udf_subr.c revision 1.115 1 /* $NetBSD: udf_subr.c,v 1.115 2011/06/12 03:35:55 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.115 2011/06/12 03:35:55 rmind Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 struct partinfo dpart;
192 struct mmc_discinfo *di;
193 int error;
194
195 DPRINTF(VOLUMES, ("read/update disc info\n"));
196 di = &ump->discinfo;
197 memset(di, 0, sizeof(struct mmc_discinfo));
198
199 /* check if we're on a MMC capable device, i.e. CD/DVD */
200 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
201 if (error == 0) {
202 udf_dump_discinfo(ump);
203 return 0;
204 }
205
206 /* disc partition support */
207 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
208 if (error)
209 return ENODEV;
210
211 /* set up a disc info profile for partitions */
212 di->mmc_profile = 0x01; /* disc type */
213 di->mmc_class = MMC_CLASS_DISC;
214 di->disc_state = MMC_STATE_CLOSED;
215 di->last_session_state = MMC_STATE_CLOSED;
216 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
217 di->link_block_penalty = 0;
218
219 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
220 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
221 di->mmc_cap = di->mmc_cur;
222 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
223
224 /* TODO problem with last_possible_lba on resizable VND; request */
225 di->last_possible_lba = dpart.part->p_size;
226 di->sector_size = dpart.disklab->d_secsize;
227
228 di->num_sessions = 1;
229 di->num_tracks = 1;
230
231 di->first_track = 1;
232 di->first_track_last_session = di->last_track_last_session = 1;
233
234 udf_dump_discinfo(ump);
235 return 0;
236 }
237
238
239 int
240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
241 {
242 struct vnode *devvp = ump->devvp;
243 struct mmc_discinfo *di = &ump->discinfo;
244 int error, class;
245
246 DPRINTF(VOLUMES, ("read track info\n"));
247
248 class = di->mmc_class;
249 if (class != MMC_CLASS_DISC) {
250 /* tracknr specified in struct ti */
251 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
252 return error;
253 }
254
255 /* disc partition support */
256 if (ti->tracknr != 1)
257 return EIO;
258
259 /* create fake ti (TODO check for resized vnds) */
260 ti->sessionnr = 1;
261
262 ti->track_mode = 0; /* XXX */
263 ti->data_mode = 0; /* XXX */
264 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
265
266 ti->track_start = 0;
267 ti->packet_size = 1;
268
269 /* TODO support for resizable vnd */
270 ti->track_size = di->last_possible_lba;
271 ti->next_writable = di->last_possible_lba;
272 ti->last_recorded = ti->next_writable;
273 ti->free_blocks = 0;
274
275 return 0;
276 }
277
278
279 int
280 udf_setup_writeparams(struct udf_mount *ump)
281 {
282 struct mmc_writeparams mmc_writeparams;
283 int error;
284
285 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
286 return 0;
287
288 /*
289 * only CD burning normally needs setting up, but other disc types
290 * might need other settings to be made. The MMC framework will set up
291 * the nessisary recording parameters according to the disc
292 * characteristics read in. Modifications can be made in the discinfo
293 * structure passed to change the nature of the disc.
294 */
295
296 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
297 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
298 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
299
300 /*
301 * UDF dictates first track to determine track mode for the whole
302 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
303 * To prevent problems with a `reserved' track in front we start with
304 * the 2nd track and if that is not valid, go for the 1st.
305 */
306 mmc_writeparams.tracknr = 2;
307 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
308 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
309
310 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
311 FKIOCTL, NOCRED);
312 if (error) {
313 mmc_writeparams.tracknr = 1;
314 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
315 &mmc_writeparams, FKIOCTL, NOCRED);
316 }
317 return error;
318 }
319
320
321 int
322 udf_synchronise_caches(struct udf_mount *ump)
323 {
324 struct mmc_op mmc_op;
325
326 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
327
328 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
329 return 0;
330
331 /* discs are done now */
332 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
333 return 0;
334
335 memset(&mmc_op, 0, sizeof(struct mmc_op));
336 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
337
338 /* ignore return code */
339 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
340
341 return 0;
342 }
343
344 /* --------------------------------------------------------------------- */
345
346 /* track/session searching for mounting */
347 int
348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
349 int *first_tracknr, int *last_tracknr)
350 {
351 struct mmc_trackinfo trackinfo;
352 uint32_t tracknr, start_track, num_tracks;
353 int error;
354
355 /* if negative, sessionnr is relative to last session */
356 if (args->sessionnr < 0) {
357 args->sessionnr += ump->discinfo.num_sessions;
358 }
359
360 /* sanity */
361 if (args->sessionnr < 0)
362 args->sessionnr = 0;
363 if (args->sessionnr > ump->discinfo.num_sessions)
364 args->sessionnr = ump->discinfo.num_sessions;
365
366 /* search the tracks for this session, zero session nr indicates last */
367 if (args->sessionnr == 0)
368 args->sessionnr = ump->discinfo.num_sessions;
369 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
370 args->sessionnr--;
371
372 /* sanity again */
373 if (args->sessionnr < 0)
374 args->sessionnr = 0;
375
376 /* search the first and last track of the specified session */
377 num_tracks = ump->discinfo.num_tracks;
378 start_track = ump->discinfo.first_track;
379
380 /* search for first track of this session */
381 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
382 /* get track info */
383 trackinfo.tracknr = tracknr;
384 error = udf_update_trackinfo(ump, &trackinfo);
385 if (error)
386 return error;
387
388 if (trackinfo.sessionnr == args->sessionnr)
389 break;
390 }
391 *first_tracknr = tracknr;
392
393 /* search for last track of this session */
394 for (;tracknr <= num_tracks; tracknr++) {
395 /* get track info */
396 trackinfo.tracknr = tracknr;
397 error = udf_update_trackinfo(ump, &trackinfo);
398 if (error || (trackinfo.sessionnr != args->sessionnr)) {
399 tracknr--;
400 break;
401 }
402 }
403 if (tracknr > num_tracks)
404 tracknr--;
405
406 *last_tracknr = tracknr;
407
408 if (*last_tracknr < *first_tracknr) {
409 printf( "udf_search_tracks: sanity check on drive+disc failed, "
410 "drive returned garbage\n");
411 return EINVAL;
412 }
413
414 assert(*last_tracknr >= *first_tracknr);
415 return 0;
416 }
417
418
419 /*
420 * NOTE: this is the only routine in this file that directly peeks into the
421 * metadata file but since its at a larval state of the mount it can't hurt.
422 *
423 * XXX candidate for udf_allocation.c
424 * XXX clean me up!, change to new node reading code.
425 */
426
427 static void
428 udf_check_track_metadata_overlap(struct udf_mount *ump,
429 struct mmc_trackinfo *trackinfo)
430 {
431 struct part_desc *part;
432 struct file_entry *fe;
433 struct extfile_entry *efe;
434 struct short_ad *s_ad;
435 struct long_ad *l_ad;
436 uint32_t track_start, track_end;
437 uint32_t phys_part_start, phys_part_end, part_start, part_end;
438 uint32_t sector_size, len, alloclen, plb_num;
439 uint8_t *pos;
440 int addr_type, icblen, icbflags, flags;
441
442 /* get our track extents */
443 track_start = trackinfo->track_start;
444 track_end = track_start + trackinfo->track_size;
445
446 /* get our base partition extent */
447 KASSERT(ump->node_part == ump->fids_part);
448 part = ump->partitions[ump->vtop[ump->node_part]];
449 phys_part_start = udf_rw32(part->start_loc);
450 phys_part_end = phys_part_start + udf_rw32(part->part_len);
451
452 /* no use if its outside the physical partition */
453 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
454 return;
455
456 /*
457 * now follow all extents in the fe/efe to see if they refer to this
458 * track
459 */
460
461 sector_size = ump->discinfo.sector_size;
462
463 /* XXX should we claim exclusive access to the metafile ? */
464 /* TODO: move to new node read code */
465 fe = ump->metadata_node->fe;
466 efe = ump->metadata_node->efe;
467 if (fe) {
468 alloclen = udf_rw32(fe->l_ad);
469 pos = &fe->data[0] + udf_rw32(fe->l_ea);
470 icbflags = udf_rw16(fe->icbtag.flags);
471 } else {
472 assert(efe);
473 alloclen = udf_rw32(efe->l_ad);
474 pos = &efe->data[0] + udf_rw32(efe->l_ea);
475 icbflags = udf_rw16(efe->icbtag.flags);
476 }
477 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
478
479 while (alloclen) {
480 if (addr_type == UDF_ICB_SHORT_ALLOC) {
481 icblen = sizeof(struct short_ad);
482 s_ad = (struct short_ad *) pos;
483 len = udf_rw32(s_ad->len);
484 plb_num = udf_rw32(s_ad->lb_num);
485 } else {
486 /* should not be present, but why not */
487 icblen = sizeof(struct long_ad);
488 l_ad = (struct long_ad *) pos;
489 len = udf_rw32(l_ad->len);
490 plb_num = udf_rw32(l_ad->loc.lb_num);
491 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
492 }
493 /* process extent */
494 flags = UDF_EXT_FLAGS(len);
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_size, packet_size, lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 lb_size = udf_rw32(ump->logical_vol->lb_size);
1291 packet_size = ump->data_track.packet_size; /* XXX data track */
1292
1293 /* search smallest extent */
1294 trace = &ump->lvint_trace[0];
1295 minext = trace->end - trace->start;
1296 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1297 trace = &ump->lvint_trace[ext];
1298 extlen = trace->end - trace->start;
1299 if (extlen == 0)
1300 break;
1301 minext = MIN(minext, extlen);
1302 }
1303 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1304 /* no sense wiping all */
1305 if (losing == minext)
1306 losing--;
1307
1308 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1309
1310 /* get buffer for pieces */
1311 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1312
1313 in_ext = 0;
1314 in_pos = losing;
1315 in_trace = &ump->lvint_trace[in_ext];
1316 in_len = in_trace->end - in_trace->start;
1317 out_ext = 0;
1318 out_wpos = 0;
1319 out_trace = &ump->lvint_trace[out_ext];
1320 out_len = out_trace->end - out_trace->start;
1321
1322 last_dscr = NULL;
1323 for(;;) {
1324 out_trace->pos = out_wpos;
1325 out_trace->wpos = out_trace->pos;
1326 if (in_pos >= in_len) {
1327 in_ext++;
1328 in_pos = 0;
1329 in_trace = &ump->lvint_trace[in_ext];
1330 in_len = in_trace->end - in_trace->start;
1331 }
1332 if (out_wpos >= out_len) {
1333 out_ext++;
1334 out_wpos = 0;
1335 out_trace = &ump->lvint_trace[out_ext];
1336 out_len = out_trace->end - out_trace->start;
1337 }
1338 /* copy overlap contents */
1339 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1340 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1341 if (cpy_len == 0)
1342 break;
1343
1344 /* copy */
1345 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1346 for (cnt = 0; cnt < cpy_len; cnt++) {
1347 /* read in our integrity descriptor */
1348 lb_num = in_trace->start + in_pos + cnt;
1349 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1350 &dscr);
1351 if (error) {
1352 /* copy last one */
1353 dscr = last_dscr;
1354 }
1355 bufs[cnt] = dscr;
1356 if (!error) {
1357 if (dscr == NULL) {
1358 out_trace->pos = out_wpos + cnt;
1359 out_trace->wpos = out_trace->pos;
1360 break; /* empty terminates */
1361 }
1362 dscr_type = udf_rw16(dscr->tag.id);
1363 if (dscr_type == TAGID_TERM) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* clean terminator */
1367 }
1368 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1369 panic( "UDF integrity sequence "
1370 "corrupted while mounted!\n");
1371 }
1372 last_dscr = dscr;
1373 }
1374 }
1375
1376 /* patch up if first entry was on error */
1377 if (bufs[0] == NULL) {
1378 for (cnt = 0; cnt < cpy_len; cnt++)
1379 if (bufs[cnt] != NULL)
1380 break;
1381 last_dscr = bufs[cnt];
1382 for (; cnt > 0; cnt--) {
1383 bufs[cnt] = last_dscr;
1384 }
1385 }
1386
1387 /* glue + write out */
1388 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1389 for (cnt = 0; cnt < cpy_len; cnt++) {
1390 lb_num = out_trace->start + out_wpos + cnt;
1391 lvint = &bufs[cnt]->lvid;
1392
1393 /* set continuation */
1394 len = 0;
1395 start = 0;
1396 if (out_wpos + cnt == out_len) {
1397 /* get continuation */
1398 trace = &ump->lvint_trace[out_ext+1];
1399 len = trace->end - trace->start;
1400 start = trace->start;
1401 }
1402 lvint->next_extent.len = udf_rw32(len);
1403 lvint->next_extent.loc = udf_rw32(start);
1404
1405 lb_num = trace->start + trace->wpos;
1406 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1407 bufs[cnt], lb_num, lb_num);
1408 DPRINTFIF(VOLUMES, error,
1409 ("error writing lvint lb_num\n"));
1410 }
1411
1412 /* free non repeating descriptors */
1413 last_dscr = NULL;
1414 for (cnt = 0; cnt < cpy_len; cnt++) {
1415 if (bufs[cnt] != last_dscr)
1416 free(bufs[cnt], M_UDFVOLD);
1417 last_dscr = bufs[cnt];
1418 }
1419
1420 /* advance */
1421 in_pos += cpy_len;
1422 out_wpos += cpy_len;
1423 }
1424
1425 free(bufs, M_TEMP);
1426
1427 return 0;
1428 }
1429
1430
1431 static int
1432 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1433 {
1434 struct udf_lvintq *trace;
1435 struct timeval now_v;
1436 struct timespec now_s;
1437 uint32_t sector;
1438 int logvol_integrity;
1439 int space, error;
1440
1441 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1442
1443 again:
1444 /* get free space in last chunk */
1445 trace = ump->lvint_trace;
1446 while (trace->wpos > (trace->end - trace->start)) {
1447 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1448 "wpos = %d\n", trace->start, trace->end,
1449 trace->pos, trace->wpos));
1450 trace++;
1451 }
1452
1453 /* check if there is space to append */
1454 space = (trace->end - trace->start) - trace->wpos;
1455 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1456 "space = %d\n", trace->start, trace->end, trace->pos,
1457 trace->wpos, space));
1458
1459 /* get state */
1460 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1461 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1462 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1463 /* TODO extent LVINT space if possible */
1464 return EROFS;
1465 }
1466 }
1467
1468 if (space < 1) {
1469 if (lvflag & UDF_APPENDONLY_LVINT)
1470 return EROFS;
1471 /* loose history by re-writing extents */
1472 error = udf_loose_lvint_history(ump);
1473 if (error)
1474 return error;
1475 goto again;
1476 }
1477
1478 /* update our integrity descriptor to identify us and timestamp it */
1479 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1480 microtime(&now_v);
1481 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1482 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1483 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1484 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1485
1486 /* writeout integrity descriptor */
1487 sector = trace->start + trace->wpos;
1488 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1489 (union dscrptr *) ump->logvol_integrity,
1490 sector, sector);
1491 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1492 if (error)
1493 return error;
1494
1495 /* advance write position */
1496 trace->wpos++; space--;
1497 if (space >= 1) {
1498 /* append terminator */
1499 sector = trace->start + trace->wpos;
1500 error = udf_write_terminator(ump, sector);
1501
1502 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1503 }
1504
1505 space = (trace->end - trace->start) - trace->wpos;
1506 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1507 "space = %d\n", trace->start, trace->end, trace->pos,
1508 trace->wpos, space));
1509 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1510 "successfull\n"));
1511
1512 return error;
1513 }
1514
1515 /* --------------------------------------------------------------------- */
1516
1517 static int
1518 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1519 {
1520 union dscrptr *dscr;
1521 /* struct udf_args *args = &ump->mount_args; */
1522 struct part_desc *partd;
1523 struct part_hdr_desc *parthdr;
1524 struct udf_bitmap *bitmap;
1525 uint32_t phys_part;
1526 uint32_t lb_num, len;
1527 int error, dscr_type;
1528
1529 /* unallocated space map */
1530 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1531 partd = ump->partitions[phys_part];
1532 if (partd == NULL)
1533 continue;
1534 parthdr = &partd->_impl_use.part_hdr;
1535
1536 lb_num = udf_rw32(partd->start_loc);
1537 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1538 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1539 if (len == 0)
1540 continue;
1541
1542 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1543 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1544 if (!error && dscr) {
1545 /* analyse */
1546 dscr_type = udf_rw16(dscr->tag.id);
1547 if (dscr_type == TAGID_SPACE_BITMAP) {
1548 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1549 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1550
1551 /* fill in ump->part_unalloc_bits */
1552 bitmap = &ump->part_unalloc_bits[phys_part];
1553 bitmap->blob = (uint8_t *) dscr;
1554 bitmap->bits = dscr->sbd.data;
1555 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1556 bitmap->pages = NULL; /* TODO */
1557 bitmap->data_pos = 0;
1558 bitmap->metadata_pos = 0;
1559 } else {
1560 free(dscr, M_UDFVOLD);
1561
1562 printf( "UDF mount: error reading unallocated "
1563 "space bitmap\n");
1564 return EROFS;
1565 }
1566 } else {
1567 /* blank not allowed */
1568 printf("UDF mount: blank unallocated space bitmap\n");
1569 return EROFS;
1570 }
1571 }
1572
1573 /* unallocated space table (not supported) */
1574 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1575 partd = ump->partitions[phys_part];
1576 if (partd == NULL)
1577 continue;
1578 parthdr = &partd->_impl_use.part_hdr;
1579
1580 len = udf_rw32(parthdr->unalloc_space_table.len);
1581 if (len) {
1582 printf("UDF mount: space tables not supported\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* freed space map */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 /* freed space map */
1595 lb_num = udf_rw32(partd->start_loc);
1596 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1597 len = udf_rw32(parthdr->freed_space_bitmap.len);
1598 if (len == 0)
1599 continue;
1600
1601 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1602 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1603 if (!error && dscr) {
1604 /* analyse */
1605 dscr_type = udf_rw16(dscr->tag.id);
1606 if (dscr_type == TAGID_SPACE_BITMAP) {
1607 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1608 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1609
1610 /* fill in ump->part_freed_bits */
1611 bitmap = &ump->part_unalloc_bits[phys_part];
1612 bitmap->blob = (uint8_t *) dscr;
1613 bitmap->bits = dscr->sbd.data;
1614 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1615 bitmap->pages = NULL; /* TODO */
1616 bitmap->data_pos = 0;
1617 bitmap->metadata_pos = 0;
1618 } else {
1619 free(dscr, M_UDFVOLD);
1620
1621 printf( "UDF mount: error reading freed "
1622 "space bitmap\n");
1623 return EROFS;
1624 }
1625 } else {
1626 /* blank not allowed */
1627 printf("UDF mount: blank freed space bitmap\n");
1628 return EROFS;
1629 }
1630 }
1631
1632 /* freed space table (not supported) */
1633 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1634 partd = ump->partitions[phys_part];
1635 if (partd == NULL)
1636 continue;
1637 parthdr = &partd->_impl_use.part_hdr;
1638
1639 len = udf_rw32(parthdr->freed_space_table.len);
1640 if (len) {
1641 printf("UDF mount: space tables not supported\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 return 0;
1647 }
1648
1649
1650 /* TODO implement async writeout */
1651 int
1652 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1653 {
1654 union dscrptr *dscr;
1655 /* struct udf_args *args = &ump->mount_args; */
1656 struct part_desc *partd;
1657 struct part_hdr_desc *parthdr;
1658 uint32_t phys_part;
1659 uint32_t lb_num, len, ptov;
1660 int error_all, error;
1661
1662 error_all = 0;
1663 /* unallocated space map */
1664 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1665 partd = ump->partitions[phys_part];
1666 if (partd == NULL)
1667 continue;
1668 parthdr = &partd->_impl_use.part_hdr;
1669
1670 ptov = udf_rw32(partd->start_loc);
1671 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1672 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1673 if (len == 0)
1674 continue;
1675
1676 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1677 lb_num + ptov));
1678 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1679 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1680 (union dscrptr *) dscr,
1681 ptov + lb_num, lb_num);
1682 if (error) {
1683 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1684 error_all = error;
1685 }
1686 }
1687
1688 /* freed space map */
1689 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1690 partd = ump->partitions[phys_part];
1691 if (partd == NULL)
1692 continue;
1693 parthdr = &partd->_impl_use.part_hdr;
1694
1695 /* freed space map */
1696 ptov = udf_rw32(partd->start_loc);
1697 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1698 len = udf_rw32(parthdr->freed_space_bitmap.len);
1699 if (len == 0)
1700 continue;
1701
1702 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1703 lb_num + ptov));
1704 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1705 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1706 (union dscrptr *) dscr,
1707 ptov + lb_num, lb_num);
1708 if (error) {
1709 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1710 error_all = error;
1711 }
1712 }
1713
1714 return error_all;
1715 }
1716
1717
1718 static int
1719 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1720 {
1721 struct udf_node *bitmap_node;
1722 union dscrptr *dscr;
1723 struct udf_bitmap *bitmap;
1724 uint64_t inflen;
1725 int error, dscr_type;
1726
1727 bitmap_node = ump->metadatabitmap_node;
1728
1729 /* only read in when metadata bitmap node is read in */
1730 if (bitmap_node == NULL)
1731 return 0;
1732
1733 if (bitmap_node->fe) {
1734 inflen = udf_rw64(bitmap_node->fe->inf_len);
1735 } else {
1736 KASSERT(bitmap_node->efe);
1737 inflen = udf_rw64(bitmap_node->efe->inf_len);
1738 }
1739
1740 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1741 "%"PRIu64" bytes\n", inflen));
1742
1743 /* allocate space for bitmap */
1744 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1745 if (!dscr)
1746 return ENOMEM;
1747
1748 /* set vnode type to regular file or we can't read from it! */
1749 bitmap_node->vnode->v_type = VREG;
1750
1751 /* read in complete metadata bitmap file */
1752 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1753 dscr,
1754 inflen, 0,
1755 UIO_SYSSPACE,
1756 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1757 NULL, NULL);
1758 if (error) {
1759 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1760 goto errorout;
1761 }
1762
1763 /* analyse */
1764 dscr_type = udf_rw16(dscr->tag.id);
1765 if (dscr_type == TAGID_SPACE_BITMAP) {
1766 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1767 ump->metadata_unalloc_dscr = &dscr->sbd;
1768
1769 /* fill in bitmap bits */
1770 bitmap = &ump->metadata_unalloc_bits;
1771 bitmap->blob = (uint8_t *) dscr;
1772 bitmap->bits = dscr->sbd.data;
1773 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1774 bitmap->pages = NULL; /* TODO */
1775 bitmap->data_pos = 0;
1776 bitmap->metadata_pos = 0;
1777 } else {
1778 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1779 goto errorout;
1780 }
1781
1782 return 0;
1783
1784 errorout:
1785 free(dscr, M_UDFVOLD);
1786 printf( "UDF mount: error reading unallocated "
1787 "space bitmap for metadata partition\n");
1788 return EROFS;
1789 }
1790
1791
1792 int
1793 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1794 {
1795 struct udf_node *bitmap_node;
1796 union dscrptr *dscr;
1797 uint64_t inflen, new_inflen;
1798 int dummy, error;
1799
1800 bitmap_node = ump->metadatabitmap_node;
1801
1802 /* only write out when metadata bitmap node is known */
1803 if (bitmap_node == NULL)
1804 return 0;
1805
1806 if (bitmap_node->fe) {
1807 inflen = udf_rw64(bitmap_node->fe->inf_len);
1808 } else {
1809 KASSERT(bitmap_node->efe);
1810 inflen = udf_rw64(bitmap_node->efe->inf_len);
1811 }
1812
1813 /* reduce length to zero */
1814 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1815 new_inflen = udf_tagsize(dscr, 1);
1816
1817 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1818 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1819
1820 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1821 if (error)
1822 printf("Error resizing metadata space bitmap\n");
1823
1824 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1825 dscr,
1826 new_inflen, 0,
1827 UIO_SYSSPACE,
1828 IO_ALTSEMANTICS, FSCRED,
1829 NULL, NULL);
1830
1831 bitmap_node->i_flags |= IN_MODIFIED;
1832 error = vflushbuf(bitmap_node->vnode, 1 /* sync */);
1833 if (error == 0)
1834 error = VOP_FSYNC(bitmap_node->vnode,
1835 FSCRED, FSYNC_WAIT, 0, 0);
1836
1837 if (error)
1838 printf( "Error writing out metadata partition unalloced "
1839 "space bitmap!\n");
1840
1841 return error;
1842 }
1843
1844
1845 /* --------------------------------------------------------------------- */
1846
1847 /*
1848 * Checks if ump's vds information is correct and complete
1849 */
1850
1851 int
1852 udf_process_vds(struct udf_mount *ump) {
1853 union udf_pmap *mapping;
1854 /* struct udf_args *args = &ump->mount_args; */
1855 struct logvol_int_desc *lvint;
1856 struct udf_logvol_info *lvinfo;
1857 uint32_t n_pm, mt_l;
1858 uint8_t *pmap_pos;
1859 char *domain_name, *map_name;
1860 const char *check_name;
1861 char bits[128];
1862 int pmap_stype, pmap_size;
1863 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1864 int n_phys, n_virt, n_spar, n_meta;
1865 int len, error;
1866
1867 if (ump == NULL)
1868 return ENOENT;
1869
1870 /* we need at least an anchor (trivial, but for safety) */
1871 if (ump->anchors[0] == NULL)
1872 return EINVAL;
1873
1874 /* we need at least one primary and one logical volume descriptor */
1875 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1876 return EINVAL;
1877
1878 /* we need at least one partition descriptor */
1879 if (ump->partitions[0] == NULL)
1880 return EINVAL;
1881
1882 /* check logical volume sector size verses device sector size */
1883 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1884 printf("UDF mount: format violation, lb_size != sector size\n");
1885 return EINVAL;
1886 }
1887
1888 /* check domain name */
1889 domain_name = ump->logical_vol->domain_id.id;
1890 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1891 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1892 return EINVAL;
1893 }
1894
1895 /* retrieve logical volume integrity sequence */
1896 error = udf_retrieve_lvint(ump);
1897
1898 /*
1899 * We need at least one logvol integrity descriptor recorded. Note
1900 * that its OK to have an open logical volume integrity here. The VAT
1901 * will close/update the integrity.
