udf_subr.c revision 1.110 1 /* $NetBSD: udf_subr.c,v 1.110 2011/01/13 13:13:31 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.110 2011/01/13 13:13:31 reinoud Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 struct partinfo dpart;
192 struct mmc_discinfo *di;
193 int error;
194
195 DPRINTF(VOLUMES, ("read/update disc info\n"));
196 di = &ump->discinfo;
197 memset(di, 0, sizeof(struct mmc_discinfo));
198
199 /* check if we're on a MMC capable device, i.e. CD/DVD */
200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 if (error == 0) {
202 udf_dump_discinfo(ump);
203 return 0;
204 }
205
206 /* disc partition support */
207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 if (error)
209 return ENODEV;
210
211 /* set up a disc info profile for partitions */
212 di->mmc_profile = 0x01; /* disc type */
213 di->mmc_class = MMC_CLASS_DISC;
214 di->disc_state = MMC_STATE_CLOSED;
215 di->last_session_state = MMC_STATE_CLOSED;
216 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
217 di->link_block_penalty = 0;
218
219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 di->mmc_cap = di->mmc_cur;
222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223
224 /* TODO problem with last_possible_lba on resizable VND; request */
225 di->last_possible_lba = dpart.part->p_size;
226 di->sector_size = dpart.disklab->d_secsize;
227
228 di->num_sessions = 1;
229 di->num_tracks = 1;
230
231 di->first_track = 1;
232 di->first_track_last_session = di->last_track_last_session = 1;
233
234 udf_dump_discinfo(ump);
235 return 0;
236 }
237
238
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 struct vnode *devvp = ump->devvp;
243 struct mmc_discinfo *di = &ump->discinfo;
244 int error, class;
245
246 DPRINTF(VOLUMES, ("read track info\n"));
247
248 class = di->mmc_class;
249 if (class != MMC_CLASS_DISC) {
250 /* tracknr specified in struct ti */
251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 return error;
253 }
254
255 /* disc partition support */
256 if (ti->tracknr != 1)
257 return EIO;
258
259 /* create fake ti (TODO check for resized vnds) */
260 ti->sessionnr = 1;
261
262 ti->track_mode = 0; /* XXX */
263 ti->data_mode = 0; /* XXX */
264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265
266 ti->track_start = 0;
267 ti->packet_size = 1;
268
269 /* TODO support for resizable vnd */
270 ti->track_size = di->last_possible_lba;
271 ti->next_writable = di->last_possible_lba;
272 ti->last_recorded = ti->next_writable;
273 ti->free_blocks = 0;
274
275 return 0;
276 }
277
278
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 struct mmc_writeparams mmc_writeparams;
283 int error;
284
285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 return 0;
287
288 /*
289 * only CD burning normally needs setting up, but other disc types
290 * might need other settings to be made. The MMC framework will set up
291 * the nessisary recording parameters according to the disc
292 * characteristics read in. Modifications can be made in the discinfo
293 * structure passed to change the nature of the disc.
294 */
295
296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
299
300 /*
301 * UDF dictates first track to determine track mode for the whole
302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 * To prevent problems with a `reserved' track in front we start with
304 * the 2nd track and if that is not valid, go for the 1st.
305 */
306 mmc_writeparams.tracknr = 2;
307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
309
310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 FKIOCTL, NOCRED);
312 if (error) {
313 mmc_writeparams.tracknr = 1;
314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 &mmc_writeparams, FKIOCTL, NOCRED);
316 }
317 return error;
318 }
319
320
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 struct mmc_op mmc_op;
325
326 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327
328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 return 0;
330
331 /* discs are done now */
332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 return 0;
334
335 memset(&mmc_op, 0, sizeof(struct mmc_op));
336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337
338 /* ignore return code */
339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340
341 return 0;
342 }
343
344 /* --------------------------------------------------------------------- */
345
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 int *first_tracknr, int *last_tracknr)
350 {
351 struct mmc_trackinfo trackinfo;
352 uint32_t tracknr, start_track, num_tracks;
353 int error;
354
355 /* if negative, sessionnr is relative to last session */
356 if (args->sessionnr < 0) {
357 args->sessionnr += ump->discinfo.num_sessions;
358 }
359
360 /* sanity */
361 if (args->sessionnr < 0)
362 args->sessionnr = 0;
363 if (args->sessionnr > ump->discinfo.num_sessions)
364 args->sessionnr = ump->discinfo.num_sessions;
365
366 /* search the tracks for this session, zero session nr indicates last */
367 if (args->sessionnr == 0)
368 args->sessionnr = ump->discinfo.num_sessions;
369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 args->sessionnr--;
371
372 /* sanity again */
373 if (args->sessionnr < 0)
374 args->sessionnr = 0;
375
376 /* search the first and last track of the specified session */
377 num_tracks = ump->discinfo.num_tracks;
378 start_track = ump->discinfo.first_track;
379
380 /* search for first track of this session */
381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 /* get track info */
383 trackinfo.tracknr = tracknr;
384 error = udf_update_trackinfo(ump, &trackinfo);
385 if (error)
386 return error;
387
388 if (trackinfo.sessionnr == args->sessionnr)
389 break;
390 }
391 *first_tracknr = tracknr;
392
393 /* search for last track of this session */
394 for (;tracknr <= num_tracks; tracknr++) {
395 /* get track info */
396 trackinfo.tracknr = tracknr;
397 error = udf_update_trackinfo(ump, &trackinfo);
398 if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 tracknr--;
400 break;
401 }
402 }
403 if (tracknr > num_tracks)
404 tracknr--;
405
406 *last_tracknr = tracknr;
407
408 if (*last_tracknr < *first_tracknr) {
409 printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 "drive returned garbage\n");
411 return EINVAL;
412 }
413
414 assert(*last_tracknr >= *first_tracknr);
415 return 0;
416 }
417
418
419 /*
420 * NOTE: this is the only routine in this file that directly peeks into the
421 * metadata file but since its at a larval state of the mount it can't hurt.
422 *
423 * XXX candidate for udf_allocation.c
424 * XXX clean me up!, change to new node reading code.
425 */
426
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 struct mmc_trackinfo *trackinfo)
430 {
431 struct part_desc *part;
432 struct file_entry *fe;
433 struct extfile_entry *efe;
434 struct short_ad *s_ad;
435 struct long_ad *l_ad;
436 uint32_t track_start, track_end;
437 uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 uint32_t sector_size, len, alloclen, plb_num;
439 uint8_t *pos;
440 int addr_type, icblen, icbflags, flags;
441
442 /* get our track extents */
443 track_start = trackinfo->track_start;
444 track_end = track_start + trackinfo->track_size;
445
446 /* get our base partition extent */
447 KASSERT(ump->node_part == ump->fids_part);
448 part = ump->partitions[ump->node_part];
449 phys_part_start = udf_rw32(part->start_loc);
450 phys_part_end = phys_part_start + udf_rw32(part->part_len);
451
452 /* no use if its outside the physical partition */
453 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 return;
455
456 /*
457 * now follow all extents in the fe/efe to see if they refer to this
458 * track
459 */
460
461 sector_size = ump->discinfo.sector_size;
462
463 /* XXX should we claim exclusive access to the metafile ? */
464 /* TODO: move to new node read code */
465 fe = ump->metadata_node->fe;
466 efe = ump->metadata_node->efe;
467 if (fe) {
468 alloclen = udf_rw32(fe->l_ad);
469 pos = &fe->data[0] + udf_rw32(fe->l_ea);
470 icbflags = udf_rw16(fe->icbtag.flags);
471 } else {
472 assert(efe);
473 alloclen = udf_rw32(efe->l_ad);
474 pos = &efe->data[0] + udf_rw32(efe->l_ea);
475 icbflags = udf_rw16(efe->icbtag.flags);
476 }
477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478
479 while (alloclen) {
480 if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 icblen = sizeof(struct short_ad);
482 s_ad = (struct short_ad *) pos;
483 len = udf_rw32(s_ad->len);
484 plb_num = udf_rw32(s_ad->lb_num);
485 } else {
486 /* should not be present, but why not */
487 icblen = sizeof(struct long_ad);
488 l_ad = (struct long_ad *) pos;
489 len = udf_rw32(l_ad->len);
490 plb_num = udf_rw32(l_ad->loc.lb_num);
491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 }
493 /* process extent */
494 flags = UDF_EXT_FLAGS(len);
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986 /* --------------------------------------------------------------------- */
987
988 /* we dont try to be smart; we just record the parts */
989 #define UDF_UPDATE_DSCR(name, dscr) \
990 if (name) \
991 free(name, M_UDFVOLD); \
992 name = dscr;
993
994 static int
995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
996 {
997 struct part_desc *part;
998 uint16_t phys_part, raw_phys_part;
999
1000 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1001 udf_rw16(dscr->tag.id)));
1002 switch (udf_rw16(dscr->tag.id)) {
1003 case TAGID_PRI_VOL : /* primary partition */
1004 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1005 break;
1006 case TAGID_LOGVOL : /* logical volume */
1007 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1008 break;
1009 case TAGID_UNALLOC_SPACE : /* unallocated space */
1010 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1011 break;
1012 case TAGID_IMP_VOL : /* implementation */
1013 /* XXX do we care about multiple impl. descr ? */
1014 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1015 break;
1016 case TAGID_PARTITION : /* physical partition */
1017 /* not much use if its not allocated */
1018 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1019 free(dscr, M_UDFVOLD);
1020 break;
1021 }
1022
1023 /*
1024 * BUGALERT: some rogue implementations use random physical
1025 * partition numbers to break other implementations so lookup
1026 * the number.
1027 */
1028 raw_phys_part = udf_rw16(dscr->pd.part_num);
1029 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1030 part = ump->partitions[phys_part];
1031 if (part == NULL)
1032 break;
1033 if (udf_rw16(part->part_num) == raw_phys_part)
1034 break;
1035 }
1036 if (phys_part == UDF_PARTITIONS) {
1037 free(dscr, M_UDFVOLD);
1038 return EINVAL;
1039 }
1040
1041 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1042 break;
1043 case TAGID_VOL : /* volume space extender; rare */
1044 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1045 free(dscr, M_UDFVOLD);
1046 break;
1047 default :
1048 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1049 udf_rw16(dscr->tag.id)));
1050 free(dscr, M_UDFVOLD);
1051 }
1052
1053 return 0;
1054 }
1055 #undef UDF_UPDATE_DSCR
1056
1057 /* --------------------------------------------------------------------- */
1058
1059 static int
1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1061 {
1062 union dscrptr *dscr;
1063 uint32_t sector_size, dscr_size;
1064 int error;
1065
1066 sector_size = ump->discinfo.sector_size;
1067
1068 /* loc is sectornr, len is in bytes */
1069 error = EIO;
1070 while (len) {
1071 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1072 if (error)
1073 return error;
1074
1075 /* blank block is a terminator */
1076 if (dscr == NULL)
1077 return 0;
1078
1079 /* TERM descriptor is a terminator */
1080 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1081 free(dscr, M_UDFVOLD);
1082 return 0;
1083 }
1084
1085 /* process all others */
1086 dscr_size = udf_tagsize(dscr, sector_size);
1087 error = udf_process_vds_descriptor(ump, dscr);
1088 if (error) {
1089 free(dscr, M_UDFVOLD);
1090 break;
1091 }
1092 assert((dscr_size % sector_size) == 0);
1093
1094 len -= dscr_size;
1095 loc += dscr_size / sector_size;
1096 }
1097
1098 return error;
1099 }
1100
1101
1102 int
1103 udf_read_vds_space(struct udf_mount *ump)
1104 {
1105 /* struct udf_args *args = &ump->mount_args; */
1106 struct anchor_vdp *anchor, *anchor2;
1107 size_t size;
1108 uint32_t main_loc, main_len;
1109 uint32_t reserve_loc, reserve_len;
1110 int error;
1111
1112 /*
1113 * read in VDS space provided by the anchors; if one descriptor read
1114 * fails, try the mirror sector.
1115 *
1116 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1117 * avoids the `compatibility features' of DirectCD that may confuse
1118 * stuff completely.
1119 */
1120
1121 anchor = ump->anchors[0];
1122 anchor2 = ump->anchors[1];
1123 assert(anchor);
1124
1125 if (anchor2) {
1126 size = sizeof(struct extent_ad);
1127 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1128 anchor = anchor2;
1129 /* reserve is specified to be a literal copy of main */
1130 }
1131
1132 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1133 main_len = udf_rw32(anchor->main_vds_ex.len);
1134
1135 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1136 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1137
1138 error = udf_read_vds_extent(ump, main_loc, main_len);
1139 if (error) {
1140 printf("UDF mount: reading in reserve VDS extent\n");
1141 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1142 }
1143
1144 return error;
1145 }
1146
1147 /* --------------------------------------------------------------------- */
1148
1149 /*
1150 * Read in the logical volume integrity sequence pointed to by our logical
1151 * volume descriptor. Its a sequence that can be extended using fields in the
1152 * integrity descriptor itself. On sequential media only one is found, on
1153 * rewritable media a sequence of descriptors can be found as a form of
1154 * history keeping and on non sequential write-once media the chain is vital
1155 * to allow more and more descriptors to be written. The last descriptor
1156 * written in an extent needs to claim space for a new extent.
1157 */
1158
1159 static int
1160 udf_retrieve_lvint(struct udf_mount *ump)
1161 {
1162 union dscrptr *dscr;
1163 struct logvol_int_desc *lvint;
1164 struct udf_lvintq *trace;
1165 uint32_t lb_size, lbnum, len;
1166 int dscr_type, error, trace_len;
1167
1168 lb_size = udf_rw32(ump->logical_vol->lb_size);
1169 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1170 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1171
1172 /* clean trace */
1173 memset(ump->lvint_trace, 0,
1174 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1175
1176 trace_len = 0;
1177 trace = ump->lvint_trace;
1178 trace->start = lbnum;
1179 trace->end = lbnum + len/lb_size;
1180 trace->pos = 0;
1181 trace->wpos = 0;
1182
1183 lvint = NULL;
1184 dscr = NULL;
1185 error = 0;
1186 while (len) {
1187 trace->pos = lbnum - trace->start;
1188 trace->wpos = trace->pos + 1;
1189
1190 /* read in our integrity descriptor */
1191 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1192 if (!error) {
1193 if (dscr == NULL) {
1194 trace->wpos = trace->pos;
1195 break; /* empty terminates */
1196 }
1197 dscr_type = udf_rw16(dscr->tag.id);
1198 if (dscr_type == TAGID_TERM) {
1199 trace->wpos = trace->pos;
1200 break; /* clean terminator */
1201 }
1202 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1203 /* fatal... corrupt disc */
1204 error = ENOENT;
1205 break;
1206 }
1207 if (lvint)
1208 free(lvint, M_UDFVOLD);
1209 lvint = &dscr->lvid;
1210 dscr = NULL;
1211 } /* else hope for the best... maybe the next is ok */
1212
1213 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1214 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1215
1216 /* proceed sequential */
1217 lbnum += 1;
1218 len -= lb_size;
1219
1220 /* are we linking to a new piece? */
1221 if (dscr && lvint->next_extent.len) {
1222 len = udf_rw32(lvint->next_extent.len);
1223 lbnum = udf_rw32(lvint->next_extent.loc);
1224
1225 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1226 /* IEK! segment link full... */
1227 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1228 error = EINVAL;
1229 } else {
1230 trace++;
1231 trace_len++;
1232
1233 trace->start = lbnum;
1234 trace->end = lbnum + len/lb_size;
1235 trace->pos = 0;
1236 trace->wpos = 0;
1237 }
1238 }
1239 }
1240
1241 /* clean up the mess, esp. when there is an error */
1242 if (dscr)
1243 free(dscr, M_UDFVOLD);
1244
1245 if (error && lvint) {
1246 free(lvint, M_UDFVOLD);
1247 lvint = NULL;
1248 }
1249
1250 if (!lvint)
1251 error = ENOENT;
1252
1253 ump->logvol_integrity = lvint;
1254 return error;
1255 }
1256
1257
1258 static int
1259 udf_loose_lvint_history(struct udf_mount *ump)
1260 {
1261 union dscrptr **bufs, *dscr, *last_dscr;
1262 struct udf_lvintq *trace, *in_trace, *out_trace;
1263 struct logvol_int_desc *lvint;
1264 uint32_t in_ext, in_pos, in_len;
1265 uint32_t out_ext, out_wpos, out_len;
1266 uint32_t lb_size, packet_size, lb_num;
1267 uint32_t len, start;
1268 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1269 int losing;
1270 int error;
1271
1272 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1273
1274 lb_size = udf_rw32(ump->logical_vol->lb_size);
1275 packet_size = ump->data_track.packet_size; /* XXX data track */
1276
1277 /* search smallest extent */
1278 trace = &ump->lvint_trace[0];
1279 minext = trace->end - trace->start;
1280 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1281 trace = &ump->lvint_trace[ext];
1282 extlen = trace->end - trace->start;
1283 if (extlen == 0)
1284 break;
1285 minext = MIN(minext, extlen);
1286 }
1287 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1288 /* no sense wiping all */
1289 if (losing == minext)
1290 losing--;
1291
1292 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1293
1294 /* get buffer for pieces */
1295 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1296
1297 in_ext = 0;
1298 in_pos = losing;
1299 in_trace = &ump->lvint_trace[in_ext];
1300 in_len = in_trace->end - in_trace->start;
1301 out_ext = 0;
1302 out_wpos = 0;
1303 out_trace = &ump->lvint_trace[out_ext];
1304 out_len = out_trace->end - out_trace->start;
1305
1306 last_dscr = NULL;
1307 for(;;) {
1308 out_trace->pos = out_wpos;
1309 out_trace->wpos = out_trace->pos;
1310 if (in_pos >= in_len) {
1311 in_ext++;
1312 in_pos = 0;
1313 in_trace = &ump->lvint_trace[in_ext];
1314 in_len = in_trace->end - in_trace->start;
1315 }
1316 if (out_wpos >= out_len) {
1317 out_ext++;
1318 out_wpos = 0;
1319 out_trace = &ump->lvint_trace[out_ext];
1320 out_len = out_trace->end - out_trace->start;
1321 }
1322 /* copy overlap contents */
1323 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1324 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1325 if (cpy_len == 0)
1326 break;
1327
1328 /* copy */
1329 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1330 for (cnt = 0; cnt < cpy_len; cnt++) {
1331 /* read in our integrity descriptor */
1332 lb_num = in_trace->start + in_pos + cnt;
1333 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1334 &dscr);
1335 if (error) {
1336 /* copy last one */
1337 dscr = last_dscr;
1338 }
1339 bufs[cnt] = dscr;
1340 if (!error) {
1341 if (dscr == NULL) {
1342 out_trace->pos = out_wpos + cnt;
1343 out_trace->wpos = out_trace->pos;
1344 break; /* empty terminates */
1345 }
1346 dscr_type = udf_rw16(dscr->tag.id);
1347 if (dscr_type == TAGID_TERM) {
1348 out_trace->pos = out_wpos + cnt;
1349 out_trace->wpos = out_trace->pos;
1350 break; /* clean terminator */
1351 }
1352 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1353 panic( "UDF integrity sequence "
1354 "corrupted while mounted!\n");
1355 }
1356 last_dscr = dscr;
1357 }
1358 }
1359
1360 /* patch up if first entry was on error */
1361 if (bufs[0] == NULL) {
1362 for (cnt = 0; cnt < cpy_len; cnt++)
1363 if (bufs[cnt] != NULL)
1364 break;
1365 last_dscr = bufs[cnt];
1366 for (; cnt > 0; cnt--) {
1367 bufs[cnt] = last_dscr;
1368 }
1369 }
1370
1371 /* glue + write out */
1372 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1373 for (cnt = 0; cnt < cpy_len; cnt++) {
1374 lb_num = out_trace->start + out_wpos + cnt;
1375 lvint = &bufs[cnt]->lvid;
1376
1377 /* set continuation */
1378 len = 0;
1379 start = 0;
1380 if (out_wpos + cnt == out_len) {
1381 /* get continuation */
1382 trace = &ump->lvint_trace[out_ext+1];
1383 len = trace->end - trace->start;
1384 start = trace->start;
1385 }
1386 lvint->next_extent.len = udf_rw32(len);
1387 lvint->next_extent.loc = udf_rw32(start);
1388
1389 lb_num = trace->start + trace->wpos;
1390 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 bufs[cnt], lb_num, lb_num);
1392 DPRINTFIF(VOLUMES, error,
1393 ("error writing lvint lb_num\n"));
1394 }
1395
1396 /* free non repeating descriptors */
1397 last_dscr = NULL;
1398 for (cnt = 0; cnt < cpy_len; cnt++) {
1399 if (bufs[cnt] != last_dscr)
1400 free(bufs[cnt], M_UDFVOLD);
1401 last_dscr = bufs[cnt];
1402 }
1403
1404 /* advance */
1405 in_pos += cpy_len;
1406 out_wpos += cpy_len;
1407 }
1408
1409 free(bufs, M_TEMP);
1410
1411 return 0;
1412 }
1413
1414
1415 static int
1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1417 {
1418 struct udf_lvintq *trace;
1419 struct timeval now_v;
1420 struct timespec now_s;
1421 uint32_t sector;
1422 int logvol_integrity;
1423 int space, error;
1424
1425 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1426
1427 again:
1428 /* get free space in last chunk */
1429 trace = ump->lvint_trace;
1430 while (trace->wpos > (trace->end - trace->start)) {
1431 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1432 "wpos = %d\n", trace->start, trace->end,
1433 trace->pos, trace->wpos));
1434 trace++;
1435 }
1436
1437 /* check if there is space to append */
1438 space = (trace->end - trace->start) - trace->wpos;
1439 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1440 "space = %d\n", trace->start, trace->end, trace->pos,
1441 trace->wpos, space));
1442
1443 /* get state */
1444 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1445 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1446 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1447 /* don't allow this logvol to be opened */
1448 /* TODO extent LVINT space if possible */
1449 return EROFS;
1450 }
1451 }
1452
1453 if (space < 1) {
1454 if (lvflag & UDF_APPENDONLY_LVINT)
1455 return EROFS;
1456 /* loose history by re-writing extents */
1457 error = udf_loose_lvint_history(ump);
1458 if (error)
1459 return error;
1460 goto again;
1461 }
1462
1463 /* update our integrity descriptor to identify us and timestamp it */
1464 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1465 microtime(&now_v);
1466 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1467 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1468 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1469 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1470
1471 /* writeout integrity descriptor */
1472 sector = trace->start + trace->wpos;
1473 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1474 (union dscrptr *) ump->logvol_integrity,
1475 sector, sector);
1476 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1477 if (error)
1478 return error;
1479
1480 /* advance write position */
1481 trace->wpos++; space--;
1482 if (space >= 1) {
1483 /* append terminator */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_terminator(ump, sector);
1486
1487 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1488 }
1489
1490 space = (trace->end - trace->start) - trace->wpos;
1491 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1492 "space = %d\n", trace->start, trace->end, trace->pos,
1493 trace->wpos, space));
1494 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1495 "successfull\n"));
1496
1497 return error;
1498 }
1499
