of VAT file */
2912 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2913
2914 /*
2915 * check contents of the file if its the old 1.50 VAT table format.
2916 * Its notoriously broken and allthough some implementations support an
2917 * extention as defined in the UDF 1.50 errata document, its doubtfull
2918 * to be useable since a lot of implementations don't maintain it.
2919 */
2920 lvinfo = ump->logvol_info;
2921
2922 if (filetype == 0) {
2923 /* definition */
2924 vat_offset = 0;
2925 vat_entries = (vat_length-36)/4;
2926
2927 /* read in tail of virtual allocation table file */
2928 error = vn_rdwr(UIO_READ, vat_node->vnode,
2929 (uint8_t *) raw_vat,
2930 sizeof(struct udf_oldvat_tail),
2931 vat_entries * 4,
2932 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2933 NULL, NULL);
2934 if (error)
2935 goto out;
2936
2937 /* check 1.50 VAT */
2938 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2939 regid_name = (char *) oldvat_tl->id.id;
2940 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2941 if (error) {
2942 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2943 error = ENOENT;
2944 goto out;
2945 }
2946
2947 /*
2948 * update LVID from "*UDF VAT LVExtension" extended attribute
2949 * if present.
2950 */
2951 udf_update_lvid_from_vat_extattr(vat_node);
2952 } else {
2953 /* read in head of virtual allocation table file */
2954 error = vn_rdwr(UIO_READ, vat_node->vnode,
2955 (uint8_t *) raw_vat,
2956 sizeof(struct udf_vat), 0,
2957 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2958 NULL, NULL);
2959 if (error)
2960 goto out;
2961
2962 /* definition */
2963 vat = (struct udf_vat *) raw_vat;
2964 vat_offset = vat->header_len;
2965 vat_entries = (vat_length - vat_offset)/4;
2966
2967 assert(lvinfo);
2968 lvinfo->num_files = vat->num_files;
2969 lvinfo->num_directories = vat->num_directories;
2970 lvinfo->min_udf_readver = vat->min_udf_readver;
2971 lvinfo->min_udf_writever = vat->min_udf_writever;
2972 lvinfo->max_udf_writever = vat->max_udf_writever;
2973
2974 udf_update_logvolname(ump, vat->logvol_id);
2975 }
2976
2977 /* read in complete VAT file */
2978 error = vn_rdwr(UIO_READ, vat_node->vnode,
2979 vat_table,
2980 vat_length, 0,
2981 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2982 NULL, NULL);
2983 if (error)
2984 printf("read in of complete VAT file failed (error %d)\n",
2985 error);
2986 if (error)
2987 goto out;
2988
2989 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2990 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2991 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2992 ump->logvol_integrity->time = *mtime;
2993
2994 ump->vat_table_len = vat_length;
2995 ump->vat_table_alloc_len = vat_table_alloc_len;
2996 ump->vat_table = vat_table;
2997 ump->vat_offset = vat_offset;
2998 ump->vat_entries = vat_entries;
2999 ump->vat_last_free_lb = 0; /* start at beginning */
3000
3001 out:
3002 if (error) {
3003 if (vat_table)
3004 free(vat_table, M_UDFVOLD);
3005 }
3006 free(raw_vat, M_TEMP);
3007
3008 return error;
3009 }
3010
3011 /* --------------------------------------------------------------------- */
3012
3013 static int
3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3015 {
3016 struct udf_node *vat_node;
3017 struct long_ad icb_loc;
3018 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3019 int error;
3020
3021 /* mapping info not needed */
3022 mapping = mapping;
3023
3024 vat_loc = ump->last_possible_vat_location;
3025 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3026
3027 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3028 vat_loc, early_vat_loc));
3029 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3030 late_vat_loc = vat_loc + 1024;
3031
3032 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3033 vat_loc, early_vat_loc));
3034
3035 /* start looking from the end of the range */
3036 do {
3037 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3038 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3039 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3040
3041 error = udf_get_node(ump, &icb_loc, &vat_node);
3042 if (!error) {
3043 error = udf_check_for_vat(vat_node);
3044 DPRINTFIF(VOLUMES, !error,
3045 ("VAT accepted at %d\n", vat_loc));
3046 if (!error)
3047 break;
3048 }
3049 if (vat_node) {
3050 vput(vat_node->vnode);
3051 vat_node = NULL;
3052 }
3053 vat_loc--; /* walk backwards */
3054 } while (vat_loc >= early_vat_loc);
3055
3056 /* keep our VAT node around */
3057 if (vat_node) {
3058 UDF_SET_SYSTEMFILE(vat_node->vnode);
3059 ump->vat_node = vat_node;
3060 }
3061
3062 return error;
3063 }
3064
3065 /* --------------------------------------------------------------------- */
3066
3067 static int
3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3069 {
3070 union dscrptr *dscr;
3071 struct part_map_spare *pms = &mapping->pms;
3072 uint32_t lb_num;
3073 int spar, error;
3074
3075 /*
3076 * The partition mapping passed on to us specifies the information we
3077 * need to locate and initialise the sparable partition mapping
3078 * information we need.
3079 */
3080
3081 DPRINTF(VOLUMES, ("Read sparable table\n"));
3082 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3083 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3084
3085 for (spar = 0; spar < pms->n_st; spar++) {
3086 lb_num = pms->st_loc[spar];
3087 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3088 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3089 if (!error && dscr) {
3090 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3091 if (ump->sparing_table)
3092 free(ump->sparing_table, M_UDFVOLD);
3093 ump->sparing_table = &dscr->spt;
3094 dscr = NULL;
3095 DPRINTF(VOLUMES,
3096 ("Sparing table accepted (%d entries)\n",
3097 udf_rw16(ump->sparing_table->rt_l)));
3098 break; /* we're done */
3099 }
3100 }
3101 if (dscr)
3102 free(dscr, M_UDFVOLD);
3103 }
3104
3105 if (ump->sparing_table)
3106 return 0;
3107
3108 return ENOENT;
3109 }
3110
3111 /* --------------------------------------------------------------------- */
3112
3113 static int
3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3115 {
3116 struct part_map_meta *pmm = &mapping->pmm;
3117 struct long_ad icb_loc;
3118 struct vnode *vp;
3119 int error;
3120
3121 /* extract our allocation parameters set up on format */
3122 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3123 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3124 ump->metadata_flags = mapping->pmm.flags;
3125
3126 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3127 icb_loc.loc.part_num = pmm->part_num;
3128 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3129 DPRINTF(VOLUMES, ("Metadata file\n"));
3130 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3131 if (ump->metadata_node) {
3132 vp = ump->metadata_node->vnode;
3133 UDF_SET_SYSTEMFILE(vp);
3134 }
3135
3136 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3137 if (icb_loc.loc.lb_num != -1) {
3138 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3139 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3140 if (ump->metadatamirror_node) {
3141 vp = ump->metadatamirror_node->vnode;
3142 UDF_SET_SYSTEMFILE(vp);
3143 }
3144 }
3145
3146 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3147 if (icb_loc.loc.lb_num != -1) {
3148 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3149 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3150 if (ump->metadatabitmap_node) {
3151 vp = ump->metadatabitmap_node->vnode;
3152 UDF_SET_SYSTEMFILE(vp);
3153 }
3154 }
3155
3156 /* if we're mounting read-only we relax the requirements */
3157 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3158 error = EFAULT;
3159 if (ump->metadata_node)
3160 error = 0;
3161 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3162 printf( "udf mount: Metadata file not readable, "
3163 "substituting Metadata copy file\n");
3164 ump->metadata_node = ump->metadatamirror_node;
3165 ump->metadatamirror_node = NULL;
3166 error = 0;
3167 }
3168 } else {
3169 /* mounting read/write */
3170 /* XXX DISABLED! metadata writing is not working yet XXX */
3171 if (error)
3172 error = EROFS;
3173 }
3174 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3175 "metadata files\n"));
3176 return error;
3177 }
3178
3179 /* --------------------------------------------------------------------- */
3180
3181 int
3182 udf_read_vds_tables(struct udf_mount *ump)
3183 {
3184 union udf_pmap *mapping;
3185 /* struct udf_args *args = &ump->mount_args; */
3186 uint32_t n_pm, mt_l;
3187 uint32_t log_part;
3188 uint8_t *pmap_pos;
3189 int pmap_size;
3190 int error;
3191
3192 /* Iterate (again) over the part mappings for locations */
3193 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3194 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3195 pmap_pos = ump->logical_vol->maps;
3196
3197 for (log_part = 0; log_part < n_pm; log_part++) {
3198 mapping = (union udf_pmap *) pmap_pos;
3199 switch (ump->vtop_tp[log_part]) {
3200 case UDF_VTOP_TYPE_PHYS :
3201 /* nothing */
3202 break;
3203 case UDF_VTOP_TYPE_VIRT :
3204 /* search and load VAT */
3205 error = udf_search_vat(ump, mapping);
3206 if (error)
3207 return ENOENT;
3208 break;
3209 case UDF_VTOP_TYPE_SPARABLE :
3210 /* load one of the sparable tables */
3211 error = udf_read_sparables(ump, mapping);
3212 if (error)
3213 return ENOENT;
3214 break;
3215 case UDF_VTOP_TYPE_META :
3216 /* load the associated file descriptors */
3217 error = udf_read_metadata_nodes(ump, mapping);
3218 if (error)
3219 return ENOENT;
3220 break;
3221 default:
3222 break;
3223 }
3224 pmap_size = pmap_pos[1];
3225 pmap_pos += pmap_size;
3226 }
3227
3228 /* read in and check unallocated and free space info if writing */
3229 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3230 error = udf_read_physical_partition_spacetables(ump);
3231 if (error)
3232 return error;
3233
3234 /* also read in metadata partition spacebitmap if defined */
3235 error = udf_read_metadata_partition_spacetable(ump);
3236 return error;
3237 }
3238
3239 return 0;
3240 }
3241
3242 /* --------------------------------------------------------------------- */
3243
3244 int
3245 udf_read_rootdirs(struct udf_mount *ump)
3246 {
3247 union dscrptr *dscr;
3248 /* struct udf_args *args = &ump->mount_args; */
3249 struct udf_node *rootdir_node, *streamdir_node;
3250 struct long_ad fsd_loc, *dir_loc;
3251 uint32_t lb_num, dummy;
3252 uint32_t fsd_len;
3253 int dscr_type;
3254 int error;
3255
3256 /* TODO implement FSD reading in separate function like integrity? */
3257 /* get fileset descriptor sequence */
3258 fsd_loc = ump->logical_vol->lv_fsd_loc;
3259 fsd_len = udf_rw32(fsd_loc.len);
3260
3261 dscr = NULL;
3262 error = 0;
3263 while (fsd_len || error) {
3264 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3265 /* translate fsd_loc to lb_num */
3266 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3267 if (error)
3268 break;
3269 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3270 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3271 /* end markers */
3272 if (error || (dscr == NULL))
3273 break;
3274
3275 /* analyse */
3276 dscr_type = udf_rw16(dscr->tag.id);
3277 if (dscr_type == TAGID_TERM)
3278 break;
3279 if (dscr_type != TAGID_FSD) {
3280 free(dscr, M_UDFVOLD);
3281 return ENOENT;
3282 }
3283
3284 /*
3285 * TODO check for multiple fileset descriptors; its only
3286 * picking the last now. Also check for FSD
3287 * correctness/interpretability
3288 */
3289
3290 /* update */
3291 if (ump->fileset_desc) {
3292 free(ump->fileset_desc, M_UDFVOLD);
3293 }
3294 ump->fileset_desc = &dscr->fsd;
3295 dscr = NULL;
3296
3297 /* continue to the next fsd */
3298 fsd_len -= ump->discinfo.sector_size;
3299 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3300
3301 /* follow up to fsd->next_ex (long_ad) if its not null */
3302 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3303 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3304 fsd_loc = ump->fileset_desc->next_ex;
3305 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3306 }
3307 }
3308 if (dscr)
3309 free(dscr, M_UDFVOLD);
3310
3311 /* there has to be one */
3312 if (ump->fileset_desc == NULL)
3313 return ENOENT;
3314
3315 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3316 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3317 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3318
3319 /*
3320 * Now the FSD is known, read in the rootdirectory and if one exists,
3321 * the system stream dir. Some files in the system streamdir are not
3322 * wanted in this implementation since they are not maintained. If
3323 * writing is enabled we'll delete these files if they exist.
3324 */
3325
3326 rootdir_node = streamdir_node = NULL;
3327 dir_loc = NULL;
3328
3329 /* try to read in the rootdir */
3330 dir_loc = &ump->fileset_desc->rootdir_icb;
3331 error = udf_get_node(ump, dir_loc, &rootdir_node);
3332 if (error)
3333 return ENOENT;
3334
3335 /* aparently it read in fine */
3336
3337 /*
3338 * Try the system stream directory; not very likely in the ones we
3339 * test, but for completeness.