1902 */
1903 if (ump->logvol_integrity == NULL)
1904 return EINVAL;
1905
1906 /* process derived structures */
1907 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1908 lvint = ump->logvol_integrity;
1909 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1910 ump->logvol_info = lvinfo;
1911
1912 /* TODO check udf versions? */
1913
1914 /*
1915 * check logvol mappings: effective virt->log partmap translation
1916 * check and recording of the mapping results. Saves expensive
1917 * strncmp() in tight places.
1918 */
1919 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1920 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1921 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1922 pmap_pos = ump->logical_vol->maps;
1923
1924 if (n_pm > UDF_PMAPS) {
1925 printf("UDF mount: too many mappings\n");
1926 return EINVAL;
1927 }
1928
1929 /* count types and set partition numbers */
1930 ump->data_part = ump->node_part = ump->fids_part = 0;
1931 n_phys = n_virt = n_spar = n_meta = 0;
1932 for (log_part = 0; log_part < n_pm; log_part++) {
1933 mapping = (union udf_pmap *) pmap_pos;
1934 pmap_stype = pmap_pos[0];
1935 pmap_size = pmap_pos[1];
1936 switch (pmap_stype) {
1937 case 1: /* physical mapping */
1938 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1939 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1940 pmap_type = UDF_VTOP_TYPE_PHYS;
1941 n_phys++;
1942 ump->data_part = log_part;
1943 ump->node_part = log_part;
1944 ump->fids_part = log_part;
1945 break;
1946 case 2: /* virtual/sparable/meta mapping */
1947 map_name = mapping->pm2.part_id.id;
1948 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1949 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1950 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1951 len = UDF_REGID_ID_SIZE;
1952
1953 check_name = "*UDF Virtual Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_VIRT;
1956 n_virt++;
1957 ump->node_part = log_part;
1958 break;
1959 }
1960 check_name = "*UDF Sparable Partition";
1961 if (strncmp(map_name, check_name, len) == 0) {
1962 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1963 n_spar++;
1964 ump->data_part = log_part;
1965 ump->node_part = log_part;
1966 ump->fids_part = log_part;
1967 break;
1968 }
1969 check_name = "*UDF Metadata Partition";
1970 if (strncmp(map_name, check_name, len) == 0) {
1971 pmap_type = UDF_VTOP_TYPE_META;
1972 n_meta++;
1973 ump->node_part = log_part;
1974 ump->fids_part = log_part;
1975 break;
1976 }
1977 break;
1978 default:
1979 return EINVAL;
1980 }
1981
1982 /*
1983 * BUGALERT: some rogue implementations use random physical
1984 * partition numbers to break other implementations so lookup
1985 * the number.
1986 */
1987 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1988
1989 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1990 raw_phys_part, phys_part, pmap_type));
1991
1992 if (phys_part == UDF_PARTITIONS)
1993 return EINVAL;
1994 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1995 return EINVAL;
1996
1997 ump->vtop [log_part] = phys_part;
1998 ump->vtop_tp[log_part] = pmap_type;
1999
2000 pmap_pos += pmap_size;
2001 }
2002 /* not winning the beauty contest */
2003 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2004
2005 /* test some basic UDF assertions/requirements */
2006 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2007 return EINVAL;
2008
2009 if (n_virt) {
2010 if ((n_phys == 0) || n_spar || n_meta)
2011 return EINVAL;
2012 }
2013 if (n_spar + n_phys == 0)
2014 return EINVAL;
2015
2016 /* select allocation type for each logical partition */
2017 for (log_part = 0; log_part < n_pm; log_part++) {
2018 maps_on = ump->vtop[log_part];
2019 switch (ump->vtop_tp[log_part]) {
2020 case UDF_VTOP_TYPE_PHYS :
2021 assert(maps_on == log_part);
2022 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2023 break;
2024 case UDF_VTOP_TYPE_VIRT :
2025 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2026 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2027 break;
2028 case UDF_VTOP_TYPE_SPARABLE :
2029 assert(maps_on == log_part);
2030 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2031 break;
2032 case UDF_VTOP_TYPE_META :
2033 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2034 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2035 /* special case for UDF 2.60 */
2036 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2037 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2038 }
2039 break;
2040 default:
2041 panic("bad alloction type in udf's ump->vtop\n");
2042 }
2043 }
2044
2045 /* determine logical volume open/closure actions */
2046 if (n_virt) {
2047 ump->lvopen = 0;
2048 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2049 ump->lvopen |= UDF_OPEN_SESSION ;
2050 ump->lvclose = UDF_WRITE_VAT;
2051 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2052 ump->lvclose |= UDF_CLOSE_SESSION;
2053 } else {
2054 /* `normal' rewritable or non sequential media */
2055 ump->lvopen = UDF_WRITE_LVINT;
2056 ump->lvclose = UDF_WRITE_LVINT;
2057 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2058 ump->lvopen |= UDF_APPENDONLY_LVINT;
2059 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2060 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2061 }
2062
2063 /*
2064 * Determine sheduler error behaviour. For virtual partitions, update
2065 * the trackinfo; for sparable partitions replace a whole block on the
2066 * sparable table. Allways requeue.
2067 */
2068 ump->lvreadwrite = 0;
2069 if (n_virt)
2070 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2071 if (n_spar)
2072 ump->lvreadwrite = UDF_REMAP_BLOCK;
2073
2074 /*
2075 * Select our sheduler
2076 */
2077 ump->strategy = &udf_strat_rmw;
2078 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2079 ump->strategy = &udf_strat_sequential;
2080 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2081 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2082 ump->strategy = &udf_strat_direct;
2083 if (n_spar)
2084 ump->strategy = &udf_strat_rmw;
2085
2086 #if 0
2087 /* read-only access won't benefit from the other shedulers */
2088 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2089 ump->strategy = &udf_strat_direct;
2090 #endif
2091
2092 /* print results */
2093 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2094 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2095 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2096 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2097 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2098 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2099
2100 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2101 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2102 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2103 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2104 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2105 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2106
2107 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2108 (ump->strategy == &udf_strat_direct) ? "Direct" :
2109 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2110 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2111
2112 /* signal its OK for now */
2113 return 0;
2114 }
2115
2116 /* --------------------------------------------------------------------- */
2117
2118 /*
2119 * Update logical volume name in all structures that keep a record of it. We
2120 * use memmove since each of them might be specified as a source.
2121 *
2122 * Note that it doesn't update the VAT structure!
2123 */
2124
2125 static void
2126 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2127 {
2128 struct logvol_desc *lvd = NULL;
2129 struct fileset_desc *fsd = NULL;
2130 struct udf_lv_info *lvi = NULL;
2131
2132 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2133 lvd = ump->logical_vol;
2134 fsd = ump->fileset_desc;
2135 if (ump->implementation)
2136 lvi = &ump->implementation->_impl_use.lv_info;
2137
2138 /* logvol's id might be specified as origional so use memmove here */
2139 memmove(lvd->logvol_id, logvol_id, 128);
2140 if (fsd)
2141 memmove(fsd->logvol_id, logvol_id, 128);
2142 if (lvi)
2143 memmove(lvi->logvol_id, logvol_id, 128);
2144 }
2145
2146 /* --------------------------------------------------------------------- */
2147
2148 void
2149 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2150 uint32_t sector)
2151 {
2152 assert(ump->logical_vol);
2153
2154 tag->id = udf_rw16(tagid);
2155 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2156 tag->cksum = 0;
2157 tag->reserved = 0;
2158 tag->serial_num = ump->logical_vol->tag.serial_num;
2159 tag->tag_loc = udf_rw32(sector);
2160 }
2161
2162
2163 uint64_t
2164 udf_advance_uniqueid(struct udf_mount *ump)
2165 {
2166 uint64_t unique_id;
2167
2168 mutex_enter(&ump->logvol_mutex);
2169 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2170 if (unique_id < 0x10)
2171 unique_id = 0x10;
2172 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2173 mutex_exit(&ump->logvol_mutex);
2174
2175 return unique_id;
2176 }
2177
2178
2179 static void
2180 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2181 {
2182 struct udf_mount *ump = udf_node->ump;
2183 uint32_t num_dirs, num_files;
2184 int udf_file_type;
2185
2186 /* get file type */
2187 if (udf_node->fe) {
2188 udf_file_type = udf_node->fe->icbtag.file_type;
2189 } else {
2190 udf_file_type = udf_node->efe->icbtag.file_type;
2191 }
2192
2193 /* adjust file count */
2194 mutex_enter(&ump->allocate_mutex);
2195 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2196 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2197 ump->logvol_info->num_directories =
2198 udf_rw32((num_dirs + sign));
2199 } else {
2200 num_files = udf_rw32(ump->logvol_info->num_files);
2201 ump->logvol_info->num_files =
2202 udf_rw32((num_files + sign));
2203 }
2204 mutex_exit(&ump->allocate_mutex);
2205 }
2206
2207
2208 void
2209 udf_osta_charset(struct charspec *charspec)
2210 {
2211 memset(charspec, 0, sizeof(struct charspec));
2212 charspec->type = 0;
2213 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2214 }
2215
2216
2217 /* first call udf_set_regid and then the suffix */
2218 void
2219 udf_set_regid(struct regid *regid, char const *name)
2220 {
2221 memset(regid, 0, sizeof(struct regid));
2222 regid->flags = 0; /* not dirty and not protected */
2223 strcpy((char *) regid->id, name);
2224 }
2225
2226
2227 void
2228 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2229 {
2230 uint16_t *ver;
2231
2232 ver = (uint16_t *) regid->id_suffix;
2233 *ver = ump->logvol_info->min_udf_readver;
2234 }
2235
2236
2237 void
2238 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2239 {
2240 uint16_t *ver;
2241
2242 ver = (uint16_t *) regid->id_suffix;
2243 *ver = ump->logvol_info->min_udf_readver;
2244
2245 regid->id_suffix[2] = 4; /* unix */
2246 regid->id_suffix[3] = 8; /* NetBSD */
2247 }
2248
2249
2250 void
2251 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2252 {
2253 regid->id_suffix[0] = 4; /* unix */
2254 regid->id_suffix[1] = 8; /* NetBSD */
2255 }
2256
2257
2258 void
2259 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2260 {
2261 regid->id_suffix[0] = APP_VERSION_MAIN;
2262 regid->id_suffix[1] = APP_VERSION_SUB;
2263 }
2264
2265 static int
2266 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2267 struct long_ad *parent, uint64_t unique_id)
2268 {
2269 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2270 int fidsize = 40;
2271
2272 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2273 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2274 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2275 fid->icb = *parent;
2276 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2277 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2278 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2279
2280 return fidsize;
2281 }
2282
2283 /* --------------------------------------------------------------------- */
2284
2285 /*
2286 * Extended attribute support. UDF knows of 3 places for extended attributes:
2287 *
2288 * (a) inside the file's (e)fe in the length of the extended attribute area
2289 * before the allocation descriptors/filedata
2290 *
2291 * (b) in a file referenced by (e)fe->ext_attr_icb and
2292 *
2293 * (c) in the e(fe)'s associated stream directory that can hold various
2294 * sub-files. In the stream directory a few fixed named subfiles are reserved
2295 * for NT/Unix ACL's and OS/2 attributes.
2296 *
2297 * NOTE: Extended attributes are read randomly but allways written
2298 * *atomicaly*. For ACL's this interface is propably different but not known
2299 * to me yet.
2300 *
2301 * Order of extended attributes in a space :
2302 * ECMA 167 EAs
2303 * Non block aligned Implementation Use EAs
2304 * Block aligned Implementation Use EAs
2305 * Application Use EAs
2306 */
2307
2308 static int
2309 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2310 {
2311 uint16_t *spos;
2312
2313 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2314 /* checksum valid? */
2315 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2316 spos = (uint16_t *) implext->data;
2317 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2318 return EINVAL;
2319 }
2320 return 0;
2321 }
2322
2323 static void
2324 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2325 {
2326 uint16_t *spos;
2327
2328 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2329 /* set checksum */
2330 spos = (uint16_t *) implext->data;
2331 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2332 }
2333 }
2334
2335
2336 int
2337 udf_extattr_search_intern(struct udf_node *node,
2338 uint32_t sattr, char const *sattrname,
2339 uint32_t *offsetp, uint32_t *lengthp)
2340 {
2341 struct extattrhdr_desc *eahdr;
2342 struct extattr_entry *attrhdr;
2343 struct impl_extattr_entry *implext;
2344 uint32_t offset, a_l, sector_size;
2345 int32_t l_ea;
2346 uint8_t *pos;
2347 int error;
2348
2349 /* get mountpoint */
2350 sector_size = node->ump->discinfo.sector_size;
2351
2352 /* get information from fe/efe */
2353 if (node->fe) {
2354 l_ea = udf_rw32(node->fe->l_ea);
2355 eahdr = (struct extattrhdr_desc *) node->fe->data;
2356 } else {
2357 assert(node->efe);
2358 l_ea = udf_rw32(node->efe->l_ea);
2359 eahdr = (struct extattrhdr_desc *) node->efe->data;
2360 }
2361
2362 /* something recorded here? */
2363 if (l_ea == 0)
2364 return ENOENT;
2365
2366 /* check extended attribute tag; what to do if it fails? */
2367 error = udf_check_tag(eahdr);
2368 if (error)
2369 return EINVAL;
2370 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2371 return EINVAL;
2372 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2373 if (error)
2374 return EINVAL;
2375
2376 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2377
2378 /* looking for Ecma-167 attributes? */
2379 offset = sizeof(struct extattrhdr_desc);
2380
2381 /* looking for either implemenation use or application use */
2382 if (sattr == 2048) { /* [4/48.10.8] */
2383 offset = udf_rw32(eahdr->impl_attr_loc);
2384 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2385 return ENOENT;
2386 }
2387 if (sattr == 65536) { /* [4/48.10.9] */
2388 offset = udf_rw32(eahdr->appl_attr_loc);
2389 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2390 return ENOENT;
2391 }
2392
2393 /* paranoia check offset and l_ea */
2394 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2395 return EINVAL;
2396
2397 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2398
2399 /* find our extended attribute */
2400 l_ea -= offset;
2401 pos = (uint8_t *) eahdr + offset;
2402
2403 while (l_ea >= sizeof(struct extattr_entry)) {
2404 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2405 attrhdr = (struct extattr_entry *) pos;
2406 implext = (struct impl_extattr_entry *) pos;
2407
2408 /* get complete attribute length and check for roque values */
2409 a_l = udf_rw32(attrhdr->a_l);
2410 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2411 udf_rw32(attrhdr->type),
2412 attrhdr->subtype, a_l, l_ea));
2413 if ((a_l == 0) || (a_l > l_ea))
2414 return EINVAL;
2415
2416 if (attrhdr->type != sattr)
2417 goto next_attribute;
2418
2419 /* we might have found it! */
2420 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2421 *offsetp = offset;
2422 *lengthp = a_l;
2423 return 0; /* success */
2424 }
2425
2426 /*
2427 * Implementation use and application use extended attributes
2428 * have a name to identify. They share the same structure only
2429 * UDF implementation use extended attributes have a checksum
2430 * we need to check
2431 */
2432
2433 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2434 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2435 /* we have found our appl/implementation attribute */
2436 *offsetp = offset;
2437 *lengthp = a_l;
2438 return 0; /* success */
2439 }
2440
2441 next_attribute:
2442 /* next attribute */
2443 pos += a_l;
2444 l_ea -= a_l;
2445 offset += a_l;
2446 }
2447 /* not found */
2448 return ENOENT;
2449 }
2450
2451
2452 static void
2453 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2454 struct extattr_entry *extattr)
2455 {
2456 struct file_entry *fe;
2457 struct extfile_entry *efe;
2458 struct extattrhdr_desc *extattrhdr;
2459 struct impl_extattr_entry *implext;
2460 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2461 uint32_t *l_eap, l_ad;
2462 uint16_t *spos;
2463 uint8_t *bpos, *data;
2464
2465 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2466 fe = &dscr->fe;
2467 data = fe->data;
2468 l_eap = &fe->l_ea;
2469 l_ad = udf_rw32(fe->l_ad);
2470 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2471 efe = &dscr->efe;
2472 data = efe->data;
2473 l_eap = &efe->l_ea;
2474 l_ad = udf_rw32(efe->l_ad);
2475 } else {
2476 panic("Bad tag passed to udf_extattr_insert_internal");
2477 }
2478
2479 /* can't append already written to file descriptors yet */
2480 assert(l_ad == 0);
2481
2482 /* should have a header! */
2483 extattrhdr = (struct extattrhdr_desc *) data;
2484 l_ea = udf_rw32(*l_eap);
2485 if (l_ea == 0) {
2486 /* create empty extended attribute header */
2487 exthdr_len = sizeof(struct extattrhdr_desc);
2488
2489 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2490 /* loc */ 0);
2491 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2492 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2493 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2494
2495 /* record extended attribute header length */
2496 l_ea = exthdr_len;
2497 *l_eap = udf_rw32(l_ea);
2498 }
2499
2500 /* extract locations */
2501 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2502 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2503 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2504 impl_attr_loc = l_ea;
2505 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2506 appl_attr_loc = l_ea;
2507
2508 /* Ecma 167 EAs */
2509 if (udf_rw32(extattr->type) < 2048) {
2510 assert(impl_attr_loc == l_ea);
2511 assert(appl_attr_loc == l_ea);
2512 }
2513
2514 /* implementation use extended attributes */
2515 if (udf_rw32(extattr->type) == 2048) {
2516 assert(appl_attr_loc == l_ea);
2517
2518 /* calculate and write extended attribute header checksum */
2519 implext = (struct impl_extattr_entry *) extattr;
2520 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2521 spos = (uint16_t *) implext->data;
2522 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2523 }
2524
2525 /* application use extended attributes */
2526 assert(udf_rw32(extattr->type) != 65536);
2527 assert(appl_attr_loc == l_ea);
2528
2529 /* append the attribute at the end of the current space */
2530 bpos = data + udf_rw32(*l_eap);
2531 a_l = udf_rw32(extattr->a_l);
2532
2533 /* update impl. attribute locations */
2534 if (udf_rw32(extattr->type) < 2048) {
2535 impl_attr_loc = l_ea + a_l;
2536 appl_attr_loc = l_ea + a_l;
2537 }
2538 if (udf_rw32(extattr->type) == 2048) {
2539 appl_attr_loc = l_ea + a_l;
2540 }
2541
2542 /* copy and advance */
2543 memcpy(bpos, extattr, a_l);
2544 l_ea += a_l;
2545 *l_eap = udf_rw32(l_ea);
2546
2547 /* do the `dance` again backwards */
2548 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2549 if (impl_attr_loc == l_ea)
2550 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2551 if (appl_attr_loc == l_ea)
2552 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2553 }
2554
2555 /* store offsets */
2556 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2557 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2558 }
2559
2560
2561 /* --------------------------------------------------------------------- */
2562
2563 static int
2564 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2565 {
2566 struct udf_mount *ump;
2567 struct udf_logvol_info *lvinfo;
2568 struct impl_extattr_entry *implext;
2569 struct vatlvext_extattr_entry lvext;
2570 const char *extstr = "*UDF VAT LVExtension";
2571 uint64_t vat_uniqueid;
2572 uint32_t offset, a_l;
2573 uint8_t *ea_start, *lvextpos;
2574 int error;
2575
2576 /* get mountpoint and lvinfo */
2577 ump = vat_node->ump;
2578 lvinfo = ump->logvol_info;
2579
2580 /* get information from fe/efe */
2581 if (vat_node->fe) {
2582 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2583 ea_start = vat_node->fe->data;
2584 } else {
2585 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2586 ea_start = vat_node->efe->data;
2587 }
2588
2589 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2590 if (error)
2591 return error;
2592
2593 implext = (struct impl_extattr_entry *) (ea_start + offset);
2594 error = udf_impl_extattr_check(implext);
2595 if (error)
2596 return error;
2597
2598 /* paranoia */
2599 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2600 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2601 return EINVAL;
2602 }
2603
2604 /*
2605 * we have found our "VAT LVExtension attribute. BUT due to a
2606 * bug in the specification it might not be word aligned so
2607 * copy first to avoid panics on some machines (!!)