1500 /* --------------------------------------------------------------------- */
1501
1502 static int
1503 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1504 {
1505 union dscrptr *dscr;
1506 /* struct udf_args *args = &ump->mount_args; */
1507 struct part_desc *partd;
1508 struct part_hdr_desc *parthdr;
1509 struct udf_bitmap *bitmap;
1510 uint32_t phys_part;
1511 uint32_t lb_num, len;
1512 int error, dscr_type;
1513
1514 /* unallocated space map */
1515 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1516 partd = ump->partitions[phys_part];
1517 if (partd == NULL)
1518 continue;
1519 parthdr = &partd->_impl_use.part_hdr;
1520
1521 lb_num = udf_rw32(partd->start_loc);
1522 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1523 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1524 if (len == 0)
1525 continue;
1526
1527 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1528 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1529 if (!error && dscr) {
1530 /* analyse */
1531 dscr_type = udf_rw16(dscr->tag.id);
1532 if (dscr_type == TAGID_SPACE_BITMAP) {
1533 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1534 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1535
1536 /* fill in ump->part_unalloc_bits */
1537 bitmap = &ump->part_unalloc_bits[phys_part];
1538 bitmap->blob = (uint8_t *) dscr;
1539 bitmap->bits = dscr->sbd.data;
1540 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1541 bitmap->pages = NULL; /* TODO */
1542 bitmap->data_pos = 0;
1543 bitmap->metadata_pos = 0;
1544 } else {
1545 free(dscr, M_UDFVOLD);
1546
1547 printf( "UDF mount: error reading unallocated "
1548 "space bitmap\n");
1549 return EROFS;
1550 }
1551 } else {
1552 /* blank not allowed */
1553 printf("UDF mount: blank unallocated space bitmap\n");
1554 return EROFS;
1555 }
1556 }
1557
1558 /* unallocated space table (not supported) */
1559 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1560 partd = ump->partitions[phys_part];
1561 if (partd == NULL)
1562 continue;
1563 parthdr = &partd->_impl_use.part_hdr;
1564
1565 len = udf_rw32(parthdr->unalloc_space_table.len);
1566 if (len) {
1567 printf("UDF mount: space tables not supported\n");
1568 return EROFS;
1569 }
1570 }
1571
1572 /* freed space map */
1573 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1574 partd = ump->partitions[phys_part];
1575 if (partd == NULL)
1576 continue;
1577 parthdr = &partd->_impl_use.part_hdr;
1578
1579 /* freed space map */
1580 lb_num = udf_rw32(partd->start_loc);
1581 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1582 len = udf_rw32(parthdr->freed_space_bitmap.len);
1583 if (len == 0)
1584 continue;
1585
1586 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1587 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1588 if (!error && dscr) {
1589 /* analyse */
1590 dscr_type = udf_rw16(dscr->tag.id);
1591 if (dscr_type == TAGID_SPACE_BITMAP) {
1592 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1593 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1594
1595 /* fill in ump->part_freed_bits */
1596 bitmap = &ump->part_unalloc_bits[phys_part];
1597 bitmap->blob = (uint8_t *) dscr;
1598 bitmap->bits = dscr->sbd.data;
1599 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1600 bitmap->pages = NULL; /* TODO */
1601 bitmap->data_pos = 0;
1602 bitmap->metadata_pos = 0;
1603 } else {
1604 free(dscr, M_UDFVOLD);
1605
1606 printf( "UDF mount: error reading freed "
1607 "space bitmap\n");
1608 return EROFS;
1609 }
1610 } else {
1611 /* blank not allowed */
1612 printf("UDF mount: blank freed space bitmap\n");
1613 return EROFS;
1614 }
1615 }
1616
1617 /* freed space table (not supported) */
1618 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1619 partd = ump->partitions[phys_part];
1620 if (partd == NULL)
1621 continue;
1622 parthdr = &partd->_impl_use.part_hdr;
1623
1624 len = udf_rw32(parthdr->freed_space_table.len);
1625 if (len) {
1626 printf("UDF mount: space tables not supported\n");
1627 return EROFS;
1628 }
1629 }
1630
1631 return 0;
1632 }
1633
1634
1635 /* TODO implement async writeout */
1636 int
1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1638 {
1639 union dscrptr *dscr;
1640 /* struct udf_args *args = &ump->mount_args; */
1641 struct part_desc *partd;
1642 struct part_hdr_desc *parthdr;
1643 uint32_t phys_part;
1644 uint32_t lb_num, len, ptov;
1645 int error_all, error;
1646
1647 error_all = 0;
1648 /* unallocated space map */
1649 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1650 partd = ump->partitions[phys_part];
1651 if (partd == NULL)
1652 continue;
1653 parthdr = &partd->_impl_use.part_hdr;
1654
1655 ptov = udf_rw32(partd->start_loc);
1656 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1657 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1658 if (len == 0)
1659 continue;
1660
1661 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1662 lb_num + ptov));
1663 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1664 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1665 (union dscrptr *) dscr,
1666 ptov + lb_num, lb_num);
1667 if (error) {
1668 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1669 error_all = error;
1670 }
1671 }
1672
1673 /* freed space map */
1674 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1675 partd = ump->partitions[phys_part];
1676 if (partd == NULL)
1677 continue;
1678 parthdr = &partd->_impl_use.part_hdr;
1679
1680 /* freed space map */
1681 ptov = udf_rw32(partd->start_loc);
1682 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1683 len = udf_rw32(parthdr->freed_space_bitmap.len);
1684 if (len == 0)
1685 continue;
1686
1687 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1688 lb_num + ptov));
1689 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1690 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1691 (union dscrptr *) dscr,
1692 ptov + lb_num, lb_num);
1693 if (error) {
1694 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1695 error_all = error;
1696 }
1697 }
1698
1699 return error_all;
1700 }
1701
1702
1703 static int
1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1705 {
1706 struct udf_node *bitmap_node;
1707 union dscrptr *dscr;
1708 struct udf_bitmap *bitmap;
1709 uint64_t inflen;
1710 int error, dscr_type;
1711
1712 bitmap_node = ump->metadatabitmap_node;
1713
1714 /* only read in when metadata bitmap node is read in */
1715 if (bitmap_node == NULL)
1716 return 0;
1717
1718 if (bitmap_node->fe) {
1719 inflen = udf_rw64(bitmap_node->fe->inf_len);
1720 } else {
1721 KASSERT(bitmap_node->efe);
1722 inflen = udf_rw64(bitmap_node->efe->inf_len);
1723 }
1724
1725 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1726 "%"PRIu64" bytes\n", inflen));
1727
1728 /* allocate space for bitmap */
1729 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1730 if (!dscr)
1731 return ENOMEM;
1732
1733 /* set vnode type to regular file or we can't read from it! */
1734 bitmap_node->vnode->v_type = VREG;
1735
1736 /* read in complete metadata bitmap file */
1737 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1738 dscr,
1739 inflen, 0,
1740 UIO_SYSSPACE,
1741 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1742 NULL, NULL);
1743 if (error) {
1744 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1745 goto errorout;
1746 }
1747
1748 /* analyse */
1749 dscr_type = udf_rw16(dscr->tag.id);
1750 if (dscr_type == TAGID_SPACE_BITMAP) {
1751 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1752 ump->metadata_unalloc_dscr = &dscr->sbd;
1753
1754 /* fill in bitmap bits */
1755 bitmap = &ump->metadata_unalloc_bits;
1756 bitmap->blob = (uint8_t *) dscr;
1757 bitmap->bits = dscr->sbd.data;
1758 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1759 bitmap->pages = NULL; /* TODO */
1760 bitmap->data_pos = 0;
1761 bitmap->metadata_pos = 0;
1762 } else {
1763 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1764 goto errorout;
1765 }
1766
1767 return 0;
1768
1769 errorout:
1770 free(dscr, M_UDFVOLD);
1771 printf( "UDF mount: error reading unallocated "
1772 "space bitmap for metadata partition\n");
1773 return EROFS;
1774 }
1775
1776
1777 int
1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1779 {
1780 struct udf_node *bitmap_node;
1781 union dscrptr *dscr;
1782 uint64_t inflen, new_inflen;
1783 int dummy, error;
1784
1785 bitmap_node = ump->metadatabitmap_node;
1786
1787 /* only write out when metadata bitmap node is known */
1788 if (bitmap_node == NULL)
1789 return 0;
1790
1791 if (bitmap_node->fe) {
1792 inflen = udf_rw64(bitmap_node->fe->inf_len);
1793 } else {
1794 KASSERT(bitmap_node->efe);
1795 inflen = udf_rw64(bitmap_node->efe->inf_len);
1796 }
1797
1798 /* reduce length to zero */
1799 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1800 new_inflen = udf_tagsize(dscr, 1);
1801
1802 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1803 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1804
1805 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1806 if (error)
1807 printf("Error resizing metadata space bitmap\n");
1808
1809 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1810 dscr,
1811 new_inflen, 0,
1812 UIO_SYSSPACE,
1813 IO_ALTSEMANTICS, FSCRED,
1814 NULL, NULL);
1815
1816 bitmap_node->i_flags |= IN_MODIFIED;
1817 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1818
1819 error = VOP_FSYNC(bitmap_node->vnode,
1820 FSCRED, FSYNC_WAIT, 0, 0);
1821
1822 if (error)
1823 printf( "Error writing out metadata partition unalloced "
1824 "space bitmap!\n");
1825
1826 return error;
1827 }
1828
1829
1830 /* --------------------------------------------------------------------- */
1831
1832 /*
1833 * Checks if ump's vds information is correct and complete
1834 */
1835
1836 int
1837 udf_process_vds(struct udf_mount *ump) {
1838 union udf_pmap *mapping;
1839 /* struct udf_args *args = &ump->mount_args; */
1840 struct logvol_int_desc *lvint;
1841 struct udf_logvol_info *lvinfo;
1842 struct part_desc *part;
1843 uint32_t n_pm, mt_l;
1844 uint8_t *pmap_pos;
1845 char *domain_name, *map_name;
1846 const char *check_name;
1847 char bits[128];
1848 int pmap_stype, pmap_size;
1849 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1850 int n_phys, n_virt, n_spar, n_meta;
1851 int len, error;
1852
1853 if (ump == NULL)
1854 return ENOENT;
1855
1856 /* we need at least an anchor (trivial, but for safety) */
1857 if (ump->anchors[0] == NULL)
1858 return EINVAL;
1859
1860 /* we need at least one primary and one logical volume descriptor */
1861 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1862 return EINVAL;
1863
1864 /* we need at least one partition descriptor */
1865 if (ump->partitions[0] == NULL)
1866 return EINVAL;
1867
1868 /* check logical volume sector size verses device sector size */
1869 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1870 printf("UDF mount: format violation, lb_size != sector size\n");
1871 return EINVAL;
1872 }
1873
1874 /* check domain name */
1875 domain_name = ump->logical_vol->domain_id.id;
1876 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1877 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1878 return EINVAL;
1879 }
1880
1881 /* retrieve logical volume integrity sequence */
1882 error = udf_retrieve_lvint(ump);
1883
1884 /*
1885 * We need at least one logvol integrity descriptor recorded. Note
1886 * that its OK to have an open logical volume integrity here. The VAT
1887 * will close/update the integrity.
1888 */
1889 if (ump->logvol_integrity == NULL)
1890 return EINVAL;
1891
1892 /* process derived structures */
1893 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1894 lvint = ump->logvol_integrity;
1895 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1896 ump->logvol_info = lvinfo;
1897
1898 /* TODO check udf versions? */
1899
1900 /*
1901 * check logvol mappings: effective virt->log partmap translation
1902 * check and recording of the mapping results. Saves expensive
1903 * strncmp() in tight places.
1904 */
1905 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1906 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1907 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1908 pmap_pos = ump->logical_vol->maps;
1909
1910 if (n_pm > UDF_PMAPS) {
1911 printf("UDF mount: too many mappings\n");
1912 return EINVAL;
1913 }
1914
1915 /* count types and set partition numbers */
1916 ump->data_part = ump->node_part = ump->fids_part = 0;
1917 n_phys = n_virt = n_spar = n_meta = 0;
1918 for (log_part = 0; log_part < n_pm; log_part++) {
1919 mapping = (union udf_pmap *) pmap_pos;
1920 pmap_stype = pmap_pos[0];
1921 pmap_size = pmap_pos[1];
1922 switch (pmap_stype) {
1923 case 1: /* physical mapping */
1924 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1925 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1926 pmap_type = UDF_VTOP_TYPE_PHYS;
1927 n_phys++;
1928 ump->data_part = log_part;
1929 ump->node_part = log_part;
1930 ump->fids_part = log_part;
1931 break;
1932 case 2: /* virtual/sparable/meta mapping */
1933 map_name = mapping->pm2.part_id.id;
1934 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1935 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1936 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1937 len = UDF_REGID_ID_SIZE;
1938
1939 check_name = "*UDF Virtual Partition";
1940 if (strncmp(map_name, check_name, len) == 0) {
1941 pmap_type = UDF_VTOP_TYPE_VIRT;
1942 n_virt++;
1943 ump->node_part = log_part;
1944 break;
1945 }
1946 check_name = "*UDF Sparable Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1949 n_spar++;
1950 ump->data_part = log_part;
1951 ump->node_part = log_part;
1952 ump->fids_part = log_part;
1953 break;
1954 }
1955 check_name = "*UDF Metadata Partition";
1956 if (strncmp(map_name, check_name, len) == 0) {
1957 pmap_type = UDF_VTOP_TYPE_META;
1958 n_meta++;
1959 ump->node_part = log_part;
1960 ump->fids_part = log_part;
1961 break;
1962 }
1963 break;
1964 default:
1965 return EINVAL;
1966 }
1967
1968 /*
1969 * BUGALERT: some rogue implementations use random physical
1970 * partition numbers to break other implementations so lookup
1971 * the number.
1972 */
1973 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1974 part = ump->partitions[phys_part];
1975 if (part == NULL)
1976 continue;
1977 if (udf_rw16(part->part_num) == raw_phys_part)
1978 break;
1979 }
1980
1981 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1982 raw_phys_part, phys_part, pmap_type));
1983
1984 if (phys_part == UDF_PARTITIONS)
1985 return EINVAL;
1986 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1987 return EINVAL;
1988
1989 ump->vtop [log_part] = phys_part;
1990 ump->vtop_tp[log_part] = pmap_type;
1991
1992 pmap_pos += pmap_size;
1993 }
1994 /* not winning the beauty contest */
1995 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1996
1997 /* test some basic UDF assertions/requirements */
1998 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1999 return EINVAL;
2000
2001 if (n_virt) {
2002 if ((n_phys == 0) || n_spar || n_meta)
2003 return EINVAL;
2004 }
2005 if (n_spar + n_phys == 0)
2006 return EINVAL;
2007
2008 /* select allocation type for each logical partition */
2009 for (log_part = 0; log_part < n_pm; log_part++) {
2010 maps_on = ump->vtop[log_part];
2011 switch (ump->vtop_tp[log_part]) {
2012 case UDF_VTOP_TYPE_PHYS :
2013 assert(maps_on == log_part);
2014 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2015 break;
2016 case UDF_VTOP_TYPE_VIRT :
2017 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2018 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2019 break;
2020 case UDF_VTOP_TYPE_SPARABLE :
2021 assert(maps_on == log_part);
2022 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 break;
2024 case UDF_VTOP_TYPE_META :
2025 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2026 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2027 /* special case for UDF 2.60 */
2028 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2029 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2030 }
2031 break;
2032 default:
2033 panic("bad alloction type in udf's ump->vtop\n");
2034 }
2035 }
2036
2037 /* determine logical volume open/closure actions */
2038 if (n_virt) {
2039 ump->lvopen = 0;
2040 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2041 ump->lvopen |= UDF_OPEN_SESSION ;
2042 ump->lvclose = UDF_WRITE_VAT;
2043 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2044 ump->lvclose |= UDF_CLOSE_SESSION;
2045 } else {
2046 /* `normal' rewritable or non sequential media */
2047 ump->lvopen = UDF_WRITE_LVINT;
2048 ump->lvclose = UDF_WRITE_LVINT;
2049 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2050 ump->lvopen |= UDF_APPENDONLY_LVINT;
2051 }
2052
2053 /*
2054 * Determine sheduler error behaviour. For virtual partitions, update
2055 * the trackinfo; for sparable partitions replace a whole block on the
2056 * sparable table. Allways requeue.
2057 */
2058 ump->lvreadwrite = 0;
2059 if (n_virt)
2060 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2061 if (n_spar)
2062 ump->lvreadwrite = UDF_REMAP_BLOCK;
2063
2064 /*
2065 * Select our sheduler
2066 */
2067 ump->strategy = &udf_strat_rmw;
2068 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2069 ump->strategy = &udf_strat_sequential;
2070 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2071 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2072 ump->strategy = &udf_strat_direct;
2073 if (n_spar)
2074 ump->strategy = &udf_strat_rmw;
2075
2076 #if 0
2077 /* read-only access won't benefit from the other shedulers */
2078 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2079 ump->strategy = &udf_strat_direct;
2080 #endif
2081
2082 /* print results */
2083 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2084 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2085 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2086 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2087 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2088 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2089
2090 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2091 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2092 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2093 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2094 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2095 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2096
2097 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2098 (ump->strategy == &udf_strat_direct) ? "Direct" :
2099 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2100 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2101
2102 /* signal its OK for now */
2103 return 0;
2104 }
2105
2106 /* --------------------------------------------------------------------- */
2107
2108 /*
2109 * Update logical volume name in all structures that keep a record of it. We
2110 * use memmove since each of them might be specified as a source.
2111 *
2112 * Note that it doesn't update the VAT structure!
2113 */
2114
2115 static void
2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2117 {
2118 struct logvol_desc *lvd = NULL;
2119 struct fileset_desc *fsd = NULL;
2120 struct udf_lv_info *lvi = NULL;
2121
2122 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2123 lvd = ump->logical_vol;
2124 fsd = ump->fileset_desc;
2125 if (ump->implementation)
2126 lvi = &ump->implementation->_impl_use.lv_info;
2127
2128 /* logvol's id might be specified as origional so use memmove here */
2129 memmove(lvd->logvol_id, logvol_id, 128);
2130 if (fsd)
2131 memmove(fsd->logvol_id, logvol_id, 128);
2132 if (lvi)
2133 memmove(lvi->logvol_id, logvol_id, 128);
2134 }
2135
2136 /* --------------------------------------------------------------------- */
2137
2138 void
2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2140 uint32_t sector)
2141 {
2142 assert(ump->logical_vol);
2143
2144 tag->id = udf_rw16(tagid);
2145 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2146 tag->cksum = 0;
2147 tag->reserved = 0;
2148 tag->serial_num = ump->logical_vol->tag.serial_num;
2149 tag->tag_loc = udf_rw32(sector);
2150 }
2151
2152
2153 uint64_t
2154 udf_advance_uniqueid(struct udf_mount *ump)
2155 {
2156 uint64_t unique_id;
2157
2158 mutex_enter(&ump->logvol_mutex);
2159 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2160 if (unique_id < 0x10)
2161 unique_id = 0x10;
2162 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2163 mutex_exit(&ump->logvol_mutex);
2164
2165 return unique_id;
2166 }
2167
2168
2169 static void
2170 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2171 {
2172 struct udf_mount *ump = udf_node->ump;
2173 uint32_t num_dirs, num_files;
2174 int udf_file_type;
2175
2176 /* get file type */
2177 if (udf_node->fe) {
2178 udf_file_type = udf_node->fe->icbtag.file_type;
2179 } else {
2180 udf_file_type = udf_node->efe->icbtag.file_type;
2181 }
2182
2183 /* adjust file count */
2184 mutex_enter(&ump->allocate_mutex);
2185 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2186 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2187 ump->logvol_info->num_directories =
2188 udf_rw32((num_dirs + sign));
2189 } else {
2190 num_files = udf_rw32(ump->logvol_info->num_files);
2191 ump->logvol_info->num_files =
2192 udf_rw32((num_files + sign));
2193 }
2194 mutex_exit(&ump->allocate_mutex);
2195 }
2196
2197
2198 void
2199 udf_osta_charset(struct charspec *charspec)
2200 {
2201 memset(charspec, 0, sizeof(struct charspec));
2202 charspec->type = 0;
2203 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2204 }
2205
2206
2207 /* first call udf_set_regid and then the suffix */
2208 void
2209 udf_set_regid(struct regid *regid, char const *name)
2210 {
2211 memset(regid, 0, sizeof(struct regid));
2212 regid->flags = 0; /* not dirty and not protected */
2213 strcpy((char *) regid->id, name);
2214 }
2215
2216
2217 void
2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2219 {
2220 uint16_t *ver;
2221
2222 ver = (uint16_t *) regid->id_suffix;
2223 *ver = ump->logvol_info->min_udf_readver;
2224 }
2225
2226
2227 void
2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 uint16_t *ver;
2231
2232 ver = (uint16_t *) regid->id_suffix;
2233 *ver = ump->logvol_info->min_udf_readver;
2234
2235 regid->id_suffix[2] = 4; /* unix */
2236 regid->id_suffix[3] = 8; /* NetBSD */
2237 }
2238
2239
2240 void
2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2242 {
2243 regid->id_suffix[0] = 4; /* unix */
2244 regid->id_suffix[1] = 8; /* NetBSD */
2245 }
2246
2247
2248 void
2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2250 {
2251 regid->id_suffix[0] = APP_VERSION_MAIN;
2252 regid->id_suffix[1] = APP_VERSION_SUB;
2253 }
2254
2255 static int
2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2257 struct long_ad *parent, uint64_t unique_id)
2258 {
2259 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2260 int fidsize = 40;
2261
2262 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2263 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2264 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2265 fid->icb = *parent;
2266 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2267 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2268 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2269
2270 return fidsize;
2271 }
2272
2273 /* --------------------------------------------------------------------- */
2274
2275 /*
2276 * Extended attribute support. UDF knows of 3 places for extended attributes:
2277 *
2278 * (a) inside the file's (e)fe in the length of the extended attribute area
2279 * before the allocation descriptors/filedata
2280 *
2281 * (b) in a file referenced by (e)fe->ext_attr_icb and
2282 *
2283 * (c) in the e(fe)'s associated stream directory that can hold various
2284 * sub-files. In the stream directory a few fixed named subfiles are reserved
2285 * for NT/Unix ACL's and OS/2 attributes.