3340 */
3341 dir_loc = &ump->fileset_desc->streamdir_icb;
3342 if (udf_rw32(dir_loc->len)) {
3343 printf("udf_read_rootdirs: streamdir defined ");
3344 error = udf_get_node(ump, dir_loc, &streamdir_node);
3345 if (error) {
3346 printf("but error in streamdir reading\n");
3347 } else {
3348 printf("but ignored\n");
3349 /*
3350 * TODO process streamdir `baddies' i.e. files we dont
3351 * want if R/W
3352 */
3353 }
3354 }
3355
3356 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3357
3358 /* release the vnodes again; they'll be auto-recycled later */
3359 if (streamdir_node) {
3360 vput(streamdir_node->vnode);
3361 }
3362 if (rootdir_node) {
3363 vput(rootdir_node->vnode);
3364 }
3365
3366 return 0;
3367 }
3368
3369 /* --------------------------------------------------------------------- */
3370
3371 /* To make absolutely sure we are NOT returning zero, add one :) */
3372
3373 long
3374 udf_get_node_id(const struct long_ad *icbptr)
3375 {
3376 /* ought to be enough since each mountpoint has its own chain */
3377 return udf_rw32(icbptr->loc.lb_num) + 1;
3378 }
3379
3380
3381 int
3382 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3383 {
3384 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3385 return -1;
3386 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3387 return 1;
3388
3389 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3390 return -1;
3391 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3392 return 1;
3393
3394 return 0;
3395 }
3396
3397
3398 static int
3399 udf_compare_rbnodes(const struct rb_node *a, const struct rb_node *b)
3400 {
3401 struct udf_node *a_node = RBTOUDFNODE(a);
3402 struct udf_node *b_node = RBTOUDFNODE(b);
3403
3404 return udf_compare_icb(&a_node->loc, &b_node->loc);
3405 }
3406
3407
3408 static int
3409 udf_compare_rbnode_icb(const struct rb_node *a, const void *key)
3410 {
3411 struct udf_node *a_node = RBTOUDFNODE(a);
3412 const struct long_ad * const icb = key;
3413
3414 return udf_compare_icb(&a_node->loc, icb);
3415 }
3416
3417
3418 static const struct rb_tree_ops udf_node_rbtree_ops = {
3419 .rbto_compare_nodes = udf_compare_rbnodes,
3420 .rbto_compare_key = udf_compare_rbnode_icb,
3421 };
3422
3423
3424 void
3425 udf_init_nodes_tree(struct udf_mount *ump)
3426 {
3427 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3428 }
3429
3430
3431 static struct udf_node *
3432 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3433 {
3434 struct rb_node *rb_node;
3435 struct udf_node *udf_node;
3436 struct vnode *vp;
3437
3438 loop:
3439 mutex_enter(&ump->ihash_lock);
3440
3441 rb_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3442 if (rb_node) {
3443 udf_node = RBTOUDFNODE(rb_node);
3444 vp = udf_node->vnode;
3445 assert(vp);
3446 mutex_enter(&vp->v_interlock);
3447 mutex_exit(&ump->ihash_lock);
3448 if (vget(vp, LK_EXCLUSIVE))
3449 goto loop;
3450 return udf_node;
3451 }
3452 mutex_exit(&ump->ihash_lock);
3453
3454 return NULL;
3455 }
3456
3457
3458 static void
3459 udf_register_node(struct udf_node *udf_node)
3460 {
3461 struct udf_mount *ump = udf_node->ump;
3462
3463 /* add node to the rb tree */
3464 mutex_enter(&ump->ihash_lock);
3465 rb_tree_insert_node(&ump->udf_node_tree, &udf_node->rbnode);
3466 mutex_exit(&ump->ihash_lock);
3467 }
3468
3469
3470 static void
3471 udf_deregister_node(struct udf_node *udf_node)
3472 {
3473 struct udf_mount *ump = udf_node->ump;
3474
3475 /* remove node from the rb tree */
3476 mutex_enter(&ump->ihash_lock);
3477 rb_tree_remove_node(&ump->udf_node_tree, &udf_node->rbnode);
3478 mutex_exit(&ump->ihash_lock);
3479 }
3480
3481 /* --------------------------------------------------------------------- */
3482
3483 static int
3484 udf_validate_session_start(struct udf_mount *ump)
3485 {
3486 struct mmc_trackinfo trackinfo;
3487 struct vrs_desc *vrs;
3488 uint32_t tracknr, sessionnr, sector, sector_size;
3489 uint32_t iso9660_vrs, write_track_start;
3490 uint8_t *buffer, *blank, *pos;
3491 int blks, max_sectors, vrs_len;
3492 int error;
3493
3494 /* disc appendable? */
3495 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3496 return EROFS;
3497
3498 /* already written here? if so, there should be an ISO VDS */
3499 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3500 return 0;
3501
3502 /*
3503 * Check if the first track of the session is blank and if so, copy or
3504 * create a dummy ISO descriptor so the disc is valid again.
3505 */
3506
3507 tracknr = ump->discinfo.first_track_last_session;
3508 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3509 trackinfo.tracknr = tracknr;
3510 error = udf_update_trackinfo(ump, &trackinfo);
3511 if (error)
3512 return error;
3513
3514 udf_dump_trackinfo(&trackinfo);
3515 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3516 KASSERT(trackinfo.sessionnr > 1);
3517
3518 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3519 write_track_start = trackinfo.next_writable;
3520
3521 /* we have to copy the ISO VRS from a former session */
3522 DPRINTF(VOLUMES, ("validate_session_start: "
3523 "blank or reserved track, copying VRS\n"));
3524
3525 /* sessionnr should be the session we're mounting */
3526 sessionnr = ump->mount_args.sessionnr;
3527
3528 /* start at the first track */
3529 tracknr = ump->discinfo.first_track;
3530 while (tracknr <= ump->discinfo.num_tracks) {
3531 trackinfo.tracknr = tracknr;
3532 error = udf_update_trackinfo(ump, &trackinfo);
3533 if (error) {
3534 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3535 return error;
3536 }
3537 if (trackinfo.sessionnr == sessionnr)
3538 break;
3539 tracknr++;
3540 }
3541 if (trackinfo.sessionnr != sessionnr) {
3542 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3543 return ENOENT;
3544 }
3545
3546 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3547 udf_dump_trackinfo(&trackinfo);
3548
3549 /*
3550 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3551 * minimum ISO `sector size' 2048
3552 */
3553 sector_size = ump->discinfo.sector_size;
3554 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3555 + trackinfo.track_start;
3556
3557 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3558 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3559 blks = MAX(1, 2048 / sector_size);
3560
3561 error = 0;
3562 for (sector = 0; sector < max_sectors; sector += blks) {
3563 pos = buffer + sector * sector_size;
3564 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3565 iso9660_vrs + sector, blks);
3566 if (error)
3567 break;
3568 /* check this ISO descriptor */
3569 vrs = (struct vrs_desc *) pos;
3570 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3571 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3572 continue;
3573 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3574 continue;
3575 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3576 continue;
3577 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3578 continue;
3579 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3580 continue;
3581 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3582 break;
3583 /* now what? for now, end of sequence */
3584 break;
3585 }
3586 vrs_len = sector + blks;
3587 if (error) {
3588 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3589 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3590
3591 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3592
3593 vrs = (struct vrs_desc *) (buffer);
3594 vrs->struct_type = 0;
3595 vrs->version = 1;
3596 memcpy(vrs->identifier,VRS_BEA01, 5);
3597
3598 vrs = (struct vrs_desc *) (buffer + 2048);
3599 vrs->struct_type = 0;
3600 vrs->version = 1;
3601 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3602 memcpy(vrs->identifier,VRS_NSR02, 5);
3603 } else {
3604 memcpy(vrs->identifier,VRS_NSR03, 5);
3605 }
3606
3607 vrs = (struct vrs_desc *) (buffer + 4096);
3608 vrs->struct_type = 0;
3609 vrs->version = 1;
3610 memcpy(vrs->identifier, VRS_TEA01, 5);
3611
3612 vrs_len = 3*blks;
3613 }
3614
3615 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3616
3617 /*
3618 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3619 * minimum ISO `sector size' 2048
3620 */
3621 sector_size = ump->discinfo.sector_size;
3622 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3623 + write_track_start;
3624
3625 /* write out 32 kb */
3626 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3627 memset(blank, 0, sector_size);
3628 error = 0;
3629 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3630 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3631 blank, sector, 1);
3632 if (error)
3633 break;
3634 }
3635 if (!error) {
3636 /* write out our ISO VRS */
3637 KASSERT(sector == iso9660_vrs);
3638 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3639 sector, vrs_len);
3640 sector += vrs_len;
3641 }
3642 if (!error) {
3643 /* fill upto the first anchor at S+256 */
3644 for (; sector < write_track_start+256; sector++) {
3645 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3646 blank, sector, 1);
3647 if (error)
3648 break;
3649 }
3650 }
3651 if (!error) {
3652 /* write out anchor; write at ABSOLUTE place! */
3653 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3654 (union dscrptr *) ump->anchors[0], sector, sector);
3655 if (error)
3656 printf("writeout of anchor failed!\n");
3657 }
3658
3659 free(blank, M_TEMP);
3660 free(buffer, M_TEMP);
3661
3662 if (error)
3663 printf("udf_open_session: error writing iso vrs! : "
3664 "leaving disc in compromised state!\n");
3665
3666 /* synchronise device caches */
3667 (void) udf_synchronise_caches(ump);
3668
3669 return error;
3670 }
3671
3672
3673 int
3674 udf_open_logvol(struct udf_mount *ump)
3675 {
3676 int logvol_integrity;
3677 int error;
3678
3679 /* already/still open? */
3680 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3681 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3682 return 0;
3683
3684 /* can we open it ? */
3685 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3686 return EROFS;
3687
3688 /* setup write parameters */
3689 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3690 if ((error = udf_setup_writeparams(ump)) != 0)
3691 return error;
3692
3693 /* determine data and metadata tracks (most likely same) */
3694 error = udf_search_writing_tracks(ump);
3695 if (error) {
3696 /* most likely lack of space */
3697 printf("udf_open_logvol: error searching writing tracks\n");
3698 return EROFS;
3699 }
3700
3701 /* writeout/update lvint on disc or only in memory */
3702 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3703 if (ump->lvopen & UDF_OPEN_SESSION) {
3704 /* TODO optional track reservation opening */
3705 error = udf_validate_session_start(ump);
3706 if (error)
3707 return error;
3708
3709 /* determine data and metadata tracks again */
3710 error = udf_search_writing_tracks(ump);
3711 }
3712
3713 /* mark it open */
3714 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3715
3716 /* do we need to write it out? */
3717 if (ump->lvopen & UDF_WRITE_LVINT) {
3718 error = udf_writeout_lvint(ump, ump->lvopen);
3719 /* if we couldn't write it mark it closed again */
3720 if (error) {
3721 ump->logvol_integrity->integrity_type =
3722 udf_rw32(UDF_INTEGRITY_CLOSED);
3723 return error;
3724 }
3725 }
3726
3727 return 0;
3728 }
3729
3730
3731 int
3732 udf_close_logvol(struct udf_mount *ump, int mntflags)
3733 {
3734 struct vnode *devvp = ump->devvp;
3735 struct mmc_op mmc_op;
3736 int logvol_integrity;
3737 int error = 0, error1 = 0, error2 = 0;
3738 int tracknr;
3739 int nvats, n, nok;
3740
3741 /* already/still closed? */
3742 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3743 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3744 return 0;
3745
3746 /* writeout/update lvint or write out VAT */
3747 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3748 #ifdef DIAGNOSTIC
3749 if (ump->lvclose & UDF_CLOSE_SESSION)
3750 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3751 #endif
3752
3753 if (ump->lvclose & UDF_WRITE_VAT) {
3754 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3755
3756 /* write out the VAT data and all its descriptors */
3757 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3758 udf_writeout_vat(ump);
3759 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3760
3761 (void) VOP_FSYNC(ump->vat_node->vnode,
3762 FSCRED, FSYNC_WAIT, 0, 0);
3763
3764 if (ump->lvclose & UDF_CLOSE_SESSION) {
3765 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3766 "as requested\n"));
3767 }
3768
3769 /* at least two DVD packets and 3 CD-R packets */
3770 nvats = 32;
3771
3772 #if notyet
3773 /*
3774 * TODO calculate the available space and if the disc is
3775 * allmost full, write out till end-256-1 with banks, write
3776 * AVDP and fill up with VATs, then close session and close
3777 * disc.
3778 */
3779 if (ump->lvclose & UDF_FINALISE_DISC) {
3780 error = udf_write_phys_dscr_sync(ump, NULL,
3781 UDF_C_FLOAT_DSCR,
3782 (union dscrptr *) ump->anchors[0],
3783 0, 0);
3784 if (error)
3785 printf("writeout of anchor failed!\n");
3786
3787 /* pad space with VAT ICBs */
3788 nvats = 256;
3789 }
3790 #endif
3791
3792 /* write out a number of VAT nodes */
3793 nok = 0;
3794 for (n = 0; n < nvats; n++) {
3795 /* will now only write last FE/EFE */
3796 ump->vat_node->i_flags |= IN_MODIFIED;
3797 error = VOP_FSYNC(ump->vat_node->vnode,
3798 FSCRED, FSYNC_WAIT, 0, 0);
3799 if (!error)
3800 nok++;
3801 }
3802 if (nok < 14) {
3803 /* arbitrary; but at least one or two CD frames */
3804 printf("writeout of at least 14 VATs failed\n");
3805 return error;
3806 }
3807 }
3808
3809 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3810
3811 /* finish closing of session */
3812 if (ump->lvclose & UDF_CLOSE_SESSION) {
3813 error = udf_validate_session_start(ump);
3814 if (error)
3815 return error;
3816
3817 (void) udf_synchronise_caches(ump);
3818
3819 /* close all associated tracks */
3820 tracknr = ump->discinfo.first_track_last_session;
3821 error = 0;
3822 while (tracknr <= ump->discinfo.last_track_last_session) {
3823 DPRINTF(VOLUMES, ("\tclosing possible open "
3824 "track %d\n", tracknr));
3825 memset(&mmc_op, 0, sizeof(mmc_op));
3826 mmc_op.operation = MMC_OP_CLOSETRACK;
3827 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3828 mmc_op.tracknr = tracknr;
3829 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3830 FKIOCTL, NOCRED);
3831 if (error)
3832 printf("udf_close_logvol: closing of "
3833 "track %d failed\n", tracknr);
3834 tracknr ++;
3835 }
3836 if (!error) {
3837 DPRINTF(VOLUMES, ("closing session\n"));
3838 memset(&mmc_op, 0, sizeof(mmc_op));
3839 mmc_op.operation = MMC_OP_CLOSESESSION;
3840 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3841 mmc_op.sessionnr = ump->discinfo.num_sessions;
3842 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3843 FKIOCTL, NOCRED);
3844 if (error)
3845 printf("udf_close_logvol: closing of session"
3846 "failed\n");
3847 }
3848 if (!error)
3849 ump->lvopen |= UDF_OPEN_SESSION;
3850 if (error) {
3851 printf("udf_close_logvol: leaving disc as it is\n");
3852 ump->lvclose &= ~UDF_FINALISE_DISC;
3853 }
3854 }
3855
3856 if (ump->lvclose & UDF_FINALISE_DISC) {
3857 memset(&mmc_op, 0, sizeof(mmc_op));
3858 mmc_op.operation = MMC_OP_FINALISEDISC;
3859 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3860 mmc_op.sessionnr = ump->discinfo.num_sessions;
3861 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3862 FKIOCTL, NOCRED);
3863 if (error)
3864 printf("udf_close_logvol: finalising disc"
3865 "failed\n");
3866 }
3867
3868 /* write out partition bitmaps if requested */
3869 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3870 /* sync writeout metadata spacetable if existing */
3871 error1 = udf_write_metadata_partition_spacetable(ump, true);
3872 if (error1)
3873 printf( "udf_close_logvol: writeout of metadata space "
3874 "bitmap failed\n");
3875
3876 /* sync writeout partition spacetables */
3877 error2 = udf_write_physical_partition_spacetables(ump, true);
3878 if (error2)
3879 printf( "udf_close_logvol: writeout of space tables "
3880 "failed\n");
3881
3882 if (error1 || error2)
3883 return (error1 | error2);
3884
3885 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3886 }
3887
3888 /* write out metadata partition nodes if requested */
3889 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3890 /* sync writeout metadata descriptor node */
3891 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3892 if (error1)
3893 printf( "udf_close_logvol: writeout of metadata partition "
3894 "node failed\n");
3895
3896 /* duplicate metadata partition descriptor if needed */
3897 udf_synchronise_metadatamirror_node(ump);
3898
3899 /* sync writeout metadatamirror descriptor node */
3900 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3901 if (error2)
3902 printf( "udf_close_logvol: writeout of metadata partition "
3903 "mirror node failed\n");
3904
3905 if (error1 || error2)
3906 return (error1 | error2);
3907
3908 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3909 }
3910
3911 /* mark it closed */
3912 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3913
3914 /* do we need to write out the logical volume integrity? */
3915 if (ump->lvclose & UDF_WRITE_LVINT)
3916 error = udf_writeout_lvint(ump, ump->lvopen);
3917 if (error) {
3918 /* HELP now what? mark it open again for now */
3919 ump->logvol_integrity->integrity_type =
3920 udf_rw32(UDF_INTEGRITY_OPEN);
3921 return error;
3922 }
3923
3924 (void) udf_synchronise_caches(ump);
3925
3926 return 0;
3927 }
3928
3929 /* --------------------------------------------------------------------- */
3930
3931 /*
3932 * Genfs interfacing
3933 *
3934 * static const struct genfs_ops udf_genfsops = {
3935 * .gop_size = genfs_size,
3936 * size of transfers
3937 * .gop_alloc = udf_gop_alloc,
3938 * allocate len bytes at offset
3939 * .gop_write = genfs_gop_write,
3940 * putpages interface code
3941 * .gop_markupdate = udf_gop_markupdate,
3942 * set update/modify flags etc.
