udf_subr.c revision 1.123 1 /* $NetBSD: udf_subr.c,v 1.123 2014/01/23 10:13:56 hannken Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.123 2014/01/23 10:13:56 hannken Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return 0;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return 0;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341
342 return 0;
343 }
344
345 /* --------------------------------------------------------------------- */
346
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 int *first_tracknr, int *last_tracknr)
351 {
352 struct mmc_trackinfo trackinfo;
353 uint32_t tracknr, start_track, num_tracks;
354 int error;
355
356 /* if negative, sessionnr is relative to last session */
357 if (args->sessionnr < 0) {
358 args->sessionnr += ump->discinfo.num_sessions;
359 }
360
361 /* sanity */
362 if (args->sessionnr < 0)
363 args->sessionnr = 0;
364 if (args->sessionnr > ump->discinfo.num_sessions)
365 args->sessionnr = ump->discinfo.num_sessions;
366
367 /* search the tracks for this session, zero session nr indicates last */
368 if (args->sessionnr == 0)
369 args->sessionnr = ump->discinfo.num_sessions;
370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 args->sessionnr--;
372
373 /* sanity again */
374 if (args->sessionnr < 0)
375 args->sessionnr = 0;
376
377 /* search the first and last track of the specified session */
378 num_tracks = ump->discinfo.num_tracks;
379 start_track = ump->discinfo.first_track;
380
381 /* search for first track of this session */
382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 /* get track info */
384 trackinfo.tracknr = tracknr;
385 error = udf_update_trackinfo(ump, &trackinfo);
386 if (error)
387 return error;
388
389 if (trackinfo.sessionnr == args->sessionnr)
390 break;
391 }
392 *first_tracknr = tracknr;
393
394 /* search for last track of this session */
395 for (;tracknr <= num_tracks; tracknr++) {
396 /* get track info */
397 trackinfo.tracknr = tracknr;
398 error = udf_update_trackinfo(ump, &trackinfo);
399 if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 tracknr--;
401 break;
402 }
403 }
404 if (tracknr > num_tracks)
405 tracknr--;
406
407 *last_tracknr = tracknr;
408
409 if (*last_tracknr < *first_tracknr) {
410 printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 "drive returned garbage\n");
412 return EINVAL;
413 }
414
415 assert(*last_tracknr >= *first_tracknr);
416 return 0;
417 }
418
419
420 /*
421 * NOTE: this is the only routine in this file that directly peeks into the
422 * metadata file but since its at a larval state of the mount it can't hurt.
423 *
424 * XXX candidate for udf_allocation.c
425 * XXX clean me up!, change to new node reading code.
426 */
427
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 struct mmc_trackinfo *trackinfo)
431 {
432 struct part_desc *part;
433 struct file_entry *fe;
434 struct extfile_entry *efe;
435 struct short_ad *s_ad;
436 struct long_ad *l_ad;
437 uint32_t track_start, track_end;
438 uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 uint32_t sector_size, len, alloclen, plb_num;
440 uint8_t *pos;
441 int addr_type, icblen, icbflags;
442
443 /* get our track extents */
444 track_start = trackinfo->track_start;
445 track_end = track_start + trackinfo->track_size;
446
447 /* get our base partition extent */
448 KASSERT(ump->node_part == ump->fids_part);
449 part = ump->partitions[ump->vtop[ump->node_part]];
450 phys_part_start = udf_rw32(part->start_loc);
451 phys_part_end = phys_part_start + udf_rw32(part->part_len);
452
453 /* no use if its outside the physical partition */
454 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 return;
456
457 /*
458 * now follow all extents in the fe/efe to see if they refer to this
459 * track
460 */
461
462 sector_size = ump->discinfo.sector_size;
463
464 /* XXX should we claim exclusive access to the metafile ? */
465 /* TODO: move to new node read code */
466 fe = ump->metadata_node->fe;
467 efe = ump->metadata_node->efe;
468 if (fe) {
469 alloclen = udf_rw32(fe->l_ad);
470 pos = &fe->data[0] + udf_rw32(fe->l_ea);
471 icbflags = udf_rw16(fe->icbtag.flags);
472 } else {
473 assert(efe);
474 alloclen = udf_rw32(efe->l_ad);
475 pos = &efe->data[0] + udf_rw32(efe->l_ea);
476 icbflags = udf_rw16(efe->icbtag.flags);
477 }
478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479
480 while (alloclen) {
481 if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 icblen = sizeof(struct short_ad);
483 s_ad = (struct short_ad *) pos;
484 len = udf_rw32(s_ad->len);
485 plb_num = udf_rw32(s_ad->lb_num);
486 } else {
487 /* should not be present, but why not */
488 icblen = sizeof(struct long_ad);
489 l_ad = (struct long_ad *) pos;
490 len = udf_rw32(l_ad->len);
491 plb_num = udf_rw32(l_ad->loc.lb_num);
492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 }
494 /* process extent */
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 /* search smallest extent */
1291 trace = &ump->lvint_trace[0];
1292 minext = trace->end - trace->start;
1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1294 trace = &ump->lvint_trace[ext];
1295 extlen = trace->end - trace->start;
1296 if (extlen == 0)
1297 break;
1298 minext = MIN(minext, extlen);
1299 }
1300 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1301 /* no sense wiping all */
1302 if (losing == minext)
1303 losing--;
1304
1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1306
1307 /* get buffer for pieces */
1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1309
1310 in_ext = 0;
1311 in_pos = losing;
1312 in_trace = &ump->lvint_trace[in_ext];
1313 in_len = in_trace->end - in_trace->start;
1314 out_ext = 0;
1315 out_wpos = 0;
1316 out_trace = &ump->lvint_trace[out_ext];
1317 out_len = out_trace->end - out_trace->start;
1318
1319 last_dscr = NULL;
1320 for(;;) {
1321 out_trace->pos = out_wpos;
1322 out_trace->wpos = out_trace->pos;
1323 if (in_pos >= in_len) {
1324 in_ext++;
1325 in_pos = 0;
1326 in_trace = &ump->lvint_trace[in_ext];
1327 in_len = in_trace->end - in_trace->start;
1328 }
1329 if (out_wpos >= out_len) {
1330 out_ext++;
1331 out_wpos = 0;
1332 out_trace = &ump->lvint_trace[out_ext];
1333 out_len = out_trace->end - out_trace->start;
1334 }
1335 /* copy overlap contents */
1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1338 if (cpy_len == 0)
1339 break;
1340
1341 /* copy */
1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1343 for (cnt = 0; cnt < cpy_len; cnt++) {
1344 /* read in our integrity descriptor */
1345 lb_num = in_trace->start + in_pos + cnt;
1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1347 &dscr);
1348 if (error) {
1349 /* copy last one */
1350 dscr = last_dscr;
1351 }
1352 bufs[cnt] = dscr;
1353 if (!error) {
1354 if (dscr == NULL) {
1355 out_trace->pos = out_wpos + cnt;
1356 out_trace->wpos = out_trace->pos;
1357 break; /* empty terminates */
1358 }
1359 dscr_type = udf_rw16(dscr->tag.id);
1360 if (dscr_type == TAGID_TERM) {
1361 out_trace->pos = out_wpos + cnt;
1362 out_trace->wpos = out_trace->pos;
1363 break; /* clean terminator */
1364 }
1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1366 panic( "UDF integrity sequence "
1367 "corrupted while mounted!\n");
1368 }
1369 last_dscr = dscr;
1370 }
1371 }
1372
1373 /* patch up if first entry was on error */
1374 if (bufs[0] == NULL) {
1375 for (cnt = 0; cnt < cpy_len; cnt++)
