Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.110
      1 /* $NetBSD: udf_subr.c,v 1.110 2011/01/13 13:13:31 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.110 2011/01/13 13:13:31 reinoud Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_compat_netbsd.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/sysctl.h>
     43 #include <sys/namei.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vnode.h>
     47 #include <miscfs/genfs/genfs_node.h>
     48 #include <sys/mount.h>
     49 #include <sys/buf.h>
     50 #include <sys/file.h>
     51 #include <sys/device.h>
     52 #include <sys/disklabel.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/malloc.h>
     55 #include <sys/dirent.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/kauth.h>
     59 #include <fs/unicode.h>
     60 #include <dev/clock_subr.h>
     61 
     62 #include <fs/udf/ecma167-udf.h>
     63 #include <fs/udf/udf_mount.h>
     64 #include <sys/dirhash.h>
     65 
     66 #include "udf.h"
     67 #include "udf_subr.h"
     68 #include "udf_bswap.h"
     69 
     70 
     71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     72 
     73 #define UDF_SET_SYSTEMFILE(vp) \
     74 	/* XXXAD Is the vnode locked? */	\
     75 	(vp)->v_vflag |= VV_SYSTEM;		\
     76 	vref((vp));			\
     77 	vput((vp));			\
     78 
     79 extern int syncer_maxdelay;     /* maximum delay time */
     80 extern int (**udf_vnodeop_p)(void *);
     81 
     82 /* --------------------------------------------------------------------- */
     83 
     84 //#ifdef DEBUG
     85 #if 1
     86 
     87 #if 0
     88 static void
     89 udf_dumpblob(boid *blob, uint32_t dlen)
     90 {
     91 	int i, j;
     92 
     93 	printf("blob = %p\n", blob);
     94 	printf("dump of %d bytes\n", dlen);
     95 
     96 	for (i = 0; i < dlen; i+ = 16) {
     97 		printf("%04x ", i);
     98 		for (j = 0; j < 16; j++) {
     99 			if (i+j < dlen) {
    100 				printf("%02x ", blob[i+j]);
    101 			} else {
    102 				printf("   ");
    103 			}
    104 		}
    105 		for (j = 0; j < 16; j++) {
    106 			if (i+j < dlen) {
    107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    108 					printf("%c", blob[i+j]);
    109 				} else {
    110 					printf(".");
    111 				}
    112 			}
    113 		}
    114 		printf("\n");
    115 	}
    116 	printf("\n");
    117 	Debugger();
    118 }
    119 #endif
    120 
    121 static void
    122 udf_dump_discinfo(struct udf_mount *ump)
    123 {
    124 	char   bits[128];
    125 	struct mmc_discinfo *di = &ump->discinfo;
    126 
    127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    128 		return;
    129 
    130 	printf("Device/media info  :\n");
    131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    132 	printf("\tderived class      %d\n", di->mmc_class);
    133 	printf("\tsector size        %d\n", di->sector_size);
    134 	printf("\tdisc state         %d\n", di->disc_state);
    135 	printf("\tlast ses state     %d\n", di->last_session_state);
    136 	printf("\tbg format state    %d\n", di->bg_format_state);
    137 	printf("\tfrst track         %d\n", di->first_track);
    138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
    142 	printf("\tdisc flags         %s\n", bits);
    143 	printf("\tdisc id            %x\n", di->disc_id);
    144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    145 
    146 	printf("\tnum sessions       %d\n", di->num_sessions);
    147 	printf("\tnum tracks         %d\n", di->num_tracks);
    148 
    149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
    150 	printf("\tcapabilities cur   %s\n", bits);
    151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
    152 	printf("\tcapabilities cap   %s\n", bits);
    153 }
    154 
    155 static void
    156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
    157 {
    158 	char   bits[128];
    159 
    160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    161 		return;
    162 
    163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
    164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
    165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
    166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
    167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
    168 	printf("\tflags               %s\n", bits);
    169 
    170 	printf("\ttrack start         %d\n", trackinfo->track_start);
    171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
    172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
    173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
    174 	printf("\ttrack size          %d\n", trackinfo->track_size);
    175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
    176 }
    177 
    178 #else
    179 #define udf_dump_discinfo(a);
    180 #define udf_dump_trackinfo(a);
    181 #endif
    182 
    183 
    184 /* --------------------------------------------------------------------- */
    185 
    186 /* not called often */
    187 int
    188 udf_update_discinfo(struct udf_mount *ump)
    189 {
    190 	struct vnode *devvp = ump->devvp;
    191 	struct partinfo dpart;
    192 	struct mmc_discinfo *di;
    193 	int error;
    194 
    195 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    196 	di = &ump->discinfo;
    197 	memset(di, 0, sizeof(struct mmc_discinfo));
    198 
    199 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    200 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    201 	if (error == 0) {
    202 		udf_dump_discinfo(ump);
    203 		return 0;
    204 	}
    205 
    206 	/* disc partition support */
    207 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    208 	if (error)
    209 		return ENODEV;
    210 
    211 	/* set up a disc info profile for partitions */
    212 	di->mmc_profile		= 0x01;	/* disc type */
    213 	di->mmc_class		= MMC_CLASS_DISC;
    214 	di->disc_state		= MMC_STATE_CLOSED;
    215 	di->last_session_state	= MMC_STATE_CLOSED;
    216 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    217 	di->link_block_penalty	= 0;
    218 
    219 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    220 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    221 	di->mmc_cap    = di->mmc_cur;
    222 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    223 
    224 	/* TODO problem with last_possible_lba on resizable VND; request */
    225 	di->last_possible_lba = dpart.part->p_size;
    226 	di->sector_size       = dpart.disklab->d_secsize;
    227 
    228 	di->num_sessions = 1;
    229 	di->num_tracks   = 1;
    230 
    231 	di->first_track  = 1;
    232 	di->first_track_last_session = di->last_track_last_session = 1;
    233 
    234 	udf_dump_discinfo(ump);
    235 	return 0;
    236 }
    237 
    238 
    239 int
    240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    241 {
    242 	struct vnode *devvp = ump->devvp;
    243 	struct mmc_discinfo *di = &ump->discinfo;
    244 	int error, class;
    245 
    246 	DPRINTF(VOLUMES, ("read track info\n"));
    247 
    248 	class = di->mmc_class;
    249 	if (class != MMC_CLASS_DISC) {
    250 		/* tracknr specified in struct ti */
    251 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    252 		return error;
    253 	}
    254 
    255 	/* disc partition support */
    256 	if (ti->tracknr != 1)
    257 		return EIO;
    258 
    259 	/* create fake ti (TODO check for resized vnds) */
    260 	ti->sessionnr  = 1;
    261 
    262 	ti->track_mode = 0;	/* XXX */
    263 	ti->data_mode  = 0;	/* XXX */
    264 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    265 
    266 	ti->track_start    = 0;
    267 	ti->packet_size    = 1;
    268 
    269 	/* TODO support for resizable vnd */
    270 	ti->track_size    = di->last_possible_lba;
    271 	ti->next_writable = di->last_possible_lba;
    272 	ti->last_recorded = ti->next_writable;
    273 	ti->free_blocks   = 0;
    274 
    275 	return 0;
    276 }
    277 
    278 
    279 int
    280 udf_setup_writeparams(struct udf_mount *ump)
    281 {
    282 	struct mmc_writeparams mmc_writeparams;
    283 	int error;
    284 
    285 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    286 		return 0;
    287 
    288 	/*
    289 	 * only CD burning normally needs setting up, but other disc types
    290 	 * might need other settings to be made. The MMC framework will set up
    291 	 * the nessisary recording parameters according to the disc
    292 	 * characteristics read in. Modifications can be made in the discinfo
    293 	 * structure passed to change the nature of the disc.
    294 	 */
    295 
    296 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    297 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    298 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    299 
    300 	/*
    301 	 * UDF dictates first track to determine track mode for the whole
    302 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    303 	 * To prevent problems with a `reserved' track in front we start with
    304 	 * the 2nd track and if that is not valid, go for the 1st.
    305 	 */
    306 	mmc_writeparams.tracknr = 2;
    307 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    308 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    309 
    310 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    311 			FKIOCTL, NOCRED);
    312 	if (error) {
    313 		mmc_writeparams.tracknr = 1;
    314 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    315 				&mmc_writeparams, FKIOCTL, NOCRED);
    316 	}
    317 	return error;
    318 }
    319 
    320 
    321 int
    322 udf_synchronise_caches(struct udf_mount *ump)
    323 {
    324 	struct mmc_op mmc_op;
    325 
    326 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    327 
    328 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    329 		return 0;
    330 
    331 	/* discs are done now */
    332 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    333 		return 0;
    334 
    335 	memset(&mmc_op, 0, sizeof(struct mmc_op));
    336 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    337 
    338 	/* ignore return code */
    339 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    340 
    341 	return 0;
    342 }
    343 
    344 /* --------------------------------------------------------------------- */
    345 
    346 /* track/session searching for mounting */
    347 int
    348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    349 		  int *first_tracknr, int *last_tracknr)
    350 {
    351 	struct mmc_trackinfo trackinfo;
    352 	uint32_t tracknr, start_track, num_tracks;
    353 	int error;
    354 
    355 	/* if negative, sessionnr is relative to last session */
    356 	if (args->sessionnr < 0) {
    357 		args->sessionnr += ump->discinfo.num_sessions;
    358 	}
    359 
    360 	/* sanity */
    361 	if (args->sessionnr < 0)
    362 		args->sessionnr = 0;
    363 	if (args->sessionnr > ump->discinfo.num_sessions)
    364 		args->sessionnr = ump->discinfo.num_sessions;
    365 
    366 	/* search the tracks for this session, zero session nr indicates last */
    367 	if (args->sessionnr == 0)
    368 		args->sessionnr = ump->discinfo.num_sessions;
    369 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    370 		args->sessionnr--;
    371 
    372 	/* sanity again */
    373 	if (args->sessionnr < 0)
    374 		args->sessionnr = 0;
    375 
    376 	/* search the first and last track of the specified session */
    377 	num_tracks  = ump->discinfo.num_tracks;
    378 	start_track = ump->discinfo.first_track;
    379 
    380 	/* search for first track of this session */
    381 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    382 		/* get track info */
    383 		trackinfo.tracknr = tracknr;
    384 		error = udf_update_trackinfo(ump, &trackinfo);
    385 		if (error)
    386 			return error;
    387 
    388 		if (trackinfo.sessionnr == args->sessionnr)
    389 			break;
    390 	}
    391 	*first_tracknr = tracknr;
    392 
    393 	/* search for last track of this session */
    394 	for (;tracknr <= num_tracks; tracknr++) {
    395 		/* get track info */
    396 		trackinfo.tracknr = tracknr;
    397 		error = udf_update_trackinfo(ump, &trackinfo);
    398 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    399 			tracknr--;
    400 			break;
    401 		}
    402 	}
    403 	if (tracknr > num_tracks)
    404 		tracknr--;
    405 
    406 	*last_tracknr = tracknr;
    407 
    408 	if (*last_tracknr < *first_tracknr) {
    409 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    410 			"drive returned garbage\n");
    411 		return EINVAL;
    412 	}
    413 
    414 	assert(*last_tracknr >= *first_tracknr);
    415 	return 0;
    416 }
    417 
    418 
    419 /*
    420  * NOTE: this is the only routine in this file that directly peeks into the
    421  * metadata file but since its at a larval state of the mount it can't hurt.
    422  *
    423  * XXX candidate for udf_allocation.c
    424  * XXX clean me up!, change to new node reading code.
    425  */
    426 
    427 static void
    428 udf_check_track_metadata_overlap(struct udf_mount *ump,
    429 	struct mmc_trackinfo *trackinfo)
    430 {
    431 	struct part_desc *part;
    432 	struct file_entry      *fe;
    433 	struct extfile_entry   *efe;
    434 	struct short_ad        *s_ad;
    435 	struct long_ad         *l_ad;
    436 	uint32_t track_start, track_end;
    437 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    438 	uint32_t sector_size, len, alloclen, plb_num;
    439 	uint8_t *pos;
    440 	int addr_type, icblen, icbflags, flags;
    441 
    442 	/* get our track extents */
    443 	track_start = trackinfo->track_start;
    444 	track_end   = track_start + trackinfo->track_size;
    445 
    446 	/* get our base partition extent */
    447 	KASSERT(ump->node_part == ump->fids_part);
    448 	part = ump->partitions[ump->node_part];
    449 	phys_part_start = udf_rw32(part->start_loc);
    450 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    451 
    452 	/* no use if its outside the physical partition */
    453 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    454 		return;
    455 
    456 	/*
    457 	 * now follow all extents in the fe/efe to see if they refer to this
    458 	 * track
    459 	 */
    460 
    461 	sector_size = ump->discinfo.sector_size;
    462 
    463 	/* XXX should we claim exclusive access to the metafile ? */
    464 	/* TODO: move to new node read code */
    465 	fe  = ump->metadata_node->fe;
    466 	efe = ump->metadata_node->efe;
    467 	if (fe) {
    468 		alloclen = udf_rw32(fe->l_ad);
    469 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    470 		icbflags = udf_rw16(fe->icbtag.flags);
    471 	} else {
    472 		assert(efe);
    473 		alloclen = udf_rw32(efe->l_ad);
    474 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    475 		icbflags = udf_rw16(efe->icbtag.flags);
    476 	}
    477 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    478 
    479 	while (alloclen) {
    480 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    481 			icblen = sizeof(struct short_ad);
    482 			s_ad   = (struct short_ad *) pos;
    483 			len        = udf_rw32(s_ad->len);
    484 			plb_num    = udf_rw32(s_ad->lb_num);
    485 		} else {
    486 			/* should not be present, but why not */
    487 			icblen = sizeof(struct long_ad);
    488 			l_ad   = (struct long_ad *) pos;
    489 			len        = udf_rw32(l_ad->len);
    490 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    491 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    492 		}
    493 		/* process extent */
    494 		flags   = UDF_EXT_FLAGS(len);
    495 		len     = UDF_EXT_LEN(len);
    496 
    497 		part_start = phys_part_start + plb_num;
    498 		part_end   = part_start + (len / sector_size);
    499 
    500 		if ((part_start >= track_start) && (part_end <= track_end)) {
    501 			/* extent is enclosed within this track */
    502 			ump->metadata_track = *trackinfo;
    503 			return;
    504 		}
    505 
    506 		pos        += icblen;
    507 		alloclen   -= icblen;
    508 	}
    509 }
    510 
    511 
    512 int
    513 udf_search_writing_tracks(struct udf_mount *ump)
    514 {
    515 	struct vnode *devvp = ump->devvp;
    516 	struct mmc_trackinfo trackinfo;
    517 	struct mmc_op        mmc_op;
    518 	struct part_desc *part;
    519 	uint32_t tracknr, start_track, num_tracks;
    520 	uint32_t track_start, track_end, part_start, part_end;
    521 	int node_alloc, error;
    522 
    523 	/*
    524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    525 	 * the last session might be open but in the UDF device model at most
    526 	 * three tracks can be open: a reserved track for delayed ISO VRS
    527 	 * writing, a data track and a metadata track. We search here for the
    528 	 * data track and the metadata track. Note that the reserved track is
    529 	 * troublesome but can be detected by its small size of < 512 sectors.
    530 	 */
    531 
    532 	/* update discinfo since it might have changed */
    533 	error = udf_update_discinfo(ump);
    534 	if (error)
    535 		return error;
    536 
    537 	num_tracks  = ump->discinfo.num_tracks;
    538 	start_track = ump->discinfo.first_track;
    539 
    540 	/* fetch info on first and possibly only track */
    541 	trackinfo.tracknr = start_track;
    542 	error = udf_update_trackinfo(ump, &trackinfo);
    543 	if (error)
    544 		return error;
    545 
    546 	/* copy results to our mount point */
    547 	ump->data_track     = trackinfo;
    548 	ump->metadata_track = trackinfo;
    549 
    550 	/* if not sequential, we're done */
    551 	if (num_tracks == 1)
    552 		return 0;
    553 
    554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    555 		/* get track info */
    556 		trackinfo.tracknr = tracknr;
    557 		error = udf_update_trackinfo(ump, &trackinfo);
    558 		if (error)
    559 			return error;
    560 
    561 		/*
    562 		 * If this track is marked damaged, ask for repair. This is an
    563 		 * optional command, so ignore its error but report warning.
    564 		 */
    565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
    566 			memset(&mmc_op, 0, sizeof(mmc_op));
    567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
    568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
    569 			mmc_op.tracknr     = tracknr;
    570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    571 			if (error)
    572 				(void)printf("Drive can't explicitly repair "
    573 					"damaged track %d, but it might "
    574 					"autorepair\n", tracknr);
    575 
    576 			/* reget track info */
    577 			error = udf_update_trackinfo(ump, &trackinfo);
    578 			if (error)
    579 				return error;
    580 		}
    581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    582 			continue;
    583 
    584 		track_start = trackinfo.track_start;
    585 		track_end   = track_start + trackinfo.track_size;
    586 
    587 		/* check for overlap on data partition */
    588 		part = ump->partitions[ump->data_part];
    589 		part_start = udf_rw32(part->start_loc);
    590 		part_end   = part_start + udf_rw32(part->part_len);
    591 		if ((part_start < track_end) && (part_end > track_start)) {
    592 			ump->data_track = trackinfo;
    593 			/* TODO check if UDF partition data_part is writable */
    594 		}
    595 
    596 		/* check for overlap on metadata partition */
    597 		node_alloc = ump->vtop_alloc[ump->node_part];
    598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    600 			udf_check_track_metadata_overlap(ump, &trackinfo);
    601 		} else {
    602 			ump->metadata_track = trackinfo;
    603 		}
    604 	}
    605 
    606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    607 		return EROFS;
    608 
    609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    610 		return EROFS;
    611 
    612 	return 0;
    613 }
    614 
    615 /* --------------------------------------------------------------------- */
    616 
    617 /*
    618  * Check if the blob starts with a good UDF tag. Tags are protected by a
    619  * checksum over the reader except one byte at position 4 that is the checksum
    620  * itself.
    621  */
    622 
    623 int
    624 udf_check_tag(void *blob)
    625 {
    626 	struct desc_tag *tag = blob;
    627 	uint8_t *pos, sum, cnt;
    628 
    629 	/* check TAG header checksum */
    630 	pos = (uint8_t *) tag;
    631 	sum = 0;
    632 
    633 	for(cnt = 0; cnt < 16; cnt++) {
    634 		if (cnt != 4)
    635 			sum += *pos;
    636 		pos++;
    637 	}
    638 	if (sum != tag->cksum) {
    639 		/* bad tag header checksum; this is not a valid tag */
    640 		return EINVAL;
    641 	}
    642 
    643 	return 0;
    644 }
    645 
    646 
    647 /*
    648  * check tag payload will check descriptor CRC as specified.
    649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    650  */
    651 
    652 int
    653 udf_check_tag_payload(void *blob, uint32_t max_length)
    654 {
    655 	struct desc_tag *tag = blob;
    656 	uint16_t crc, crc_len;
    657 
    658 	crc_len = udf_rw16(tag->desc_crc_len);
    659 
    660 	/* check payload CRC if applicable */
    661 	if (crc_len == 0)
    662 		return 0;
    663 
    664 	if (crc_len > max_length)
    665 		return EIO;
    666 
    667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    668 	if (crc != udf_rw16(tag->desc_crc)) {
    669 		/* bad payload CRC; this is a broken tag */
    670 		return EINVAL;
    671 	}
    672 
    673 	return 0;
    674 }
    675 
    676 
    677 void
    678 udf_validate_tag_sum(void *blob)
    679 {
    680 	struct desc_tag *tag = blob;
    681 	uint8_t *pos, sum, cnt;
    682 
    683 	/* calculate TAG header checksum */
    684 	pos = (uint8_t *) tag;
    685 	sum = 0;
    686 
    687 	for(cnt = 0; cnt < 16; cnt++) {
    688 		if (cnt != 4) sum += *pos;
    689 		pos++;
    690 	}
    691 	tag->cksum = sum;	/* 8 bit */
    692 }
    693 
    694 
    695 /* assumes sector number of descriptor to be saved already present */
    696 void
    697 udf_validate_tag_and_crc_sums(void *blob)
    698 {
    699 	struct desc_tag *tag  = blob;
    700 	uint8_t         *btag = (uint8_t *) tag;
    701 	uint16_t crc, crc_len;
    702 
    703 	crc_len = udf_rw16(tag->desc_crc_len);
    704 
    705 	/* check payload CRC if applicable */
    706 	if (crc_len > 0) {
    707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    708 		tag->desc_crc = udf_rw16(crc);
    709 	}
    710 
    711 	/* calculate TAG header checksum */
    712 	udf_validate_tag_sum(blob);
    713 }
    714 
    715 /* --------------------------------------------------------------------- */
    716 
    717 /*
    718  * XXX note the different semantics from udfclient: for FIDs it still rounds
    719  * up to sectors. Use udf_fidsize() for a correct length.
    720  */
    721 
    722 int
    723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    724 {
    725 	uint32_t size, tag_id, num_lb, elmsz;
    726 
    727 	tag_id = udf_rw16(dscr->tag.id);
    728 
    729 	switch (tag_id) {
    730 	case TAGID_LOGVOL :
    731 		size  = sizeof(struct logvol_desc) - 1;
    732 		size += udf_rw32(dscr->lvd.mt_l);
    733 		break;
    734 	case TAGID_UNALLOC_SPACE :
    735 		elmsz = sizeof(struct extent_ad);
    736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    738 		break;
    739 	case TAGID_FID :
    740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    741 		size = (size + 3) & ~3;
    742 		break;
    743 	case TAGID_LOGVOL_INTEGRITY :
    744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    745 		size += udf_rw32(dscr->lvid.l_iu);
    746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    747 		break;
    748 	case TAGID_SPACE_BITMAP :
    749 		size  = sizeof(struct space_bitmap_desc) - 1;
    750 		size += udf_rw32(dscr->sbd.num_bytes);
    751 		break;
    752 	case TAGID_SPARING_TABLE :
    753 		elmsz = sizeof(struct spare_map_entry);
    754 		size  = sizeof(struct udf_sparing_table) - elmsz;
    755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    756 		break;
    757 	case TAGID_FENTRY :
    758 		size  = sizeof(struct file_entry);
    759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    760 		break;
    761 	case TAGID_EXTFENTRY :
    762 		size  = sizeof(struct extfile_entry);
    763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    764 		break;
    765 	case TAGID_FSD :
    766 		size  = sizeof(struct fileset_desc);
    767 		break;
    768 	default :
    769 		size = sizeof(union dscrptr);
    770 		break;
    771 	}
    772 
    773 	if ((size == 0) || (lb_size == 0))
    774 		return 0;
    775 
    776 	if (lb_size == 1)
    777 		return size;
    778 
    779 	/* round up in sectors */
    780 	num_lb = (size + lb_size -1) / lb_size;
    781 	return num_lb * lb_size;
    782 }
    783 
    784 
    785 int
    786 udf_fidsize(struct fileid_desc *fid)
    787 {
    788 	uint32_t size;
    789 
    790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    791 		panic("got udf_fidsize on non FID\n");
    792 
    793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    794 	size = (size + 3) & ~3;
    795 
    796 	return size;
    797 }
    798 
    799 /* --------------------------------------------------------------------- */
    800 
    801 void
    802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    803 {
    804 	int ret;
    805 
    806 	mutex_enter(&udf_node->node_mutex);
    807 	/* wait until free */
    808 	while (udf_node->i_flags & IN_LOCKED) {
    809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    810 		/* TODO check if we should return error; abort */
    811 		if (ret == EWOULDBLOCK) {
    812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    813 				"wanted at %s:%d, previously locked at %s:%d\n",
    814 				udf_node, fname, lineno,
    815 				udf_node->lock_fname, udf_node->lock_lineno));
    816 		}
    817 	}
    818 	/* grab */
    819 	udf_node->i_flags |= IN_LOCKED | flag;
    820 	/* debug */
    821 	udf_node->lock_fname  = fname;
    822 	udf_node->lock_lineno = lineno;
    823 
    824 	mutex_exit(&udf_node->node_mutex);
    825 }
    826 
    827 
    828 void
    829 udf_unlock_node(struct udf_node *udf_node, int flag)
    830 {
    831 	mutex_enter(&udf_node->node_mutex);
    832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    833 	cv_broadcast(&udf_node->node_lock);
    834 	mutex_exit(&udf_node->node_mutex);
    835 }
    836 
    837 
    838 /* --------------------------------------------------------------------- */
    839 
    840 static int
    841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    842 {
    843 	int error;
    844 
    845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    846 			(union dscrptr **) dst);
    847 	if (!error) {
    848 		/* blank terminator blocks are not allowed here */
    849 		if (*dst == NULL)
    850 			return ENOENT;
    851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    852 			error = ENOENT;
    853 			free(*dst, M_UDFVOLD);
    854 			*dst = NULL;
    855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    856 		}
    857 	}
    858 
    859 	return error;
    860 }
    861 
    862 
    863 int
    864 udf_read_anchors(struct udf_mount *ump)
    865 {
    866 	struct udf_args *args = &ump->mount_args;
    867 	struct mmc_trackinfo first_track;
    868 	struct mmc_trackinfo second_track;
    869 	struct mmc_trackinfo last_track;
    870 	struct anchor_vdp **anchorsp;
    871 	uint32_t track_start;
    872 	uint32_t track_end;
    873 	uint32_t positions[4];
    874 	int first_tracknr, last_tracknr;
    875 	int error, anch, ok, first_anchor;
    876 
    877 	/* search the first and last track of the specified session */
    878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    879 	if (!error) {
    880 		first_track.tracknr = first_tracknr;
    881 		error = udf_update_trackinfo(ump, &first_track);
    882 	}
    883 	if (!error) {
    884 		last_track.tracknr = last_tracknr;
    885 		error = udf_update_trackinfo(ump, &last_track);
    886 	}
    887 	if ((!error) && (first_tracknr != last_tracknr)) {
    888 		second_track.tracknr = first_tracknr+1;
    889 		error = udf_update_trackinfo(ump, &second_track);
    890 	}
    891 	if (error) {
    892 		printf("UDF mount: reading disc geometry failed\n");
    893 		return 0;
    894 	}
    895 
    896 	track_start = first_track.track_start;
    897 
    898 	/* `end' is not as straitforward as start. */
    899 	track_end =   last_track.track_start
    900 		    + last_track.track_size - last_track.free_blocks - 1;
    901 
    902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    903 		/* end of track is not straitforward here */
    904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    905 			track_end = last_track.last_recorded;
    906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    907 			track_end = last_track.next_writable
    908 				    - ump->discinfo.link_block_penalty;
    909 	}
    910 
    911 	/* its no use reading a blank track */
    912 	first_anchor = 0;
    913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    914 		first_anchor = 1;
    915 
    916 	/* get our packet size */
    917 	ump->packet_size = first_track.packet_size;
    918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    919 		ump->packet_size = second_track.packet_size;
    920 
    921 	if (ump->packet_size <= 1) {
    922 		/* take max, but not bigger than 64 */
    923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    924 		ump->packet_size = MIN(ump->packet_size, 64);
    925 	}
    926 	KASSERT(ump->packet_size >= 1);
    927 
    928 	/* read anchors start+256, start+512, end-256, end */
    929 	positions[0] = track_start+256;
    930 	positions[1] =   track_end-256;
    931 	positions[2] =   track_end;
    932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    934 
    935 	ok = 0;
    936 	anchorsp = ump->anchors;
    937 	for (anch = first_anchor; anch < 4; anch++) {
    938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    939 		    positions[anch]));
    940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    941 		if (!error) {
    942 			anchorsp++;
    943 			ok++;
    944 		}
    945 	}
    946 
    947 	/* VATs are only recorded on sequential media, but initialise */
    948 	ump->first_possible_vat_location = track_start + 2;
    949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    950 
    951 	return ok;
    952 }
    953 
    954 /* --------------------------------------------------------------------- */
    955 
    956 int
    957 udf_get_c_type(struct udf_node *udf_node)
    958 {
    959 	int isdir, what;
    960 
    961 	isdir  = (udf_node->vnode->v_type == VDIR);
    962 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
    963 
    964 	if (udf_node->ump)
    965 		if (udf_node == udf_node->ump->metadatabitmap_node)
    966 			what = UDF_C_METADATA_SBM;
    967 
    968 	return what;
    969 }
    970 
    971 
    972 int
    973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
    974 {
    975 	int vpart_num;
    976 
    977 	vpart_num = ump->data_part;
    978 	if (udf_c_type == UDF_C_NODE)
    979 		vpart_num = ump->node_part;
    980 	if (udf_c_type == UDF_C_FIDS)
    981 		vpart_num = ump->fids_part;
    982 
    983 	return vpart_num;
    984 }
    985 
    986 /* --------------------------------------------------------------------- */
    987 
    988 /* we dont try to be smart; we just record the parts */
    989 #define UDF_UPDATE_DSCR(name, dscr) \
    990 	if (name) \
    991 		free(name, M_UDFVOLD); \
    992 	name = dscr;
    993 
    994 static int
    995 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    996 {
    997 	struct part_desc *part;
    998 	uint16_t phys_part, raw_phys_part;
    999 
   1000 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
   1001 	    udf_rw16(dscr->tag.id)));
   1002 	switch (udf_rw16(dscr->tag.id)) {
   1003 	case TAGID_PRI_VOL :		/* primary partition		*/
   1004 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
   1005 		break;
   1006 	case TAGID_LOGVOL :		/* logical volume		*/
   1007 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
   1008 		break;
   1009 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
   1010 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
   1011 		break;
   1012 	case TAGID_IMP_VOL :		/* implementation		*/
   1013 		/* XXX do we care about multiple impl. descr ? */
   1014 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
   1015 		break;
   1016 	case TAGID_PARTITION :		/* physical partition		*/
   1017 		/* not much use if its not allocated */
   1018 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
   1019 			free(dscr, M_UDFVOLD);
   1020 			break;
   1021 		}
   1022 
   1023 		/*
   1024 		 * BUGALERT: some rogue implementations use random physical
   1025 		 * partition numbers to break other implementations so lookup
   1026 		 * the number.