3943 * }
3944 */
3945
3946 /*
3947 * Genfs interface. These four functions are the only ones defined though not
3948 * documented... great....
3949 */
3950
3951 /*
3952 * Called for allocating an extent of the file either by VOP_WRITE() or by
3953 * genfs filling up gaps.
3954 */
3955 static int
3956 udf_gop_alloc(struct vnode *vp, off_t off,
3957 off_t len, int flags, kauth_cred_t cred)
3958 {
3959 struct udf_node *udf_node = VTOI(vp);
3960 struct udf_mount *ump = udf_node->ump;
3961 uint64_t lb_start, lb_end;
3962 uint32_t lb_size, num_lb;
3963 int udf_c_type, vpart_num, can_fail;
3964 int error;
3965
3966 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3967 off, len, flags? "SYNC":"NONE"));
3968
3969 /*
3970 * request the pages of our vnode and see how many pages will need to
3971 * be allocated and reserve that space
3972 */
3973 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3974 lb_start = off / lb_size;
3975 lb_end = (off + len + lb_size -1) / lb_size;
3976 num_lb = lb_end - lb_start;
3977
3978 udf_c_type = udf_get_c_type(udf_node);
3979 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3980
3981 /* all requests can fail */
3982 can_fail = true;
3983
3984 /* fid's (directories) can't fail */
3985 if (udf_c_type == UDF_C_FIDS)
3986 can_fail = false;
3987
3988 /* system files can't fail */
3989 if (vp->v_vflag & VV_SYSTEM)
3990 can_fail = false;
3991
3992 error = udf_reserve_space(ump, udf_node, udf_c_type,
3993 vpart_num, num_lb, can_fail);
3994
3995 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3996 lb_start, lb_end, num_lb));
3997
3998 return error;
3999 }
4000
4001
4002 /*
4003 * callback from genfs to update our flags
4004 */
4005 static void
4006 udf_gop_markupdate(struct vnode *vp, int flags)
4007 {
4008 struct udf_node *udf_node = VTOI(vp);
4009 u_long mask = 0;
4010
4011 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4012 mask = IN_ACCESS;
4013 }
4014 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4015 if (vp->v_type == VREG) {
4016 mask |= IN_CHANGE | IN_UPDATE;
4017 } else {
4018 mask |= IN_MODIFY;
4019 }
4020 }
4021 if (mask) {
4022 udf_node->i_flags |= mask;
4023 }
4024 }
4025
4026
4027 static const struct genfs_ops udf_genfsops = {
4028 .gop_size = genfs_size,
4029 .gop_alloc = udf_gop_alloc,
4030 .gop_write = genfs_gop_write_rwmap,
4031 .gop_markupdate = udf_gop_markupdate,
4032 };
4033
4034
4035 /* --------------------------------------------------------------------- */
4036
4037 int
4038 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4039 {
4040 union dscrptr *dscr;
4041 int error;
4042
4043 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4044 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4045
4046 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4047 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4048 (void) udf_validate_tag_and_crc_sums(dscr);
4049
4050 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4051 dscr, sector, sector);
4052
4053 free(dscr, M_TEMP);
4054
4055 return error;
4056 }
4057
4058
4059 /* --------------------------------------------------------------------- */
4060
4061 /* UDF<->unix converters */
4062
4063 /* --------------------------------------------------------------------- */
4064
4065 static mode_t
4066 udf_perm_to_unix_mode(uint32_t perm)
4067 {
4068 mode_t mode;
4069
4070 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4071 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4072 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4073
4074 return mode;
4075 }
4076
4077 /* --------------------------------------------------------------------- */
4078
4079 static uint32_t
4080 unix_mode_to_udf_perm(mode_t mode)
4081 {
4082 uint32_t perm;
4083
4084 perm = ((mode & S_IRWXO) );
4085 perm |= ((mode & S_IRWXG) << 2);
4086 perm |= ((mode & S_IRWXU) << 4);
4087 perm |= ((mode & S_IWOTH) << 3);
4088 perm |= ((mode & S_IWGRP) << 5);
4089 perm |= ((mode & S_IWUSR) << 7);
4090
4091 return perm;
4092 }
4093
4094 /* --------------------------------------------------------------------- */
4095
4096 static uint32_t
4097 udf_icb_to_unix_filetype(uint32_t icbftype)
4098 {
4099 switch (icbftype) {
4100 case UDF_ICB_FILETYPE_DIRECTORY :
4101 case UDF_ICB_FILETYPE_STREAMDIR :
4102 return S_IFDIR;
4103 case UDF_ICB_FILETYPE_FIFO :
4104 return S_IFIFO;
4105 case UDF_ICB_FILETYPE_CHARDEVICE :
4106 return S_IFCHR;
4107 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4108 return S_IFBLK;
4109 case UDF_ICB_FILETYPE_RANDOMACCESS :
4110 case UDF_ICB_FILETYPE_REALTIME :
4111 return S_IFREG;
4112 case UDF_ICB_FILETYPE_SYMLINK :
4113 return S_IFLNK;
4114 case UDF_ICB_FILETYPE_SOCKET :
4115 return S_IFSOCK;
4116 }
4117 /* no idea what this is */
4118 return 0;
4119 }
4120
4121 /* --------------------------------------------------------------------- */
4122
4123 void
4124 udf_to_unix_name(char *result, int result_len, char *id, int len,
4125 struct charspec *chsp)
4126 {
4127 uint16_t *raw_name, *unix_name;
4128 uint16_t *inchp, ch;
4129 uint8_t *outchp;
4130 const char *osta_id = "OSTA Compressed Unicode";
4131 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4132
4133 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4134 unix_name = raw_name + 1024; /* split space in half */
4135 assert(sizeof(char) == sizeof(uint8_t));
4136 outchp = (uint8_t *) result;
4137
4138 is_osta_typ0 = (chsp->type == 0);
4139 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4140 if (is_osta_typ0) {
4141 /* TODO clean up */
4142 *raw_name = *unix_name = 0;
4143 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4144 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4145 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4146 /* output UTF8 */
4147 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4148 ch = *inchp;
4149 nout = wput_utf8(outchp, result_len, ch);
4150 outchp += nout; result_len -= nout;
4151 if (!ch) break;
4152 }
4153 *outchp++ = 0;
4154 } else {
4155 /* assume 8bit char length byte latin-1 */
4156 assert(*id == 8);
4157 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4158 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4159 }
4160 free(raw_name, M_UDFTEMP);
4161 }
4162
4163 /* --------------------------------------------------------------------- */
4164
4165 void
4166 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4167 struct charspec *chsp)
4168 {
4169 uint16_t *raw_name;
4170 uint16_t *outchp;
4171 const char *inchp;
4172 const char *osta_id = "OSTA Compressed Unicode";
4173 int udf_chars, is_osta_typ0, bits;
4174 size_t cnt;
4175
4176 /* allocate temporary unicode-16 buffer */
4177 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4178
4179 /* convert utf8 to unicode-16 */
4180 *raw_name = 0;
4181 inchp = name;
4182 outchp = raw_name;
4183 bits = 8;
4184 for (cnt = name_len, udf_chars = 0; cnt;) {
4185 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4186 *outchp = wget_utf8(&inchp, &cnt);
4187 if (*outchp > 0xff)
4188 bits=16;
4189 outchp++;
4190 udf_chars++;
4191 }
4192 /* null terminate just in case */
4193 *outchp++ = 0;
4194
4195 is_osta_typ0 = (chsp->type == 0);
4196 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4197 if (is_osta_typ0) {
4198 udf_chars = udf_CompressUnicode(udf_chars, bits,
4199 (unicode_t *) raw_name,
4200 (byte *) result);
4201 } else {
4202 printf("unix to udf name: no CHSP0 ?\n");
4203 /* XXX assume 8bit char length byte latin-1 */
4204 *result++ = 8; udf_chars = 1;
4205 strncpy(result, name + 1, name_len);
4206 udf_chars += name_len;
4207 }
4208 *result_len = udf_chars;
4209 free(raw_name, M_UDFTEMP);
4210 }
4211
4212 /* --------------------------------------------------------------------- */
4213
4214 void
4215 udf_timestamp_to_timespec(struct udf_mount *ump,
4216 struct timestamp *timestamp,
4217 struct timespec *timespec)
4218 {
4219 struct clock_ymdhms ymdhms;
4220 uint32_t usecs, secs, nsecs;
4221 uint16_t tz;
4222
4223 /* fill in ymdhms structure from timestamp */
4224 memset(&ymdhms, 0, sizeof(ymdhms));
4225 ymdhms.dt_year = udf_rw16(timestamp->year);
4226 ymdhms.dt_mon = timestamp->month;
4227 ymdhms.dt_day = timestamp->day;
4228 ymdhms.dt_wday = 0; /* ? */
4229 ymdhms.dt_hour = timestamp->hour;
4230 ymdhms.dt_min = timestamp->minute;
4231 ymdhms.dt_sec = timestamp->second;
4232
4233 secs = clock_ymdhms_to_secs(&ymdhms);
4234 usecs = timestamp->usec +
4235 100*timestamp->hund_usec + 10000*timestamp->centisec;
4236 nsecs = usecs * 1000;
4237
4238 /*
4239 * Calculate the time zone. The timezone is 12 bit signed 2's
4240 * compliment, so we gotta do some extra magic to handle it right.