1376 if (bufs[cnt] != NULL)
1377 break;
1378 last_dscr = bufs[cnt];
1379 for (; cnt > 0; cnt--) {
1380 bufs[cnt] = last_dscr;
1381 }
1382 }
1383
1384 /* glue + write out */
1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1386 for (cnt = 0; cnt < cpy_len; cnt++) {
1387 lb_num = out_trace->start + out_wpos + cnt;
1388 lvint = &bufs[cnt]->lvid;
1389
1390 /* set continuation */
1391 len = 0;
1392 start = 0;
1393 if (out_wpos + cnt == out_len) {
1394 /* get continuation */
1395 trace = &ump->lvint_trace[out_ext+1];
1396 len = trace->end - trace->start;
1397 start = trace->start;
1398 }
1399 lvint->next_extent.len = udf_rw32(len);
1400 lvint->next_extent.loc = udf_rw32(start);
1401
1402 lb_num = trace->start + trace->wpos;
1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1404 bufs[cnt], lb_num, lb_num);
1405 DPRINTFIF(VOLUMES, error,
1406 ("error writing lvint lb_num\n"));
1407 }
1408
1409 /* free non repeating descriptors */
1410 last_dscr = NULL;
1411 for (cnt = 0; cnt < cpy_len; cnt++) {
1412 if (bufs[cnt] != last_dscr)
1413 free(bufs[cnt], M_UDFVOLD);
1414 last_dscr = bufs[cnt];
1415 }
1416
1417 /* advance */
1418 in_pos += cpy_len;
1419 out_wpos += cpy_len;
1420 }
1421
1422 free(bufs, M_TEMP);
1423
1424 return 0;
1425 }
1426
1427
1428 static int
1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1430 {
1431 struct udf_lvintq *trace;
1432 struct timeval now_v;
1433 struct timespec now_s;
1434 uint32_t sector;
1435 int logvol_integrity;
1436 int space, error;
1437
1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1439
1440 again:
1441 /* get free space in last chunk */
1442 trace = ump->lvint_trace;
1443 while (trace->wpos > (trace->end - trace->start)) {
1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1445 "wpos = %d\n", trace->start, trace->end,
1446 trace->pos, trace->wpos));
1447 trace++;
1448 }
1449
1450 /* check if there is space to append */
1451 space = (trace->end - trace->start) - trace->wpos;
1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1453 "space = %d\n", trace->start, trace->end, trace->pos,
1454 trace->wpos, space));
1455
1456 /* get state */
1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1460 /* TODO extent LVINT space if possible */
1461 return EROFS;
1462 }
1463 }
1464
1465 if (space < 1) {
1466 if (lvflag & UDF_APPENDONLY_LVINT)
1467 return EROFS;
1468 /* loose history by re-writing extents */
1469 error = udf_loose_lvint_history(ump);
1470 if (error)
1471 return error;
1472 goto again;
1473 }
1474
1475 /* update our integrity descriptor to identify us and timestamp it */
1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1477 microtime(&now_v);
1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1482
1483 /* writeout integrity descriptor */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1486 (union dscrptr *) ump->logvol_integrity,
1487 sector, sector);
1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1489 if (error)
1490 return error;
1491
1492 /* advance write position */
1493 trace->wpos++; space--;
1494 if (space >= 1) {
1495 /* append terminator */
1496 sector = trace->start + trace->wpos;
1497 error = udf_write_terminator(ump, sector);
1498
1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1500 }
1501
1502 space = (trace->end - trace->start) - trace->wpos;
1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1504 "space = %d\n", trace->start, trace->end, trace->pos,
1505 trace->wpos, space));
1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1507 "successfull\n"));
1508
1509 return error;
1510 }
1511
1512 /* --------------------------------------------------------------------- */
1513
1514 static int
1515 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1516 {
1517 union dscrptr *dscr;
1518 /* struct udf_args *args = &ump->mount_args; */
1519 struct part_desc *partd;
1520 struct part_hdr_desc *parthdr;
1521 struct udf_bitmap *bitmap;
1522 uint32_t phys_part;
1523 uint32_t lb_num, len;
1524 int error, dscr_type;
1525
1526 /* unallocated space map */
1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 partd = ump->partitions[phys_part];
1529 if (partd == NULL)
1530 continue;
1531 parthdr = &partd->_impl_use.part_hdr;
1532
1533 lb_num = udf_rw32(partd->start_loc);
1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1536 if (len == 0)
1537 continue;
1538
1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1541 if (!error && dscr) {
1542 /* analyse */
1543 dscr_type = udf_rw16(dscr->tag.id);
1544 if (dscr_type == TAGID_SPACE_BITMAP) {
1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1547
1548 /* fill in ump->part_unalloc_bits */
1549 bitmap = &ump->part_unalloc_bits[phys_part];
1550 bitmap->blob = (uint8_t *) dscr;
1551 bitmap->bits = dscr->sbd.data;
1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1553 bitmap->pages = NULL; /* TODO */
1554 bitmap->data_pos = 0;
1555 bitmap->metadata_pos = 0;
1556 } else {
1557 free(dscr, M_UDFVOLD);
1558
1559 printf( "UDF mount: error reading unallocated "
1560 "space bitmap\n");
1561 return EROFS;
1562 }
1563 } else {
1564 /* blank not allowed */
1565 printf("UDF mount: blank unallocated space bitmap\n");
1566 return EROFS;
1567 }
1568 }
1569
1570 /* unallocated space table (not supported) */
1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1572 partd = ump->partitions[phys_part];
1573 if (partd == NULL)
1574 continue;
1575 parthdr = &partd->_impl_use.part_hdr;
1576
1577 len = udf_rw32(parthdr->unalloc_space_table.len);
1578 if (len) {
1579 printf("UDF mount: space tables not supported\n");
1580 return EROFS;
1581 }
1582 }
1583
1584 /* freed space map */
1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1586 partd = ump->partitions[phys_part];
1587 if (partd == NULL)
1588 continue;
1589 parthdr = &partd->_impl_use.part_hdr;
1590
1591 /* freed space map */
1592 lb_num = udf_rw32(partd->start_loc);
1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1594 len = udf_rw32(parthdr->freed_space_bitmap.len);
1595 if (len == 0)
1596 continue;
1597
1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1600 if (!error && dscr) {
1601 /* analyse */
1602 dscr_type = udf_rw16(dscr->tag.id);
1603 if (dscr_type == TAGID_SPACE_BITMAP) {
1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1605 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1606
1607 /* fill in ump->part_freed_bits */
1608 bitmap = &ump->part_unalloc_bits[phys_part];
1609 bitmap->blob = (uint8_t *) dscr;
1610 bitmap->bits = dscr->sbd.data;
1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1612 bitmap->pages = NULL; /* TODO */
1613 bitmap->data_pos = 0;
1614 bitmap->metadata_pos = 0;
1615 } else {
1616 free(dscr, M_UDFVOLD);
1617
1618 printf( "UDF mount: error reading freed "
1619 "space bitmap\n");
1620 return EROFS;
1621 }
1622 } else {
1623 /* blank not allowed */
1624 printf("UDF mount: blank freed space bitmap\n");
1625 return EROFS;
1626 }
1627 }
1628
1629 /* freed space table (not supported) */
1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1631 partd = ump->partitions[phys_part];
1632 if (partd == NULL)
1633 continue;
1634 parthdr = &partd->_impl_use.part_hdr;
1635
1636 len = udf_rw32(parthdr->freed_space_table.len);
1637 if (len) {
1638 printf("UDF mount: space tables not supported\n");
1639 return EROFS;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646
1647 /* TODO implement async writeout */
1648 int