   1027 		 */
   1028 		raw_phys_part = udf_rw16(dscr->pd.part_num);
   1029 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1030 			part = ump->partitions[phys_part];
   1031 			if (part == NULL)
   1032 				break;
   1033 			if (udf_rw16(part->part_num) == raw_phys_part)
   1034 				break;
   1035 		}
   1036 		if (phys_part == UDF_PARTITIONS) {
   1037 			free(dscr, M_UDFVOLD);
   1038 			return EINVAL;
   1039 		}
   1040 
   1041 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
   1042 		break;
   1043 	case TAGID_VOL :		/* volume space extender; rare	*/
   1044 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
   1045 		free(dscr, M_UDFVOLD);
   1046 		break;
   1047 	default :
   1048 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
   1049 		    udf_rw16(dscr->tag.id)));
   1050 		free(dscr, M_UDFVOLD);
   1051 	}
   1052 
   1053 	return 0;
   1054 }
   1055 #undef UDF_UPDATE_DSCR
   1056 
   1057 /* --------------------------------------------------------------------- */
   1058 
   1059 static int
   1060 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
   1061 {
   1062 	union dscrptr *dscr;
   1063 	uint32_t sector_size, dscr_size;
   1064 	int error;
   1065 
   1066 	sector_size = ump->discinfo.sector_size;
   1067 
   1068 	/* loc is sectornr, len is in bytes */
   1069 	error = EIO;
   1070 	while (len) {
   1071 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
   1072 		if (error)
   1073 			return error;
   1074 
   1075 		/* blank block is a terminator */
   1076 		if (dscr == NULL)
   1077 			return 0;
   1078 
   1079 		/* TERM descriptor is a terminator */
   1080 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
   1081 			free(dscr, M_UDFVOLD);
   1082 			return 0;
   1083 		}
   1084 
   1085 		/* process all others */
   1086 		dscr_size = udf_tagsize(dscr, sector_size);
   1087 		error = udf_process_vds_descriptor(ump, dscr);
   1088 		if (error) {
   1089 			free(dscr, M_UDFVOLD);
   1090 			break;
   1091 		}
   1092 		assert((dscr_size % sector_size) == 0);
   1093 
   1094 		len -= dscr_size;
   1095 		loc += dscr_size / sector_size;
   1096 	}
   1097 
   1098 	return error;
   1099 }
   1100 
   1101 
   1102 int
   1103 udf_read_vds_space(struct udf_mount *ump)
   1104 {
   1105 	/* struct udf_args *args = &ump->mount_args; */
   1106 	struct anchor_vdp *anchor, *anchor2;
   1107 	size_t size;
   1108 	uint32_t main_loc, main_len;
   1109 	uint32_t reserve_loc, reserve_len;
   1110 	int error;
   1111 
   1112 	/*
   1113 	 * read in VDS space provided by the anchors; if one descriptor read
   1114 	 * fails, try the mirror sector.
   1115 	 *
   1116 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1117 	 * avoids the `compatibility features' of DirectCD that may confuse
   1118 	 * stuff completely.
   1119 	 */
   1120 
   1121 	anchor  = ump->anchors[0];
   1122 	anchor2 = ump->anchors[1];
   1123 	assert(anchor);
   1124 
   1125 	if (anchor2) {
   1126 		size = sizeof(struct extent_ad);
   1127 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1128 			anchor = anchor2;
   1129 		/* reserve is specified to be a literal copy of main */
   1130 	}
   1131 
   1132 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1133 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1134 
   1135 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1136 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1137 
   1138 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1139 	if (error) {
   1140 		printf("UDF mount: reading in reserve VDS extent\n");
   1141 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1142 	}
   1143 
   1144 	return error;
   1145 }
   1146 
   1147 /* --------------------------------------------------------------------- */
   1148 
   1149 /*
   1150  * Read in the logical volume integrity sequence pointed to by our logical
   1151  * volume descriptor. Its a sequence that can be extended using fields in the
   1152  * integrity descriptor itself. On sequential media only one is found, on
   1153  * rewritable media a sequence of descriptors can be found as a form of
   1154  * history keeping and on non sequential write-once media the chain is vital
   1155  * to allow more and more descriptors to be written. The last descriptor
   1156  * written in an extent needs to claim space for a new extent.
   1157  */
   1158 
   1159 static int
   1160 udf_retrieve_lvint(struct udf_mount *ump)
   1161 {
   1162 	union dscrptr *dscr;
   1163 	struct logvol_int_desc *lvint;
   1164 	struct udf_lvintq *trace;
   1165 	uint32_t lb_size, lbnum, len;
   1166 	int dscr_type, error, trace_len;
   1167 
   1168 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1169 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1170 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1171 
   1172 	/* clean trace */
   1173 	memset(ump->lvint_trace, 0,
   1174 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1175 
   1176 	trace_len    = 0;
   1177 	trace        = ump->lvint_trace;
   1178 	trace->start = lbnum;
   1179 	trace->end   = lbnum + len/lb_size;
   1180 	trace->pos   = 0;
   1181 	trace->wpos  = 0;
   1182 
   1183 	lvint = NULL;
   1184 	dscr  = NULL;
   1185 	error = 0;
   1186 	while (len) {
   1187 		trace->pos  = lbnum - trace->start;
   1188 		trace->wpos = trace->pos + 1;
   1189 
   1190 		/* read in our integrity descriptor */
   1191 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1192 		if (!error) {
   1193 			if (dscr == NULL) {
   1194 				trace->wpos = trace->pos;
   1195 				break;		/* empty terminates */
   1196 			}
   1197 			dscr_type = udf_rw16(dscr->tag.id);
   1198 			if (dscr_type == TAGID_TERM) {
   1199 				trace->wpos = trace->pos;
   1200 				break;		/* clean terminator */
   1201 			}
   1202 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1203 				/* fatal... corrupt disc */
   1204 				error = ENOENT;
   1205 				break;
   1206 			}
   1207 			if (lvint)
   1208 				free(lvint, M_UDFVOLD);
   1209 			lvint = &dscr->lvid;
   1210 			dscr = NULL;
   1211 		} /* else hope for the best... maybe the next is ok */
   1212 
   1213 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1214 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1215 
   1216 		/* proceed sequential */
   1217 		lbnum += 1;
   1218 		len    -= lb_size;
   1219 
   1220 		/* are we linking to a new piece? */
   1221 		if (dscr && lvint->next_extent.len) {
   1222 			len    = udf_rw32(lvint->next_extent.len);
   1223 			lbnum = udf_rw32(lvint->next_extent.loc);
   1224 
   1225 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1226 				/* IEK! segment link full... */
   1227 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1228 				error = EINVAL;
   1229 			} else {
   1230 				trace++;
   1231 				trace_len++;
   1232 
   1233 				trace->start = lbnum;
   1234 				trace->end   = lbnum + len/lb_size;
   1235 				trace->pos   = 0;
   1236 				trace->wpos  = 0;
   1237 			}
   1238 		}
   1239 	}
   1240 
   1241 	/* clean up the mess, esp. when there is an error */
   1242 	if (dscr)
   1243 		free(dscr, M_UDFVOLD);
   1244 
   1245 	if (error && lvint) {
   1246 		free(lvint, M_UDFVOLD);
   1247 		lvint = NULL;
   1248 	}
   1249 
   1250 	if (!lvint)
   1251 		error = ENOENT;
   1252 
   1253 	ump->logvol_integrity = lvint;
   1254 	return error;
   1255 }
   1256 
   1257 
   1258 static int
   1259 udf_loose_lvint_history(struct udf_mount *ump)
   1260 {
   1261 	union dscrptr **bufs, *dscr, *last_dscr;
   1262 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1263 	struct logvol_int_desc *lvint;
   1264 	uint32_t in_ext, in_pos, in_len;
   1265 	uint32_t out_ext, out_wpos, out_len;
   1266 	uint32_t lb_size, packet_size, lb_num;
   1267 	uint32_t len, start;
   1268 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1269 	int losing;
   1270 	int error;
   1271 
   1272 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1273 
   1274 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1275 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1276 
   1277 	/* search smallest extent */
   1278 	trace = &ump->lvint_trace[0];
   1279 	minext = trace->end - trace->start;
   1280 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1281 		trace = &ump->lvint_trace[ext];
   1282 		extlen = trace->end - trace->start;
   1283 		if (extlen == 0)
   1284 			break;
   1285 		minext = MIN(minext, extlen);
   1286 	}
   1287 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1288 	/* no sense wiping all */
   1289 	if (losing == minext)
   1290 		losing--;
   1291 
   1292 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1293 
   1294 	/* get buffer for pieces */
   1295 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1296 
   1297 	in_ext    = 0;
   1298 	in_pos    = losing;
   1299 	in_trace  = &ump->lvint_trace[in_ext];
   1300 	in_len    = in_trace->end - in_trace->start;
   1301 	out_ext   = 0;
   1302 	out_wpos  = 0;
   1303 	out_trace = &ump->lvint_trace[out_ext];
   1304 	out_len   = out_trace->end - out_trace->start;
   1305 
   1306 	last_dscr = NULL;
   1307 	for(;;) {
   1308 		out_trace->pos  = out_wpos;
   1309 		out_trace->wpos = out_trace->pos;
   1310 		if (in_pos >= in_len) {
   1311 			in_ext++;
   1312 			in_pos = 0;
   1313 			in_trace = &ump->lvint_trace[in_ext];
   1314 			in_len   = in_trace->end - in_trace->start;
   1315 		}
   1316 		if (out_wpos >= out_len) {
   1317 			out_ext++;
   1318 			out_wpos = 0;
   1319 			out_trace = &ump->lvint_trace[out_ext];
   1320 			out_len   = out_trace->end - out_trace->start;
   1321 		}
   1322 		/* copy overlap contents */
   1323 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1324 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1325 		if (cpy_len == 0)
   1326 			break;
   1327 
   1328 		/* copy */
   1329 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1330 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1331 			/* read in our integrity descriptor */
   1332 			lb_num = in_trace->start + in_pos + cnt;
   1333 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1334 				&dscr);
   1335 			if (error) {
   1336 				/* copy last one */
   1337 				dscr = last_dscr;
   1338 			}
   1339 			bufs[cnt] = dscr;
   1340 			if (!error) {
   1341 				if (dscr == NULL) {
   1342 					out_trace->pos  = out_wpos + cnt;
   1343 					out_trace->wpos = out_trace->pos;
   1344 					break;		/* empty terminates */
   1345 				}
   1346 				dscr_type = udf_rw16(dscr->tag.id);
   1347 				if (dscr_type == TAGID_TERM) {
   1348 					out_trace->pos  = out_wpos + cnt;
   1349 					out_trace->wpos = out_trace->pos;
   1350 					break;		/* clean terminator */
   1351 				}
   1352 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1353 					panic(  "UDF integrity sequence "
   1354 						"corrupted while mounted!\n");
   1355 				}
   1356 				last_dscr = dscr;
   1357 			}
   1358 		}
   1359 
   1360 		/* patch up if first entry was on error */
   1361 		if (bufs[0] == NULL) {
   1362 			for (cnt = 0; cnt < cpy_len; cnt++)
   1363 				if (bufs[cnt] != NULL)
   1364 					break;
   1365 			last_dscr = bufs[cnt];
   1366 			for (; cnt > 0; cnt--) {
   1367 				bufs[cnt] = last_dscr;
   1368 			}
   1369 		}
   1370 
   1371 		/* glue + write out */
   1372 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1373 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1374 			lb_num = out_trace->start + out_wpos + cnt;
   1375 			lvint  = &bufs[cnt]->lvid;
   1376 
   1377 			/* set continuation */
   1378 			len = 0;
   1379 			start = 0;
   1380 			if (out_wpos + cnt == out_len) {
   1381 				/* get continuation */
   1382 				trace = &ump->lvint_trace[out_ext+1];
   1383 				len   = trace->end - trace->start;
   1384 				start = trace->start;
   1385 			}
   1386 			lvint->next_extent.len = udf_rw32(len);
   1387 			lvint->next_extent.loc = udf_rw32(start);
   1388 
   1389 			lb_num = trace->start + trace->wpos;
   1390 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1391 				bufs[cnt], lb_num, lb_num);
   1392 			DPRINTFIF(VOLUMES, error,
   1393 				("error writing lvint lb_num\n"));
   1394 		}
   1395 
   1396 		/* free non repeating descriptors */
   1397 		last_dscr = NULL;
   1398 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1399 			if (bufs[cnt] != last_dscr)
   1400 				free(bufs[cnt], M_UDFVOLD);
   1401 			last_dscr = bufs[cnt];
   1402 		}
   1403 
   1404 		/* advance */
   1405 		in_pos   += cpy_len;
   1406 		out_wpos += cpy_len;
   1407 	}
   1408 
   1409 	free(bufs, M_TEMP);
   1410 
   1411 	return 0;
   1412 }
   1413 
   1414 
   1415 static int
   1416 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1417 {
   1418 	struct udf_lvintq *trace;
   1419 	struct timeval  now_v;
   1420 	struct timespec now_s;
   1421 	uint32_t sector;
   1422 	int logvol_integrity;
   1423 	int space, error;
   1424 
   1425 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1426 
   1427 again:
   1428 	/* get free space in last chunk */
   1429 	trace = ump->lvint_trace;
   1430 	while (trace->wpos > (trace->end - trace->start)) {
   1431 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1432 				  "wpos = %d\n", trace->start, trace->end,
   1433 				  trace->pos, trace->wpos));
   1434 		trace++;
   1435 	}
   1436 
   1437 	/* check if there is space to append */
   1438 	space = (trace->end - trace->start) - trace->wpos;
   1439 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1440 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1441 			  trace->wpos, space));
   1442 
   1443 	/* get state */
   1444 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1445 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1446 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1447 			/* don't allow this logvol to be opened */
   1448 			/* TODO extent LVINT space if possible */
   1449 			return EROFS;
   1450 		}
   1451 	}
   1452 
   1453 	if (space < 1) {
   1454 		if (lvflag & UDF_APPENDONLY_LVINT)
   1455 			return EROFS;
   1456 		/* loose history by re-writing extents */
   1457 		error = udf_loose_lvint_history(ump);
   1458 		if (error)
   1459 			return error;
   1460 		goto again;
   1461 	}
   1462 
   1463 	/* update our integrity descriptor to identify us and timestamp it */
   1464 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1465 	microtime(&now_v);
   1466 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1467 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1468 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1469 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1470 
   1471 	/* writeout integrity descriptor */
   1472 	sector = trace->start + trace->wpos;
   1473 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1474 			(union dscrptr *) ump->logvol_integrity,
   1475 			sector, sector);
   1476 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1477 	if (error)
   1478 		return error;
   1479 
   1480 	/* advance write position */
   1481 	trace->wpos++; space--;
   1482 	if (space >= 1) {
   1483 		/* append terminator */
   1484 		sector = trace->start + trace->wpos;
   1485 		error = udf_write_terminator(ump, sector);
   1486 
   1487 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1488 	}
   1489 
   1490 	space = (trace->end - trace->start) - trace->wpos;
   1491 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1492 		"space = %d\n", trace->start, trace->end, trace->pos,
   1493 		trace->wpos, space));
   1494 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1495 		"successfull\n"));
   1496 
   1497 	return error;
   1498 }
   1499 
   1500 /* --------------------------------------------------------------------- */
   1501 
   1502 static int
   1503 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1504 {
   1505 	union dscrptr        *dscr;
   1506 	/* struct udf_args *args = &ump->mount_args; */
   1507 	struct part_desc     *partd;
   1508 	struct part_hdr_desc *parthdr;
   1509 	struct udf_bitmap    *bitmap;
   1510 	uint32_t phys_part;
   1511 	uint32_t lb_num, len;
   1512 	int error, dscr_type;
   1513 
   1514 	/* unallocated space map */
   1515 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1516 		partd = ump->partitions[phys_part];
   1517 		if (partd == NULL)
   1518 			continue;
   1519 		parthdr = &partd->_impl_use.part_hdr;
   1520 
   1521 		lb_num  = udf_rw32(partd->start_loc);
   1522 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1523 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1524 		if (len == 0)
   1525 			continue;
   1526 
   1527 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1528 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1529 		if (!error && dscr) {
   1530 			/* analyse */
   1531 			dscr_type = udf_rw16(dscr->tag.id);
   1532 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1533 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1534 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1535 
   1536 				/* fill in ump->part_unalloc_bits */
   1537 				bitmap = &ump->part_unalloc_bits[phys_part];
   1538 				bitmap->blob  = (uint8_t *) dscr;
   1539 				bitmap->bits  = dscr->sbd.data;
   1540 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1541 				bitmap->pages = NULL;	/* TODO */
   1542 				bitmap->data_pos     = 0;
   1543 				bitmap->metadata_pos = 0;
   1544 			} else {
   1545 				free(dscr, M_UDFVOLD);
   1546 
   1547 				printf( "UDF mount: error reading unallocated "
   1548 					"space bitmap\n");
   1549 				return EROFS;
   1550 			}
   1551 		} else {
   1552 			/* blank not allowed */
   1553 			printf("UDF mount: blank unallocated space bitmap\n");
   1554 			return EROFS;
   1555 		}
   1556 	}
   1557 
   1558 	/* unallocated space table (not supported) */
   1559 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1560 		partd = ump->partitions[phys_part];
   1561 		if (partd == NULL)
   1562 			continue;
   1563 		parthdr = &partd->_impl_use.part_hdr;
   1564 
   1565 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1566 		if (len) {
   1567 			printf("UDF mount: space tables not supported\n");
   1568 			return EROFS;
   1569 		}
   1570 	}
   1571 
   1572 	/* freed space map */
   1573 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1574 		partd = ump->partitions[phys_part];
   1575 		if (partd == NULL)
   1576 			continue;
   1577 		parthdr = &partd->_impl_use.part_hdr;
   1578 
   1579 		/* freed space map */
   1580 		lb_num  = udf_rw32(partd->start_loc);
   1581 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1582 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1583 		if (len == 0)
   1584 			continue;
   1585 
   1586 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1587 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1588 		if (!error && dscr) {
   1589 			/* analyse */
   1590 			dscr_type = udf_rw16(dscr->tag.id);
   1591 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1592 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1593 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1594 
   1595 				/* fill in ump->part_freed_bits */
   1596 				bitmap = &ump->part_unalloc_bits[phys_part];
   1597 				bitmap->blob  = (uint8_t *) dscr;
   1598 				bitmap->bits  = dscr->sbd.data;
   1599 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1600 				bitmap->pages = NULL;	/* TODO */
   1601 				bitmap->data_pos     = 0;
   1602 				bitmap->metadata_pos = 0;
   1603 			} else {
   1604 				free(dscr, M_UDFVOLD);
   1605 
   1606 				printf( "UDF mount: error reading freed  "
   1607 					"space bitmap\n");
   1608 				return EROFS;
   1609 			}
   1610 		} else {
   1611 			/* blank not allowed */
   1612 			printf("UDF mount: blank freed space bitmap\n");
   1613 			return EROFS;
   1614 		}
   1615 	}
   1616 
   1617 	/* freed space table (not supported) */
   1618 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1619 		partd = ump->partitions[phys_part];
   1620 		if (partd == NULL)
   1621 			continue;
   1622 		parthdr = &partd->_impl_use.part_hdr;
   1623 
   1624 		len     = udf_rw32(parthdr->freed_space_table.len);
   1625 		if (len) {
   1626 			printf("UDF mount: space tables not supported\n");
   1627 			return EROFS;
   1628 		}
   1629 	}
   1630 
   1631 	return 0;
   1632 }
   1633 
   1634 
   1635 /* TODO implement async writeout */
   1636 int
   1637 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1638 {
   1639 	union dscrptr        *dscr;
   1640 	/* struct udf_args *args = &ump->mount_args; */
   1641 	struct part_desc     *partd;
   1642 	struct part_hdr_desc *parthdr;
   1643 	uint32_t phys_part;
   1644 	uint32_t lb_num, len, ptov;
   1645 	int error_all, error;
   1646 
   1647 	error_all = 0;
   1648 	/* unallocated space map */
   1649 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1650 		partd = ump->partitions[phys_part];
   1651 		if (partd == NULL)
   1652 			continue;
   1653 		parthdr = &partd->_impl_use.part_hdr;
   1654 
   1655 		ptov   = udf_rw32(partd->start_loc);
   1656 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1657 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1658 		if (len == 0)
   1659 			continue;
   1660 
   1661 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1662 			lb_num + ptov));
   1663 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1664 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1665 				(union dscrptr *) dscr,
   1666 				ptov + lb_num, lb_num);
   1667 		if (error) {
   1668 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1669 			error_all = error;
   1670 		}
   1671 	}
   1672 
   1673 	/* freed space map */
   1674 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1675 		partd = ump->partitions[phys_part];
   1676 		if (partd == NULL)
   1677 			continue;
   1678 		parthdr = &partd->_impl_use.part_hdr;
   1679 
   1680 		/* freed space map */
   1681 		ptov   = udf_rw32(partd->start_loc);
   1682 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1683 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1684 		if (len == 0)
   1685 			continue;
   1686 
   1687 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1688 			lb_num + ptov));
   1689 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1690 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1691 				(union dscrptr *) dscr,
   1692 				ptov + lb_num, lb_num);
   1693 		if (error) {
   1694 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1695 			error_all = error;
   1696 		}
   1697 	}
   1698 
   1699 	return error_all;
   1700 }
   1701 
   1702 
   1703 static int
   1704 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1705 {
   1706 	struct udf_node	     *bitmap_node;
   1707 	union dscrptr        *dscr;
   1708 	struct udf_bitmap    *bitmap;
   1709 	uint64_t inflen;
   1710 	int error, dscr_type;
   1711 
   1712 	bitmap_node = ump->metadatabitmap_node;
   1713 
   1714 	/* only read in when metadata bitmap node is read in */
   1715 	if (bitmap_node == NULL)
   1716 		return 0;
   1717 
   1718 	if (bitmap_node->fe) {
   1719 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1720 	} else {
   1721 		KASSERT(bitmap_node->efe);
   1722 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1723 	}
   1724 
   1725 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1726 		"%"PRIu64" bytes\n", inflen));
   1727 
   1728 	/* allocate space for bitmap */
   1729 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1730 	if (!dscr)
   1731 		return ENOMEM;
   1732 
   1733 	/* set vnode type to regular file or we can't read from it! */
   1734 	bitmap_node->vnode->v_type = VREG;
   1735 
   1736 	/* read in complete metadata bitmap file */
   1737 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1738 			dscr,
   1739 			inflen, 0,
   1740 			UIO_SYSSPACE,
   1741 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
   1742 			NULL, NULL);
   1743 	if (error) {
   1744 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1745 		goto errorout;
   1746 	}
   1747 
   1748 	/* analyse */
   1749 	dscr_type = udf_rw16(dscr->tag.id);
   1750 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1751 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1752 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1753 
   1754 		/* fill in bitmap bits */
   1755 		bitmap = &ump->metadata_unalloc_bits;
   1756 		bitmap->blob  = (uint8_t *) dscr;
   1757 		bitmap->bits  = dscr->sbd.data;
   1758 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1759 		bitmap->pages = NULL;	/* TODO */
   1760 		bitmap->data_pos     = 0;
   1761 		bitmap->metadata_pos = 0;
   1762 	} else {
   1763 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1764 		goto errorout;
   1765 	}
   1766 
   1767 	return 0;
   1768 
   1769 errorout:
   1770 	free(dscr, M_UDFVOLD);
   1771 	printf( "UDF mount: error reading unallocated "
   1772 		"space bitmap for metadata partition\n");
   1773 	return EROFS;
   1774 }
   1775 
   1776 
   1777 int
   1778 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1779 {
   1780 	struct udf_node	     *bitmap_node;
   1781 	union dscrptr        *dscr;
   1782 	uint64_t inflen, new_inflen;
   1783 	int dummy, error;
   1784 
   1785 	bitmap_node = ump->metadatabitmap_node;
   1786 
   1787 	/* only write out when metadata bitmap node is known */
   1788 	if (bitmap_node == NULL)
   1789 		return 0;
   1790 
   1791 	if (bitmap_node->fe) {
   1792 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1793 	} else {
   1794 		KASSERT(bitmap_node->efe);
   1795 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1796 	}
   1797 
   1798 	/* reduce length to zero */
   1799 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1800 	new_inflen = udf_tagsize(dscr, 1);
   1801 
   1802 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
   1803 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
   1804 
   1805 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1806 	if (error)
   1807 		printf("Error resizing metadata space bitmap\n");
   1808 
   1809 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1810 			dscr,
   1811 			new_inflen, 0,
   1812 			UIO_SYSSPACE,
   1813 			IO_ALTSEMANTICS, FSCRED,
   1814 			NULL, NULL);
   1815 
   1816 	bitmap_node->i_flags |= IN_MODIFIED;
   1817 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
   1818 
   1819 	error = VOP_FSYNC(bitmap_node->vnode,
   1820 			FSCRED, FSYNC_WAIT, 0, 0);
   1821 
   1822 	if (error)
   1823 		printf( "Error writing out metadata partition unalloced "
   1824 			"space bitmap!\n");
   1825 
   1826 	return error;
   1827 }
   1828 
   1829 
   1830 /* --------------------------------------------------------------------- */
   1831 
   1832 /*
   1833  * Checks if ump's vds information is correct and complete
   1834  */
   1835 
   1836 int
   1837 udf_process_vds(struct udf_mount *ump) {
   1838 	union udf_pmap *mapping;
   1839 	/* struct udf_args *args = &ump->mount_args; */
   1840 	struct logvol_int_desc *lvint;
   1841 	struct udf_logvol_info *lvinfo;
   1842 	struct part_desc *part;
   1843 	uint32_t n_pm, mt_l;
   1844 	uint8_t *pmap_pos;
   1845 	char *domain_name, *map_name;
   1846 	const char *check_name;
   1847 	char bits[128];
   1848 	int pmap_stype, pmap_size;
   1849 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1850 	int n_phys, n_virt, n_spar, n_meta;
   1851 	int len, error;
   1852 
   1853 	if (ump == NULL)
   1854 		return ENOENT;
   1855 
   1856 	/* we need at least an anchor (trivial, but for safety) */
   1857 	if (ump->anchors[0] == NULL)
   1858 		return EINVAL;
   1859 
   1860 	/* we need at least one primary and one logical volume descriptor */
   1861 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1862 		return EINVAL;
   1863 
   1864 	/* we need at least one partition descriptor */
   1865 	if (ump->partitions[0] == NULL)
   1866 		return EINVAL;
   1867 
   1868 	/* check logical volume sector size verses device sector size */
   1869 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1870 		printf("UDF mount: format violation, lb_size != sector size\n");
   1871 		return EINVAL;
   1872 	}
   1873 
   1874 	/* check domain name */
   1875 	domain_name = ump->logical_vol->domain_id.id;
   1876 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1877 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1878 		return EINVAL;
   1879 	}
   1880 
   1881 	/* retrieve logical volume integrity sequence */
   1882 	error = udf_retrieve_lvint(ump);
   1883 
   1884 	/*
   1885 	 * We need at least one logvol integrity descriptor recorded.  Note
   1886 	 * that its OK to have an open logical volume integrity here. The VAT
   1887 	 * will close/update the integrity.