2286 *
2287 * NOTE: Extended attributes are read randomly but allways written
2288 * *atomicaly*. For ACL's this interface is propably different but not known
2289 * to me yet.
2290 *
2291 * Order of extended attributes in a space :
2292 * ECMA 167 EAs
2293 * Non block aligned Implementation Use EAs
2294 * Block aligned Implementation Use EAs
2295 * Application Use EAs
2296 */
2297
2298 static int
2299 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2300 {
2301 uint16_t *spos;
2302
2303 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2304 /* checksum valid? */
2305 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2306 spos = (uint16_t *) implext->data;
2307 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2308 return EINVAL;
2309 }
2310 return 0;
2311 }
2312
2313 static void
2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2315 {
2316 uint16_t *spos;
2317
2318 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2319 /* set checksum */
2320 spos = (uint16_t *) implext->data;
2321 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2322 }
2323 }
2324
2325
2326 int
2327 udf_extattr_search_intern(struct udf_node *node,
2328 uint32_t sattr, char const *sattrname,
2329 uint32_t *offsetp, uint32_t *lengthp)
2330 {
2331 struct extattrhdr_desc *eahdr;
2332 struct extattr_entry *attrhdr;
2333 struct impl_extattr_entry *implext;
2334 uint32_t offset, a_l, sector_size;
2335 int32_t l_ea;
2336 uint8_t *pos;
2337 int error;
2338
2339 /* get mountpoint */
2340 sector_size = node->ump->discinfo.sector_size;
2341
2342 /* get information from fe/efe */
2343 if (node->fe) {
2344 l_ea = udf_rw32(node->fe->l_ea);
2345 eahdr = (struct extattrhdr_desc *) node->fe->data;
2346 } else {
2347 assert(node->efe);
2348 l_ea = udf_rw32(node->efe->l_ea);
2349 eahdr = (struct extattrhdr_desc *) node->efe->data;
2350 }
2351
2352 /* something recorded here? */
2353 if (l_ea == 0)
2354 return ENOENT;
2355
2356 /* check extended attribute tag; what to do if it fails? */
2357 error = udf_check_tag(eahdr);
2358 if (error)
2359 return EINVAL;
2360 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2361 return EINVAL;
2362 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2363 if (error)
2364 return EINVAL;
2365
2366 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2367
2368 /* looking for Ecma-167 attributes? */
2369 offset = sizeof(struct extattrhdr_desc);
2370
2371 /* looking for either implemenation use or application use */
2372 if (sattr == 2048) { /* [4/48.10.8] */
2373 offset = udf_rw32(eahdr->impl_attr_loc);
2374 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2375 return ENOENT;
2376 }
2377 if (sattr == 65536) { /* [4/48.10.9] */
2378 offset = udf_rw32(eahdr->appl_attr_loc);
2379 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2380 return ENOENT;
2381 }
2382
2383 /* paranoia check offset and l_ea */
2384 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2385 return EINVAL;
2386
2387 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2388
2389 /* find our extended attribute */
2390 l_ea -= offset;
2391 pos = (uint8_t *) eahdr + offset;
2392
2393 while (l_ea >= sizeof(struct extattr_entry)) {
2394 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2395 attrhdr = (struct extattr_entry *) pos;
2396 implext = (struct impl_extattr_entry *) pos;
2397
2398 /* get complete attribute length and check for roque values */
2399 a_l = udf_rw32(attrhdr->a_l);
2400 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2401 udf_rw32(attrhdr->type),
2402 attrhdr->subtype, a_l, l_ea));
2403 if ((a_l == 0) || (a_l > l_ea))
2404 return EINVAL;
2405
2406 if (attrhdr->type != sattr)
2407 goto next_attribute;
2408
2409 /* we might have found it! */
2410 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2411 *offsetp = offset;
2412 *lengthp = a_l;
2413 return 0; /* success */
2414 }
2415
2416 /*
2417 * Implementation use and application use extended attributes
2418 * have a name to identify. They share the same structure only
2419 * UDF implementation use extended attributes have a checksum
2420 * we need to check
2421 */
2422
2423 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2424 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2425 /* we have found our appl/implementation attribute */
2426 *offsetp = offset;
2427 *lengthp = a_l;
2428 return 0; /* success */
2429 }
2430
2431 next_attribute:
2432 /* next attribute */
2433 pos += a_l;
2434 l_ea -= a_l;
2435 offset += a_l;
2436 }
2437 /* not found */
2438 return ENOENT;
2439 }
2440
2441
2442 static void
2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2444 struct extattr_entry *extattr)
2445 {
2446 struct file_entry *fe;
2447 struct extfile_entry *efe;
2448 struct extattrhdr_desc *extattrhdr;
2449 struct impl_extattr_entry *implext;
2450 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2451 uint32_t *l_eap, l_ad;
2452 uint16_t *spos;
2453 uint8_t *bpos, *data;
2454
2455 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2456 fe = &dscr->fe;
2457 data = fe->data;
2458 l_eap = &fe->l_ea;
2459 l_ad = udf_rw32(fe->l_ad);
2460 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2461 efe = &dscr->efe;
2462 data = efe->data;
2463 l_eap = &efe->l_ea;
2464 l_ad = udf_rw32(efe->l_ad);
2465 } else {
2466 panic("Bad tag passed to udf_extattr_insert_internal");
2467 }
2468
2469 /* can't append already written to file descriptors yet */
2470 assert(l_ad == 0);
2471
2472 /* should have a header! */
2473 extattrhdr = (struct extattrhdr_desc *) data;
2474 l_ea = udf_rw32(*l_eap);
2475 if (l_ea == 0) {
2476 /* create empty extended attribute header */
2477 exthdr_len = sizeof(struct extattrhdr_desc);
2478
2479 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2480 /* loc */ 0);
2481 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2482 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2483 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2484
2485 /* record extended attribute header length */
2486 l_ea = exthdr_len;
2487 *l_eap = udf_rw32(l_ea);
2488 }
2489
2490 /* extract locations */
2491 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2492 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2493 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2494 impl_attr_loc = l_ea;
2495 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 appl_attr_loc = l_ea;
2497
2498 /* Ecma 167 EAs */
2499 if (udf_rw32(extattr->type) < 2048) {
2500 assert(impl_attr_loc == l_ea);
2501 assert(appl_attr_loc == l_ea);
2502 }
2503
2504 /* implementation use extended attributes */
2505 if (udf_rw32(extattr->type) == 2048) {
2506 assert(appl_attr_loc == l_ea);
2507
2508 /* calculate and write extended attribute header checksum */
2509 implext = (struct impl_extattr_entry *) extattr;
2510 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2511 spos = (uint16_t *) implext->data;
2512 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2513 }
2514
2515 /* application use extended attributes */
2516 assert(udf_rw32(extattr->type) != 65536);
2517 assert(appl_attr_loc == l_ea);
2518
2519 /* append the attribute at the end of the current space */
2520 bpos = data + udf_rw32(*l_eap);
2521 a_l = udf_rw32(extattr->a_l);
2522
2523 /* update impl. attribute locations */
2524 if (udf_rw32(extattr->type) < 2048) {
2525 impl_attr_loc = l_ea + a_l;
2526 appl_attr_loc = l_ea + a_l;
2527 }
2528 if (udf_rw32(extattr->type) == 2048) {
2529 appl_attr_loc = l_ea + a_l;
2530 }
2531
2532 /* copy and advance */
2533 memcpy(bpos, extattr, a_l);
2534 l_ea += a_l;
2535 *l_eap = udf_rw32(l_ea);
2536
2537 /* do the `dance` again backwards */
2538 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2539 if (impl_attr_loc == l_ea)
2540 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2541 if (appl_attr_loc == l_ea)
2542 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2543 }
2544
2545 /* store offsets */
2546 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2547 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2548 }
2549
2550
2551 /* --------------------------------------------------------------------- */
2552
2553 static int
2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2555 {
2556 struct udf_mount *ump;
2557 struct udf_logvol_info *lvinfo;
2558 struct impl_extattr_entry *implext;
2559 struct vatlvext_extattr_entry lvext;
2560 const char *extstr = "*UDF VAT LVExtension";
2561 uint64_t vat_uniqueid;
2562 uint32_t offset, a_l;
2563 uint8_t *ea_start, *lvextpos;
2564 int error;
2565
2566 /* get mountpoint and lvinfo */
2567 ump = vat_node->ump;
2568 lvinfo = ump->logvol_info;
2569
2570 /* get information from fe/efe */
2571 if (vat_node->fe) {
2572 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2573 ea_start = vat_node->fe->data;
2574 } else {
2575 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2576 ea_start = vat_node->efe->data;
2577 }
2578
2579 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2580 if (error)
2581 return error;
2582
2583 implext = (struct impl_extattr_entry *) (ea_start + offset);
2584 error = udf_impl_extattr_check(implext);
2585 if (error)
2586 return error;
2587
2588 /* paranoia */
2589 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2590 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2591 return EINVAL;
2592 }
2593
2594 /*
2595 * we have found our "VAT LVExtension attribute. BUT due to a
2596 * bug in the specification it might not be word aligned so
2597 * copy first to avoid panics on some machines (!!)
2598 */
2599 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2600 lvextpos = implext->data + udf_rw32(implext->iu_l);
2601 memcpy(&lvext, lvextpos, sizeof(lvext));
2602
2603 /* check if it was updated the last time */
2604 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2605 lvinfo->num_files = lvext.num_files;
2606 lvinfo->num_directories = lvext.num_directories;
2607 udf_update_logvolname(ump, lvext.logvol_id);
2608 } else {
2609 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2610 /* replace VAT LVExt by free space EA */
2611 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2612 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2613 udf_calc_impl_extattr_checksum(implext);
2614 }
2615
2616 return 0;
2617 }
2618
2619
2620 static int
2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2622 {
2623 struct udf_mount *ump;
2624 struct udf_logvol_info *lvinfo;
2625 struct impl_extattr_entry *implext;
2626 struct vatlvext_extattr_entry lvext;
2627 const char *extstr = "*UDF VAT LVExtension";
2628 uint64_t vat_uniqueid;
2629 uint32_t offset, a_l;
2630 uint8_t *ea_start, *lvextpos;
2631 int error;
2632
2633 /* get mountpoint and lvinfo */
2634 ump = vat_node->ump;
2635 lvinfo = ump->logvol_info;
2636
2637 /* get information from fe/efe */
2638 if (vat_node->fe) {
2639 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2640 ea_start = vat_node->fe->data;
2641 } else {
2642 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2643 ea_start = vat_node->efe->data;
2644 }
2645
2646 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2647 if (error)
2648 return error;
2649 /* found, it existed */
2650
2651 /* paranoia */
2652 implext = (struct impl_extattr_entry *) (ea_start + offset);
2653 error = udf_impl_extattr_check(implext);
2654 if (error) {
2655 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2656 return error;
2657 }
2658 /* it is correct */
2659
2660 /*
2661 * we have found our "VAT LVExtension attribute. BUT due to a
2662 * bug in the specification it might not be word aligned so
2663 * copy first to avoid panics on some machines (!!)
2664 */
2665 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2666 lvextpos = implext->data + udf_rw32(implext->iu_l);
2667
2668 lvext.unique_id_chk = vat_uniqueid;
2669 lvext.num_files = lvinfo->num_files;
2670 lvext.num_directories = lvinfo->num_directories;
2671 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2672
2673 memcpy(lvextpos, &lvext, sizeof(lvext));
2674
2675 return 0;
2676 }
2677
2678 /* --------------------------------------------------------------------- */
2679
2680 int
2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2682 {
2683 struct udf_mount *ump = vat_node->ump;
2684
2685 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2686 return EINVAL;
2687
2688 memcpy(blob, ump->vat_table + offset, size);
2689 return 0;
2690 }
2691
2692 int
2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2694 {
2695 struct udf_mount *ump = vat_node->ump;
2696 uint32_t offset_high;
2697 uint8_t *new_vat_table;
2698
2699 /* extent VAT allocation if needed */
2700 offset_high = offset + size;
2701 if (offset_high >= ump->vat_table_alloc_len) {
2702 /* realloc */
2703 new_vat_table = realloc(ump->vat_table,
2704 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2705 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2706 if (!new_vat_table) {
2707 printf("udf_vat_write: can't extent VAT, out of mem\n");
2708 return ENOMEM;
2709 }
2710 ump->vat_table = new_vat_table;
2711 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2712 }
2713 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2714
2715 memcpy(ump->vat_table + offset, blob, size);
2716 return 0;
2717 }
2718
2719 /* --------------------------------------------------------------------- */
2720
2721 /* TODO support previous VAT location writeout */
2722 static int
2723 udf_update_vat_descriptor(struct udf_mount *ump)
2724 {
2725 struct udf_node *vat_node = ump->vat_node;
2726 struct udf_logvol_info *lvinfo = ump->logvol_info;
2727 struct icb_tag *icbtag;
2728 struct udf_oldvat_tail *oldvat_tl;
2729 struct udf_vat *vat;
2730 uint64_t unique_id;
2731 uint32_t lb_size;
2732 uint8_t *raw_vat;
2733 int filetype, error;
2734
2735 KASSERT(vat_node);
2736 KASSERT(lvinfo);
2737 lb_size = udf_rw32(ump->logical_vol->lb_size);
2738
2739 /* get our new unique_id */
2740 unique_id = udf_advance_uniqueid(ump);
2741
2742 /* get information from fe/efe */
2743 if (vat_node->fe) {
2744 icbtag = &vat_node->fe->icbtag;
2745 vat_node->fe->unique_id = udf_rw64(unique_id);
2746 } else {
2747 icbtag = &vat_node->efe->icbtag;
2748 vat_node->efe->unique_id = udf_rw64(unique_id);
2749 }
2750
2751 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2752 filetype = icbtag->file_type;
2753 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2754
2755 /* allocate piece to process head or tail of VAT file */
2756 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2757
2758 if (filetype == 0) {
2759 /*
2760 * Update "*UDF VAT LVExtension" extended attribute from the
2761 * lvint if present.
2762 */
2763 udf_update_vat_extattr_from_lvid(vat_node);
2764
2765 /* setup identifying regid */
2766 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2767 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2768
2769 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2770 udf_add_udf_regid(ump, &oldvat_tl->id);
2771 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2772
2773 /* write out new tail of virtual allocation table file */
2774 error = udf_vat_write(vat_node, raw_vat,
2775 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2776 } else {
2777 /* compose the VAT2 header */
2778 vat = (struct udf_vat *) raw_vat;
2779 memset(vat, 0, sizeof(struct udf_vat));
2780
2781 vat->header_len = udf_rw16(152); /* as per spec */
2782 vat->impl_use_len = udf_rw16(0);
2783 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2784 vat->prev_vat = udf_rw32(0xffffffff);
2785 vat->num_files = lvinfo->num_files;
2786 vat->num_directories = lvinfo->num_directories;
2787 vat->min_udf_readver = lvinfo->min_udf_readver;
2788 vat->min_udf_writever = lvinfo->min_udf_writever;
2789 vat->max_udf_writever = lvinfo->max_udf_writever;
2790
2791 error = udf_vat_write(vat_node, raw_vat,
2792 sizeof(struct udf_vat), 0);
2793 }
2794 free(raw_vat, M_TEMP);
2795
2796 return error; /* success! */
2797 }
2798
2799
2800 int
2801 udf_writeout_vat(struct udf_mount *ump)
2802 {
2803 struct udf_node *vat_node = ump->vat_node;
2804 uint32_t vat_length;
2805 int error;
2806
2807 KASSERT(vat_node);
2808
2809 DPRINTF(CALL, ("udf_writeout_vat\n"));
2810
2811 // mutex_enter(&ump->allocate_mutex);
2812 udf_update_vat_descriptor(ump);
2813
2814 /* write out the VAT contents ; TODO intelligent writing */
2815 vat_length = ump->vat_table_len;
2816 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 ump->vat_table, ump->vat_table_len, 0,
2818 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2819 if (error) {
2820 printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 goto out;
2822 }
2823
2824 // mutex_exit(&ump->allocate_mutex);
2825
2826 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2827 error = VOP_FSYNC(ump->vat_node->vnode,
2828 FSCRED, FSYNC_WAIT, 0, 0);
2829 if (error)
2830 printf("udf_writeout_vat: error writing VAT node!\n");
2831 out:
2832
2833 return error;
2834 }
2835
2836 /* --------------------------------------------------------------------- */
2837
2838 /*
2839 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2840 * descriptor. If OK, read in complete VAT file.
2841 */
2842
2843 static int
2844 udf_check_for_vat(struct udf_node *vat_node)
2845 {
2846 struct udf_mount *ump;
2847 struct icb_tag *icbtag;
2848 struct timestamp *mtime;
2849 struct udf_vat *vat;
2850 struct udf_oldvat_tail *oldvat_tl;
2851 struct udf_logvol_info *lvinfo;
2852 uint64_t unique_id;
2853 uint32_t vat_length;
2854 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2855 uint32_t sector_size;
2856 uint32_t *raw_vat;
2857 uint8_t *vat_table;
2858 char *regid_name;
2859 int filetype;
2860 int error;
2861
2862 /* vat_length is really 64 bits though impossible */
2863
2864 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2865 if (!vat_node)
2866 return ENOENT;
2867
2868 /* get mount info */
2869 ump = vat_node->ump;
2870 sector_size = udf_rw32(ump->logical_vol->lb_size);
2871
2872 /* check assertions */
2873 assert(vat_node->fe || vat_node->efe);
2874 assert(ump->logvol_integrity);
2875
2876 /* set vnode type to regular file or we can't read from it! */
2877 vat_node->vnode->v_type = VREG;
2878
2879 /* get information from fe/efe */
2880 if (vat_node->fe) {
2881 vat_length = udf_rw64(vat_node->fe->inf_len);
2882 icbtag = &vat_node->fe->icbtag;
2883 mtime = &vat_node->fe->mtime;
2884 unique_id = udf_rw64(vat_node->fe->unique_id);
2885 } else {
2886 vat_length = udf_rw64(vat_node->efe->inf_len);
2887 icbtag = &vat_node->efe->icbtag;
2888 mtime = &vat_node->efe->mtime;
2889 unique_id = udf_rw64(vat_node->efe->unique_id);
2890 }
2891
2892 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2893 filetype = icbtag->file_type;
2894 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2895 return ENOENT;
2896
2897 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2898
2899 vat_table_alloc_len =
2900 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2901 * UDF_VAT_CHUNKSIZE;
2902
2903 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2904 M_CANFAIL | M_WAITOK);
2905 if (vat_table == NULL) {
2906 printf("allocation of %d bytes failed for VAT\n",
2907 vat_table_alloc_len);
2908 return ENOMEM;
2909 }
2910
2911 /* allocate piece to read in head or tail of VAT file */
2912 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2913
2914 /*
2915 * check contents of the file if its the old 1.50 VAT table format.
2916 * Its notoriously broken and allthough some implementations support an
2917 * extention as defined in the UDF 1.50 errata document, its doubtfull
2918 * to be useable since a lot of implementations don't maintain it.
2919 */
2920 lvinfo = ump->logvol_info;
2921
2922 if (filetype == 0) {
2923 /* definition */
2924 vat_offset = 0;
2925 vat_entries = (vat_length-36)/4;
2926
2927 /* read in tail of virtual allocation table file */
2928 error = vn_rdwr(UIO_READ, vat_node->vnode,
2929 (uint8_t *) raw_vat,
2930 sizeof(struct udf_oldvat_tail),
2931 vat_entries * 4,
2932 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2933 NULL, NULL);
2934 if (error)
2935 goto out;
2936
2937 /* check 1.50 VAT */
2938 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2939 regid_name = (char *) oldvat_tl->id.id;
2940 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2941 if (error) {
2942 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2943 error = ENOENT;
2944 goto out;
2945 }
2946
2947 /*
2948 * update LVID from "*UDF VAT LVExtension" extended attribute
2949 * if present.
2950 */
2951 udf_update_lvid_from_vat_extattr(vat_node);
2952 } else {
2953 /* read in head of virtual allocation table file */
2954 error = vn_rdwr(UIO_READ, vat_node->vnode,
2955 (uint8_t *) raw_vat,
2956 sizeof(struct udf_vat), 0,
2957 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2958 NULL, NULL);
2959 if (error)
2960 goto out;
2961
2962 /* definition */
2963 vat = (struct udf_vat *) raw_vat;
2964 vat_offset = vat->header_len;
2965 vat_entries = (vat_length - vat_offset)/4;
2966
2967 assert(lvinfo);
2968 lvinfo->num_files = vat->num_files;
2969 lvinfo->num_directories = vat->num_directories;
2970 lvinfo->min_udf_readver = vat->min_udf_readver;
2971 lvinfo->min_udf_writever = vat->min_udf_writever;
2972 lvinfo->max_udf_writever = vat->max_udf_writever;
2973
2974 udf_update_logvolname(ump, vat->logvol_id);
2975 }
2976
2977 /* read in complete VAT file */
2978 error = vn_rdwr(UIO_READ, vat_node->vnode,
2979 vat_table,
2980 vat_length, 0,
2981 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2982 NULL, NULL);
2983 if (error)
2984 printf("read in of complete VAT file failed (error %d)\n",
2985 error);
2986 if (error)
2987 goto out;
2988
2989 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2990 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2991 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2992 ump->logvol_integrity->time = *mtime;
2993
2994 ump->vat_table_len = vat_length;
2995 ump->vat_table_alloc_len = vat_table_alloc_len;
2996 ump->vat_table = vat_table;
2997 ump->vat_offset = vat_offset;
2998 ump->vat_entries = vat_entries;
2999 ump->vat_last_free_lb = 0; /* start at beginning */
3000
3001 out:
3002 if (error) {
3003 if (vat_table)
3004 free(vat_table, M_UDFVOLD);
3005 }
3006 free(raw_vat, M_TEMP);
3007
3008 return error;
3009 }
3010
3011 /* --------------------------------------------------------------------- */
3012
3013 static int
3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3015 {
3016 struct udf_node *vat_node;
3017 struct long_ad icb_loc;
3018 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3019 int error;
3020
3021 /* mapping info not needed */
3022 mapping = mapping;
3023
3024 vat_loc = ump->last_possible_vat_location;
3025 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3026
3027 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3028 vat_loc, early_vat_loc));
3029 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3030 late_vat_loc = vat_loc + 1024;
3031
3032 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3033 vat_loc, early_vat_loc));
3034
3035 /* start looking from the end of the range */
3036 do {
3037 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3038 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3039 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3040
3041 error = udf_get_node(ump, &icb_loc, &vat_node);
3042 if (!error) {
3043 error = udf_check_for_vat(vat_node);
3044 DPRINTFIF(VOLUMES, !error,
3045 ("VAT accepted at %d\n", vat_loc));
3046 if (!error)
3047 break;
3048 }
3049 if (vat_node) {
3050 vput(vat_node->vnode);
3051 vat_node = NULL;
3052 }
3053 vat_loc--; /* walk backwards */
3054 } while (vat_loc >= early_vat_loc);
3055
3056 /* keep our VAT node around */
3057 if (vat_node) {
3058 UDF_SET_SYSTEMFILE(vat_node->vnode);
3059 ump->vat_node = vat_node;
3060 }
3061
3062 return error;
3063 }
3064
3065 /* --------------------------------------------------------------------- */
3066
3067 static int
3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3069 {
3070 union dscrptr *dscr;
3071 struct part_map_spare *pms = &mapping->pms;
3072 uint32_t lb_num;
3073 int spar, error;
3074
3075 /*
3076 * The partition mapping passed on to us specifies the information we
3077 * need to locate and initialise the sparable partition mapping
3078 * information we need.