4241 */
4242 tz = udf_rw16(timestamp->type_tz);
4243 tz &= 0x0fff; /* only lower 12 bits are significant */
4244 if (tz & 0x0800) /* sign extention */
4245 tz |= 0xf000;
4246
4247 /* TODO check timezone conversion */
4248 /* check if we are specified a timezone to convert */
4249 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4250 if ((int16_t) tz != -2047)
4251 secs -= (int16_t) tz * 60;
4252 } else {
4253 secs -= ump->mount_args.gmtoff;
4254 }
4255
4256 timespec->tv_sec = secs;
4257 timespec->tv_nsec = nsecs;
4258 }
4259
4260
4261 void
4262 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4263 {
4264 struct clock_ymdhms ymdhms;
4265 uint32_t husec, usec, csec;
4266
4267 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4268
4269 usec = timespec->tv_nsec / 1000;
4270 husec = usec / 100;
4271 usec -= husec * 100; /* only 0-99 in usec */
4272 csec = husec / 100; /* only 0-99 in csec */
4273 husec -= csec * 100; /* only 0-99 in husec */
4274
4275 /* set method 1 for CUT/GMT */
4276 timestamp->type_tz = udf_rw16((1<<12) + 0);
4277 timestamp->year = udf_rw16(ymdhms.dt_year);
4278 timestamp->month = ymdhms.dt_mon;
4279 timestamp->day = ymdhms.dt_day;
4280 timestamp->hour = ymdhms.dt_hour;
4281 timestamp->minute = ymdhms.dt_min;
4282 timestamp->second = ymdhms.dt_sec;
4283 timestamp->centisec = csec;
4284 timestamp->hund_usec = husec;
4285 timestamp->usec = usec;
4286 }
4287
4288 /* --------------------------------------------------------------------- */
4289
4290 /*
4291 * Attribute and filetypes converters with get/set pairs
4292 */
4293
4294 uint32_t
4295 udf_getaccessmode(struct udf_node *udf_node)
4296 {
4297 struct file_entry *fe = udf_node->fe;
4298 struct extfile_entry *efe = udf_node->efe;
4299 uint32_t udf_perm, icbftype;
4300 uint32_t mode, ftype;
4301 uint16_t icbflags;
4302
4303 UDF_LOCK_NODE(udf_node, 0);
4304 if (fe) {
4305 udf_perm = udf_rw32(fe->perm);
4306 icbftype = fe->icbtag.file_type;
4307 icbflags = udf_rw16(fe->icbtag.flags);
4308 } else {
4309 assert(udf_node->efe);
4310 udf_perm = udf_rw32(efe->perm);
4311 icbftype = efe->icbtag.file_type;
4312 icbflags = udf_rw16(efe->icbtag.flags);
4313 }
4314
4315 mode = udf_perm_to_unix_mode(udf_perm);
4316 ftype = udf_icb_to_unix_filetype(icbftype);
4317
4318 /* set suid, sgid, sticky from flags in fe/efe */
4319 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4320 mode |= S_ISUID;
4321 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4322 mode |= S_ISGID;
4323 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4324 mode |= S_ISVTX;
4325
4326 UDF_UNLOCK_NODE(udf_node, 0);
4327
4328 return mode | ftype;
4329 }
4330
4331
4332 void
4333 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4334 {
4335 struct file_entry *fe = udf_node->fe;
4336 struct extfile_entry *efe = udf_node->efe;
4337 uint32_t udf_perm;
4338 uint16_t icbflags;
4339
4340 UDF_LOCK_NODE(udf_node, 0);
4341 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4342 if (fe) {
4343 icbflags = udf_rw16(fe->icbtag.flags);
4344 } else {
4345 icbflags = udf_rw16(efe->icbtag.flags);
4346 }
4347
4348 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4349 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4350 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4351 if (mode & S_ISUID)
4352 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4353 if (mode & S_ISGID)
4354 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4355 if (mode & S_ISVTX)
4356 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4357
4358 if (fe) {
4359 fe->perm = udf_rw32(udf_perm);
4360 fe->icbtag.flags = udf_rw16(icbflags);
4361 } else {
4362 efe->perm = udf_rw32(udf_perm);
4363 efe->icbtag.flags = udf_rw16(icbflags);
4364 }
4365
4366 UDF_UNLOCK_NODE(udf_node, 0);
4367 }
4368
4369
4370 void
4371 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4372 {
4373 struct udf_mount *ump = udf_node->ump;
4374 struct file_entry *fe = udf_node->fe;
4375 struct extfile_entry *efe = udf_node->efe;
4376 uid_t uid;
4377 gid_t gid;
4378
4379 UDF_LOCK_NODE(udf_node, 0);
4380 if (fe) {
4381 uid = (uid_t)udf_rw32(fe->uid);
4382 gid = (gid_t)udf_rw32(fe->gid);
4383 } else {
4384 assert(udf_node->efe);
4385 uid = (uid_t)udf_rw32(efe->uid);
4386 gid = (gid_t)udf_rw32(efe->gid);
4387 }
4388
4389 /* do the uid/gid translation game */
4390 if (uid == (uid_t) -1)
4391 uid = ump->mount_args.anon_uid;
4392 if (gid == (gid_t) -1)
4393 gid = ump->mount_args.anon_gid;
4394
4395 *uidp = uid;
4396 *gidp = gid;
4397
4398 UDF_UNLOCK_NODE(udf_node, 0);
4399 }
4400
4401
4402 void
4403 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4404 {
4405 struct udf_mount *ump = udf_node->ump;
4406 struct file_entry *fe = udf_node->fe;
4407 struct extfile_entry *efe = udf_node->efe;
4408 uid_t nobody_uid;
4409 gid_t nobody_gid;
4410
4411 UDF_LOCK_NODE(udf_node, 0);
4412
4413 /* do the uid/gid translation game */
4414 nobody_uid = ump->mount_args.nobody_uid;
4415 nobody_gid = ump->mount_args.nobody_gid;
4416 if (uid == nobody_uid)
4417 uid = (uid_t) -1;
4418 if (gid == nobody_gid)
4419 gid = (gid_t) -1;
4420
4421 if (fe) {
4422 fe->uid = udf_rw32((uint32_t) uid);
4423 fe->gid = udf_rw32((uint32_t) gid);
4424 } else {
4425 efe->uid = udf_rw32((uint32_t) uid);
4426 efe->gid = udf_rw32((uint32_t) gid);
4427 }
4428
4429 UDF_UNLOCK_NODE(udf_node, 0);
4430 }
4431
4432
4433 /* --------------------------------------------------------------------- */
4434
4435
4436 static int
4437 dirhash_fill(struct udf_node *dir_node)
4438 {
4439 struct vnode *dvp = dir_node->vnode;
4440 struct dirhash *dirh;
4441 struct file_entry *fe = dir_node->fe;
4442 struct extfile_entry *efe = dir_node->efe;
4443 struct fileid_desc *fid;
4444 struct dirent *dirent;
4445 uint64_t file_size, pre_diroffset, diroffset;
4446 uint32_t lb_size;
4447 int error;
4448
4449 /* make sure we have a dirhash to work on */
4450 dirh = dir_node->dir_hash;
4451 KASSERT(dirh);
4452 KASSERT(dirh->refcnt > 0);
4453
4454 if (dirh->flags & DIRH_BROKEN)
4455 return EIO;
4456 if (dirh->flags & DIRH_COMPLETE)
4457 return 0;
4458
4459 /* make sure we have a clean dirhash to add to */
4460 dirhash_purge_entries(dirh);
4461
4462 /* get directory filesize */
4463 if (fe) {
4464 file_size = udf_rw64(fe->inf_len);
4465 } else {
4466 assert(efe);
4467 file_size = udf_rw64(efe->inf_len);
4468 }
4469
4470 /* allocate temporary space for fid */
4471 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4472 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4473
4474 /* allocate temporary space for dirent */
4475 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4476
4477 error = 0;
4478 diroffset = 0;
4479 while (diroffset < file_size) {
4480 /* transfer a new fid/dirent */
4481 pre_diroffset = diroffset;
4482 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4483 if (error) {
4484 /* TODO what to do? continue but not add? */
4485 dirh->flags |= DIRH_BROKEN;
4486 dirhash_purge_entries(dirh);
4487 break;
4488 }
4489
4490 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4491 /* register deleted extent for reuse */
4492 dirhash_enter_freed(dirh, pre_diroffset,
4493 udf_fidsize(fid));
4494 } else {
4495 /* append to the dirhash */
4496 dirhash_enter(dirh, dirent, pre_diroffset,
4497 udf_fidsize(fid), 0);
4498 }
4499 }
4500 dirh->flags |= DIRH_COMPLETE;
4501
4502 free(fid, M_UDFTEMP);
4503 free(dirent, M_UDFTEMP);
4504
4505 return error;
4506 }
4507
4508
4509 /* --------------------------------------------------------------------- */
4510
4511 /*
4512 * Directory read and manipulation functions.
4513 *
4514 */
4515
4516 int
4517 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4518 struct long_ad *icb_loc, int *found)
4519 {
4520 struct udf_node *dir_node = VTOI(vp);
4521 struct dirhash *dirh;
4522 struct dirhash_entry *dirh_ep;
4523 struct fileid_desc *fid;
4524 struct dirent *dirent;
4525 uint64_t diroffset;
4526 uint32_t lb_size;
4527 int hit, error;
4528
4529 /* set default return */
4530 *found = 0;
4531
4532 /* get our dirhash and make sure its read in */
4533 dirhash_get(&dir_node->dir_hash);
4534 error = dirhash_fill(dir_node);
4535 if (error) {
4536 dirhash_put(dir_node->dir_hash);
4537 return error;
4538 }
4539 dirh = dir_node->dir_hash;
4540
4541 /* allocate temporary space for fid */
4542 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4543 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4544 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4545
4546 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4547 namelen, namelen, name));
4548
4549 /* search our dirhash hits */
4550 memset(icb_loc, 0, sizeof(*icb_loc));
4551 dirh_ep = NULL;
4552 for (;;) {
4553 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4554 /* if no hit, abort the search */
4555 if (!hit)
4556 break;
4557
4558 /* check this hit */
4559 diroffset = dirh_ep->offset;
4560
4561 /* transfer a new fid/dirent */
4562 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4563 if (error)
4564 break;
4565
4566 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4567 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4568
4569 /* see if its our entry */
4570 KASSERT(dirent->d_namlen == namelen);
4571 if (strncmp(dirent->d_name, name, namelen) == 0) {
4572 *found = 1;
4573 *icb_loc = fid->icb;
4574 break;
4575 }
4576 }
4577 free(fid, M_UDFTEMP);
4578 free(dirent, M_UDFTEMP);
4579
4580 dirhash_put(dir_node->dir_hash);
4581
4582 return error;
4583 }
4584
4585 /* --------------------------------------------------------------------- */
4586
4587 static int
4588 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4589 struct long_ad *node_icb, struct long_ad *parent_icb,
4590 uint64_t parent_unique_id)
4591 {
4592 struct timespec now;
4593 struct icb_tag *icb;
4594 struct filetimes_extattr_entry *ft_extattr;
4595 uint64_t unique_id;
4596 uint32_t fidsize, lb_num;
4597 uint8_t *bpos;
4598 int crclen, attrlen;
4599
4600 lb_num = udf_rw32(node_icb->loc.lb_num);
4601 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4602 icb = &fe->icbtag;
4603
4604 /*
4605 * Always use strategy type 4 unless on WORM wich we don't support
4606 * (yet). Fill in defaults and set for internal allocation of data.
4607 */
4608 icb->strat_type = udf_rw16(4);
4609 icb->max_num_entries = udf_rw16(1);
4610 icb->file_type = file_type; /* 8 bit */
4611 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4612
4613 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4614 fe->link_cnt = udf_rw16(0); /* explicit setting */
4615
4616 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4617
4618 vfs_timestamp(&now);
4619 udf_timespec_to_timestamp(&now, &fe->atime);
4620 udf_timespec_to_timestamp(&now, &fe->attrtime);
4621 udf_timespec_to_timestamp(&now, &fe->mtime);
4622
4623 udf_set_regid(&fe->imp_id, IMPL_NAME);
4624 udf_add_impl_regid(ump, &fe->imp_id);
4625
4626 unique_id = udf_advance_uniqueid(ump);
4627 fe->unique_id = udf_rw64(unique_id);
4628 fe->l_ea = udf_rw32(0);
4629
4630 /* create extended attribute to record our creation time */
4631 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4632 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4633 memset(ft_extattr, 0, attrlen);
4634 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4635 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4636 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4637 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4638 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4639 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4640
4641 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4642 (struct extattr_entry *) ft_extattr);
4643 free(ft_extattr, M_UDFTEMP);
4644
4645 /* if its a directory, create '..' */
4646 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4647 fidsize = 0;
4648 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4649 fidsize = udf_create_parentfid(ump,
4650 (struct fileid_desc *) bpos, parent_icb,
4651 parent_unique_id);
4652 }
4653
4654 /* record fidlength information */
4655 fe->inf_len = udf_rw64(fidsize);
4656 fe->l_ad = udf_rw32(fidsize);
4657 fe->logblks_rec = udf_rw64(0); /* intern */
4658
4659 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4660 crclen += udf_rw32(fe->l_ea) + fidsize;
4661 fe->tag.desc_crc_len = udf_rw16(crclen);
4662
4663 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4664
4665 return fidsize;
4666 }
4667
4668 /* --------------------------------------------------------------------- */
4669
4670 static int
4671 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4672 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4673 uint64_t parent_unique_id)
4674 {
4675 struct timespec now;
4676 struct icb_tag *icb;
4677 uint64_t unique_id;
4678 uint32_t fidsize, lb_num;
4679 uint8_t *bpos;
4680 int crclen;
4681
4682 lb_num = udf_rw32(node_icb->loc.lb_num);
4683 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4684 icb = &efe->icbtag;
4685
4686 /*
4687 * Always use strategy type 4 unless on WORM wich we don't support
4688 * (yet). Fill in defaults and set for internal allocation of data.
4689 */
4690 icb->strat_type = udf_rw16(4);
4691 icb->max_num_entries = udf_rw16(1);
4692 icb->file_type = file_type; /* 8 bit */
4693 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4694
4695 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4696 efe->link_cnt = udf_rw16(0); /* explicit setting */
4697
4698 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4699
4700 vfs_timestamp(&now);
4701 udf_timespec_to_timestamp(&now, &efe->ctime);
4702 udf_timespec_to_timestamp(&now, &efe->atime);
4703 udf_timespec_to_timestamp(&now, &efe->attrtime);
4704 udf_timespec_to_timestamp(&now, &efe->mtime);
4705
4706 udf_set_regid(&efe->imp_id, IMPL_NAME);
4707 udf_add_impl_regid(ump, &efe->imp_id);
4708
4709 unique_id = udf_advance_uniqueid(ump);
4710 efe->unique_id = udf_rw64(unique_id);
4711 efe->l_ea = udf_rw32(0);
4712
4713 /* if its a directory, create '..' */
4714 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4715 fidsize = 0;
4716 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4717 fidsize = udf_create_parentfid(ump,
4718 (struct fileid_desc *) bpos, parent_icb,
4719 parent_unique_id);
4720 }
4721
4722 /* record fidlength information */
4723 efe->obj_size = udf_rw64(fidsize);
4724 efe->inf_len = udf_rw64(fidsize);
4725 efe->l_ad = udf_rw32(fidsize);
4726 efe->logblks_rec = udf_rw64(0); /* intern */
4727
4728 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4729 crclen += udf_rw32(efe->l_ea) + fidsize;
4730 efe->tag.desc_crc_len = udf_rw16(crclen);
4731
4732 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4733
4734 return fidsize;
4735 }
4736
4737 /* --------------------------------------------------------------------- */
4738
4739 int
4740 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4741 struct udf_node *udf_node, struct componentname *cnp)
4742 {
4743 struct vnode *dvp = dir_node->vnode;
4744 struct dirhash *dirh;
4745 struct dirhash_entry *dirh_ep;
4746 struct file_entry *fe = dir_node->fe;
4747 struct extfile_entry *efe = dir_node->efe;
4748 struct fileid_desc *fid;
4749 struct dirent *dirent;
4750 uint64_t file_size, diroffset;
4751 uint32_t lb_size, fidsize;
4752 int found, error;
4753 char const *name = cnp->cn_nameptr;
4754 int namelen = cnp->cn_namelen;
4755 int hit, refcnt;
4756
4757 /* get our dirhash and make sure its read in */
4758 dirhash_get(&dir_node->dir_hash);
4759 error = dirhash_fill(dir_node);
4760 if (error) {
4761 dirhash_put(dir_node->dir_hash);
4762 return error;
4763 }
4764 dirh = dir_node->dir_hash;
4765
4766 /* get directory filesize */
4767 if (fe) {
4768 file_size = udf_rw64(fe->inf_len);
4769 } else {
4770 assert(efe);
4771 file_size = udf_rw64(efe->inf_len);
4772 }
4773
4774 /* allocate temporary space for fid */
4775 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4776 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4777 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4778
4779 /* search our dirhash hits */
4780 found = 0;
4781 dirh_ep = NULL;
4782 for (;;) {
4783 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4784 /* if no hit, abort the search */
4785 if (!hit)
4786 break;
4787
4788 /* check this hit */
4789 diroffset = dirh_ep->offset;
4790
4791 /* transfer a new fid/dirent */
4792 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4793 if (error)
4794 break;
4795
4796 /* see if its our entry */
4797 KASSERT(dirent->d_namlen == namelen);
4798 if (strncmp(dirent->d_name, name, namelen) == 0) {
4799 found = 1;
4800 break;
4801 }
4802 }
4803
4804 if (!found)
4805 error = ENOENT;
4806 if (error)
4807 goto error_out;
4808
4809 /* mark deleted */
4810 fid->file_char |= UDF_FILE_CHAR_DEL;
4811 #ifdef UDF_COMPLETE_DELETE
4812 memset(&fid->icb, 0, sizeof(fid->icb));
4813 #endif
4814 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4815
4816 /* get size of fid and compensate for the read_fid_stream advance */
4817 fidsize = udf_fidsize(fid);
4818 diroffset -= fidsize;
4819
4820 /* write out */
4821 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4822 fid, fidsize, diroffset,
4823 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4824 FSCRED, NULL, NULL);
4825 if (error)
4826 goto error_out;
4827
4828 /* get reference count of attached node */
4829 if (udf_node->fe) {
4830 refcnt = udf_rw16(udf_node->fe->link_cnt);
4831 } else {
4832 KASSERT(udf_node->efe);
4833 refcnt = udf_rw16(udf_node->efe->link_cnt);
4834 }
4835 #ifdef UDF_COMPLETE_DELETE
4836 /* substract reference counter in attached node */
4837 refcnt -= 1;
4838 if (udf_node->fe) {
4839 udf_node->fe->link_cnt = udf_rw16(refcnt);
4840 } else {
4841 udf_node->efe->link_cnt = udf_rw16(refcnt);
4842 }
4843
4844 /* prevent writeout when refcnt == 0 */
4845 if (refcnt == 0)
4846 udf_node->i_flags |= IN_DELETED;
4847
4848 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4849 int drefcnt;
4850
4851 /* substract reference counter in directory node */
4852 /* note subtract 2 (?) for its was also backreferenced */
4853 if (dir_node->fe) {
4854 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4855 drefcnt -= 1;
4856 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4857 } else {
4858 KASSERT(dir_node->efe);
4859 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4860 drefcnt -= 1;
4861 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4862 }
4863 }
4864
4865 udf_node->i_flags |= IN_MODIFIED;
4866 dir_node->i_flags |= IN_MODIFIED;
4867 #endif
4868 /* if it is/was a hardlink adjust the file count */
4869 if (refcnt > 0)
4870 udf_adjust_filecount(udf_node, -1);
4871
4872 /* remove from the dirhash */
4873 dirhash_remove(dirh, dirent, diroffset,
4874 udf_fidsize(fid));
4875
4876 error_out:
4877 free(fid, M_UDFTEMP);
4878 free(dirent, M_UDFTEMP);
4879
4880 dirhash_put(dir_node->dir_hash);
4881
4882 return error;
4883 }
4884
4885 /* --------------------------------------------------------------------- */
4886
4887 int
4888 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4889 struct udf_node *new_parent_node)
4890 {
4891 struct vnode *dvp = dir_node->vnode;
4892 struct dirhash *dirh;
4893 struct dirhash_entry *dirh_ep;
4894 struct file_entry *fe;
4895 struct extfile_entry *efe;
4896 struct fileid_desc *fid;
4897 struct dirent *dirent;
4898 uint64_t file_size, diroffset;
4899 uint64_t new_parent_unique_id;
4900 uint32_t lb_size, fidsize;
4901 int found, error;
4902 char const *name = "..";
4903 int namelen = 2;
4904 int hit;
4905
4906 /* get our dirhash and make sure its read in */
4907 dirhash_get(&dir_node->dir_hash);
4908 error = dirhash_fill(dir_node);
4909 if (error) {
4910 dirhash_put(dir_node->dir_hash);
4911 return error;
4912 }
4913 dirh = dir_node->dir_hash;
4914
4915 /* get new parent's unique ID */
4916 fe = new_parent_node->fe;
4917 efe = new_parent_node->efe;
4918 if (fe) {
4919 new_parent_unique_id = udf_rw64(fe->unique_id);
4920 } else {
4921 assert(efe);
4922 new_parent_unique_id = udf_rw64(efe->unique_id);
4923 }
4924
4925 /* get directory filesize */
4926 fe = dir_node->fe;
4927 efe = dir_node->efe;
4928 if (fe) {
4929 file_size = udf_rw64(fe->inf_len);
4930 } else {
4931 assert(efe);
4932 file_size = udf_rw64(efe->inf_len);
4933 }
4934
4935 /* allocate temporary space for fid */
4936 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4937 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4938 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4939
4940 /*
4941 * NOTE the standard does not dictate the FID entry '..' should be
4942 * first, though in practice it will most likely be.