   1888 	 */
   1889 	if (ump->logvol_integrity == NULL)
   1890 		return EINVAL;
   1891 
   1892 	/* process derived structures */
   1893 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1894 	lvint  = ump->logvol_integrity;
   1895 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1896 	ump->logvol_info = lvinfo;
   1897 
   1898 	/* TODO check udf versions? */
   1899 
   1900 	/*
   1901 	 * check logvol mappings: effective virt->log partmap translation
   1902 	 * check and recording of the mapping results. Saves expensive
   1903 	 * strncmp() in tight places.
   1904 	 */
   1905 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1906 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1907 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1908 	pmap_pos =  ump->logical_vol->maps;
   1909 
   1910 	if (n_pm > UDF_PMAPS) {
   1911 		printf("UDF mount: too many mappings\n");
   1912 		return EINVAL;
   1913 	}
   1914 
   1915 	/* count types and set partition numbers */
   1916 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1917 	n_phys = n_virt = n_spar = n_meta = 0;
   1918 	for (log_part = 0; log_part < n_pm; log_part++) {
   1919 		mapping = (union udf_pmap *) pmap_pos;
   1920 		pmap_stype = pmap_pos[0];
   1921 		pmap_size  = pmap_pos[1];
   1922 		switch (pmap_stype) {
   1923 		case 1:	/* physical mapping */
   1924 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1925 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1926 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1927 			n_phys++;
   1928 			ump->data_part = log_part;
   1929 			ump->node_part = log_part;
   1930 			ump->fids_part = log_part;
   1931 			break;
   1932 		case 2: /* virtual/sparable/meta mapping */
   1933 			map_name  = mapping->pm2.part_id.id;
   1934 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1935 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1936 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1937 			len = UDF_REGID_ID_SIZE;
   1938 
   1939 			check_name = "*UDF Virtual Partition";
   1940 			if (strncmp(map_name, check_name, len) == 0) {
   1941 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1942 				n_virt++;
   1943 				ump->node_part = log_part;
   1944 				break;
   1945 			}
   1946 			check_name = "*UDF Sparable Partition";
   1947 			if (strncmp(map_name, check_name, len) == 0) {
   1948 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1949 				n_spar++;
   1950 				ump->data_part = log_part;
   1951 				ump->node_part = log_part;
   1952 				ump->fids_part = log_part;
   1953 				break;
   1954 			}
   1955 			check_name = "*UDF Metadata Partition";
   1956 			if (strncmp(map_name, check_name, len) == 0) {
   1957 				pmap_type = UDF_VTOP_TYPE_META;
   1958 				n_meta++;
   1959 				ump->node_part = log_part;
   1960 				ump->fids_part = log_part;
   1961 				break;
   1962 			}
   1963 			break;
   1964 		default:
   1965 			return EINVAL;
   1966 		}
   1967 
   1968 		/*
   1969 		 * BUGALERT: some rogue implementations use random physical
   1970 		 * partition numbers to break other implementations so lookup
   1971 		 * the number.
   1972 		 */
   1973 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1974 			part = ump->partitions[phys_part];
   1975 			if (part == NULL)
   1976 				continue;
   1977 			if (udf_rw16(part->part_num) == raw_phys_part)
   1978 				break;
   1979 		}
   1980 
   1981 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1982 		    raw_phys_part, phys_part, pmap_type));
   1983 
   1984 		if (phys_part == UDF_PARTITIONS)
   1985 			return EINVAL;
   1986 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1987 			return EINVAL;
   1988 
   1989 		ump->vtop   [log_part] = phys_part;
   1990 		ump->vtop_tp[log_part] = pmap_type;
   1991 
   1992 		pmap_pos += pmap_size;
   1993 	}
   1994 	/* not winning the beauty contest */
   1995 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1996 
   1997 	/* test some basic UDF assertions/requirements */
   1998 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1999 		return EINVAL;
   2000 
   2001 	if (n_virt) {
   2002 		if ((n_phys == 0) || n_spar || n_meta)
   2003 			return EINVAL;
   2004 	}
   2005 	if (n_spar + n_phys == 0)
   2006 		return EINVAL;
   2007 
   2008 	/* select allocation type for each logical partition */
   2009 	for (log_part = 0; log_part < n_pm; log_part++) {
   2010 		maps_on = ump->vtop[log_part];
   2011 		switch (ump->vtop_tp[log_part]) {
   2012 		case UDF_VTOP_TYPE_PHYS :
   2013 			assert(maps_on == log_part);
   2014 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   2015 			break;
   2016 		case UDF_VTOP_TYPE_VIRT :
   2017 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   2018 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   2019 			break;
   2020 		case UDF_VTOP_TYPE_SPARABLE :
   2021 			assert(maps_on == log_part);
   2022 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   2023 			break;
   2024 		case UDF_VTOP_TYPE_META :
   2025 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   2026 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   2027 				/* special case for UDF 2.60 */
   2028 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   2029 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   2030 			}
   2031 			break;
   2032 		default:
   2033 			panic("bad alloction type in udf's ump->vtop\n");
   2034 		}
   2035 	}
   2036 
   2037 	/* determine logical volume open/closure actions */
   2038 	if (n_virt) {
   2039 		ump->lvopen  = 0;
   2040 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
   2041 			ump->lvopen |= UDF_OPEN_SESSION ;
   2042 		ump->lvclose = UDF_WRITE_VAT;
   2043 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   2044 			ump->lvclose |= UDF_CLOSE_SESSION;
   2045 	} else {
   2046 		/* `normal' rewritable or non sequential media */
   2047 		ump->lvopen  = UDF_WRITE_LVINT;
   2048 		ump->lvclose = UDF_WRITE_LVINT;
   2049 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   2050 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   2051 	}
   2052 
   2053 	/*
   2054 	 * Determine sheduler error behaviour. For virtual partitions, update
   2055 	 * the trackinfo; for sparable partitions replace a whole block on the
   2056 	 * sparable table. Allways requeue.
   2057 	 */
   2058 	ump->lvreadwrite = 0;
   2059 	if (n_virt)
   2060 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   2061 	if (n_spar)
   2062 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   2063 
   2064 	/*
   2065 	 * Select our sheduler
   2066 	 */
   2067 	ump->strategy = &udf_strat_rmw;
   2068 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   2069 		ump->strategy = &udf_strat_sequential;
   2070 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   2071 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   2072 			ump->strategy = &udf_strat_direct;
   2073 	if (n_spar)
   2074 		ump->strategy = &udf_strat_rmw;
   2075 
   2076 #if 0
   2077 	/* read-only access won't benefit from the other shedulers */
   2078 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   2079 		ump->strategy = &udf_strat_direct;
   2080 #endif
   2081 
   2082 	/* print results */
   2083 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   2084 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2085 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2086 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2087 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2088 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2089 
   2090 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
   2091 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2092 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
   2093 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2094 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
   2095 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2096 
   2097 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2098 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2099 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2100 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2101 
   2102 	/* signal its OK for now */
   2103 	return 0;
   2104 }
   2105 
   2106 /* --------------------------------------------------------------------- */
   2107 
   2108 /*
   2109  * Update logical volume name in all structures that keep a record of it. We
   2110  * use memmove since each of them might be specified as a source.
   2111  *
   2112  * Note that it doesn't update the VAT structure!
   2113  */
   2114 
   2115 static void
   2116 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2117 {
   2118 	struct logvol_desc     *lvd = NULL;
   2119 	struct fileset_desc    *fsd = NULL;
   2120 	struct udf_lv_info     *lvi = NULL;
   2121 
   2122 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2123 	lvd = ump->logical_vol;
   2124 	fsd = ump->fileset_desc;
   2125 	if (ump->implementation)
   2126 		lvi = &ump->implementation->_impl_use.lv_info;
   2127 
   2128 	/* logvol's id might be specified as origional so use memmove here */
   2129 	memmove(lvd->logvol_id, logvol_id, 128);
   2130 	if (fsd)
   2131 		memmove(fsd->logvol_id, logvol_id, 128);
   2132 	if (lvi)
   2133 		memmove(lvi->logvol_id, logvol_id, 128);
   2134 }
   2135 
   2136 /* --------------------------------------------------------------------- */
   2137 
   2138 void
   2139 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2140 	uint32_t sector)
   2141 {
   2142 	assert(ump->logical_vol);
   2143 
   2144 	tag->id 		= udf_rw16(tagid);
   2145 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2146 	tag->cksum		= 0;
   2147 	tag->reserved		= 0;
   2148 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2149 	tag->tag_loc            = udf_rw32(sector);
   2150 }
   2151 
   2152 
   2153 uint64_t
   2154 udf_advance_uniqueid(struct udf_mount *ump)
   2155 {
   2156 	uint64_t unique_id;
   2157 
   2158 	mutex_enter(&ump->logvol_mutex);
   2159 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2160 	if (unique_id < 0x10)
   2161 		unique_id = 0x10;
   2162 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2163 	mutex_exit(&ump->logvol_mutex);
   2164 
   2165 	return unique_id;
   2166 }
   2167 
   2168 
   2169 static void
   2170 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2171 {
   2172 	struct udf_mount *ump = udf_node->ump;
   2173 	uint32_t num_dirs, num_files;
   2174 	int udf_file_type;
   2175 
   2176 	/* get file type */
   2177 	if (udf_node->fe) {
   2178 		udf_file_type = udf_node->fe->icbtag.file_type;
   2179 	} else {
   2180 		udf_file_type = udf_node->efe->icbtag.file_type;
   2181 	}
   2182 
   2183 	/* adjust file count */
   2184 	mutex_enter(&ump->allocate_mutex);
   2185 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2186 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2187 		ump->logvol_info->num_directories =
   2188 			udf_rw32((num_dirs + sign));
   2189 	} else {
   2190 		num_files = udf_rw32(ump->logvol_info->num_files);
   2191 		ump->logvol_info->num_files =
   2192 			udf_rw32((num_files + sign));
   2193 	}
   2194 	mutex_exit(&ump->allocate_mutex);
   2195 }
   2196 
   2197 
   2198 void
   2199 udf_osta_charset(struct charspec *charspec)
   2200 {
   2201 	memset(charspec, 0, sizeof(struct charspec));
   2202 	charspec->type = 0;
   2203 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2204 }
   2205 
   2206 
   2207 /* first call udf_set_regid and then the suffix */
   2208 void
   2209 udf_set_regid(struct regid *regid, char const *name)
   2210 {
   2211 	memset(regid, 0, sizeof(struct regid));
   2212 	regid->flags    = 0;		/* not dirty and not protected */
   2213 	strcpy((char *) regid->id, name);
   2214 }
   2215 
   2216 
   2217 void
   2218 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2219 {
   2220 	uint16_t *ver;
   2221 
   2222 	ver  = (uint16_t *) regid->id_suffix;
   2223 	*ver = ump->logvol_info->min_udf_readver;
   2224 }
   2225 
   2226 
   2227 void
   2228 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2229 {
   2230 	uint16_t *ver;
   2231 
   2232 	ver  = (uint16_t *) regid->id_suffix;
   2233 	*ver = ump->logvol_info->min_udf_readver;
   2234 
   2235 	regid->id_suffix[2] = 4;	/* unix */
   2236 	regid->id_suffix[3] = 8;	/* NetBSD */
   2237 }
   2238 
   2239 
   2240 void
   2241 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2242 {
   2243 	regid->id_suffix[0] = 4;	/* unix */
   2244 	regid->id_suffix[1] = 8;	/* NetBSD */
   2245 }
   2246 
   2247 
   2248 void
   2249 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2250 {
   2251 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2252 	regid->id_suffix[1] = APP_VERSION_SUB;
   2253 }
   2254 
   2255 static int
   2256 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2257 	struct long_ad *parent, uint64_t unique_id)
   2258 {
   2259 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2260 	int fidsize = 40;
   2261 
   2262 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2263 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2264 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2265 	fid->icb = *parent;
   2266 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2267 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
   2268 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2269 
   2270 	return fidsize;
   2271 }
   2272 
   2273 /* --------------------------------------------------------------------- */
   2274 
   2275 /*
   2276  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2277  *
   2278  * (a) inside the file's (e)fe in the length of the extended attribute area
   2279  * before the allocation descriptors/filedata
   2280  *
   2281  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2282  *
   2283  * (c) in the e(fe)'s associated stream directory that can hold various
   2284  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2285  * for NT/Unix ACL's and OS/2 attributes.
   2286  *
   2287  * NOTE: Extended attributes are read randomly but allways written
   2288  * *atomicaly*. For ACL's this interface is propably different but not known
   2289  * to me yet.
   2290  *
   2291  * Order of extended attributes in a space :
   2292  *   ECMA 167 EAs
   2293  *   Non block aligned Implementation Use EAs
   2294  *   Block aligned Implementation Use EAs
   2295  *   Application Use EAs
   2296  */
   2297 
   2298 static int
   2299 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2300 {
   2301 	uint16_t   *spos;
   2302 
   2303 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2304 		/* checksum valid? */
   2305 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2306 		spos = (uint16_t *) implext->data;
   2307 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2308 			return EINVAL;
   2309 	}
   2310 	return 0;
   2311 }
   2312 
   2313 static void
   2314 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2315 {
   2316 	uint16_t   *spos;
   2317 
   2318 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2319 		/* set checksum */
   2320 		spos = (uint16_t *) implext->data;
   2321 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2322 	}
   2323 }
   2324 
   2325 
   2326 int
   2327 udf_extattr_search_intern(struct udf_node *node,
   2328 	uint32_t sattr, char const *sattrname,
   2329 	uint32_t *offsetp, uint32_t *lengthp)
   2330 {
   2331 	struct extattrhdr_desc    *eahdr;
   2332 	struct extattr_entry      *attrhdr;
   2333 	struct impl_extattr_entry *implext;
   2334 	uint32_t    offset, a_l, sector_size;
   2335 	 int32_t    l_ea;
   2336 	uint8_t    *pos;
   2337 	int         error;
   2338 
   2339 	/* get mountpoint */
   2340 	sector_size = node->ump->discinfo.sector_size;
   2341 
   2342 	/* get information from fe/efe */
   2343 	if (node->fe) {
   2344 		l_ea  = udf_rw32(node->fe->l_ea);
   2345 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2346 	} else {
   2347 		assert(node->efe);
   2348 		l_ea  = udf_rw32(node->efe->l_ea);
   2349 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2350 	}
   2351 
   2352 	/* something recorded here? */
   2353 	if (l_ea == 0)
   2354 		return ENOENT;
   2355 
   2356 	/* check extended attribute tag; what to do if it fails? */
   2357 	error = udf_check_tag(eahdr);
   2358 	if (error)
   2359 		return EINVAL;
   2360 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2361 		return EINVAL;
   2362 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2363 	if (error)
   2364 		return EINVAL;
   2365 
   2366 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2367 
   2368 	/* looking for Ecma-167 attributes? */
   2369 	offset = sizeof(struct extattrhdr_desc);
   2370 
   2371 	/* looking for either implemenation use or application use */
   2372 	if (sattr == 2048) {				/* [4/48.10.8] */
   2373 		offset = udf_rw32(eahdr->impl_attr_loc);
   2374 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2375 			return ENOENT;
   2376 	}
   2377 	if (sattr == 65536) {				/* [4/48.10.9] */
   2378 		offset = udf_rw32(eahdr->appl_attr_loc);
   2379 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2380 			return ENOENT;
   2381 	}
   2382 
   2383 	/* paranoia check offset and l_ea */
   2384 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2385 		return EINVAL;
   2386 
   2387 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2388 
   2389 	/* find our extended attribute  */
   2390 	l_ea -= offset;
   2391 	pos = (uint8_t *) eahdr + offset;
   2392 
   2393 	while (l_ea >= sizeof(struct extattr_entry)) {
   2394 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2395 		attrhdr = (struct extattr_entry *) pos;
   2396 		implext = (struct impl_extattr_entry *) pos;
   2397 
   2398 		/* get complete attribute length and check for roque values */
   2399 		a_l = udf_rw32(attrhdr->a_l);
   2400 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2401 				udf_rw32(attrhdr->type),
   2402 				attrhdr->subtype, a_l, l_ea));
   2403 		if ((a_l == 0) || (a_l > l_ea))
   2404 			return EINVAL;
   2405 
   2406 		if (attrhdr->type != sattr)
   2407 			goto next_attribute;
   2408 
   2409 		/* we might have found it! */
   2410 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2411 			*offsetp = offset;
   2412 			*lengthp = a_l;
   2413 			return 0;		/* success */
   2414 		}
   2415 
   2416 		/*
   2417 		 * Implementation use and application use extended attributes
   2418 		 * have a name to identify. They share the same structure only
   2419 		 * UDF implementation use extended attributes have a checksum
   2420 		 * we need to check
   2421 		 */
   2422 
   2423 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2424 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2425 			/* we have found our appl/implementation attribute */
   2426 			*offsetp = offset;
   2427 			*lengthp = a_l;
   2428 			return 0;		/* success */
   2429 		}
   2430 
   2431 next_attribute:
   2432 		/* next attribute */
   2433 		pos    += a_l;
   2434 		l_ea   -= a_l;
   2435 		offset += a_l;
   2436 	}
   2437 	/* not found */
   2438 	return ENOENT;
   2439 }
   2440 
   2441 
   2442 static void
   2443 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2444 	struct extattr_entry *extattr)
   2445 {
   2446 	struct file_entry      *fe;
   2447 	struct extfile_entry   *efe;
   2448 	struct extattrhdr_desc *extattrhdr;
   2449 	struct impl_extattr_entry *implext;
   2450 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2451 	uint32_t *l_eap, l_ad;
   2452 	uint16_t *spos;
   2453 	uint8_t *bpos, *data;
   2454 
   2455 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2456 		fe    = &dscr->fe;
   2457 		data  = fe->data;
   2458 		l_eap = &fe->l_ea;
   2459 		l_ad  = udf_rw32(fe->l_ad);
   2460 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2461 		efe   = &dscr->efe;
   2462 		data  = efe->data;
   2463 		l_eap = &efe->l_ea;
   2464 		l_ad  = udf_rw32(efe->l_ad);
   2465 	} else {
   2466 		panic("Bad tag passed to udf_extattr_insert_internal");
   2467 	}
   2468 
   2469 	/* can't append already written to file descriptors yet */
   2470 	assert(l_ad == 0);
   2471 
   2472 	/* should have a header! */
   2473 	extattrhdr = (struct extattrhdr_desc *) data;
   2474 	l_ea = udf_rw32(*l_eap);
   2475 	if (l_ea == 0) {
   2476 		/* create empty extended attribute header */
   2477 		exthdr_len = sizeof(struct extattrhdr_desc);
   2478 
   2479 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2480 			/* loc */ 0);
   2481 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2482 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2483 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2484 
   2485 		/* record extended attribute header length */
   2486 		l_ea = exthdr_len;
   2487 		*l_eap = udf_rw32(l_ea);
   2488 	}
   2489 
   2490 	/* extract locations */
   2491 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2492 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2493 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2494 		impl_attr_loc = l_ea;
   2495 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2496 		appl_attr_loc = l_ea;
   2497 
   2498 	/* Ecma 167 EAs */
   2499 	if (udf_rw32(extattr->type) < 2048) {
   2500 		assert(impl_attr_loc == l_ea);
   2501 		assert(appl_attr_loc == l_ea);
   2502 	}
   2503 
   2504 	/* implementation use extended attributes */
   2505 	if (udf_rw32(extattr->type) == 2048) {
   2506 		assert(appl_attr_loc == l_ea);
   2507 
   2508 		/* calculate and write extended attribute header checksum */
   2509 		implext = (struct impl_extattr_entry *) extattr;
   2510 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2511 		spos = (uint16_t *) implext->data;
   2512 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2513 	}
   2514 
   2515 	/* application use extended attributes */
   2516 	assert(udf_rw32(extattr->type) != 65536);
   2517 	assert(appl_attr_loc == l_ea);
   2518 
   2519 	/* append the attribute at the end of the current space */
   2520 	bpos = data + udf_rw32(*l_eap);
   2521 	a_l  = udf_rw32(extattr->a_l);
   2522 
   2523 	/* update impl. attribute locations */
   2524 	if (udf_rw32(extattr->type) < 2048) {
   2525 		impl_attr_loc = l_ea + a_l;
   2526 		appl_attr_loc = l_ea + a_l;
   2527 	}
   2528 	if (udf_rw32(extattr->type) == 2048) {
   2529 		appl_attr_loc = l_ea + a_l;
   2530 	}
   2531 
   2532 	/* copy and advance */
   2533 	memcpy(bpos, extattr, a_l);
   2534 	l_ea += a_l;
   2535 	*l_eap = udf_rw32(l_ea);
   2536 
   2537 	/* do the `dance` again backwards */
   2538 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2539 		if (impl_attr_loc == l_ea)
   2540 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2541 		if (appl_attr_loc == l_ea)
   2542 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2543 	}
   2544 
   2545 	/* store offsets */
   2546 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2547 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2548 }
   2549 
   2550 
   2551 /* --------------------------------------------------------------------- */
   2552 
   2553 static int
   2554 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2555 {
   2556 	struct udf_mount       *ump;
   2557 	struct udf_logvol_info *lvinfo;
   2558 	struct impl_extattr_entry     *implext;
   2559 	struct vatlvext_extattr_entry  lvext;
   2560 	const char *extstr = "*UDF VAT LVExtension";
   2561 	uint64_t    vat_uniqueid;
   2562 	uint32_t    offset, a_l;
   2563 	uint8_t    *ea_start, *lvextpos;
   2564 	int         error;
   2565 
   2566 	/* get mountpoint and lvinfo */
   2567 	ump    = vat_node->ump;
   2568 	lvinfo = ump->logvol_info;
   2569 
   2570 	/* get information from fe/efe */
   2571 	if (vat_node->fe) {
   2572 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2573 		ea_start     = vat_node->fe->data;
   2574 	} else {
   2575 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2576 		ea_start     = vat_node->efe->data;
   2577 	}
   2578 
   2579 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2580 	if (error)
   2581 		return error;
   2582 
   2583 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2584 	error = udf_impl_extattr_check(implext);
   2585 	if (error)
   2586 		return error;
   2587 
   2588 	/* paranoia */
   2589 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2590 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2591 		return EINVAL;
   2592 	}
   2593 
   2594 	/*
   2595 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2596 	 * bug in the specification it might not be word aligned so
   2597 	 * copy first to avoid panics on some machines (!!)
   2598 	 */
   2599 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2600 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2601 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2602 
   2603 	/* check if it was updated the last time */
   2604 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2605 		lvinfo->num_files       = lvext.num_files;
   2606 		lvinfo->num_directories = lvext.num_directories;
   2607 		udf_update_logvolname(ump, lvext.logvol_id);
   2608 	} else {
   2609 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2610 		/* replace VAT LVExt by free space EA */
   2611 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2612 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2613 		udf_calc_impl_extattr_checksum(implext);
   2614 	}
   2615 
   2616 	return 0;
   2617 }
   2618 
   2619 
   2620 static int
   2621 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2622 {
   2623 	struct udf_mount       *ump;
   2624 	struct udf_logvol_info *lvinfo;
   2625 	struct impl_extattr_entry     *implext;
   2626 	struct vatlvext_extattr_entry  lvext;
   2627 	const char *extstr = "*UDF VAT LVExtension";
   2628 	uint64_t    vat_uniqueid;
   2629 	uint32_t    offset, a_l;
   2630 	uint8_t    *ea_start, *lvextpos;
   2631 	int         error;
   2632 
   2633 	/* get mountpoint and lvinfo */
   2634 	ump    = vat_node->ump;
   2635 	lvinfo = ump->logvol_info;
   2636 
   2637 	/* get information from fe/efe */
   2638 	if (vat_node->fe) {
   2639 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2640 		ea_start     = vat_node->fe->data;
   2641 	} else {
   2642 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2643 		ea_start     = vat_node->efe->data;
   2644 	}
   2645 
   2646 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2647 	if (error)
   2648 		return error;
   2649 	/* found, it existed */
   2650 
   2651 	/* paranoia */
   2652 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2653 	error = udf_impl_extattr_check(implext);
   2654 	if (error) {
   2655 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2656 		return error;
   2657 	}
   2658 	/* it is correct */
   2659 
   2660 	/*
   2661 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2662 	 * bug in the specification it might not be word aligned so
   2663 	 * copy first to avoid panics on some machines (!!)