3079 */
3080
3081 DPRINTF(VOLUMES, ("Read sparable table\n"));
3082 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3083 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3084
3085 for (spar = 0; spar < pms->n_st; spar++) {
3086 lb_num = pms->st_loc[spar];
3087 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3088 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3089 if (!error && dscr) {
3090 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3091 if (ump->sparing_table)
3092 free(ump->sparing_table, M_UDFVOLD);
3093 ump->sparing_table = &dscr->spt;
3094 dscr = NULL;
3095 DPRINTF(VOLUMES,
3096 ("Sparing table accepted (%d entries)\n",
3097 udf_rw16(ump->sparing_table->rt_l)));
3098 break; /* we're done */
3099 }
3100 }
3101 if (dscr)
3102 free(dscr, M_UDFVOLD);
3103 }
3104
3105 if (ump->sparing_table)
3106 return 0;
3107
3108 return ENOENT;
3109 }
3110
3111 /* --------------------------------------------------------------------- */
3112
3113 static int
3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3115 {
3116 struct part_map_meta *pmm = &mapping->pmm;
3117 struct long_ad icb_loc;
3118 struct vnode *vp;
3119 int error;
3120
3121 /* extract our allocation parameters set up on format */
3122 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3123 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3124 ump->metadata_flags = mapping->pmm.flags;
3125
3126 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3127 icb_loc.loc.part_num = pmm->part_num;
3128 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3129 DPRINTF(VOLUMES, ("Metadata file\n"));
3130 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3131 if (ump->metadata_node) {
3132 vp = ump->metadata_node->vnode;
3133 UDF_SET_SYSTEMFILE(vp);
3134 }
3135
3136 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3137 if (icb_loc.loc.lb_num != -1) {
3138 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3139 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3140 if (ump->metadatamirror_node) {
3141 vp = ump->metadatamirror_node->vnode;
3142 UDF_SET_SYSTEMFILE(vp);
3143 }
3144 }
3145
3146 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3147 if (icb_loc.loc.lb_num != -1) {
3148 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3149 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3150 if (ump->metadatabitmap_node) {
3151 vp = ump->metadatabitmap_node->vnode;
3152 UDF_SET_SYSTEMFILE(vp);
3153 }
3154 }
3155
3156 /* if we're mounting read-only we relax the requirements */
3157 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3158 error = EFAULT;
3159 if (ump->metadata_node)
3160 error = 0;
3161 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3162 printf( "udf mount: Metadata file not readable, "
3163 "substituting Metadata copy file\n");
3164 ump->metadata_node = ump->metadatamirror_node;
3165 ump->metadatamirror_node = NULL;
3166 error = 0;
3167 }
3168 } else {
3169 /* mounting read/write */
3170 /* XXX DISABLED! metadata writing is not working yet XXX */
3171 if (error)
3172 error = EROFS;
3173 }
3174 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3175 "metadata files\n"));
3176 return error;
3177 }
3178
3179 /* --------------------------------------------------------------------- */
3180
3181 int
3182 udf_read_vds_tables(struct udf_mount *ump)
3183 {
3184 union udf_pmap *mapping;
3185 /* struct udf_args *args = &ump->mount_args; */
3186 uint32_t n_pm, mt_l;
3187 uint32_t log_part;
3188 uint8_t *pmap_pos;
3189 int pmap_size;
3190 int error;
3191
3192 /* Iterate (again) over the part mappings for locations */
3193 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3194 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3195 pmap_pos = ump->logical_vol->maps;
3196
3197 for (log_part = 0; log_part < n_pm; log_part++) {
3198 mapping = (union udf_pmap *) pmap_pos;
3199 switch (ump->vtop_tp[log_part]) {
3200 case UDF_VTOP_TYPE_PHYS :
3201 /* nothing */
3202 break;
3203 case UDF_VTOP_TYPE_VIRT :
3204 /* search and load VAT */
3205 error = udf_search_vat(ump, mapping);
3206 if (error)
3207 return ENOENT;
3208 break;
3209 case UDF_VTOP_TYPE_SPARABLE :
3210 /* load one of the sparable tables */
3211 error = udf_read_sparables(ump, mapping);
3212 if (error)
3213 return ENOENT;
3214 break;
3215 case UDF_VTOP_TYPE_META :
3216 /* load the associated file descriptors */
3217 error = udf_read_metadata_nodes(ump, mapping);
3218 if (error)
3219 return ENOENT;
3220 break;
3221 default:
3222 break;
3223 }
3224 pmap_size = pmap_pos[1];
3225 pmap_pos += pmap_size;
3226 }
3227
3228 /* read in and check unallocated and free space info if writing */
3229 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3230 error = udf_read_physical_partition_spacetables(ump);
3231 if (error)
3232 return error;
3233
3234 /* also read in metadata partition spacebitmap if defined */
3235 error = udf_read_metadata_partition_spacetable(ump);
3236 return error;
3237 }
3238
3239 return 0;
3240 }
3241
3242 /* --------------------------------------------------------------------- */
3243
3244 int
3245 udf_read_rootdirs(struct udf_mount *ump)
3246 {
3247 union dscrptr *dscr;
3248 /* struct udf_args *args = &ump->mount_args; */
3249 struct udf_node *rootdir_node, *streamdir_node;
3250 struct long_ad fsd_loc, *dir_loc;
3251 uint32_t lb_num, dummy;
3252 uint32_t fsd_len;
3253 int dscr_type;
3254 int error;
3255
3256 /* TODO implement FSD reading in separate function like integrity? */
3257 /* get fileset descriptor sequence */
3258 fsd_loc = ump->logical_vol->lv_fsd_loc;
3259 fsd_len = udf_rw32(fsd_loc.len);
3260
3261 dscr = NULL;
3262 error = 0;
3263 while (fsd_len || error) {
3264 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3265 /* translate fsd_loc to lb_num */
3266 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3267 if (error)
3268 break;
3269 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3270 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3271 /* end markers */
3272 if (error || (dscr == NULL))
3273 break;
3274
3275 /* analyse */
3276 dscr_type = udf_rw16(dscr->tag.id);
3277 if (dscr_type == TAGID_TERM)
3278 break;
3279 if (dscr_type != TAGID_FSD) {
3280 free(dscr, M_UDFVOLD);
3281 return ENOENT;
3282 }
3283
3284 /*
3285 * TODO check for multiple fileset descriptors; its only
3286 * picking the last now. Also check for FSD
3287 * correctness/interpretability
3288 */
3289
3290 /* update */
3291 if (ump->fileset_desc) {
3292 free(ump->fileset_desc, M_UDFVOLD);
3293 }
3294 ump->fileset_desc = &dscr->fsd;
3295 dscr = NULL;
3296
3297 /* continue to the next fsd */
3298 fsd_len -= ump->discinfo.sector_size;
3299 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3300
3301 /* follow up to fsd->next_ex (long_ad) if its not null */
3302 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3303 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3304 fsd_loc = ump->fileset_desc->next_ex;
3305 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3306 }
3307 }
3308 if (dscr)
3309 free(dscr, M_UDFVOLD);
3310
3311 /* there has to be one */
3312 if (ump->fileset_desc == NULL)
3313 return ENOENT;
3314
3315 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3316 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3317 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3318
3319 /*
3320 * Now the FSD is known, read in the rootdirectory and if one exists,
3321 * the system stream dir. Some files in the system streamdir are not
3322 * wanted in this implementation since they are not maintained. If
3323 * writing is enabled we'll delete these files if they exist.
3324 */
3325
3326 rootdir_node = streamdir_node = NULL;
3327 dir_loc = NULL;
3328
3329 /* try to read in the rootdir */
3330 dir_loc = &ump->fileset_desc->rootdir_icb;
3331 error = udf_get_node(ump, dir_loc, &rootdir_node);
3332 if (error)
3333 return ENOENT;
3334
3335 /* aparently it read in fine */
3336
3337 /*
3338 * Try the system stream directory; not very likely in the ones we
3339 * test, but for completeness.
3340 */
3341 dir_loc = &ump->fileset_desc->streamdir_icb;
3342 if (udf_rw32(dir_loc->len)) {
3343 printf("udf_read_rootdirs: streamdir defined ");
3344 error = udf_get_node(ump, dir_loc, &streamdir_node);
3345 if (error) {
3346 printf("but error in streamdir reading\n");
3347 } else {
3348 printf("but ignored\n");
3349 /*
3350 * TODO process streamdir `baddies' i.e. files we dont
3351 * want if R/W
3352 */
3353 }
3354 }
3355
3356 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3357
3358 /* release the vnodes again; they'll be auto-recycled later */
3359 if (streamdir_node) {
3360 vput(streamdir_node->vnode);
3361 }
3362 if (rootdir_node) {
3363 vput(rootdir_node->vnode);
3364 }
3365
3366 return 0;
3367 }
3368
3369 /* --------------------------------------------------------------------- */
3370
3371 /* To make absolutely sure we are NOT returning zero, add one :) */
3372
3373 long
3374 udf_get_node_id(const struct long_ad *icbptr)
3375 {
3376 /* ought to be enough since each mountpoint has its own chain */
3377 return udf_rw32(icbptr->loc.lb_num) + 1;
3378 }
3379
3380
3381 int
3382 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3383 {
3384 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3385 return -1;
3386 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3387 return 1;
3388
3389 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3390 return -1;
3391 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3392 return 1;
3393
3394 return 0;
3395 }
3396
3397
3398 static int
3399 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3400 {
3401 const struct udf_node *a_node = a;
3402 const struct udf_node *b_node = b;
3403
3404 return udf_compare_icb(&a_node->loc, &b_node->loc);
3405 }
3406
3407
3408 static int
3409 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3410 {
3411 const struct udf_node *a_node = a;
3412 const struct long_ad * const icb = key;
3413
3414 return udf_compare_icb(&a_node->loc, icb);
3415 }
3416
3417
3418 static const rb_tree_ops_t udf_node_rbtree_ops = {
3419 .rbto_compare_nodes = udf_compare_rbnodes,
3420 .rbto_compare_key = udf_compare_rbnode_icb,
3421 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3422 .rbto_context = NULL
3423 };
3424
3425
3426 void
3427 udf_init_nodes_tree(struct udf_mount *ump)
3428 {
3429
3430 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3431 }
3432
3433
3434 static struct udf_node *
3435 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3436 {
3437 struct udf_node *udf_node;
3438 struct vnode *vp;
3439
3440 loop:
3441 mutex_enter(&ump->ihash_lock);
3442
3443 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3444 if (udf_node) {
3445 vp = udf_node->vnode;
3446 assert(vp);
3447 mutex_enter(&vp->v_interlock);
3448 mutex_exit(&ump->ihash_lock);
3449 if (vget(vp, LK_EXCLUSIVE))
3450 goto loop;
3451 return udf_node;
3452 }
3453 mutex_exit(&ump->ihash_lock);
3454
3455 return NULL;
3456 }
3457
3458
3459 static void
3460 udf_register_node(struct udf_node *udf_node)
3461 {
3462 struct udf_mount *ump = udf_node->ump;
3463
3464 /* add node to the rb tree */
3465 mutex_enter(&ump->ihash_lock);
3466 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3467 mutex_exit(&ump->ihash_lock);
3468 }
3469
3470
3471 static void
3472 udf_deregister_node(struct udf_node *udf_node)
3473 {
3474 struct udf_mount *ump = udf_node->ump;
3475
3476 /* remove node from the rb tree */
3477 mutex_enter(&ump->ihash_lock);
3478 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3479 mutex_exit(&ump->ihash_lock);
3480 }
3481
3482 /* --------------------------------------------------------------------- */
3483
3484 static int
3485 udf_validate_session_start(struct udf_mount *ump)
3486 {
3487 struct mmc_trackinfo trackinfo;
3488 struct vrs_desc *vrs;
3489 uint32_t tracknr, sessionnr, sector, sector_size;
3490 uint32_t iso9660_vrs, write_track_start;
3491 uint8_t *buffer, *blank, *pos;
3492 int blks, max_sectors, vrs_len;
3493 int error;
3494
3495 /* disc appendable? */
3496 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3497 return EROFS;
3498
3499 /* already written here? if so, there should be an ISO VDS */
3500 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3501 return 0;
3502
3503 /*
3504 * Check if the first track of the session is blank and if so, copy or
3505 * create a dummy ISO descriptor so the disc is valid again.
3506 */
3507
3508 tracknr = ump->discinfo.first_track_last_session;
3509 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3510 trackinfo.tracknr = tracknr;
3511 error = udf_update_trackinfo(ump, &trackinfo);
3512 if (error)
3513 return error;
3514
3515 udf_dump_trackinfo(&trackinfo);
3516 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3517 KASSERT(trackinfo.sessionnr > 1);
3518
3519 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3520 write_track_start = trackinfo.next_writable;
3521
3522 /* we have to copy the ISO VRS from a former session */
3523 DPRINTF(VOLUMES, ("validate_session_start: "
3524 "blank or reserved track, copying VRS\n"));
3525
3526 /* sessionnr should be the session we're mounting */
3527 sessionnr = ump->mount_args.sessionnr;
3528
3529 /* start at the first track */
3530 tracknr = ump->discinfo.first_track;
3531 while (tracknr <= ump->discinfo.num_tracks) {
3532 trackinfo.tracknr = tracknr;
3533 error = udf_update_trackinfo(ump, &trackinfo);
3534 if (error) {
3535 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3536 return error;
3537 }
3538 if (trackinfo.sessionnr == sessionnr)
3539 break;
3540 tracknr++;
3541 }
3542 if (trackinfo.sessionnr != sessionnr) {
3543 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3544 return ENOENT;
3545 }
3546
3547 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3548 udf_dump_trackinfo(&trackinfo);
3549
3550 /*
3551 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3552 * minimum ISO `sector size' 2048
3553 */
3554 sector_size = ump->discinfo.sector_size;
3555 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3556 + trackinfo.track_start;
3557
3558 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3559 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3560 blks = MAX(1, 2048 / sector_size);
3561
3562 error = 0;
3563 for (sector = 0; sector < max_sectors; sector += blks) {
3564 pos = buffer + sector * sector_size;
3565 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3566 iso9660_vrs + sector, blks);
3567 if (error)
3568 break;
3569 /* check this ISO descriptor */
3570 vrs = (struct vrs_desc *) pos;
3571 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3572 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3573 continue;
3574 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3575 continue;
3576 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3577 continue;
3578 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3579 continue;
3580 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3581 continue;
3582 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3583 break;
3584 /* now what? for now, end of sequence */
3585 break;
3586 }
3587 vrs_len = sector + blks;
3588 if (error) {
3589 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3590 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3591
3592 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3593
3594 vrs = (struct vrs_desc *) (buffer);
3595 vrs->struct_type = 0;
3596 vrs->version = 1;
3597 memcpy(vrs->identifier,VRS_BEA01, 5);
3598
3599 vrs = (struct vrs_desc *) (buffer + 2048);
3600 vrs->struct_type = 0;
3601 vrs->version = 1;
3602 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3603 memcpy(vrs->identifier,VRS_NSR02, 5);
3604 } else {
3605 memcpy(vrs->identifier,VRS_NSR03, 5);
3606 }
3607
3608 vrs = (struct vrs_desc *) (buffer + 4096);
3609 vrs->struct_type = 0;
3610 vrs->version = 1;
3611 memcpy(vrs->identifier, VRS_TEA01, 5);
3612
3613 vrs_len = 3*blks;
3614 }
3615
3616 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3617
3618 /*
3619 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3620 * minimum ISO `sector size' 2048
3621 */
3622 sector_size = ump->discinfo.sector_size;
3623 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3624 + write_track_start;
3625
3626 /* write out 32 kb */
3627 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3628 memset(blank, 0, sector_size);
3629 error = 0;
3630 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3631 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3632 blank, sector, 1);
3633 if (error)
3634 break;
3635 }
3636 if (!error) {
3637 /* write out our ISO VRS */
3638 KASSERT(sector == iso9660_vrs);
3639 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3640 sector, vrs_len);
3641 sector += vrs_len;
3642 }
3643 if (!error) {
3644 /* fill upto the first anchor at S+256 */
3645 for (; sector < write_track_start+256; sector++) {
3646 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3647 blank, sector, 1);
3648 if (error)
3649 break;
3650 }
3651 }
3652 if (!error) {
3653 /* write out anchor; write at ABSOLUTE place! */
3654 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3655 (union dscrptr *) ump->anchors[0], sector, sector);
3656 if (error)
3657 printf("writeout of anchor failed!\n");
3658 }
3659
3660 free(blank, M_TEMP);
3661 free(buffer, M_TEMP);
3662
3663 if (error)
3664 printf("udf_open_session: error writing iso vrs! : "
3665 "leaving disc in compromised state!\n");
3666
3667 /* synchronise device caches */
3668 (void) udf_synchronise_caches(ump);
3669
3670 return error;
3671 }
3672
3673
3674 int
3675 udf_open_logvol(struct udf_mount *ump)
3676 {
3677 int logvol_integrity;
3678 int error;
3679
3680 /* already/still open? */
3681 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3682 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3683 return 0;
3684
3685 /* can we open it ? */
3686 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3687 return EROFS;
3688
3689 /* setup write parameters */
3690 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3691 if ((error = udf_setup_writeparams(ump)) != 0)
3692 return error;
3693
3694 /* determine data and metadata tracks (most likely same) */
3695 error = udf_search_writing_tracks(ump);
3696 if (error) {
3697 /* most likely lack of space */
3698 printf("udf_open_logvol: error searching writing tracks\n");
3699 return EROFS;
3700 }
3701
3702 /* writeout/update lvint on disc or only in memory */
3703 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3704 if (ump->lvopen & UDF_OPEN_SESSION) {
3705 /* TODO optional track reservation opening */
3706 error = udf_validate_session_start(ump);
3707 if (error)
3708 return error;
3709
3710 /* determine data and metadata tracks again */
3711 error = udf_search_writing_tracks(ump);
3712 }
3713
3714 /* mark it open */
3715 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3716
3717 /* do we need to write it out? */
3718 if (ump->lvopen & UDF_WRITE_LVINT) {
3719 error = udf_writeout_lvint(ump, ump->lvopen);
3720 /* if we couldn't write it mark it closed again */
3721 if (error) {
3722 ump->logvol_integrity->integrity_type =
3723 udf_rw32(UDF_INTEGRITY_CLOSED);
3724 return error;
3725 }
3726 }
3727
3728 return 0;
3729 }
3730
3731
3732 int
3733 udf_close_logvol(struct udf_mount *ump, int mntflags)
3734 {
3735 struct vnode *devvp = ump->devvp;
3736 struct mmc_op mmc_op;
3737 int logvol_integrity;
3738 int error = 0, error1 = 0, error2 = 0;
3739 int tracknr;
3740 int nvats, n, nok;
3741
3742 /* already/still closed? */
3743 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3744 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3745 return 0;
3746
3747 /* writeout/update lvint or write out VAT */
3748 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3749 #ifdef DIAGNOSTIC
3750 if (ump->lvclose & UDF_CLOSE_SESSION)
3751 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3752 #endif
3753
3754 if (ump->lvclose & UDF_WRITE_VAT) {
3755 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3756
3757 /* write out the VAT data and all its descriptors */
3758 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3759 udf_writeout_vat(ump);
3760 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3761
3762 (void) VOP_FSYNC(ump->vat_node->vnode,
3763 FSCRED, FSYNC_WAIT, 0, 0);
3764
3765 if (ump->lvclose & UDF_CLOSE_SESSION) {
3766 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3767 "as requested\n"));
3768 }
3769
3770 /* at least two DVD packets and 3 CD-R packets */
3771 nvats = 32;
3772
3773 #if notyet
3774 /*
3775 * TODO calculate the available space and if the disc is
3776 * allmost full, write out till end-256-1 with banks, write
3777 * AVDP and fill up with VATs, then close session and close
3778 * disc.