4943 */
4944
4945 /* search our dirhash hits */
4946 found = 0;
4947 dirh_ep = NULL;
4948 for (;;) {
4949 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4950 /* if no hit, abort the search */
4951 if (!hit)
4952 break;
4953
4954 /* check this hit */
4955 diroffset = dirh_ep->offset;
4956
4957 /* transfer a new fid/dirent */
4958 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4959 if (error)
4960 break;
4961
4962 /* see if its our entry */
4963 KASSERT(dirent->d_namlen == namelen);
4964 if (strncmp(dirent->d_name, name, namelen) == 0) {
4965 found = 1;
4966 break;
4967 }
4968 }
4969
4970 if (!found)
4971 error = ENOENT;
4972 if (error)
4973 goto error_out;
4974
4975 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4976 fid->icb = new_parent_node->write_loc;
4977 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4978
4979 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4980
4981 /* get size of fid and compensate for the read_fid_stream advance */
4982 fidsize = udf_fidsize(fid);
4983 diroffset -= fidsize;
4984
4985 /* write out */
4986 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4987 fid, fidsize, diroffset,
4988 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4989 FSCRED, NULL, NULL);
4990
4991 /* nothing to be done in the dirhash */
4992
4993 error_out:
4994 free(fid, M_UDFTEMP);
4995 free(dirent, M_UDFTEMP);
4996
4997 dirhash_put(dir_node->dir_hash);
4998
4999 return error;
5000 }
5001
5002 /* --------------------------------------------------------------------- */
5003
5004 /*
5005 * We are not allowed to split the fid tag itself over an logical block so
5006 * check the space remaining in the logical block.
5007 *
5008 * We try to select the smallest candidate for recycling or when none is
5009 * found, append a new one at the end of the directory.
5010 */
5011
5012 int
5013 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5014 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5015 {
5016 struct vnode *dvp = dir_node->vnode;
5017 struct dirhash *dirh;
5018 struct dirhash_entry *dirh_ep;
5019 struct fileid_desc *fid;
5020 struct icb_tag *icbtag;
5021 struct charspec osta_charspec;
5022 struct dirent dirent;
5023 uint64_t unique_id, dir_size;
5024 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5025 uint32_t chosen_size, chosen_size_diff;
5026 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5027 int file_char, refcnt, icbflags, addr_type, hit, error;
5028
5029 /* get our dirhash and make sure its read in */
5030 dirhash_get(&dir_node->dir_hash);
5031 error = dirhash_fill(dir_node);
5032 if (error) {
5033 dirhash_put(dir_node->dir_hash);
5034 return error;
5035 }
5036 dirh = dir_node->dir_hash;
5037
5038 /* get info */
5039 lb_size = udf_rw32(ump->logical_vol->lb_size);
5040 udf_osta_charset(&osta_charspec);
5041
5042 if (dir_node->fe) {
5043 dir_size = udf_rw64(dir_node->fe->inf_len);
5044 icbtag = &dir_node->fe->icbtag;
5045 } else {
5046 dir_size = udf_rw64(dir_node->efe->inf_len);
5047 icbtag = &dir_node->efe->icbtag;
5048 }
5049
5050 icbflags = udf_rw16(icbtag->flags);
5051 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5052
5053 if (udf_node->fe) {
5054 unique_id = udf_rw64(udf_node->fe->unique_id);
5055 refcnt = udf_rw16(udf_node->fe->link_cnt);
5056 } else {
5057 unique_id = udf_rw64(udf_node->efe->unique_id);
5058 refcnt = udf_rw16(udf_node->efe->link_cnt);
5059 }
5060
5061 if (refcnt > 0) {
5062 unique_id = udf_advance_uniqueid(ump);
5063 udf_adjust_filecount(udf_node, 1);
5064 }
5065
5066 /* determine file characteristics */
5067 file_char = 0; /* visible non deleted file and not stream metadata */
5068 if (vap->va_type == VDIR)
5069 file_char = UDF_FILE_CHAR_DIR;
5070
5071 /* malloc scrap buffer */
5072 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5073
5074 /* calculate _minimum_ fid size */
5075 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5076 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5077 fidsize = UDF_FID_SIZE + fid->l_fi;
5078 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5079
5080 /* find position that will fit the FID */
5081 chosen_fid_pos = dir_size;
5082 chosen_size = 0;
5083 chosen_size_diff = UINT_MAX;
5084
5085 /* shut up gcc */
5086 dirent.d_namlen = 0;
5087
5088 /* search our dirhash hits */
5089 error = 0;
5090 dirh_ep = NULL;
5091 for (;;) {
5092 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5093 /* if no hit, abort the search */
5094 if (!hit)
5095 break;
5096
5097 /* check this hit for size */
5098 this_fidsize = dirh_ep->entry_size;
5099
5100 /* check this hit */
5101 fid_pos = dirh_ep->offset;
5102 end_fid_pos = fid_pos + this_fidsize;
5103 size_diff = this_fidsize - fidsize;
5104 lb_rest = lb_size - (end_fid_pos % lb_size);
5105
5106 #ifndef UDF_COMPLETE_DELETE
5107 /* transfer a new fid/dirent */
5108 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5109 if (error)
5110 goto error_out;
5111
5112 /* only reuse entries that are wiped */
5113 /* check if the len + loc are marked zero */
5114 if (udf_rw32(fid->icb.len) != 0)
5115 continue;
5116 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5117 continue;
5118 if (udf_rw16(fid->icb.loc.part_num) != 0)
5119 continue;
5120 #endif /* UDF_COMPLETE_DELETE */
5121
5122 /* select if not splitting the tag and its smaller */
5123 if ((size_diff >= 0) &&
5124 (size_diff < chosen_size_diff) &&
5125 (lb_rest >= sizeof(struct desc_tag)))
5126 {
5127 /* UDF 2.3.4.2+3 specifies rules for iu size */
5128 if ((size_diff == 0) || (size_diff >= 32)) {
5129 chosen_fid_pos = fid_pos;
5130 chosen_size = this_fidsize;
5131 chosen_size_diff = size_diff;
5132 }
5133 }
5134 }
5135
5136
5137 /* extend directory if no other candidate found */
5138 if (chosen_size == 0) {
5139 chosen_fid_pos = dir_size;
5140 chosen_size = fidsize;
5141 chosen_size_diff = 0;
5142
5143 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5144 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5145 /* pre-grow directory to see if we're to switch */
5146 udf_grow_node(dir_node, dir_size + chosen_size);
5147
5148 icbflags = udf_rw16(icbtag->flags);
5149 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5150 }
5151
5152 /* make sure the next fid desc_tag won't be splitted */
5153 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5154 end_fid_pos = chosen_fid_pos + chosen_size;
5155 lb_rest = lb_size - (end_fid_pos % lb_size);
5156
5157 /* pad with implementation use regid if needed */
5158 if (lb_rest < sizeof(struct desc_tag))
5159 chosen_size += 32;
5160 }
5161 }
5162 chosen_size_diff = chosen_size - fidsize;
5163
5164 /* populate the FID */
5165 memset(fid, 0, lb_size);
5166 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5167 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5168 fid->file_char = file_char;
5169 fid->icb = udf_node->loc;
5170 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5171 fid->l_iu = udf_rw16(0);
5172
5173 if (chosen_size > fidsize) {
5174 /* insert implementation-use regid to space it correctly */
5175 fid->l_iu = udf_rw16(chosen_size_diff);
5176
5177 /* set implementation use */
5178 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5179 udf_add_impl_regid(ump, (struct regid *) fid->data);
5180 }
5181
5182 /* fill in name */
5183 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5184 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5185
5186 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5187 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5188
5189 /* writeout FID/update parent directory */
5190 error = vn_rdwr(UIO_WRITE, dvp,
5191 fid, chosen_size, chosen_fid_pos,
5192 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5193 FSCRED, NULL, NULL);
5194
5195 if (error)
5196 goto error_out;
5197
5198 /* add reference counter in attached node */
5199 if (udf_node->fe) {
5200 refcnt = udf_rw16(udf_node->fe->link_cnt);
5201 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5202 } else {
5203 KASSERT(udf_node->efe);
5204 refcnt = udf_rw16(udf_node->efe->link_cnt);
5205 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5206 }
5207
5208 /* mark not deleted if it was... just in case, but do warn */
5209 if (udf_node->i_flags & IN_DELETED) {
5210 printf("udf: warning, marking a file undeleted\n");
5211 udf_node->i_flags &= ~IN_DELETED;
5212 }
5213
5214 if (file_char & UDF_FILE_CHAR_DIR) {
5215 /* add reference counter in directory node for '..' */
5216 if (dir_node->fe) {
5217 refcnt = udf_rw16(dir_node->fe->link_cnt);
5218 refcnt++;
5219 dir_node->fe->link_cnt = udf_rw16(refcnt);
5220 } else {
5221 KASSERT(dir_node->efe);
5222 refcnt = udf_rw16(dir_node->efe->link_cnt);
5223 refcnt++;
5224 dir_node->efe->link_cnt = udf_rw16(refcnt);
5225 }
5226 }
5227
5228 /* append to the dirhash */
5229 dirent.d_namlen = cnp->cn_namelen;
5230 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5231 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5232 udf_fidsize(fid), 1);
5233
5234 /* note updates */
5235 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5236 /* VN_KNOTE(udf_node, ...) */
5237 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5238
5239 error_out:
5240 free(fid, M_TEMP);
5241
5242 dirhash_put(dir_node->dir_hash);
5243
5244 return error;
5245 }
5246
5247 /* --------------------------------------------------------------------- */
5248
5249 /*
5250 * Each node can have an attached streamdir node though not recursively. These
5251 * are otherwise known as named substreams/named extended attributes that have
5252 * no size limitations.
5253 *
5254 * `Normal' extended attributes are indicated with a number and are recorded
5255 * in either the fe/efe descriptor itself for small descriptors or recorded in
5256 * the attached extended attribute file. Since these spaces can get
5257 * fragmented, care ought to be taken.
5258 *
5259 * Since the size of the space reserved for allocation descriptors is limited,
5260 * there is a mechanim provided for extending this space; this is done by a
5261 * special extent to allow schrinking of the allocations without breaking the
5262 * linkage to the allocation extent descriptor.