1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1650 {
1651 union dscrptr *dscr;
1652 /* struct udf_args *args = &ump->mount_args; */
1653 struct part_desc *partd;
1654 struct part_hdr_desc *parthdr;
1655 uint32_t phys_part;
1656 uint32_t lb_num, len, ptov;
1657 int error_all, error;
1658
1659 error_all = 0;
1660 /* unallocated space map */
1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1662 partd = ump->partitions[phys_part];
1663 if (partd == NULL)
1664 continue;
1665 parthdr = &partd->_impl_use.part_hdr;
1666
1667 ptov = udf_rw32(partd->start_loc);
1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1670 if (len == 0)
1671 continue;
1672
1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1674 lb_num + ptov));
1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1677 (union dscrptr *) dscr,
1678 ptov + lb_num, lb_num);
1679 if (error) {
1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1681 error_all = error;
1682 }
1683 }
1684
1685 /* freed space map */
1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1687 partd = ump->partitions[phys_part];
1688 if (partd == NULL)
1689 continue;
1690 parthdr = &partd->_impl_use.part_hdr;
1691
1692 /* freed space map */
1693 ptov = udf_rw32(partd->start_loc);
1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1695 len = udf_rw32(parthdr->freed_space_bitmap.len);
1696 if (len == 0)
1697 continue;
1698
1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1700 lb_num + ptov));
1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1703 (union dscrptr *) dscr,
1704 ptov + lb_num, lb_num);
1705 if (error) {
1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1707 error_all = error;
1708 }
1709 }
1710
1711 return error_all;
1712 }
1713
1714
1715 static int
1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1717 {
1718 struct udf_node *bitmap_node;
1719 union dscrptr *dscr;
1720 struct udf_bitmap *bitmap;
1721 uint64_t inflen;
1722 int error, dscr_type;
1723
1724 bitmap_node = ump->metadatabitmap_node;
1725
1726 /* only read in when metadata bitmap node is read in */
1727 if (bitmap_node == NULL)
1728 return 0;
1729
1730 if (bitmap_node->fe) {
1731 inflen = udf_rw64(bitmap_node->fe->inf_len);
1732 } else {
1733 KASSERT(bitmap_node->efe);
1734 inflen = udf_rw64(bitmap_node->efe->inf_len);
1735 }
1736
1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1738 "%"PRIu64" bytes\n", inflen));
1739
1740 /* allocate space for bitmap */
1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1742 if (!dscr)
1743 return ENOMEM;
1744
1745 /* set vnode type to regular file or we can't read from it! */
1746 bitmap_node->vnode->v_type = VREG;
1747
1748 /* read in complete metadata bitmap file */
1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1750 dscr,
1751 inflen, 0,
1752 UIO_SYSSPACE,
1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1754 NULL, NULL);
1755 if (error) {
1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1757 goto errorout;
1758 }
1759
1760 /* analyse */
1761 dscr_type = udf_rw16(dscr->tag.id);
1762 if (dscr_type == TAGID_SPACE_BITMAP) {
1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1764 ump->metadata_unalloc_dscr = &dscr->sbd;
1765
1766 /* fill in bitmap bits */
1767 bitmap = &ump->metadata_unalloc_bits;
1768 bitmap->blob = (uint8_t *) dscr;
1769 bitmap->bits = dscr->sbd.data;
1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1771 bitmap->pages = NULL; /* TODO */
1772 bitmap->data_pos = 0;
1773 bitmap->metadata_pos = 0;
1774 } else {
1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1776 goto errorout;
1777 }
1778
1779 return 0;
1780
1781 errorout:
1782 free(dscr, M_UDFVOLD);
1783 printf( "UDF mount: error reading unallocated "
1784 "space bitmap for metadata partition\n");
1785 return EROFS;
1786 }
1787
1788
1789 int
1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1791 {
1792 struct udf_node *bitmap_node;
1793 union dscrptr *dscr;
1794 uint64_t new_inflen;
1795 int dummy, error;
1796
1797 bitmap_node = ump->metadatabitmap_node;
1798
1799 /* only write out when metadata bitmap node is known */
1800 if (bitmap_node == NULL)
1801 return 0;
1802
1803 if (!bitmap_node->fe) {
1804 KASSERT(bitmap_node->efe);
1805 }
1806
1807 /* reduce length to zero */
1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1809 new_inflen = udf_tagsize(dscr, 1);
1810
1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1812 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1813
1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1815 if (error)
1816 printf("Error resizing metadata space bitmap\n");
1817
1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1819 dscr,
1820 new_inflen, 0,
1821 UIO_SYSSPACE,
1822 IO_ALTSEMANTICS, FSCRED,
1823 NULL, NULL);
1824
1825 bitmap_node->i_flags |= IN_MODIFIED;
1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1827 if (error == 0)
1828 error = VOP_FSYNC(bitmap_node->vnode,
1829 FSCRED, FSYNC_WAIT, 0, 0);
1830
1831 if (error)
1832 printf( "Error writing out metadata partition unalloced "
1833 "space bitmap!\n");
1834
1835 return error;
1836 }
1837
1838
1839 /* --------------------------------------------------------------------- */
1840
1841 /*
1842 * Checks if ump's vds information is correct and complete
1843 */
1844
1845 int
1846 udf_process_vds(struct udf_mount *ump) {
1847 union udf_pmap *mapping;
1848 /* struct udf_args *args = &ump->mount_args; */
1849 struct logvol_int_desc *lvint;
1850 struct udf_logvol_info *lvinfo;
1851 uint32_t n_pm;
1852 uint8_t *pmap_pos;
1853 char *domain_name, *map_name;
1854 const char *check_name;
1855 char bits[128];
1856 int pmap_stype, pmap_size;
1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1858 int n_phys, n_virt, n_spar, n_meta;
1859 int len;
1860
1861 if (ump == NULL)
1862 return ENOENT;
1863
1864 /* we need at least an anchor (trivial, but for safety) */
1865 if (ump->anchors[0] == NULL)
1866 return EINVAL;
1867
1868 /* we need at least one primary and one logical volume descriptor */
1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1870 return EINVAL;
1871
1872 /* we need at least one partition descriptor */
1873 if (ump->partitions[0] == NULL)
1874 return EINVAL;
1875
1876 /* check logical volume sector size verses device sector size */
1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1878 printf("UDF mount: format violation, lb_size != sector size\n");
1879 return EINVAL;
1880 }
1881
1882 /* check domain name */
1883 domain_name = ump->logical_vol->domain_id.id;
1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1886 return EINVAL;
1887 }
1888
1889 /* retrieve logical volume integrity sequence */
1890 (void)udf_retrieve_lvint(ump);
1891
1892 /*
1893 * We need at least one logvol integrity descriptor recorded. Note
1894 * that its OK to have an open logical volume integrity here. The VAT
1895 * will close/update the integrity.
1896 */
1897 if (ump->logvol_integrity == NULL)
1898 return EINVAL;
1899
1900 /* process derived structures */
1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1902 lvint = ump->logvol_integrity;
1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1904 ump->logvol_info = lvinfo;
1905
1906 /* TODO check udf versions? */
1907
1908 /*
1909 * check logvol mappings: effective virt->log partmap translation
1910 * check and recording of the mapping results. Saves expensive
1911 * strncmp() in tight places.