3779 */
3780 if (ump->lvclose & UDF_FINALISE_DISC) {
3781 error = udf_write_phys_dscr_sync(ump, NULL,
3782 UDF_C_FLOAT_DSCR,
3783 (union dscrptr *) ump->anchors[0],
3784 0, 0);
3785 if (error)
3786 printf("writeout of anchor failed!\n");
3787
3788 /* pad space with VAT ICBs */
3789 nvats = 256;
3790 }
3791 #endif
3792
3793 /* write out a number of VAT nodes */
3794 nok = 0;
3795 for (n = 0; n < nvats; n++) {
3796 /* will now only write last FE/EFE */
3797 ump->vat_node->i_flags |= IN_MODIFIED;
3798 error = VOP_FSYNC(ump->vat_node->vnode,
3799 FSCRED, FSYNC_WAIT, 0, 0);
3800 if (!error)
3801 nok++;
3802 }
3803 if (nok < 14) {
3804 /* arbitrary; but at least one or two CD frames */
3805 printf("writeout of at least 14 VATs failed\n");
3806 return error;
3807 }
3808 }
3809
3810 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3811
3812 /* finish closing of session */
3813 if (ump->lvclose & UDF_CLOSE_SESSION) {
3814 error = udf_validate_session_start(ump);
3815 if (error)
3816 return error;
3817
3818 (void) udf_synchronise_caches(ump);
3819
3820 /* close all associated tracks */
3821 tracknr = ump->discinfo.first_track_last_session;
3822 error = 0;
3823 while (tracknr <= ump->discinfo.last_track_last_session) {
3824 DPRINTF(VOLUMES, ("\tclosing possible open "
3825 "track %d\n", tracknr));
3826 memset(&mmc_op, 0, sizeof(mmc_op));
3827 mmc_op.operation = MMC_OP_CLOSETRACK;
3828 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3829 mmc_op.tracknr = tracknr;
3830 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3831 FKIOCTL, NOCRED);
3832 if (error)
3833 printf("udf_close_logvol: closing of "
3834 "track %d failed\n", tracknr);
3835 tracknr ++;
3836 }
3837 if (!error) {
3838 DPRINTF(VOLUMES, ("closing session\n"));
3839 memset(&mmc_op, 0, sizeof(mmc_op));
3840 mmc_op.operation = MMC_OP_CLOSESESSION;
3841 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3842 mmc_op.sessionnr = ump->discinfo.num_sessions;
3843 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3844 FKIOCTL, NOCRED);
3845 if (error)
3846 printf("udf_close_logvol: closing of session"
3847 "failed\n");
3848 }
3849 if (!error)
3850 ump->lvopen |= UDF_OPEN_SESSION;
3851 if (error) {
3852 printf("udf_close_logvol: leaving disc as it is\n");
3853 ump->lvclose &= ~UDF_FINALISE_DISC;
3854 }
3855 }
3856
3857 if (ump->lvclose & UDF_FINALISE_DISC) {
3858 memset(&mmc_op, 0, sizeof(mmc_op));
3859 mmc_op.operation = MMC_OP_FINALISEDISC;
3860 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3861 mmc_op.sessionnr = ump->discinfo.num_sessions;
3862 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3863 FKIOCTL, NOCRED);
3864 if (error)
3865 printf("udf_close_logvol: finalising disc"
3866 "failed\n");
3867 }
3868
3869 /* write out partition bitmaps if requested */
3870 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3871 /* sync writeout metadata spacetable if existing */
3872 error1 = udf_write_metadata_partition_spacetable(ump, true);
3873 if (error1)
3874 printf( "udf_close_logvol: writeout of metadata space "
3875 "bitmap failed\n");
3876
3877 /* sync writeout partition spacetables */
3878 error2 = udf_write_physical_partition_spacetables(ump, true);
3879 if (error2)
3880 printf( "udf_close_logvol: writeout of space tables "
3881 "failed\n");
3882
3883 if (error1 || error2)
3884 return (error1 | error2);
3885
3886 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3887 }
3888
3889 /* write out metadata partition nodes if requested */
3890 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3891 /* sync writeout metadata descriptor node */
3892 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3893 if (error1)
3894 printf( "udf_close_logvol: writeout of metadata partition "
3895 "node failed\n");
3896
3897 /* duplicate metadata partition descriptor if needed */
3898 udf_synchronise_metadatamirror_node(ump);
3899
3900 /* sync writeout metadatamirror descriptor node */
3901 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3902 if (error2)
3903 printf( "udf_close_logvol: writeout of metadata partition "
3904 "mirror node failed\n");
3905
3906 if (error1 || error2)
3907 return (error1 | error2);
3908
3909 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3910 }
3911
3912 /* mark it closed */
3913 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3914
3915 /* do we need to write out the logical volume integrity? */
3916 if (ump->lvclose & UDF_WRITE_LVINT)
3917 error = udf_writeout_lvint(ump, ump->lvopen);
3918 if (error) {
3919 /* HELP now what? mark it open again for now */
3920 ump->logvol_integrity->integrity_type =
3921 udf_rw32(UDF_INTEGRITY_OPEN);
3922 return error;
3923 }
3924
3925 (void) udf_synchronise_caches(ump);
3926
3927 return 0;
3928 }
3929
3930 /* --------------------------------------------------------------------- */
3931
3932 /*
3933 * Genfs interfacing
3934 *
3935 * static const struct genfs_ops udf_genfsops = {
3936 * .gop_size = genfs_size,
3937 * size of transfers
3938 * .gop_alloc = udf_gop_alloc,
3939 * allocate len bytes at offset
3940 * .gop_write = genfs_gop_write,
3941 * putpages interface code
3942 * .gop_markupdate = udf_gop_markupdate,
3943 * set update/modify flags etc.
3944 * }
3945 */
3946
3947 /*
3948 * Genfs interface. These four functions are the only ones defined though not
3949 * documented... great....
3950 */
3951
3952 /*
3953 * Called for allocating an extent of the file either by VOP_WRITE() or by
3954 * genfs filling up gaps.
3955 */
3956 static int
3957 udf_gop_alloc(struct vnode *vp, off_t off,
3958 off_t len, int flags, kauth_cred_t cred)
3959 {
3960 struct udf_node *udf_node = VTOI(vp);
3961 struct udf_mount *ump = udf_node->ump;
3962 uint64_t lb_start, lb_end;
3963 uint32_t lb_size, num_lb;
3964 int udf_c_type, vpart_num, can_fail;
3965 int error;
3966
3967 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3968 off, len, flags? "SYNC":"NONE"));
3969
3970 /*
3971 * request the pages of our vnode and see how many pages will need to
3972 * be allocated and reserve that space
3973 */
3974 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3975 lb_start = off / lb_size;
3976 lb_end = (off + len + lb_size -1) / lb_size;
3977 num_lb = lb_end - lb_start;
3978
3979 udf_c_type = udf_get_c_type(udf_node);
3980 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3981
3982 /* all requests can fail */
3983 can_fail = true;
3984
3985 /* fid's (directories) can't fail */
3986 if (udf_c_type == UDF_C_FIDS)
3987 can_fail = false;
3988
3989 /* system files can't fail */
3990 if (vp->v_vflag & VV_SYSTEM)
3991 can_fail = false;
3992
3993 error = udf_reserve_space(ump, udf_node, udf_c_type,
3994 vpart_num, num_lb, can_fail);
3995
3996 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3997 lb_start, lb_end, num_lb));
3998
3999 return error;
4000 }
4001
4002
4003 /*
4004 * callback from genfs to update our flags
4005 */
4006 static void
4007 udf_gop_markupdate(struct vnode *vp, int flags)
4008 {
4009 struct udf_node *udf_node = VTOI(vp);
4010 u_long mask = 0;
4011
4012 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4013 mask = IN_ACCESS;
4014 }
4015 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4016 if (vp->v_type == VREG) {
4017 mask |= IN_CHANGE | IN_UPDATE;
4018 } else {
4019 mask |= IN_MODIFY;
4020 }
4021 }
4022 if (mask) {
4023 udf_node->i_flags |= mask;
4024 }
4025 }
4026
4027
4028 static const struct genfs_ops udf_genfsops = {
4029 .gop_size = genfs_size,
4030 .gop_alloc = udf_gop_alloc,
4031 .gop_write = genfs_gop_write_rwmap,
4032 .gop_markupdate = udf_gop_markupdate,
4033 };
4034
4035
4036 /* --------------------------------------------------------------------- */
4037
4038 int
4039 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4040 {
4041 union dscrptr *dscr;
4042 int error;
4043
4044 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4045 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4046
4047 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4048 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4049 (void) udf_validate_tag_and_crc_sums(dscr);
4050
4051 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4052 dscr, sector, sector);
4053
4054 free(dscr, M_TEMP);
4055
4056 return error;
4057 }
4058
4059
4060 /* --------------------------------------------------------------------- */
4061
4062 /* UDF<->unix converters */
4063
4064 /* --------------------------------------------------------------------- */
4065
4066 static mode_t
4067 udf_perm_to_unix_mode(uint32_t perm)
4068 {
4069 mode_t mode;
4070
4071 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4072 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4073 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4074
4075 return mode;
4076 }
4077
4078 /* --------------------------------------------------------------------- */
4079
4080 static uint32_t
4081 unix_mode_to_udf_perm(mode_t mode)
4082 {
4083 uint32_t perm;
4084
4085 perm = ((mode & S_IRWXO) );
4086 perm |= ((mode & S_IRWXG) << 2);
4087 perm |= ((mode & S_IRWXU) << 4);
4088 perm |= ((mode & S_IWOTH) << 3);
4089 perm |= ((mode & S_IWGRP) << 5);
4090 perm |= ((mode & S_IWUSR) << 7);
4091
4092 return perm;
4093 }
4094
4095 /* --------------------------------------------------------------------- */
4096
4097 static uint32_t
4098 udf_icb_to_unix_filetype(uint32_t icbftype)
4099 {
4100 switch (icbftype) {
4101 case UDF_ICB_FILETYPE_DIRECTORY :
4102 case UDF_ICB_FILETYPE_STREAMDIR :
4103 return S_IFDIR;
4104 case UDF_ICB_FILETYPE_FIFO :
4105 return S_IFIFO;
4106 case UDF_ICB_FILETYPE_CHARDEVICE :
4107 return S_IFCHR;
4108 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4109 return S_IFBLK;
4110 case UDF_ICB_FILETYPE_RANDOMACCESS :
4111 case UDF_ICB_FILETYPE_REALTIME :
4112 return S_IFREG;
4113 case UDF_ICB_FILETYPE_SYMLINK :
4114 return S_IFLNK;
4115 case UDF_ICB_FILETYPE_SOCKET :
4116 return S_IFSOCK;
4117 }
4118 /* no idea what this is */
4119 return 0;
4120 }
4121
4122 /* --------------------------------------------------------------------- */
4123
4124 void
4125 udf_to_unix_name(char *result, int result_len, char *id, int len,
4126 struct charspec *chsp)
4127 {
4128 uint16_t *raw_name, *unix_name;
4129 uint16_t *inchp, ch;
4130 uint8_t *outchp;
4131 const char *osta_id = "OSTA Compressed Unicode";
4132 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4133
4134 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4135 unix_name = raw_name + 1024; /* split space in half */
4136 assert(sizeof(char) == sizeof(uint8_t));
4137 outchp = (uint8_t *) result;
4138
4139 is_osta_typ0 = (chsp->type == 0);
4140 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4141 if (is_osta_typ0) {
4142 /* TODO clean up */
4143 *raw_name = *unix_name = 0;
4144 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4145 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4146 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4147 /* output UTF8 */
4148 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4149 ch = *inchp;
4150 nout = wput_utf8(outchp, result_len, ch);
4151 outchp += nout; result_len -= nout;
4152 if (!ch) break;
4153 }
4154 *outchp++ = 0;
4155 } else {
4156 /* assume 8bit char length byte latin-1 */
4157 assert(*id == 8);
4158 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4159 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4160 }
4161 free(raw_name, M_UDFTEMP);
4162 }
4163
4164 /* --------------------------------------------------------------------- */
4165
4166 void
4167 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4168 struct charspec *chsp)
4169 {
4170 uint16_t *raw_name;
4171 uint16_t *outchp;
4172 const char *inchp;
4173 const char *osta_id = "OSTA Compressed Unicode";
4174 int udf_chars, is_osta_typ0, bits;
4175 size_t cnt;
4176
4177 /* allocate temporary unicode-16 buffer */
4178 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4179
4180 /* convert utf8 to unicode-16 */
4181 *raw_name = 0;
4182 inchp = name;
4183 outchp = raw_name;
4184 bits = 8;
4185 for (cnt = name_len, udf_chars = 0; cnt;) {
4186 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4187 *outchp = wget_utf8(&inchp, &cnt);
4188 if (*outchp > 0xff)
4189 bits=16;
4190 outchp++;
4191 udf_chars++;
4192 }
4193 /* null terminate just in case */
4194 *outchp++ = 0;
4195
4196 is_osta_typ0 = (chsp->type == 0);
4197 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4198 if (is_osta_typ0) {
4199 udf_chars = udf_CompressUnicode(udf_chars, bits,
4200 (unicode_t *) raw_name,
4201 (byte *) result);
4202 } else {
4203 printf("unix to udf name: no CHSP0 ?\n");
4204 /* XXX assume 8bit char length byte latin-1 */
4205 *result++ = 8; udf_chars = 1;
4206 strncpy(result, name + 1, name_len);
4207 udf_chars += name_len;
4208 }
4209 *result_len = udf_chars;
4210 free(raw_name, M_UDFTEMP);
4211 }
4212
4213 /* --------------------------------------------------------------------- */
4214
4215 void
4216 udf_timestamp_to_timespec(struct udf_mount *ump,
4217 struct timestamp *timestamp,
4218 struct timespec *timespec)
4219 {
4220 struct clock_ymdhms ymdhms;
4221 uint32_t usecs, secs, nsecs;
4222 uint16_t tz;
4223
4224 /* fill in ymdhms structure from timestamp */
4225 memset(&ymdhms, 0, sizeof(ymdhms));
4226 ymdhms.dt_year = udf_rw16(timestamp->year);
4227 ymdhms.dt_mon = timestamp->month;
4228 ymdhms.dt_day = timestamp->day;
4229 ymdhms.dt_wday = 0; /* ? */
4230 ymdhms.dt_hour = timestamp->hour;
4231 ymdhms.dt_min = timestamp->minute;
4232 ymdhms.dt_sec = timestamp->second;
4233
4234 secs = clock_ymdhms_to_secs(&ymdhms);
4235 usecs = timestamp->usec +
4236 100*timestamp->hund_usec + 10000*timestamp->centisec;
4237 nsecs = usecs * 1000;
4238
4239 /*
4240 * Calculate the time zone. The timezone is 12 bit signed 2's
4241 * compliment, so we gotta do some extra magic to handle it right.
4242 */
4243 tz = udf_rw16(timestamp->type_tz);
4244 tz &= 0x0fff; /* only lower 12 bits are significant */
4245 if (tz & 0x0800) /* sign extention */
4246 tz |= 0xf000;
4247
4248 /* TODO check timezone conversion */
4249 /* check if we are specified a timezone to convert */
4250 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4251 if ((int16_t) tz != -2047)
4252 secs -= (int16_t) tz * 60;
4253 } else {
4254 secs -= ump->mount_args.gmtoff;
4255 }
4256
4257 timespec->tv_sec = secs;
4258 timespec->tv_nsec = nsecs;
4259 }
4260
4261
4262 void
4263 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4264 {
4265 struct clock_ymdhms ymdhms;
4266 uint32_t husec, usec, csec;
4267
4268 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4269
4270 usec = timespec->tv_nsec / 1000;
4271 husec = usec / 100;
4272 usec -= husec * 100; /* only 0-99 in usec */
4273 csec = husec / 100; /* only 0-99 in csec */
4274 husec -= csec * 100; /* only 0-99 in husec */
4275
4276 /* set method 1 for CUT/GMT */
4277 timestamp->type_tz = udf_rw16((1<<12) + 0);
4278 timestamp->year = udf_rw16(ymdhms.dt_year);
4279 timestamp->month = ymdhms.dt_mon;
4280 timestamp->day = ymdhms.dt_day;
4281 timestamp->hour = ymdhms.dt_hour;
4282 timestamp->minute = ymdhms.dt_min;
4283 timestamp->second = ymdhms.dt_sec;
4284 timestamp->centisec = csec;
4285 timestamp->hund_usec = husec;
4286 timestamp->usec = usec;
4287 }
4288
4289 /* --------------------------------------------------------------------- */
4290
4291 /*
4292 * Attribute and filetypes converters with get/set pairs
4293 */
4294
4295 uint32_t
4296 udf_getaccessmode(struct udf_node *udf_node)
4297 {
4298 struct file_entry *fe = udf_node->fe;
4299 struct extfile_entry *efe = udf_node->efe;
4300 uint32_t udf_perm, icbftype;
4301 uint32_t mode, ftype;
4302 uint16_t icbflags;
4303
4304 UDF_LOCK_NODE(udf_node, 0);
4305 if (fe) {
4306 udf_perm = udf_rw32(fe->perm);
4307 icbftype = fe->icbtag.file_type;
4308 icbflags = udf_rw16(fe->icbtag.flags);
4309 } else {
4310 assert(udf_node->efe);
4311 udf_perm = udf_rw32(efe->perm);
4312 icbftype = efe->icbtag.file_type;
4313 icbflags = udf_rw16(efe->icbtag.flags);
4314 }
4315
4316 mode = udf_perm_to_unix_mode(udf_perm);
4317 ftype = udf_icb_to_unix_filetype(icbftype);
4318
4319 /* set suid, sgid, sticky from flags in fe/efe */
4320 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4321 mode |= S_ISUID;
4322 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4323 mode |= S_ISGID;
4324 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4325 mode |= S_ISVTX;
4326
4327 UDF_UNLOCK_NODE(udf_node, 0);
4328
4329 return mode | ftype;
4330 }
4331
4332
4333 void
4334 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4335 {
4336 struct file_entry *fe = udf_node->fe;
4337 struct extfile_entry *efe = udf_node->efe;
4338 uint32_t udf_perm;
4339 uint16_t icbflags;
4340
4341 UDF_LOCK_NODE(udf_node, 0);
4342 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4343 if (fe) {
4344 icbflags = udf_rw16(fe->icbtag.flags);
4345 } else {
4346 icbflags = udf_rw16(efe->icbtag.flags);
4347 }
4348
4349 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4350 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4351 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4352 if (mode & S_ISUID)
4353 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4354 if (mode & S_ISGID)
4355 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4356 if (mode & S_ISVTX)
4357 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4358
4359 if (fe) {
4360 fe->perm = udf_rw32(udf_perm);
4361 fe->icbtag.flags = udf_rw16(icbflags);
4362 } else {
4363 efe->perm = udf_rw32(udf_perm);
4364 efe->icbtag.flags = udf_rw16(icbflags);
4365 }
4366
4367 UDF_UNLOCK_NODE(udf_node, 0);
4368 }
4369
4370
4371 void
4372 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4373 {
4374 struct udf_mount *ump = udf_node->ump;
4375 struct file_entry *fe = udf_node->fe;
4376 struct extfile_entry *efe = udf_node->efe;
4377 uid_t uid;
4378 gid_t gid;
4379
4380 UDF_LOCK_NODE(udf_node, 0);
4381 if (fe) {
4382 uid = (uid_t)udf_rw32(fe->uid);
4383 gid = (gid_t)udf_rw32(fe->gid);
4384 } else {
4385 assert(udf_node->efe);
4386 uid = (uid_t)udf_rw32(efe->uid);
4387 gid = (gid_t)udf_rw32(efe->gid);
4388 }
4389
4390 /* do the uid/gid translation game */
4391 if (uid == (uid_t) -1)
4392 uid = ump->mount_args.anon_uid;
4393 if (gid == (gid_t) -1)
4394 gid = ump->mount_args.anon_gid;
4395
4396 *uidp = uid;
4397 *gidp = gid;
4398
4399 UDF_UNLOCK_NODE(udf_node, 0);
4400 }
4401
4402
4403 void
4404 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4405 {
4406 struct udf_mount *ump = udf_node->ump;
4407 struct file_entry *fe = udf_node->fe;
4408 struct extfile_entry *efe = udf_node->efe;
4409 uid_t nobody_uid;
4410 gid_t nobody_gid;
4411
4412 UDF_LOCK_NODE(udf_node, 0);
4413
4414 /* do the uid/gid translation game */
4415 nobody_uid = ump->mount_args.nobody_uid;
4416 nobody_gid = ump->mount_args.nobody_gid;
4417 if (uid == nobody_uid)
4418 uid = (uid_t) -1;
4419 if (gid == nobody_gid)
4420 gid = (gid_t) -1;
4421
4422 if (fe) {
4423 fe->uid = udf_rw32((uint32_t) uid);
4424 fe->gid = udf_rw32((uint32_t) gid);
4425 } else {
4426 efe->uid = udf_rw32((uint32_t) uid);
4427 efe->gid = udf_rw32((uint32_t) gid);
4428 }
4429
4430 UDF_UNLOCK_NODE(udf_node, 0);
4431 }
4432
4433
4434 /* --------------------------------------------------------------------- */
4435
4436
4437 static int
4438 dirhash_fill(struct udf_node *dir_node)
4439 {
4440 struct vnode *dvp = dir_node->vnode;
4441 struct dirhash *dirh;
4442 struct file_entry *fe = dir_node->fe;
4443 struct extfile_entry *efe = dir_node->efe;
4444 struct fileid_desc *fid;
4445 struct dirent *dirent;
4446 uint64_t file_size, pre_diroffset, diroffset;
4447 uint32_t lb_size;
4448 int error;
4449
4450 /* make sure we have a dirhash to work on */
4451 dirh = dir_node->dir_hash;
4452 KASSERT(dirh);
4453 KASSERT(dirh->refcnt > 0);
4454
4455 if (dirh->flags & DIRH_BROKEN)
4456 return EIO;
4457 if (dirh->flags & DIRH_COMPLETE)
4458 return 0;
4459
4460 /* make sure we have a clean dirhash to add to */
4461 dirhash_purge_entries(dirh);
4462
4463 /* get directory filesize */
4464 if (fe) {
4465 file_size = udf_rw64(fe->inf_len);
4466 } else {
4467 assert(efe);
4468 file_size = udf_rw64(efe->inf_len);
4469 }
4470
4471 /* allocate temporary space for fid */
4472 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4473 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4474
4475 /* allocate temporary space for dirent */
4476 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4477
4478 error = 0;
4479 diroffset = 0;
4480 while (diroffset < file_size) {
4481 /* transfer a new fid/dirent */
4482 pre_diroffset = diroffset;
4483 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4484 if (error) {
4485 /* TODO what to do? continue but not add? */
4486 dirh->flags |= DIRH_BROKEN;
4487 dirhash_purge_entries(dirh);
4488 break;
4489 }
4490
4491 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4492 /* register deleted extent for reuse */
4493 dirhash_enter_freed(dirh, pre_diroffset,
4494 udf_fidsize(fid));
4495 } else {
4496 /* append to the dirhash */
4497 dirhash_enter(dirh, dirent, pre_diroffset,
4498 udf_fidsize(fid), 0);
4499 }
4500 }
4501 dirh->flags |= DIRH_COMPLETE;
4502
4503 free(fid, M_UDFTEMP);
4504 free(dirent, M_UDFTEMP);
4505
4506 return error;
4507 }
4508
4509
4510 /* --------------------------------------------------------------------- */
4511
4512 /*
4513 * Directory read and manipulation functions.