5263 */
5264
5265 int
5266 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5267 struct udf_node **udf_noderes)
5268 {
5269 union dscrptr *dscr;
5270 struct udf_node *udf_node;
5271 struct vnode *nvp;
5272 struct long_ad icb_loc, last_fe_icb_loc;
5273 uint64_t file_size;
5274 uint32_t lb_size, sector, dummy;
5275 uint8_t *file_data;
5276 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5277 int slot, eof, error;
5278
5279 DPRINTF(NODE, ("udf_get_node called\n"));
5280 *udf_noderes = udf_node = NULL;
5281
5282 /* lock to disallow simultanious creation of same udf_node */
5283 mutex_enter(&ump->get_node_lock);
5284
5285 DPRINTF(NODE, ("\tlookup in hash table\n"));
5286 /* lookup in hash table */
5287 assert(ump);
5288 assert(node_icb_loc);
5289 udf_node = udf_node_lookup(ump, node_icb_loc);
5290 if (udf_node) {
5291 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5292 /* vnode is returned locked */
5293 *udf_noderes = udf_node;
5294 mutex_exit(&ump->get_node_lock);
5295 return 0;
5296 }
5297
5298 /* garbage check: translate udf_node_icb_loc to sectornr */
5299 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5300 if (error) {
5301 /* no use, this will fail anyway */
5302 mutex_exit(&ump->get_node_lock);
5303 return EINVAL;
5304 }
5305
5306 /* build udf_node (do initialise!) */
5307 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5308 memset(udf_node, 0, sizeof(struct udf_node));
5309
5310 DPRINTF(NODE, ("\tget new vnode\n"));
5311 /* give it a vnode */
5312 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5313 if (error) {
5314 pool_put(&udf_node_pool, udf_node);
5315 mutex_exit(&ump->get_node_lock);
5316 return error;
5317 }
5318
5319 /* always return locked vnode */
5320 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5321 /* recycle vnode and unlock; simultanious will fail too */
5322 ungetnewvnode(nvp);
5323 mutex_exit(&ump->get_node_lock);
5324 return error;
5325 }
5326
5327 /* initialise crosslinks, note location of fe/efe for hashing */
5328 udf_node->ump = ump;
5329 udf_node->vnode = nvp;
5330 nvp->v_data = udf_node;
5331 udf_node->loc = *node_icb_loc;
5332 udf_node->lockf = 0;
5333 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5334 cv_init(&udf_node->node_lock, "udf_nlk");
5335 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5336 udf_node->outstanding_bufs = 0;
5337 udf_node->outstanding_nodedscr = 0;
5338 udf_node->uncommitted_lbs = 0;
5339
5340 /* check if we're fetching the root */
5341 if (ump->fileset_desc)
5342 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5343 sizeof(struct long_ad)) == 0)
5344 nvp->v_vflag |= VV_ROOT;
5345
5346 /* insert into the hash lookup */
5347 udf_register_node(udf_node);
5348
5349 /* safe to unlock, the entry is in the hash table, vnode is locked */
5350 mutex_exit(&ump->get_node_lock);
5351
5352 icb_loc = *node_icb_loc;
5353 needs_indirect = 0;
5354 strat4096 = 0;
5355 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5356 file_size = 0;
5357 file_data = NULL;
5358 lb_size = udf_rw32(ump->logical_vol->lb_size);
5359
5360 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5361 do {
5362 /* try to read in fe/efe */
5363 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5364
5365 /* blank sector marks end of sequence, check this */
5366 if ((dscr == NULL) && (!strat4096))
5367 error = ENOENT;
5368
5369 /* break if read error or blank sector */
5370 if (error || (dscr == NULL))
5371 break;
5372
5373 /* process descriptor based on the descriptor type */
5374 dscr_type = udf_rw16(dscr->tag.id);
5375 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5376
5377 /* if dealing with an indirect entry, follow the link */
5378 if (dscr_type == TAGID_INDIRECTENTRY) {
5379 needs_indirect = 0;
5380 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5381 icb_loc = dscr->inde.indirect_icb;
5382 continue;
5383 }
5384
5385 /* only file entries and extended file entries allowed here */
5386 if ((dscr_type != TAGID_FENTRY) &&
5387 (dscr_type != TAGID_EXTFENTRY)) {
5388 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5389 error = ENOENT;
5390 break;
5391 }
5392
5393 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5394
5395 /* choose this one */
5396 last_fe_icb_loc = icb_loc;
5397
5398 /* record and process/update (ext)fentry */
5399 file_data = NULL;
5400 if (dscr_type == TAGID_FENTRY) {
5401 if (udf_node->fe)
5402 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5403 udf_node->fe);
5404 udf_node->fe = &dscr->fe;
5405 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5406 udf_file_type = udf_node->fe->icbtag.file_type;
5407 file_size = udf_rw64(udf_node->fe->inf_len);
5408 file_data = udf_node->fe->data;
5409 } else {
5410 if (udf_node->efe)
5411 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5412 udf_node->efe);
5413 udf_node->efe = &dscr->efe;
5414 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5415 udf_file_type = udf_node->efe->icbtag.file_type;
5416 file_size = udf_rw64(udf_node->efe->inf_len);
5417 file_data = udf_node->efe->data;
5418 }
5419
5420 /* check recording strategy (structure) */
5421
5422 /*
5423 * Strategy 4096 is a daisy linked chain terminating with an
5424 * unrecorded sector or a TERM descriptor. The next
5425 * descriptor is to be found in the sector that follows the
5426 * current sector.
5427 */
5428 if (strat == 4096) {
5429 strat4096 = 1;
5430 needs_indirect = 1;
5431
5432 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5433 }
5434
5435 /*
5436 * Strategy 4 is the normal strategy and terminates, but if
5437 * we're in strategy 4096, we can't have strategy 4 mixed in
5438 */
5439
5440 if (strat == 4) {
5441 if (strat4096) {
5442 error = EINVAL;
5443 break;
5444 }
5445 break; /* done */
5446 }
5447 } while (!error);
5448
5449 /* first round of cleanup code */
5450 if (error) {
5451 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5452 /* recycle udf_node */
5453 udf_dispose_node(udf_node);
5454
5455 VOP_UNLOCK(nvp);
5456 nvp->v_data = NULL;
5457 ungetnewvnode(nvp);
5458
5459 return EINVAL; /* error code ok? */
5460 }
5461 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5462
5463 /* assert no references to dscr anymore beyong this point */
5464 assert((udf_node->fe) || (udf_node->efe));
5465 dscr = NULL;
5466
5467 /*
5468 * Remember where to record an updated version of the descriptor. If
5469 * there is a sequence of indirect entries, icb_loc will have been
5470 * updated. Its the write disipline to allocate new space and to make
5471 * sure the chain is maintained.
5472 *
5473 * `needs_indirect' flags if the next location is to be filled with
5474 * with an indirect entry.
5475 */
5476 udf_node->write_loc = icb_loc;
5477 udf_node->needs_indirect = needs_indirect;
5478
5479 /*
5480 * Go trough all allocations extents of this descriptor and when
5481 * encountering a redirect read in the allocation extension. These are
5482 * daisy-chained.
5483 */
5484 UDF_LOCK_NODE(udf_node, 0);
5485 udf_node->num_extensions = 0;
5486
5487 error = 0;
5488 slot = 0;
5489 for (;;) {
5490 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5491 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5492 "lb_num = %d, part = %d\n", slot, eof,
5493 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5494 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5495 udf_rw32(icb_loc.loc.lb_num),
5496 udf_rw16(icb_loc.loc.part_num)));
5497 if (eof)
5498 break;
5499 slot++;
5500
5501 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5502 continue;
5503
5504 DPRINTF(NODE, ("\tgot redirect extent\n"));
5505 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5506 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5507 "too many allocation extensions on "
5508 "udf_node\n"));
5509 error = EINVAL;
5510 break;
5511 }
5512
5513 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5514 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5515 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5516 "extension size in udf_node\n"));
5517 error = EINVAL;
5518 break;
5519 }
5520
5521 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5522 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5523 /* load in allocation extent */
5524 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5525 if (error || (dscr == NULL))
5526 break;
5527
5528 /* process read-in descriptor */
5529 dscr_type = udf_rw16(dscr->tag.id);
5530
5531 if (dscr_type != TAGID_ALLOCEXTENT) {
5532 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5533 error = ENOENT;
5534 break;
5535 }
5536
5537 DPRINTF(NODE, ("\trecording redirect extent\n"));
5538 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5539 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5540
5541 udf_node->num_extensions++;
5542
5543 } /* while */
5544 UDF_UNLOCK_NODE(udf_node, 0);
5545
5546 /* second round of cleanup code */
5547 if (error) {
5548 /* recycle udf_node */
5549 udf_dispose_node(udf_node);
5550
5551 VOP_UNLOCK(nvp);
5552 nvp->v_data = NULL;
5553 ungetnewvnode(nvp);
5554
5555 return EINVAL; /* error code ok? */
5556 }
5557
5558 DPRINTF(NODE, ("\tnode read in fine\n"));
5559
5560 /*
5561 * Translate UDF filetypes into vnode types.
5562 *
5563 * Systemfiles like the meta main and mirror files are not treated as
5564 * normal files, so we type them as having no type. UDF dictates that
5565 * they are not allowed to be visible.
5566 */
5567
5568 switch (udf_file_type) {
5569 case UDF_ICB_FILETYPE_DIRECTORY :
5570 case UDF_ICB_FILETYPE_STREAMDIR :
5571 nvp->v_type = VDIR;
5572 break;
5573 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5574 nvp->v_type = VBLK;
5575 break;
5576 case UDF_ICB_FILETYPE_CHARDEVICE :
5577 nvp->v_type = VCHR;
5578 break;
5579 case UDF_ICB_FILETYPE_SOCKET :
5580 nvp->v_type = VSOCK;
5581 break;
5582 case UDF_ICB_FILETYPE_FIFO :
5583 nvp->v_type = VFIFO;
5584 break;
5585 case UDF_ICB_FILETYPE_SYMLINK :
5586 nvp->v_type = VLNK;
5587 break;
5588 case UDF_ICB_FILETYPE_VAT :
5589 case UDF_ICB_FILETYPE_META_MAIN :
5590 case UDF_ICB_FILETYPE_META_MIRROR :
5591 nvp->v_type = VNON;
5592 break;
5593 case UDF_ICB_FILETYPE_RANDOMACCESS :
5594 case UDF_ICB_FILETYPE_REALTIME :
5595 nvp->v_type = VREG;
5596 break;
5597 default:
5598 /* YIKES, something else */
5599 nvp->v_type = VNON;
5600 }
5601
5602 /* TODO specfs, fifofs etc etc. vnops setting */
5603
5604 /* don't forget to set vnode's v_size */
5605 uvm_vnp_setsize(nvp, file_size);
5606
5607 /* TODO ext attr and streamdir udf_nodes */
5608
5609 *udf_noderes = udf_node;
5610
5611 return 0;
5612 }
5613
5614 /* --------------------------------------------------------------------- */
5615
5616 int
5617 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5618 {
5619 union dscrptr *dscr;
5620 struct long_ad *loc;
5621 int extnr, error;
5622
5623 DPRINTF(NODE, ("udf_writeout_node called\n"));
5624
5625 KASSERT(udf_node->outstanding_bufs == 0);
5626 KASSERT(udf_node->outstanding_nodedscr == 0);
5627
5628 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5629
5630 if (udf_node->i_flags & IN_DELETED) {
5631 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5632 udf_cleanup_reservation(udf_node);
5633 return 0;
5634 }
5635
5636 /* lock node; unlocked in callback */
5637 UDF_LOCK_NODE(udf_node, 0);
5638
5639 /* remove pending reservations, we're written out */
5640 udf_cleanup_reservation(udf_node);
5641
5642 /* at least one descriptor writeout */
5643 udf_node->outstanding_nodedscr = 1;
5644
5645 /* we're going to write out the descriptor so clear the flags */
5646 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5647
5648 /* if we were rebuild, write out the allocation extents */
5649 if (udf_node->i_flags & IN_NODE_REBUILD) {
5650 /* mark outstanding node descriptors and issue them */
5651 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5652 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5653 loc = &udf_node->ext_loc[extnr];
5654 dscr = (union dscrptr *) udf_node->ext[extnr];
5655 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5656 if (error)
5657 return error;
5658 }
5659 /* mark allocation extents written out */
5660 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5661 }
5662
5663 if (udf_node->fe) {
5664 KASSERT(udf_node->efe == NULL);
5665 dscr = (union dscrptr *) udf_node->fe;
5666 } else {
5667 KASSERT(udf_node->efe);
5668 KASSERT(udf_node->fe == NULL);
5669 dscr = (union dscrptr *) udf_node->efe;
5670 }
5671 KASSERT(dscr);
5672
5673 loc = &udf_node->write_loc;
5674 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5675
5676 return error;
5677 }
5678
5679 /* --------------------------------------------------------------------- */
5680
5681 int
5682 udf_dispose_node(struct udf_node *udf_node)
5683 {
5684 struct vnode *vp;
5685 int extnr;
5686
5687 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5688 if (!udf_node) {
5689 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5690 return 0;
5691 }
5692
5693 vp = udf_node->vnode;
5694 #ifdef DIAGNOSTIC
5695 if (vp->v_numoutput)
5696 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5697 "v_numoutput = %d", udf_node, vp->v_numoutput);
5698 #endif
5699
5700 udf_cleanup_reservation(udf_node);
5701
5702 /* TODO extended attributes and streamdir */
5703
5704 /* remove dirhash if present */
5705 dirhash_purge(&udf_node->dir_hash);
5706
5707 /* remove from our hash lookup table */
5708 udf_deregister_node(udf_node);
5709
5710 /* destroy our lock */
5711 mutex_destroy(&udf_node->node_mutex);
5712 cv_destroy(&udf_node->node_lock);
5713
5714 /* dissociate our udf_node from the vnode */
5715 genfs_node_destroy(udf_node->vnode);
5716 vp->v_data = NULL;
5717
5718 /* free associated memory and the node itself */
5719 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5720 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5721 udf_node->ext[extnr]);
5722 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5723 }
5724
5725 if (udf_node->fe)
5726 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5727 udf_node->fe);
5728 if (udf_node->efe)
5729 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5730 udf_node->efe);
5731
5732 udf_node->fe = (void *) 0xdeadaaaa;
5733 udf_node->efe = (void *) 0xdeadbbbb;
5734 udf_node->ump = (void *) 0xdeadbeef;
5735 pool_put(&udf_node_pool, udf_node);
5736
5737 return 0;
5738 }
5739
5740
5741
5742 /*
5743 * create a new node using the specified vnodeops, vap and cnp but with the
5744 * udf_file_type. This allows special files to be created. Use with care.