1912 */
1913 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1915 pmap_pos = ump->logical_vol->maps;
1916
1917 if (n_pm > UDF_PMAPS) {
1918 printf("UDF mount: too many mappings\n");
1919 return EINVAL;
1920 }
1921
1922 /* count types and set partition numbers */
1923 ump->data_part = ump->node_part = ump->fids_part = 0;
1924 n_phys = n_virt = n_spar = n_meta = 0;
1925 for (log_part = 0; log_part < n_pm; log_part++) {
1926 mapping = (union udf_pmap *) pmap_pos;
1927 pmap_stype = pmap_pos[0];
1928 pmap_size = pmap_pos[1];
1929 switch (pmap_stype) {
1930 case 1: /* physical mapping */
1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1932 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1933 pmap_type = UDF_VTOP_TYPE_PHYS;
1934 n_phys++;
1935 ump->data_part = log_part;
1936 ump->node_part = log_part;
1937 ump->fids_part = log_part;
1938 break;
1939 case 2: /* virtual/sparable/meta mapping */
1940 map_name = mapping->pm2.part_id.id;
1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1942 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1944 len = UDF_REGID_ID_SIZE;
1945
1946 check_name = "*UDF Virtual Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_VIRT;
1949 n_virt++;
1950 ump->node_part = log_part;
1951 break;
1952 }
1953 check_name = "*UDF Sparable Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1956 n_spar++;
1957 ump->data_part = log_part;
1958 ump->node_part = log_part;
1959 ump->fids_part = log_part;
1960 break;
1961 }
1962 check_name = "*UDF Metadata Partition";
1963 if (strncmp(map_name, check_name, len) == 0) {
1964 pmap_type = UDF_VTOP_TYPE_META;
1965 n_meta++;
1966 ump->node_part = log_part;
1967 ump->fids_part = log_part;
1968 break;
1969 }
1970 break;
1971 default:
1972 return EINVAL;
1973 }
1974
1975 /*
1976 * BUGALERT: some rogue implementations use random physical
1977 * partition numbers to break other implementations so lookup
1978 * the number.
1979 */
1980 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1981
1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1983 raw_phys_part, phys_part, pmap_type));
1984
1985 if (phys_part == UDF_PARTITIONS)
1986 return EINVAL;
1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1988 return EINVAL;
1989
1990 ump->vtop [log_part] = phys_part;
1991 ump->vtop_tp[log_part] = pmap_type;
1992
1993 pmap_pos += pmap_size;
1994 }
1995 /* not winning the beauty contest */
1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1997
1998 /* test some basic UDF assertions/requirements */
1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2000 return EINVAL;
2001
2002 if (n_virt) {
2003 if ((n_phys == 0) || n_spar || n_meta)
2004 return EINVAL;
2005 }
2006 if (n_spar + n_phys == 0)
2007 return EINVAL;
2008
2009 /* select allocation type for each logical partition */
2010 for (log_part = 0; log_part < n_pm; log_part++) {
2011 maps_on = ump->vtop[log_part];
2012 switch (ump->vtop_tp[log_part]) {
2013 case UDF_VTOP_TYPE_PHYS :
2014 assert(maps_on == log_part);
2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2016 break;
2017 case UDF_VTOP_TYPE_VIRT :
2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2020 break;
2021 case UDF_VTOP_TYPE_SPARABLE :
2022 assert(maps_on == log_part);
2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 break;
2025 case UDF_VTOP_TYPE_META :
2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2028 /* special case for UDF 2.60 */
2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2031 }
2032 break;
2033 default:
2034 panic("bad alloction type in udf's ump->vtop\n");
2035 }
2036 }
2037
2038 /* determine logical volume open/closure actions */
2039 if (n_virt) {
2040 ump->lvopen = 0;
2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2042 ump->lvopen |= UDF_OPEN_SESSION ;
2043 ump->lvclose = UDF_WRITE_VAT;
2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2045 ump->lvclose |= UDF_CLOSE_SESSION;
2046 } else {
2047 /* `normal' rewritable or non sequential media */
2048 ump->lvopen = UDF_WRITE_LVINT;
2049 ump->lvclose = UDF_WRITE_LVINT;
2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2051 ump->lvopen |= UDF_APPENDONLY_LVINT;
2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2054 }
2055
2056 /*
2057 * Determine sheduler error behaviour. For virtual partitions, update
2058 * the trackinfo; for sparable partitions replace a whole block on the
2059 * sparable table. Allways requeue.
2060 */
2061 ump->lvreadwrite = 0;
2062 if (n_virt)
2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2064 if (n_spar)
2065 ump->lvreadwrite = UDF_REMAP_BLOCK;
2066
2067 /*
2068 * Select our sheduler
2069 */
2070 ump->strategy = &udf_strat_rmw;
2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2072 ump->strategy = &udf_strat_sequential;
2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2075 ump->strategy = &udf_strat_direct;
2076 if (n_spar)
2077 ump->strategy = &udf_strat_rmw;
2078
2079 #if 0
2080 /* read-only access won't benefit from the other shedulers */
2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2082 ump->strategy = &udf_strat_direct;
2083 #endif
2084
2085 /* print results */
2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2092
2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2099
2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2101 (ump->strategy == &udf_strat_direct) ? "Direct" :
2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2104
2105 /* signal its OK for now */
2106 return 0;
2107 }
2108
2109 /* --------------------------------------------------------------------- */
2110
2111 /*
2112 * Update logical volume name in all structures that keep a record of it. We
2113 * use memmove since each of them might be specified as a source.
2114 *
2115 * Note that it doesn't update the VAT structure!
2116 */
2117
2118 static void
2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2120 {
2121 struct logvol_desc *lvd = NULL;
2122 struct fileset_desc *fsd = NULL;
2123 struct udf_lv_info *lvi = NULL;
2124
2125 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2126 lvd = ump->logical_vol;
2127 fsd = ump->fileset_desc;
2128 if (ump->implementation)
2129 lvi = &ump->implementation->_impl_use.lv_info;
2130
2131 /* logvol's id might be specified as origional so use memmove here */
2132 memmove(lvd->logvol_id, logvol_id, 128);
2133 if (fsd)
2134 memmove(fsd->logvol_id, logvol_id, 128);
2135 if (lvi)
2136 memmove(lvi->logvol_id, logvol_id, 128);
2137 }
2138
2139 /* --------------------------------------------------------------------- */
2140
2141 void
2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2143 uint32_t sector)
2144 {
2145 assert(ump->logical_vol);
2146
2147 tag->id = udf_rw16(tagid);
2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2149 tag->cksum = 0;
2150 tag->reserved = 0;
2151 tag->serial_num = ump->logical_vol->tag.serial_num;
2152 tag->tag_loc = udf_rw32(sector);
2153 }
2154
2155
2156 uint64_t
2157 udf_advance_uniqueid(struct udf_mount *ump)
2158 {
2159 uint64_t unique_id;
2160
2161 mutex_enter(&ump->logvol_mutex);
2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2163 if (unique_id < 0x10)
2164 unique_id = 0x10;
2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2166 mutex_exit(&ump->logvol_mutex);
2167
2168 return unique_id;
2169 }
2170
2171
2172 static void
2173 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2174 {
2175 struct udf_mount *ump = udf_node->ump;
2176 uint32_t num_dirs, num_files;
2177 int udf_file_type;
2178
2179 /* get file type */
2180 if (udf_node->fe) {
2181 udf_file_type = udf_node->fe->icbtag.file_type;
2182 } else {
2183 udf_file_type = udf_node->efe->icbtag.file_type;
2184 }
2185
2186 /* adjust file count */
2187 mutex_enter(&ump->allocate_mutex);
2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2189 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2190 ump->logvol_info->num_directories =
2191 udf_rw32((num_dirs + sign));
2192 } else {
2193 num_files = udf_rw32(ump->logvol_info->num_files);
2194 ump->logvol_info->num_files =
2195 udf_rw32((num_files + sign));
2196 }
2197 mutex_exit(&ump->allocate_mutex);
2198 }
2199
2200
2201 void
2202 udf_osta_charset(struct charspec *charspec)
2203 {
2204 memset(charspec, 0, sizeof(struct charspec));
2205 charspec->type = 0;
2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2207 }
2208
2209