   2664 	 */
   2665 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2666 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2667 
   2668 	lvext.unique_id_chk   = vat_uniqueid;
   2669 	lvext.num_files       = lvinfo->num_files;
   2670 	lvext.num_directories = lvinfo->num_directories;
   2671 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2672 
   2673 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2674 
   2675 	return 0;
   2676 }
   2677 
   2678 /* --------------------------------------------------------------------- */
   2679 
   2680 int
   2681 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2682 {
   2683 	struct udf_mount *ump = vat_node->ump;
   2684 
   2685 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2686 		return EINVAL;
   2687 
   2688 	memcpy(blob, ump->vat_table + offset, size);
   2689 	return 0;
   2690 }
   2691 
   2692 int
   2693 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2694 {
   2695 	struct udf_mount *ump = vat_node->ump;
   2696 	uint32_t offset_high;
   2697 	uint8_t *new_vat_table;
   2698 
   2699 	/* extent VAT allocation if needed */
   2700 	offset_high = offset + size;
   2701 	if (offset_high >= ump->vat_table_alloc_len) {
   2702 		/* realloc */
   2703 		new_vat_table = realloc(ump->vat_table,
   2704 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2705 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2706 		if (!new_vat_table) {
   2707 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2708 			return ENOMEM;
   2709 		}
   2710 		ump->vat_table = new_vat_table;
   2711 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2712 	}
   2713 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2714 
   2715 	memcpy(ump->vat_table + offset, blob, size);
   2716 	return 0;
   2717 }
   2718 
   2719 /* --------------------------------------------------------------------- */
   2720 
   2721 /* TODO support previous VAT location writeout */
   2722 static int
   2723 udf_update_vat_descriptor(struct udf_mount *ump)
   2724 {
   2725 	struct udf_node *vat_node = ump->vat_node;
   2726 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2727 	struct icb_tag *icbtag;
   2728 	struct udf_oldvat_tail *oldvat_tl;
   2729 	struct udf_vat *vat;
   2730 	uint64_t unique_id;
   2731 	uint32_t lb_size;
   2732 	uint8_t *raw_vat;
   2733 	int filetype, error;
   2734 
   2735 	KASSERT(vat_node);
   2736 	KASSERT(lvinfo);
   2737 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2738 
   2739 	/* get our new unique_id */
   2740 	unique_id = udf_advance_uniqueid(ump);
   2741 
   2742 	/* get information from fe/efe */
   2743 	if (vat_node->fe) {
   2744 		icbtag    = &vat_node->fe->icbtag;
   2745 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2746 	} else {
   2747 		icbtag = &vat_node->efe->icbtag;
   2748 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2749 	}
   2750 
   2751 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2752 	filetype = icbtag->file_type;
   2753 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2754 
   2755 	/* allocate piece to process head or tail of VAT file */
   2756 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2757 
   2758 	if (filetype == 0) {
   2759 		/*
   2760 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2761 		 * lvint if present.
   2762 		 */
   2763 		udf_update_vat_extattr_from_lvid(vat_node);
   2764 
   2765 		/* setup identifying regid */
   2766 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2767 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2768 
   2769 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2770 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2771 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2772 
   2773 		/* write out new tail of virtual allocation table file */
   2774 		error = udf_vat_write(vat_node, raw_vat,
   2775 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2776 	} else {
   2777 		/* compose the VAT2 header */
   2778 		vat = (struct udf_vat *) raw_vat;
   2779 		memset(vat, 0, sizeof(struct udf_vat));
   2780 
   2781 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2782 		vat->impl_use_len     = udf_rw16(0);
   2783 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2784 		vat->prev_vat         = udf_rw32(0xffffffff);
   2785 		vat->num_files        = lvinfo->num_files;
   2786 		vat->num_directories  = lvinfo->num_directories;
   2787 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2788 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2789 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2790 
   2791 		error = udf_vat_write(vat_node, raw_vat,
   2792 			sizeof(struct udf_vat), 0);
   2793 	}
   2794 	free(raw_vat, M_TEMP);
   2795 
   2796 	return error;	/* success! */
   2797 }
   2798 
   2799 
   2800 int
   2801 udf_writeout_vat(struct udf_mount *ump)
   2802 {
   2803 	struct udf_node *vat_node = ump->vat_node;
   2804 	uint32_t vat_length;
   2805 	int error;
   2806 
   2807 	KASSERT(vat_node);
   2808 
   2809 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2810 
   2811 //	mutex_enter(&ump->allocate_mutex);
   2812 	udf_update_vat_descriptor(ump);
   2813 
   2814 	/* write out the VAT contents ; TODO intelligent writing */
   2815 	vat_length = ump->vat_table_len;
   2816 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2817 		ump->vat_table, ump->vat_table_len, 0,
   2818 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
   2819 	if (error) {
   2820 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2821 		goto out;
   2822 	}
   2823 
   2824 //	mutex_exit(&ump->allocate_mutex);
   2825 
   2826 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2827 	error = VOP_FSYNC(ump->vat_node->vnode,
   2828 			FSCRED, FSYNC_WAIT, 0, 0);
   2829 	if (error)
   2830 		printf("udf_writeout_vat: error writing VAT node!\n");
   2831 out:
   2832 
   2833 	return error;
   2834 }
   2835 
   2836 /* --------------------------------------------------------------------- */
   2837 
   2838 /*
   2839  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2840  * descriptor. If OK, read in complete VAT file.
   2841  */
   2842 
   2843 static int
   2844 udf_check_for_vat(struct udf_node *vat_node)
   2845 {
   2846 	struct udf_mount *ump;
   2847 	struct icb_tag   *icbtag;
   2848 	struct timestamp *mtime;
   2849 	struct udf_vat   *vat;
   2850 	struct udf_oldvat_tail *oldvat_tl;
   2851 	struct udf_logvol_info *lvinfo;
   2852 	uint64_t  unique_id;
   2853 	uint32_t  vat_length;
   2854 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2855 	uint32_t  sector_size;
   2856 	uint32_t *raw_vat;
   2857 	uint8_t  *vat_table;
   2858 	char     *regid_name;
   2859 	int filetype;
   2860 	int error;
   2861 
   2862 	/* vat_length is really 64 bits though impossible */
   2863 
   2864 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2865 	if (!vat_node)
   2866 		return ENOENT;
   2867 
   2868 	/* get mount info */
   2869 	ump = vat_node->ump;
   2870 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2871 
   2872 	/* check assertions */
   2873 	assert(vat_node->fe || vat_node->efe);
   2874 	assert(ump->logvol_integrity);
   2875 
   2876 	/* set vnode type to regular file or we can't read from it! */
   2877 	vat_node->vnode->v_type = VREG;
   2878 
   2879 	/* get information from fe/efe */
   2880 	if (vat_node->fe) {
   2881 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2882 		icbtag    = &vat_node->fe->icbtag;
   2883 		mtime     = &vat_node->fe->mtime;
   2884 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2885 	} else {
   2886 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2887 		icbtag = &vat_node->efe->icbtag;
   2888 		mtime  = &vat_node->efe->mtime;
   2889 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2890 	}
   2891 
   2892 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2893 	filetype = icbtag->file_type;
   2894 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2895 		return ENOENT;
   2896 
   2897 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2898 
   2899 	vat_table_alloc_len =
   2900 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2901 			* UDF_VAT_CHUNKSIZE;
   2902 
   2903 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2904 		M_CANFAIL | M_WAITOK);
   2905 	if (vat_table == NULL) {
   2906 		printf("allocation of %d bytes failed for VAT\n",
   2907 			vat_table_alloc_len);
   2908 		return ENOMEM;
   2909 	}
   2910 
   2911 	/* allocate piece to read in head or tail of VAT file */
   2912 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2913 
   2914 	/*
   2915 	 * check contents of the file if its the old 1.50 VAT table format.
   2916 	 * Its notoriously broken and allthough some implementations support an
   2917 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2918 	 * to be useable since a lot of implementations don't maintain it.
   2919 	 */
   2920 	lvinfo = ump->logvol_info;
   2921 
   2922 	if (filetype == 0) {
   2923 		/* definition */
   2924 		vat_offset  = 0;
   2925 		vat_entries = (vat_length-36)/4;
   2926 
   2927 		/* read in tail of virtual allocation table file */
   2928 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2929 				(uint8_t *) raw_vat,
   2930 				sizeof(struct udf_oldvat_tail),
   2931 				vat_entries * 4,
   2932 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2933 				NULL, NULL);
   2934 		if (error)
   2935 			goto out;
   2936 
   2937 		/* check 1.50 VAT */
   2938 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2939 		regid_name = (char *) oldvat_tl->id.id;
   2940 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2941 		if (error) {
   2942 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2943 			error = ENOENT;
   2944 			goto out;
   2945 		}
   2946 
   2947 		/*
   2948 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2949 		 * if present.
   2950 		 */
   2951 		udf_update_lvid_from_vat_extattr(vat_node);
   2952 	} else {
   2953 		/* read in head of virtual allocation table file */
   2954 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2955 				(uint8_t *) raw_vat,
   2956 				sizeof(struct udf_vat), 0,
   2957 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2958 				NULL, NULL);
   2959 		if (error)
   2960 			goto out;
   2961 
   2962 		/* definition */
   2963 		vat = (struct udf_vat *) raw_vat;
   2964 		vat_offset  = vat->header_len;
   2965 		vat_entries = (vat_length - vat_offset)/4;
   2966 
   2967 		assert(lvinfo);
   2968 		lvinfo->num_files        = vat->num_files;
   2969 		lvinfo->num_directories  = vat->num_directories;
   2970 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2971 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2972 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2973 
   2974 		udf_update_logvolname(ump, vat->logvol_id);
   2975 	}
   2976 
   2977 	/* read in complete VAT file */
   2978 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2979 			vat_table,
   2980 			vat_length, 0,
   2981 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2982 			NULL, NULL);
   2983 	if (error)
   2984 		printf("read in of complete VAT file failed (error %d)\n",
   2985 			error);
   2986 	if (error)
   2987 		goto out;
   2988 
   2989 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2990 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
   2991 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2992 	ump->logvol_integrity->time           = *mtime;
   2993 
   2994 	ump->vat_table_len = vat_length;
   2995 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2996 	ump->vat_table   = vat_table;
   2997 	ump->vat_offset  = vat_offset;
   2998 	ump->vat_entries = vat_entries;
   2999 	ump->vat_last_free_lb = 0;		/* start at beginning */
   3000 
   3001 out:
   3002 	if (error) {
   3003 		if (vat_table)
   3004 			free(vat_table, M_UDFVOLD);
   3005 	}
   3006 	free(raw_vat, M_TEMP);
   3007 
   3008 	return error;
   3009 }
   3010 
   3011 /* --------------------------------------------------------------------- */
   3012 
   3013 static int
   3014 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   3015 {
   3016 	struct udf_node *vat_node;
   3017 	struct long_ad	 icb_loc;
   3018 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   3019 	int error;
   3020 
   3021 	/* mapping info not needed */
   3022 	mapping = mapping;
   3023 
   3024 	vat_loc = ump->last_possible_vat_location;
   3025 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   3026 
   3027 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   3028 		vat_loc, early_vat_loc));
   3029 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   3030 	late_vat_loc  = vat_loc + 1024;
   3031 
   3032 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   3033 		vat_loc, early_vat_loc));
   3034 
   3035 	/* start looking from the end of the range */
   3036 	do {
   3037 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   3038 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   3039 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   3040 
   3041 		error = udf_get_node(ump, &icb_loc, &vat_node);
   3042 		if (!error) {
   3043 			error = udf_check_for_vat(vat_node);
   3044 			DPRINTFIF(VOLUMES, !error,
   3045 				("VAT accepted at %d\n", vat_loc));
   3046 			if (!error)
   3047 				break;
   3048 		}
   3049 		if (vat_node) {
   3050 			vput(vat_node->vnode);
   3051 			vat_node = NULL;
   3052 		}
   3053 		vat_loc--;	/* walk backwards */
   3054 	} while (vat_loc >= early_vat_loc);
   3055 
   3056 	/* keep our VAT node around */
   3057 	if (vat_node) {
   3058 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   3059 		ump->vat_node = vat_node;
   3060 	}
   3061 
   3062 	return error;
   3063 }
   3064 
   3065 /* --------------------------------------------------------------------- */
   3066 
   3067 static int
   3068 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   3069 {
   3070 	union dscrptr *dscr;
   3071 	struct part_map_spare *pms = &mapping->pms;
   3072 	uint32_t lb_num;
   3073 	int spar, error;
   3074 
   3075 	/*
   3076 	 * The partition mapping passed on to us specifies the information we
   3077 	 * need to locate and initialise the sparable partition mapping
   3078 	 * information we need.
   3079 	 */
   3080 
   3081 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   3082 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   3083 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   3084 
   3085 	for (spar = 0; spar < pms->n_st; spar++) {
   3086 		lb_num = pms->st_loc[spar];
   3087 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3088 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3089 		if (!error && dscr) {
   3090 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3091 				if (ump->sparing_table)
   3092 					free(ump->sparing_table, M_UDFVOLD);
   3093 				ump->sparing_table = &dscr->spt;
   3094 				dscr = NULL;
   3095 				DPRINTF(VOLUMES,
   3096 				    ("Sparing table accepted (%d entries)\n",
   3097 				     udf_rw16(ump->sparing_table->rt_l)));
   3098 				break;	/* we're done */
   3099 			}
   3100 		}
   3101 		if (dscr)
   3102 			free(dscr, M_UDFVOLD);
   3103 	}
   3104 
   3105 	if (ump->sparing_table)
   3106 		return 0;
   3107 
   3108 	return ENOENT;
   3109 }
   3110 
   3111 /* --------------------------------------------------------------------- */
   3112 
   3113 static int
   3114 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3115 {
   3116 	struct part_map_meta *pmm = &mapping->pmm;
   3117 	struct long_ad	 icb_loc;
   3118 	struct vnode *vp;
   3119 	int error;
   3120 
   3121 	/* extract our allocation parameters set up on format */
   3122 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
   3123 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
   3124 	ump->metadata_flags = mapping->pmm.flags;
   3125 
   3126 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3127 	icb_loc.loc.part_num = pmm->part_num;
   3128 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3129 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3130 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3131 	if (ump->metadata_node) {
   3132 		vp = ump->metadata_node->vnode;
   3133 		UDF_SET_SYSTEMFILE(vp);
   3134 	}
   3135 
   3136 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3137 	if (icb_loc.loc.lb_num != -1) {
   3138 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3139 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3140 		if (ump->metadatamirror_node) {
   3141 			vp = ump->metadatamirror_node->vnode;
   3142 			UDF_SET_SYSTEMFILE(vp);
   3143 		}
   3144 	}
   3145 
   3146 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3147 	if (icb_loc.loc.lb_num != -1) {
   3148 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3149 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3150 		if (ump->metadatabitmap_node) {
   3151 			vp = ump->metadatabitmap_node->vnode;
   3152 			UDF_SET_SYSTEMFILE(vp);
   3153 		}
   3154 	}
   3155 
   3156 	/* if we're mounting read-only we relax the requirements */
   3157 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3158 		error = EFAULT;
   3159 		if (ump->metadata_node)
   3160 			error = 0;
   3161 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3162 			printf( "udf mount: Metadata file not readable, "
   3163 				"substituting Metadata copy file\n");
   3164 			ump->metadata_node = ump->metadatamirror_node;
   3165 			ump->metadatamirror_node = NULL;
   3166 			error = 0;
   3167 		}
   3168 	} else {
   3169 		/* mounting read/write */
   3170 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3171 		if (error)
   3172 			error = EROFS;
   3173 	}
   3174 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3175 				   "metadata files\n"));
   3176 	return error;
   3177 }
   3178 
   3179 /* --------------------------------------------------------------------- */
   3180 
   3181 int
   3182 udf_read_vds_tables(struct udf_mount *ump)
   3183 {
   3184 	union udf_pmap *mapping;
   3185 	/* struct udf_args *args = &ump->mount_args; */
   3186 	uint32_t n_pm, mt_l;
   3187 	uint32_t log_part;
   3188 	uint8_t *pmap_pos;
   3189 	int pmap_size;
   3190 	int error;
   3191 
   3192 	/* Iterate (again) over the part mappings for locations   */
   3193 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3194 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   3195 	pmap_pos =  ump->logical_vol->maps;
   3196 
   3197 	for (log_part = 0; log_part < n_pm; log_part++) {
   3198 		mapping = (union udf_pmap *) pmap_pos;
   3199 		switch (ump->vtop_tp[log_part]) {
   3200 		case UDF_VTOP_TYPE_PHYS :
   3201 			/* nothing */
   3202 			break;
   3203 		case UDF_VTOP_TYPE_VIRT :
   3204 			/* search and load VAT */
   3205 			error = udf_search_vat(ump, mapping);
   3206 			if (error)
   3207 				return ENOENT;
   3208 			break;
   3209 		case UDF_VTOP_TYPE_SPARABLE :
   3210 			/* load one of the sparable tables */
   3211 			error = udf_read_sparables(ump, mapping);
   3212 			if (error)
   3213 				return ENOENT;
   3214 			break;
   3215 		case UDF_VTOP_TYPE_META :
   3216 			/* load the associated file descriptors */
   3217 			error = udf_read_metadata_nodes(ump, mapping);
   3218 			if (error)
   3219 				return ENOENT;
   3220 			break;
   3221 		default:
   3222 			break;
   3223 		}
   3224 		pmap_size  = pmap_pos[1];
   3225 		pmap_pos  += pmap_size;
   3226 	}
   3227 
   3228 	/* read in and check unallocated and free space info if writing */
   3229 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3230 		error = udf_read_physical_partition_spacetables(ump);
   3231 		if (error)
   3232 			return error;
   3233 
   3234 		/* also read in metadata partition spacebitmap if defined */
   3235 		error = udf_read_metadata_partition_spacetable(ump);
   3236 			return error;
   3237 	}
   3238 
   3239 	return 0;
   3240 }
   3241 
   3242 /* --------------------------------------------------------------------- */
   3243 
   3244 int
   3245 udf_read_rootdirs(struct udf_mount *ump)
   3246 {
   3247 	union dscrptr *dscr;
   3248 	/* struct udf_args *args = &ump->mount_args; */
   3249 	struct udf_node *rootdir_node, *streamdir_node;
   3250 	struct long_ad  fsd_loc, *dir_loc;
   3251 	uint32_t lb_num, dummy;
   3252 	uint32_t fsd_len;
   3253 	int dscr_type;
   3254 	int error;
   3255 
   3256 	/* TODO implement FSD reading in separate function like integrity? */
   3257 	/* get fileset descriptor sequence */
   3258 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3259 	fsd_len = udf_rw32(fsd_loc.len);
   3260 
   3261 	dscr  = NULL;
   3262 	error = 0;
   3263 	while (fsd_len || error) {
   3264 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3265 		/* translate fsd_loc to lb_num */
   3266 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3267 		if (error)
   3268 			break;
   3269 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3270 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3271 		/* end markers */
   3272 		if (error || (dscr == NULL))
   3273 			break;
   3274 
   3275 		/* analyse */
   3276 		dscr_type = udf_rw16(dscr->tag.id);
   3277 		if (dscr_type == TAGID_TERM)
   3278 			break;
   3279 		if (dscr_type != TAGID_FSD) {
   3280 			free(dscr, M_UDFVOLD);
   3281 			return ENOENT;
   3282 		}
   3283 
   3284 		/*
   3285 		 * TODO check for multiple fileset descriptors; its only
   3286 		 * picking the last now. Also check for FSD
   3287 		 * correctness/interpretability
   3288 		 */
   3289 
   3290 		/* update */
   3291 		if (ump->fileset_desc) {
   3292 			free(ump->fileset_desc, M_UDFVOLD);
   3293 		}
   3294 		ump->fileset_desc = &dscr->fsd;
   3295 		dscr = NULL;
   3296 
   3297 		/* continue to the next fsd */
   3298 		fsd_len -= ump->discinfo.sector_size;
   3299 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3300 
   3301 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3302 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3303 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3304 			fsd_loc = ump->fileset_desc->next_ex;
   3305 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3306 		}
   3307 	}
   3308 	if (dscr)
   3309 		free(dscr, M_UDFVOLD);
   3310 
   3311 	/* there has to be one */
   3312 	if (ump->fileset_desc == NULL)
   3313 		return ENOENT;
   3314 
   3315 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3316 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3317 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3318 
   3319 	/*
   3320 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3321 	 * the system stream dir. Some files in the system streamdir are not
   3322 	 * wanted in this implementation since they are not maintained. If
   3323 	 * writing is enabled we'll delete these files if they exist.
   3324 	 */
   3325 
   3326 	rootdir_node = streamdir_node = NULL;
   3327 	dir_loc = NULL;
   3328 
   3329 	/* try to read in the rootdir */
   3330 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3331 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3332 	if (error)
   3333 		return ENOENT;
   3334 
   3335 	/* aparently it read in fine */
   3336 
   3337 	/*
   3338 	 * Try the system stream directory; not very likely in the ones we
   3339 	 * test, but for completeness.
   3340 	 */
   3341 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3342 	if (udf_rw32(dir_loc->len)) {
   3343 		printf("udf_read_rootdirs: streamdir defined ");
   3344 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3345 		if (error) {
   3346 			printf("but error in streamdir reading\n");
   3347 		} else {
   3348 			printf("but ignored\n");
   3349 			/*
   3350 			 * TODO process streamdir `baddies' i.e. files we dont
   3351 			 * want if R/W
   3352 			 */
   3353 		}
   3354 	}
   3355 
   3356 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3357 
   3358 	/* release the vnodes again; they'll be auto-recycled later */
   3359 	if (streamdir_node) {
   3360 		vput(streamdir_node->vnode);
   3361 	}
   3362 	if (rootdir_node) {
   3363 		vput(rootdir_node->vnode);
   3364 	}
   3365 
   3366 	return 0;
   3367 }
   3368 
   3369 /* --------------------------------------------------------------------- */
   3370 
   3371 /* To make absolutely sure we are NOT returning zero, add one :) */
   3372 
   3373 long
   3374 udf_get_node_id(const struct long_ad *icbptr)
   3375 {
   3376 	/* ought to be enough since each mountpoint has its own chain */
   3377 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3378 }
   3379 
   3380 
   3381 int
   3382 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
   3383 {
   3384 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
   3385 		return -1;
   3386 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
   3387 		return 1;
   3388 
   3389 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
   3390 		return -1;
   3391 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
   3392 		return 1;
   3393 
   3394 	return 0;
   3395 }
   3396 
   3397 
   3398 static int
   3399 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
   3400 {
   3401 	const struct udf_node *a_node = a;
   3402 	const struct udf_node *b_node = b;
   3403 
   3404 	return udf_compare_icb(&a_node->loc, &b_node->loc);
   3405 }
   3406 
   3407 
   3408 static int
   3409 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
   3410 {
   3411 	const struct udf_node *a_node = a;
   3412 	const struct long_ad * const icb = key;
   3413 
   3414 	return udf_compare_icb(&a_node->loc, icb);
   3415 }
   3416 
   3417 
   3418 static const rb_tree_ops_t udf_node_rbtree_ops = {
   3419 	.rbto_compare_nodes = udf_compare_rbnodes,
   3420 	.rbto_compare_key = udf_compare_rbnode_icb,
   3421 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
   3422 	.rbto_context = NULL
   3423 };
   3424 
   3425 
   3426 void
   3427 udf_init_nodes_tree(struct udf_mount *ump)
   3428 {
   3429 
   3430 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
   3431 }
   3432 
   3433 
   3434 static struct udf_node *
   3435 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3436 {
   3437 	struct udf_node *udf_node;
   3438 	struct vnode *vp;
   3439 
   3440 loop:
   3441 	mutex_enter(&ump->ihash_lock);
   3442 
   3443 	udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
   3444 	if (udf_node) {
   3445 		vp = udf_node->vnode;
   3446 		assert(vp);
   3447 		mutex_enter(&vp->v_interlock);
   3448 		mutex_exit(&ump->ihash_lock);
   3449 		if (vget(vp, LK_EXCLUSIVE))
   3450 			goto loop;
   3451 		return udf_node;
   3452 	}
   3453 	mutex_exit(&ump->ihash_lock);
   3454 
   3455 	return NULL;
   3456 }
   3457 
   3458 
   3459 static void
   3460 udf_register_node(struct udf_node *udf_node)
   3461 {
   3462 	struct udf_mount *ump = udf_node->ump;
   3463 
   3464 	/* add node to the rb tree */
   3465 	mutex_enter(&ump->ihash_lock);
   3466 	rb_tree_insert_node(&ump->udf_node_tree, udf_node);
   3467 	mutex_exit(&ump->ihash_lock);
   3468 }
   3469 
   3470 
   3471 static void
   3472 udf_deregister_node(struct udf_node *udf_node)
   3473 {
   3474 	struct udf_mount *ump = udf_node->ump;
   3475 
   3476 	/* remove node from the rb tree */
   3477 	mutex_enter(&ump->ihash_lock);
   3478 	rb_tree_remove_node(&ump->udf_node_tree, udf_node);
   3479 	mutex_exit(&ump->ihash_lock);
   3480 }
   3481 
   3482 /* --------------------------------------------------------------------- */
   3483 
   3484 static int
   3485 udf_validate_session_start(struct udf_mount *ump)
   3486 {
   3487 	struct mmc_trackinfo trackinfo;
   3488 	struct vrs_desc *vrs;
   3489 	uint32_t tracknr, sessionnr, sector, sector_size;
   3490 	uint32_t iso9660_vrs, write_track_start;
   3491 	uint8_t *buffer, *blank, *pos;
   3492 	int blks, max_sectors, vrs_len;
   3493 	int error;
   3494 
   3495 	/* disc appendable? */
   3496 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
   3497 		return EROFS;
   3498 
   3499 	/* already written here? if so, there should be an ISO VDS */
   3500 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
   3501 		return 0;
   3502 
   3503 	/*
   3504 	 * Check if the first track of the session is blank and if so, copy or
   3505 	 * create a dummy ISO descriptor so the disc is valid again.