5745 */
5746
5747 static int
5748 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5749 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5750 {
5751 union dscrptr *dscr;
5752 struct udf_node *dir_node = VTOI(dvp);
5753 struct udf_node *udf_node;
5754 struct udf_mount *ump = dir_node->ump;
5755 struct vnode *nvp;
5756 struct long_ad node_icb_loc;
5757 uint64_t parent_unique_id;
5758 uint64_t lmapping;
5759 uint32_t lb_size, lb_num;
5760 uint16_t vpart_num;
5761 uid_t uid;
5762 gid_t gid, parent_gid;
5763 int fid_size, error;
5764
5765 lb_size = udf_rw32(ump->logical_vol->lb_size);
5766 *vpp = NULL;
5767
5768 /* allocate vnode */
5769 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5770 if (error)
5771 return error;
5772
5773 /* lock node */
5774 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5775 if (error)
5776 goto error_out_unget;
5777
5778 /* reserve space for one logical block */
5779 vpart_num = ump->node_part;
5780 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5781 vpart_num, 1, /* can_fail */ true);
5782 if (error)
5783 goto error_out_unlock;
5784
5785 /* allocate node */
5786 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5787 vpart_num, 1, &lmapping);
5788 if (error)
5789 goto error_out_unreserve;
5790 lb_num = lmapping;
5791
5792 /* initialise pointer to location */
5793 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5794 node_icb_loc.len = udf_rw32(lb_size);
5795 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5796 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5797
5798 /* build udf_node (do initialise!) */
5799 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5800 memset(udf_node, 0, sizeof(struct udf_node));
5801
5802 /* initialise crosslinks, note location of fe/efe for hashing */
5803 /* bugalert: synchronise with udf_get_node() */
5804 udf_node->ump = ump;
5805 udf_node->vnode = nvp;
5806 nvp->v_data = udf_node;
5807 udf_node->loc = node_icb_loc;
5808 udf_node->write_loc = node_icb_loc;
5809 udf_node->lockf = 0;
5810 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5811 cv_init(&udf_node->node_lock, "udf_nlk");
5812 udf_node->outstanding_bufs = 0;
5813 udf_node->outstanding_nodedscr = 0;
5814 udf_node->uncommitted_lbs = 0;
5815
5816 /* initialise genfs */
5817 genfs_node_init(nvp, &udf_genfsops);
5818
5819 /* insert into the hash lookup */
5820 udf_register_node(udf_node);
5821
5822 /* get parent's unique ID for refering '..' if its a directory */
5823 if (dir_node->fe) {
5824 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5825 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5826 } else {
5827 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5828 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5829 }
5830
5831 /* get descriptor */
5832 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5833
5834 /* choose a fe or an efe for it */
5835 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5836 udf_node->fe = &dscr->fe;
5837 fid_size = udf_create_new_fe(ump, udf_node->fe,
5838 udf_file_type, &udf_node->loc,
5839 &dir_node->loc, parent_unique_id);
5840 /* TODO add extended attribute for creation time */
5841 } else {
5842 udf_node->efe = &dscr->efe;
5843 fid_size = udf_create_new_efe(ump, udf_node->efe,
5844 udf_file_type, &udf_node->loc,
5845 &dir_node->loc, parent_unique_id);
5846 }
5847 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5848
5849 /* update vnode's size and type */
5850 nvp->v_type = vap->va_type;
5851 uvm_vnp_setsize(nvp, fid_size);
5852
5853 /* set access mode */
5854 udf_setaccessmode(udf_node, vap->va_mode);
5855
5856 /* set ownership */
5857 uid = kauth_cred_geteuid(cnp->cn_cred);
5858 gid = parent_gid;
5859 udf_setownership(udf_node, uid, gid);
5860
5861 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5862 if (error) {
5863 /* free disc allocation for node */
5864 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5865
5866 /* recycle udf_node */
5867 udf_dispose_node(udf_node);
5868 vput(nvp);
5869
5870 *vpp = NULL;
5871 return error;
5872 }
5873
5874 /* adjust file count */
5875 udf_adjust_filecount(udf_node, 1);
5876
5877 /* return result */
5878 *vpp = nvp;
5879
5880 return 0;
5881
5882 error_out_unreserve:
5883 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5884
5885 error_out_unlock:
5886 VOP_UNLOCK(nvp);
5887
5888 error_out_unget:
5889 nvp->v_data = NULL;
5890 ungetnewvnode(nvp);
5891
5892 return error;
5893 }
5894
5895
5896 int
5897 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5898 struct componentname *cnp)
5899 {
5900 int (**vnodeops)(void *);
5901 int udf_file_type;
5902
5903 DPRINTF(NODE, ("udf_create_node called\n"));
5904
5905 /* what type are we creating ? */
5906 vnodeops = udf_vnodeop_p;
5907 /* start with a default */
5908 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5909
5910 *vpp = NULL;
5911
5912 switch (vap->va_type) {
5913 case VREG :
5914 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5915 break;
5916 case VDIR :
5917 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5918 break;
5919 case VLNK :
5920 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5921 break;
5922 case VBLK :
5923 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5924 /* specfs */
5925 return ENOTSUP;
5926 break;
5927 case VCHR :
5928 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5929 /* specfs */
5930 return ENOTSUP;
5931 break;
5932 case VFIFO :
5933 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5934 /* specfs */
5935 return ENOTSUP;
5936 break;
5937 case VSOCK :
5938 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5939 /* specfs */
5940 return ENOTSUP;
5941 break;
5942 case VNON :
5943 case VBAD :
5944 default :
5945 /* nothing; can we even create these? */
5946 return EINVAL;
5947 }
5948
5949 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5950 }
5951
5952 /* --------------------------------------------------------------------- */
5953
5954 static void
5955 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5956 {
5957 struct udf_mount *ump = udf_node->ump;
5958 uint32_t lb_size, lb_num, len, num_lb;
5959 uint16_t vpart_num;
5960
5961 /* is there really one? */
5962 if (mem == NULL)
5963 return;
5964
5965 /* got a descriptor here */
5966 len = UDF_EXT_LEN(udf_rw32(loc->len));
5967 lb_num = udf_rw32(loc->loc.lb_num);
5968 vpart_num = udf_rw16(loc->loc.part_num);
5969
5970 lb_size = udf_rw32(ump->logical_vol->lb_size);
5971 num_lb = (len + lb_size -1) / lb_size;
5972
5973 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5974 }
5975
5976 void
5977 udf_delete_node(struct udf_node *udf_node)
5978 {
5979 void *dscr;
5980 struct udf_mount *ump;
5981 struct long_ad *loc;
5982 int extnr, lvint, dummy;
5983
5984 ump = udf_node->ump;
5985
5986 /* paranoia check on integrity; should be open!; we could panic */
5987 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5988 if (lvint == UDF_INTEGRITY_CLOSED)
5989 printf("\tIntegrity was CLOSED!\n");
5990
5991 /* whatever the node type, change its size to zero */
5992 (void) udf_resize_node(udf_node, 0, &dummy);
5993
5994 /* force it to be `clean'; no use writing it out */
5995 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5996 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5997
5998 /* adjust file count */
5999 udf_adjust_filecount(udf_node, -1);
6000
6001 /*
6002 * Free its allocated descriptors; memory will be released when
6003 * vop_reclaim() is called.
6004 */
6005 loc = &udf_node->loc;
6006
6007 dscr = udf_node->fe;
6008 udf_free_descriptor_space(udf_node, loc, dscr);
6009 dscr = udf_node->efe;
6010 udf_free_descriptor_space(udf_node, loc, dscr);
6011
6012 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6013 dscr = udf_node->ext[extnr];
6014 loc = &udf_node->ext_loc[extnr];
6015 udf_free_descriptor_space(udf_node, loc, dscr);
6016 }
6017 }
6018
6019 /* --------------------------------------------------------------------- */
6020
6021 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6022 int
6023 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6024 {
6025 struct file_entry *fe = udf_node->fe;
6026 struct extfile_entry *efe = udf_node->efe;
6027 uint64_t file_size;
6028 int error;
6029
6030 if (fe) {
6031 file_size = udf_rw64(fe->inf_len);
6032 } else {
6033 assert(udf_node->efe);
6034 file_size = udf_rw64(efe->inf_len);
6035 }
6036
6037 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6038 file_size, new_size));
6039
6040 /* if not changing, we're done */
6041 if (file_size == new_size)
6042 return 0;
6043
6044 *extended = (new_size > file_size);
6045 if (*extended) {
6046 error = udf_grow_node(udf_node, new_size);
6047 } else {
6048 error = udf_shrink_node(udf_node, new_size);
6049 }
6050
6051 return error;
6052 }
6053
6054
6055 /* --------------------------------------------------------------------- */
6056
6057 void
6058 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6059 struct timespec *mod, struct timespec *birth)
6060 {
6061 struct timespec now;
6062 struct file_entry *fe;
6063 struct extfile_entry *efe;
6064 struct filetimes_extattr_entry *ft_extattr;
6065 struct timestamp *atime, *mtime, *attrtime, *ctime;
6066 struct timestamp fe_ctime;
6067 struct timespec cur_birth;
6068 uint32_t offset, a_l;
6069 uint8_t *filedata;
6070 int error;
6071
6072 /* protect against rogue values */
6073 if (!udf_node)
6074 return;
6075
6076 fe = udf_node->fe;
6077 efe = udf_node->efe;
6078
6079 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6080 return;
6081
6082 /* get descriptor information */
6083 if (fe) {
6084 atime = &fe->atime;
6085 mtime = &fe->mtime;
6086 attrtime = &fe->attrtime;
6087 filedata = fe->data;
6088
6089 /* initial save dummy setting */
6090 ctime = &fe_ctime;
6091
6092 /* check our extended attribute if present */
6093 error = udf_extattr_search_intern(udf_node,
6094 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6095 if (!error) {
6096 ft_extattr = (struct filetimes_extattr_entry *)
6097 (filedata + offset);
6098 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6099 ctime = &ft_extattr->times[0];
6100 }
6101 /* TODO create the extended attribute if not found ? */
6102 } else {
6103 assert(udf_node->efe);
6104 atime = &efe->atime;
6105 mtime = &efe->mtime;
6106 attrtime = &efe->attrtime;
6107 ctime = &efe->ctime;
6108 }
6109
6110 vfs_timestamp(&now);
6111
6112 /* set access time */
6113 if (udf_node->i_flags & IN_ACCESS) {
6114 if (acc == NULL)
6115 acc = &now;
6116 udf_timespec_to_timestamp(acc, atime);
6117 }
6118
6119 /* set modification time */
6120 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6121 if (mod == NULL)
6122 mod = &now;
6123 udf_timespec_to_timestamp(mod, mtime);
6124
6125 /* ensure birthtime is older than set modification! */
6126 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6127 if ((cur_birth.tv_sec > mod->tv_sec) ||
6128 ((cur_birth.tv_sec == mod->tv_sec) &&
6129 (cur_birth.tv_nsec > mod->tv_nsec))) {
6130 udf_timespec_to_timestamp(mod, ctime);
6131 }
6132 }
6133
6134 /* update birthtime if specified */
6135 /* XXX we asume here that given birthtime is older than mod */
6136 if (birth && (birth->tv_sec != VNOVAL)) {
6137 udf_timespec_to_timestamp(birth, ctime);
6138 }
6139
6140 /* set change time */
6141 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6142 udf_timespec_to_timestamp(&now, attrtime);
6143
6144 /* notify updates to the node itself */
6145 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6146 udf_node->i_flags |= IN_ACCESSED;
6147 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6148 udf_node->i_flags |= IN_MODIFIED;
6149
6150 /* clear modification flags */
6151 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6152 }
6153
6154 /* --------------------------------------------------------------------- */
6155
6156 int
6157 udf_update(struct vnode *vp, struct timespec *acc,
6158 struct timespec *mod, struct timespec *birth, int updflags)
6159 {
6160 union dscrptr *dscrptr;
6161 struct udf_node *udf_node = VTOI(vp);
6162 struct udf_mount *ump = udf_node->ump;
6163 struct regid *impl_id;
6164 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6165 int waitfor, flags;
6166
6167 #ifdef DEBUG
6168 char bits[128];
6169 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6170 updflags));
6171 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6172 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6173 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6174 #endif
6175
6176 /* set our times */
6177 udf_itimes(udf_node, acc, mod, birth);
6178
6179 /* set our implementation id */
6180 if (udf_node->fe) {
6181 dscrptr = (union dscrptr *) udf_node->fe;
6182 impl_id = &udf_node->fe->imp_id;
6183 } else {
6184 dscrptr = (union dscrptr *) udf_node->efe;
6185 impl_id = &udf_node->efe->imp_id;
6186 }
6187
6188 /* set our ID */
6189 udf_set_regid(impl_id, IMPL_NAME);
6190 udf_add_impl_regid(ump, impl_id);
6191
6192 /* update our crc! on RMW we are not allowed to change a thing */
6193 udf_validate_tag_and_crc_sums(dscrptr);
6194
6195 /* if called when mounted readonly, never write back */
6196 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6197 return 0;
6198
6199 /* check if the node is dirty 'enough'*/
6200 if (updflags & UPDATE_CLOSE) {
6201 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6202 } else {
6203 flags = udf_node->i_flags & IN_MODIFIED;
6204 }
6205 if (flags == 0)
6206 return 0;
6207
6208 /* determine if we need to write sync or async */
6209 waitfor = 0;
6210 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6211 /* sync mounted */
6212 waitfor = updflags & UPDATE_WAIT;
6213 if (updflags & UPDATE_DIROP)
6214 waitfor |= UPDATE_WAIT;
6215 }
6216 if (waitfor)
6217 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6218
6219 return 0;
6220 }
6221
6222
6223 /* --------------------------------------------------------------------- */
6224
6225
6226 /*
6227 * Read one fid and process it into a dirent and advance to the next (*fid)
6228 * has to be allocated a logical block in size, (*dirent) struct dirent length
6229 */
6230
6231 int
6232 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6233 struct fileid_desc *fid, struct dirent *dirent)
6234 {
6235 struct udf_node *dir_node = VTOI(vp);
6236 struct udf_mount *ump = dir_node->ump;
6237 struct file_entry *fe = dir_node->fe;
6238 struct extfile_entry *efe = dir_node->efe;
6239 uint32_t fid_size, lb_size;
6240 uint64_t file_size;
6241 char *fid_name;
6242 int enough, error;
6243
6244 assert(fid);
6245 assert(dirent);
6246 assert(dir_node);
6247 assert(offset);
6248 assert(*offset != 1);
6249
6250 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6251 /* check if we're past the end of the directory */
6252 if (fe) {
6253 file_size = udf_rw64(fe->inf_len);
6254 } else {
6255 assert(dir_node->efe);
6256 file_size = udf_rw64(efe->inf_len);
6257 }
6258 if (*offset >= file_size)
6259 return EINVAL;
6260
6261 /* get maximum length of FID descriptor */
6262 lb_size = udf_rw32(ump->logical_vol->lb_size);
6263
6264 /* initialise return values */
6265 fid_size = 0;
6266 memset(dirent, 0, sizeof(struct dirent));
6267 memset(fid, 0, lb_size);
6268
6269 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6270 if (!enough) {
6271 /* short dir ... */
6272 return EIO;
6273 }
6274
6275 error = vn_rdwr(UIO_READ, vp,
6276 fid, MIN(file_size - (*offset), lb_size), *offset,
6277 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6278 NULL, NULL);
6279 if (error)
6280 return error;
6281
6282 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6283 /*
6284 * Check if we got a whole descriptor.
6285 * TODO Try to `resync' directory stream when something is very wrong.