2210 /* first call udf_set_regid and then the suffix */
2211 void
2212 udf_set_regid(struct regid *regid, char const *name)
2213 {
2214 memset(regid, 0, sizeof(struct regid));
2215 regid->flags = 0; /* not dirty and not protected */
2216 strcpy((char *) regid->id, name);
2217 }
2218
2219
2220 void
2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2222 {
2223 uint16_t *ver;
2224
2225 ver = (uint16_t *) regid->id_suffix;
2226 *ver = ump->logvol_info->min_udf_readver;
2227 }
2228
2229
2230 void
2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2232 {
2233 uint16_t *ver;
2234
2235 ver = (uint16_t *) regid->id_suffix;
2236 *ver = ump->logvol_info->min_udf_readver;
2237
2238 regid->id_suffix[2] = 4; /* unix */
2239 regid->id_suffix[3] = 8; /* NetBSD */
2240 }
2241
2242
2243 void
2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2245 {
2246 regid->id_suffix[0] = 4; /* unix */
2247 regid->id_suffix[1] = 8; /* NetBSD */
2248 }
2249
2250
2251 void
2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 regid->id_suffix[0] = APP_VERSION_MAIN;
2255 regid->id_suffix[1] = APP_VERSION_SUB;
2256 }
2257
2258 static int
2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2260 struct long_ad *parent, uint64_t unique_id)
2261 {
2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2263 int fidsize = 40;
2264
2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2268 fid->icb = *parent;
2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2272
2273 return fidsize;
2274 }
2275
2276 /* --------------------------------------------------------------------- */
2277
2278 /*
2279 * Extended attribute support. UDF knows of 3 places for extended attributes:
2280 *
2281 * (a) inside the file's (e)fe in the length of the extended attribute area
2282 * before the allocation descriptors/filedata
2283 *
2284 * (b) in a file referenced by (e)fe->ext_attr_icb and
2285 *
2286 * (c) in the e(fe)'s associated stream directory that can hold various
2287 * sub-files. In the stream directory a few fixed named subfiles are reserved
2288 * for NT/Unix ACL's and OS/2 attributes.
2289 *
2290 * NOTE: Extended attributes are read randomly but allways written
2291 * *atomicaly*. For ACL's this interface is propably different but not known
2292 * to me yet.
2293 *
2294 * Order of extended attributes in a space :
2295 * ECMA 167 EAs
2296 * Non block aligned Implementation Use EAs
2297 * Block aligned Implementation Use EAs
2298 * Application Use EAs
2299 */
2300
2301 static int
2302 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2303 {
2304 uint16_t *spos;
2305
2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2307 /* checksum valid? */
2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2309 spos = (uint16_t *) implext->data;
2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2311 return EINVAL;
2312 }
2313 return 0;
2314 }
2315
2316 static void
2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2318 {
2319 uint16_t *spos;
2320
2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2322 /* set checksum */
2323 spos = (uint16_t *) implext->data;
2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2325 }
2326 }
2327
2328
2329 int
2330 udf_extattr_search_intern(struct udf_node *node,
2331 uint32_t sattr, char const *sattrname,
2332 uint32_t *offsetp, uint32_t *lengthp)
2333 {
2334 struct extattrhdr_desc *eahdr;
2335 struct extattr_entry *attrhdr;
2336 struct impl_extattr_entry *implext;
2337 uint32_t offset, a_l, sector_size;
2338 int32_t l_ea;
2339 uint8_t *pos;
2340 int error;
2341
2342 /* get mountpoint */
2343 sector_size = node->ump->discinfo.sector_size;
2344
2345 /* get information from fe/efe */
2346 if (node->fe) {
2347 l_ea = udf_rw32(node->fe->l_ea);
2348 eahdr = (struct extattrhdr_desc *) node->fe->data;
2349 } else {
2350 assert(node->efe);
2351 l_ea = udf_rw32(node->efe->l_ea);
2352 eahdr = (struct extattrhdr_desc *) node->efe->data;
2353 }
2354
2355 /* something recorded here? */
2356 if (l_ea == 0)
2357 return ENOENT;
2358
2359 /* check extended attribute tag; what to do if it fails? */
2360 error = udf_check_tag(eahdr);
2361 if (error)
2362 return EINVAL;
2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2364 return EINVAL;
2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2366 if (error)
2367 return EINVAL;
2368
2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2370
2371 /* looking for Ecma-167 attributes? */
2372 offset = sizeof(struct extattrhdr_desc);
2373
2374 /* looking for either implemenation use or application use */
2375 if (sattr == 2048) { /* [4/48.10.8] */
2376 offset = udf_rw32(eahdr->impl_attr_loc);
2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2378 return ENOENT;
2379 }
2380 if (sattr == 65536) { /* [4/48.10.9] */
2381 offset = udf_rw32(eahdr->appl_attr_loc);
2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2383 return ENOENT;
2384 }
2385
2386 /* paranoia check offset and l_ea */
2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2388 return EINVAL;
2389
2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2391
2392 /* find our extended attribute */
2393 l_ea -= offset;
2394 pos = (uint8_t *) eahdr + offset;
2395
2396 while (l_ea >= sizeof(struct extattr_entry)) {
2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2398 attrhdr = (struct extattr_entry *) pos;
2399 implext = (struct impl_extattr_entry *) pos;
2400
2401 /* get complete attribute length and check for roque values */
2402 a_l = udf_rw32(attrhdr->a_l);
2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2404 udf_rw32(attrhdr->type),
2405 attrhdr->subtype, a_l, l_ea));
2406 if ((a_l == 0) || (a_l > l_ea))
2407 return EINVAL;
2408
2409 if (attrhdr->type != sattr)
2410 goto next_attribute;
2411
2412 /* we might have found it! */
2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2414 *offsetp = offset;
2415 *lengthp = a_l;
2416 return 0; /* success */
2417 }
2418
2419 /*
2420 * Implementation use and application use extended attributes
2421 * have a name to identify. They share the same structure only
2422 * UDF implementation use extended attributes have a checksum
2423 * we need to check
2424 */
2425
2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2427 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2428 /* we have found our appl/implementation attribute */
2429 *offsetp = offset;
2430 *lengthp = a_l;
2431 return 0; /* success */
2432 }
2433
2434 next_attribute:
2435 /* next attribute */
2436 pos += a_l;
2437 l_ea -= a_l;
2438 offset += a_l;
2439 }
2440 /* not found */
2441 return ENOENT;
2442 }
2443
2444
2445 static void
2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2447 struct extattr_entry *extattr)
2448 {
2449 struct file_entry *fe;
2450 struct extfile_entry *efe;
2451 struct extattrhdr_desc *extattrhdr;
2452 struct impl_extattr_entry *implext;
2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2454 uint32_t *l_eap, l_ad;
2455 uint16_t *spos;
2456 uint8_t *bpos, *data;
2457
2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2459 fe = &dscr->fe;
2460 data = fe->data;
2461 l_eap = &fe->l_ea;
2462 l_ad = udf_rw32(fe->l_ad);
2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2464 efe = &dscr->efe;
2465 data = efe->data;
2466 l_eap = &efe->l_ea;
2467 l_ad = udf_rw32(efe->l_ad);
2468 } else {
2469 panic("Bad tag passed to udf_extattr_insert_internal");
2470 }
2471
2472 /* can't append already written to file descriptors yet */
2473 assert(l_ad == 0);
2474
2475 /* should have a header! */
2476 extattrhdr = (struct extattrhdr_desc *) data;
2477 l_ea = udf_rw32(*l_eap);
2478 if (l_ea == 0) {
2479 /* create empty extended attribute header */
2480 exthdr_len = sizeof(struct extattrhdr_desc);
2481
2482 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2483 /* loc */ 0);
2484 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2485 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2486 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2487
2488 /* record extended attribute header length */
2489 l_ea = exthdr_len;
2490 *l_eap = udf_rw32(l_ea);
2491 }
2492
2493 /* extract locations */
2494 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2495 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2496 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2497 impl_attr_loc = l_ea;