2608 */
2609 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2610 lvextpos = implext->data + udf_rw32(implext->iu_l);
2611 memcpy(&lvext, lvextpos, sizeof(lvext));
2612
2613 /* check if it was updated the last time */
2614 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2615 lvinfo->num_files = lvext.num_files;
2616 lvinfo->num_directories = lvext.num_directories;
2617 udf_update_logvolname(ump, lvext.logvol_id);
2618 } else {
2619 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2620 /* replace VAT LVExt by free space EA */
2621 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2622 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2623 udf_calc_impl_extattr_checksum(implext);
2624 }
2625
2626 return 0;
2627 }
2628
2629
2630 static int
2631 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2632 {
2633 struct udf_mount *ump;
2634 struct udf_logvol_info *lvinfo;
2635 struct impl_extattr_entry *implext;
2636 struct vatlvext_extattr_entry lvext;
2637 const char *extstr = "*UDF VAT LVExtension";
2638 uint64_t vat_uniqueid;
2639 uint32_t offset, a_l;
2640 uint8_t *ea_start, *lvextpos;
2641 int error;
2642
2643 /* get mountpoint and lvinfo */
2644 ump = vat_node->ump;
2645 lvinfo = ump->logvol_info;
2646
2647 /* get information from fe/efe */
2648 if (vat_node->fe) {
2649 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2650 ea_start = vat_node->fe->data;
2651 } else {
2652 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2653 ea_start = vat_node->efe->data;
2654 }
2655
2656 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2657 if (error)
2658 return error;
2659 /* found, it existed */
2660
2661 /* paranoia */
2662 implext = (struct impl_extattr_entry *) (ea_start + offset);
2663 error = udf_impl_extattr_check(implext);
2664 if (error) {
2665 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2666 return error;
2667 }
2668 /* it is correct */
2669
2670 /*
2671 * we have found our "VAT LVExtension attribute. BUT due to a
2672 * bug in the specification it might not be word aligned so
2673 * copy first to avoid panics on some machines (!!)
2674 */
2675 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2676 lvextpos = implext->data + udf_rw32(implext->iu_l);
2677
2678 lvext.unique_id_chk = vat_uniqueid;
2679 lvext.num_files = lvinfo->num_files;
2680 lvext.num_directories = lvinfo->num_directories;
2681 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2682
2683 memcpy(lvextpos, &lvext, sizeof(lvext));
2684
2685 return 0;
2686 }
2687
2688 /* --------------------------------------------------------------------- */
2689
2690 int
2691 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2692 {
2693 struct udf_mount *ump = vat_node->ump;
2694
2695 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2696 return EINVAL;
2697
2698 memcpy(blob, ump->vat_table + offset, size);
2699 return 0;
2700 }
2701
2702 int
2703 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2704 {
2705 struct udf_mount *ump = vat_node->ump;
2706 uint32_t offset_high;
2707 uint8_t *new_vat_table;
2708
2709 /* extent VAT allocation if needed */
2710 offset_high = offset + size;
2711 if (offset_high >= ump->vat_table_alloc_len) {
2712 /* realloc */
2713 new_vat_table = realloc(ump->vat_table,
2714 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2715 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2716 if (!new_vat_table) {
2717 printf("udf_vat_write: can't extent VAT, out of mem\n");
2718 return ENOMEM;
2719 }
2720 ump->vat_table = new_vat_table;
2721 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2722 }
2723 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2724
2725 memcpy(ump->vat_table + offset, blob, size);
2726 return 0;
2727 }
2728
2729 /* --------------------------------------------------------------------- */
2730
2731 /* TODO support previous VAT location writeout */
2732 static int
2733 udf_update_vat_descriptor(struct udf_mount *ump)
2734 {
2735 struct udf_node *vat_node = ump->vat_node;
2736 struct udf_logvol_info *lvinfo = ump->logvol_info;
2737 struct icb_tag *icbtag;
2738 struct udf_oldvat_tail *oldvat_tl;
2739 struct udf_vat *vat;
2740 uint64_t unique_id;
2741 uint32_t lb_size;
2742 uint8_t *raw_vat;
2743 int filetype, error;
2744
2745 KASSERT(vat_node);
2746 KASSERT(lvinfo);
2747 lb_size = udf_rw32(ump->logical_vol->lb_size);
2748
2749 /* get our new unique_id */
2750 unique_id = udf_advance_uniqueid(ump);
2751
2752 /* get information from fe/efe */
2753 if (vat_node->fe) {
2754 icbtag = &vat_node->fe->icbtag;
2755 vat_node->fe->unique_id = udf_rw64(unique_id);
2756 } else {
2757 icbtag = &vat_node->efe->icbtag;
2758 vat_node->efe->unique_id = udf_rw64(unique_id);
2759 }
2760
2761 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2762 filetype = icbtag->file_type;
2763 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2764
2765 /* allocate piece to process head or tail of VAT file */
2766 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2767
2768 if (filetype == 0) {
2769 /*
2770 * Update "*UDF VAT LVExtension" extended attribute from the
2771 * lvint if present.
2772 */
2773 udf_update_vat_extattr_from_lvid(vat_node);
2774
2775 /* setup identifying regid */
2776 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2777 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2778
2779 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2780 udf_add_udf_regid(ump, &oldvat_tl->id);
2781 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2782
2783 /* write out new tail of virtual allocation table file */
2784 error = udf_vat_write(vat_node, raw_vat,
2785 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2786 } else {
2787 /* compose the VAT2 header */
2788 vat = (struct udf_vat *) raw_vat;
2789 memset(vat, 0, sizeof(struct udf_vat));
2790
2791 vat->header_len = udf_rw16(152); /* as per spec */
2792 vat->impl_use_len = udf_rw16(0);
2793 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2794 vat->prev_vat = udf_rw32(0xffffffff);
2795 vat->num_files = lvinfo->num_files;
2796 vat->num_directories = lvinfo->num_directories;
2797 vat->min_udf_readver = lvinfo->min_udf_readver;
2798 vat->min_udf_writever = lvinfo->min_udf_writever;
2799 vat->max_udf_writever = lvinfo->max_udf_writever;
2800
2801 error = udf_vat_write(vat_node, raw_vat,
2802 sizeof(struct udf_vat), 0);
2803 }
2804 free(raw_vat, M_TEMP);
2805
2806 return error; /* success! */
2807 }
2808
2809
2810 int
2811 udf_writeout_vat(struct udf_mount *ump)
2812 {
2813 struct udf_node *vat_node = ump->vat_node;
2814 uint32_t vat_length;
2815 int error;
2816
2817 KASSERT(vat_node);
2818
2819 DPRINTF(CALL, ("udf_writeout_vat\n"));
2820
2821 // mutex_enter(&ump->allocate_mutex);
2822 udf_update_vat_descriptor(ump);
2823
2824 /* write out the VAT contents ; TODO intelligent writing */
2825 vat_length = ump->vat_table_len;
2826 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2827 ump->vat_table, ump->vat_table_len, 0,
2828 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2829 if (error) {
2830 printf("udf_writeout_vat: failed to write out VAT contents\n");
2831 goto out;
2832 }
2833
2834 // mutex_exit(&ump->allocate_mutex);
2835
2836 error = vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2837 if (error)
2838 goto out;
2839 error = VOP_FSYNC(ump->vat_node->vnode,
2840 FSCRED, FSYNC_WAIT, 0, 0);
2841 if (error)
2842 printf("udf_writeout_vat: error writing VAT node!\n");
2843 out:
2844
2845 return error;
2846 }
2847
2848 /* --------------------------------------------------------------------- */
2849
2850 /*
2851 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2852 * descriptor. If OK, read in complete VAT file.
2853 */
2854
2855 static int
2856 udf_check_for_vat(struct udf_node *vat_node)
2857 {
2858 struct udf_mount *ump;
2859 struct icb_tag *icbtag;
2860 struct timestamp *mtime;
2861 struct udf_vat *vat;
2862 struct udf_oldvat_tail *oldvat_tl;
2863 struct udf_logvol_info *lvinfo;
2864 uint64_t unique_id;
2865 uint32_t vat_length;
2866 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2867 uint32_t sector_size;
2868 uint32_t *raw_vat;
2869 uint8_t *vat_table;
2870 char *regid_name;
2871 int filetype;
2872 int error;
2873
2874 /* vat_length is really 64 bits though impossible */
2875
2876 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2877 if (!vat_node)
2878 return ENOENT;
2879
2880 /* get mount info */
2881 ump = vat_node->ump;
2882 sector_size = udf_rw32(ump->logical_vol->lb_size);
2883
2884 /* check assertions */
2885 assert(vat_node->fe || vat_node->efe);
2886 assert(ump->logvol_integrity);
2887
2888 /* set vnode type to regular file or we can't read from it! */
2889 vat_node->vnode->v_type = VREG;
2890
2891 /* get information from fe/efe */
2892 if (vat_node->fe) {
2893 vat_length = udf_rw64(vat_node->fe->inf_len);
2894 icbtag = &vat_node->fe->icbtag;
2895 mtime = &vat_node->fe->mtime;
2896 unique_id = udf_rw64(vat_node->fe->unique_id);
2897 } else {
2898 vat_length = udf_rw64(vat_node->efe->inf_len);
2899 icbtag = &vat_node->efe->icbtag;
2900 mtime = &vat_node->efe->mtime;
2901 unique_id = udf_rw64(vat_node->efe->unique_id);
2902 }
2903
2904 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2905 filetype = icbtag->file_type;
2906 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2907 return ENOENT;
2908
2909 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2910
2911 vat_table_alloc_len =
2912 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2913 * UDF_VAT_CHUNKSIZE;
2914
2915 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2916 M_CANFAIL | M_WAITOK);
2917 if (vat_table == NULL) {
2918 printf("allocation of %d bytes failed for VAT\n",
2919 vat_table_alloc_len);
2920 return ENOMEM;
2921 }
2922
2923 /* allocate piece to read in head or tail of VAT file */
2924 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2925
2926 /*
2927 * check contents of the file if its the old 1.50 VAT table format.
2928 * Its notoriously broken and allthough some implementations support an
2929 * extention as defined in the UDF 1.50 errata document, its doubtfull
2930 * to be useable since a lot of implementations don't maintain it.
2931 */
2932 lvinfo = ump->logvol_info;
2933
2934 if (filetype == 0) {
2935 /* definition */
2936 vat_offset = 0;
2937 vat_entries = (vat_length-36)/4;
2938
2939 /* read in tail of virtual allocation table file */
2940 error = vn_rdwr(UIO_READ, vat_node->vnode,
2941 (uint8_t *) raw_vat,
2942 sizeof(struct udf_oldvat_tail),
2943 vat_entries * 4,
2944 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2945 NULL, NULL);
2946 if (error)
2947 goto out;
2948
2949 /* check 1.50 VAT */
2950 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2951 regid_name = (char *) oldvat_tl->id.id;
2952 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2953 if (error) {
2954 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2955 error = ENOENT;
2956 goto out;
2957 }
2958
2959 /*
2960 * update LVID from "*UDF VAT LVExtension" extended attribute
2961 * if present.
2962 */
2963 udf_update_lvid_from_vat_extattr(vat_node);
2964 } else {
2965 /* read in head of virtual allocation table file */
2966 error = vn_rdwr(UIO_READ, vat_node->vnode,
2967 (uint8_t *) raw_vat,
2968 sizeof(struct udf_vat), 0,
2969 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2970 NULL, NULL);
2971 if (error)
2972 goto out;
2973
2974 /* definition */
2975 vat = (struct udf_vat *) raw_vat;
2976 vat_offset = vat->header_len;
2977 vat_entries = (vat_length - vat_offset)/4;
2978
2979 assert(lvinfo);
2980 lvinfo->num_files = vat->num_files;
2981 lvinfo->num_directories = vat->num_directories;
2982 lvinfo->min_udf_readver = vat->min_udf_readver;
2983 lvinfo->min_udf_writever = vat->min_udf_writever;
2984 lvinfo->max_udf_writever = vat->max_udf_writever;
2985
2986 udf_update_logvolname(ump, vat->logvol_id);
2987 }
2988
2989 /* read in complete VAT file */
2990 error = vn_rdwr(UIO_READ, vat_node->vnode,
2991 vat_table,
2992 vat_length, 0,
2993 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2994 NULL, NULL);
2995 if (error)
2996 printf("read in of complete VAT file failed (error %d)\n",
2997 error);
2998 if (error)
2999 goto out;
3000
3001 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3002 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3003 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3004 ump->logvol_integrity->time = *mtime;
3005
3006 ump->vat_table_len = vat_length;
3007 ump->vat_table_alloc_len = vat_table_alloc_len;
3008 ump->vat_table = vat_table;
3009 ump->vat_offset = vat_offset;
3010 ump->vat_entries = vat_entries;
3011 ump->vat_last_free_lb = 0; /* start at beginning */
3012
3013 out:
3014 if (error) {
3015 if (vat_table)
3016 free(vat_table, M_UDFVOLD);
3017 }
3018 free(raw_vat, M_TEMP);
3019
3020 return error;
3021 }
3022
3023 /* --------------------------------------------------------------------- */
3024
3025 static int
3026 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3027 {
3028 struct udf_node *vat_node;
3029 struct long_ad icb_loc;
3030 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3031 int error;
3032
3033 /* mapping info not needed */
3034 mapping = mapping;
3035
3036 vat_loc = ump->last_possible_vat_location;
3037 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3038
3039 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3040 vat_loc, early_vat_loc));
3041 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3042 late_vat_loc = vat_loc + 1024;
3043
3044 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3045 vat_loc, early_vat_loc));
3046
3047 /* start looking from the end of the range */
3048 do {
3049 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3050 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3051 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3052
3053 error = udf_get_node(ump, &icb_loc, &vat_node);
3054 if (!error) {
3055 error = udf_check_for_vat(vat_node);
3056 DPRINTFIF(VOLUMES, !error,
3057 ("VAT accepted at %d\n", vat_loc));
3058 if (!error)
3059 break;
3060 }
3061 if (vat_node) {
3062 vput(vat_node->vnode);
3063 vat_node = NULL;
3064 }
3065 vat_loc--; /* walk backwards */
3066 } while (vat_loc >= early_vat_loc);
3067
3068 /* keep our VAT node around */
3069 if (vat_node) {
3070 UDF_SET_SYSTEMFILE(vat_node->vnode);
3071 ump->vat_node = vat_node;
3072 }
3073
3074 return error;
3075 }
3076
3077 /* --------------------------------------------------------------------- */
3078
3079 static int
3080 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3081 {
3082 union dscrptr *dscr;
3083 struct part_map_spare *pms = &mapping->pms;
3084 uint32_t lb_num;
3085 int spar, error;
3086
3087 /*
3088 * The partition mapping passed on to us specifies the information we
3089 * need to locate and initialise the sparable partition mapping
3090 * information we need.
3091 */
3092
3093 DPRINTF(VOLUMES, ("Read sparable table\n"));
3094 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3095 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3096
3097 for (spar = 0; spar < pms->n_st; spar++) {
3098 lb_num = pms->st_loc[spar];
3099 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3100 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3101 if (!error && dscr) {
3102 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3103 if (ump->sparing_table)
3104 free(ump->sparing_table, M_UDFVOLD);
3105 ump->sparing_table = &dscr->spt;
3106 dscr = NULL;
3107 DPRINTF(VOLUMES,
3108 ("Sparing table accepted (%d entries)\n",
3109 udf_rw16(ump->sparing_table->rt_l)));
3110 break; /* we're done */
3111 }
3112 }
3113 if (dscr)
3114 free(dscr, M_UDFVOLD);
3115 }
3116
3117 if (ump->sparing_table)
3118 return 0;
3119
3120 return ENOENT;
3121 }
3122
3123 /* --------------------------------------------------------------------- */
3124
3125 static int
3126 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3127 {
3128 struct part_map_meta *pmm = &mapping->pmm;
3129 struct long_ad icb_loc;
3130 struct vnode *vp;
3131 uint16_t raw_phys_part, phys_part;
3132 int error;
3133
3134 /*
3135 * BUGALERT: some rogue implementations use random physical
3136 * partition numbers to break other implementations so lookup
3137 * the number.