   3506 	 */
   3507 
   3508 	tracknr = ump->discinfo.first_track_last_session;
   3509 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
   3510 	trackinfo.tracknr = tracknr;
   3511 	error = udf_update_trackinfo(ump, &trackinfo);
   3512 	if (error)
   3513 		return error;
   3514 
   3515 	udf_dump_trackinfo(&trackinfo);
   3516 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
   3517 	KASSERT(trackinfo.sessionnr > 1);
   3518 
   3519 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
   3520 	write_track_start = trackinfo.next_writable;
   3521 
   3522 	/* we have to copy the ISO VRS from a former session */
   3523 	DPRINTF(VOLUMES, ("validate_session_start: "
   3524 			"blank or reserved track, copying VRS\n"));
   3525 
   3526 	/* sessionnr should be the session we're mounting */
   3527 	sessionnr = ump->mount_args.sessionnr;
   3528 
   3529 	/* start at the first track */
   3530 	tracknr   = ump->discinfo.first_track;
   3531 	while (tracknr <= ump->discinfo.num_tracks) {
   3532 		trackinfo.tracknr = tracknr;
   3533 		error = udf_update_trackinfo(ump, &trackinfo);
   3534 		if (error) {
   3535 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3536 			return error;
   3537 		}
   3538 		if (trackinfo.sessionnr == sessionnr)
   3539 			break;
   3540 		tracknr++;
   3541 	}
   3542 	if (trackinfo.sessionnr != sessionnr) {
   3543 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3544 		return ENOENT;
   3545 	}
   3546 
   3547 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
   3548 	udf_dump_trackinfo(&trackinfo);
   3549 
   3550         /*
   3551          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3552          * minimum ISO `sector size' 2048
   3553          */
   3554 	sector_size = ump->discinfo.sector_size;
   3555 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3556 		 + trackinfo.track_start;
   3557 
   3558 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
   3559 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
   3560 	blks = MAX(1, 2048 / sector_size);
   3561 
   3562 	error = 0;
   3563 	for (sector = 0; sector < max_sectors; sector += blks) {
   3564 		pos = buffer + sector * sector_size;
   3565 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
   3566 			iso9660_vrs + sector, blks);
   3567 		if (error)
   3568 			break;
   3569 		/* check this ISO descriptor */
   3570 		vrs = (struct vrs_desc *) pos;
   3571 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
   3572 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
   3573 			continue;
   3574 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
   3575 			continue;
   3576 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
   3577 			continue;
   3578 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
   3579 			continue;
   3580 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
   3581 			continue;
   3582 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
   3583 			break;
   3584 		/* now what? for now, end of sequence */
   3585 		break;
   3586 	}
   3587 	vrs_len = sector + blks;
   3588 	if (error) {
   3589 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
   3590 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
   3591 
   3592 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
   3593 
   3594 		vrs = (struct vrs_desc *) (buffer);
   3595 		vrs->struct_type = 0;
   3596 		vrs->version     = 1;
   3597 		memcpy(vrs->identifier,VRS_BEA01, 5);
   3598 
   3599 		vrs = (struct vrs_desc *) (buffer + 2048);
   3600 		vrs->struct_type = 0;
   3601 		vrs->version     = 1;
   3602 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   3603 			memcpy(vrs->identifier,VRS_NSR02, 5);
   3604 		} else {
   3605 			memcpy(vrs->identifier,VRS_NSR03, 5);
   3606 		}
   3607 
   3608 		vrs = (struct vrs_desc *) (buffer + 4096);
   3609 		vrs->struct_type = 0;
   3610 		vrs->version     = 1;
   3611 		memcpy(vrs->identifier, VRS_TEA01, 5);
   3612 
   3613 		vrs_len = 3*blks;
   3614 	}
   3615 
   3616 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
   3617 
   3618         /*
   3619          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3620          * minimum ISO `sector size' 2048
   3621          */
   3622 	sector_size = ump->discinfo.sector_size;
   3623 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3624 		 + write_track_start;
   3625 
   3626 	/* write out 32 kb */
   3627 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
   3628 	memset(blank, 0, sector_size);
   3629 	error = 0;
   3630 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
   3631 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3632 			blank, sector, 1);
   3633 		if (error)
   3634 			break;
   3635 	}
   3636 	if (!error) {
   3637 		/* write out our ISO VRS */
   3638 		KASSERT(sector == iso9660_vrs);
   3639 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
   3640 				sector, vrs_len);
   3641 		sector += vrs_len;
   3642 	}
   3643 	if (!error) {
   3644 		/* fill upto the first anchor at S+256 */
   3645 		for (; sector < write_track_start+256; sector++) {
   3646 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3647 				blank, sector, 1);
   3648 			if (error)
   3649 				break;
   3650 		}
   3651 	}
   3652 	if (!error) {
   3653 		/* write out anchor; write at ABSOLUTE place! */
   3654 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
   3655 			(union dscrptr *) ump->anchors[0], sector, sector);
   3656 		if (error)
   3657 			printf("writeout of anchor failed!\n");
   3658 	}
   3659 
   3660 	free(blank, M_TEMP);
   3661 	free(buffer, M_TEMP);
   3662 
   3663 	if (error)
   3664 		printf("udf_open_session: error writing iso vrs! : "
   3665 				"leaving disc in compromised state!\n");
   3666 
   3667 	/* synchronise device caches */
   3668 	(void) udf_synchronise_caches(ump);
   3669 
   3670 	return error;
   3671 }
   3672 
   3673 
   3674 int
   3675 udf_open_logvol(struct udf_mount *ump)
   3676 {
   3677 	int logvol_integrity;
   3678 	int error;
   3679 
   3680 	/* already/still open? */
   3681 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3682 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3683 		return 0;
   3684 
   3685 	/* can we open it ? */
   3686 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3687 		return EROFS;
   3688 
   3689 	/* setup write parameters */
   3690 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3691 	if ((error = udf_setup_writeparams(ump)) != 0)
   3692 		return error;
   3693 
   3694 	/* determine data and metadata tracks (most likely same) */
   3695 	error = udf_search_writing_tracks(ump);
   3696 	if (error) {
   3697 		/* most likely lack of space */
   3698 		printf("udf_open_logvol: error searching writing tracks\n");
   3699 		return EROFS;
   3700 	}
   3701 
   3702 	/* writeout/update lvint on disc or only in memory */
   3703 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3704 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3705 		/* TODO optional track reservation opening */
   3706 		error = udf_validate_session_start(ump);
   3707 		if (error)
   3708 			return error;
   3709 
   3710 		/* determine data and metadata tracks again */
   3711 		error = udf_search_writing_tracks(ump);
   3712 	}
   3713 
   3714 	/* mark it open */
   3715 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3716 
   3717 	/* do we need to write it out? */
   3718 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3719 		error = udf_writeout_lvint(ump, ump->lvopen);
   3720 		/* if we couldn't write it mark it closed again */
   3721 		if (error) {
   3722 			ump->logvol_integrity->integrity_type =
   3723 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3724 			return error;
   3725 		}
   3726 	}
   3727 
   3728 	return 0;
   3729 }
   3730 
   3731 
   3732 int
   3733 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3734 {
   3735 	struct vnode *devvp = ump->devvp;
   3736 	struct mmc_op mmc_op;
   3737 	int logvol_integrity;
   3738 	int error = 0, error1 = 0, error2 = 0;
   3739 	int tracknr;
   3740 	int nvats, n, nok;
   3741 
   3742 	/* already/still closed? */
   3743 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3744 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3745 		return 0;
   3746 
   3747 	/* writeout/update lvint or write out VAT */
   3748 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
   3749 #ifdef DIAGNOSTIC
   3750 	if (ump->lvclose & UDF_CLOSE_SESSION)
   3751 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
   3752 #endif
   3753 
   3754 	if (ump->lvclose & UDF_WRITE_VAT) {
   3755 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3756 
   3757 		/* write out the VAT data and all its descriptors */
   3758 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3759 		udf_writeout_vat(ump);
   3760 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3761 
   3762 		(void) VOP_FSYNC(ump->vat_node->vnode,
   3763 				FSCRED, FSYNC_WAIT, 0, 0);
   3764 
   3765 		if (ump->lvclose & UDF_CLOSE_SESSION) {
   3766 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
   3767 				"as requested\n"));
   3768 		}
   3769 
   3770 		/* at least two DVD packets and 3 CD-R packets */
   3771 		nvats = 32;
   3772 
   3773 #if notyet
   3774 		/*
   3775 		 * TODO calculate the available space and if the disc is
   3776 		 * allmost full, write out till end-256-1 with banks, write
   3777 		 * AVDP and fill up with VATs, then close session and close
   3778 		 * disc.
   3779 		 */
   3780 		if (ump->lvclose & UDF_FINALISE_DISC) {
   3781 			error = udf_write_phys_dscr_sync(ump, NULL,
   3782 					UDF_C_FLOAT_DSCR,
   3783 					(union dscrptr *) ump->anchors[0],
   3784 					0, 0);
   3785 			if (error)
   3786 				printf("writeout of anchor failed!\n");
   3787 
   3788 			/* pad space with VAT ICBs */
   3789 			nvats = 256;
   3790 		}
   3791 #endif
   3792 
   3793 		/* write out a number of VAT nodes */
   3794 		nok = 0;
   3795 		for (n = 0; n < nvats; n++) {
   3796 			/* will now only write last FE/EFE */
   3797 			ump->vat_node->i_flags |= IN_MODIFIED;
   3798 			error = VOP_FSYNC(ump->vat_node->vnode,
   3799 					FSCRED, FSYNC_WAIT, 0, 0);
   3800 			if (!error)
   3801 				nok++;
   3802 		}
   3803 		if (nok < 14) {
   3804 			/* arbitrary; but at least one or two CD frames */
   3805 			printf("writeout of at least 14 VATs failed\n");
   3806 			return error;
   3807 		}
   3808 	}
   3809 
   3810 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
   3811 
   3812 	/* finish closing of session */
   3813 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3814 		error = udf_validate_session_start(ump);
   3815 		if (error)
   3816 			return error;
   3817 
   3818 		(void) udf_synchronise_caches(ump);
   3819 
   3820 		/* close all associated tracks */
   3821 		tracknr = ump->discinfo.first_track_last_session;
   3822 		error = 0;
   3823 		while (tracknr <= ump->discinfo.last_track_last_session) {
   3824 			DPRINTF(VOLUMES, ("\tclosing possible open "
   3825 				"track %d\n", tracknr));
   3826 			memset(&mmc_op, 0, sizeof(mmc_op));
   3827 			mmc_op.operation   = MMC_OP_CLOSETRACK;
   3828 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3829 			mmc_op.tracknr     = tracknr;
   3830 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3831 					FKIOCTL, NOCRED);
   3832 			if (error)
   3833 				printf("udf_close_logvol: closing of "
   3834 					"track %d failed\n", tracknr);
   3835 			tracknr ++;
   3836 		}
   3837 		if (!error) {
   3838 			DPRINTF(VOLUMES, ("closing session\n"));
   3839 			memset(&mmc_op, 0, sizeof(mmc_op));
   3840 			mmc_op.operation   = MMC_OP_CLOSESESSION;
   3841 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3842 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3843 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3844 					FKIOCTL, NOCRED);
   3845 			if (error)
   3846 				printf("udf_close_logvol: closing of session"
   3847 						"failed\n");
   3848 		}
   3849 		if (!error)
   3850 			ump->lvopen |= UDF_OPEN_SESSION;
   3851 		if (error) {
   3852 			printf("udf_close_logvol: leaving disc as it is\n");
   3853 			ump->lvclose &= ~UDF_FINALISE_DISC;
   3854 		}
   3855 	}
   3856 
   3857 	if (ump->lvclose & UDF_FINALISE_DISC) {
   3858 		memset(&mmc_op, 0, sizeof(mmc_op));
   3859 		mmc_op.operation   = MMC_OP_FINALISEDISC;
   3860 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3861 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3862 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3863 				FKIOCTL, NOCRED);
   3864 		if (error)
   3865 			printf("udf_close_logvol: finalising disc"
   3866 					"failed\n");
   3867 	}
   3868 
   3869 	/* write out partition bitmaps if requested */
   3870 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3871 		/* sync writeout metadata spacetable if existing */
   3872 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3873 		if (error1)
   3874 			printf( "udf_close_logvol: writeout of metadata space "
   3875 				"bitmap failed\n");
   3876 
   3877 		/* sync writeout partition spacetables */
   3878 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3879 		if (error2)
   3880 			printf( "udf_close_logvol: writeout of space tables "
   3881 				"failed\n");
   3882 
   3883 		if (error1 || error2)
   3884 			return (error1 | error2);
   3885 
   3886 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3887 	}
   3888 
   3889 	/* write out metadata partition nodes if requested */
   3890 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
   3891 		/* sync writeout metadata descriptor node */
   3892 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
   3893 		if (error1)
   3894 			printf( "udf_close_logvol: writeout of metadata partition "
   3895 				"node failed\n");
   3896 
   3897 		/* duplicate metadata partition descriptor if needed */
   3898 		udf_synchronise_metadatamirror_node(ump);
   3899 
   3900 		/* sync writeout metadatamirror descriptor node */
   3901 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
   3902 		if (error2)
   3903 			printf( "udf_close_logvol: writeout of metadata partition "
   3904 				"mirror node failed\n");
   3905 
   3906 		if (error1 || error2)
   3907 			return (error1 | error2);
   3908 
   3909 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
   3910 	}
   3911 
   3912 	/* mark it closed */
   3913 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3914 
   3915 	/* do we need to write out the logical volume integrity? */
   3916 	if (ump->lvclose & UDF_WRITE_LVINT)
   3917 		error = udf_writeout_lvint(ump, ump->lvopen);
   3918 	if (error) {
   3919 		/* HELP now what? mark it open again for now */
   3920 		ump->logvol_integrity->integrity_type =
   3921 			udf_rw32(UDF_INTEGRITY_OPEN);
   3922 		return error;
   3923 	}
   3924 
   3925 	(void) udf_synchronise_caches(ump);
   3926 
   3927 	return 0;
   3928 }
   3929 
   3930 /* --------------------------------------------------------------------- */
   3931 
   3932 /*
   3933  * Genfs interfacing
   3934  *
   3935  * static const struct genfs_ops udf_genfsops = {
   3936  * 	.gop_size = genfs_size,
   3937  * 		size of transfers
   3938  * 	.gop_alloc = udf_gop_alloc,
   3939  * 		allocate len bytes at offset
   3940  * 	.gop_write = genfs_gop_write,
   3941  * 		putpages interface code
   3942  * 	.gop_markupdate = udf_gop_markupdate,
   3943  * 		set update/modify flags etc.
   3944  * }
   3945  */
   3946 
   3947 /*
   3948  * Genfs interface. These four functions are the only ones defined though not
   3949  * documented... great....
   3950  */
   3951 
   3952 /*
   3953  * Called for allocating an extent of the file either by VOP_WRITE() or by
   3954  * genfs filling up gaps.
   3955  */
   3956 static int
   3957 udf_gop_alloc(struct vnode *vp, off_t off,
   3958     off_t len, int flags, kauth_cred_t cred)
   3959 {
   3960 	struct udf_node *udf_node = VTOI(vp);
   3961 	struct udf_mount *ump = udf_node->ump;
   3962 	uint64_t lb_start, lb_end;
   3963 	uint32_t lb_size, num_lb;
   3964 	int udf_c_type, vpart_num, can_fail;
   3965 	int error;
   3966 
   3967 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
   3968 		off, len, flags? "SYNC":"NONE"));
   3969 
   3970 	/*
   3971 	 * request the pages of our vnode and see how many pages will need to
   3972 	 * be allocated and reserve that space
   3973 	 */
   3974 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
   3975 	lb_start = off / lb_size;
   3976 	lb_end   = (off + len + lb_size -1) / lb_size;
   3977 	num_lb   = lb_end - lb_start;
   3978 
   3979 	udf_c_type = udf_get_c_type(udf_node);
   3980 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
   3981 
   3982 	/* all requests can fail */
   3983 	can_fail   = true;
   3984 
   3985 	/* fid's (directories) can't fail */
   3986 	if (udf_c_type == UDF_C_FIDS)
   3987 		can_fail   = false;
   3988 
   3989 	/* system files can't fail */
   3990 	if (vp->v_vflag & VV_SYSTEM)
   3991 		can_fail = false;
   3992 
   3993 	error = udf_reserve_space(ump, udf_node, udf_c_type,
   3994 		vpart_num, num_lb, can_fail);
   3995 
   3996 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
   3997 		lb_start, lb_end, num_lb));
   3998 
   3999 	return error;
   4000 }
   4001 
   4002 
   4003 /*
   4004  * callback from genfs to update our flags
   4005  */
   4006 static void
   4007 udf_gop_markupdate(struct vnode *vp, int flags)
   4008 {
   4009 	struct udf_node *udf_node = VTOI(vp);
   4010 	u_long mask = 0;
   4011 
   4012 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   4013 		mask = IN_ACCESS;
   4014 	}
   4015 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   4016 		if (vp->v_type == VREG) {
   4017 			mask |= IN_CHANGE | IN_UPDATE;
   4018 		} else {
   4019 			mask |= IN_MODIFY;
   4020 		}
   4021 	}
   4022 	if (mask) {
   4023 		udf_node->i_flags |= mask;
   4024 	}
   4025 }
   4026 
   4027 
   4028 static const struct genfs_ops udf_genfsops = {
   4029 	.gop_size = genfs_size,
   4030 	.gop_alloc = udf_gop_alloc,
   4031 	.gop_write = genfs_gop_write_rwmap,
   4032 	.gop_markupdate = udf_gop_markupdate,
   4033 };
   4034 
   4035 
   4036 /* --------------------------------------------------------------------- */
   4037 
   4038 int
   4039 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   4040 {
   4041 	union dscrptr *dscr;
   4042 	int error;
   4043 
   4044 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
   4045 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   4046 
   4047 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   4048 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   4049 	(void) udf_validate_tag_and_crc_sums(dscr);
   4050 
   4051 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   4052 			dscr, sector, sector);
   4053 
   4054 	free(dscr, M_TEMP);
   4055 
   4056 	return error;
   4057 }
   4058 
   4059 
   4060 /* --------------------------------------------------------------------- */
   4061 
   4062 /* UDF<->unix converters */
   4063 
   4064 /* --------------------------------------------------------------------- */
   4065 
   4066 static mode_t
   4067 udf_perm_to_unix_mode(uint32_t perm)
   4068 {
   4069 	mode_t mode;
   4070 
   4071 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   4072 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   4073 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   4074 
   4075 	return mode;
   4076 }
   4077 
   4078 /* --------------------------------------------------------------------- */
   4079 
   4080 static uint32_t
   4081 unix_mode_to_udf_perm(mode_t mode)
   4082 {
   4083 	uint32_t perm;
   4084 
   4085 	perm  = ((mode & S_IRWXO)     );
   4086 	perm |= ((mode & S_IRWXG) << 2);
   4087 	perm |= ((mode & S_IRWXU) << 4);
   4088 	perm |= ((mode & S_IWOTH) << 3);
   4089 	perm |= ((mode & S_IWGRP) << 5);
   4090 	perm |= ((mode & S_IWUSR) << 7);
   4091 
   4092 	return perm;
   4093 }
   4094 
   4095 /* --------------------------------------------------------------------- */
   4096 
   4097 static uint32_t
   4098 udf_icb_to_unix_filetype(uint32_t icbftype)
   4099 {
   4100 	switch (icbftype) {
   4101 	case UDF_ICB_FILETYPE_DIRECTORY :
   4102 	case UDF_ICB_FILETYPE_STREAMDIR :
   4103 		return S_IFDIR;
   4104 	case UDF_ICB_FILETYPE_FIFO :
   4105 		return S_IFIFO;
   4106 	case UDF_ICB_FILETYPE_CHARDEVICE :
   4107 		return S_IFCHR;
   4108 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   4109 		return S_IFBLK;
   4110 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   4111 	case UDF_ICB_FILETYPE_REALTIME :
   4112 		return S_IFREG;
   4113 	case UDF_ICB_FILETYPE_SYMLINK :
   4114 		return S_IFLNK;
   4115 	case UDF_ICB_FILETYPE_SOCKET :
   4116 		return S_IFSOCK;
   4117 	}
   4118 	/* no idea what this is */
   4119 	return 0;
   4120 }
   4121 
   4122 /* --------------------------------------------------------------------- */
   4123 
   4124 void
   4125 udf_to_unix_name(char *result, int result_len, char *id, int len,
   4126 	struct charspec *chsp)
   4127 {
   4128 	uint16_t   *raw_name, *unix_name;
   4129 	uint16_t   *inchp, ch;
   4130 	uint8_t	   *outchp;
   4131 	const char *osta_id = "OSTA Compressed Unicode";
   4132 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   4133 
   4134 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   4135 	unix_name = raw_name + 1024;			/* split space in half */
   4136 	assert(sizeof(char) == sizeof(uint8_t));
   4137 	outchp = (uint8_t *) result;
   4138 
   4139 	is_osta_typ0  = (chsp->type == 0);
   4140 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4141 	if (is_osta_typ0) {
   4142 		/* TODO clean up */
   4143 		*raw_name = *unix_name = 0;
   4144 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   4145 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   4146 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   4147 		/* output UTF8 */
   4148 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   4149 			ch = *inchp;
   4150 			nout = wput_utf8(outchp, result_len, ch);
   4151 			outchp += nout; result_len -= nout;
   4152 			if (!ch) break;
   4153 		}
   4154 		*outchp++ = 0;
   4155 	} else {
   4156 		/* assume 8bit char length byte latin-1 */
   4157 		assert(*id == 8);
   4158 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   4159 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   4160 	}
   4161 	free(raw_name, M_UDFTEMP);
   4162 }
   4163 
   4164 /* --------------------------------------------------------------------- */
   4165 
   4166 void
   4167 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   4168 	struct charspec *chsp)
   4169 {
   4170 	uint16_t   *raw_name;
   4171 	uint16_t   *outchp;
   4172 	const char *inchp;
   4173 	const char *osta_id = "OSTA Compressed Unicode";
   4174 	int         udf_chars, is_osta_typ0, bits;
   4175 	size_t      cnt;
   4176 
   4177 	/* allocate temporary unicode-16 buffer */
   4178 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   4179 
   4180 	/* convert utf8 to unicode-16 */
   4181 	*raw_name = 0;
   4182 	inchp  = name;
   4183 	outchp = raw_name;
   4184 	bits = 8;
   4185 	for (cnt = name_len, udf_chars = 0; cnt;) {
   4186 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   4187 		*outchp = wget_utf8(&inchp, &cnt);
   4188 		if (*outchp > 0xff)
   4189 			bits=16;
   4190 		outchp++;
   4191 		udf_chars++;
   4192 	}
   4193 	/* null terminate just in case */
   4194 	*outchp++ = 0;
   4195 
   4196 	is_osta_typ0  = (chsp->type == 0);
   4197 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4198 	if (is_osta_typ0) {
   4199 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   4200 				(unicode_t *) raw_name,
   4201 				(byte *) result);
   4202 	} else {
   4203 		printf("unix to udf name: no CHSP0 ?\n");
   4204 		/* XXX assume 8bit char length byte latin-1 */
   4205 		*result++ = 8; udf_chars = 1;
   4206 		strncpy(result, name + 1, name_len);
   4207 		udf_chars += name_len;
   4208 	}
   4209 	*result_len = udf_chars;
   4210 	free(raw_name, M_UDFTEMP);
   4211 }
   4212 
   4213 /* --------------------------------------------------------------------- */
   4214 
   4215 void
   4216 udf_timestamp_to_timespec(struct udf_mount *ump,
   4217 			  struct timestamp *timestamp,
   4218 			  struct timespec  *timespec)
   4219 {
   4220 	struct clock_ymdhms ymdhms;
   4221 	uint32_t usecs, secs, nsecs;
   4222 	uint16_t tz;
   4223 
   4224 	/* fill in ymdhms structure from timestamp */
   4225 	memset(&ymdhms, 0, sizeof(ymdhms));
   4226 	ymdhms.dt_year = udf_rw16(timestamp->year);
   4227 	ymdhms.dt_mon  = timestamp->month;
   4228 	ymdhms.dt_day  = timestamp->day;
   4229 	ymdhms.dt_wday = 0; /* ? */
   4230 	ymdhms.dt_hour = timestamp->hour;
   4231 	ymdhms.dt_min  = timestamp->minute;
   4232 	ymdhms.dt_sec  = timestamp->second;
   4233 
   4234 	secs = clock_ymdhms_to_secs(&ymdhms);
   4235 	usecs = timestamp->usec +
   4236 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   4237 	nsecs = usecs * 1000;
   4238 
   4239 	/*
   4240 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   4241 	 * compliment, so we gotta do some extra magic to handle it right.