2498 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2499 appl_attr_loc = l_ea;
2500
2501 /* Ecma 167 EAs */
2502 if (udf_rw32(extattr->type) < 2048) {
2503 assert(impl_attr_loc == l_ea);
2504 assert(appl_attr_loc == l_ea);
2505 }
2506
2507 /* implementation use extended attributes */
2508 if (udf_rw32(extattr->type) == 2048) {
2509 assert(appl_attr_loc == l_ea);
2510
2511 /* calculate and write extended attribute header checksum */
2512 implext = (struct impl_extattr_entry *) extattr;
2513 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2514 spos = (uint16_t *) implext->data;
2515 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2516 }
2517
2518 /* application use extended attributes */
2519 assert(udf_rw32(extattr->type) != 65536);
2520 assert(appl_attr_loc == l_ea);
2521
2522 /* append the attribute at the end of the current space */
2523 bpos = data + udf_rw32(*l_eap);
2524 a_l = udf_rw32(extattr->a_l);
2525
2526 /* update impl. attribute locations */
2527 if (udf_rw32(extattr->type) < 2048) {
2528 impl_attr_loc = l_ea + a_l;
2529 appl_attr_loc = l_ea + a_l;
2530 }
2531 if (udf_rw32(extattr->type) == 2048) {
2532 appl_attr_loc = l_ea + a_l;
2533 }
2534
2535 /* copy and advance */
2536 memcpy(bpos, extattr, a_l);
2537 l_ea += a_l;
2538 *l_eap = udf_rw32(l_ea);
2539
2540 /* do the `dance` again backwards */
2541 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2542 if (impl_attr_loc == l_ea)
2543 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2544 if (appl_attr_loc == l_ea)
2545 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2546 }
2547
2548 /* store offsets */
2549 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2550 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2551 }
2552
2553
2554 /* --------------------------------------------------------------------- */
2555
2556 static int
2557 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2558 {
2559 struct udf_mount *ump;
2560 struct udf_logvol_info *lvinfo;
2561 struct impl_extattr_entry *implext;
2562 struct vatlvext_extattr_entry lvext;
2563 const char *extstr = "*UDF VAT LVExtension";
2564 uint64_t vat_uniqueid;
2565 uint32_t offset, a_l;
2566 uint8_t *ea_start, *lvextpos;
2567 int error;
2568
2569 /* get mountpoint and lvinfo */
2570 ump = vat_node->ump;
2571 lvinfo = ump->logvol_info;
2572
2573 /* get information from fe/efe */
2574 if (vat_node->fe) {
2575 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2576 ea_start = vat_node->fe->data;
2577 } else {
2578 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2579 ea_start = vat_node->efe->data;
2580 }
2581
2582 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2583 if (error)
2584 return error;
2585
2586 implext = (struct impl_extattr_entry *) (ea_start + offset);
2587 error = udf_impl_extattr_check(implext);
2588 if (error)
2589 return error;
2590
2591 /* paranoia */
2592 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2593 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2594 return EINVAL;
2595 }
2596
2597 /*
2598 * we have found our "VAT LVExtension attribute. BUT due to a
2599 * bug in the specification it might not be word aligned so
2600 * copy first to avoid panics on some machines (!!)
2601 */
2602 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2603 lvextpos = implext->data + udf_rw32(implext->iu_l);
2604 memcpy(&lvext, lvextpos, sizeof(lvext));
2605
2606 /* check if it was updated the last time */
2607 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2608 lvinfo->num_files = lvext.num_files;
2609 lvinfo->num_directories = lvext.num_directories;
2610 udf_update_logvolname(ump, lvext.logvol_id);
2611 } else {
2612 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2613 /* replace VAT LVExt by free space EA */
2614 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2615 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2616 udf_calc_impl_extattr_checksum(implext);
2617 }
2618
2619 return 0;
2620 }
2621
2622
2623 static int
2624 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2625 {
2626 struct udf_mount *ump;
2627 struct udf_logvol_info *lvinfo;
2628 struct impl_extattr_entry *implext;
2629 struct vatlvext_extattr_entry lvext;
2630 const char *extstr = "*UDF VAT LVExtension";
2631 uint64_t vat_uniqueid;
2632 uint32_t offset, a_l;
2633 uint8_t *ea_start, *lvextpos;
2634 int error;
2635
2636 /* get mountpoint and lvinfo */
2637 ump = vat_node->ump;
2638 lvinfo = ump->logvol_info;
2639
2640 /* get information from fe/efe */
2641 if (vat_node->fe) {
2642 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2643 ea_start = vat_node->fe->data;
2644 } else {
2645 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2646 ea_start = vat_node->efe->data;
2647 }
2648
2649 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2650 if (error)
2651 return error;
2652 /* found, it existed */
2653
2654 /* paranoia */
2655 implext = (struct impl_extattr_entry *) (ea_start + offset);
2656 error = udf_impl_extattr_check(implext);
2657 if (error) {
2658 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2659 return error;
2660 }
2661 /* it is correct */
2662
2663 /*
2664 * we have found our "VAT LVExtension attribute. BUT due to a
2665 * bug in the specification it might not be word aligned so
2666 * copy first to avoid panics on some machines (!!)
2667 */
2668 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2669 lvextpos = implext->data + udf_rw32(implext->iu_l);
2670
2671 lvext.unique_id_chk = vat_uniqueid;
2672 lvext.num_files = lvinfo->num_files;
2673 lvext.num_directories = lvinfo->num_directories;
2674 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2675
2676 memcpy(lvextpos, &lvext, sizeof(lvext));
2677
2678 return 0;
2679 }
2680
2681 /* --------------------------------------------------------------------- */
2682
2683 int
2684 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2685 {
2686 struct udf_mount *ump = vat_node->ump;
2687
2688 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2689 return EINVAL;
2690
2691 memcpy(blob, ump->vat_table + offset, size);
2692 return 0;
2693 }
2694
2695 int
2696 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2697 {
2698 struct udf_mount *ump = vat_node->ump;
2699 uint32_t offset_high;
2700 uint8_t *new_vat_table;
2701
2702 /* extent VAT allocation if needed */
2703 offset_high = offset + size;
2704 if (offset_high >= ump->vat_table_alloc_len) {
2705 /* realloc */
2706 new_vat_table = realloc(ump->vat_table,
2707 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2708 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2709 if (!new_vat_table) {
2710 printf("udf_vat_write: can't extent VAT, out of mem\n");
2711 return ENOMEM;
2712 }
2713 ump->vat_table = new_vat_table;
2714 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2715 }
2716 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2717
2718 memcpy(ump->vat_table + offset, blob, size);
2719 return 0;
2720 }
2721
2722 /* --------------------------------------------------------------------- */
2723
2724 /* TODO support previous VAT location writeout */
2725 static int
2726 udf_update_vat_descriptor(struct udf_mount *ump)
2727 {
2728 struct udf_node *vat_node = ump->vat_node;
2729 struct udf_logvol_info *lvinfo = ump->logvol_info;
2730 struct icb_tag *icbtag;
2731 struct udf_oldvat_tail *oldvat_tl;
2732 struct udf_vat *vat;
2733 uint64_t unique_id;
2734 uint32_t lb_size;
2735 uint8_t *raw_vat;
2736 int filetype, error;
2737
2738 KASSERT(vat_node);
2739 KASSERT(lvinfo);
2740 lb_size = udf_rw32(ump->logical_vol->lb_size);
2741
2742 /* get our new unique_id */
2743 unique_id = udf_advance_uniqueid(ump);
2744
2745 /* get information from fe/efe */
2746 if (vat_node->fe) {
2747 icbtag = &vat_node->fe->icbtag;
2748 vat_node->fe->unique_id = udf_rw64(unique_id);
2749 } else {
2750 icbtag = &vat_node->efe->icbtag;
2751 vat_node->efe->unique_id = udf_rw64(unique_id);
2752 }
2753
2754 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2755 filetype = icbtag->file_type;
2756 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2757
2758 /* allocate piece to process head or tail of VAT file */
2759 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2760
2761 if (filetype == 0) {
2762 /*
2763 * Update "*UDF VAT LVExtension" extended attribute from the
2764 * lvint if present.