3138 */
3139
3140 /* extract our allocation parameters set up on format */
3141 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3142 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3143 ump->metadata_flags = mapping->pmm.flags;
3144
3145 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3146 raw_phys_part = udf_rw16(pmm->part_num);
3147 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3148
3149 icb_loc.loc.part_num = udf_rw16(phys_part);
3150
3151 DPRINTF(VOLUMES, ("Metadata file\n"));
3152 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3153 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3154 if (ump->metadata_node) {
3155 vp = ump->metadata_node->vnode;
3156 UDF_SET_SYSTEMFILE(vp);
3157 }
3158
3159 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3160 if (icb_loc.loc.lb_num != -1) {
3161 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3162 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3163 if (ump->metadatamirror_node) {
3164 vp = ump->metadatamirror_node->vnode;
3165 UDF_SET_SYSTEMFILE(vp);
3166 }
3167 }
3168
3169 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3170 if (icb_loc.loc.lb_num != -1) {
3171 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3172 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3173 if (ump->metadatabitmap_node) {
3174 vp = ump->metadatabitmap_node->vnode;
3175 UDF_SET_SYSTEMFILE(vp);
3176 }
3177 }
3178
3179 /* if we're mounting read-only we relax the requirements */
3180 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3181 error = EFAULT;
3182 if (ump->metadata_node)
3183 error = 0;
3184 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3185 printf( "udf mount: Metadata file not readable, "
3186 "substituting Metadata copy file\n");
3187 ump->metadata_node = ump->metadatamirror_node;
3188 ump->metadatamirror_node = NULL;
3189 error = 0;
3190 }
3191 } else {
3192 /* mounting read/write */
3193 /* XXX DISABLED! metadata writing is not working yet XXX */
3194 if (error)
3195 error = EROFS;
3196 }
3197 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3198 "metadata files\n"));
3199 return error;
3200 }
3201
3202 /* --------------------------------------------------------------------- */
3203
3204 int
3205 udf_read_vds_tables(struct udf_mount *ump)
3206 {
3207 union udf_pmap *mapping;
3208 /* struct udf_args *args = &ump->mount_args; */
3209 uint32_t n_pm, mt_l;
3210 uint32_t log_part;
3211 uint8_t *pmap_pos;
3212 int pmap_size;
3213 int error;
3214
3215 /* Iterate (again) over the part mappings for locations */
3216 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3217 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3218 pmap_pos = ump->logical_vol->maps;
3219
3220 for (log_part = 0; log_part < n_pm; log_part++) {
3221 mapping = (union udf_pmap *) pmap_pos;
3222 switch (ump->vtop_tp[log_part]) {
3223 case UDF_VTOP_TYPE_PHYS :
3224 /* nothing */
3225 break;
3226 case UDF_VTOP_TYPE_VIRT :
3227 /* search and load VAT */
3228 error = udf_search_vat(ump, mapping);
3229 if (error)
3230 return ENOENT;
3231 break;
3232 case UDF_VTOP_TYPE_SPARABLE :
3233 /* load one of the sparable tables */
3234 error = udf_read_sparables(ump, mapping);
3235 if (error)
3236 return ENOENT;
3237 break;
3238 case UDF_VTOP_TYPE_META :
3239 /* load the associated file descriptors */
3240 error = udf_read_metadata_nodes(ump, mapping);
3241 if (error)
3242 return ENOENT;
3243 break;
3244 default:
3245 break;
3246 }
3247 pmap_size = pmap_pos[1];
3248 pmap_pos += pmap_size;
3249 }
3250
3251 /* read in and check unallocated and free space info if writing */
3252 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3253 error = udf_read_physical_partition_spacetables(ump);
3254 if (error)
3255 return error;
3256
3257 /* also read in metadata partition spacebitmap if defined */
3258 error = udf_read_metadata_partition_spacetable(ump);
3259 return error;
3260 }
3261
3262 return 0;
3263 }
3264
3265 /* --------------------------------------------------------------------- */
3266
3267 int
3268 udf_read_rootdirs(struct udf_mount *ump)
3269 {
3270 union dscrptr *dscr;
3271 /* struct udf_args *args = &ump->mount_args; */
3272 struct udf_node *rootdir_node, *streamdir_node;
3273 struct long_ad fsd_loc, *dir_loc;
3274 uint32_t lb_num, dummy;
3275 uint32_t fsd_len;
3276 int dscr_type;
3277 int error;
3278
3279 /* TODO implement FSD reading in separate function like integrity? */
3280 /* get fileset descriptor sequence */
3281 fsd_loc = ump->logical_vol->lv_fsd_loc;
3282 fsd_len = udf_rw32(fsd_loc.len);
3283
3284 dscr = NULL;
3285 error = 0;
3286 while (fsd_len || error) {
3287 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3288 /* translate fsd_loc to lb_num */
3289 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3290 if (error)
3291 break;
3292 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3293 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3294 /* end markers */
3295 if (error || (dscr == NULL))
3296 break;
3297
3298 /* analyse */
3299 dscr_type = udf_rw16(dscr->tag.id);
3300 if (dscr_type == TAGID_TERM)
3301 break;
3302 if (dscr_type != TAGID_FSD) {
3303 free(dscr, M_UDFVOLD);
3304 return ENOENT;
3305 }
3306
3307 /*
3308 * TODO check for multiple fileset descriptors; its only
3309 * picking the last now. Also check for FSD
3310 * correctness/interpretability
3311 */
3312
3313 /* update */
3314 if (ump->fileset_desc) {
3315 free(ump->fileset_desc, M_UDFVOLD);
3316 }
3317 ump->fileset_desc = &dscr->fsd;
3318 dscr = NULL;
3319
3320 /* continue to the next fsd */
3321 fsd_len -= ump->discinfo.sector_size;
3322 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3323
3324 /* follow up to fsd->next_ex (long_ad) if its not null */
3325 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3326 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3327 fsd_loc = ump->fileset_desc->next_ex;
3328 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3329 }
3330 }
3331 if (dscr)
3332 free(dscr, M_UDFVOLD);
3333
3334 /* there has to be one */
3335 if (ump->fileset_desc == NULL)
3336 return ENOENT;
3337
3338 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3339 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3340 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3341
3342 /*
3343 * Now the FSD is known, read in the rootdirectory and if one exists,
3344 * the system stream dir. Some files in the system streamdir are not
3345 * wanted in this implementation since they are not maintained. If
3346 * writing is enabled we'll delete these files if they exist.
3347 */
3348
3349 rootdir_node = streamdir_node = NULL;
3350 dir_loc = NULL;
3351
3352 /* try to read in the rootdir */
3353 dir_loc = &ump->fileset_desc->rootdir_icb;
3354 error = udf_get_node(ump, dir_loc, &rootdir_node);
3355 if (error)
3356 return ENOENT;
3357
3358 /* aparently it read in fine */
3359
3360 /*
3361 * Try the system stream directory; not very likely in the ones we
3362 * test, but for completeness.
3363 */
3364 dir_loc = &ump->fileset_desc->streamdir_icb;
3365 if (udf_rw32(dir_loc->len)) {
3366 printf("udf_read_rootdirs: streamdir defined ");
3367 error = udf_get_node(ump, dir_loc, &streamdir_node);
3368 if (error) {
3369 printf("but error in streamdir reading\n");
3370 } else {
3371 printf("but ignored\n");
3372 /*
3373 * TODO process streamdir `baddies' i.e. files we dont
3374 * want if R/W
3375 */
3376 }
3377 }
3378
3379 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3380
3381 /* release the vnodes again; they'll be auto-recycled later */
3382 if (streamdir_node) {
3383 vput(streamdir_node->vnode);
3384 }
3385 if (rootdir_node) {
3386 vput(rootdir_node->vnode);
3387 }
3388
3389 return 0;
3390 }
3391
3392 /* --------------------------------------------------------------------- */
3393
3394 /* To make absolutely sure we are NOT returning zero, add one :) */
3395
3396 long
3397 udf_get_node_id(const struct long_ad *icbptr)
3398 {
3399 /* ought to be enough since each mountpoint has its own chain */
3400 return udf_rw32(icbptr->loc.lb_num) + 1;
3401 }
3402
3403
3404 int
3405 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3406 {
3407 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3408 return -1;
3409 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3410 return 1;
3411
3412 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3413 return -1;
3414 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3415 return 1;
3416
3417 return 0;
3418 }
3419
3420
3421 static int
3422 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3423 {
3424 const struct udf_node *a_node = a;
3425 const struct udf_node *b_node = b;
3426
3427 return udf_compare_icb(&a_node->loc, &b_node->loc);
3428 }
3429
3430
3431 static int
3432 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3433 {
3434 const struct udf_node *a_node = a;
3435 const struct long_ad * const icb = key;
3436
3437 return udf_compare_icb(&a_node->loc, icb);
3438 }
3439
3440
3441 static const rb_tree_ops_t udf_node_rbtree_ops = {
3442 .rbto_compare_nodes = udf_compare_rbnodes,
3443 .rbto_compare_key = udf_compare_rbnode_icb,
3444 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3445 .rbto_context = NULL
3446 };
3447
3448
3449 void
3450 udf_init_nodes_tree(struct udf_mount *ump)
3451 {
3452
3453 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3454 }
3455
3456
3457 static struct udf_node *
3458 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3459 {
3460 struct udf_node *udf_node;
3461 struct vnode *vp;
3462
3463 loop:
3464 mutex_enter(&ump->ihash_lock);
3465
3466 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3467 if (udf_node) {
3468 vp = udf_node->vnode;
3469 assert(vp);
3470 mutex_enter(vp->v_interlock);
3471 mutex_exit(&ump->ihash_lock);
3472 if (vget(vp, LK_EXCLUSIVE))
3473 goto loop;
3474 return udf_node;
3475 }
3476 mutex_exit(&ump->ihash_lock);
3477
3478 return NULL;
3479 }
3480
3481
3482 static void
3483 udf_register_node(struct udf_node *udf_node)
3484 {
3485 struct udf_mount *ump = udf_node->ump;
3486
3487 /* add node to the rb tree */
3488 mutex_enter(&ump->ihash_lock);
3489 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3490 mutex_exit(&ump->ihash_lock);
3491 }
3492
3493
3494 static void
3495 udf_deregister_node(struct udf_node *udf_node)
3496 {
3497 struct udf_mount *ump = udf_node->ump;
3498
3499 /* remove node from the rb tree */
3500 mutex_enter(&ump->ihash_lock);
3501 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3502 mutex_exit(&ump->ihash_lock);
3503 }
3504
3505 /* --------------------------------------------------------------------- */
3506
3507 static int
3508 udf_validate_session_start(struct udf_mount *ump)
3509 {
3510 struct mmc_trackinfo trackinfo;
3511 struct vrs_desc *vrs;
3512 uint32_t tracknr, sessionnr, sector, sector_size;
3513 uint32_t iso9660_vrs, write_track_start;
3514 uint8_t *buffer, *blank, *pos;
3515 int blks, max_sectors, vrs_len;
3516 int error;
3517
3518 /* disc appendable? */
3519 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3520 return EROFS;
3521
3522 /* already written here? if so, there should be an ISO VDS */
3523 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3524 return 0;
3525
3526 /*
3527 * Check if the first track of the session is blank and if so, copy or
3528 * create a dummy ISO descriptor so the disc is valid again.
3529 */
3530
3531 tracknr = ump->discinfo.first_track_last_session;
3532 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3533 trackinfo.tracknr = tracknr;
3534 error = udf_update_trackinfo(ump, &trackinfo);
3535 if (error)
3536 return error;
3537
3538 udf_dump_trackinfo(&trackinfo);
3539 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3540 KASSERT(trackinfo.sessionnr > 1);
3541
3542 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3543 write_track_start = trackinfo.next_writable;
3544
3545 /* we have to copy the ISO VRS from a former session */
3546 DPRINTF(VOLUMES, ("validate_session_start: "
3547 "blank or reserved track, copying VRS\n"));
3548
3549 /* sessionnr should be the session we're mounting */
3550 sessionnr = ump->mount_args.sessionnr;
3551
3552 /* start at the first track */
3553 tracknr = ump->discinfo.first_track;
3554 while (tracknr <= ump->discinfo.num_tracks) {
3555 trackinfo.tracknr = tracknr;
3556 error = udf_update_trackinfo(ump, &trackinfo);
3557 if (error) {
3558 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3559 return error;
3560 }
3561 if (trackinfo.sessionnr == sessionnr)
3562 break;
3563 tracknr++;
3564 }
3565 if (trackinfo.sessionnr != sessionnr) {
3566 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3567 return ENOENT;
3568 }
3569
3570 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3571 udf_dump_trackinfo(&trackinfo);
3572
3573 /*
3574 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3575 * minimum ISO `sector size' 2048
3576 */
3577 sector_size = ump->discinfo.sector_size;
3578 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3579 + trackinfo.track_start;
3580
3581 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3582 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3583 blks = MAX(1, 2048 / sector_size);
3584
3585 error = 0;
3586 for (sector = 0; sector < max_sectors; sector += blks) {
3587 pos = buffer + sector * sector_size;
3588 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3589 iso9660_vrs + sector, blks);
3590 if (error)
3591 break;
3592 /* check this ISO descriptor */
3593 vrs = (struct vrs_desc *) pos;
3594 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3595 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3596 continue;
3597 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3598 continue;
3599 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3600 continue;
3601 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3602 continue;
3603 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3604 continue;
3605 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3606 break;
3607 /* now what? for now, end of sequence */
3608 break;
3609 }
3610 vrs_len = sector + blks;
3611 if (error) {
3612 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3613 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3614
3615 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3616
3617 vrs = (struct vrs_desc *) (buffer);
3618 vrs->struct_type = 0;
3619 vrs->version = 1;
3620 memcpy(vrs->identifier,VRS_BEA01, 5);
3621
3622 vrs = (struct vrs_desc *) (buffer + 2048);
3623 vrs->struct_type = 0;
3624 vrs->version = 1;
3625 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3626 memcpy(vrs->identifier,VRS_NSR02, 5);
3627 } else {
3628 memcpy(vrs->identifier,VRS_NSR03, 5);
3629 }
3630
3631 vrs = (struct vrs_desc *) (buffer + 4096);
3632 vrs->struct_type = 0;
3633 vrs->version = 1;
3634 memcpy(vrs->identifier, VRS_TEA01, 5);
3635
3636 vrs_len = 3*blks;
3637 }
3638
3639 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3640
3641 /*
3642 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3643 * minimum ISO `sector size' 2048
3644 */
3645 sector_size = ump->discinfo.sector_size;
3646 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3647 + write_track_start;
3648
3649 /* write out 32 kb */
3650 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3651 memset(blank, 0, sector_size);
3652 error = 0;
3653 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3654 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3655 blank, sector, 1);
3656 if (error)
3657 break;
3658 }
3659 if (!error) {
3660 /* write out our ISO VRS */
3661 KASSERT(sector == iso9660_vrs);
3662 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3663 sector, vrs_len);
3664 sector += vrs_len;
3665 }
3666 if (!error) {
3667 /* fill upto the first anchor at S+256 */
3668 for (; sector < write_track_start+256; sector++) {
3669 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3670 blank, sector, 1);
3671 if (error)
3672 break;
3673 }
3674 }
3675 if (!error) {
3676 /* write out anchor; write at ABSOLUTE place! */
3677 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3678 (union dscrptr *) ump->anchors[0], sector, sector);
3679 if (error)
3680 printf("writeout of anchor failed!\n");
3681 }
3682
3683 free(blank, M_TEMP);
3684 free(buffer, M_TEMP);
3685
3686 if (error)
3687 printf("udf_open_session: error writing iso vrs! : "
3688 "leaving disc in compromised state!\n");
3689
3690 /* synchronise device caches */
3691 (void) udf_synchronise_caches(ump);
3692
3693 return error;
3694 }
3695
3696
3697 int
3698 udf_open_logvol(struct udf_mount *ump)
3699 {
3700 int logvol_integrity;
3701 int error;
3702
3703 /* already/still open? */
3704 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3705 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3706 return 0;
3707
3708 /* can we open it ? */
3709 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3710 return EROFS;
3711
3712 /* setup write parameters */
3713 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3714 if ((error = udf_setup_writeparams(ump)) != 0)
3715 return error;
3716
3717 /* determine data and metadata tracks (most likely same) */
3718 error = udf_search_writing_tracks(ump);
3719 if (error) {
3720 /* most likely lack of space */
3721 printf("udf_open_logvol: error searching writing tracks\n");
3722 return EROFS;
3723 }
3724
3725 /* writeout/update lvint on disc or only in memory */
3726 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3727 if (ump->lvopen & UDF_OPEN_SESSION) {
3728 /* TODO optional track reservation opening */
3729 error = udf_validate_session_start(ump);
3730 if (error)
3731 return error;
3732
3733 /* determine data and metadata tracks again */
3734 error = udf_search_writing_tracks(ump);
3735 }
3736
3737 /* mark it open */
3738 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3739
3740 /* do we need to write it out? */
3741 if (ump->lvopen & UDF_WRITE_LVINT) {
3742 error = udf_writeout_lvint(ump, ump->lvopen);
3743 /* if we couldn't write it mark it closed again */
3744 if (error) {
3745 ump->logvol_integrity->integrity_type =
3746 udf_rw32(UDF_INTEGRITY_CLOSED);
3747 return error;
3748 }
3749 }
3750
3751 return 0;
3752 }
3753
3754
3755 int
3756 udf_close_logvol(struct udf_mount *ump, int mntflags)
3757 {
3758 struct vnode *devvp = ump->devvp;
3759 struct mmc_op mmc_op;
3760 int logvol_integrity;
3761 int error = 0, error1 = 0, error2 = 0;
3762 int tracknr;
3763 int nvats, n, nok;
3764
3765 /* already/still closed? */
3766 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3767 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3768 return 0;
3769
3770 /* writeout/update lvint or write out VAT */
3771 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3772 #ifdef DIAGNOSTIC
3773 if (ump->lvclose & UDF_CLOSE_SESSION)
3774 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3775 #endif
3776
3777 if (ump->lvclose & UDF_WRITE_VAT) {
3778 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3779
3780 /* write out the VAT data and all its descriptors */
3781 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3782 udf_writeout_vat(ump);
3783 (void) vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3784
3785 (void) VOP_FSYNC(ump->vat_node->vnode,
3786 FSCRED, FSYNC_WAIT, 0, 0);
3787
3788 if (ump->lvclose & UDF_CLOSE_SESSION) {
3789 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3790 "as requested\n"));
3791 }
3792
3793 /* at least two DVD packets and 3 CD-R packets */
3794 nvats = 32;
3795
3796 #if notyet
3797 /*
3798 * TODO calculate the available space and if the disc is
3799 * allmost full, write out till end-256-1 with banks, write
3800 * AVDP and fill up with VATs, then close session and close
3801 * disc.
3802 */
3803 if (ump->lvclose & UDF_FINALISE_DISC) {
3804 error = udf_write_phys_dscr_sync(ump, NULL,
3805 UDF_C_FLOAT_DSCR,
3806 (union dscrptr *) ump->anchors[0],
3807 0, 0);
3808 if (error)
3809 printf("writeout of anchor failed!\n");
3810
3811 /* pad space with VAT ICBs */
3812 nvats = 256;
3813 }
3814 #endif
3815
3816 /* write out a number of VAT nodes */
3817 nok = 0;
3818 for (n = 0; n < nvats; n++) {
3819 /* will now only write last FE/EFE */
3820 ump->vat_node->i_flags |= IN_MODIFIED;
3821 error = VOP_FSYNC(ump->vat_node->vnode,
3822 FSCRED, FSYNC_WAIT, 0, 0);
3823 if (!error)
3824 nok++;
3825 }
3826 if (nok < 14) {
3827 /* arbitrary; but at least one or two CD frames */
3828 printf("writeout of at least 14 VATs failed\n");
3829 return error;
3830 }
3831 }
3832
3833 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3834
3835 /* finish closing of session */
3836 if (ump->lvclose & UDF_CLOSE_SESSION) {
3837 error = udf_validate_session_start(ump);
3838 if (error)
3839 return error;
3840
3841 (void) udf_synchronise_caches(ump);
3842
3843 /* close all associated tracks */
3844 tracknr = ump->discinfo.first_track_last_session;
3845 error = 0;
3846 while (tracknr <= ump->discinfo.last_track_last_session) {
3847 DPRINTF(VOLUMES, ("\tclosing possible open "
3848 "track %d\n", tracknr));
3849 memset(&mmc_op, 0, sizeof(mmc_op));
3850 mmc_op.operation = MMC_OP_CLOSETRACK;
3851 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3852 mmc_op.tracknr = tracknr;
3853 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3854 FKIOCTL, NOCRED);
3855 if (error)
3856 printf("udf_close_logvol: closing of "
3857 "track %d failed\n", tracknr);
3858 tracknr ++;
3859 }
3860 if (!error) {
3861 DPRINTF(VOLUMES, ("closing session\n"));
3862 memset(&mmc_op, 0, sizeof(mmc_op));
3863 mmc_op.operation = MMC_OP_CLOSESESSION;
3864 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3865 mmc_op.sessionnr = ump->discinfo.num_sessions;
3866 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3867 FKIOCTL, NOCRED);
3868 if (error)
3869 printf("udf_close_logvol: closing of session"
3870 "failed\n");
3871 }
3872 if (!error)
3873 ump->lvopen |= UDF_OPEN_SESSION;
3874 if (error) {
3875 printf("udf_close_logvol: leaving disc as it is\n");
3876 ump->lvclose &= ~UDF_FINALISE_DISC;
3877 }
3878 }
3879
3880 if (ump->lvclose & UDF_FINALISE_DISC) {
3881 memset(&mmc_op, 0, sizeof(mmc_op));
3882 mmc_op.operation = MMC_OP_FINALISEDISC;
3883 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3884 mmc_op.sessionnr = ump->discinfo.num_sessions;
3885 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3886 FKIOCTL, NOCRED);
3887 if (error)
3888 printf("udf_close_logvol: finalising disc"
3889 "failed\n");
3890 }
3891
3892 /* write out partition bitmaps if requested */
3893 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3894 /* sync writeout metadata spacetable if existing */
3895 error1 = udf_write_metadata_partition_spacetable(ump, true);
3896 if (error1)
3897 printf( "udf_close_logvol: writeout of metadata space "
3898 "bitmap failed\n");
3899
3900 /* sync writeout partition spacetables */
3901 error2 = udf_write_physical_partition_spacetables(ump, true);
3902 if (error2)
3903 printf( "udf_close_logvol: writeout of space tables "
3904 "failed\n");
3905
3906 if (error1 || error2)
3907 return (error1 | error2);
3908
3909 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3910 }
3911
3912 /* write out metadata partition nodes if requested */
3913 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3914 /* sync writeout metadata descriptor node */
3915 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3916 if (error1)
3917 printf( "udf_close_logvol: writeout of metadata partition "
3918 "node failed\n");
3919
3920 /* duplicate metadata partition descriptor if needed */
3921 udf_synchronise_metadatamirror_node(ump);
3922
3923 /* sync writeout metadatamirror descriptor node */
3924 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3925 if (error2)
3926 printf( "udf_close_logvol: writeout of metadata partition "
3927 "mirror node failed\n");
3928
3929 if (error1 || error2)
3930 return (error1 | error2);
3931
3932 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3933 }
3934
3935 /* mark it closed */
3936 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3937
3938 /* do we need to write out the logical volume integrity? */
3939 if (ump->lvclose & UDF_WRITE_LVINT)
3940 error = udf_writeout_lvint(ump, ump->lvopen);
3941 if (error) {
3942 /* HELP now what? mark it open again for now */
3943 ump->logvol_integrity->integrity_type =
3944 udf_rw32(UDF_INTEGRITY_OPEN);
3945 return error;
3946 }
3947
3948 (void) udf_synchronise_caches(ump);
3949
3950 return 0;
3951 }
3952
3953 /* --------------------------------------------------------------------- */
3954
3955 /*
3956 * Genfs interfacing
3957 *
3958 * static const struct genfs_ops udf_genfsops = {
3959 * .gop_size = genfs_size,
3960 * size of transfers
3961 * .gop_alloc = udf_gop_alloc,
3962 * allocate len bytes at offset
3963 * .gop_write = genfs_gop_write,
3964 * putpages interface code
3965 * .gop_markupdate = udf_gop_markupdate,
3966 * set update/modify flags etc.