   4242 	 */
   4243 	tz  = udf_rw16(timestamp->type_tz);
   4244 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   4245 	if (tz & 0x0800)		/* sign extention */
   4246 		tz |= 0xf000;
   4247 
   4248 	/* TODO check timezone conversion */
   4249 	/* check if we are specified a timezone to convert */
   4250 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   4251 		if ((int16_t) tz != -2047)
   4252 			secs -= (int16_t) tz * 60;
   4253 	} else {
   4254 		secs -= ump->mount_args.gmtoff;
   4255 	}
   4256 
   4257 	timespec->tv_sec  = secs;
   4258 	timespec->tv_nsec = nsecs;
   4259 }
   4260 
   4261 
   4262 void
   4263 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   4264 {
   4265 	struct clock_ymdhms ymdhms;
   4266 	uint32_t husec, usec, csec;
   4267 
   4268 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   4269 
   4270 	usec   = timespec->tv_nsec / 1000;
   4271 	husec  =  usec / 100;
   4272 	usec  -= husec * 100;				/* only 0-99 in usec  */
   4273 	csec   = husec / 100;				/* only 0-99 in csec  */
   4274 	husec -=  csec * 100;				/* only 0-99 in husec */
   4275 
   4276 	/* set method 1 for CUT/GMT */
   4277 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   4278 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   4279 	timestamp->month	= ymdhms.dt_mon;
   4280 	timestamp->day		= ymdhms.dt_day;
   4281 	timestamp->hour		= ymdhms.dt_hour;
   4282 	timestamp->minute	= ymdhms.dt_min;
   4283 	timestamp->second	= ymdhms.dt_sec;
   4284 	timestamp->centisec	= csec;
   4285 	timestamp->hund_usec	= husec;
   4286 	timestamp->usec		= usec;
   4287 }
   4288 
   4289 /* --------------------------------------------------------------------- */
   4290 
   4291 /*
   4292  * Attribute and filetypes converters with get/set pairs
   4293  */
   4294 
   4295 uint32_t
   4296 udf_getaccessmode(struct udf_node *udf_node)
   4297 {
   4298 	struct file_entry     *fe = udf_node->fe;
   4299 	struct extfile_entry *efe = udf_node->efe;
   4300 	uint32_t udf_perm, icbftype;
   4301 	uint32_t mode, ftype;
   4302 	uint16_t icbflags;
   4303 
   4304 	UDF_LOCK_NODE(udf_node, 0);
   4305 	if (fe) {
   4306 		udf_perm = udf_rw32(fe->perm);
   4307 		icbftype = fe->icbtag.file_type;
   4308 		icbflags = udf_rw16(fe->icbtag.flags);
   4309 	} else {
   4310 		assert(udf_node->efe);
   4311 		udf_perm = udf_rw32(efe->perm);
   4312 		icbftype = efe->icbtag.file_type;
   4313 		icbflags = udf_rw16(efe->icbtag.flags);
   4314 	}
   4315 
   4316 	mode  = udf_perm_to_unix_mode(udf_perm);
   4317 	ftype = udf_icb_to_unix_filetype(icbftype);
   4318 
   4319 	/* set suid, sgid, sticky from flags in fe/efe */
   4320 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   4321 		mode |= S_ISUID;
   4322 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   4323 		mode |= S_ISGID;
   4324 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   4325 		mode |= S_ISVTX;
   4326 
   4327 	UDF_UNLOCK_NODE(udf_node, 0);
   4328 
   4329 	return mode | ftype;
   4330 }
   4331 
   4332 
   4333 void
   4334 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   4335 {
   4336 	struct file_entry    *fe  = udf_node->fe;
   4337 	struct extfile_entry *efe = udf_node->efe;
   4338 	uint32_t udf_perm;
   4339 	uint16_t icbflags;
   4340 
   4341 	UDF_LOCK_NODE(udf_node, 0);
   4342 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   4343 	if (fe) {
   4344 		icbflags = udf_rw16(fe->icbtag.flags);
   4345 	} else {
   4346 		icbflags = udf_rw16(efe->icbtag.flags);
   4347 	}
   4348 
   4349 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   4350 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   4351 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   4352 	if (mode & S_ISUID)
   4353 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   4354 	if (mode & S_ISGID)
   4355 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   4356 	if (mode & S_ISVTX)
   4357 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   4358 
   4359 	if (fe) {
   4360 		fe->perm  = udf_rw32(udf_perm);
   4361 		fe->icbtag.flags  = udf_rw16(icbflags);
   4362 	} else {
   4363 		efe->perm = udf_rw32(udf_perm);
   4364 		efe->icbtag.flags = udf_rw16(icbflags);
   4365 	}
   4366 
   4367 	UDF_UNLOCK_NODE(udf_node, 0);
   4368 }
   4369 
   4370 
   4371 void
   4372 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   4373 {
   4374 	struct udf_mount     *ump = udf_node->ump;
   4375 	struct file_entry    *fe  = udf_node->fe;
   4376 	struct extfile_entry *efe = udf_node->efe;
   4377 	uid_t uid;
   4378 	gid_t gid;
   4379 
   4380 	UDF_LOCK_NODE(udf_node, 0);
   4381 	if (fe) {
   4382 		uid = (uid_t)udf_rw32(fe->uid);
   4383 		gid = (gid_t)udf_rw32(fe->gid);
   4384 	} else {
   4385 		assert(udf_node->efe);
   4386 		uid = (uid_t)udf_rw32(efe->uid);
   4387 		gid = (gid_t)udf_rw32(efe->gid);
   4388 	}
   4389 
   4390 	/* do the uid/gid translation game */
   4391 	if (uid == (uid_t) -1)
   4392 		uid = ump->mount_args.anon_uid;
   4393 	if (gid == (gid_t) -1)
   4394 		gid = ump->mount_args.anon_gid;
   4395 
   4396 	*uidp = uid;
   4397 	*gidp = gid;
   4398 
   4399 	UDF_UNLOCK_NODE(udf_node, 0);
   4400 }
   4401 
   4402 
   4403 void
   4404 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   4405 {
   4406 	struct udf_mount     *ump = udf_node->ump;
   4407 	struct file_entry    *fe  = udf_node->fe;
   4408 	struct extfile_entry *efe = udf_node->efe;
   4409 	uid_t nobody_uid;
   4410 	gid_t nobody_gid;
   4411 
   4412 	UDF_LOCK_NODE(udf_node, 0);
   4413 
   4414 	/* do the uid/gid translation game */
   4415 	nobody_uid = ump->mount_args.nobody_uid;
   4416 	nobody_gid = ump->mount_args.nobody_gid;
   4417 	if (uid == nobody_uid)
   4418 		uid = (uid_t) -1;
   4419 	if (gid == nobody_gid)
   4420 		gid = (gid_t) -1;
   4421 
   4422 	if (fe) {
   4423 		fe->uid  = udf_rw32((uint32_t) uid);
   4424 		fe->gid  = udf_rw32((uint32_t) gid);
   4425 	} else {
   4426 		efe->uid = udf_rw32((uint32_t) uid);
   4427 		efe->gid = udf_rw32((uint32_t) gid);
   4428 	}
   4429 
   4430 	UDF_UNLOCK_NODE(udf_node, 0);
   4431 }
   4432 
   4433 
   4434 /* --------------------------------------------------------------------- */
   4435 
   4436 
   4437 static int
   4438 dirhash_fill(struct udf_node *dir_node)
   4439 {
   4440 	struct vnode *dvp = dir_node->vnode;
   4441 	struct dirhash *dirh;
   4442 	struct file_entry    *fe  = dir_node->fe;
   4443 	struct extfile_entry *efe = dir_node->efe;
   4444 	struct fileid_desc *fid;
   4445 	struct dirent *dirent;
   4446 	uint64_t file_size, pre_diroffset, diroffset;
   4447 	uint32_t lb_size;
   4448 	int error;
   4449 
   4450 	/* make sure we have a dirhash to work on */
   4451 	dirh = dir_node->dir_hash;
   4452 	KASSERT(dirh);
   4453 	KASSERT(dirh->refcnt > 0);
   4454 
   4455 	if (dirh->flags & DIRH_BROKEN)
   4456 		return EIO;
   4457 	if (dirh->flags & DIRH_COMPLETE)
   4458 		return 0;
   4459 
   4460 	/* make sure we have a clean dirhash to add to */
   4461 	dirhash_purge_entries(dirh);
   4462 
   4463 	/* get directory filesize */
   4464 	if (fe) {
   4465 		file_size = udf_rw64(fe->inf_len);
   4466 	} else {
   4467 		assert(efe);
   4468 		file_size = udf_rw64(efe->inf_len);
   4469 	}
   4470 
   4471 	/* allocate temporary space for fid */
   4472 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4473 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4474 
   4475 	/* allocate temporary space for dirent */
   4476 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4477 
   4478 	error = 0;
   4479 	diroffset = 0;
   4480 	while (diroffset < file_size) {
   4481 		/* transfer a new fid/dirent */
   4482 		pre_diroffset = diroffset;
   4483 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4484 		if (error) {
   4485 			/* TODO what to do? continue but not add? */
   4486 			dirh->flags |= DIRH_BROKEN;
   4487 			dirhash_purge_entries(dirh);
   4488 			break;
   4489 		}
   4490 
   4491 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4492 			/* register deleted extent for reuse */
   4493 			dirhash_enter_freed(dirh, pre_diroffset,
   4494 				udf_fidsize(fid));
   4495 		} else {
   4496 			/* append to the dirhash */
   4497 			dirhash_enter(dirh, dirent, pre_diroffset,
   4498 				udf_fidsize(fid), 0);
   4499 		}
   4500 	}
   4501 	dirh->flags |= DIRH_COMPLETE;
   4502 
   4503 	free(fid, M_UDFTEMP);
   4504 	free(dirent, M_UDFTEMP);
   4505 
   4506 	return error;
   4507 }
   4508 
   4509 
   4510 /* --------------------------------------------------------------------- */
   4511 
   4512 /*
   4513  * Directory read and manipulation functions.
   4514  *
   4515  */
   4516 
   4517 int
   4518 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4519        struct long_ad *icb_loc, int *found)
   4520 {
   4521 	struct udf_node  *dir_node = VTOI(vp);
   4522 	struct dirhash       *dirh;
   4523 	struct dirhash_entry *dirh_ep;
   4524 	struct fileid_desc *fid;
   4525 	struct dirent *dirent;
   4526 	uint64_t diroffset;
   4527 	uint32_t lb_size;
   4528 	int hit, error;
   4529 
   4530 	/* set default return */
   4531 	*found = 0;
   4532 
   4533 	/* get our dirhash and make sure its read in */
   4534 	dirhash_get(&dir_node->dir_hash);
   4535 	error = dirhash_fill(dir_node);
   4536 	if (error) {
   4537 		dirhash_put(dir_node->dir_hash);
   4538 		return error;
   4539 	}
   4540 	dirh = dir_node->dir_hash;
   4541 
   4542 	/* allocate temporary space for fid */
   4543 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4544 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4545 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4546 
   4547 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4548 		namelen, namelen, name));
   4549 
   4550 	/* search our dirhash hits */
   4551 	memset(icb_loc, 0, sizeof(*icb_loc));
   4552 	dirh_ep = NULL;
   4553 	for (;;) {
   4554 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4555 		/* if no hit, abort the search */
   4556 		if (!hit)
   4557 			break;
   4558 
   4559 		/* check this hit */
   4560 		diroffset = dirh_ep->offset;
   4561 
   4562 		/* transfer a new fid/dirent */
   4563 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4564 		if (error)
   4565 			break;
   4566 
   4567 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4568 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4569 
   4570 		/* see if its our entry */
   4571 #ifdef DIAGNOSTIC
   4572 		if (dirent->d_namlen != namelen) {
   4573 			printf("WARNING: dirhash_lookup() returned wrong "
   4574 				"d_namelen: %d and ought to be %d\n",
   4575 				dirent->d_namlen, namelen);
   4576 			printf("\tlooked for `%s' and got `%s'\n",
   4577 				name, dirent->d_name);
   4578 		}
   4579 #endif
   4580 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4581 			*found = 1;
   4582 			*icb_loc = fid->icb;
   4583 			break;
   4584 		}
   4585 	}
   4586 	free(fid, M_UDFTEMP);
   4587 	free(dirent, M_UDFTEMP);
   4588 
   4589 	dirhash_put(dir_node->dir_hash);
   4590 
   4591 	return error;
   4592 }
   4593 
   4594 /* --------------------------------------------------------------------- */
   4595 
   4596 static int
   4597 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4598 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4599 	uint64_t parent_unique_id)
   4600 {
   4601 	struct timespec now;
   4602 	struct icb_tag *icb;
   4603 	struct filetimes_extattr_entry *ft_extattr;
   4604 	uint64_t unique_id;
   4605 	uint32_t fidsize, lb_num;
   4606 	uint8_t *bpos;
   4607 	int crclen, attrlen;
   4608 
   4609 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4610 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4611 	icb = &fe->icbtag;
   4612 
   4613 	/*
   4614 	 * Always use strategy type 4 unless on WORM wich we don't support
   4615 	 * (yet). Fill in defaults and set for internal allocation of data.
   4616 	 */
   4617 	icb->strat_type      = udf_rw16(4);
   4618 	icb->max_num_entries = udf_rw16(1);
   4619 	icb->file_type       = file_type;	/* 8 bit */
   4620 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4621 
   4622 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4623 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4624 
   4625 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4626 
   4627 	vfs_timestamp(&now);
   4628 	udf_timespec_to_timestamp(&now, &fe->atime);
   4629 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4630 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4631 
   4632 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4633 	udf_add_impl_regid(ump, &fe->imp_id);
   4634 
   4635 	unique_id = udf_advance_uniqueid(ump);
   4636 	fe->unique_id = udf_rw64(unique_id);
   4637 	fe->l_ea = udf_rw32(0);
   4638 
   4639 	/* create extended attribute to record our creation time */
   4640 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4641 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4642 	memset(ft_extattr, 0, attrlen);
   4643 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4644 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4645 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4646 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4647 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4648 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4649 
   4650 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4651 		(struct extattr_entry *) ft_extattr);
   4652 	free(ft_extattr, M_UDFTEMP);
   4653 
   4654 	/* if its a directory, create '..' */
   4655 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4656 	fidsize = 0;
   4657 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4658 		fidsize = udf_create_parentfid(ump,
   4659 			(struct fileid_desc *) bpos, parent_icb,
   4660 			parent_unique_id);
   4661 	}
   4662 
   4663 	/* record fidlength information */
   4664 	fe->inf_len = udf_rw64(fidsize);
   4665 	fe->l_ad    = udf_rw32(fidsize);
   4666 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4667 
   4668 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4669 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4670 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4671 
   4672 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4673 
   4674 	return fidsize;
   4675 }
   4676 
   4677 /* --------------------------------------------------------------------- */
   4678 
   4679 static int
   4680 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4681 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4682 	uint64_t parent_unique_id)
   4683 {
   4684 	struct timespec now;
   4685 	struct icb_tag *icb;
   4686 	uint64_t unique_id;
   4687 	uint32_t fidsize, lb_num;
   4688 	uint8_t *bpos;
   4689 	int crclen;
   4690 
   4691 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4692 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4693 	icb = &efe->icbtag;
   4694 
   4695 	/*
   4696 	 * Always use strategy type 4 unless on WORM wich we don't support
   4697 	 * (yet). Fill in defaults and set for internal allocation of data.
   4698 	 */
   4699 	icb->strat_type      = udf_rw16(4);
   4700 	icb->max_num_entries = udf_rw16(1);
   4701 	icb->file_type       = file_type;	/* 8 bit */
   4702 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4703 
   4704 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4705 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4706 
   4707 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4708 
   4709 	vfs_timestamp(&now);
   4710 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4711 	udf_timespec_to_timestamp(&now, &efe->atime);
   4712 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4713 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4714 
   4715 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4716 	udf_add_impl_regid(ump, &efe->imp_id);
   4717 
   4718 	unique_id = udf_advance_uniqueid(ump);
   4719 	efe->unique_id = udf_rw64(unique_id);
   4720 	efe->l_ea = udf_rw32(0);
   4721 
   4722 	/* if its a directory, create '..' */
   4723 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4724 	fidsize = 0;
   4725 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4726 		fidsize = udf_create_parentfid(ump,
   4727 			(struct fileid_desc *) bpos, parent_icb,
   4728 			parent_unique_id);
   4729 	}
   4730 
   4731 	/* record fidlength information */
   4732 	efe->obj_size = udf_rw64(fidsize);
   4733 	efe->inf_len  = udf_rw64(fidsize);
   4734 	efe->l_ad     = udf_rw32(fidsize);
   4735 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4736 
   4737 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4738 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4739 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4740 
   4741 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4742 
   4743 	return fidsize;
   4744 }
   4745 
   4746 /* --------------------------------------------------------------------- */
   4747 
   4748 int
   4749 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4750 	struct udf_node *udf_node, struct componentname *cnp)
   4751 {
   4752 	struct vnode *dvp = dir_node->vnode;
   4753 	struct dirhash       *dirh;
   4754 	struct dirhash_entry *dirh_ep;
   4755 	struct file_entry    *fe  = dir_node->fe;
   4756 	struct extfile_entry *efe = dir_node->efe;
   4757 	struct fileid_desc *fid;
   4758 	struct dirent *dirent;
   4759 	uint64_t file_size, diroffset;
   4760 	uint32_t lb_size, fidsize;
   4761 	int found, error;
   4762 	char const *name  = cnp->cn_nameptr;
   4763 	int namelen = cnp->cn_namelen;
   4764 	int hit, refcnt;
   4765 
   4766 	/* get our dirhash and make sure its read in */
   4767 	dirhash_get(&dir_node->dir_hash);
   4768 	error = dirhash_fill(dir_node);
   4769 	if (error) {
   4770 		dirhash_put(dir_node->dir_hash);
   4771 		return error;
   4772 	}
   4773 	dirh = dir_node->dir_hash;
   4774 
   4775 	/* get directory filesize */
   4776 	if (fe) {
   4777 		file_size = udf_rw64(fe->inf_len);
   4778 	} else {
   4779 		assert(efe);
   4780 		file_size = udf_rw64(efe->inf_len);
   4781 	}
   4782 
   4783 	/* allocate temporary space for fid */
   4784 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4785 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4786 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4787 
   4788 	/* search our dirhash hits */
   4789 	found = 0;
   4790 	dirh_ep = NULL;
   4791 	for (;;) {
   4792 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4793 		/* if no hit, abort the search */
   4794 		if (!hit)
   4795 			break;
   4796 
   4797 		/* check this hit */
   4798 		diroffset = dirh_ep->offset;
   4799 
   4800 		/* transfer a new fid/dirent */
   4801 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4802 		if (error)
   4803 			break;
   4804 
   4805 		/* see if its our entry */
   4806 		KASSERT(dirent->d_namlen == namelen);
   4807 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4808 			found = 1;
   4809 			break;
   4810 		}
   4811 	}
   4812 
   4813 	if (!found)
   4814 		error = ENOENT;
   4815 	if (error)
   4816 		goto error_out;
   4817 
   4818 	/* mark deleted */
   4819 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4820 #ifdef UDF_COMPLETE_DELETE
   4821 	memset(&fid->icb, 0, sizeof(fid->icb));
   4822 #endif
   4823 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4824 
   4825 	/* get size of fid and compensate for the read_fid_stream advance */
   4826 	fidsize = udf_fidsize(fid);
   4827 	diroffset -= fidsize;
   4828 
   4829 	/* write out */
   4830 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4831 			fid, fidsize, diroffset,
   4832 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4833 			FSCRED, NULL, NULL);
   4834 	if (error)
   4835 		goto error_out;
   4836 
   4837 	/* get reference count of attached node */
   4838 	if (udf_node->fe) {
   4839 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4840 	} else {
   4841 		KASSERT(udf_node->efe);
   4842 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4843 	}
   4844 #ifdef UDF_COMPLETE_DELETE
   4845 	/* substract reference counter in attached node */
   4846 	refcnt -= 1;
   4847 	if (udf_node->fe) {
   4848 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4849 	} else {
   4850 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4851 	}
   4852 
   4853 	/* prevent writeout when refcnt == 0 */
   4854 	if (refcnt == 0)
   4855 		udf_node->i_flags |= IN_DELETED;
   4856 
   4857 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4858 		int drefcnt;
   4859 
   4860 		/* substract reference counter in directory node */
   4861 		/* note subtract 2 (?) for its was also backreferenced */
   4862 		if (dir_node->fe) {
   4863 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4864 			drefcnt -= 1;
   4865 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4866 		} else {
   4867 			KASSERT(dir_node->efe);
   4868 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4869 			drefcnt -= 1;
   4870 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4871 		}
   4872 	}
   4873 
   4874 	udf_node->i_flags |= IN_MODIFIED;
   4875 	dir_node->i_flags |= IN_MODIFIED;
   4876 #endif
   4877 	/* if it is/was a hardlink adjust the file count */
   4878 	if (refcnt > 0)
   4879 		udf_adjust_filecount(udf_node, -1);
   4880 
   4881 	/* remove from the dirhash */
   4882 	dirhash_remove(dirh, dirent, diroffset,
   4883 		udf_fidsize(fid));
   4884 
   4885 error_out:
   4886 	free(fid, M_UDFTEMP);
   4887 	free(dirent, M_UDFTEMP);
   4888 
   4889 	dirhash_put(dir_node->dir_hash);
   4890 
   4891 	return error;
   4892 }
   4893 
   4894 /* --------------------------------------------------------------------- */
   4895 
   4896 int
   4897 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
   4898 	struct udf_node *new_parent_node)
   4899 {
   4900 	struct vnode *dvp = dir_node->vnode;
   4901 	struct dirhash       *dirh;
   4902 	struct dirhash_entry *dirh_ep;
   4903 	struct file_entry    *fe;
   4904 	struct extfile_entry *efe;
   4905 	struct fileid_desc *fid;
   4906 	struct dirent *dirent;
   4907 	uint64_t file_size, diroffset;
   4908 	uint64_t new_parent_unique_id;
   4909 	uint32_t lb_size, fidsize;
   4910 	int found, error;
   4911 	char const *name  = "..";
   4912 	int namelen = 2;
   4913 	int hit;
   4914 
   4915 	/* get our dirhash and make sure its read in */
   4916 	dirhash_get(&dir_node->dir_hash);
   4917 	error = dirhash_fill(dir_node);
   4918 	if (error) {
   4919 		dirhash_put(dir_node->dir_hash);
   4920 		return error;
   4921 	}
   4922 	dirh = dir_node->dir_hash;
   4923 
   4924 	/* get new parent's unique ID */
   4925 	fe  = new_parent_node->fe;
   4926 	efe = new_parent_node->efe;
   4927 	if (fe) {
   4928 		new_parent_unique_id = udf_rw64(fe->unique_id);
   4929 	} else {
   4930 		assert(efe);
   4931 		new_parent_unique_id = udf_rw64(efe->unique_id);
   4932 	}
   4933 
   4934 	/* get directory filesize */
   4935 	fe  = dir_node->fe;
   4936 	efe = dir_node->efe;
   4937 	if (fe) {
   4938 		file_size = udf_rw64(fe->inf_len);
   4939 	} else {
   4940 		assert(efe);
   4941 		file_size = udf_rw64(efe->inf_len);
   4942 	}
   4943 
   4944 	/* allocate temporary space for fid */
   4945 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4946 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4947 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4948 
   4949 	/*
   4950 	 * NOTE the standard does not dictate the FID entry '..' should be
   4951 	 * first, though in practice it will most likely be.
   4952 	 */
   4953 
   4954 	/* search our dirhash hits */
   4955 	found = 0;
   4956 	dirh_ep = NULL;
   4957 	for (;;) {
   4958 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4959 		/* if no hit, abort the search */
   4960 		if (!hit)
   4961 			break;
   4962 
   4963 		/* check this hit */
   4964 		diroffset = dirh_ep->offset;
   4965 
   4966 		/* transfer a new fid/dirent */
   4967 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4968 		if (error)
   4969 			break;
   4970 
   4971 		/* see if its our entry */
   4972 		KASSERT(dirent->d_namlen == namelen);
   4973 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4974 			found = 1;
   4975 			break;
   4976 		}
   4977 	}
   4978 
   4979 	if (!found)
   4980 		error = ENOENT;
   4981 	if (error)
   4982 		goto error_out;
   4983 
   4984 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
   4985 	fid->icb = new_parent_node->write_loc;
   4986 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
   4987 
   4988 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4989 
   4990 	/* get size of fid and compensate for the read_fid_stream advance */
   4991 	fidsize = udf_fidsize(fid);
   4992 	diroffset -= fidsize;
   4993 
   4994 	/* write out */
   4995 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4996 			fid, fidsize, diroffset,
   4997 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4998 			FSCRED, NULL, NULL);
   4999 
   5000 	/* nothing to be done in the dirhash */
   5001 
   5002 error_out:
   5003 	free(fid, M_UDFTEMP);
   5004 	free(dirent, M_UDFTEMP);
   5005 
   5006 	dirhash_put(dir_node->dir_hash);
   5007 
   5008 	return error;
   5009 }
   5010 
   5011 /* --------------------------------------------------------------------- */
   5012 
   5013 /*
   5014  * We are not allowed to split the fid tag itself over an logical block so
   5015  * check the space remaining in the logical block.
   5016  *
   5017  * We try to select the smallest candidate for recycling or when none is
   5018  * found, append a new one at the end of the directory.
   5019  */
   5020 
   5021 int
   5022 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   5023 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   5024 {
   5025 	struct vnode *dvp = dir_node->vnode;
   5026 	struct dirhash       *dirh;
   5027 	struct dirhash_entry *dirh_ep;
   5028 	struct fileid_desc   *fid;
   5029 	struct icb_tag       *icbtag;
   5030 	struct charspec osta_charspec;
   5031 	struct dirent   dirent;
   5032 	uint64_t unique_id, dir_size;
   5033 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   5034 	uint32_t chosen_size, chosen_size_diff;
   5035 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   5036 	int file_char, refcnt, icbflags, addr_type, hit, error;
   5037 
   5038 	/* get our dirhash and make sure its read in */
   5039 	dirhash_get(&dir_node->dir_hash);
   5040 	error = dirhash_fill(dir_node);
   5041 	if (error) {
   5042 		dirhash_put(dir_node->dir_hash);
   5043 		return error;
   5044 	}
   5045 	dirh = dir_node->dir_hash;
   5046 
   5047 	/* get info */
   5048 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5049 	udf_osta_charset(&osta_charspec);
   5050 
   5051 	if (dir_node->fe) {
   5052 		dir_size = udf_rw64(dir_node->fe->inf_len);
   5053 		icbtag   = &dir_node->fe->icbtag;
   5054 	} else {
   5055 		dir_size = udf_rw64(dir_node->efe->inf_len);
   5056 		icbtag   = &dir_node->efe->icbtag;
   5057 	}
   5058 
   5059 	icbflags   = udf_rw16(icbtag->flags);
   5060 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5061 
   5062 	if (udf_node->fe) {
   5063 		unique_id = udf_rw64(udf_node->fe->unique_id);
   5064 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   5065 	} else {
   5066 		unique_id = udf_rw64(udf_node->efe->unique_id);
   5067 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   5068 	}
   5069 
   5070 	if (refcnt > 0) {
   5071 		unique_id = udf_advance_uniqueid(ump);
   5072 		udf_adjust_filecount(udf_node, 1);
   5073 	}
   5074 
   5075 	/* determine file characteristics */
   5076 	file_char = 0;	/* visible non deleted file and not stream metadata */
   5077 	if (vap->va_type == VDIR)
   5078 		file_char = UDF_FILE_CHAR_DIR;
   5079 
   5080 	/* malloc scrap buffer */
   5081 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
   5082 
   5083 	/* calculate _minimum_ fid size */
   5084 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   5085 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   5086 	fidsize = UDF_FID_SIZE + fid->l_fi;
   5087 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   5088 
   5089 	/* find position that will fit the FID */
   5090 	chosen_fid_pos   = dir_size;
   5091 	chosen_size      = 0;
   5092 	chosen_size_diff = UINT_MAX;
   5093 
   5094 	/* shut up gcc */
   5095 	dirent.d_namlen = 0;
   5096 
   5097 	/* search our dirhash hits */
   5098 	error = 0;
   5099 	dirh_ep = NULL;
   5100 	for (;;) {
   5101 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
   5102 		/* if no hit, abort the search */
   5103 		if (!hit)
   5104 			break;
   5105 
   5106 		/* check this hit for size */
   5107 		this_fidsize = dirh_ep->entry_size;
   5108 
   5109 		/* check this hit */
   5110 		fid_pos     = dirh_ep->offset;
   5111 		end_fid_pos = fid_pos + this_fidsize;
   5112 		size_diff   = this_fidsize - fidsize;
   5113 		lb_rest = lb_size - (end_fid_pos % lb_size);
   5114 
   5115 #ifndef UDF_COMPLETE_DELETE
   5116 		/* transfer a new fid/dirent */
   5117 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   5118 		if (error)
   5119 			goto error_out;
   5120 
   5121 		/* only reuse entries that are wiped */
   5122 		/* check if the len + loc are marked zero */
   5123 		if (udf_rw32(fid->icb.len) != 0)
   5124 			continue;
   5125 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   5126 			continue;
   5127 		if (udf_rw16(fid->icb.loc.part_num) != 0)
   5128 			continue;
   5129 #endif	/* UDF_COMPLETE_DELETE */
   5130 
   5131 		/* select if not splitting the tag and its smaller */
   5132 		if ((size_diff >= 0)  &&
   5133 			(size_diff < chosen_size_diff) &&
   5134 			(lb_rest >= sizeof(struct desc_tag)))
   5135 		{
   5136 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   5137 			if ((size_diff == 0) || (size_diff >= 32)) {
   5138 				chosen_fid_pos   = fid_pos;
   5139 				chosen_size      = this_fidsize;
   5140 				chosen_size_diff = size_diff;
   5141 			}
   5142 		}
   5143 	}
   5144 
   5145 
   5146 	/* extend directory if no other candidate found */
   5147 	if (chosen_size == 0) {
   5148 		chosen_fid_pos   = dir_size;
   5149 		chosen_size      = fidsize;
   5150 		chosen_size_diff = 0;
   5151 
   5152 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   5153 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   5154 			/* pre-grow directory to see if we're to switch */
   5155 			udf_grow_node(dir_node, dir_size + chosen_size);
   5156 
   5157 			icbflags   = udf_rw16(icbtag->flags);
   5158 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5159 		}
   5160 
   5161 		/* make sure the next fid desc_tag won't be splitted */
   5162 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   5163 			end_fid_pos = chosen_fid_pos + chosen_size;
   5164 			lb_rest = lb_size - (end_fid_pos % lb_size);
   5165 
   5166 			/* pad with implementation use regid if needed */
   5167 			if (lb_rest < sizeof(struct desc_tag))
   5168 				chosen_size += 32;
   5169 		}
   5170 	}
   5171 	chosen_size_diff = chosen_size - fidsize;
   5172 
   5173 	/* populate the FID */
   5174 	memset(fid, 0, lb_size);
   5175 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   5176 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   5177 	fid->file_char           = file_char;
   5178 	fid->icb                 = udf_node->loc;
   5179 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   5180 	fid->l_iu                = udf_rw16(0);
   5181 
   5182 	if (chosen_size > fidsize) {
   5183 		/* insert implementation-use regid to space it correctly */
   5184 		fid->l_iu = udf_rw16(chosen_size_diff);
   5185 
   5186 		/* set implementation use */
   5187 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   5188 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   5189 	}
   5190 
   5191 	/* fill in name */
   5192 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   5193 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   5194 
   5195 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
   5196 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   5197 
   5198 	/* writeout FID/update parent directory */
   5199 	error = vn_rdwr(UIO_WRITE, dvp,
   5200 			fid, chosen_size, chosen_fid_pos,
   5201 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   5202 			FSCRED, NULL, NULL);
   5203 
   5204 	if (error)
   5205 		goto error_out;
   5206 
   5207 	/* add reference counter in attached node */
   5208 	if (udf_node->fe) {
   5209 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   5210 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   5211 	} else {
   5212 		KASSERT(udf_node->efe);
   5213 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   5214 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   5215 	}
   5216 
   5217 	/* mark not deleted if it was... just in case, but do warn */
   5218 	if (udf_node->i_flags & IN_DELETED) {
   5219 		printf("udf: warning, marking a file undeleted\n");
   5220 		udf_node->i_flags &= ~IN_DELETED;
   5221 	}
   5222 
   5223 	if (file_char & UDF_FILE_CHAR_DIR) {
   5224 		/* add reference counter in directory node for '..' */
   5225 		if (dir_node->fe) {
   5226 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   5227 			refcnt++;
   5228 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   5229 		} else {
   5230 			KASSERT(dir_node->efe);
   5231 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   5232 			refcnt++;
   5233 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   5234 		}
   5235 	}
   5236 
   5237 	/* append to the dirhash */
   5238 	/* NOTE do not use dirent anymore or it won't match later! */
   5239 	udf_to_unix_name(dirent.d_name, MAXNAMLEN,
   5240 		(char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
   5241 	dirent.d_namlen = strlen(dirent.d_name);
   5242 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
   5243 		udf_fidsize(fid), 1);
   5244 
   5245 	/* note updates */
   5246 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   5247 	/* VN_KNOTE(udf_node,  ...) */
   5248 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   5249 
   5250 error_out:
   5251 	free(fid, M_TEMP);
   5252 
   5253 	dirhash_put(dir_node->dir_hash);
   5254 
   5255 	return error;
   5256 }
   5257 
   5258 /* --------------------------------------------------------------------- */
   5259 
   5260 /*
   5261  * Each node can have an attached streamdir node though not recursively. These
   5262  * are otherwise known as named substreams/named extended attributes that have
   5263  * no size limitations.