6286 */
6287
6288 /* check if our FID header is OK */
6289 error = udf_check_tag(fid);
6290 if (error) {
6291 goto brokendir;
6292 }
6293 DPRINTF(FIDS, ("\ttag check ok\n"));
6294
6295 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6296 error = EIO;
6297 goto brokendir;
6298 }
6299 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6300
6301 /* check for length */
6302 fid_size = udf_fidsize(fid);
6303 enough = (file_size - (*offset) >= fid_size);
6304 if (!enough) {
6305 error = EIO;
6306 goto brokendir;
6307 }
6308 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6309
6310 /* check FID contents */
6311 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6312 brokendir:
6313 if (error) {
6314 /* note that is sometimes a bit quick to report */
6315 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6316 /* RESYNC? */
6317 /* TODO: use udf_resync_fid_stream */
6318 return EIO;
6319 }
6320 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6321
6322 /* we got a whole and valid descriptor! */
6323 DPRINTF(FIDS, ("\tinterpret FID\n"));
6324
6325 /* create resulting dirent structure */
6326 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6327 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6328 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6329
6330 /* '..' has no name, so provide one */
6331 if (fid->file_char & UDF_FILE_CHAR_PAR)
6332 strcpy(dirent->d_name, "..");
6333
6334 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6335 dirent->d_namlen = strlen(dirent->d_name);
6336 dirent->d_reclen = _DIRENT_SIZE(dirent);
6337
6338 /*
6339 * Note that its not worth trying to go for the filetypes now... its
6340 * too expensive too
6341 */
6342 dirent->d_type = DT_UNKNOWN;
6343
6344 /* initial guess for filetype we can make */
6345 if (fid->file_char & UDF_FILE_CHAR_DIR)
6346 dirent->d_type = DT_DIR;
6347
6348 /* advance */
6349 *offset += fid_size;
6350
6351 return error;
6352 }
6353
6354
6355 /* --------------------------------------------------------------------- */
6356
6357 static void
6358 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6359 int pass, int *ndirty)
6360 {
6361 struct udf_node *udf_node, *n_udf_node;
6362 struct vnode *vp;
6363 int vdirty, error;
6364 int on_type, on_flags, on_vnode;
6365
6366 derailed:
6367 KASSERT(mutex_owned(&mntvnode_lock));
6368
6369 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6370 udf_node = RBTOUDFNODE(RB_TREE_MIN(&ump->udf_node_tree));
6371 for (;udf_node; udf_node = n_udf_node) {
6372 DPRINTF(SYNC, ("."));
6373
6374 udf_node->i_flags &= ~IN_SYNCED;
6375 vp = udf_node->vnode;
6376
6377 mutex_enter(&vp->v_interlock);
6378 n_udf_node = RBTOUDFNODE(rb_tree_iterate(
6379 &ump->udf_node_tree, &udf_node->rbnode,
6380 RB_DIR_RIGHT));
6381
6382 if (n_udf_node)
6383 n_udf_node->i_flags |= IN_SYNCED;
6384
6385 /* system nodes are not synced this way */
6386 if (vp->v_vflag & VV_SYSTEM) {
6387 mutex_exit(&vp->v_interlock);
6388 continue;
6389 }
6390
6391 /* check if its dirty enough to even try */
6392 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6393 on_flags = ((udf_node->i_flags &
6394 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6395 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6396 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6397 if (on_type || (on_flags || on_vnode)) { /* XXX */
6398 /* not dirty (enough?) */
6399 mutex_exit(&vp->v_interlock);
6400 continue;
6401 }
6402
6403 mutex_exit(&mntvnode_lock);
6404 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6405 if (error) {
6406 mutex_enter(&mntvnode_lock);
6407 if (error == ENOENT)
6408 goto derailed;
6409 *ndirty += 1;
6410 continue;
6411 }
6412
6413 switch (pass) {
6414 case 1:
6415 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6416 break;
6417 case 2:
6418 vdirty = vp->v_numoutput;
6419 if (vp->v_tag == VT_UDF)
6420 vdirty += udf_node->outstanding_bufs +
6421 udf_node->outstanding_nodedscr;
6422 if (vdirty == 0)
6423 VOP_FSYNC(vp, cred, 0,0,0);
6424 *ndirty += vdirty;
6425 break;
6426 case 3:
6427 vdirty = vp->v_numoutput;
6428 if (vp->v_tag == VT_UDF)
6429 vdirty += udf_node->outstanding_bufs +
6430 udf_node->outstanding_nodedscr;
6431 *ndirty += vdirty;
6432 break;
6433 }
6434
6435 vput(vp);
6436 mutex_enter(&mntvnode_lock);
6437 }
6438 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6439 }
6440
6441
6442 void
6443 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6444 {
6445 int dummy, ndirty;
6446
6447 mutex_enter(&mntvnode_lock);
6448 recount:
6449 dummy = 0;
6450 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6451 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6452 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6453
6454 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6455 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6456 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6457
6458 if (waitfor == MNT_WAIT) {
6459 ndirty = ump->devvp->v_numoutput;
6460 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6461 ndirty));
6462 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6463 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6464 ndirty));
6465
6466 if (ndirty) {
6467 /* 1/4 second wait */
6468 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6469 hz/4);
6470 goto recount;
6471 }
6472 }
6473
6474 mutex_exit(&mntvnode_lock);
6475 }
6476
6477 /* --------------------------------------------------------------------- */
6478
6479 /*
6480 * Read and write file extent in/from the buffer.
6481 *
6482 * The splitup of the extent into seperate request-buffers is to minimise
6483 * copying around as much as possible.
6484 *
6485 * block based file reading and writing
6486 */
6487
6488 static int
6489 udf_read_internal(struct udf_node *node, uint8_t *blob)
6490 {
6491 struct udf_mount *ump;
6492 struct file_entry *fe = node->fe;
6493 struct extfile_entry *efe = node->efe;
6494 uint64_t inflen;
6495 uint32_t sector_size;
6496 uint8_t *pos;
6497 int icbflags, addr_type;
6498
6499 /* get extent and do some paranoia checks */
6500 ump = node->ump;
6501 sector_size = ump->discinfo.sector_size;
6502
6503 if (fe) {
6504 inflen = udf_rw64(fe->inf_len);
6505 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6506 icbflags = udf_rw16(fe->icbtag.flags);
6507 } else {
6508 assert(node->efe);
6509 inflen = udf_rw64(efe->inf_len);
6510 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6511 icbflags = udf_rw16(efe->icbtag.flags);
6512 }
6513 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6514
6515 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6516 assert(inflen < sector_size);
6517
6518 /* copy out info */
6519 memset(blob, 0, sector_size);
6520 memcpy(blob, pos, inflen);
6521
6522 return 0;
6523 }
6524
6525
6526 static int
6527 udf_write_internal(struct udf_node *node, uint8_t *blob)
6528 {
6529 struct udf_mount *ump;
6530 struct file_entry *fe = node->fe;
6531 struct extfile_entry *efe = node->efe;
6532 uint64_t inflen;
6533 uint32_t sector_size;
6534 uint8_t *pos;
6535 int icbflags, addr_type;
6536
6537 /* get extent and do some paranoia checks */
6538 ump = node->ump;
6539 sector_size = ump->discinfo.sector_size;
6540
6541 if (fe) {
6542 inflen = udf_rw64(fe->inf_len);
6543 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6544 icbflags = udf_rw16(fe->icbtag.flags);
6545 } else {
6546 assert(node->efe);
6547 inflen = udf_rw64(efe->inf_len);
6548 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6549 icbflags = udf_rw16(efe->icbtag.flags);
6550 }
6551 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6552
6553 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6554 assert(inflen < sector_size);
6555
6556 /* copy in blob */
6557 /* memset(pos, 0, inflen); */
6558 memcpy(pos, blob, inflen);
6559
6560 return 0;
6561 }
6562
6563
6564 void
6565 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6566 {
6567 struct buf *nestbuf;
6568 struct udf_mount *ump = udf_node->ump;
6569 uint64_t *mapping;
6570 uint64_t run_start;
6571 uint32_t sector_size;
6572 uint32_t buf_offset, sector, rbuflen, rblk;
6573 uint32_t from, lblkno;
6574 uint32_t sectors;
6575 uint8_t *buf_pos;
6576 int error, run_length, what;
6577
6578 sector_size = udf_node->ump->discinfo.sector_size;
6579
6580 from = buf->b_blkno;
6581 sectors = buf->b_bcount / sector_size;
6582
6583 what = udf_get_c_type(udf_node);
6584
6585 /* assure we have enough translation slots */
6586 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6587 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6588
6589 if (sectors > UDF_MAX_MAPPINGS) {
6590 printf("udf_read_filebuf: implementation limit on bufsize\n");
6591 buf->b_error = EIO;
6592 biodone(buf);
6593 return;
6594 }
6595
6596 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6597
6598 error = 0;
6599 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6600 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6601 if (error) {
6602 buf->b_error = error;
6603 biodone(buf);
6604 goto out;
6605 }
6606 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6607
6608 /* pre-check if its an internal */
6609 if (*mapping == UDF_TRANS_INTERN) {
6610 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6611 if (error)
6612 buf->b_error = error;
6613 biodone(buf);
6614 goto out;
6615 }
6616 DPRINTF(READ, ("\tnot intern\n"));
6617
6618 #ifdef DEBUG
6619 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6620 printf("Returned translation table:\n");
6621 for (sector = 0; sector < sectors; sector++) {
6622 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6623 }
6624 }
6625 #endif
6626
6627 /* request read-in of data from disc sheduler */
6628 buf->b_resid = buf->b_bcount;
6629 for (sector = 0; sector < sectors; sector++) {
6630 buf_offset = sector * sector_size;
6631 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6632 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6633
6634 /* check if its zero or unmapped to stop reading */
6635 switch (mapping[sector]) {
6636 case UDF_TRANS_UNMAPPED:
6637 case UDF_TRANS_ZERO:
6638 /* copy zero sector TODO runlength like below */
6639 memset(buf_pos, 0, sector_size);
6640 DPRINTF(READ, ("\treturning zero sector\n"));
6641 nestiobuf_done(buf, sector_size, 0);
6642 break;
6643 default :
6644 DPRINTF(READ, ("\tread sector "
6645 "%"PRIu64"\n", mapping[sector]));
6646
6647 lblkno = from + sector;
6648 run_start = mapping[sector];
6649 run_length = 1;
6650 while (sector < sectors-1) {
6651 if (mapping[sector+1] != mapping[sector]+1)
6652 break;
6653 run_length++;
6654 sector++;
6655 }
6656
6657 /*
6658 * nest an iobuf and mark it for async reading. Since
6659 * we're using nested buffers, they can't be cached by
6660 * design.
6661 */
6662 rbuflen = run_length * sector_size;
6663 rblk = run_start * (sector_size/DEV_BSIZE);
6664
6665 nestbuf = getiobuf(NULL, true);
6666 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6667 /* nestbuf is B_ASYNC */
6668
6669 /* identify this nestbuf */
6670 nestbuf->b_lblkno = lblkno;
6671 assert(nestbuf->b_vp == udf_node->vnode);
6672
6673 /* CD shedules on raw blkno */
6674 nestbuf->b_blkno = rblk;
6675 nestbuf->b_proc = NULL;
6676 nestbuf->b_rawblkno = rblk;
6677 nestbuf->b_udf_c_type = what;
6678
6679 udf_discstrat_queuebuf(ump, nestbuf);
6680 }
6681 }
6682 out:
6683 /* if we're synchronously reading, wait for the completion */
6684 if ((buf->b_flags & B_ASYNC) == 0)
6685 biowait(buf);
6686
6687 DPRINTF(READ, ("\tend of read_filebuf\n"));
6688 free(mapping, M_TEMP);
6689 return;
6690 }
6691
6692
6693 void
6694 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6695 {
6696 struct buf *nestbuf;
6697 struct udf_mount *ump = udf_node->ump;
6698 uint64_t *mapping;
6699 uint64_t run_start;
6700 uint32_t lb_size;
6701 uint32_t buf_offset, lb_num, rbuflen, rblk;
6702 uint32_t from, lblkno;
6703 uint32_t num_lb;
6704 int error, run_length, what, s;
6705
6706 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6707
6708 from = buf->b_blkno;
6709 num_lb = buf->b_bcount / lb_size;
6710
6711 what = udf_get_c_type(udf_node);
6712
6713 /* assure we have enough translation slots */
6714 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6715 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6716
6717 if (num_lb > UDF_MAX_MAPPINGS) {
6718 printf("udf_write_filebuf: implementation limit on bufsize\n");
6719 buf->b_error = EIO;
6720 biodone(buf);
6721 return;
6722 }
6723
6724 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6725
6726 error = 0;
6727 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6728 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6729 if (error) {
6730 buf->b_error = error;
6731 biodone(buf);
6732 goto out;
6733 }
6734 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6735
6736 /* if its internally mapped, we can write it in the descriptor itself */
6737 if (*mapping == UDF_TRANS_INTERN) {
6738 /* TODO paranoia check if we ARE going to have enough space */
6739 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6740 if (error)
6741 buf->b_error = error;
6742 biodone(buf);
6743 goto out;
6744 }
6745 DPRINTF(WRITE, ("\tnot intern\n"));
6746
6747 /* request write out of data to disc sheduler */
6748 buf->b_resid = buf->b_bcount;
6749 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6750 buf_offset = lb_num * lb_size;
6751 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6752
6753 /*
6754 * Mappings are not that important here. Just before we write
6755 * the lb_num we late-allocate them when needed and update the
6756 * mapping in the udf_node.
6757 */
6758
6759 /* XXX why not ignore the mapping altogether ? */
6760 DPRINTF(WRITE, ("\twrite lb_num "
6761 "%"PRIu64, mapping[lb_num]));
6762
6763 lblkno = from + lb_num;
6764 run_start = mapping[lb_num];
6765 run_length = 1;
6766 while (lb_num < num_lb-1) {
6767 if (mapping[lb_num+1] != mapping[lb_num]+1)
6768 if (mapping[lb_num+1] != mapping[lb_num])
6769 break;
6770 run_length++;
6771 lb_num++;
6772 }
6773 DPRINTF(WRITE, ("+ %d\n", run_length));
6774
6775 /* nest an iobuf on the master buffer for the extent */
6776 rbuflen = run_length * lb_size;
6777 rblk = run_start * (lb_size/DEV_BSIZE);
6778
6779 nestbuf = getiobuf(NULL, true);
6780 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6781 /* nestbuf is B_ASYNC */
6782
6783 /* identify this nestbuf */
6784 nestbuf->b_lblkno = lblkno;
6785 KASSERT(nestbuf->b_vp == udf_node->vnode);
6786
6787 /* CD shedules on raw blkno */
6788 nestbuf->b_blkno = rblk;
6789 nestbuf->b_proc = NULL;
6790 nestbuf->b_rawblkno = rblk;
6791 nestbuf->b_udf_c_type = what;
6792
6793 /* increment our outstanding bufs counter */
6794 s = splbio();
6795 udf_node->outstanding_bufs++;
6796 splx(s);
6797
6798 udf_discstrat_queuebuf(ump, nestbuf);
6799 }
6800 out:
6801 /* if we're synchronously writing, wait for the completion */
6802 if ((buf->b_flags & B_ASYNC) == 0)
6803 biowait(buf);
6804
6805 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6806 free(mapping, M_TEMP);
6807 return;
6808 }
6809
6810 /* --------------------------------------------------------------------- */
6811
6812
6813