3967 * }
3968 */
3969
3970 /*
3971 * Genfs interface. These four functions are the only ones defined though not
3972 * documented... great....
3973 */
3974
3975 /*
3976 * Called for allocating an extent of the file either by VOP_WRITE() or by
3977 * genfs filling up gaps.
3978 */
3979 static int
3980 udf_gop_alloc(struct vnode *vp, off_t off,
3981 off_t len, int flags, kauth_cred_t cred)
3982 {
3983 struct udf_node *udf_node = VTOI(vp);
3984 struct udf_mount *ump = udf_node->ump;
3985 uint64_t lb_start, lb_end;
3986 uint32_t lb_size, num_lb;
3987 int udf_c_type, vpart_num, can_fail;
3988 int error;
3989
3990 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3991 off, len, flags? "SYNC":"NONE"));
3992
3993 /*
3994 * request the pages of our vnode and see how many pages will need to
3995 * be allocated and reserve that space
3996 */
3997 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3998 lb_start = off / lb_size;
3999 lb_end = (off + len + lb_size -1) / lb_size;
4000 num_lb = lb_end - lb_start;
4001
4002 udf_c_type = udf_get_c_type(udf_node);
4003 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4004
4005 /* all requests can fail */
4006 can_fail = true;
4007
4008 /* fid's (directories) can't fail */
4009 if (udf_c_type == UDF_C_FIDS)
4010 can_fail = false;
4011
4012 /* system files can't fail */
4013 if (vp->v_vflag & VV_SYSTEM)
4014 can_fail = false;
4015
4016 error = udf_reserve_space(ump, udf_node, udf_c_type,
4017 vpart_num, num_lb, can_fail);
4018
4019 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4020 lb_start, lb_end, num_lb));
4021
4022 return error;
4023 }
4024
4025
4026 /*
4027 * callback from genfs to update our flags
4028 */
4029 static void
4030 udf_gop_markupdate(struct vnode *vp, int flags)
4031 {
4032 struct udf_node *udf_node = VTOI(vp);
4033 u_long mask = 0;
4034
4035 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4036 mask = IN_ACCESS;
4037 }
4038 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4039 if (vp->v_type == VREG) {
4040 mask |= IN_CHANGE | IN_UPDATE;
4041 } else {
4042 mask |= IN_MODIFY;
4043 }
4044 }
4045 if (mask) {
4046 udf_node->i_flags |= mask;
4047 }
4048 }
4049
4050
4051 static const struct genfs_ops udf_genfsops = {
4052 .gop_size = genfs_size,
4053 .gop_alloc = udf_gop_alloc,
4054 .gop_write = genfs_gop_write_rwmap,
4055 .gop_markupdate = udf_gop_markupdate,
4056 };
4057
4058
4059 /* --------------------------------------------------------------------- */
4060
4061 int
4062 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4063 {
4064 union dscrptr *dscr;
4065 int error;
4066
4067 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4068 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4069
4070 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4071 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4072 (void) udf_validate_tag_and_crc_sums(dscr);
4073
4074 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4075 dscr, sector, sector);
4076
4077 free(dscr, M_TEMP);
4078
4079 return error;
4080 }
4081
4082
4083 /* --------------------------------------------------------------------- */
4084
4085 /* UDF<->unix converters */
4086
4087 /* --------------------------------------------------------------------- */
4088
4089 static mode_t
4090 udf_perm_to_unix_mode(uint32_t perm)
4091 {
4092 mode_t mode;
4093
4094 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4095 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4096 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4097
4098 return mode;
4099 }
4100
4101 /* --------------------------------------------------------------------- */
4102
4103 static uint32_t
4104 unix_mode_to_udf_perm(mode_t mode)
4105 {
4106 uint32_t perm;
4107
4108 perm = ((mode & S_IRWXO) );
4109 perm |= ((mode & S_IRWXG) << 2);
4110 perm |= ((mode & S_IRWXU) << 4);
4111 perm |= ((mode & S_IWOTH) << 3);
4112 perm |= ((mode & S_IWGRP) << 5);
4113 perm |= ((mode & S_IWUSR) << 7);
4114
4115 return perm;
4116 }
4117
4118 /* --------------------------------------------------------------------- */
4119
4120 static uint32_t
4121 udf_icb_to_unix_filetype(uint32_t icbftype)
4122 {
4123 switch (icbftype) {
4124 case UDF_ICB_FILETYPE_DIRECTORY :
4125 case UDF_ICB_FILETYPE_STREAMDIR :
4126 return S_IFDIR;
4127 case UDF_ICB_FILETYPE_FIFO :
4128 return S_IFIFO;
4129 case UDF_ICB_FILETYPE_CHARDEVICE :
4130 return S_IFCHR;
4131 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4132 return S_IFBLK;
4133 case UDF_ICB_FILETYPE_RANDOMACCESS :
4134 case UDF_ICB_FILETYPE_REALTIME :
4135 return S_IFREG;
4136 case UDF_ICB_FILETYPE_SYMLINK :
4137 return S_IFLNK;
4138 case UDF_ICB_FILETYPE_SOCKET :
4139 return S_IFSOCK;
4140 }
4141 /* no idea what this is */
4142 return 0;
4143 }
4144
4145 /* --------------------------------------------------------------------- */
4146
4147 void
4148 udf_to_unix_name(char *result, int result_len, char *id, int len,
4149 struct charspec *chsp)
4150 {
4151 uint16_t *raw_name, *unix_name;
4152 uint16_t *inchp, ch;
4153 uint8_t *outchp;
4154 const char *osta_id = "OSTA Compressed Unicode";
4155 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4156
4157 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4158 unix_name = raw_name + 1024; /* split space in half */
4159 assert(sizeof(char) == sizeof(uint8_t));
4160 outchp = (uint8_t *) result;
4161
4162 is_osta_typ0 = (chsp->type == 0);
4163 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4164 if (is_osta_typ0) {
4165 /* TODO clean up */
4166 *raw_name = *unix_name = 0;
4167 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4168 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4169 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4170 /* output UTF8 */
4171 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4172 ch = *inchp;
4173 nout = wput_utf8(outchp, result_len, ch);
4174 outchp += nout; result_len -= nout;
4175 if (!ch) break;
4176 }
4177 *outchp++ = 0;
4178 } else {
4179 /* assume 8bit char length byte latin-1 */
4180 assert(*id == 8);
4181 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4182 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4183 }
4184 free(raw_name, M_UDFTEMP);
4185 }
4186
4187 /* --------------------------------------------------------------------- */
4188
4189 void
4190 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4191 struct charspec *chsp)
4192 {
4193 uint16_t *raw_name;
4194 uint16_t *outchp;
4195 const char *inchp;
4196 const char *osta_id = "OSTA Compressed Unicode";
4197 int udf_chars, is_osta_typ0, bits;
4198 size_t cnt;
4199
4200 /* allocate temporary unicode-16 buffer */
4201 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4202
4203 /* convert utf8 to unicode-16 */
4204 *raw_name = 0;
4205 inchp = name;
4206 outchp = raw_name;
4207 bits = 8;
4208 for (cnt = name_len, udf_chars = 0; cnt;) {
4209 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4210 *outchp = wget_utf8(&inchp, &cnt);
4211 if (*outchp > 0xff)
4212 bits=16;
4213 outchp++;
4214 udf_chars++;
4215 }
4216 /* null terminate just in case */
4217 *outchp++ = 0;
4218
4219 is_osta_typ0 = (chsp->type == 0);
4220 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4221 if (is_osta_typ0) {
4222 udf_chars = udf_CompressUnicode(udf_chars, bits,
4223 (unicode_t *) raw_name,
4224 (byte *) result);
4225 } else {
4226 printf("unix to udf name: no CHSP0 ?\n");
4227 /* XXX assume 8bit char length byte latin-1 */
4228 *result++ = 8; udf_chars = 1;
4229 strncpy(result, name + 1, name_len);
4230 udf_chars += name_len;
4231 }
4232 *result_len = udf_chars;
4233 free(raw_name, M_UDFTEMP);
4234 }
4235
4236 /* --------------------------------------------------------------------- */
4237
4238 void
4239 udf_timestamp_to_timespec(struct udf_mount *ump,
4240 struct timestamp *timestamp,
4241 struct timespec *timespec)
4242 {
4243 struct clock_ymdhms ymdhms;
4244 uint32_t usecs, secs, nsecs;
4245 uint16_t tz;
4246
4247 /* fill in ymdhms structure from timestamp */
4248 memset(&ymdhms, 0, sizeof(ymdhms));
4249 ymdhms.dt_year = udf_rw16(timestamp->year);
4250 ymdhms.dt_mon = timestamp->month;
4251 ymdhms.dt_day = timestamp->day;
4252 ymdhms.dt_wday = 0; /* ? */
4253 ymdhms.dt_hour = timestamp->hour;
4254 ymdhms.dt_min = timestamp->minute;
4255 ymdhms.dt_sec = timestamp->second;
4256
4257 secs = clock_ymdhms_to_secs(&ymdhms);
4258 usecs = timestamp->usec +
4259 100*timestamp->hund_usec + 10000*timestamp->centisec;
4260 nsecs = usecs * 1000;
4261
4262 /*
4263 * Calculate the time zone. The timezone is 12 bit signed 2's
4264 * compliment, so we gotta do some extra magic to handle it right.
4265 */
4266 tz = udf_rw16(timestamp->type_tz);
4267 tz &= 0x0fff; /* only lower 12 bits are significant */
4268 if (tz & 0x0800) /* sign extention */
4269 tz |= 0xf000;
4270
4271 /* TODO check timezone conversion */
4272 /* check if we are specified a timezone to convert */
4273 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4274 if ((int16_t) tz != -2047)
4275 secs -= (int16_t) tz * 60;
4276 } else {
4277 secs -= ump->mount_args.gmtoff;
4278 }
4279
4280 timespec->tv_sec = secs;
4281 timespec->tv_nsec = nsecs;
4282 }
4283
4284
4285 void
4286 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4287 {
4288 struct clock_ymdhms ymdhms;
4289 uint32_t husec, usec, csec;
4290
4291 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4292
4293 usec = timespec->tv_nsec / 1000;
4294 husec = usec / 100;
4295 usec -= husec * 100; /* only 0-99 in usec */
4296 csec = husec / 100; /* only 0-99 in csec */
4297 husec -= csec * 100; /* only 0-99 in husec */
4298
4299 /* set method 1 for CUT/GMT */
4300 timestamp->type_tz = udf_rw16((1<<12) + 0);
4301 timestamp->year = udf_rw16(ymdhms.dt_year);
4302 timestamp->month = ymdhms.dt_mon;
4303 timestamp->day = ymdhms.dt_day;
4304 timestamp->hour = ymdhms.dt_hour;
4305 timestamp->minute = ymdhms.dt_min;
4306 timestamp->second = ymdhms.dt_sec;
4307 timestamp->centisec = csec;
4308 timestamp->hund_usec = husec;
4309 timestamp->usec = usec;
4310 }
4311
4312 /* --------------------------------------------------------------------- */
4313
4314 /*
4315 * Attribute and filetypes converters with get/set pairs
4316 */
4317
4318 uint32_t
4319 udf_getaccessmode(struct udf_node *udf_node)
4320 {
4321 struct file_entry *fe = udf_node->fe;
4322 struct extfile_entry *efe = udf_node->efe;
4323 uint32_t udf_perm, icbftype;
4324 uint32_t mode, ftype;
4325 uint16_t icbflags;
4326
4327 UDF_LOCK_NODE(udf_node, 0);
4328 if (fe) {
4329 udf_perm = udf_rw32(fe->perm);
4330 icbftype = fe->icbtag.file_type;
4331 icbflags = udf_rw16(fe->icbtag.flags);
4332 } else {
4333 assert(udf_node->efe);
4334 udf_perm = udf_rw32(efe->perm);
4335 icbftype = efe->icbtag.file_type;
4336 icbflags = udf_rw16(efe->icbtag.flags);
4337 }
4338
4339 mode = udf_perm_to_unix_mode(udf_perm);
4340 ftype = udf_icb_to_unix_filetype(icbftype);
4341
4342 /* set suid, sgid, sticky from flags in fe/efe */
4343 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4344 mode |= S_ISUID;
4345 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4346 mode |= S_ISGID;
4347 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4348 mode |= S_ISVTX;
4349
4350 UDF_UNLOCK_NODE(udf_node, 0);
4351
4352 return mode | ftype;
4353 }
4354
4355
4356 void
4357 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4358 {
4359 struct file_entry *fe = udf_node->fe;
4360 struct extfile_entry *efe = udf_node->efe;
4361 uint32_t udf_perm;
4362 uint16_t icbflags;
4363
4364 UDF_LOCK_NODE(udf_node, 0);
4365 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4366 if (fe) {
4367 icbflags = udf_rw16(fe->icbtag.flags);
4368 } else {
4369 icbflags = udf_rw16(efe->icbtag.flags);
4370 }
4371
4372 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4373 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4374 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4375 if (mode & S_ISUID)
4376 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4377 if (mode & S_ISGID)
4378 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4379 if (mode & S_ISVTX)
4380 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4381
4382 if (fe) {
4383 fe->perm = udf_rw32(udf_perm);
4384 fe->icbtag.flags = udf_rw16(icbflags);
4385 } else {
4386 efe->perm = udf_rw32(udf_perm);
4387 efe->icbtag.flags = udf_rw16(icbflags);
4388 }
4389
4390 UDF_UNLOCK_NODE(udf_node, 0);
4391 }
4392
4393
4394 void
4395 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4396 {
4397 struct udf_mount *ump = udf_node->ump;
4398 struct file_entry *fe = udf_node->fe;
4399 struct extfile_entry *efe = udf_node->efe;
4400 uid_t uid;
4401 gid_t gid;
4402
4403 UDF_LOCK_NODE(udf_node, 0);
4404 if (fe) {
4405 uid = (uid_t)udf_rw32(fe->uid);
4406 gid = (gid_t)udf_rw32(fe->gid);
4407 } else {
4408 assert(udf_node->efe);
4409 uid = (uid_t)udf_rw32(efe->uid);
4410 gid = (gid_t)udf_rw32(efe->gid);
4411 }
4412
4413 /* do the uid/gid translation game */
4414 if (uid == (uid_t) -1)
4415 uid = ump->mount_args.anon_uid;
4416 if (gid == (gid_t) -1)
4417 gid = ump->mount_args.anon_gid;
4418
4419 *uidp = uid;
4420 *gidp = gid;
4421
4422 UDF_UNLOCK_NODE(udf_node, 0);
4423 }
4424
4425
4426 void
4427 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4428 {
4429 struct udf_mount *ump = udf_node->ump;
4430 struct file_entry *fe = udf_node->fe;
4431 struct extfile_entry *efe = udf_node->efe;
4432 uid_t nobody_uid;
4433 gid_t nobody_gid;
4434
4435 UDF_LOCK_NODE(udf_node, 0);
4436
4437 /* do the uid/gid translation game */
4438 nobody_uid = ump->mount_args.nobody_uid;
4439 nobody_gid = ump->mount_args.nobody_gid;
4440 if (uid == nobody_uid)
4441 uid = (uid_t) -1;
4442 if (gid == nobody_gid)
4443 gid = (gid_t) -1;
4444
4445 if (fe) {
4446 fe->uid = udf_rw32((uint32_t) uid);
4447 fe->gid = udf_rw32((uint32_t) gid);
4448 } else {
4449 efe->uid = udf_rw32((uint32_t) uid);
4450 efe->gid = udf_rw32((uint32_t) gid);
4451 }
4452
4453 UDF_UNLOCK_NODE(udf_node, 0);
4454 }
4455
4456
4457 /* --------------------------------------------------------------------- */
4458
4459
4460 static int
4461 dirhash_fill(struct udf_node *dir_node)
4462 {
4463 struct vnode *dvp = dir_node->vnode;
4464 struct dirhash *dirh;
4465 struct file_entry *fe = dir_node->fe;
4466 struct extfile_entry *efe = dir_node->efe;
4467 struct fileid_desc *fid;
4468 struct dirent *dirent;
4469 uint64_t file_size, pre_diroffset, diroffset;
4470 uint32_t lb_size;
4471 int error;
4472
4473 /* make sure we have a dirhash to work on */
4474 dirh = dir_node->dir_hash;
4475 KASSERT(dirh);
4476 KASSERT(dirh->refcnt > 0);
4477
4478 if (dirh->flags & DIRH_BROKEN)
4479 return EIO;
4480 if (dirh->flags & DIRH_COMPLETE)
4481 return 0;
4482
4483 /* make sure we have a clean dirhash to add to */
4484 dirhash_purge_entries(dirh);
4485
4486 /* get directory filesize */
4487 if (fe) {
4488 file_size = udf_rw64(fe->inf_len);
4489 } else {
4490 assert(efe);
4491 file_size = udf_rw64(efe->inf_len);
4492 }
4493
4494 /* allocate temporary space for fid */
4495 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4496 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4497
4498 /* allocate temporary space for dirent */
4499 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4500
4501 error = 0;
4502 diroffset = 0;
4503 while (diroffset < file_size) {
4504 /* transfer a new fid/dirent */
4505 pre_diroffset = diroffset;
4506 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4507 if (error) {
4508 /* TODO what to do? continue but not add? */
4509 dirh->flags |= DIRH_BROKEN;
4510 dirhash_purge_entries(dirh);
4511 break;
4512 }
4513
4514 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4515 /* register deleted extent for reuse */
4516 dirhash_enter_freed(dirh, pre_diroffset,
4517 udf_fidsize(fid));
4518 } else {
4519 /* append to the dirhash */
4520 dirhash_enter(dirh, dirent, pre_diroffset,
4521 udf_fidsize(fid), 0);
4522 }
4523 }
4524 dirh->flags |= DIRH_COMPLETE;
4525
4526 free(fid, M_UDFTEMP);
4527 free(dirent, M_UDFTEMP);
4528
4529 return error;
4530 }
4531
4532
4533 /* --------------------------------------------------------------------- */
4534
4535 /*
4536 * Directory read and manipulation functions.
4537 *
4538 */
4539
4540 int
4541 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4542 struct long_ad *icb_loc, int *found)
4543 {
4544 struct udf_node *dir_node = VTOI(vp);
4545 struct dirhash *dirh;
4546 struct dirhash_entry *dirh_ep;
4547 struct fileid_desc *fid;
4548 struct dirent *dirent;
4549 uint64_t diroffset;
4550 uint32_t lb_size;
4551 int hit, error;
4552
4553 /* set default return */
4554 *found = 0;
4555
4556 /* get our dirhash and make sure its read in */
4557 dirhash_get(&dir_node->dir_hash);
4558 error = dirhash_fill(dir_node);
4559 if (error) {
4560 dirhash_put(dir_node->dir_hash);
4561 return error;
4562 }
4563 dirh = dir_node->dir_hash;
4564
4565 /* allocate temporary space for fid */
4566 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4567 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4568 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4569
4570 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4571 namelen, namelen, name));
4572
4573 /* search our dirhash hits */
4574 memset(icb_loc, 0, sizeof(*icb_loc));
4575 dirh_ep = NULL;
4576 for (;;) {
4577 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4578 /* if no hit, abort the search */
4579 if (!hit)
4580 break;
4581
4582 /* check this hit */
4583 diroffset = dirh_ep->offset;
4584
4585 /* transfer a new fid/dirent */
4586 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4587 if (error)
4588 break;
4589
4590 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4591 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4592
4593 /* see if its our entry */
4594 #ifdef DIAGNOSTIC
4595 if (dirent->d_namlen != namelen) {
4596 printf("WARNING: dirhash_lookup() returned wrong "
4597 "d_namelen: %d and ought to be %d\n",
4598 dirent->d_namlen, namelen);
4599 printf("\tlooked for `%s' and got `%s'\n",
4600 name, dirent->d_name);
4601 }
4602 #endif
4603 if (strncmp(dirent->d_name, name, namelen) == 0) {
4604 *found = 1;
4605 *icb_loc = fid->icb;
4606 break;
4607 }
4608 }
4609 free(fid, M_UDFTEMP);
4610 free(dirent, M_UDFTEMP);
4611
4612 dirhash_put(dir_node->dir_hash);
4613
4614 return error;
4615 }
4616
4617 /* --------------------------------------------------------------------- */
4618
4619 static int
4620 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4621 struct long_ad *node_icb, struct long_ad *parent_icb,
4622 uint64_t parent_unique_id)
4623 {
4624 struct timespec now;
4625 struct icb_tag *icb;
4626 struct filetimes_extattr_entry *ft_extattr;
4627 uint64_t unique_id;
4628 uint32_t fidsize, lb_num;
4629 uint8_t *bpos;
4630 int crclen, attrlen;
4631
4632 lb_num = udf_rw32(node_icb->loc.lb_num);
4633 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4634 icb = &fe->icbtag;
4635
4636 /*
4637 * Always use strategy type 4 unless on WORM wich we don't support
4638 * (yet). Fill in defaults and set for internal allocation of data.