4514 *
4515 */
4516
4517 int
4518 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4519 struct long_ad *icb_loc, int *found)
4520 {
4521 struct udf_node *dir_node = VTOI(vp);
4522 struct dirhash *dirh;
4523 struct dirhash_entry *dirh_ep;
4524 struct fileid_desc *fid;
4525 struct dirent *dirent;
4526 uint64_t diroffset;
4527 uint32_t lb_size;
4528 int hit, error;
4529
4530 /* set default return */
4531 *found = 0;
4532
4533 /* get our dirhash and make sure its read in */
4534 dirhash_get(&dir_node->dir_hash);
4535 error = dirhash_fill(dir_node);
4536 if (error) {
4537 dirhash_put(dir_node->dir_hash);
4538 return error;
4539 }
4540 dirh = dir_node->dir_hash;
4541
4542 /* allocate temporary space for fid */
4543 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4544 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4545 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4546
4547 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4548 namelen, namelen, name));
4549
4550 /* search our dirhash hits */
4551 memset(icb_loc, 0, sizeof(*icb_loc));
4552 dirh_ep = NULL;
4553 for (;;) {
4554 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4555 /* if no hit, abort the search */
4556 if (!hit)
4557 break;
4558
4559 /* check this hit */
4560 diroffset = dirh_ep->offset;
4561
4562 /* transfer a new fid/dirent */
4563 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4564 if (error)
4565 break;
4566
4567 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4568 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4569
4570 /* see if its our entry */
4571 #ifdef DIAGNOSTIC
4572 if (dirent->d_namlen != namelen) {
4573 printf("WARNING: dirhash_lookup() returned wrong "
4574 "d_namelen: %d and ought to be %d\n",
4575 dirent->d_namlen, namelen);
4576 printf("\tlooked for `%s' and got `%s'\n",
4577 name, dirent->d_name);
4578 }
4579 #endif
4580 if (strncmp(dirent->d_name, name, namelen) == 0) {
4581 *found = 1;
4582 *icb_loc = fid->icb;
4583 break;
4584 }
4585 }
4586 free(fid, M_UDFTEMP);
4587 free(dirent, M_UDFTEMP);
4588
4589 dirhash_put(dir_node->dir_hash);
4590
4591 return error;
4592 }
4593
4594 /* --------------------------------------------------------------------- */
4595
4596 static int
4597 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4598 struct long_ad *node_icb, struct long_ad *parent_icb,
4599 uint64_t parent_unique_id)
4600 {
4601 struct timespec now;
4602 struct icb_tag *icb;
4603 struct filetimes_extattr_entry *ft_extattr;
4604 uint64_t unique_id;
4605 uint32_t fidsize, lb_num;
4606 uint8_t *bpos;
4607 int crclen, attrlen;
4608
4609 lb_num = udf_rw32(node_icb->loc.lb_num);
4610 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4611 icb = &fe->icbtag;
4612
4613 /*
4614 * Always use strategy type 4 unless on WORM wich we don't support
4615 * (yet). Fill in defaults and set for internal allocation of data.
4616 */
4617 icb->strat_type = udf_rw16(4);
4618 icb->max_num_entries = udf_rw16(1);
4619 icb->file_type = file_type; /* 8 bit */
4620 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4621
4622 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4623 fe->link_cnt = udf_rw16(0); /* explicit setting */
4624
4625 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4626
4627 vfs_timestamp(&now);
4628 udf_timespec_to_timestamp(&now, &fe->atime);
4629 udf_timespec_to_timestamp(&now, &fe->attrtime);
4630 udf_timespec_to_timestamp(&now, &fe->mtime);
4631
4632 udf_set_regid(&fe->imp_id, IMPL_NAME);
4633 udf_add_impl_regid(ump, &fe->imp_id);
4634
4635 unique_id = udf_advance_uniqueid(ump);
4636 fe->unique_id = udf_rw64(unique_id);
4637 fe->l_ea = udf_rw32(0);
4638
4639 /* create extended attribute to record our creation time */
4640 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4641 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4642 memset(ft_extattr, 0, attrlen);
4643 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4644 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4645 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4646 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4647 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4648 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4649
4650 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4651 (struct extattr_entry *) ft_extattr);
4652 free(ft_extattr, M_UDFTEMP);
4653
4654 /* if its a directory, create '..' */
4655 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4656 fidsize = 0;
4657 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4658 fidsize = udf_create_parentfid(ump,
4659 (struct fileid_desc *) bpos, parent_icb,
4660 parent_unique_id);
4661 }
4662
4663 /* record fidlength information */
4664 fe->inf_len = udf_rw64(fidsize);
4665 fe->l_ad = udf_rw32(fidsize);
4666 fe->logblks_rec = udf_rw64(0); /* intern */
4667
4668 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4669 crclen += udf_rw32(fe->l_ea) + fidsize;
4670 fe->tag.desc_crc_len = udf_rw16(crclen);
4671
4672 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4673
4674 return fidsize;
4675 }
4676
4677 /* --------------------------------------------------------------------- */
4678
4679 static int
4680 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4681 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4682 uint64_t parent_unique_id)
4683 {
4684 struct timespec now;
4685 struct icb_tag *icb;
4686 uint64_t unique_id;
4687 uint32_t fidsize, lb_num;
4688 uint8_t *bpos;
4689 int crclen;
4690
4691 lb_num = udf_rw32(node_icb->loc.lb_num);
4692 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4693 icb = &efe->icbtag;
4694
4695 /*
4696 * Always use strategy type 4 unless on WORM wich we don't support
4697 * (yet). Fill in defaults and set for internal allocation of data.
4698 */
4699 icb->strat_type = udf_rw16(4);
4700 icb->max_num_entries = udf_rw16(1);
4701 icb->file_type = file_type; /* 8 bit */
4702 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4703
4704 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4705 efe->link_cnt = udf_rw16(0); /* explicit setting */
4706
4707 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4708
4709 vfs_timestamp(&now);
4710 udf_timespec_to_timestamp(&now, &efe->ctime);
4711 udf_timespec_to_timestamp(&now, &efe->atime);
4712 udf_timespec_to_timestamp(&now, &efe->attrtime);
4713 udf_timespec_to_timestamp(&now, &efe->mtime);
4714
4715 udf_set_regid(&efe->imp_id, IMPL_NAME);
4716 udf_add_impl_regid(ump, &efe->imp_id);
4717
4718 unique_id = udf_advance_uniqueid(ump);
4719 efe->unique_id = udf_rw64(unique_id);
4720 efe->l_ea = udf_rw32(0);
4721
4722 /* if its a directory, create '..' */
4723 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4724 fidsize = 0;
4725 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4726 fidsize = udf_create_parentfid(ump,
4727 (struct fileid_desc *) bpos, parent_icb,
4728 parent_unique_id);
4729 }
4730
4731 /* record fidlength information */
4732 efe->obj_size = udf_rw64(fidsize);
4733 efe->inf_len = udf_rw64(fidsize);
4734 efe->l_ad = udf_rw32(fidsize);
4735 efe->logblks_rec = udf_rw64(0); /* intern */
4736
4737 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4738 crclen += udf_rw32(efe->l_ea) + fidsize;
4739 efe->tag.desc_crc_len = udf_rw16(crclen);
4740
4741 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4742
4743 return fidsize;
4744 }
4745
4746 /* --------------------------------------------------------------------- */
4747
4748 int
4749 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4750 struct udf_node *udf_node, struct componentname *cnp)
4751 {
4752 struct vnode *dvp = dir_node->vnode;
4753 struct dirhash *dirh;
4754 struct dirhash_entry *dirh_ep;
4755 struct file_entry *fe = dir_node->fe;
4756 struct extfile_entry *efe = dir_node->efe;
4757 struct fileid_desc *fid;
4758 struct dirent *dirent;
4759 uint64_t file_size, diroffset;
4760 uint32_t lb_size, fidsize;
4761 int found, error;
4762 char const *name = cnp->cn_nameptr;
4763 int namelen = cnp->cn_namelen;
4764 int hit, refcnt;
4765
4766 /* get our dirhash and make sure its read in */
4767 dirhash_get(&dir_node->dir_hash);
4768 error = dirhash_fill(dir_node);
4769 if (error) {
4770 dirhash_put(dir_node->dir_hash);
4771 return error;
4772 }
4773 dirh = dir_node->dir_hash;
4774
4775 /* get directory filesize */
4776 if (fe) {
4777 file_size = udf_rw64(fe->inf_len);
4778 } else {
4779 assert(efe);
4780 file_size = udf_rw64(efe->inf_len);
4781 }
4782
4783 /* allocate temporary space for fid */
4784 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4785 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4786 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4787
4788 /* search our dirhash hits */
4789 found = 0;
4790 dirh_ep = NULL;
4791 for (;;) {
4792 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4793 /* if no hit, abort the search */
4794 if (!hit)
4795 break;
4796
4797 /* check this hit */
4798 diroffset = dirh_ep->offset;
4799
4800 /* transfer a new fid/dirent */
4801 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4802 if (error)
4803 break;
4804
4805 /* see if its our entry */
4806 KASSERT(dirent->d_namlen == namelen);
4807 if (strncmp(dirent->d_name, name, namelen) == 0) {
4808 found = 1;
4809 break;
4810 }
4811 }
4812
4813 if (!found)
4814 error = ENOENT;
4815 if (error)
4816 goto error_out;
4817
4818 /* mark deleted */
4819 fid->file_char |= UDF_FILE_CHAR_DEL;
4820 #ifdef UDF_COMPLETE_DELETE
4821 memset(&fid->icb, 0, sizeof(fid->icb));
4822 #endif
4823 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4824
4825 /* get size of fid and compensate for the read_fid_stream advance */
4826 fidsize = udf_fidsize(fid);
4827 diroffset -= fidsize;
4828
4829 /* write out */
4830 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4831 fid, fidsize, diroffset,
4832 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4833 FSCRED, NULL, NULL);
4834 if (error)
4835 goto error_out;
4836
4837 /* get reference count of attached node */
4838 if (udf_node->fe) {
4839 refcnt = udf_rw16(udf_node->fe->link_cnt);
4840 } else {
4841 KASSERT(udf_node->efe);
4842 refcnt = udf_rw16(udf_node->efe->link_cnt);
4843 }
4844 #ifdef UDF_COMPLETE_DELETE
4845 /* substract reference counter in attached node */
4846 refcnt -= 1;
4847 if (udf_node->fe) {
4848 udf_node->fe->link_cnt = udf_rw16(refcnt);
4849 } else {
4850 udf_node->efe->link_cnt = udf_rw16(refcnt);
4851 }
4852
4853 /* prevent writeout when refcnt == 0 */
4854 if (refcnt == 0)
4855 udf_node->i_flags |= IN_DELETED;
4856
4857 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4858 int drefcnt;
4859
4860 /* substract reference counter in directory node */
4861 /* note subtract 2 (?) for its was also backreferenced */
4862 if (dir_node->fe) {
4863 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4864 drefcnt -= 1;
4865 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4866 } else {
4867 KASSERT(dir_node->efe);
4868 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4869 drefcnt -= 1;
4870 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4871 }
4872 }
4873
4874 udf_node->i_flags |= IN_MODIFIED;
4875 dir_node->i_flags |= IN_MODIFIED;
4876 #endif
4877 /* if it is/was a hardlink adjust the file count */
4878 if (refcnt > 0)
4879 udf_adjust_filecount(udf_node, -1);
4880
4881 /* remove from the dirhash */
4882 dirhash_remove(dirh, dirent, diroffset,
4883 udf_fidsize(fid));
4884
4885 error_out:
4886 free(fid, M_UDFTEMP);
4887 free(dirent, M_UDFTEMP);
4888
4889 dirhash_put(dir_node->dir_hash);
4890
4891 return error;
4892 }
4893
4894 /* --------------------------------------------------------------------- */
4895
4896 int
4897 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4898 struct udf_node *new_parent_node)
4899 {
4900 struct vnode *dvp = dir_node->vnode;
4901 struct dirhash *dirh;
4902 struct dirhash_entry *dirh_ep;
4903 struct file_entry *fe;
4904 struct extfile_entry *efe;
4905 struct fileid_desc *fid;
4906 struct dirent *dirent;
4907 uint64_t file_size, diroffset;
4908 uint64_t new_parent_unique_id;
4909 uint32_t lb_size, fidsize;
4910 int found, error;
4911 char const *name = "..";
4912 int namelen = 2;
4913 int hit;
4914
4915 /* get our dirhash and make sure its read in */
4916 dirhash_get(&dir_node->dir_hash);
4917 error = dirhash_fill(dir_node);
4918 if (error) {
4919 dirhash_put(dir_node->dir_hash);
4920 return error;
4921 }
4922 dirh = dir_node->dir_hash;
4923
4924 /* get new parent's unique ID */
4925 fe = new_parent_node->fe;
4926 efe = new_parent_node->efe;
4927 if (fe) {
4928 new_parent_unique_id = udf_rw64(fe->unique_id);
4929 } else {
4930 assert(efe);
4931 new_parent_unique_id = udf_rw64(efe->unique_id);
4932 }
4933
4934 /* get directory filesize */
4935 fe = dir_node->fe;
4936 efe = dir_node->efe;
4937 if (fe) {
4938 file_size = udf_rw64(fe->inf_len);
4939 } else {
4940 assert(efe);
4941 file_size = udf_rw64(efe->inf_len);
4942 }
4943
4944 /* allocate temporary space for fid */
4945 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4946 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4947 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4948
4949 /*
4950 * NOTE the standard does not dictate the FID entry '..' should be
4951 * first, though in practice it will most likely be.
4952 */
4953
4954 /* search our dirhash hits */
4955 found = 0;
4956 dirh_ep = NULL;
4957 for (;;) {
4958 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4959 /* if no hit, abort the search */
4960 if (!hit)
4961 break;
4962
4963 /* check this hit */
4964 diroffset = dirh_ep->offset;
4965
4966 /* transfer a new fid/dirent */
4967 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4968 if (error)
4969 break;
4970
4971 /* see if its our entry */
4972 KASSERT(dirent->d_namlen == namelen);
4973 if (strncmp(dirent->d_name, name, namelen) == 0) {
4974 found = 1;
4975 break;
4976 }
4977 }
4978
4979 if (!found)
4980 error = ENOENT;
4981 if (error)
4982 goto error_out;
4983
4984 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4985 fid->icb = new_parent_node->write_loc;
4986 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4987
4988 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4989
4990 /* get size of fid and compensate for the read_fid_stream advance */
4991 fidsize = udf_fidsize(fid);
4992 diroffset -= fidsize;
4993
4994 /* write out */
4995 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4996 fid, fidsize, diroffset,
4997 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4998 FSCRED, NULL, NULL);
4999
5000 /* nothing to be done in the dirhash */
5001
5002 error_out:
5003 free(fid, M_UDFTEMP);
5004 free(dirent, M_UDFTEMP);
5005
5006 dirhash_put(dir_node->dir_hash);
5007
5008 return error;
5009 }
5010
5011 /* --------------------------------------------------------------------- */
5012
5013 /*
5014 * We are not allowed to split the fid tag itself over an logical block so
5015 * check the space remaining in the logical block.
5016 *
5017 * We try to select the smallest candidate for recycling or when none is
5018 * found, append a new one at the end of the directory.
5019 */
5020
5021 int
5022 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5023 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5024 {
5025 struct vnode *dvp = dir_node->vnode;
5026 struct dirhash *dirh;
5027 struct dirhash_entry *dirh_ep;
5028 struct fileid_desc *fid;
5029 struct icb_tag *icbtag;
5030 struct charspec osta_charspec;
5031 struct dirent dirent;
5032 uint64_t unique_id, dir_size;
5033 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5034 uint32_t chosen_size, chosen_size_diff;
5035 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5036 int file_char, refcnt, icbflags, addr_type, hit, error;
5037
5038 /* get our dirhash and make sure its read in */
5039 dirhash_get(&dir_node->dir_hash);
5040 error = dirhash_fill(dir_node);
5041 if (error) {
5042 dirhash_put(dir_node->dir_hash);
5043 return error;
5044 }
5045 dirh = dir_node->dir_hash;
5046
5047 /* get info */
5048 lb_size = udf_rw32(ump->logical_vol->lb_size);
5049 udf_osta_charset(&osta_charspec);
5050
5051 if (dir_node->fe) {
5052 dir_size = udf_rw64(dir_node->fe->inf_len);
5053 icbtag = &dir_node->fe->icbtag;
5054 } else {
5055 dir_size = udf_rw64(dir_node->efe->inf_len);
5056 icbtag = &dir_node->efe->icbtag;
5057 }
5058
5059 icbflags = udf_rw16(icbtag->flags);
5060 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5061
5062 if (udf_node->fe) {
5063 unique_id = udf_rw64(udf_node->fe->unique_id);
5064 refcnt = udf_rw16(udf_node->fe->link_cnt);
5065 } else {
5066 unique_id = udf_rw64(udf_node->efe->unique_id);
5067 refcnt = udf_rw16(udf_node->efe->link_cnt);
5068 }
5069
5070 if (refcnt > 0) {
5071 unique_id = udf_advance_uniqueid(ump);
5072 udf_adjust_filecount(udf_node, 1);
5073 }
5074
5075 /* determine file characteristics */
5076 file_char = 0; /* visible non deleted file and not stream metadata */
5077 if (vap->va_type == VDIR)
5078 file_char = UDF_FILE_CHAR_DIR;
5079
5080 /* malloc scrap buffer */
5081 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5082
5083 /* calculate _minimum_ fid size */
5084 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5085 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5086 fidsize = UDF_FID_SIZE + fid->l_fi;
5087 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5088
5089 /* find position that will fit the FID */
5090 chosen_fid_pos = dir_size;
5091 chosen_size = 0;
5092 chosen_size_diff = UINT_MAX;
5093
5094 /* shut up gcc */
5095 dirent.d_namlen = 0;
5096
5097 /* search our dirhash hits */
5098 error = 0;
5099 dirh_ep = NULL;
5100 for (;;) {
5101 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5102 /* if no hit, abort the search */
5103 if (!hit)
5104 break;
5105
5106 /* check this hit for size */
5107 this_fidsize = dirh_ep->entry_size;
5108
5109 /* check this hit */
5110 fid_pos = dirh_ep->offset;
5111 end_fid_pos = fid_pos + this_fidsize;
5112 size_diff = this_fidsize - fidsize;
5113 lb_rest = lb_size - (end_fid_pos % lb_size);
5114
5115 #ifndef UDF_COMPLETE_DELETE
5116 /* transfer a new fid/dirent */
5117 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5118 if (error)
5119 goto error_out;
5120
5121 /* only reuse entries that are wiped */
5122 /* check if the len + loc are marked zero */
5123 if (udf_rw32(fid->icb.len) != 0)
5124 continue;
5125 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5126 continue;
5127 if (udf_rw16(fid->icb.loc.part_num) != 0)
5128 continue;
5129 #endif /* UDF_COMPLETE_DELETE */
5130
5131 /* select if not splitting the tag and its smaller */
5132 if ((size_diff >= 0) &&
5133 (size_diff < chosen_size_diff) &&
5134 (lb_rest >= sizeof(struct desc_tag)))
5135 {
5136 /* UDF 2.3.4.2+3 specifies rules for iu size */
5137 if ((size_diff == 0) || (size_diff >= 32)) {
5138 chosen_fid_pos = fid_pos;
5139 chosen_size = this_fidsize;
5140 chosen_size_diff = size_diff;
5141 }
5142 }
5143 }
5144
5145
5146 /* extend directory if no other candidate found */
5147 if (chosen_size == 0) {
5148 chosen_fid_pos = dir_size;
5149 chosen_size = fidsize;
5150 chosen_size_diff = 0;
5151
5152 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5153 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5154 /* pre-grow directory to see if we're to switch */
5155 udf_grow_node(dir_node, dir_size + chosen_size);
5156
5157 icbflags = udf_rw16(icbtag->flags);
5158 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5159 }
5160
5161 /* make sure the next fid desc_tag won't be splitted */
5162 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5163 end_fid_pos = chosen_fid_pos + chosen_size;
5164 lb_rest = lb_size - (end_fid_pos % lb_size);
5165
5166 /* pad with implementation use regid if needed */
5167 if (lb_rest < sizeof(struct desc_tag))
5168 chosen_size += 32;
5169 }
5170 }
5171 chosen_size_diff = chosen_size - fidsize;
5172
5173 /* populate the FID */
5174 memset(fid, 0, lb_size);
5175 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5176 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5177 fid->file_char = file_char;
5178 fid->icb = udf_node->loc;
5179 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5180 fid->l_iu = udf_rw16(0);
5181
5182 if (chosen_size > fidsize) {
5183 /* insert implementation-use regid to space it correctly */
5184 fid->l_iu = udf_rw16(chosen_size_diff);
5185
5186 /* set implementation use */
5187 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5188 udf_add_impl_regid(ump, (struct regid *) fid->data);
5189 }
5190
5191 /* fill in name */
5192 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5193 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5194
5195 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5196 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5197
5198 /* writeout FID/update parent directory */
5199 error = vn_rdwr(UIO_WRITE, dvp,
5200 fid, chosen_size, chosen_fid_pos,
5201 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5202 FSCRED, NULL, NULL);
5203
5204 if (error)
5205 goto error_out;
5206
5207 /* add reference counter in attached node */
5208 if (udf_node->fe) {
5209 refcnt = udf_rw16(udf_node->fe->link_cnt);
5210 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5211 } else {
5212 KASSERT(udf_node->efe);
5213 refcnt = udf_rw16(udf_node->efe->link_cnt);
5214 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5215 }
5216
5217 /* mark not deleted if it was... just in case, but do warn */
5218 if (udf_node->i_flags & IN_DELETED) {
5219 printf("udf: warning, marking a file undeleted\n");
5220 udf_node->i_flags &= ~IN_DELETED;
5221 }
5222
5223 if (file_char & UDF_FILE_CHAR_DIR) {
5224 /* add reference counter in directory node for '..' */
5225 if (dir_node->fe) {
5226 refcnt = udf_rw16(dir_node->fe->link_cnt);
5227 refcnt++;
5228 dir_node->fe->link_cnt = udf_rw16(refcnt);
5229 } else {
5230 KASSERT(dir_node->efe);
5231 refcnt = udf_rw16(dir_node->efe->link_cnt);
5232 refcnt++;
5233 dir_node->efe->link_cnt = udf_rw16(refcnt);
5234 }
5235 }
5236
5237 /* append to the dirhash */
5238 /* NOTE do not use dirent anymore or it won't match later! */
5239 udf_to_unix_name(dirent.d_name, MAXNAMLEN,
5240 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5241 dirent.d_namlen = strlen(dirent.d_name);
5242 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5243 udf_fidsize(fid), 1);
5244
5245 /* note updates */
5246 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5247 /* VN_KNOTE(udf_node, ...) */
5248 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5249
5250 error_out:
5251 free(fid, M_TEMP);
5252
5253 dirhash_put(dir_node->dir_hash);
5254
5255 return error;
5256 }
5257
5258 /* --------------------------------------------------------------------- */
5259
5260 /*
5261 * Each node can have an attached streamdir node though not recursively. These
5262 * are otherwise known as named substreams/named extended attributes that have
5263 * no size limitations.
5264 *
5265 * `Normal' extended attributes are indicated with a number and are recorded
5266 * in either the fe/efe descriptor itself for small descriptors or recorded in
5267 * the attached extended attribute file. Since these spaces can get
5268 * fragmented, care ought to be taken.
5269 *
5270 * Since the size of the space reserved for allocation descriptors is limited,
5271 * there is a mechanim provided for extending this space; this is done by a
5272 * special extent to allow schrinking of the allocations without breaking the
5273 * linkage to the allocation extent descriptor.