2765 */
2766 udf_update_vat_extattr_from_lvid(vat_node);
2767
2768 /* setup identifying regid */
2769 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2770 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2771
2772 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2773 udf_add_udf_regid(ump, &oldvat_tl->id);
2774 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2775
2776 /* write out new tail of virtual allocation table file */
2777 error = udf_vat_write(vat_node, raw_vat,
2778 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2779 } else {
2780 /* compose the VAT2 header */
2781 vat = (struct udf_vat *) raw_vat;
2782 memset(vat, 0, sizeof(struct udf_vat));
2783
2784 vat->header_len = udf_rw16(152); /* as per spec */
2785 vat->impl_use_len = udf_rw16(0);
2786 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2787 vat->prev_vat = udf_rw32(0xffffffff);
2788 vat->num_files = lvinfo->num_files;
2789 vat->num_directories = lvinfo->num_directories;
2790 vat->min_udf_readver = lvinfo->min_udf_readver;
2791 vat->min_udf_writever = lvinfo->min_udf_writever;
2792 vat->max_udf_writever = lvinfo->max_udf_writever;
2793
2794 error = udf_vat_write(vat_node, raw_vat,
2795 sizeof(struct udf_vat), 0);
2796 }
2797 free(raw_vat, M_TEMP);
2798
2799 return error; /* success! */
2800 }
2801
2802
2803 int
2804 udf_writeout_vat(struct udf_mount *ump)
2805 {
2806 struct udf_node *vat_node = ump->vat_node;
2807 int error;
2808
2809 KASSERT(vat_node);
2810
2811 DPRINTF(CALL, ("udf_writeout_vat\n"));
2812
2813 // mutex_enter(&ump->allocate_mutex);
2814 udf_update_vat_descriptor(ump);
2815
2816 /* write out the VAT contents ; TODO intelligent writing */
2817 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2818 ump->vat_table, ump->vat_table_len, 0,
2819 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2820 if (error) {
2821 printf("udf_writeout_vat: failed to write out VAT contents\n");
2822 goto out;
2823 }
2824
2825 // mutex_exit(&ump->allocate_mutex);
2826
2827 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2828 if (error)
2829 goto out;
2830 error = VOP_FSYNC(ump->vat_node->vnode,
2831 FSCRED, FSYNC_WAIT, 0, 0);
2832 if (error)
2833 printf("udf_writeout_vat: error writing VAT node!\n");
2834 out:
2835
2836 return error;
2837 }
2838
2839 /* --------------------------------------------------------------------- */
2840
2841 /*
2842 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2843 * descriptor. If OK, read in complete VAT file.
2844 */
2845
2846 static int
2847 udf_check_for_vat(struct udf_node *vat_node)
2848 {
2849 struct udf_mount *ump;
2850 struct icb_tag *icbtag;
2851 struct timestamp *mtime;
2852 struct udf_vat *vat;
2853 struct udf_oldvat_tail *oldvat_tl;
2854 struct udf_logvol_info *lvinfo;
2855 uint64_t unique_id;
2856 uint32_t vat_length;
2857 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2858 uint32_t sector_size;
2859 uint32_t *raw_vat;
2860 uint8_t *vat_table;
2861 char *regid_name;
2862 int filetype;
2863 int error;
2864
2865 /* vat_length is really 64 bits though impossible */
2866
2867 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2868 if (!vat_node)
2869 return ENOENT;
2870
2871 /* get mount info */
2872 ump = vat_node->ump;
2873 sector_size = udf_rw32(ump->logical_vol->lb_size);
2874
2875 /* check assertions */
2876 assert(vat_node->fe || vat_node->efe);
2877 assert(ump->logvol_integrity);
2878
2879 /* set vnode type to regular file or we can't read from it! */
2880 vat_node->vnode->v_type = VREG;
2881
2882 /* get information from fe/efe */
2883 if (vat_node->fe) {
2884 vat_length = udf_rw64(vat_node->fe->inf_len);
2885 icbtag = &vat_node->fe->icbtag;
2886 mtime = &vat_node->fe->mtime;
2887 unique_id = udf_rw64(vat_node->fe->unique_id);
2888 } else {
2889 vat_length = udf_rw64(vat_node->efe->inf_len);
2890 icbtag = &vat_node->efe->icbtag;
2891 mtime = &vat_node->efe->mtime;
2892 unique_id = udf_rw64(vat_node->efe->unique_id);
2893 }
2894
2895 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2896 filetype = icbtag->file_type;
2897 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2898 return ENOENT;
2899
2900 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2901
2902 vat_table_alloc_len =
2903 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2904 * UDF_VAT_CHUNKSIZE;
2905
2906 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2907 M_CANFAIL | M_WAITOK);
2908 if (vat_table == NULL) {
2909 printf("allocation of %d bytes failed for VAT\n",
2910 vat_table_alloc_len);
2911 return ENOMEM;
2912 }
2913
2914 /* allocate piece to read in head or tail of VAT file */
2915 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2916
2917 /*
2918 * check contents of the file if its the old 1.50 VAT table format.
2919 * Its notoriously broken and allthough some implementations support an
2920 * extention as defined in the UDF 1.50 errata document, its doubtfull
2921 * to be useable since a lot of implementations don't maintain it.
2922 */
2923 lvinfo = ump->logvol_info;
2924
2925 if (filetype == 0) {
2926 /* definition */
2927 vat_offset = 0;
2928 vat_entries = (vat_length-36)/4;
2929
2930 /* read in tail of virtual allocation table file */
2931 error = vn_rdwr(UIO_READ, vat_node->vnode,
2932 (uint8_t *) raw_vat,
2933 sizeof(struct udf_oldvat_tail),
2934 vat_entries * 4,
2935 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2936 NULL, NULL);
2937 if (error)
2938 goto out;
2939
2940 /* check 1.50 VAT */
2941 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2942 regid_name = (char *) oldvat_tl->id.id;
2943 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2944 if (error) {
2945 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2946 error = ENOENT;
2947 goto out;
2948 }
2949
2950 /*
2951 * update LVID from "*UDF VAT LVExtension" extended attribute
2952 * if present.