4639 */
4640 icb->strat_type = udf_rw16(4);
4641 icb->max_num_entries = udf_rw16(1);
4642 icb->file_type = file_type; /* 8 bit */
4643 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4644
4645 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4646 fe->link_cnt = udf_rw16(0); /* explicit setting */
4647
4648 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4649
4650 vfs_timestamp(&now);
4651 udf_timespec_to_timestamp(&now, &fe->atime);
4652 udf_timespec_to_timestamp(&now, &fe->attrtime);
4653 udf_timespec_to_timestamp(&now, &fe->mtime);
4654
4655 udf_set_regid(&fe->imp_id, IMPL_NAME);
4656 udf_add_impl_regid(ump, &fe->imp_id);
4657
4658 unique_id = udf_advance_uniqueid(ump);
4659 fe->unique_id = udf_rw64(unique_id);
4660 fe->l_ea = udf_rw32(0);
4661
4662 /* create extended attribute to record our creation time */
4663 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4664 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4665 memset(ft_extattr, 0, attrlen);
4666 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4667 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4668 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4669 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4670 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4671 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4672
4673 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4674 (struct extattr_entry *) ft_extattr);
4675 free(ft_extattr, M_UDFTEMP);
4676
4677 /* if its a directory, create '..' */
4678 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4679 fidsize = 0;
4680 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4681 fidsize = udf_create_parentfid(ump,
4682 (struct fileid_desc *) bpos, parent_icb,
4683 parent_unique_id);
4684 }
4685
4686 /* record fidlength information */
4687 fe->inf_len = udf_rw64(fidsize);
4688 fe->l_ad = udf_rw32(fidsize);
4689 fe->logblks_rec = udf_rw64(0); /* intern */
4690
4691 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4692 crclen += udf_rw32(fe->l_ea) + fidsize;
4693 fe->tag.desc_crc_len = udf_rw16(crclen);
4694
4695 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4696
4697 return fidsize;
4698 }
4699
4700 /* --------------------------------------------------------------------- */
4701
4702 static int
4703 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4704 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4705 uint64_t parent_unique_id)
4706 {
4707 struct timespec now;
4708 struct icb_tag *icb;
4709 uint64_t unique_id;
4710 uint32_t fidsize, lb_num;
4711 uint8_t *bpos;
4712 int crclen;
4713
4714 lb_num = udf_rw32(node_icb->loc.lb_num);
4715 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4716 icb = &efe->icbtag;
4717
4718 /*
4719 * Always use strategy type 4 unless on WORM wich we don't support
4720 * (yet). Fill in defaults and set for internal allocation of data.
4721 */
4722 icb->strat_type = udf_rw16(4);
4723 icb->max_num_entries = udf_rw16(1);
4724 icb->file_type = file_type; /* 8 bit */
4725 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4726
4727 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4728 efe->link_cnt = udf_rw16(0); /* explicit setting */
4729
4730 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4731
4732 vfs_timestamp(&now);
4733 udf_timespec_to_timestamp(&now, &efe->ctime);
4734 udf_timespec_to_timestamp(&now, &efe->atime);
4735 udf_timespec_to_timestamp(&now, &efe->attrtime);
4736 udf_timespec_to_timestamp(&now, &efe->mtime);
4737
4738 udf_set_regid(&efe->imp_id, IMPL_NAME);
4739 udf_add_impl_regid(ump, &efe->imp_id);
4740
4741 unique_id = udf_advance_uniqueid(ump);
4742 efe->unique_id = udf_rw64(unique_id);
4743 efe->l_ea = udf_rw32(0);
4744
4745 /* if its a directory, create '..' */
4746 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4747 fidsize = 0;
4748 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4749 fidsize = udf_create_parentfid(ump,
4750 (struct fileid_desc *) bpos, parent_icb,
4751 parent_unique_id);
4752 }
4753
4754 /* record fidlength information */
4755 efe->obj_size = udf_rw64(fidsize);
4756 efe->inf_len = udf_rw64(fidsize);
4757 efe->l_ad = udf_rw32(fidsize);
4758 efe->logblks_rec = udf_rw64(0); /* intern */
4759
4760 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4761 crclen += udf_rw32(efe->l_ea) + fidsize;
4762 efe->tag.desc_crc_len = udf_rw16(crclen);
4763
4764 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4765
4766 return fidsize;
4767 }
4768
4769 /* --------------------------------------------------------------------- */
4770
4771 int
4772 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4773 struct udf_node *udf_node, struct componentname *cnp)
4774 {
4775 struct vnode *dvp = dir_node->vnode;
4776 struct dirhash *dirh;
4777 struct dirhash_entry *dirh_ep;
4778 struct file_entry *fe = dir_node->fe;
4779 struct extfile_entry *efe = dir_node->efe;
4780 struct fileid_desc *fid;
4781 struct dirent *dirent;
4782 uint64_t file_size, diroffset;
4783 uint32_t lb_size, fidsize;
4784 int found, error;
4785 char const *name = cnp->cn_nameptr;
4786 int namelen = cnp->cn_namelen;
4787 int hit, refcnt;
4788
4789 /* get our dirhash and make sure its read in */
4790 dirhash_get(&dir_node->dir_hash);
4791 error = dirhash_fill(dir_node);
4792 if (error) {
4793 dirhash_put(dir_node->dir_hash);
4794 return error;
4795 }
4796 dirh = dir_node->dir_hash;
4797
4798 /* get directory filesize */
4799 if (fe) {
4800 file_size = udf_rw64(fe->inf_len);
4801 } else {
4802 assert(efe);
4803 file_size = udf_rw64(efe->inf_len);
4804 }
4805
4806 /* allocate temporary space for fid */
4807 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4808 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4809 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4810
4811 /* search our dirhash hits */
4812 found = 0;
4813 dirh_ep = NULL;
4814 for (;;) {
4815 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4816 /* if no hit, abort the search */
4817 if (!hit)
4818 break;
4819
4820 /* check this hit */
4821 diroffset = dirh_ep->offset;
4822
4823 /* transfer a new fid/dirent */
4824 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4825 if (error)
4826 break;
4827
4828 /* see if its our entry */
4829 KASSERT(dirent->d_namlen == namelen);
4830 if (strncmp(dirent->d_name, name, namelen) == 0) {
4831 found = 1;
4832 break;
4833 }
4834 }
4835
4836 if (!found)
4837 error = ENOENT;
4838 if (error)
4839 goto error_out;
4840
4841 /* mark deleted */
4842 fid->file_char |= UDF_FILE_CHAR_DEL;
4843 #ifdef UDF_COMPLETE_DELETE
4844 memset(&fid->icb, 0, sizeof(fid->icb));
4845 #endif
4846 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4847
4848 /* get size of fid and compensate for the read_fid_stream advance */
4849 fidsize = udf_fidsize(fid);
4850 diroffset -= fidsize;
4851
4852 /* write out */
4853 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4854 fid, fidsize, diroffset,
4855 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4856 FSCRED, NULL, NULL);
4857 if (error)
4858 goto error_out;
4859
4860 /* get reference count of attached node */
4861 if (udf_node->fe) {
4862 refcnt = udf_rw16(udf_node->fe->link_cnt);
4863 } else {
4864 KASSERT(udf_node->efe);
4865 refcnt = udf_rw16(udf_node->efe->link_cnt);
4866 }
4867 #ifdef UDF_COMPLETE_DELETE
4868 /* substract reference counter in attached node */
4869 refcnt -= 1;
4870 if (udf_node->fe) {
4871 udf_node->fe->link_cnt = udf_rw16(refcnt);
4872 } else {
4873 udf_node->efe->link_cnt = udf_rw16(refcnt);
4874 }
4875
4876 /* prevent writeout when refcnt == 0 */
4877 if (refcnt == 0)
4878 udf_node->i_flags |= IN_DELETED;
4879
4880 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4881 int drefcnt;
4882
4883 /* substract reference counter in directory node */
4884 /* note subtract 2 (?) for its was also backreferenced */
4885 if (dir_node->fe) {
4886 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4887 drefcnt -= 1;
4888 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4889 } else {
4890 KASSERT(dir_node->efe);
4891 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4892 drefcnt -= 1;
4893 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4894 }
4895 }
4896
4897 udf_node->i_flags |= IN_MODIFIED;
4898 dir_node->i_flags |= IN_MODIFIED;
4899 #endif
4900 /* if it is/was a hardlink adjust the file count */
4901 if (refcnt > 0)
4902 udf_adjust_filecount(udf_node, -1);
4903
4904 /* remove from the dirhash */
4905 dirhash_remove(dirh, dirent, diroffset,
4906 udf_fidsize(fid));
4907
4908 error_out:
4909 free(fid, M_UDFTEMP);
4910 free(dirent, M_UDFTEMP);
4911
4912 dirhash_put(dir_node->dir_hash);
4913
4914 return error;
4915 }
4916
4917 /* --------------------------------------------------------------------- */
4918
4919 int
4920 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4921 struct udf_node *new_parent_node)
4922 {
4923 struct vnode *dvp = dir_node->vnode;
4924 struct dirhash *dirh;
4925 struct dirhash_entry *dirh_ep;
4926 struct file_entry *fe;
4927 struct extfile_entry *efe;
4928 struct fileid_desc *fid;
4929 struct dirent *dirent;
4930 uint64_t file_size, diroffset;
4931 uint64_t new_parent_unique_id;
4932 uint32_t lb_size, fidsize;
4933 int found, error;
4934 char const *name = "..";
4935 int namelen = 2;
4936 int hit;
4937
4938 /* get our dirhash and make sure its read in */
4939 dirhash_get(&dir_node->dir_hash);
4940 error = dirhash_fill(dir_node);
4941 if (error) {
4942 dirhash_put(dir_node->dir_hash);
4943 return error;
4944 }
4945 dirh = dir_node->dir_hash;
4946
4947 /* get new parent's unique ID */
4948 fe = new_parent_node->fe;
4949 efe = new_parent_node->efe;
4950 if (fe) {
4951 new_parent_unique_id = udf_rw64(fe->unique_id);
4952 } else {
4953 assert(efe);
4954 new_parent_unique_id = udf_rw64(efe->unique_id);
4955 }
4956
4957 /* get directory filesize */
4958 fe = dir_node->fe;
4959 efe = dir_node->efe;
4960 if (fe) {
4961 file_size = udf_rw64(fe->inf_len);
4962 } else {
4963 assert(efe);
4964 file_size = udf_rw64(efe->inf_len);
4965 }
4966
4967 /* allocate temporary space for fid */
4968 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4969 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4970 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4971
4972 /*
4973 * NOTE the standard does not dictate the FID entry '..' should be
4974 * first, though in practice it will most likely be.
4975 */
4976
4977 /* search our dirhash hits */
4978 found = 0;
4979 dirh_ep = NULL;
4980 for (;;) {
4981 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4982 /* if no hit, abort the search */
4983 if (!hit)
4984 break;
4985
4986 /* check this hit */
4987 diroffset = dirh_ep->offset;
4988
4989 /* transfer a new fid/dirent */
4990 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4991 if (error)
4992 break;
4993
4994 /* see if its our entry */
4995 KASSERT(dirent->d_namlen == namelen);
4996 if (strncmp(dirent->d_name, name, namelen) == 0) {
4997 found = 1;
4998 break;
4999 }
5000 }
5001
5002 if (!found)
5003 error = ENOENT;
5004 if (error)
5005 goto error_out;
5006
5007 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5008 fid->icb = new_parent_node->write_loc;
5009 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5010
5011 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5012
5013 /* get size of fid and compensate for the read_fid_stream advance */
5014 fidsize = udf_fidsize(fid);
5015 diroffset -= fidsize;
5016
5017 /* write out */
5018 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5019 fid, fidsize, diroffset,
5020 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5021 FSCRED, NULL, NULL);
5022
5023 /* nothing to be done in the dirhash */
5024
5025 error_out:
5026 free(fid, M_UDFTEMP);
5027 free(dirent, M_UDFTEMP);
5028
5029 dirhash_put(dir_node->dir_hash);
5030
5031 return error;
5032 }
5033
5034 /* --------------------------------------------------------------------- */
5035
5036 /*
5037 * We are not allowed to split the fid tag itself over an logical block so
5038 * check the space remaining in the logical block.
5039 *
5040 * We try to select the smallest candidate for recycling or when none is
5041 * found, append a new one at the end of the directory.
5042 */
5043
5044 int
5045 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5046 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5047 {
5048 struct vnode *dvp = dir_node->vnode;
5049 struct dirhash *dirh;
5050 struct dirhash_entry *dirh_ep;
5051 struct fileid_desc *fid;
5052 struct icb_tag *icbtag;
5053 struct charspec osta_charspec;
5054 struct dirent dirent;
5055 uint64_t unique_id, dir_size;
5056 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5057 uint32_t chosen_size, chosen_size_diff;
5058 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5059 int file_char, refcnt, icbflags, addr_type, hit, error;
5060
5061 /* get our dirhash and make sure its read in */
5062 dirhash_get(&dir_node->dir_hash);
5063 error = dirhash_fill(dir_node);
5064 if (error) {
5065 dirhash_put(dir_node->dir_hash);
5066 return error;
5067 }
5068 dirh = dir_node->dir_hash;
5069
5070 /* get info */
5071 lb_size = udf_rw32(ump->logical_vol->lb_size);
5072 udf_osta_charset(&osta_charspec);
5073
5074 if (dir_node->fe) {
5075 dir_size = udf_rw64(dir_node->fe->inf_len);
5076 icbtag = &dir_node->fe->icbtag;
5077 } else {
5078 dir_size = udf_rw64(dir_node->efe->inf_len);
5079 icbtag = &dir_node->efe->icbtag;
5080 }
5081
5082 icbflags = udf_rw16(icbtag->flags);
5083 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5084
5085 if (udf_node->fe) {
5086 unique_id = udf_rw64(udf_node->fe->unique_id);
5087 refcnt = udf_rw16(udf_node->fe->link_cnt);
5088 } else {
5089 unique_id = udf_rw64(udf_node->efe->unique_id);
5090 refcnt = udf_rw16(udf_node->efe->link_cnt);
5091 }
5092
5093 if (refcnt > 0) {
5094 unique_id = udf_advance_uniqueid(ump);
5095 udf_adjust_filecount(udf_node, 1);
5096 }
5097
5098 /* determine file characteristics */
5099 file_char = 0; /* visible non deleted file and not stream metadata */
5100 if (vap->va_type == VDIR)
5101 file_char = UDF_FILE_CHAR_DIR;
5102
5103 /* malloc scrap buffer */
5104 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5105
5106 /* calculate _minimum_ fid size */
5107 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5108 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5109 fidsize = UDF_FID_SIZE + fid->l_fi;
5110 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5111
5112 /* find position that will fit the FID */
5113 chosen_fid_pos = dir_size;
5114 chosen_size = 0;
5115 chosen_size_diff = UINT_MAX;
5116
5117 /* shut up gcc */
5118 dirent.d_namlen = 0;
5119
5120 /* search our dirhash hits */
5121 error = 0;
5122 dirh_ep = NULL;
5123 for (;;) {
5124 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5125 /* if no hit, abort the search */
5126 if (!hit)
5127 break;
5128
5129 /* check this hit for size */
5130 this_fidsize = dirh_ep->entry_size;
5131
5132 /* check this hit */
5133 fid_pos = dirh_ep->offset;
5134 end_fid_pos = fid_pos + this_fidsize;
5135 size_diff = this_fidsize - fidsize;
5136 lb_rest = lb_size - (end_fid_pos % lb_size);
5137
5138 #ifndef UDF_COMPLETE_DELETE
5139 /* transfer a new fid/dirent */
5140 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5141 if (error)
5142 goto error_out;
5143
5144 /* only reuse entries that are wiped */
5145 /* check if the len + loc are marked zero */
5146 if (udf_rw32(fid->icb.len) != 0)
5147 continue;
5148 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5149 continue;
5150 if (udf_rw16(fid->icb.loc.part_num) != 0)
5151 continue;
5152 #endif /* UDF_COMPLETE_DELETE */
5153
5154 /* select if not splitting the tag and its smaller */
5155 if ((size_diff >= 0) &&
5156 (size_diff < chosen_size_diff) &&
5157 (lb_rest >= sizeof(struct desc_tag)))
5158 {
5159 /* UDF 2.3.4.2+3 specifies rules for iu size */
5160 if ((size_diff == 0) || (size_diff >= 32)) {
5161 chosen_fid_pos = fid_pos;
5162 chosen_size = this_fidsize;
5163 chosen_size_diff = size_diff;
5164 }
5165 }
5166 }
5167
5168
5169 /* extend directory if no other candidate found */
5170 if (chosen_size == 0) {
5171 chosen_fid_pos = dir_size;
5172 chosen_size = fidsize;
5173 chosen_size_diff = 0;
5174
5175 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5176 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5177 /* pre-grow directory to see if we're to switch */
5178 udf_grow_node(dir_node, dir_size + chosen_size);
5179
5180 icbflags = udf_rw16(icbtag->flags);
5181 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5182 }
5183
5184 /* make sure the next fid desc_tag won't be splitted */
5185 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5186 end_fid_pos = chosen_fid_pos + chosen_size;
5187 lb_rest = lb_size - (end_fid_pos % lb_size);
5188
5189 /* pad with implementation use regid if needed */
5190 if (lb_rest < sizeof(struct desc_tag))
5191 chosen_size += 32;
5192 }
5193 }
5194 chosen_size_diff = chosen_size - fidsize;
5195
5196 /* populate the FID */
5197 memset(fid, 0, lb_size);
5198 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5199 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5200 fid->file_char = file_char;
5201 fid->icb = udf_node->loc;
5202 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5203 fid->l_iu = udf_rw16(0);
5204
5205 if (chosen_size > fidsize) {
5206 /* insert implementation-use regid to space it correctly */
5207 fid->l_iu = udf_rw16(chosen_size_diff);
5208
5209 /* set implementation use */
5210 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5211 udf_add_impl_regid(ump, (struct regid *) fid->data);
5212 }
5213
5214 /* fill in name */
5215 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5216 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5217
5218 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5219 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5220
5221 /* writeout FID/update parent directory */
5222 error = vn_rdwr(UIO_WRITE, dvp,
5223 fid, chosen_size, chosen_fid_pos,
5224 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5225 FSCRED, NULL, NULL);
5226
5227 if (error)
5228 goto error_out;
5229
5230 /* add reference counter in attached node */
5231 if (udf_node->fe) {
5232 refcnt = udf_rw16(udf_node->fe->link_cnt);
5233 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5234 } else {
5235 KASSERT(udf_node->efe);
5236 refcnt = udf_rw16(udf_node->efe->link_cnt);
5237 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5238 }
5239
5240 /* mark not deleted if it was... just in case, but do warn */
5241 if (udf_node->i_flags & IN_DELETED) {
5242 printf("udf: warning, marking a file undeleted\n");
5243 udf_node->i_flags &= ~IN_DELETED;
5244 }
5245
5246 if (file_char & UDF_FILE_CHAR_DIR) {
5247 /* add reference counter in directory node for '..' */
5248 if (dir_node->fe) {
5249 refcnt = udf_rw16(dir_node->fe->link_cnt);
5250 refcnt++;
5251 dir_node->fe->link_cnt = udf_rw16(refcnt);
5252 } else {
5253 KASSERT(dir_node->efe);
5254 refcnt = udf_rw16(dir_node->efe->link_cnt);
5255 refcnt++;
5256 dir_node->efe->link_cnt = udf_rw16(refcnt);
5257 }
5258 }
5259
5260 /* append to the dirhash */
5261 /* NOTE do not use dirent anymore or it won't match later! */
5262 udf_to_unix_name(dirent.d_name, MAXNAMLEN,
5263 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5264 dirent.d_namlen = strlen(dirent.d_name);
5265 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5266 udf_fidsize(fid), 1);
5267
5268 /* note updates */
5269 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5270 /* VN_KNOTE(udf_node, ...) */
5271 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5272
5273 error_out:
5274 free(fid, M_TEMP);
5275
5276 dirhash_put(dir_node->dir_hash);
5277
5278 return error;
5279 }
5280
5281 /* --------------------------------------------------------------------- */
5282
5283 /*
5284 * Each node can have an attached streamdir node though not recursively. These
5285 * are otherwise known as named substreams/named extended attributes that have
5286 * no size limitations.
5287 *
5288 * `Normal' extended attributes are indicated with a number and are recorded
5289 * in either the fe/efe descriptor itself for small descriptors or recorded in
5290 * the attached extended attribute file. Since these spaces can get
5291 * fragmented, care ought to be taken.
5292 *
5293 * Since the size of the space reserved for allocation descriptors is limited,
5294 * there is a mechanim provided for extending this space; this is done by a
5295 * special extent to allow schrinking of the allocations without breaking the
5296 * linkage to the allocation extent descriptor.