5274 */
5275
5276 int
5277 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5278 struct udf_node **udf_noderes)
5279 {
5280 union dscrptr *dscr;
5281 struct udf_node *udf_node;
5282 struct vnode *nvp;
5283 struct long_ad icb_loc, last_fe_icb_loc;
5284 uint64_t file_size;
5285 uint32_t lb_size, sector, dummy;
5286 uint8_t *file_data;
5287 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5288 int slot, eof, error;
5289
5290 DPRINTF(NODE, ("udf_get_node called\n"));
5291 *udf_noderes = udf_node = NULL;
5292
5293 /* lock to disallow simultanious creation of same udf_node */
5294 mutex_enter(&ump->get_node_lock);
5295
5296 DPRINTF(NODE, ("\tlookup in hash table\n"));
5297 /* lookup in hash table */
5298 assert(ump);
5299 assert(node_icb_loc);
5300 udf_node = udf_node_lookup(ump, node_icb_loc);
5301 if (udf_node) {
5302 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5303 /* vnode is returned locked */
5304 *udf_noderes = udf_node;
5305 mutex_exit(&ump->get_node_lock);
5306 return 0;
5307 }
5308
5309 /* garbage check: translate udf_node_icb_loc to sectornr */
5310 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5311 if (error) {
5312 /* no use, this will fail anyway */
5313 mutex_exit(&ump->get_node_lock);
5314 return EINVAL;
5315 }
5316
5317 /* build udf_node (do initialise!) */
5318 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5319 memset(udf_node, 0, sizeof(struct udf_node));
5320
5321 DPRINTF(NODE, ("\tget new vnode\n"));
5322 /* give it a vnode */
5323 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5324 if (error) {
5325 pool_put(&udf_node_pool, udf_node);
5326 mutex_exit(&ump->get_node_lock);
5327 return error;
5328 }
5329
5330 /* always return locked vnode */
5331 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5332 /* recycle vnode and unlock; simultanious will fail too */
5333 ungetnewvnode(nvp);
5334 mutex_exit(&ump->get_node_lock);
5335 return error;
5336 }
5337
5338 /* initialise crosslinks, note location of fe/efe for hashing */
5339 udf_node->ump = ump;
5340 udf_node->vnode = nvp;
5341 nvp->v_data = udf_node;
5342 udf_node->loc = *node_icb_loc;
5343 udf_node->lockf = 0;
5344 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5345 cv_init(&udf_node->node_lock, "udf_nlk");
5346 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5347 udf_node->outstanding_bufs = 0;
5348 udf_node->outstanding_nodedscr = 0;
5349 udf_node->uncommitted_lbs = 0;
5350
5351 /* check if we're fetching the root */
5352 if (ump->fileset_desc)
5353 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5354 sizeof(struct long_ad)) == 0)
5355 nvp->v_vflag |= VV_ROOT;
5356
5357 /* insert into the hash lookup */
5358 udf_register_node(udf_node);
5359
5360 /* safe to unlock, the entry is in the hash table, vnode is locked */
5361 mutex_exit(&ump->get_node_lock);
5362
5363 icb_loc = *node_icb_loc;
5364 needs_indirect = 0;
5365 strat4096 = 0;
5366 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5367 file_size = 0;
5368 file_data = NULL;
5369 lb_size = udf_rw32(ump->logical_vol->lb_size);
5370
5371 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5372 do {
5373 /* try to read in fe/efe */
5374 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5375
5376 /* blank sector marks end of sequence, check this */
5377 if ((dscr == NULL) && (!strat4096))
5378 error = ENOENT;
5379
5380 /* break if read error or blank sector */
5381 if (error || (dscr == NULL))
5382 break;
5383
5384 /* process descriptor based on the descriptor type */
5385 dscr_type = udf_rw16(dscr->tag.id);
5386 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5387
5388 /* if dealing with an indirect entry, follow the link */
5389 if (dscr_type == TAGID_INDIRECTENTRY) {
5390 needs_indirect = 0;
5391 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5392 icb_loc = dscr->inde.indirect_icb;
5393 continue;
5394 }
5395
5396 /* only file entries and extended file entries allowed here */
5397 if ((dscr_type != TAGID_FENTRY) &&
5398 (dscr_type != TAGID_EXTFENTRY)) {
5399 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5400 error = ENOENT;
5401 break;
5402 }
5403
5404 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5405
5406 /* choose this one */
5407 last_fe_icb_loc = icb_loc;
5408
5409 /* record and process/update (ext)fentry */
5410 file_data = NULL;
5411 if (dscr_type == TAGID_FENTRY) {
5412 if (udf_node->fe)
5413 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5414 udf_node->fe);
5415 udf_node->fe = &dscr->fe;
5416 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5417 udf_file_type = udf_node->fe->icbtag.file_type;
5418 file_size = udf_rw64(udf_node->fe->inf_len);
5419 file_data = udf_node->fe->data;
5420 } else {
5421 if (udf_node->efe)
5422 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5423 udf_node->efe);
5424 udf_node->efe = &dscr->efe;
5425 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5426 udf_file_type = udf_node->efe->icbtag.file_type;
5427 file_size = udf_rw64(udf_node->efe->inf_len);
5428 file_data = udf_node->efe->data;
5429 }
5430
5431 /* check recording strategy (structure) */
5432
5433 /*
5434 * Strategy 4096 is a daisy linked chain terminating with an
5435 * unrecorded sector or a TERM descriptor. The next
5436 * descriptor is to be found in the sector that follows the
5437 * current sector.
5438 */
5439 if (strat == 4096) {
5440 strat4096 = 1;
5441 needs_indirect = 1;
5442
5443 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5444 }
5445
5446 /*
5447 * Strategy 4 is the normal strategy and terminates, but if
5448 * we're in strategy 4096, we can't have strategy 4 mixed in
5449 */
5450
5451 if (strat == 4) {
5452 if (strat4096) {
5453 error = EINVAL;
5454 break;
5455 }
5456 break; /* done */
5457 }
5458 } while (!error);
5459
5460 /* first round of cleanup code */
5461 if (error) {
5462 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5463 /* recycle udf_node */
5464 udf_dispose_node(udf_node);
5465
5466 VOP_UNLOCK(nvp);
5467 nvp->v_data = NULL;
5468 ungetnewvnode(nvp);
5469
5470 return EINVAL; /* error code ok? */
5471 }
5472 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5473
5474 /* assert no references to dscr anymore beyong this point */
5475 assert((udf_node->fe) || (udf_node->efe));
5476 dscr = NULL;
5477
5478 /*
5479 * Remember where to record an updated version of the descriptor. If
5480 * there is a sequence of indirect entries, icb_loc will have been
5481 * updated. Its the write disipline to allocate new space and to make
5482 * sure the chain is maintained.
5483 *
5484 * `needs_indirect' flags if the next location is to be filled with
5485 * with an indirect entry.
5486 */
5487 udf_node->write_loc = icb_loc;
5488 udf_node->needs_indirect = needs_indirect;
5489
5490 /*
5491 * Go trough all allocations extents of this descriptor and when
5492 * encountering a redirect read in the allocation extension. These are
5493 * daisy-chained.
5494 */
5495 UDF_LOCK_NODE(udf_node, 0);
5496 udf_node->num_extensions = 0;
5497
5498 error = 0;
5499 slot = 0;
5500 for (;;) {
5501 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5502 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5503 "lb_num = %d, part = %d\n", slot, eof,
5504 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5505 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5506 udf_rw32(icb_loc.loc.lb_num),
5507 udf_rw16(icb_loc.loc.part_num)));
5508 if (eof)
5509 break;
5510 slot++;
5511
5512 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5513 continue;
5514
5515 DPRINTF(NODE, ("\tgot redirect extent\n"));
5516 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5517 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5518 "too many allocation extensions on "
5519 "udf_node\n"));
5520 error = EINVAL;
5521 break;
5522 }
5523
5524 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5525 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5526 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5527 "extension size in udf_node\n"));
5528 error = EINVAL;
5529 break;
5530 }
5531
5532 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5533 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5534 /* load in allocation extent */
5535 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5536 if (error || (dscr == NULL))
5537 break;
5538
5539 /* process read-in descriptor */
5540 dscr_type = udf_rw16(dscr->tag.id);
5541
5542 if (dscr_type != TAGID_ALLOCEXTENT) {
5543 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5544 error = ENOENT;
5545 break;
5546 }
5547
5548 DPRINTF(NODE, ("\trecording redirect extent\n"));
5549 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5550 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5551
5552 udf_node->num_extensions++;
5553
5554 } /* while */
5555 UDF_UNLOCK_NODE(udf_node, 0);
5556
5557 /* second round of cleanup code */
5558 if (error) {
5559 /* recycle udf_node */
5560 udf_dispose_node(udf_node);
5561
5562 VOP_UNLOCK(nvp);
5563 nvp->v_data = NULL;
5564 ungetnewvnode(nvp);
5565
5566 return EINVAL; /* error code ok? */
5567 }
5568
5569 DPRINTF(NODE, ("\tnode read in fine\n"));
5570
5571 /*
5572 * Translate UDF filetypes into vnode types.
5573 *
5574 * Systemfiles like the meta main and mirror files are not treated as
5575 * normal files, so we type them as having no type. UDF dictates that
5576 * they are not allowed to be visible.
5577 */
5578
5579 switch (udf_file_type) {
5580 case UDF_ICB_FILETYPE_DIRECTORY :
5581 case UDF_ICB_FILETYPE_STREAMDIR :
5582 nvp->v_type = VDIR;
5583 break;
5584 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5585 nvp->v_type = VBLK;
5586 break;
5587 case UDF_ICB_FILETYPE_CHARDEVICE :
5588 nvp->v_type = VCHR;
5589 break;
5590 case UDF_ICB_FILETYPE_SOCKET :
5591 nvp->v_type = VSOCK;
5592 break;
5593 case UDF_ICB_FILETYPE_FIFO :
5594 nvp->v_type = VFIFO;
5595 break;
5596 case UDF_ICB_FILETYPE_SYMLINK :
5597 nvp->v_type = VLNK;
5598 break;
5599 case UDF_ICB_FILETYPE_VAT :
5600 case UDF_ICB_FILETYPE_META_MAIN :
5601 case UDF_ICB_FILETYPE_META_MIRROR :
5602 nvp->v_type = VNON;
5603 break;
5604 case UDF_ICB_FILETYPE_RANDOMACCESS :
5605 case UDF_ICB_FILETYPE_REALTIME :
5606 nvp->v_type = VREG;
5607 break;
5608 default:
5609 /* YIKES, something else */
5610 nvp->v_type = VNON;
5611 }
5612
5613 /* TODO specfs, fifofs etc etc. vnops setting */
5614
5615 /* don't forget to set vnode's v_size */
5616 uvm_vnp_setsize(nvp, file_size);
5617
5618 /* TODO ext attr and streamdir udf_nodes */
5619
5620 *udf_noderes = udf_node;
5621
5622 return 0;
5623 }
5624
5625 /* --------------------------------------------------------------------- */
5626
5627 int
5628 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5629 {
5630 union dscrptr *dscr;
5631 struct long_ad *loc;
5632 int extnr, error;
5633
5634 DPRINTF(NODE, ("udf_writeout_node called\n"));
5635
5636 KASSERT(udf_node->outstanding_bufs == 0);
5637 KASSERT(udf_node->outstanding_nodedscr == 0);
5638
5639 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5640
5641 if (udf_node->i_flags & IN_DELETED) {
5642 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5643 udf_cleanup_reservation(udf_node);
5644 return 0;
5645 }
5646
5647 /* lock node; unlocked in callback */
5648 UDF_LOCK_NODE(udf_node, 0);
5649
5650 /* remove pending reservations, we're written out */
5651 udf_cleanup_reservation(udf_node);
5652
5653 /* at least one descriptor writeout */
5654 udf_node->outstanding_nodedscr = 1;
5655
5656 /* we're going to write out the descriptor so clear the flags */
5657 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5658
5659 /* if we were rebuild, write out the allocation extents */
5660 if (udf_node->i_flags & IN_NODE_REBUILD) {
5661 /* mark outstanding node descriptors and issue them */
5662 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5663 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5664 loc = &udf_node->ext_loc[extnr];
5665 dscr = (union dscrptr *) udf_node->ext[extnr];
5666 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5667 if (error)
5668 return error;
5669 }
5670 /* mark allocation extents written out */
5671 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5672 }
5673
5674 if (udf_node->fe) {
5675 KASSERT(udf_node->efe == NULL);
5676 dscr = (union dscrptr *) udf_node->fe;
5677 } else {
5678 KASSERT(udf_node->efe);
5679 KASSERT(udf_node->fe == NULL);
5680 dscr = (union dscrptr *) udf_node->efe;
5681 }
5682 KASSERT(dscr);
5683
5684 loc = &udf_node->write_loc;
5685 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5686
5687 return error;
5688 }
5689
5690 /* --------------------------------------------------------------------- */
5691
5692 int
5693 udf_dispose_node(struct udf_node *udf_node)
5694 {
5695 struct vnode *vp;
5696 int extnr;
5697
5698 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5699 if (!udf_node) {
5700 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5701 return 0;
5702 }
5703
5704 vp = udf_node->vnode;
5705 #ifdef DIAGNOSTIC
5706 if (vp->v_numoutput)
5707 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5708 "v_numoutput = %d", udf_node, vp->v_numoutput);
5709 #endif
5710
5711 udf_cleanup_reservation(udf_node);
5712
5713 /* TODO extended attributes and streamdir */
5714
5715 /* remove dirhash if present */
5716 dirhash_purge(&udf_node->dir_hash);
5717
5718 /* remove from our hash lookup table */
5719 udf_deregister_node(udf_node);
5720
5721 /* destroy our lock */
5722 mutex_destroy(&udf_node->node_mutex);
5723 cv_destroy(&udf_node->node_lock);
5724
5725 /* dissociate our udf_node from the vnode */
5726 genfs_node_destroy(udf_node->vnode);
5727 vp->v_data = NULL;
5728
5729 /* free associated memory and the node itself */
5730 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5731 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5732 udf_node->ext[extnr]);
5733 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5734 }
5735
5736 if (udf_node->fe)
5737 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5738 udf_node->fe);
5739 if (udf_node->efe)
5740 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5741 udf_node->efe);
5742
5743 udf_node->fe = (void *) 0xdeadaaaa;
5744 udf_node->efe = (void *) 0xdeadbbbb;
5745 udf_node->ump = (void *) 0xdeadbeef;
5746 pool_put(&udf_node_pool, udf_node);
5747
5748 return 0;
5749 }
5750
5751
5752
5753 /*
5754 * create a new node using the specified vnodeops, vap and cnp but with the
5755 * udf_file_type. This allows special files to be created. Use with care.
5756 */
5757
5758 static int
5759 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5760 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5761 {
5762 union dscrptr *dscr;
5763 struct udf_node *dir_node = VTOI(dvp);
5764 struct udf_node *udf_node;
5765 struct udf_mount *ump = dir_node->ump;
5766 struct vnode *nvp;
5767 struct long_ad node_icb_loc;
5768 uint64_t parent_unique_id;
5769 uint64_t lmapping;
5770 uint32_t lb_size, lb_num;
5771 uint16_t vpart_num;
5772 uid_t uid;
5773 gid_t gid, parent_gid;
5774 int fid_size, error;
5775
5776 lb_size = udf_rw32(ump->logical_vol->lb_size);
5777 *vpp = NULL;
5778
5779 /* allocate vnode */
5780 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5781 if (error)
5782 return error;
5783
5784 /* lock node */
5785 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5786 if (error)
5787 goto error_out_unget;
5788
5789 /* reserve space for one logical block */
5790 vpart_num = ump->node_part;
5791 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5792 vpart_num, 1, /* can_fail */ true);
5793 if (error)
5794 goto error_out_unlock;
5795
5796 /* allocate node */
5797 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5798 vpart_num, 1, &lmapping);
5799 if (error)
5800 goto error_out_unreserve;
5801 lb_num = lmapping;
5802
5803 /* initialise pointer to location */
5804 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5805 node_icb_loc.len = udf_rw32(lb_size);
5806 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5807 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5808
5809 /* build udf_node (do initialise!) */
5810 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5811 memset(udf_node, 0, sizeof(struct udf_node));
5812
5813 /* initialise crosslinks, note location of fe/efe for hashing */
5814 /* bugalert: synchronise with udf_get_node() */
5815 udf_node->ump = ump;
5816 udf_node->vnode = nvp;
5817 nvp->v_data = udf_node;
5818 udf_node->loc = node_icb_loc;
5819 udf_node->write_loc = node_icb_loc;
5820 udf_node->lockf = 0;
5821 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5822 cv_init(&udf_node->node_lock, "udf_nlk");
5823 udf_node->outstanding_bufs = 0;
5824 udf_node->outstanding_nodedscr = 0;
5825 udf_node->uncommitted_lbs = 0;
5826
5827 /* initialise genfs */
5828 genfs_node_init(nvp, &udf_genfsops);
5829
5830 /* insert into the hash lookup */
5831 udf_register_node(udf_node);
5832
5833 /* get parent's unique ID for refering '..' if its a directory */
5834 if (dir_node->fe) {
5835 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5836 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5837 } else {
5838 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5839 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5840 }
5841
5842 /* get descriptor */
5843 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5844
5845 /* choose a fe or an efe for it */
5846 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5847 udf_node->fe = &dscr->fe;
5848 fid_size = udf_create_new_fe(ump, udf_node->fe,
5849 udf_file_type, &udf_node->loc,
5850 &dir_node->loc, parent_unique_id);
5851 /* TODO add extended attribute for creation time */
5852 } else {
5853 udf_node->efe = &dscr->efe;
5854 fid_size = udf_create_new_efe(ump, udf_node->efe,
5855 udf_file_type, &udf_node->loc,
5856 &dir_node->loc, parent_unique_id);
5857 }
5858 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5859
5860 /* update vnode's size and type */
5861 nvp->v_type = vap->va_type;
5862 uvm_vnp_setsize(nvp, fid_size);
5863
5864 /* set access mode */
5865 udf_setaccessmode(udf_node, vap->va_mode);
5866
5867 /* set ownership */
5868 uid = kauth_cred_geteuid(cnp->cn_cred);
5869 gid = parent_gid;
5870 udf_setownership(udf_node, uid, gid);
5871
5872 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5873 if (error) {
5874 /* free disc allocation for node */
5875 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5876
5877 /* recycle udf_node */
5878 udf_dispose_node(udf_node);
5879 vput(nvp);
5880
5881 *vpp = NULL;
5882 return error;
5883 }
5884
5885 /* adjust file count */
5886 udf_adjust_filecount(udf_node, 1);
5887
5888 /* return result */
5889 *vpp = nvp;
5890
5891 return 0;
5892
5893 error_out_unreserve:
5894 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5895
5896 error_out_unlock:
5897 VOP_UNLOCK(nvp);
5898
5899 error_out_unget:
5900 nvp->v_data = NULL;
5901 ungetnewvnode(nvp);
5902
5903 return error;
5904 }
5905
5906
5907 int
5908 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5909 struct componentname *cnp)
5910 {
5911 int (**vnodeops)(void *);
5912 int udf_file_type;
5913
5914 DPRINTF(NODE, ("udf_create_node called\n"));
5915
5916 /* what type are we creating ? */
5917 vnodeops = udf_vnodeop_p;
5918 /* start with a default */
5919 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5920
5921 *vpp = NULL;
5922
5923 switch (vap->va_type) {
5924 case VREG :
5925 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5926 break;
5927 case VDIR :
5928 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5929 break;
5930 case VLNK :
5931 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5932 break;
5933 case VBLK :
5934 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5935 /* specfs */
5936 return ENOTSUP;
5937 break;
5938 case VCHR :
5939 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5940 /* specfs */
5941 return ENOTSUP;
5942 break;
5943 case VFIFO :
5944 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5945 /* specfs */
5946 return ENOTSUP;
5947 break;
5948 case VSOCK :
5949 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5950 /* specfs */
5951 return ENOTSUP;
5952 break;
5953 case VNON :
5954 case VBAD :
5955 default :
5956 /* nothing; can we even create these? */
5957 return EINVAL;
5958 }
5959
5960 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5961 }
5962
5963 /* --------------------------------------------------------------------- */
5964
5965 static void
5966 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5967 {
5968 struct udf_mount *ump = udf_node->ump;
5969 uint32_t lb_size, lb_num, len, num_lb;
5970 uint16_t vpart_num;
5971
5972 /* is there really one? */
5973 if (mem == NULL)
5974 return;
5975
5976 /* got a descriptor here */
5977 len = UDF_EXT_LEN(udf_rw32(loc->len));
5978 lb_num = udf_rw32(loc->loc.lb_num);
5979 vpart_num = udf_rw16(loc->loc.part_num);
5980
5981 lb_size = udf_rw32(ump->logical_vol->lb_size);
5982 num_lb = (len + lb_size -1) / lb_size;
5983
5984 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5985 }
5986
5987 void
5988 udf_delete_node(struct udf_node *udf_node)
5989 {
5990 void *dscr;
5991 struct udf_mount *ump;
5992 struct long_ad *loc;
5993 int extnr, lvint, dummy;
5994
5995 ump = udf_node->ump;
5996
5997 /* paranoia check on integrity; should be open!; we could panic */
5998 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5999 if (lvint == UDF_INTEGRITY_CLOSED)
6000 printf("\tIntegrity was CLOSED!\n");
6001
6002 /* whatever the node type, change its size to zero */
6003 (void) udf_resize_node(udf_node, 0, &dummy);
6004
6005 /* force it to be `clean'; no use writing it out */
6006 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6007 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6008
6009 /* adjust file count */
6010 udf_adjust_filecount(udf_node, -1);
6011
6012 /*
6013 * Free its allocated descriptors; memory will be released when
6014 * vop_reclaim() is called.