   5264  *
   5265  * `Normal' extended attributes are indicated with a number and are recorded
   5266  * in either the fe/efe descriptor itself for small descriptors or recorded in
   5267  * the attached extended attribute file. Since these spaces can get
   5268  * fragmented, care ought to be taken.
   5269  *
   5270  * Since the size of the space reserved for allocation descriptors is limited,
   5271  * there is a mechanim provided for extending this space; this is done by a
   5272  * special extent to allow schrinking of the allocations without breaking the
   5273  * linkage to the allocation extent descriptor.
   5274  */
   5275 
   5276 int
   5277 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   5278 	     struct udf_node **udf_noderes)
   5279 {
   5280 	union dscrptr   *dscr;
   5281 	struct udf_node *udf_node;
   5282 	struct vnode    *nvp;
   5283 	struct long_ad   icb_loc, last_fe_icb_loc;
   5284 	uint64_t file_size;
   5285 	uint32_t lb_size, sector, dummy;
   5286 	uint8_t  *file_data;
   5287 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   5288 	int slot, eof, error;
   5289 
   5290 	DPRINTF(NODE, ("udf_get_node called\n"));
   5291 	*udf_noderes = udf_node = NULL;
   5292 
   5293 	/* lock to disallow simultanious creation of same udf_node */
   5294 	mutex_enter(&ump->get_node_lock);
   5295 
   5296 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   5297 	/* lookup in hash table */
   5298 	assert(ump);
   5299 	assert(node_icb_loc);
   5300 	udf_node = udf_node_lookup(ump, node_icb_loc);
   5301 	if (udf_node) {
   5302 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   5303 		/* vnode is returned locked */
   5304 		*udf_noderes = udf_node;
   5305 		mutex_exit(&ump->get_node_lock);
   5306 		return 0;
   5307 	}
   5308 
   5309 	/* garbage check: translate udf_node_icb_loc to sectornr */
   5310 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   5311 	if (error) {
   5312 		/* no use, this will fail anyway */
   5313 		mutex_exit(&ump->get_node_lock);
   5314 		return EINVAL;
   5315 	}
   5316 
   5317 	/* build udf_node (do initialise!) */
   5318 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5319 	memset(udf_node, 0, sizeof(struct udf_node));
   5320 
   5321 	DPRINTF(NODE, ("\tget new vnode\n"));
   5322 	/* give it a vnode */
   5323 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   5324         if (error) {
   5325 		pool_put(&udf_node_pool, udf_node);
   5326 		mutex_exit(&ump->get_node_lock);
   5327 		return error;
   5328 	}
   5329 
   5330 	/* always return locked vnode */
   5331 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   5332 		/* recycle vnode and unlock; simultanious will fail too */
   5333 		ungetnewvnode(nvp);
   5334 		mutex_exit(&ump->get_node_lock);
   5335 		return error;
   5336 	}
   5337 
   5338 	/* initialise crosslinks, note location of fe/efe for hashing */
   5339 	udf_node->ump    =  ump;
   5340 	udf_node->vnode  =  nvp;
   5341 	nvp->v_data      =  udf_node;
   5342 	udf_node->loc    = *node_icb_loc;
   5343 	udf_node->lockf  =  0;
   5344 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5345 	cv_init(&udf_node->node_lock, "udf_nlk");
   5346 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   5347 	udf_node->outstanding_bufs = 0;
   5348 	udf_node->outstanding_nodedscr = 0;
   5349 	udf_node->uncommitted_lbs = 0;
   5350 
   5351 	/* check if we're fetching the root */
   5352 	if (ump->fileset_desc)
   5353 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
   5354 		    sizeof(struct long_ad)) == 0)
   5355 			nvp->v_vflag |= VV_ROOT;
   5356 
   5357 	/* insert into the hash lookup */
   5358 	udf_register_node(udf_node);
   5359 
   5360 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   5361 	mutex_exit(&ump->get_node_lock);
   5362 
   5363 	icb_loc = *node_icb_loc;
   5364 	needs_indirect = 0;
   5365 	strat4096 = 0;
   5366 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   5367 	file_size = 0;
   5368 	file_data = NULL;
   5369 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5370 
   5371 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   5372 	do {
   5373 		/* try to read in fe/efe */
   5374 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5375 
   5376 		/* blank sector marks end of sequence, check this */
   5377 		if ((dscr == NULL) &&  (!strat4096))
   5378 			error = ENOENT;
   5379 
   5380 		/* break if read error or blank sector */
   5381 		if (error || (dscr == NULL))
   5382 			break;
   5383 
   5384 		/* process descriptor based on the descriptor type */
   5385 		dscr_type = udf_rw16(dscr->tag.id);
   5386 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   5387 
   5388 		/* if dealing with an indirect entry, follow the link */
   5389 		if (dscr_type == TAGID_INDIRECTENTRY) {
   5390 			needs_indirect = 0;
   5391 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5392 			icb_loc = dscr->inde.indirect_icb;
   5393 			continue;
   5394 		}
   5395 
   5396 		/* only file entries and extended file entries allowed here */
   5397 		if ((dscr_type != TAGID_FENTRY) &&
   5398 		    (dscr_type != TAGID_EXTFENTRY)) {
   5399 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5400 			error = ENOENT;
   5401 			break;
   5402 		}
   5403 
   5404 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   5405 
   5406 		/* choose this one */
   5407 		last_fe_icb_loc = icb_loc;
   5408 
   5409 		/* record and process/update (ext)fentry */
   5410 		file_data = NULL;
   5411 		if (dscr_type == TAGID_FENTRY) {
   5412 			if (udf_node->fe)
   5413 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5414 					udf_node->fe);
   5415 			udf_node->fe  = &dscr->fe;
   5416 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   5417 			udf_file_type = udf_node->fe->icbtag.file_type;
   5418 			file_size = udf_rw64(udf_node->fe->inf_len);
   5419 			file_data = udf_node->fe->data;
   5420 		} else {
   5421 			if (udf_node->efe)
   5422 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5423 					udf_node->efe);
   5424 			udf_node->efe = &dscr->efe;
   5425 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   5426 			udf_file_type = udf_node->efe->icbtag.file_type;
   5427 			file_size = udf_rw64(udf_node->efe->inf_len);
   5428 			file_data = udf_node->efe->data;
   5429 		}
   5430 
   5431 		/* check recording strategy (structure) */
   5432 
   5433 		/*
   5434 		 * Strategy 4096 is a daisy linked chain terminating with an
   5435 		 * unrecorded sector or a TERM descriptor. The next
   5436 		 * descriptor is to be found in the sector that follows the
   5437 		 * current sector.
   5438 		 */
   5439 		if (strat == 4096) {
   5440 			strat4096 = 1;
   5441 			needs_indirect = 1;
   5442 
   5443 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   5444 		}
   5445 
   5446 		/*
   5447 		 * Strategy 4 is the normal strategy and terminates, but if
   5448 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   5449 		 */
   5450 
   5451 		if (strat == 4) {
   5452 			if (strat4096) {
   5453 				error = EINVAL;
   5454 				break;
   5455 			}
   5456 			break;		/* done */
   5457 		}
   5458 	} while (!error);
   5459 
   5460 	/* first round of cleanup code */
   5461 	if (error) {
   5462 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   5463 		/* recycle udf_node */
   5464 		udf_dispose_node(udf_node);
   5465 
   5466 		VOP_UNLOCK(nvp);
   5467 		nvp->v_data = NULL;
   5468 		ungetnewvnode(nvp);
   5469 
   5470 		return EINVAL;		/* error code ok? */
   5471 	}
   5472 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   5473 
   5474 	/* assert no references to dscr anymore beyong this point */
   5475 	assert((udf_node->fe) || (udf_node->efe));
   5476 	dscr = NULL;
   5477 
   5478 	/*
   5479 	 * Remember where to record an updated version of the descriptor. If
   5480 	 * there is a sequence of indirect entries, icb_loc will have been
   5481 	 * updated. Its the write disipline to allocate new space and to make
   5482 	 * sure the chain is maintained.
   5483 	 *
   5484 	 * `needs_indirect' flags if the next location is to be filled with
   5485 	 * with an indirect entry.
   5486 	 */
   5487 	udf_node->write_loc = icb_loc;
   5488 	udf_node->needs_indirect = needs_indirect;
   5489 
   5490 	/*
   5491 	 * Go trough all allocations extents of this descriptor and when
   5492 	 * encountering a redirect read in the allocation extension. These are
   5493 	 * daisy-chained.
   5494 	 */
   5495 	UDF_LOCK_NODE(udf_node, 0);
   5496 	udf_node->num_extensions = 0;
   5497 
   5498 	error   = 0;
   5499 	slot    = 0;
   5500 	for (;;) {
   5501 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   5502 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   5503 			"lb_num = %d, part = %d\n", slot, eof,
   5504 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   5505 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   5506 			udf_rw32(icb_loc.loc.lb_num),
   5507 			udf_rw16(icb_loc.loc.part_num)));
   5508 		if (eof)
   5509 			break;
   5510 		slot++;
   5511 
   5512 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   5513 			continue;
   5514 
   5515 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   5516 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   5517 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   5518 					"too many allocation extensions on "
   5519 					"udf_node\n"));
   5520 			error = EINVAL;
   5521 			break;
   5522 		}
   5523 
   5524 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   5525 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   5526 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   5527 					"extension size in udf_node\n"));
   5528 			error = EINVAL;
   5529 			break;
   5530 		}
   5531 
   5532 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   5533 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   5534 		/* load in allocation extent */
   5535 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5536 		if (error || (dscr == NULL))
   5537 			break;
   5538 
   5539 		/* process read-in descriptor */
   5540 		dscr_type = udf_rw16(dscr->tag.id);
   5541 
   5542 		if (dscr_type != TAGID_ALLOCEXTENT) {
   5543 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5544 			error = ENOENT;
   5545 			break;
   5546 		}
   5547 
   5548 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5549 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5550 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5551 
   5552 		udf_node->num_extensions++;
   5553 
   5554 	} /* while */
   5555 	UDF_UNLOCK_NODE(udf_node, 0);
   5556 
   5557 	/* second round of cleanup code */
   5558 	if (error) {
   5559 		/* recycle udf_node */
   5560 		udf_dispose_node(udf_node);
   5561 
   5562 		VOP_UNLOCK(nvp);
   5563 		nvp->v_data = NULL;
   5564 		ungetnewvnode(nvp);
   5565 
   5566 		return EINVAL;		/* error code ok? */
   5567 	}
   5568 
   5569 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5570 
   5571 	/*
   5572 	 * Translate UDF filetypes into vnode types.
   5573 	 *
   5574 	 * Systemfiles like the meta main and mirror files are not treated as
   5575 	 * normal files, so we type them as having no type. UDF dictates that
   5576 	 * they are not allowed to be visible.
   5577 	 */
   5578 
   5579 	switch (udf_file_type) {
   5580 	case UDF_ICB_FILETYPE_DIRECTORY :
   5581 	case UDF_ICB_FILETYPE_STREAMDIR :
   5582 		nvp->v_type = VDIR;
   5583 		break;
   5584 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5585 		nvp->v_type = VBLK;
   5586 		break;
   5587 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5588 		nvp->v_type = VCHR;
   5589 		break;
   5590 	case UDF_ICB_FILETYPE_SOCKET :
   5591 		nvp->v_type = VSOCK;
   5592 		break;
   5593 	case UDF_ICB_FILETYPE_FIFO :
   5594 		nvp->v_type = VFIFO;
   5595 		break;
   5596 	case UDF_ICB_FILETYPE_SYMLINK :
   5597 		nvp->v_type = VLNK;
   5598 		break;
   5599 	case UDF_ICB_FILETYPE_VAT :
   5600 	case UDF_ICB_FILETYPE_META_MAIN :
   5601 	case UDF_ICB_FILETYPE_META_MIRROR :
   5602 		nvp->v_type = VNON;
   5603 		break;
   5604 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5605 	case UDF_ICB_FILETYPE_REALTIME :
   5606 		nvp->v_type = VREG;
   5607 		break;
   5608 	default:
   5609 		/* YIKES, something else */
   5610 		nvp->v_type = VNON;
   5611 	}
   5612 
   5613 	/* TODO specfs, fifofs etc etc. vnops setting */
   5614 
   5615 	/* don't forget to set vnode's v_size */
   5616 	uvm_vnp_setsize(nvp, file_size);
   5617 
   5618 	/* TODO ext attr and streamdir udf_nodes */
   5619 
   5620 	*udf_noderes = udf_node;
   5621 
   5622 	return 0;
   5623 }
   5624 
   5625 /* --------------------------------------------------------------------- */
   5626 
   5627 int
   5628 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5629 {
   5630 	union dscrptr *dscr;
   5631 	struct long_ad *loc;
   5632 	int extnr, error;
   5633 
   5634 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5635 
   5636 	KASSERT(udf_node->outstanding_bufs == 0);
   5637 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5638 
   5639 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5640 
   5641 	if (udf_node->i_flags & IN_DELETED) {
   5642 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5643 		udf_cleanup_reservation(udf_node);
   5644 		return 0;
   5645 	}
   5646 
   5647 	/* lock node; unlocked in callback */
   5648 	UDF_LOCK_NODE(udf_node, 0);
   5649 
   5650 	/* remove pending reservations, we're written out */
   5651 	udf_cleanup_reservation(udf_node);
   5652 
   5653 	/* at least one descriptor writeout */
   5654 	udf_node->outstanding_nodedscr = 1;
   5655 
   5656 	/* we're going to write out the descriptor so clear the flags */
   5657 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5658 
   5659 	/* if we were rebuild, write out the allocation extents */
   5660 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5661 		/* mark outstanding node descriptors and issue them */
   5662 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5663 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5664 			loc = &udf_node->ext_loc[extnr];
   5665 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5666 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5667 			if (error)
   5668 				return error;
   5669 		}
   5670 		/* mark allocation extents written out */
   5671 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5672 	}
   5673 
   5674 	if (udf_node->fe) {
   5675 		KASSERT(udf_node->efe == NULL);
   5676 		dscr = (union dscrptr *) udf_node->fe;
   5677 	} else {
   5678 		KASSERT(udf_node->efe);
   5679 		KASSERT(udf_node->fe == NULL);
   5680 		dscr = (union dscrptr *) udf_node->efe;
   5681 	}
   5682 	KASSERT(dscr);
   5683 
   5684 	loc = &udf_node->write_loc;
   5685 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5686 
   5687 	return error;
   5688 }
   5689 
   5690 /* --------------------------------------------------------------------- */
   5691 
   5692 int
   5693 udf_dispose_node(struct udf_node *udf_node)
   5694 {
   5695 	struct vnode *vp;
   5696 	int extnr;
   5697 
   5698 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5699 	if (!udf_node) {
   5700 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5701 		return 0;
   5702 	}
   5703 
   5704 	vp  = udf_node->vnode;
   5705 #ifdef DIAGNOSTIC
   5706 	if (vp->v_numoutput)
   5707 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5708 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5709 #endif
   5710 
   5711 	udf_cleanup_reservation(udf_node);
   5712 
   5713 	/* TODO extended attributes and streamdir */
   5714 
   5715 	/* remove dirhash if present */
   5716 	dirhash_purge(&udf_node->dir_hash);
   5717 
   5718 	/* remove from our hash lookup table */
   5719 	udf_deregister_node(udf_node);
   5720 
   5721 	/* destroy our lock */
   5722 	mutex_destroy(&udf_node->node_mutex);
   5723 	cv_destroy(&udf_node->node_lock);
   5724 
   5725 	/* dissociate our udf_node from the vnode */
   5726 	genfs_node_destroy(udf_node->vnode);
   5727 	vp->v_data = NULL;
   5728 
   5729 	/* free associated memory and the node itself */
   5730 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5731 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5732 			udf_node->ext[extnr]);
   5733 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5734 	}
   5735 
   5736 	if (udf_node->fe)
   5737 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5738 			udf_node->fe);
   5739 	if (udf_node->efe)
   5740 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5741 			udf_node->efe);
   5742 
   5743 	udf_node->fe  = (void *) 0xdeadaaaa;
   5744 	udf_node->efe = (void *) 0xdeadbbbb;
   5745 	udf_node->ump = (void *) 0xdeadbeef;
   5746 	pool_put(&udf_node_pool, udf_node);
   5747 
   5748 	return 0;
   5749 }
   5750 
   5751 
   5752 
   5753 /*
   5754  * create a new node using the specified vnodeops, vap and cnp but with the
   5755  * udf_file_type. This allows special files to be created. Use with care.
   5756  */
   5757 
   5758 static int
   5759 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5760 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5761 {
   5762 	union dscrptr *dscr;
   5763 	struct udf_node *dir_node = VTOI(dvp);
   5764 	struct udf_node *udf_node;
   5765 	struct udf_mount *ump = dir_node->ump;
   5766 	struct vnode *nvp;
   5767 	struct long_ad node_icb_loc;
   5768 	uint64_t parent_unique_id;
   5769 	uint64_t lmapping;
   5770 	uint32_t lb_size, lb_num;
   5771 	uint16_t vpart_num;
   5772 	uid_t uid;
   5773 	gid_t gid, parent_gid;
   5774 	int fid_size, error;
   5775 
   5776 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5777 	*vpp = NULL;
   5778 
   5779 	/* allocate vnode */
   5780 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5781         if (error)
   5782 		return error;
   5783 
   5784 	/* lock node */
   5785 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5786 	if (error)
   5787 		goto error_out_unget;
   5788 
   5789 	/* reserve space for one logical block */
   5790 	vpart_num = ump->node_part;
   5791 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
   5792 		vpart_num, 1, /* can_fail */ true);
   5793 	if (error)
   5794 		goto error_out_unlock;
   5795 
   5796 	/* allocate node */
   5797 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
   5798 			vpart_num, 1, &lmapping);
   5799 	if (error)
   5800 		goto error_out_unreserve;
   5801 	lb_num = lmapping;
   5802 
   5803 	/* initialise pointer to location */
   5804 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5805 	node_icb_loc.len = udf_rw32(lb_size);
   5806 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5807 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5808 
   5809 	/* build udf_node (do initialise!) */
   5810 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5811 	memset(udf_node, 0, sizeof(struct udf_node));
   5812 
   5813 	/* initialise crosslinks, note location of fe/efe for hashing */
   5814 	/* bugalert: synchronise with udf_get_node() */
   5815 	udf_node->ump       = ump;
   5816 	udf_node->vnode     = nvp;
   5817 	nvp->v_data         = udf_node;
   5818 	udf_node->loc       = node_icb_loc;
   5819 	udf_node->write_loc = node_icb_loc;
   5820 	udf_node->lockf     = 0;
   5821 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5822 	cv_init(&udf_node->node_lock, "udf_nlk");
   5823 	udf_node->outstanding_bufs = 0;
   5824 	udf_node->outstanding_nodedscr = 0;
   5825 	udf_node->uncommitted_lbs = 0;
   5826 
   5827 	/* initialise genfs */
   5828 	genfs_node_init(nvp, &udf_genfsops);
   5829 
   5830 	/* insert into the hash lookup */
   5831 	udf_register_node(udf_node);
   5832 
   5833 	/* get parent's unique ID for refering '..' if its a directory */
   5834 	if (dir_node->fe) {
   5835 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5836 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5837 	} else {
   5838 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5839 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5840 	}
   5841 
   5842 	/* get descriptor */
   5843 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5844 
   5845 	/* choose a fe or an efe for it */
   5846 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   5847 		udf_node->fe = &dscr->fe;
   5848 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5849 			udf_file_type, &udf_node->loc,
   5850 			&dir_node->loc, parent_unique_id);
   5851 		/* TODO add extended attribute for creation time */
   5852 	} else {
   5853 		udf_node->efe = &dscr->efe;
   5854 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5855 			udf_file_type, &udf_node->loc,
   5856 			&dir_node->loc, parent_unique_id);
   5857 	}
   5858 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5859 
   5860 	/* update vnode's size and type */
   5861 	nvp->v_type = vap->va_type;
   5862 	uvm_vnp_setsize(nvp, fid_size);
   5863 
   5864 	/* set access mode */
   5865 	udf_setaccessmode(udf_node, vap->va_mode);
   5866 
   5867 	/* set ownership */
   5868 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5869 	gid = parent_gid;
   5870 	udf_setownership(udf_node, uid, gid);
   5871 
   5872 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5873 	if (error) {
   5874 		/* free disc allocation for node */
   5875 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5876 
   5877 		/* recycle udf_node */
   5878 		udf_dispose_node(udf_node);
   5879 		vput(nvp);
   5880 
   5881 		*vpp = NULL;
   5882 		return error;
   5883 	}
   5884 
   5885 	/* adjust file count */
   5886 	udf_adjust_filecount(udf_node, 1);
   5887 
   5888 	/* return result */
   5889 	*vpp = nvp;
   5890 
   5891 	return 0;
   5892 
   5893 error_out_unreserve:
   5894 	udf_do_unreserve_space(ump, NULL, vpart_num, 1);
   5895 
   5896 error_out_unlock:
   5897 	VOP_UNLOCK(nvp);
   5898 
   5899 error_out_unget:
   5900 	nvp->v_data = NULL;
   5901 	ungetnewvnode(nvp);
   5902 
   5903 	return error;
   5904 }
   5905 
   5906 
   5907 int
   5908 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5909 	struct componentname *cnp)
   5910 {
   5911 	int (**vnodeops)(void *);
   5912 	int udf_file_type;
   5913 
   5914 	DPRINTF(NODE, ("udf_create_node called\n"));
   5915 
   5916 	/* what type are we creating ? */
   5917 	vnodeops = udf_vnodeop_p;
   5918 	/* start with a default */
   5919 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5920 
   5921 	*vpp = NULL;
   5922 
   5923 	switch (vap->va_type) {
   5924 	case VREG :
   5925 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5926 		break;
   5927 	case VDIR :
   5928 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5929 		break;
   5930 	case VLNK :
   5931 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5932 		break;
   5933 	case VBLK :
   5934 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5935 		/* specfs */
   5936 		return ENOTSUP;
   5937 		break;
   5938 	case VCHR :
   5939 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5940 		/* specfs */
   5941 		return ENOTSUP;
   5942 		break;
   5943 	case VFIFO :
   5944 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5945 		/* specfs */
   5946 		return ENOTSUP;
   5947 		break;
   5948 	case VSOCK :
   5949 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5950 		/* specfs */
   5951 		return ENOTSUP;
   5952 		break;
   5953 	case VNON :
   5954 	case VBAD :
   5955 	default :
   5956 		/* nothing; can we even create these? */
   5957 		return EINVAL;
   5958 	}
   5959 
   5960 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5961 }
   5962 
   5963 /* --------------------------------------------------------------------- */
   5964 
   5965 static void
   5966 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5967 {
   5968 	struct udf_mount *ump = udf_node->ump;
   5969 	uint32_t lb_size, lb_num, len, num_lb;
   5970 	uint16_t vpart_num;
   5971 
   5972 	/* is there really one? */
   5973 	if (mem == NULL)
   5974 		return;
   5975 
   5976 	/* got a descriptor here */
   5977 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5978 	lb_num    = udf_rw32(loc->loc.lb_num);
   5979 	vpart_num = udf_rw16(loc->loc.part_num);
   5980 
   5981 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5982 	num_lb = (len + lb_size -1) / lb_size;
   5983 
   5984 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5985 }
   5986 
   5987 void
   5988 udf_delete_node(struct udf_node *udf_node)
   5989 {
   5990 	void *dscr;
   5991 	struct udf_mount *ump;
   5992 	struct long_ad *loc;
   5993 	int extnr, lvint, dummy;
   5994 
   5995 	ump = udf_node->ump;
   5996 
   5997 	/* paranoia check on integrity; should be open!; we could panic */
   5998 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5999 	if (lvint == UDF_INTEGRITY_CLOSED)
   6000 		printf("\tIntegrity was CLOSED!\n");
   6001 
   6002 	/* whatever the node type, change its size to zero */
   6003 	(void) udf_resize_node(udf_node, 0, &dummy);
   6004 
   6005 	/* force it to be `clean'; no use writing it out */
   6006 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   6007 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   6008 
   6009 	/* adjust file count */
   6010 	udf_adjust_filecount(udf_node, -1);
   6011 
   6012 	/*
   6013 	 * Free its allocated descriptors; memory will be released when
   6014 	 * vop_reclaim() is called.