5297 */
5298
5299 int
5300 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5301 struct udf_node **udf_noderes)
5302 {
5303 union dscrptr *dscr;
5304 struct udf_node *udf_node;
5305 struct vnode *nvp;
5306 struct long_ad icb_loc, last_fe_icb_loc;
5307 uint64_t file_size;
5308 uint32_t lb_size, sector, dummy;
5309 uint8_t *file_data;
5310 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5311 int slot, eof, error;
5312
5313 DPRINTF(NODE, ("udf_get_node called\n"));
5314 *udf_noderes = udf_node = NULL;
5315
5316 /* lock to disallow simultanious creation of same udf_node */
5317 mutex_enter(&ump->get_node_lock);
5318
5319 DPRINTF(NODE, ("\tlookup in hash table\n"));
5320 /* lookup in hash table */
5321 assert(ump);
5322 assert(node_icb_loc);
5323 udf_node = udf_node_lookup(ump, node_icb_loc);
5324 if (udf_node) {
5325 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5326 /* vnode is returned locked */
5327 *udf_noderes = udf_node;
5328 mutex_exit(&ump->get_node_lock);
5329 return 0;
5330 }
5331
5332 /* garbage check: translate udf_node_icb_loc to sectornr */
5333 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5334 if (error) {
5335 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5336 /* no use, this will fail anyway */
5337 mutex_exit(&ump->get_node_lock);
5338 return EINVAL;
5339 }
5340
5341 /* build udf_node (do initialise!) */
5342 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5343 memset(udf_node, 0, sizeof(struct udf_node));
5344
5345 DPRINTF(NODE, ("\tget new vnode\n"));
5346 /* give it a vnode */
5347 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp);
5348 if (error) {
5349 pool_put(&udf_node_pool, udf_node);
5350 mutex_exit(&ump->get_node_lock);
5351 return error;
5352 }
5353
5354 /* always return locked vnode */
5355 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5356 /* recycle vnode and unlock; simultanious will fail too */
5357 ungetnewvnode(nvp);
5358 mutex_exit(&ump->get_node_lock);
5359 return error;
5360 }
5361
5362 /* initialise crosslinks, note location of fe/efe for hashing */
5363 udf_node->ump = ump;
5364 udf_node->vnode = nvp;
5365 nvp->v_data = udf_node;
5366 udf_node->loc = *node_icb_loc;
5367 udf_node->lockf = 0;
5368 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5369 cv_init(&udf_node->node_lock, "udf_nlk");
5370 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5371 udf_node->outstanding_bufs = 0;
5372 udf_node->outstanding_nodedscr = 0;
5373 udf_node->uncommitted_lbs = 0;
5374
5375 /* check if we're fetching the root */
5376 if (ump->fileset_desc)
5377 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5378 sizeof(struct long_ad)) == 0)
5379 nvp->v_vflag |= VV_ROOT;
5380
5381 /* insert into the hash lookup */
5382 udf_register_node(udf_node);
5383
5384 /* safe to unlock, the entry is in the hash table, vnode is locked */
5385 mutex_exit(&ump->get_node_lock);
5386
5387 icb_loc = *node_icb_loc;
5388 needs_indirect = 0;
5389 strat4096 = 0;
5390 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5391 file_size = 0;
5392 file_data = NULL;
5393 lb_size = udf_rw32(ump->logical_vol->lb_size);
5394
5395 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5396 do {
5397 /* try to read in fe/efe */
5398 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5399
5400 /* blank sector marks end of sequence, check this */
5401 if ((dscr == NULL) && (!strat4096))
5402 error = ENOENT;
5403
5404 /* break if read error or blank sector */
5405 if (error || (dscr == NULL))
5406 break;
5407
5408 /* process descriptor based on the descriptor type */
5409 dscr_type = udf_rw16(dscr->tag.id);
5410 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5411
5412 /* if dealing with an indirect entry, follow the link */
5413 if (dscr_type == TAGID_INDIRECTENTRY) {
5414 needs_indirect = 0;
5415 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5416 icb_loc = dscr->inde.indirect_icb;
5417 continue;
5418 }
5419
5420 /* only file entries and extended file entries allowed here */
5421 if ((dscr_type != TAGID_FENTRY) &&
5422 (dscr_type != TAGID_EXTFENTRY)) {
5423 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5424 error = ENOENT;
5425 break;
5426 }
5427
5428 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5429
5430 /* choose this one */
5431 last_fe_icb_loc = icb_loc;
5432
5433 /* record and process/update (ext)fentry */
5434 file_data = NULL;
5435 if (dscr_type == TAGID_FENTRY) {
5436 if (udf_node->fe)
5437 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5438 udf_node->fe);
5439 udf_node->fe = &dscr->fe;
5440 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5441 udf_file_type = udf_node->fe->icbtag.file_type;
5442 file_size = udf_rw64(udf_node->fe->inf_len);
5443 file_data = udf_node->fe->data;
5444 } else {
5445 if (udf_node->efe)
5446 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5447 udf_node->efe);
5448 udf_node->efe = &dscr->efe;
5449 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5450 udf_file_type = udf_node->efe->icbtag.file_type;
5451 file_size = udf_rw64(udf_node->efe->inf_len);
5452 file_data = udf_node->efe->data;
5453 }
5454
5455 /* check recording strategy (structure) */
5456
5457 /*
5458 * Strategy 4096 is a daisy linked chain terminating with an
5459 * unrecorded sector or a TERM descriptor. The next
5460 * descriptor is to be found in the sector that follows the
5461 * current sector.
5462 */
5463 if (strat == 4096) {
5464 strat4096 = 1;
5465 needs_indirect = 1;
5466
5467 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5468 }
5469
5470 /*
5471 * Strategy 4 is the normal strategy and terminates, but if
5472 * we're in strategy 4096, we can't have strategy 4 mixed in
5473 */
5474
5475 if (strat == 4) {
5476 if (strat4096) {
5477 error = EINVAL;
5478 break;
5479 }
5480 break; /* done */
5481 }
5482 } while (!error);
5483
5484 /* first round of cleanup code */
5485 if (error) {
5486 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5487 /* recycle udf_node */
5488 udf_dispose_node(udf_node);
5489
5490 VOP_UNLOCK(nvp);
5491 nvp->v_data = NULL;
5492 ungetnewvnode(nvp);
5493
5494 return EINVAL; /* error code ok? */
5495 }
5496 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5497
5498 /* assert no references to dscr anymore beyong this point */
5499 assert((udf_node->fe) || (udf_node->efe));
5500 dscr = NULL;
5501
5502 /*
5503 * Remember where to record an updated version of the descriptor. If
5504 * there is a sequence of indirect entries, icb_loc will have been
5505 * updated. Its the write disipline to allocate new space and to make
5506 * sure the chain is maintained.
5507 *
5508 * `needs_indirect' flags if the next location is to be filled with
5509 * with an indirect entry.
5510 */
5511 udf_node->write_loc = icb_loc;
5512 udf_node->needs_indirect = needs_indirect;
5513
5514 /*
5515 * Go trough all allocations extents of this descriptor and when
5516 * encountering a redirect read in the allocation extension. These are
5517 * daisy-chained.
5518 */
5519 UDF_LOCK_NODE(udf_node, 0);
5520 udf_node->num_extensions = 0;
5521
5522 error = 0;
5523 slot = 0;
5524 for (;;) {
5525 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5526 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5527 "lb_num = %d, part = %d\n", slot, eof,
5528 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5529 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5530 udf_rw32(icb_loc.loc.lb_num),
5531 udf_rw16(icb_loc.loc.part_num)));
5532 if (eof)
5533 break;
5534 slot++;
5535
5536 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5537 continue;
5538
5539 DPRINTF(NODE, ("\tgot redirect extent\n"));
5540 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5541 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5542 "too many allocation extensions on "
5543 "udf_node\n"));
5544 error = EINVAL;
5545 break;
5546 }
5547
5548 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5549 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5550 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5551 "extension size in udf_node\n"));
5552 error = EINVAL;
5553 break;
5554 }
5555
5556 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5557 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5558 /* load in allocation extent */
5559 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5560 if (error || (dscr == NULL))
5561 break;
5562
5563 /* process read-in descriptor */
5564 dscr_type = udf_rw16(dscr->tag.id);
5565
5566 if (dscr_type != TAGID_ALLOCEXTENT) {
5567 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5568 error = ENOENT;
5569 break;
5570 }
5571
5572 DPRINTF(NODE, ("\trecording redirect extent\n"));
5573 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5574 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5575
5576 udf_node->num_extensions++;
5577
5578 } /* while */
5579 UDF_UNLOCK_NODE(udf_node, 0);
5580
5581 /* second round of cleanup code */
5582 if (error) {
5583 /* recycle udf_node */
5584 udf_dispose_node(udf_node);
5585
5586 VOP_UNLOCK(nvp);
5587 nvp->v_data = NULL;
5588 ungetnewvnode(nvp);
5589
5590 return EINVAL; /* error code ok? */
5591 }
5592
5593 DPRINTF(NODE, ("\tnode read in fine\n"));
5594
5595 /*
5596 * Translate UDF filetypes into vnode types.
5597 *
5598 * Systemfiles like the meta main and mirror files are not treated as
5599 * normal files, so we type them as having no type. UDF dictates that
5600 * they are not allowed to be visible.
5601 */
5602
5603 switch (udf_file_type) {
5604 case UDF_ICB_FILETYPE_DIRECTORY :
5605 case UDF_ICB_FILETYPE_STREAMDIR :
5606 nvp->v_type = VDIR;
5607 break;
5608 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5609 nvp->v_type = VBLK;
5610 break;
5611 case UDF_ICB_FILETYPE_CHARDEVICE :
5612 nvp->v_type = VCHR;
5613 break;
5614 case UDF_ICB_FILETYPE_SOCKET :
5615 nvp->v_type = VSOCK;
5616 break;
5617 case UDF_ICB_FILETYPE_FIFO :
5618 nvp->v_type = VFIFO;
5619 break;
5620 case UDF_ICB_FILETYPE_SYMLINK :
5621 nvp->v_type = VLNK;
5622 break;
5623 case UDF_ICB_FILETYPE_VAT :
5624 case UDF_ICB_FILETYPE_META_MAIN :
5625 case UDF_ICB_FILETYPE_META_MIRROR :
5626 nvp->v_type = VNON;
5627 break;
5628 case UDF_ICB_FILETYPE_RANDOMACCESS :
5629 case UDF_ICB_FILETYPE_REALTIME :
5630 nvp->v_type = VREG;
5631 break;
5632 default:
5633 /* YIKES, something else */
5634 nvp->v_type = VNON;
5635 }
5636
5637 /* TODO specfs, fifofs etc etc. vnops setting */
5638
5639 /* don't forget to set vnode's v_size */
5640 uvm_vnp_setsize(nvp, file_size);
5641
5642 /* TODO ext attr and streamdir udf_nodes */
5643
5644 *udf_noderes = udf_node;
5645
5646 return 0;
5647 }
5648
5649 /* --------------------------------------------------------------------- */
5650
5651 int
5652 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5653 {
5654 union dscrptr *dscr;
5655 struct long_ad *loc;
5656 int extnr, error;
5657
5658 DPRINTF(NODE, ("udf_writeout_node called\n"));
5659
5660 KASSERT(udf_node->outstanding_bufs == 0);
5661 KASSERT(udf_node->outstanding_nodedscr == 0);
5662
5663 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5664
5665 if (udf_node->i_flags & IN_DELETED) {
5666 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5667 udf_cleanup_reservation(udf_node);
5668 return 0;
5669 }
5670
5671 /* lock node; unlocked in callback */
5672 UDF_LOCK_NODE(udf_node, 0);
5673
5674 /* remove pending reservations, we're written out */
5675 udf_cleanup_reservation(udf_node);
5676
5677 /* at least one descriptor writeout */
5678 udf_node->outstanding_nodedscr = 1;
5679
5680 /* we're going to write out the descriptor so clear the flags */
5681 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5682
5683 /* if we were rebuild, write out the allocation extents */
5684 if (udf_node->i_flags & IN_NODE_REBUILD) {
5685 /* mark outstanding node descriptors and issue them */
5686 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5687 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5688 loc = &udf_node->ext_loc[extnr];
5689 dscr = (union dscrptr *) udf_node->ext[extnr];
5690 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5691 if (error)
5692 return error;
5693 }
5694 /* mark allocation extents written out */
5695 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5696 }
5697
5698 if (udf_node->fe) {
5699 KASSERT(udf_node->efe == NULL);
5700 dscr = (union dscrptr *) udf_node->fe;
5701 } else {
5702 KASSERT(udf_node->efe);
5703 KASSERT(udf_node->fe == NULL);
5704 dscr = (union dscrptr *) udf_node->efe;
5705 }
5706 KASSERT(dscr);
5707
5708 loc = &udf_node->write_loc;
5709 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5710
5711 return error;
5712 }
5713
5714 /* --------------------------------------------------------------------- */
5715
5716 int
5717 udf_dispose_node(struct udf_node *udf_node)
5718 {
5719 struct vnode *vp;
5720 int extnr;
5721
5722 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5723 if (!udf_node) {
5724 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5725 return 0;
5726 }
5727
5728 vp = udf_node->vnode;
5729 #ifdef DIAGNOSTIC
5730 if (vp->v_numoutput)
5731 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5732 "v_numoutput = %d", udf_node, vp->v_numoutput);
5733 #endif
5734
5735 udf_cleanup_reservation(udf_node);
5736
5737 /* TODO extended attributes and streamdir */
5738
5739 /* remove dirhash if present */
5740 dirhash_purge(&udf_node->dir_hash);
5741
5742 /* remove from our hash lookup table */
5743 udf_deregister_node(udf_node);
5744
5745 /* destroy our lock */
5746 mutex_destroy(&udf_node->node_mutex);
5747 cv_destroy(&udf_node->node_lock);
5748
5749 /* dissociate our udf_node from the vnode */
5750 genfs_node_destroy(udf_node->vnode);
5751 vp->v_data = NULL;
5752
5753 /* free associated memory and the node itself */
5754 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5755 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5756 udf_node->ext[extnr]);
5757 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5758 }
5759
5760 if (udf_node->fe)
5761 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5762 udf_node->fe);
5763 if (udf_node->efe)
5764 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5765 udf_node->efe);
5766
5767 udf_node->fe = (void *) 0xdeadaaaa;
5768 udf_node->efe = (void *) 0xdeadbbbb;
5769 udf_node->ump = (void *) 0xdeadbeef;
5770 pool_put(&udf_node_pool, udf_node);
5771
5772 return 0;
5773 }
5774
5775
5776
5777 /*
5778 * create a new node using the specified vnodeops, vap and cnp but with the
5779 * udf_file_type. This allows special files to be created. Use with care.
5780 */
5781
5782 static int
5783 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5784 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5785 {
5786 union dscrptr *dscr;
5787 struct udf_node *dir_node = VTOI(dvp);
5788 struct udf_node *udf_node;
5789 struct udf_mount *ump = dir_node->ump;
5790 struct vnode *nvp;
5791 struct long_ad node_icb_loc;
5792 uint64_t parent_unique_id;
5793 uint64_t lmapping;
5794 uint32_t lb_size, lb_num;
5795 uint16_t vpart_num;
5796 uid_t uid;
5797 gid_t gid, parent_gid;
5798 int fid_size, error;
5799
5800 lb_size = udf_rw32(ump->logical_vol->lb_size);
5801 *vpp = NULL;
5802
5803 /* allocate vnode */
5804 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp);
5805 if (error)
5806 return error;
5807
5808 /* lock node */
5809 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5810 if (error)
5811 goto error_out_unget;
5812
5813 /* reserve space for one logical block */
5814 vpart_num = ump->node_part;
5815 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5816 vpart_num, 1, /* can_fail */ true);
5817 if (error)
5818 goto error_out_unlock;
5819
5820 /* allocate node */
5821 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5822 vpart_num, 1, &lmapping);
5823 if (error)
5824 goto error_out_unreserve;
5825 lb_num = lmapping;
5826
5827 /* initialise pointer to location */
5828 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5829 node_icb_loc.len = udf_rw32(lb_size);
5830 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5831 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5832
5833 /* build udf_node (do initialise!) */
5834 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5835 memset(udf_node, 0, sizeof(struct udf_node));
5836
5837 /* initialise crosslinks, note location of fe/efe for hashing */
5838 /* bugalert: synchronise with udf_get_node() */
5839 udf_node->ump = ump;
5840 udf_node->vnode = nvp;
5841 nvp->v_data = udf_node;
5842 udf_node->loc = node_icb_loc;
5843 udf_node->write_loc = node_icb_loc;
5844 udf_node->lockf = 0;
5845 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5846 cv_init(&udf_node->node_lock, "udf_nlk");
5847 udf_node->outstanding_bufs = 0;
5848 udf_node->outstanding_nodedscr = 0;
5849 udf_node->uncommitted_lbs = 0;
5850
5851 /* initialise genfs */
5852 genfs_node_init(nvp, &udf_genfsops);
5853
5854 /* insert into the hash lookup */
5855 udf_register_node(udf_node);
5856
5857 /* get parent's unique ID for refering '..' if its a directory */
5858 if (dir_node->fe) {
5859 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5860 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5861 } else {
5862 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5863 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5864 }
5865
5866 /* get descriptor */
5867 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5868
5869 /* choose a fe or an efe for it */
5870 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5871 udf_node->fe = &dscr->fe;
5872 fid_size = udf_create_new_fe(ump, udf_node->fe,
5873 udf_file_type, &udf_node->loc,
5874 &dir_node->loc, parent_unique_id);
5875 /* TODO add extended attribute for creation time */
5876 } else {
5877 udf_node->efe = &dscr->efe;
5878 fid_size = udf_create_new_efe(ump, udf_node->efe,
5879 udf_file_type, &udf_node->loc,
5880 &dir_node->loc, parent_unique_id);
5881 }
5882 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5883
5884 /* update vnode's size and type */
5885 nvp->v_type = vap->va_type;
5886 uvm_vnp_setsize(nvp, fid_size);
5887
5888 /* set access mode */
5889 udf_setaccessmode(udf_node, vap->va_mode);
5890
5891 /* set ownership */
5892 uid = kauth_cred_geteuid(cnp->cn_cred);
5893 gid = parent_gid;
5894 udf_setownership(udf_node, uid, gid);
5895
5896 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5897 if (error) {
5898 /* free disc allocation for node */
5899 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5900
5901 /* recycle udf_node */
5902 udf_dispose_node(udf_node);
5903 vput(nvp);
5904
5905 *vpp = NULL;
5906 return error;
5907 }
5908
5909 /* adjust file count */
5910 udf_adjust_filecount(udf_node, 1);
5911
5912 /* return result */
5913 *vpp = nvp;
5914
5915 return 0;
5916
5917 error_out_unreserve:
5918 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5919
5920 error_out_unlock:
5921 VOP_UNLOCK(nvp);
5922
5923 error_out_unget:
5924 nvp->v_data = NULL;
5925 ungetnewvnode(nvp);
5926
5927 return error;
5928 }
5929
5930
5931 int
5932 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5933 struct componentname *cnp)
5934 {
5935 int (**vnodeops)(void *);
5936 int udf_file_type;
5937
5938 DPRINTF(NODE, ("udf_create_node called\n"));
5939
5940 /* what type are we creating ? */
5941 vnodeops = udf_vnodeop_p;
5942 /* start with a default */
5943 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5944
5945 *vpp = NULL;
5946
5947 switch (vap->va_type) {
5948 case VREG :
5949 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5950 break;
5951 case VDIR :
5952 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5953 break;
5954 case VLNK :
5955 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5956 break;
5957 case VBLK :
5958 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5959 /* specfs */
5960 return ENOTSUP;
5961 break;
5962 case VCHR :
5963 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5964 /* specfs */
5965 return ENOTSUP;
5966 break;
5967 case VFIFO :
5968 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5969 /* specfs */
5970 return ENOTSUP;
5971 break;
5972 case VSOCK :
5973 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5974 /* specfs */
5975 return ENOTSUP;
5976 break;
5977 case VNON :
5978 case VBAD :
5979 default :
5980 /* nothing; can we even create these? */
5981 return EINVAL;
5982 }
5983
5984 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5985 }
5986
5987 /* --------------------------------------------------------------------- */
5988
5989 static void
5990 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5991 {
5992 struct udf_mount *ump = udf_node->ump;
5993 uint32_t lb_size, lb_num, len, num_lb;
5994 uint16_t vpart_num;
5995
5996 /* is there really one? */
5997 if (mem == NULL)
5998 return;
5999
6000 /* got a descriptor here */
6001 len = UDF_EXT_LEN(udf_rw32(loc->len));
6002 lb_num = udf_rw32(loc->loc.lb_num);
6003 vpart_num = udf_rw16(loc->loc.part_num);
6004
6005 lb_size = udf_rw32(ump->logical_vol->lb_size);
6006 num_lb = (len + lb_size -1) / lb_size;
6007
6008 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
6009 }
6010
6011 void
6012 udf_delete_node(struct udf_node *udf_node)
6013 {
6014 void *dscr;
6015 struct udf_mount *ump;
6016 struct long_ad *loc;
6017 int extnr, lvint, dummy;
6018
6019 ump = udf_node->ump;
6020
6021 /* paranoia check on integrity; should be open!; we could panic */
6022 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6023 if (lvint == UDF_INTEGRITY_CLOSED)
6024 printf("\tIntegrity was CLOSED!\n");
6025
6026 /* whatever the node type, change its size to zero */
6027 (void) udf_resize_node(udf_node, 0, &dummy);
6028
6029 /* force it to be `clean'; no use writing it out */
6030 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6031 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6032
6033 /* adjust file count */
6034 udf_adjust_filecount(udf_node, -1);
6035
6036 /*
6037 * Free its allocated descriptors; memory will be released when
6038 * vop_reclaim() is called.