6015 */
6016 loc = &udf_node->loc;
6017
6018 dscr = udf_node->fe;
6019 udf_free_descriptor_space(udf_node, loc, dscr);
6020 dscr = udf_node->efe;
6021 udf_free_descriptor_space(udf_node, loc, dscr);
6022
6023 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6024 dscr = udf_node->ext[extnr];
6025 loc = &udf_node->ext_loc[extnr];
6026 udf_free_descriptor_space(udf_node, loc, dscr);
6027 }
6028 }
6029
6030 /* --------------------------------------------------------------------- */
6031
6032 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6033 int
6034 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6035 {
6036 struct file_entry *fe = udf_node->fe;
6037 struct extfile_entry *efe = udf_node->efe;
6038 uint64_t file_size;
6039 int error;
6040
6041 if (fe) {
6042 file_size = udf_rw64(fe->inf_len);
6043 } else {
6044 assert(udf_node->efe);
6045 file_size = udf_rw64(efe->inf_len);
6046 }
6047
6048 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6049 file_size, new_size));
6050
6051 /* if not changing, we're done */
6052 if (file_size == new_size)
6053 return 0;
6054
6055 *extended = (new_size > file_size);
6056 if (*extended) {
6057 error = udf_grow_node(udf_node, new_size);
6058 } else {
6059 error = udf_shrink_node(udf_node, new_size);
6060 }
6061
6062 return error;
6063 }
6064
6065
6066 /* --------------------------------------------------------------------- */
6067
6068 void
6069 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6070 struct timespec *mod, struct timespec *birth)
6071 {
6072 struct timespec now;
6073 struct file_entry *fe;
6074 struct extfile_entry *efe;
6075 struct filetimes_extattr_entry *ft_extattr;
6076 struct timestamp *atime, *mtime, *attrtime, *ctime;
6077 struct timestamp fe_ctime;
6078 struct timespec cur_birth;
6079 uint32_t offset, a_l;
6080 uint8_t *filedata;
6081 int error;
6082
6083 /* protect against rogue values */
6084 if (!udf_node)
6085 return;
6086
6087 fe = udf_node->fe;
6088 efe = udf_node->efe;
6089
6090 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6091 return;
6092
6093 /* get descriptor information */
6094 if (fe) {
6095 atime = &fe->atime;
6096 mtime = &fe->mtime;
6097 attrtime = &fe->attrtime;
6098 filedata = fe->data;
6099
6100 /* initial save dummy setting */
6101 ctime = &fe_ctime;
6102
6103 /* check our extended attribute if present */
6104 error = udf_extattr_search_intern(udf_node,
6105 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6106 if (!error) {
6107 ft_extattr = (struct filetimes_extattr_entry *)
6108 (filedata + offset);
6109 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6110 ctime = &ft_extattr->times[0];
6111 }
6112 /* TODO create the extended attribute if not found ? */
6113 } else {
6114 assert(udf_node->efe);
6115 atime = &efe->atime;
6116 mtime = &efe->mtime;
6117 attrtime = &efe->attrtime;
6118 ctime = &efe->ctime;
6119 }
6120
6121 vfs_timestamp(&now);
6122
6123 /* set access time */
6124 if (udf_node->i_flags & IN_ACCESS) {
6125 if (acc == NULL)
6126 acc = &now;
6127 udf_timespec_to_timestamp(acc, atime);
6128 }
6129
6130 /* set modification time */
6131 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6132 if (mod == NULL)
6133 mod = &now;
6134 udf_timespec_to_timestamp(mod, mtime);
6135
6136 /* ensure birthtime is older than set modification! */
6137 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6138 if ((cur_birth.tv_sec > mod->tv_sec) ||
6139 ((cur_birth.tv_sec == mod->tv_sec) &&
6140 (cur_birth.tv_nsec > mod->tv_nsec))) {
6141 udf_timespec_to_timestamp(mod, ctime);
6142 }
6143 }
6144
6145 /* update birthtime if specified */
6146 /* XXX we asume here that given birthtime is older than mod */
6147 if (birth && (birth->tv_sec != VNOVAL)) {
6148 udf_timespec_to_timestamp(birth, ctime);
6149 }
6150
6151 /* set change time */
6152 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6153 udf_timespec_to_timestamp(&now, attrtime);
6154
6155 /* notify updates to the node itself */
6156 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6157 udf_node->i_flags |= IN_ACCESSED;
6158 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6159 udf_node->i_flags |= IN_MODIFIED;
6160
6161 /* clear modification flags */
6162 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6163 }
6164
6165 /* --------------------------------------------------------------------- */
6166
6167 int
6168 udf_update(struct vnode *vp, struct timespec *acc,
6169 struct timespec *mod, struct timespec *birth, int updflags)
6170 {
6171 union dscrptr *dscrptr;
6172 struct udf_node *udf_node = VTOI(vp);
6173 struct udf_mount *ump = udf_node->ump;
6174 struct regid *impl_id;
6175 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6176 int waitfor, flags;
6177
6178 #ifdef DEBUG
6179 char bits[128];
6180 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6181 updflags));
6182 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6183 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6184 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6185 #endif
6186
6187 /* set our times */
6188 udf_itimes(udf_node, acc, mod, birth);
6189
6190 /* set our implementation id */
6191 if (udf_node->fe) {
6192 dscrptr = (union dscrptr *) udf_node->fe;
6193 impl_id = &udf_node->fe->imp_id;
6194 } else {
6195 dscrptr = (union dscrptr *) udf_node->efe;
6196 impl_id = &udf_node->efe->imp_id;
6197 }
6198
6199 /* set our ID */
6200 udf_set_regid(impl_id, IMPL_NAME);
6201 udf_add_impl_regid(ump, impl_id);
6202
6203 /* update our crc! on RMW we are not allowed to change a thing */
6204 udf_validate_tag_and_crc_sums(dscrptr);
6205
6206 /* if called when mounted readonly, never write back */
6207 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6208 return 0;
6209
6210 /* check if the node is dirty 'enough'*/
6211 if (updflags & UPDATE_CLOSE) {
6212 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6213 } else {
6214 flags = udf_node->i_flags & IN_MODIFIED;
6215 }
6216 if (flags == 0)
6217 return 0;
6218
6219 /* determine if we need to write sync or async */
6220 waitfor = 0;
6221 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6222 /* sync mounted */
6223 waitfor = updflags & UPDATE_WAIT;
6224 if (updflags & UPDATE_DIROP)
6225 waitfor |= UPDATE_WAIT;
6226 }
6227 if (waitfor)
6228 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6229
6230 return 0;
6231 }
6232
6233
6234 /* --------------------------------------------------------------------- */
6235
6236
6237 /*
6238 * Read one fid and process it into a dirent and advance to the next (*fid)
6239 * has to be allocated a logical block in size, (*dirent) struct dirent length
6240 */
6241
6242 int
6243 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6244 struct fileid_desc *fid, struct dirent *dirent)
6245 {
6246 struct udf_node *dir_node = VTOI(vp);
6247 struct udf_mount *ump = dir_node->ump;
6248 struct file_entry *fe = dir_node->fe;
6249 struct extfile_entry *efe = dir_node->efe;
6250 uint32_t fid_size, lb_size;
6251 uint64_t file_size;
6252 char *fid_name;
6253 int enough, error;
6254
6255 assert(fid);
6256 assert(dirent);
6257 assert(dir_node);
6258 assert(offset);
6259 assert(*offset != 1);
6260
6261 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6262 /* check if we're past the end of the directory */
6263 if (fe) {
6264 file_size = udf_rw64(fe->inf_len);
6265 } else {
6266 assert(dir_node->efe);
6267 file_size = udf_rw64(efe->inf_len);
6268 }
6269 if (*offset >= file_size)
6270 return EINVAL;
6271
6272 /* get maximum length of FID descriptor */
6273 lb_size = udf_rw32(ump->logical_vol->lb_size);
6274
6275 /* initialise return values */
6276 fid_size = 0;
6277 memset(dirent, 0, sizeof(struct dirent));
6278 memset(fid, 0, lb_size);
6279
6280 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6281 if (!enough) {
6282 /* short dir ... */
6283 return EIO;
6284 }
6285
6286 error = vn_rdwr(UIO_READ, vp,
6287 fid, MIN(file_size - (*offset), lb_size), *offset,
6288 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6289 NULL, NULL);
6290 if (error)
6291 return error;
6292
6293 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6294 /*
6295 * Check if we got a whole descriptor.
6296 * TODO Try to `resync' directory stream when something is very wrong.
6297 */
6298
6299 /* check if our FID header is OK */
6300 error = udf_check_tag(fid);
6301 if (error) {
6302 goto brokendir;
6303 }
6304 DPRINTF(FIDS, ("\ttag check ok\n"));
6305
6306 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6307 error = EIO;
6308 goto brokendir;
6309 }
6310 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6311
6312 /* check for length */
6313 fid_size = udf_fidsize(fid);
6314 enough = (file_size - (*offset) >= fid_size);
6315 if (!enough) {
6316 error = EIO;
6317 goto brokendir;
6318 }
6319 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6320
6321 /* check FID contents */
6322 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6323 brokendir:
6324 if (error) {
6325 /* note that is sometimes a bit quick to report */
6326 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6327 /* RESYNC? */
6328 /* TODO: use udf_resync_fid_stream */
6329 return EIO;
6330 }
6331 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6332
6333 /* we got a whole and valid descriptor! */
6334 DPRINTF(FIDS, ("\tinterpret FID\n"));
6335
6336 /* create resulting dirent structure */
6337 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6338 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6339 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6340
6341 /* '..' has no name, so provide one */
6342 if (fid->file_char & UDF_FILE_CHAR_PAR)
6343 strcpy(dirent->d_name, "..");
6344
6345 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6346 dirent->d_namlen = strlen(dirent->d_name);
6347 dirent->d_reclen = _DIRENT_SIZE(dirent);
6348
6349 /*
6350 * Note that its not worth trying to go for the filetypes now... its
6351 * too expensive too
6352 */
6353 dirent->d_type = DT_UNKNOWN;
6354
6355 /* initial guess for filetype we can make */
6356 if (fid->file_char & UDF_FILE_CHAR_DIR)
6357 dirent->d_type = DT_DIR;
6358
6359 /* advance */
6360 *offset += fid_size;
6361
6362 return error;
6363 }
6364
6365
6366 /* --------------------------------------------------------------------- */
6367
6368 static void
6369 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6370 int pass, int *ndirty)
6371 {
6372 struct udf_node *udf_node, *n_udf_node;
6373 struct vnode *vp;
6374 int vdirty, error;
6375 int on_type, on_flags, on_vnode;
6376
6377 derailed:
6378 KASSERT(mutex_owned(&mntvnode_lock));
6379
6380 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6381 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6382 for (;udf_node; udf_node = n_udf_node) {
6383 DPRINTF(SYNC, ("."));
6384
6385 udf_node->i_flags &= ~IN_SYNCED;
6386 vp = udf_node->vnode;
6387
6388 mutex_enter(&vp->v_interlock);
6389 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6390 udf_node, RB_DIR_RIGHT);
6391
6392 if (n_udf_node)
6393 n_udf_node->i_flags |= IN_SYNCED;
6394
6395 /* system nodes are not synced this way */
6396 if (vp->v_vflag & VV_SYSTEM) {
6397 mutex_exit(&vp->v_interlock);
6398 continue;
6399 }
6400
6401 /* check if its dirty enough to even try */
6402 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6403 on_flags = ((udf_node->i_flags &
6404 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6405 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6406 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6407 if (on_type || (on_flags || on_vnode)) { /* XXX */
6408 /* not dirty (enough?) */
6409 mutex_exit(&vp->v_interlock);
6410 continue;
6411 }
6412
6413 mutex_exit(&mntvnode_lock);
6414 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6415 if (error) {
6416 mutex_enter(&mntvnode_lock);
6417 if (error == ENOENT)
6418 goto derailed;
6419 *ndirty += 1;
6420 continue;
6421 }
6422
6423 switch (pass) {
6424 case 1:
6425 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6426 break;
6427 case 2:
6428 vdirty = vp->v_numoutput;
6429 if (vp->v_tag == VT_UDF)
6430 vdirty += udf_node->outstanding_bufs +
6431 udf_node->outstanding_nodedscr;
6432 if (vdirty == 0)
6433 VOP_FSYNC(vp, cred, 0,0,0);
6434 *ndirty += vdirty;
6435 break;
6436 case 3:
6437 vdirty = vp->v_numoutput;
6438 if (vp->v_tag == VT_UDF)
6439 vdirty += udf_node->outstanding_bufs +
6440 udf_node->outstanding_nodedscr;
6441 *ndirty += vdirty;
6442 break;
6443 }
6444
6445 vput(vp);
6446 mutex_enter(&mntvnode_lock);
6447 }
6448 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6449 }
6450
6451
6452 void
6453 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6454 {
6455 int dummy, ndirty;
6456
6457 mutex_enter(&mntvnode_lock);
6458 recount:
6459 dummy = 0;
6460 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6461 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6462 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6463
6464 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6465 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6466 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6467
6468 if (waitfor == MNT_WAIT) {
6469 ndirty = ump->devvp->v_numoutput;
6470 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6471 ndirty));
6472 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6473 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6474 ndirty));
6475
6476 if (ndirty) {
6477 /* 1/4 second wait */
6478 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6479 hz/4);
6480 goto recount;
6481 }
6482 }
6483
6484 mutex_exit(&mntvnode_lock);
6485 }
6486
6487 /* --------------------------------------------------------------------- */
6488
6489 /*
6490 * Read and write file extent in/from the buffer.
6491 *
6492 * The splitup of the extent into seperate request-buffers is to minimise
6493 * copying around as much as possible.
6494 *
6495 * block based file reading and writing
6496 */
6497
6498 static int
6499 udf_read_internal(struct udf_node *node, uint8_t *blob)
6500 {
6501 struct udf_mount *ump;
6502 struct file_entry *fe = node->fe;
6503 struct extfile_entry *efe = node->efe;
6504 uint64_t inflen;
6505 uint32_t sector_size;
6506 uint8_t *pos;
6507 int icbflags, addr_type;
6508
6509 /* get extent and do some paranoia checks */
6510 ump = node->ump;
6511 sector_size = ump->discinfo.sector_size;
6512
6513 if (fe) {
6514 inflen = udf_rw64(fe->inf_len);
6515 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6516 icbflags = udf_rw16(fe->icbtag.flags);
6517 } else {
6518 assert(node->efe);
6519 inflen = udf_rw64(efe->inf_len);
6520 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6521 icbflags = udf_rw16(efe->icbtag.flags);
6522 }
6523 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6524
6525 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6526 assert(inflen < sector_size);
6527
6528 /* copy out info */
6529 memset(blob, 0, sector_size);
6530 memcpy(blob, pos, inflen);
6531
6532 return 0;
6533 }
6534
6535
6536 static int
6537 udf_write_internal(struct udf_node *node, uint8_t *blob)
6538 {
6539 struct udf_mount *ump;
6540 struct file_entry *fe = node->fe;
6541 struct extfile_entry *efe = node->efe;
6542 uint64_t inflen;
6543 uint32_t sector_size;
6544 uint8_t *pos;
6545 int icbflags, addr_type;
6546
6547 /* get extent and do some paranoia checks */
6548 ump = node->ump;
6549 sector_size = ump->discinfo.sector_size;
6550
6551 if (fe) {
6552 inflen = udf_rw64(fe->inf_len);
6553 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6554 icbflags = udf_rw16(fe->icbtag.flags);
6555 } else {
6556 assert(node->efe);
6557 inflen = udf_rw64(efe->inf_len);
6558 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6559 icbflags = udf_rw16(efe->icbtag.flags);
6560 }
6561 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6562
6563 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6564 assert(inflen < sector_size);
6565
6566 /* copy in blob */
6567 /* memset(pos, 0, inflen); */
6568 memcpy(pos, blob, inflen);
6569
6570 return 0;
6571 }
6572
6573
6574 void
6575 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6576 {
6577 struct buf *nestbuf;
6578 struct udf_mount *ump = udf_node->ump;
6579 uint64_t *mapping;
6580 uint64_t run_start;
6581 uint32_t sector_size;
6582 uint32_t buf_offset, sector, rbuflen, rblk;
6583 uint32_t from, lblkno;
6584 uint32_t sectors;
6585 uint8_t *buf_pos;
6586 int error, run_length, what;
6587
6588 sector_size = udf_node->ump->discinfo.sector_size;
6589
6590 from = buf->b_blkno;
6591 sectors = buf->b_bcount / sector_size;
6592
6593 what = udf_get_c_type(udf_node);
6594
6595 /* assure we have enough translation slots */
6596 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6597 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6598
6599 if (sectors > UDF_MAX_MAPPINGS) {
6600 printf("udf_read_filebuf: implementation limit on bufsize\n");
6601 buf->b_error = EIO;
6602 biodone(buf);
6603 return;
6604 }
6605
6606 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6607
6608 error = 0;
6609 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6610 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6611 if (error) {
6612 buf->b_error = error;
6613 biodone(buf);
6614 goto out;
6615 }
6616 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6617
6618 /* pre-check if its an internal */
6619 if (*mapping == UDF_TRANS_INTERN) {
6620 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6621 if (error)
6622 buf->b_error = error;
6623 biodone(buf);
6624 goto out;
6625 }
6626 DPRINTF(READ, ("\tnot intern\n"));
6627
6628 #ifdef DEBUG
6629 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6630 printf("Returned translation table:\n");
6631 for (sector = 0; sector < sectors; sector++) {
6632 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6633 }
6634 }
6635 #endif
6636
6637 /* request read-in of data from disc sheduler */
6638 buf->b_resid = buf->b_bcount;
6639 for (sector = 0; sector < sectors; sector++) {
6640 buf_offset = sector * sector_size;
6641 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6642 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6643
6644 /* check if its zero or unmapped to stop reading */
6645 switch (mapping[sector]) {
6646 case UDF_TRANS_UNMAPPED:
6647 case UDF_TRANS_ZERO:
6648 /* copy zero sector TODO runlength like below */
6649 memset(buf_pos, 0, sector_size);
6650 DPRINTF(READ, ("\treturning zero sector\n"));
6651 nestiobuf_done(buf, sector_size, 0);
6652 break;
6653 default :
6654 DPRINTF(READ, ("\tread sector "
6655 "%"PRIu64"\n", mapping[sector]));
6656
6657 lblkno = from + sector;
6658 run_start = mapping[sector];
6659 run_length = 1;
6660 while (sector < sectors-1) {
6661 if (mapping[sector+1] != mapping[sector]+1)
6662 break;
6663 run_length++;
6664 sector++;
6665 }
6666
6667 /*
6668 * nest an iobuf and mark it for async reading. Since
6669 * we're using nested buffers, they can't be cached by
6670 * design.
6671 */
6672 rbuflen = run_length * sector_size;
6673 rblk = run_start * (sector_size/DEV_BSIZE);
6674
6675 nestbuf = getiobuf(NULL, true);
6676 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6677 /* nestbuf is B_ASYNC */
6678
6679 /* identify this nestbuf */
6680 nestbuf->b_lblkno = lblkno;
6681 assert(nestbuf->b_vp == udf_node->vnode);
6682
6683 /* CD shedules on raw blkno */
6684 nestbuf->b_blkno = rblk;
6685 nestbuf->b_proc = NULL;
6686 nestbuf->b_rawblkno = rblk;
6687 nestbuf->b_udf_c_type = what;
6688
6689 udf_discstrat_queuebuf(ump, nestbuf);
6690 }
6691 }
6692 out:
6693 /* if we're synchronously reading, wait for the completion */
6694 if ((buf->b_flags & B_ASYNC) == 0)
6695 biowait(buf);
6696
6697 DPRINTF(READ, ("\tend of read_filebuf\n"));
6698 free(mapping, M_TEMP);
6699 return;
6700 }
6701
6702
6703 void
6704 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6705 {
6706 struct buf *nestbuf;
6707 struct udf_mount *ump = udf_node->ump;
6708 uint64_t *mapping;
6709 uint64_t run_start;
6710 uint32_t lb_size;
6711 uint32_t buf_offset, lb_num, rbuflen, rblk;
6712 uint32_t from, lblkno;
6713 uint32_t num_lb;
6714 int error, run_length, what, s;
6715
6716 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6717
6718 from = buf->b_blkno;
6719 num_lb = buf->b_bcount / lb_size;
6720
6721 what = udf_get_c_type(udf_node);
6722
6723 /* assure we have enough translation slots */
6724 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6725 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6726
6727 if (num_lb > UDF_MAX_MAPPINGS) {
6728 printf("udf_write_filebuf: implementation limit on bufsize\n");
6729 buf->b_error = EIO;
6730 biodone(buf);
6731 return;
6732 }
6733
6734 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6735
6736 error = 0;
6737 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6738 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6739 if (error) {
6740 buf->b_error = error;
6741 biodone(buf);
6742 goto out;
6743 }
6744 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6745
6746 /* if its internally mapped, we can write it in the descriptor itself */
6747 if (*mapping == UDF_TRANS_INTERN) {
6748 /* TODO paranoia check if we ARE going to have enough space */
6749 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6750 if (error)
6751 buf->b_error = error;
6752 biodone(buf);
6753 goto out;
6754 }
6755 DPRINTF(WRITE, ("\tnot intern\n"));
6756
6757 /* request write out of data to disc sheduler */
6758 buf->b_resid = buf->b_bcount;
6759 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6760 buf_offset = lb_num * lb_size;
6761 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6762
6763 /*
6764 * Mappings are not that important here. Just before we write
6765 * the lb_num we late-allocate them when needed and update the
6766 * mapping in the udf_node.
6767 */
6768
6769 /* XXX why not ignore the mapping altogether ? */
6770 DPRINTF(WRITE, ("\twrite lb_num "
6771 "%"PRIu64, mapping[lb_num]));
6772
6773 lblkno = from + lb_num;
6774 run_start = mapping[lb_num];
6775 run_length = 1;
6776 while (lb_num < num_lb-1) {
6777 if (mapping[lb_num+1] != mapping[lb_num]+1)
6778 if (mapping[lb_num+1] != mapping[lb_num])
6779 break;
6780 run_length++;
6781 lb_num++;
6782 }
6783 DPRINTF(WRITE, ("+ %d\n", run_length));
6784
6785 /* nest an iobuf on the master buffer for the extent */
6786 rbuflen = run_length * lb_size;
6787 rblk = run_start * (lb_size/DEV_BSIZE);
6788
6789 nestbuf = getiobuf(NULL, true);
6790 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6791 /* nestbuf is B_ASYNC */
6792
6793 /* identify this nestbuf */
6794 nestbuf->b_lblkno = lblkno;
6795 KASSERT(nestbuf->b_vp == udf_node->vnode);
6796
6797 /* CD shedules on raw blkno */
6798 nestbuf->b_blkno = rblk;
6799 nestbuf->b_proc = NULL;
6800 nestbuf->b_rawblkno = rblk;
6801 nestbuf->b_udf_c_type = what;
6802
6803 /* increment our outstanding bufs counter */
6804 s = splbio();
6805 udf_node->outstanding_bufs++;
6806 splx(s);
6807
6808 udf_discstrat_queuebuf(ump, nestbuf);
6809 }
6810 out:
6811 /* if we're synchronously writing, wait for the completion */
6812 if ((buf->b_flags & B_ASYNC) == 0)
6813 biowait(buf);
6814
6815 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6816 free(mapping, M_TEMP);
6817 return;
6818 }
6819
6820 /* --------------------------------------------------------------------- */
6821
6822
6823