   6015 	 */
   6016 	loc = &udf_node->loc;
   6017 
   6018 	dscr = udf_node->fe;
   6019 	udf_free_descriptor_space(udf_node, loc, dscr);
   6020 	dscr = udf_node->efe;
   6021 	udf_free_descriptor_space(udf_node, loc, dscr);
   6022 
   6023 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   6024 		dscr =  udf_node->ext[extnr];
   6025 		loc  = &udf_node->ext_loc[extnr];
   6026 		udf_free_descriptor_space(udf_node, loc, dscr);
   6027 	}
   6028 }
   6029 
   6030 /* --------------------------------------------------------------------- */
   6031 
   6032 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   6033 int
   6034 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   6035 {
   6036 	struct file_entry    *fe  = udf_node->fe;
   6037 	struct extfile_entry *efe = udf_node->efe;
   6038 	uint64_t file_size;
   6039 	int error;
   6040 
   6041 	if (fe) {
   6042 		file_size  = udf_rw64(fe->inf_len);
   6043 	} else {
   6044 		assert(udf_node->efe);
   6045 		file_size  = udf_rw64(efe->inf_len);
   6046 	}
   6047 
   6048 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   6049 			file_size, new_size));
   6050 
   6051 	/* if not changing, we're done */
   6052 	if (file_size == new_size)
   6053 		return 0;
   6054 
   6055 	*extended = (new_size > file_size);
   6056 	if (*extended) {
   6057 		error = udf_grow_node(udf_node, new_size);
   6058 	} else {
   6059 		error = udf_shrink_node(udf_node, new_size);
   6060 	}
   6061 
   6062 	return error;
   6063 }
   6064 
   6065 
   6066 /* --------------------------------------------------------------------- */
   6067 
   6068 void
   6069 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   6070 	struct timespec *mod, struct timespec *birth)
   6071 {
   6072 	struct timespec now;
   6073 	struct file_entry    *fe;
   6074 	struct extfile_entry *efe;
   6075 	struct filetimes_extattr_entry *ft_extattr;
   6076 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   6077 	struct timestamp  fe_ctime;
   6078 	struct timespec   cur_birth;
   6079 	uint32_t offset, a_l;
   6080 	uint8_t *filedata;
   6081 	int error;
   6082 
   6083 	/* protect against rogue values */
   6084 	if (!udf_node)
   6085 		return;
   6086 
   6087 	fe  = udf_node->fe;
   6088 	efe = udf_node->efe;
   6089 
   6090 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   6091 		return;
   6092 
   6093 	/* get descriptor information */
   6094 	if (fe) {
   6095 		atime    = &fe->atime;
   6096 		mtime    = &fe->mtime;
   6097 		attrtime = &fe->attrtime;
   6098 		filedata = fe->data;
   6099 
   6100 		/* initial save dummy setting */
   6101 		ctime    = &fe_ctime;
   6102 
   6103 		/* check our extended attribute if present */
   6104 		error = udf_extattr_search_intern(udf_node,
   6105 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   6106 		if (!error) {
   6107 			ft_extattr = (struct filetimes_extattr_entry *)
   6108 				(filedata + offset);
   6109 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   6110 				ctime = &ft_extattr->times[0];
   6111 		}
   6112 		/* TODO create the extended attribute if not found ? */
   6113 	} else {
   6114 		assert(udf_node->efe);
   6115 		atime    = &efe->atime;
   6116 		mtime    = &efe->mtime;
   6117 		attrtime = &efe->attrtime;
   6118 		ctime    = &efe->ctime;
   6119 	}
   6120 
   6121 	vfs_timestamp(&now);
   6122 
   6123 	/* set access time */
   6124 	if (udf_node->i_flags & IN_ACCESS) {
   6125 		if (acc == NULL)
   6126 			acc = &now;
   6127 		udf_timespec_to_timestamp(acc, atime);
   6128 	}
   6129 
   6130 	/* set modification time */
   6131 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   6132 		if (mod == NULL)
   6133 			mod = &now;
   6134 		udf_timespec_to_timestamp(mod, mtime);
   6135 
   6136 		/* ensure birthtime is older than set modification! */
   6137 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   6138 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   6139 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   6140 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   6141 			udf_timespec_to_timestamp(mod, ctime);
   6142 		}
   6143 	}
   6144 
   6145 	/* update birthtime if specified */
   6146 	/* XXX we asume here that given birthtime is older than mod */
   6147 	if (birth && (birth->tv_sec != VNOVAL)) {
   6148 		udf_timespec_to_timestamp(birth, ctime);
   6149 	}
   6150 
   6151 	/* set change time */
   6152 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   6153 		udf_timespec_to_timestamp(&now, attrtime);
   6154 
   6155 	/* notify updates to the node itself */
   6156 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   6157 		udf_node->i_flags |= IN_ACCESSED;
   6158 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   6159 		udf_node->i_flags |= IN_MODIFIED;
   6160 
   6161 	/* clear modification flags */
   6162 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   6163 }
   6164 
   6165 /* --------------------------------------------------------------------- */
   6166 
   6167 int
   6168 udf_update(struct vnode *vp, struct timespec *acc,
   6169 	struct timespec *mod, struct timespec *birth, int updflags)
   6170 {
   6171 	union dscrptr *dscrptr;
   6172 	struct udf_node  *udf_node = VTOI(vp);
   6173 	struct udf_mount *ump = udf_node->ump;
   6174 	struct regid     *impl_id;
   6175 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   6176 	int waitfor, flags;
   6177 
   6178 #ifdef DEBUG
   6179 	char bits[128];
   6180 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   6181 		updflags));
   6182 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
   6183 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   6184 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   6185 #endif
   6186 
   6187 	/* set our times */
   6188 	udf_itimes(udf_node, acc, mod, birth);
   6189 
   6190 	/* set our implementation id */
   6191 	if (udf_node->fe) {
   6192 		dscrptr = (union dscrptr *) udf_node->fe;
   6193 		impl_id = &udf_node->fe->imp_id;
   6194 	} else {
   6195 		dscrptr = (union dscrptr *) udf_node->efe;
   6196 		impl_id = &udf_node->efe->imp_id;
   6197 	}
   6198 
   6199 	/* set our ID */
   6200 	udf_set_regid(impl_id, IMPL_NAME);
   6201 	udf_add_impl_regid(ump, impl_id);
   6202 
   6203 	/* update our crc! on RMW we are not allowed to change a thing */
   6204 	udf_validate_tag_and_crc_sums(dscrptr);
   6205 
   6206 	/* if called when mounted readonly, never write back */
   6207 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   6208 		return 0;
   6209 
   6210 	/* check if the node is dirty 'enough'*/
   6211 	if (updflags & UPDATE_CLOSE) {
   6212 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   6213 	} else {
   6214 		flags = udf_node->i_flags & IN_MODIFIED;
   6215 	}
   6216 	if (flags == 0)
   6217 		return 0;
   6218 
   6219 	/* determine if we need to write sync or async */
   6220 	waitfor = 0;
   6221 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   6222 		/* sync mounted */
   6223 		waitfor = updflags & UPDATE_WAIT;
   6224 		if (updflags & UPDATE_DIROP)
   6225 			waitfor |= UPDATE_WAIT;
   6226 	}
   6227 	if (waitfor)
   6228 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   6229 
   6230 	return 0;
   6231 }
   6232 
   6233 
   6234 /* --------------------------------------------------------------------- */
   6235 
   6236 
   6237 /*
   6238  * Read one fid and process it into a dirent and advance to the next (*fid)
   6239  * has to be allocated a logical block in size, (*dirent) struct dirent length
   6240  */
   6241 
   6242 int
   6243 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   6244 		struct fileid_desc *fid, struct dirent *dirent)
   6245 {
   6246 	struct udf_node  *dir_node = VTOI(vp);
   6247 	struct udf_mount *ump = dir_node->ump;
   6248 	struct file_entry    *fe  = dir_node->fe;
   6249 	struct extfile_entry *efe = dir_node->efe;
   6250 	uint32_t      fid_size, lb_size;
   6251 	uint64_t      file_size;
   6252 	char         *fid_name;
   6253 	int           enough, error;
   6254 
   6255 	assert(fid);
   6256 	assert(dirent);
   6257 	assert(dir_node);
   6258 	assert(offset);
   6259 	assert(*offset != 1);
   6260 
   6261 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   6262 	/* check if we're past the end of the directory */
   6263 	if (fe) {
   6264 		file_size = udf_rw64(fe->inf_len);
   6265 	} else {
   6266 		assert(dir_node->efe);
   6267 		file_size = udf_rw64(efe->inf_len);
   6268 	}
   6269 	if (*offset >= file_size)
   6270 		return EINVAL;
   6271 
   6272 	/* get maximum length of FID descriptor */
   6273 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   6274 
   6275 	/* initialise return values */
   6276 	fid_size = 0;
   6277 	memset(dirent, 0, sizeof(struct dirent));
   6278 	memset(fid, 0, lb_size);
   6279 
   6280 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   6281 	if (!enough) {
   6282 		/* short dir ... */
   6283 		return EIO;
   6284 	}
   6285 
   6286 	error = vn_rdwr(UIO_READ, vp,
   6287 			fid, MIN(file_size - (*offset), lb_size), *offset,
   6288 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   6289 			NULL, NULL);
   6290 	if (error)
   6291 		return error;
   6292 
   6293 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   6294 	/*
   6295 	 * Check if we got a whole descriptor.
   6296 	 * TODO Try to `resync' directory stream when something is very wrong.
   6297 	 */
   6298 
   6299 	/* check if our FID header is OK */
   6300 	error = udf_check_tag(fid);
   6301 	if (error) {
   6302 		goto brokendir;
   6303 	}
   6304 	DPRINTF(FIDS, ("\ttag check ok\n"));
   6305 
   6306 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   6307 		error = EIO;
   6308 		goto brokendir;
   6309 	}
   6310 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   6311 
   6312 	/* check for length */
   6313 	fid_size = udf_fidsize(fid);
   6314 	enough = (file_size - (*offset) >= fid_size);
   6315 	if (!enough) {
   6316 		error = EIO;
   6317 		goto brokendir;
   6318 	}
   6319 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   6320 
   6321 	/* check FID contents */
   6322 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   6323 brokendir:
   6324 	if (error) {
   6325 		/* note that is sometimes a bit quick to report */
   6326 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
   6327 		/* RESYNC? */
   6328 		/* TODO: use udf_resync_fid_stream */
   6329 		return EIO;
   6330 	}
   6331 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   6332 
   6333 	/* we got a whole and valid descriptor! */
   6334 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   6335 
   6336 	/* create resulting dirent structure */
   6337 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   6338 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   6339 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   6340 
   6341 	/* '..' has no name, so provide one */
   6342 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   6343 		strcpy(dirent->d_name, "..");
   6344 
   6345 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
   6346 	dirent->d_namlen = strlen(dirent->d_name);
   6347 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   6348 
   6349 	/*
   6350 	 * Note that its not worth trying to go for the filetypes now... its
   6351 	 * too expensive too
   6352 	 */
   6353 	dirent->d_type = DT_UNKNOWN;
   6354 
   6355 	/* initial guess for filetype we can make */
   6356 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   6357 		dirent->d_type = DT_DIR;
   6358 
   6359 	/* advance */
   6360 	*offset += fid_size;
   6361 
   6362 	return error;
   6363 }
   6364 
   6365 
   6366 /* --------------------------------------------------------------------- */
   6367 
   6368 static void
   6369 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   6370 	int pass, int *ndirty)
   6371 {
   6372 	struct udf_node *udf_node, *n_udf_node;
   6373 	struct vnode *vp;
   6374 	int vdirty, error;
   6375 	int on_type, on_flags, on_vnode;
   6376 
   6377 derailed:
   6378 	KASSERT(mutex_owned(&mntvnode_lock));
   6379 
   6380 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   6381 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
   6382 	for (;udf_node; udf_node = n_udf_node) {
   6383 		DPRINTF(SYNC, ("."));
   6384 
   6385 		udf_node->i_flags &= ~IN_SYNCED;
   6386 		vp = udf_node->vnode;
   6387 
   6388 		mutex_enter(&vp->v_interlock);
   6389 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
   6390 		    udf_node, RB_DIR_RIGHT);
   6391 
   6392 		if (n_udf_node)
   6393 			n_udf_node->i_flags |= IN_SYNCED;
   6394 
   6395 		/* system nodes are not synced this way */
   6396 		if (vp->v_vflag & VV_SYSTEM) {
   6397 			mutex_exit(&vp->v_interlock);
   6398 			continue;
   6399 		}
   6400 
   6401 		/* check if its dirty enough to even try */
   6402 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   6403 		on_flags = ((udf_node->i_flags &
   6404 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   6405 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   6406 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   6407 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   6408 			/* not dirty (enough?) */
   6409 			mutex_exit(&vp->v_interlock);
   6410 			continue;
   6411 		}
   6412 
   6413 		mutex_exit(&mntvnode_lock);
   6414 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
   6415 		if (error) {
   6416 			mutex_enter(&mntvnode_lock);
   6417 			if (error == ENOENT)
   6418 				goto derailed;
   6419 			*ndirty += 1;
   6420 			continue;
   6421 		}
   6422 
   6423 		switch (pass) {
   6424 		case 1:
   6425 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   6426 			break;
   6427 		case 2:
   6428 			vdirty = vp->v_numoutput;
   6429 			if (vp->v_tag == VT_UDF)
   6430 				vdirty += udf_node->outstanding_bufs +
   6431 					udf_node->outstanding_nodedscr;
   6432 			if (vdirty == 0)
   6433 				VOP_FSYNC(vp, cred, 0,0,0);
   6434 			*ndirty += vdirty;
   6435 			break;
   6436 		case 3:
   6437 			vdirty = vp->v_numoutput;
   6438 			if (vp->v_tag == VT_UDF)
   6439 				vdirty += udf_node->outstanding_bufs +
   6440 					udf_node->outstanding_nodedscr;
   6441 			*ndirty += vdirty;
   6442 			break;
   6443 		}
   6444 
   6445 		vput(vp);
   6446 		mutex_enter(&mntvnode_lock);
   6447 	}
   6448 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   6449 }
   6450 
   6451 
   6452 void
   6453 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   6454 {
   6455 	int dummy, ndirty;
   6456 
   6457 	mutex_enter(&mntvnode_lock);
   6458 recount:
   6459 	dummy = 0;
   6460 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6461 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6462 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   6463 
   6464 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6465 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6466 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   6467 
   6468 	if (waitfor == MNT_WAIT) {
   6469 		ndirty = ump->devvp->v_numoutput;
   6470 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
   6471 			ndirty));
   6472 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   6473 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
   6474 			ndirty));
   6475 
   6476 		if (ndirty) {
   6477 			/* 1/4 second wait */
   6478 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   6479 				hz/4);
   6480 			goto recount;
   6481 		}
   6482 	}
   6483 
   6484 	mutex_exit(&mntvnode_lock);
   6485 }
   6486 
   6487 /* --------------------------------------------------------------------- */
   6488 
   6489 /*
   6490  * Read and write file extent in/from the buffer.
   6491  *
   6492  * The splitup of the extent into seperate request-buffers is to minimise
   6493  * copying around as much as possible.
   6494  *
   6495  * block based file reading and writing
   6496  */
   6497 
   6498 static int
   6499 udf_read_internal(struct udf_node *node, uint8_t *blob)
   6500 {
   6501 	struct udf_mount *ump;
   6502 	struct file_entry     *fe = node->fe;
   6503 	struct extfile_entry *efe = node->efe;
   6504 	uint64_t inflen;
   6505 	uint32_t sector_size;
   6506 	uint8_t  *pos;
   6507 	int icbflags, addr_type;
   6508 
   6509 	/* get extent and do some paranoia checks */
   6510 	ump = node->ump;
   6511 	sector_size = ump->discinfo.sector_size;
   6512 
   6513 	if (fe) {
   6514 		inflen   = udf_rw64(fe->inf_len);
   6515 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6516 		icbflags = udf_rw16(fe->icbtag.flags);
   6517 	} else {
   6518 		assert(node->efe);
   6519 		inflen   = udf_rw64(efe->inf_len);
   6520 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6521 		icbflags = udf_rw16(efe->icbtag.flags);
   6522 	}
   6523 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6524 
   6525 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6526 	assert(inflen < sector_size);
   6527 
   6528 	/* copy out info */
   6529 	memset(blob, 0, sector_size);
   6530 	memcpy(blob, pos, inflen);
   6531 
   6532 	return 0;
   6533 }
   6534 
   6535 
   6536 static int
   6537 udf_write_internal(struct udf_node *node, uint8_t *blob)
   6538 {
   6539 	struct udf_mount *ump;
   6540 	struct file_entry     *fe = node->fe;
   6541 	struct extfile_entry *efe = node->efe;
   6542 	uint64_t inflen;
   6543 	uint32_t sector_size;
   6544 	uint8_t  *pos;
   6545 	int icbflags, addr_type;
   6546 
   6547 	/* get extent and do some paranoia checks */
   6548 	ump = node->ump;
   6549 	sector_size = ump->discinfo.sector_size;
   6550 
   6551 	if (fe) {
   6552 		inflen   = udf_rw64(fe->inf_len);
   6553 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6554 		icbflags = udf_rw16(fe->icbtag.flags);
   6555 	} else {
   6556 		assert(node->efe);
   6557 		inflen   = udf_rw64(efe->inf_len);
   6558 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6559 		icbflags = udf_rw16(efe->icbtag.flags);
   6560 	}
   6561 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6562 
   6563 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6564 	assert(inflen < sector_size);
   6565 
   6566 	/* copy in blob */
   6567 	/* memset(pos, 0, inflen); */
   6568 	memcpy(pos, blob, inflen);
   6569 
   6570 	return 0;
   6571 }
   6572 
   6573 
   6574 void
   6575 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6576 {
   6577 	struct buf *nestbuf;
   6578 	struct udf_mount *ump = udf_node->ump;
   6579 	uint64_t   *mapping;
   6580 	uint64_t    run_start;
   6581 	uint32_t    sector_size;
   6582 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6583 	uint32_t    from, lblkno;
   6584 	uint32_t    sectors;
   6585 	uint8_t    *buf_pos;
   6586 	int error, run_length, what;
   6587 
   6588 	sector_size = udf_node->ump->discinfo.sector_size;
   6589 
   6590 	from    = buf->b_blkno;
   6591 	sectors = buf->b_bcount / sector_size;
   6592 
   6593 	what = udf_get_c_type(udf_node);
   6594 
   6595 	/* assure we have enough translation slots */
   6596 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6597 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6598 
   6599 	if (sectors > UDF_MAX_MAPPINGS) {
   6600 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6601 		buf->b_error  = EIO;
   6602 		biodone(buf);
   6603 		return;
   6604 	}
   6605 
   6606 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6607 
   6608 	error = 0;
   6609 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6610 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6611 	if (error) {
   6612 		buf->b_error  = error;
   6613 		biodone(buf);
   6614 		goto out;
   6615 	}
   6616 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6617 
   6618 	/* pre-check if its an internal */
   6619 	if (*mapping == UDF_TRANS_INTERN) {
   6620 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6621 		if (error)
   6622 			buf->b_error  = error;
   6623 		biodone(buf);
   6624 		goto out;
   6625 	}
   6626 	DPRINTF(READ, ("\tnot intern\n"));
   6627 
   6628 #ifdef DEBUG
   6629 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6630 		printf("Returned translation table:\n");
   6631 		for (sector = 0; sector < sectors; sector++) {
   6632 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6633 		}
   6634 	}
   6635 #endif
   6636 
   6637 	/* request read-in of data from disc sheduler */
   6638 	buf->b_resid = buf->b_bcount;
   6639 	for (sector = 0; sector < sectors; sector++) {
   6640 		buf_offset = sector * sector_size;
   6641 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6642 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6643 
   6644 		/* check if its zero or unmapped to stop reading */
   6645 		switch (mapping[sector]) {
   6646 		case UDF_TRANS_UNMAPPED:
   6647 		case UDF_TRANS_ZERO:
   6648 			/* copy zero sector TODO runlength like below */
   6649 			memset(buf_pos, 0, sector_size);
   6650 			DPRINTF(READ, ("\treturning zero sector\n"));
   6651 			nestiobuf_done(buf, sector_size, 0);
   6652 			break;
   6653 		default :
   6654 			DPRINTF(READ, ("\tread sector "
   6655 			    "%"PRIu64"\n", mapping[sector]));
   6656 
   6657 			lblkno = from + sector;
   6658 			run_start  = mapping[sector];
   6659 			run_length = 1;
   6660 			while (sector < sectors-1) {
   6661 				if (mapping[sector+1] != mapping[sector]+1)
   6662 					break;
   6663 				run_length++;
   6664 				sector++;
   6665 			}
   6666 
   6667 			/*
   6668 			 * nest an iobuf and mark it for async reading. Since
   6669 			 * we're using nested buffers, they can't be cached by
   6670 			 * design.
   6671 			 */
   6672 			rbuflen = run_length * sector_size;
   6673 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6674 
   6675 			nestbuf = getiobuf(NULL, true);
   6676 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6677 			/* nestbuf is B_ASYNC */
   6678 
   6679 			/* identify this nestbuf */
   6680 			nestbuf->b_lblkno   = lblkno;
   6681 			assert(nestbuf->b_vp == udf_node->vnode);
   6682 
   6683 			/* CD shedules on raw blkno */
   6684 			nestbuf->b_blkno      = rblk;
   6685 			nestbuf->b_proc       = NULL;
   6686 			nestbuf->b_rawblkno   = rblk;
   6687 			nestbuf->b_udf_c_type = what;
   6688 
   6689 			udf_discstrat_queuebuf(ump, nestbuf);
   6690 		}
   6691 	}
   6692 out:
   6693 	/* if we're synchronously reading, wait for the completion */
   6694 	if ((buf->b_flags & B_ASYNC) == 0)
   6695 		biowait(buf);
   6696 
   6697 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6698 	free(mapping, M_TEMP);
   6699 	return;
   6700 }
   6701 
   6702 
   6703 void
   6704 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6705 {
   6706 	struct buf *nestbuf;
   6707 	struct udf_mount *ump = udf_node->ump;
   6708 	uint64_t   *mapping;
   6709 	uint64_t    run_start;
   6710 	uint32_t    lb_size;
   6711 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6712 	uint32_t    from, lblkno;
   6713 	uint32_t    num_lb;
   6714 	int error, run_length, what, s;
   6715 
   6716 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6717 
   6718 	from   = buf->b_blkno;
   6719 	num_lb = buf->b_bcount / lb_size;
   6720 
   6721 	what = udf_get_c_type(udf_node);
   6722 
   6723 	/* assure we have enough translation slots */
   6724 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6725 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6726 
   6727 	if (num_lb > UDF_MAX_MAPPINGS) {
   6728 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6729 		buf->b_error  = EIO;
   6730 		biodone(buf);
   6731 		return;
   6732 	}
   6733 
   6734 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6735 
   6736 	error = 0;
   6737 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6738 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6739 	if (error) {
   6740 		buf->b_error  = error;
   6741 		biodone(buf);
   6742 		goto out;
   6743 	}
   6744 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6745 
   6746 	/* if its internally mapped, we can write it in the descriptor itself */
   6747 	if (*mapping == UDF_TRANS_INTERN) {
   6748 		/* TODO paranoia check if we ARE going to have enough space */
   6749 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6750 		if (error)
   6751 			buf->b_error  = error;
   6752 		biodone(buf);
   6753 		goto out;
   6754 	}
   6755 	DPRINTF(WRITE, ("\tnot intern\n"));
   6756 
   6757 	/* request write out of data to disc sheduler */
   6758 	buf->b_resid = buf->b_bcount;
   6759 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6760 		buf_offset = lb_num * lb_size;
   6761 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6762 
   6763 		/*
   6764 		 * Mappings are not that important here. Just before we write
   6765 		 * the lb_num we late-allocate them when needed and update the
   6766 		 * mapping in the udf_node.
   6767 		 */
   6768 
   6769 		/* XXX why not ignore the mapping altogether ? */
   6770 		DPRINTF(WRITE, ("\twrite lb_num "
   6771 		    "%"PRIu64, mapping[lb_num]));
   6772 
   6773 		lblkno = from + lb_num;
   6774 		run_start  = mapping[lb_num];
   6775 		run_length = 1;
   6776 		while (lb_num < num_lb-1) {
   6777 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6778 				if (mapping[lb_num+1] != mapping[lb_num])
   6779 					break;
   6780 			run_length++;
   6781 			lb_num++;
   6782 		}
   6783 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6784 
   6785 		/* nest an iobuf on the master buffer for the extent */
   6786 		rbuflen = run_length * lb_size;
   6787 		rblk = run_start * (lb_size/DEV_BSIZE);
   6788 
   6789 		nestbuf = getiobuf(NULL, true);
   6790 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6791 		/* nestbuf is B_ASYNC */
   6792 
   6793 		/* identify this nestbuf */
   6794 		nestbuf->b_lblkno   = lblkno;
   6795 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6796 
   6797 		/* CD shedules on raw blkno */
   6798 		nestbuf->b_blkno      = rblk;
   6799 		nestbuf->b_proc       = NULL;
   6800 		nestbuf->b_rawblkno   = rblk;
   6801 		nestbuf->b_udf_c_type = what;
   6802 
   6803 		/* increment our outstanding bufs counter */
   6804 		s = splbio();
   6805 			udf_node->outstanding_bufs++;
   6806 		splx(s);
   6807 
   6808 		udf_discstrat_queuebuf(ump, nestbuf);
   6809 	}
   6810 out:
   6811 	/* if we're synchronously writing, wait for the completion */
   6812 	if ((buf->b_flags & B_ASYNC) == 0)
   6813 		biowait(buf);
   6814 
   6815 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6816 	free(mapping, M_TEMP);
   6817 	return;
   6818 }
   6819 
   6820 /* --------------------------------------------------------------------- */
   6821 
   6822 
   6823