6039 */
6040 loc = &udf_node->loc;
6041
6042 dscr = udf_node->fe;
6043 udf_free_descriptor_space(udf_node, loc, dscr);
6044 dscr = udf_node->efe;
6045 udf_free_descriptor_space(udf_node, loc, dscr);
6046
6047 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6048 dscr = udf_node->ext[extnr];
6049 loc = &udf_node->ext_loc[extnr];
6050 udf_free_descriptor_space(udf_node, loc, dscr);
6051 }
6052 }
6053
6054 /* --------------------------------------------------------------------- */
6055
6056 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6057 int
6058 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6059 {
6060 struct file_entry *fe = udf_node->fe;
6061 struct extfile_entry *efe = udf_node->efe;
6062 uint64_t file_size;
6063 int error;
6064
6065 if (fe) {
6066 file_size = udf_rw64(fe->inf_len);
6067 } else {
6068 assert(udf_node->efe);
6069 file_size = udf_rw64(efe->inf_len);
6070 }
6071
6072 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6073 file_size, new_size));
6074
6075 /* if not changing, we're done */
6076 if (file_size == new_size)
6077 return 0;
6078
6079 *extended = (new_size > file_size);
6080 if (*extended) {
6081 error = udf_grow_node(udf_node, new_size);
6082 } else {
6083 error = udf_shrink_node(udf_node, new_size);
6084 }
6085
6086 return error;
6087 }
6088
6089
6090 /* --------------------------------------------------------------------- */
6091
6092 void
6093 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6094 struct timespec *mod, struct timespec *birth)
6095 {
6096 struct timespec now;
6097 struct file_entry *fe;
6098 struct extfile_entry *efe;
6099 struct filetimes_extattr_entry *ft_extattr;
6100 struct timestamp *atime, *mtime, *attrtime, *ctime;
6101 struct timestamp fe_ctime;
6102 struct timespec cur_birth;
6103 uint32_t offset, a_l;
6104 uint8_t *filedata;
6105 int error;
6106
6107 /* protect against rogue values */
6108 if (!udf_node)
6109 return;
6110
6111 fe = udf_node->fe;
6112 efe = udf_node->efe;
6113
6114 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6115 return;
6116
6117 /* get descriptor information */
6118 if (fe) {
6119 atime = &fe->atime;
6120 mtime = &fe->mtime;
6121 attrtime = &fe->attrtime;
6122 filedata = fe->data;
6123
6124 /* initial save dummy setting */
6125 ctime = &fe_ctime;
6126
6127 /* check our extended attribute if present */
6128 error = udf_extattr_search_intern(udf_node,
6129 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6130 if (!error) {
6131 ft_extattr = (struct filetimes_extattr_entry *)
6132 (filedata + offset);
6133 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6134 ctime = &ft_extattr->times[0];
6135 }
6136 /* TODO create the extended attribute if not found ? */
6137 } else {
6138 assert(udf_node->efe);
6139 atime = &efe->atime;
6140 mtime = &efe->mtime;
6141 attrtime = &efe->attrtime;
6142 ctime = &efe->ctime;
6143 }
6144
6145 vfs_timestamp(&now);
6146
6147 /* set access time */
6148 if (udf_node->i_flags & IN_ACCESS) {
6149 if (acc == NULL)
6150 acc = &now;
6151 udf_timespec_to_timestamp(acc, atime);
6152 }
6153
6154 /* set modification time */
6155 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6156 if (mod == NULL)
6157 mod = &now;
6158 udf_timespec_to_timestamp(mod, mtime);
6159
6160 /* ensure birthtime is older than set modification! */
6161 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6162 if ((cur_birth.tv_sec > mod->tv_sec) ||
6163 ((cur_birth.tv_sec == mod->tv_sec) &&
6164 (cur_birth.tv_nsec > mod->tv_nsec))) {
6165 udf_timespec_to_timestamp(mod, ctime);
6166 }
6167 }
6168
6169 /* update birthtime if specified */
6170 /* XXX we asume here that given birthtime is older than mod */
6171 if (birth && (birth->tv_sec != VNOVAL)) {
6172 udf_timespec_to_timestamp(birth, ctime);
6173 }
6174
6175 /* set change time */
6176 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6177 udf_timespec_to_timestamp(&now, attrtime);
6178
6179 /* notify updates to the node itself */
6180 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6181 udf_node->i_flags |= IN_ACCESSED;
6182 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6183 udf_node->i_flags |= IN_MODIFIED;
6184
6185 /* clear modification flags */
6186 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6187 }
6188
6189 /* --------------------------------------------------------------------- */
6190
6191 int
6192 udf_update(struct vnode *vp, struct timespec *acc,
6193 struct timespec *mod, struct timespec *birth, int updflags)
6194 {
6195 union dscrptr *dscrptr;
6196 struct udf_node *udf_node = VTOI(vp);
6197 struct udf_mount *ump = udf_node->ump;
6198 struct regid *impl_id;
6199 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6200 int waitfor, flags;
6201
6202 #ifdef DEBUG
6203 char bits[128];
6204 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6205 updflags));
6206 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6207 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6208 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6209 #endif
6210
6211 /* set our times */
6212 udf_itimes(udf_node, acc, mod, birth);
6213
6214 /* set our implementation id */
6215 if (udf_node->fe) {
6216 dscrptr = (union dscrptr *) udf_node->fe;
6217 impl_id = &udf_node->fe->imp_id;
6218 } else {
6219 dscrptr = (union dscrptr *) udf_node->efe;
6220 impl_id = &udf_node->efe->imp_id;
6221 }
6222
6223 /* set our ID */
6224 udf_set_regid(impl_id, IMPL_NAME);
6225 udf_add_impl_regid(ump, impl_id);
6226
6227 /* update our crc! on RMW we are not allowed to change a thing */
6228 udf_validate_tag_and_crc_sums(dscrptr);
6229
6230 /* if called when mounted readonly, never write back */
6231 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6232 return 0;
6233
6234 /* check if the node is dirty 'enough'*/
6235 if (updflags & UPDATE_CLOSE) {
6236 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6237 } else {
6238 flags = udf_node->i_flags & IN_MODIFIED;
6239 }
6240 if (flags == 0)
6241 return 0;
6242
6243 /* determine if we need to write sync or async */
6244 waitfor = 0;
6245 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6246 /* sync mounted */
6247 waitfor = updflags & UPDATE_WAIT;
6248 if (updflags & UPDATE_DIROP)
6249 waitfor |= UPDATE_WAIT;
6250 }
6251 if (waitfor)
6252 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6253
6254 return 0;
6255 }
6256
6257
6258 /* --------------------------------------------------------------------- */
6259
6260
6261 /*
6262 * Read one fid and process it into a dirent and advance to the next (*fid)
6263 * has to be allocated a logical block in size, (*dirent) struct dirent length
6264 */
6265
6266 int
6267 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6268 struct fileid_desc *fid, struct dirent *dirent)
6269 {
6270 struct udf_node *dir_node = VTOI(vp);
6271 struct udf_mount *ump = dir_node->ump;
6272 struct file_entry *fe = dir_node->fe;
6273 struct extfile_entry *efe = dir_node->efe;
6274 uint32_t fid_size, lb_size;
6275 uint64_t file_size;
6276 char *fid_name;
6277 int enough, error;
6278
6279 assert(fid);
6280 assert(dirent);
6281 assert(dir_node);
6282 assert(offset);
6283 assert(*offset != 1);
6284
6285 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6286 /* check if we're past the end of the directory */
6287 if (fe) {
6288 file_size = udf_rw64(fe->inf_len);
6289 } else {
6290 assert(dir_node->efe);
6291 file_size = udf_rw64(efe->inf_len);
6292 }
6293 if (*offset >= file_size)
6294 return EINVAL;
6295
6296 /* get maximum length of FID descriptor */
6297 lb_size = udf_rw32(ump->logical_vol->lb_size);
6298
6299 /* initialise return values */
6300 fid_size = 0;
6301 memset(dirent, 0, sizeof(struct dirent));
6302 memset(fid, 0, lb_size);
6303
6304 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6305 if (!enough) {
6306 /* short dir ... */
6307 return EIO;
6308 }
6309
6310 error = vn_rdwr(UIO_READ, vp,
6311 fid, MIN(file_size - (*offset), lb_size), *offset,
6312 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6313 NULL, NULL);
6314 if (error)
6315 return error;
6316
6317 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6318 /*
6319 * Check if we got a whole descriptor.
6320 * TODO Try to `resync' directory stream when something is very wrong.
6321 */
6322
6323 /* check if our FID header is OK */
6324 error = udf_check_tag(fid);
6325 if (error) {
6326 goto brokendir;
6327 }
6328 DPRINTF(FIDS, ("\ttag check ok\n"));
6329
6330 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6331 error = EIO;
6332 goto brokendir;
6333 }
6334 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6335
6336 /* check for length */
6337 fid_size = udf_fidsize(fid);
6338 enough = (file_size - (*offset) >= fid_size);
6339 if (!enough) {
6340 error = EIO;
6341 goto brokendir;
6342 }
6343 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6344
6345 /* check FID contents */
6346 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6347 brokendir:
6348 if (error) {
6349 /* note that is sometimes a bit quick to report */
6350 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6351 /* RESYNC? */
6352 /* TODO: use udf_resync_fid_stream */
6353 return EIO;
6354 }
6355 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6356
6357 /* we got a whole and valid descriptor! */
6358 DPRINTF(FIDS, ("\tinterpret FID\n"));
6359
6360 /* create resulting dirent structure */
6361 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6362 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6363 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6364
6365 /* '..' has no name, so provide one */
6366 if (fid->file_char & UDF_FILE_CHAR_PAR)
6367 strcpy(dirent->d_name, "..");
6368
6369 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6370 dirent->d_namlen = strlen(dirent->d_name);
6371 dirent->d_reclen = _DIRENT_SIZE(dirent);
6372
6373 /*
6374 * Note that its not worth trying to go for the filetypes now... its
6375 * too expensive too
6376 */
6377 dirent->d_type = DT_UNKNOWN;
6378
6379 /* initial guess for filetype we can make */
6380 if (fid->file_char & UDF_FILE_CHAR_DIR)
6381 dirent->d_type = DT_DIR;
6382
6383 /* advance */
6384 *offset += fid_size;
6385
6386 return error;
6387 }
6388
6389
6390 /* --------------------------------------------------------------------- */
6391
6392 static void
6393 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6394 int pass, int *ndirty)
6395 {
6396 struct udf_node *udf_node, *n_udf_node;
6397 struct vnode *vp;
6398 int vdirty, error;
6399 int on_type, on_flags, on_vnode;
6400
6401 derailed:
6402 KASSERT(mutex_owned(&mntvnode_lock));
6403
6404 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6405 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6406 for (;udf_node; udf_node = n_udf_node) {
6407 DPRINTF(SYNC, ("."));
6408
6409 udf_node->i_flags &= ~IN_SYNCED;
6410 vp = udf_node->vnode;
6411
6412 mutex_enter(vp->v_interlock);
6413 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6414 udf_node, RB_DIR_RIGHT);
6415
6416 if (n_udf_node)
6417 n_udf_node->i_flags |= IN_SYNCED;
6418
6419 /* system nodes are not synced this way */
6420 if (vp->v_vflag & VV_SYSTEM) {
6421 mutex_exit(vp->v_interlock);
6422 continue;
6423 }
6424
6425 /* check if its dirty enough to even try */
6426 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6427 on_flags = ((udf_node->i_flags &
6428 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6429 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6430 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6431 if (on_type || (on_flags || on_vnode)) { /* XXX */
6432 /* not dirty (enough?) */
6433 mutex_exit(vp->v_interlock);
6434 continue;
6435 }
6436
6437 mutex_exit(&mntvnode_lock);
6438 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6439 if (error) {
6440 mutex_enter(&mntvnode_lock);
6441 if (error == ENOENT)
6442 goto derailed;
6443 *ndirty += 1;
6444 continue;
6445 }
6446
6447 switch (pass) {
6448 case 1:
6449 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6450 break;
6451 case 2:
6452 vdirty = vp->v_numoutput;
6453 if (vp->v_tag == VT_UDF)
6454 vdirty += udf_node->outstanding_bufs +
6455 udf_node->outstanding_nodedscr;
6456 if (vdirty == 0)
6457 VOP_FSYNC(vp, cred, 0,0,0);
6458 *ndirty += vdirty;
6459 break;
6460 case 3:
6461 vdirty = vp->v_numoutput;
6462 if (vp->v_tag == VT_UDF)
6463 vdirty += udf_node->outstanding_bufs +
6464 udf_node->outstanding_nodedscr;
6465 *ndirty += vdirty;
6466 break;
6467 }
6468
6469 vput(vp);
6470 mutex_enter(&mntvnode_lock);
6471 }
6472 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6473 }
6474
6475
6476 void
6477 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6478 {
6479 int dummy, ndirty;
6480
6481 mutex_enter(&mntvnode_lock);
6482 recount:
6483 dummy = 0;
6484 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6485 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6486 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6487
6488 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6489 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6490 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6491
6492 if (waitfor == MNT_WAIT) {
6493 ndirty = ump->devvp->v_numoutput;
6494 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6495 ndirty));
6496 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6497 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6498 ndirty));
6499
6500 if (ndirty) {
6501 /* 1/4 second wait */
6502 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6503 hz/4);
6504 goto recount;
6505 }
6506 }
6507
6508 mutex_exit(&mntvnode_lock);
6509 }
6510
6511 /* --------------------------------------------------------------------- */
6512
6513 /*
6514 * Read and write file extent in/from the buffer.
6515 *
6516 * The splitup of the extent into seperate request-buffers is to minimise
6517 * copying around as much as possible.
6518 *
6519 * block based file reading and writing
6520 */
6521
6522 static int
6523 udf_read_internal(struct udf_node *node, uint8_t *blob)
6524 {
6525 struct udf_mount *ump;
6526 struct file_entry *fe = node->fe;
6527 struct extfile_entry *efe = node->efe;
6528 uint64_t inflen;
6529 uint32_t sector_size;
6530 uint8_t *pos;
6531 int icbflags, addr_type;
6532
6533 /* get extent and do some paranoia checks */
6534 ump = node->ump;
6535 sector_size = ump->discinfo.sector_size;
6536
6537 if (fe) {
6538 inflen = udf_rw64(fe->inf_len);
6539 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6540 icbflags = udf_rw16(fe->icbtag.flags);
6541 } else {
6542 assert(node->efe);
6543 inflen = udf_rw64(efe->inf_len);
6544 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6545 icbflags = udf_rw16(efe->icbtag.flags);
6546 }
6547 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6548
6549 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6550 assert(inflen < sector_size);
6551
6552 /* copy out info */
6553 memset(blob, 0, sector_size);
6554 memcpy(blob, pos, inflen);
6555
6556 return 0;
6557 }
6558
6559
6560 static int
6561 udf_write_internal(struct udf_node *node, uint8_t *blob)
6562 {
6563 struct udf_mount *ump;
6564 struct file_entry *fe = node->fe;
6565 struct extfile_entry *efe = node->efe;
6566 uint64_t inflen;
6567 uint32_t sector_size;
6568 uint8_t *pos;
6569 int icbflags, addr_type;
6570
6571 /* get extent and do some paranoia checks */
6572 ump = node->ump;
6573 sector_size = ump->discinfo.sector_size;
6574
6575 if (fe) {
6576 inflen = udf_rw64(fe->inf_len);
6577 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6578 icbflags = udf_rw16(fe->icbtag.flags);
6579 } else {
6580 assert(node->efe);
6581 inflen = udf_rw64(efe->inf_len);
6582 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6583 icbflags = udf_rw16(efe->icbtag.flags);
6584 }
6585 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6586
6587 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6588 assert(inflen < sector_size);
6589
6590 /* copy in blob */
6591 /* memset(pos, 0, inflen); */
6592 memcpy(pos, blob, inflen);
6593
6594 return 0;
6595 }
6596
6597
6598 void
6599 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6600 {
6601 struct buf *nestbuf;
6602 struct udf_mount *ump = udf_node->ump;
6603 uint64_t *mapping;
6604 uint64_t run_start;
6605 uint32_t sector_size;
6606 uint32_t buf_offset, sector, rbuflen, rblk;
6607 uint32_t from, lblkno;
6608 uint32_t sectors;
6609 uint8_t *buf_pos;
6610 int error, run_length, what;
6611
6612 sector_size = udf_node->ump->discinfo.sector_size;
6613
6614 from = buf->b_blkno;
6615 sectors = buf->b_bcount / sector_size;
6616
6617 what = udf_get_c_type(udf_node);
6618
6619 /* assure we have enough translation slots */
6620 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6621 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6622
6623 if (sectors > UDF_MAX_MAPPINGS) {
6624 printf("udf_read_filebuf: implementation limit on bufsize\n");
6625 buf->b_error = EIO;
6626 biodone(buf);
6627 return;
6628 }
6629
6630 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6631
6632 error = 0;
6633 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6634 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6635 if (error) {
6636 buf->b_error = error;
6637 biodone(buf);
6638 goto out;
6639 }
6640 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6641
6642 /* pre-check if its an internal */
6643 if (*mapping == UDF_TRANS_INTERN) {
6644 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6645 if (error)
6646 buf->b_error = error;
6647 biodone(buf);
6648 goto out;
6649 }
6650 DPRINTF(READ, ("\tnot intern\n"));
6651
6652 #ifdef DEBUG
6653 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6654 printf("Returned translation table:\n");
6655 for (sector = 0; sector < sectors; sector++) {
6656 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6657 }
6658 }
6659 #endif
6660
6661 /* request read-in of data from disc sheduler */
6662 buf->b_resid = buf->b_bcount;
6663 for (sector = 0; sector < sectors; sector++) {
6664 buf_offset = sector * sector_size;
6665 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6666 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6667
6668 /* check if its zero or unmapped to stop reading */
6669 switch (mapping[sector]) {
6670 case UDF_TRANS_UNMAPPED:
6671 case UDF_TRANS_ZERO:
6672 /* copy zero sector TODO runlength like below */
6673 memset(buf_pos, 0, sector_size);
6674 DPRINTF(READ, ("\treturning zero sector\n"));
6675 nestiobuf_done(buf, sector_size, 0);
6676 break;
6677 default :
6678 DPRINTF(READ, ("\tread sector "
6679 "%"PRIu64"\n", mapping[sector]));
6680
6681 lblkno = from + sector;
6682 run_start = mapping[sector];
6683 run_length = 1;
6684 while (sector < sectors-1) {
6685 if (mapping[sector+1] != mapping[sector]+1)
6686 break;
6687 run_length++;
6688 sector++;
6689 }
6690
6691 /*
6692 * nest an iobuf and mark it for async reading. Since
6693 * we're using nested buffers, they can't be cached by
6694 * design.
6695 */
6696 rbuflen = run_length * sector_size;
6697 rblk = run_start * (sector_size/DEV_BSIZE);
6698
6699 nestbuf = getiobuf(NULL, true);
6700 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6701 /* nestbuf is B_ASYNC */
6702
6703 /* identify this nestbuf */
6704 nestbuf->b_lblkno = lblkno;
6705 assert(nestbuf->b_vp == udf_node->vnode);
6706
6707 /* CD shedules on raw blkno */
6708 nestbuf->b_blkno = rblk;
6709 nestbuf->b_proc = NULL;
6710 nestbuf->b_rawblkno = rblk;
6711 nestbuf->b_udf_c_type = what;
6712
6713 udf_discstrat_queuebuf(ump, nestbuf);
6714 }
6715 }
6716 out:
6717 /* if we're synchronously reading, wait for the completion */
6718 if ((buf->b_flags & B_ASYNC) == 0)
6719 biowait(buf);
6720
6721 DPRINTF(READ, ("\tend of read_filebuf\n"));
6722 free(mapping, M_TEMP);
6723 return;
6724 }
6725
6726
6727 void
6728 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6729 {
6730 struct buf *nestbuf;
6731 struct udf_mount *ump = udf_node->ump;
6732 uint64_t *mapping;
6733 uint64_t run_start;
6734 uint32_t lb_size;
6735 uint32_t buf_offset, lb_num, rbuflen, rblk;
6736 uint32_t from, lblkno;
6737 uint32_t num_lb;
6738 int error, run_length, what, s;
6739
6740 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6741
6742 from = buf->b_blkno;
6743 num_lb = buf->b_bcount / lb_size;
6744
6745 what = udf_get_c_type(udf_node);
6746
6747 /* assure we have enough translation slots */
6748 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6749 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6750
6751 if (num_lb > UDF_MAX_MAPPINGS) {
6752 printf("udf_write_filebuf: implementation limit on bufsize\n");
6753 buf->b_error = EIO;
6754 biodone(buf);
6755 return;
6756 }
6757
6758 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6759
6760 error = 0;
6761 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6762 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6763 if (error) {
6764 buf->b_error = error;
6765 biodone(buf);
6766 goto out;
6767 }
6768 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6769
6770 /* if its internally mapped, we can write it in the descriptor itself */
6771 if (*mapping == UDF_TRANS_INTERN) {
6772 /* TODO paranoia check if we ARE going to have enough space */
6773 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6774 if (error)
6775 buf->b_error = error;
6776 biodone(buf);
6777 goto out;
6778 }
6779 DPRINTF(WRITE, ("\tnot intern\n"));
6780
6781 /* request write out of data to disc sheduler */
6782 buf->b_resid = buf->b_bcount;
6783 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6784 buf_offset = lb_num * lb_size;
6785 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6786
6787 /*
6788 * Mappings are not that important here. Just before we write
6789 * the lb_num we late-allocate them when needed and update the
6790 * mapping in the udf_node.
6791 */
6792
6793 /* XXX why not ignore the mapping altogether ? */
6794 DPRINTF(WRITE, ("\twrite lb_num "
6795 "%"PRIu64, mapping[lb_num]));
6796
6797 lblkno = from + lb_num;
6798 run_start = mapping[lb_num];
6799 run_length = 1;
6800 while (lb_num < num_lb-1) {
6801 if (mapping[lb_num+1] != mapping[lb_num]+1)
6802 if (mapping[lb_num+1] != mapping[lb_num])
6803 break;
6804 run_length++;
6805 lb_num++;
6806 }
6807 DPRINTF(WRITE, ("+ %d\n", run_length));
6808
6809 /* nest an iobuf on the master buffer for the extent */
6810 rbuflen = run_length * lb_size;
6811 rblk = run_start * (lb_size/DEV_BSIZE);
6812
6813 nestbuf = getiobuf(NULL, true);
6814 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6815 /* nestbuf is B_ASYNC */
6816
6817 /* identify this nestbuf */
6818 nestbuf->b_lblkno = lblkno;
6819 KASSERT(nestbuf->b_vp == udf_node->vnode);
6820
6821 /* CD shedules on raw blkno */
6822 nestbuf->b_blkno = rblk;
6823 nestbuf->b_proc = NULL;
6824 nestbuf->b_rawblkno = rblk;
6825 nestbuf->b_udf_c_type = what;
6826
6827 /* increment our outstanding bufs counter */
6828 s = splbio();
6829 udf_node->outstanding_bufs++;
6830 splx(s);
6831
6832 udf_discstrat_queuebuf(ump, nestbuf);
6833 }
6834 out:
6835 /* if we're synchronously writing, wait for the completion */
6836 if ((buf->b_flags & B_ASYNC) == 0)
6837 biowait(buf);
6838
6839 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6840 free(mapping, M_TEMP);
6841 return;
6842 }
6843
6844 /* --------------------------------------------------------------------- */
6845
6846
6847