2953 */
2954 udf_update_lvid_from_vat_extattr(vat_node);
2955 } else {
2956 /* read in head of virtual allocation table file */
2957 error = vn_rdwr(UIO_READ, vat_node->vnode,
2958 (uint8_t *) raw_vat,
2959 sizeof(struct udf_vat), 0,
2960 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2961 NULL, NULL);
2962 if (error)
2963 goto out;
2964
2965 /* definition */
2966 vat = (struct udf_vat *) raw_vat;
2967 vat_offset = vat->header_len;
2968 vat_entries = (vat_length - vat_offset)/4;
2969
2970 assert(lvinfo);
2971 lvinfo->num_files = vat->num_files;
2972 lvinfo->num_directories = vat->num_directories;
2973 lvinfo->min_udf_readver = vat->min_udf_readver;
2974 lvinfo->min_udf_writever = vat->min_udf_writever;
2975 lvinfo->max_udf_writever = vat->max_udf_writever;
2976
2977 udf_update_logvolname(ump, vat->logvol_id);
2978 }
2979
2980 /* read in complete VAT file */
2981 error = vn_rdwr(UIO_READ, vat_node->vnode,
2982 vat_table,
2983 vat_length, 0,
2984 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2985 NULL, NULL);
2986 if (error)
2987 printf("read in of complete VAT file failed (error %d)\n",
2988 error);
2989 if (error)
2990 goto out;
2991
2992 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2993 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2994 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2995 ump->logvol_integrity->time = *mtime;
2996
2997 ump->vat_table_len = vat_length;
2998 ump->vat_table_alloc_len = vat_table_alloc_len;
2999 ump->vat_table = vat_table;
3000 ump->vat_offset = vat_offset;
3001 ump->vat_entries = vat_entries;
3002 ump->vat_last_free_lb = 0; /* start at beginning */
3003
3004 out:
3005 if (error) {
3006 if (vat_table)
3007 free(vat_table, M_UDFVOLD);
3008 }
3009 free(raw_vat, M_TEMP);
3010
3011 return error;
3012 }
3013
3014 /* --------------------------------------------------------------------- */
3015
3016 static int
3017 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3018 {
3019 struct udf_node *vat_node;
3020 struct long_ad icb_loc;
3021 uint32_t early_vat_loc, vat_loc;
3022 int error;
3023
3024 /* mapping info not needed */
3025 mapping = mapping;
3026
3027 vat_loc = ump->last_possible_vat_location;
3028 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3029
3030 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3031 vat_loc, early_vat_loc));
3032 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3033
3034 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3035 vat_loc, early_vat_loc));
3036
3037 /* start looking from the end of the range */
3038 do {
3039 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3040 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3041 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3042
3043 error = udf_get_node(ump, &icb_loc, &vat_node);
3044 if (!error) {
3045 error = udf_check_for_vat(vat_node);
3046 DPRINTFIF(VOLUMES, !error,
3047 ("VAT accepted at %d\n", vat_loc));
3048 if (!error)
3049 break;
3050 }
3051 if (vat_node) {
3052 vput(vat_node->vnode);
3053 vat_node = NULL;
3054 }
3055 vat_loc--; /* walk backwards */
3056 } while (vat_loc >= early_vat_loc);
3057
3058 /* keep our VAT node around */
3059 if (vat_node) {
3060 UDF_SET_SYSTEMFILE(vat_node->vnode);
3061 ump->vat_node = vat_node;
3062 }
3063
3064 return error;
3065 }
3066
3067 /* --------------------------------------------------------------------- */
3068
3069 static int
3070 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3071 {
3072 union dscrptr *dscr;
3073 struct part_map_spare *pms = &mapping->pms;
3074 uint32_t lb_num;
3075 int spar, error;
3076
3077 /*
3078 * The partition mapping passed on to us specifies the information we
3079 * need to locate and initialise the sparable partition mapping
3080 * information we need.
3081 */
3082
3083 DPRINTF(VOLUMES, ("Read sparable table\n"));
3084 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3085 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3086
3087 for (spar = 0; spar < pms->n_st; spar++) {
3088 lb_num = pms->st_loc[spar];
3089 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3090 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3091 if (!error && dscr) {
3092 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3093 if (ump->sparing_table)
3094 free(ump->sparing_table, M_UDFVOLD);
3095 ump->sparing_table = &dscr->spt;
3096 dscr = NULL;
3097 DPRINTF(VOLUMES,
3098 ("Sparing table accepted (%d entries)\n",
3099 udf_rw16(ump->sparing_table->rt_l)));
3100 break; /* we're done */
3101 }
3102 }
3103 if (dscr)
3104 free(dscr, M_UDFVOLD);
3105 }
3106
3107 if (ump->sparing_table)
3108 return 0;
3109
3110 return ENOENT;
3111 }
3112
3113 /* --------------------------------------------------------------------- */
3114
3115 static int
3116 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3117 {
3118 struct part_map_meta *pmm = &mapping->pmm;
3119 struct long_ad icb_loc;
3120 struct vnode *vp;
3121 uint16_t raw_phys_part, phys_part;
3122 int error;
3123
3124 /*
3125 * BUGALERT: some rogue implementations use random physical
3126 * partition numbers to break other implementations so lookup
3127 * the number.
3128 */
3129
3130 /* extract our allocation parameters set up on format */
3131 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3132 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3133 ump->metadata_flags = mapping->pmm.flags;
3134
3135 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3136 raw_phys_part = udf_rw16(pmm->part_num);
3137 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3138
3139 icb_loc.loc.part_num = udf_rw16(phys_part);
3140
3141 DPRINTF(VOLUMES, ("Metadata file\n"));
3142 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3143 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3144 if (ump->metadata_node) {
3145 vp = ump->metadata_node->vnode;
3146 UDF_SET_SYSTEMFILE(vp);
3147 }
3148
3149 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3150 if (icb_loc.loc.lb_num != -1) {
3151 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3152 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3153 if (ump->metadatamirror_node) {
3154 vp = ump->metadatamirror_node->vnode;
3155 UDF_SET_SYSTEMFILE(vp);
3156 }
3157 }
3158
3159 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3160 if (icb_loc.loc.lb_num != -1) {
3161 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3162 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3163 if (ump->metadatabitmap_node) {
3164 vp = ump->metadatabitmap_node->vnode;
3165 UDF_SET_SYSTEMFILE(vp);
3166 }
3167 }
3168
3169 /* if we're mounting read-only we relax the requirements */
3170 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3171 error = EFAULT;
3172 if (ump->metadata_node)
3173 error = 0;
3174 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3175 printf( "udf mount: Metadata file not readable, "
3176 "substituting Metadata copy file\n");
3177 ump->metadata_node = ump->metadatamirror_node;
3178 ump->metadatamirror_node = NULL;
3179 error = 0;
3180 }
3181 } else {
3182 /* mounting read/write */
3183 /* XXX DISABLED! metadata writing is not working yet XXX */
3184 if (error)
3185 error = EROFS;
3186 }
3187 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3188 "metadata files\n"));
3189 return error;
3190 }
3191
3192 /* --------------------------------------------------------------------- */
3193
3194 int
3195 udf_read_vds_tables(struct udf_mount *ump)
3196 {
3197 union udf_pmap *mapping;
3198 /* struct udf_args *args = &ump->mount_args; */
3199 uint32_t n_pm;
3200 uint32_t log_part;
3201 uint8_t *pmap_pos;
3202 int pmap_size;
3203 int error;
3204
3205 /* Iterate (again) over the part mappings for locations */
3206 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3207 pmap_pos = ump->logical_vol->maps;
3208
3209 for (log_part = 0; log_part < n_pm; log_part++) {
3210 mapping = (union udf_pmap *) pmap_pos;
3211 switch (ump->vtop_tp[log_part]) {
3212 case UDF_VTOP_TYPE_PHYS :
3213 /* nothing */
3214 break;
3215 case UDF_VTOP_TYPE_VIRT :
3216 /* search and load VAT */
3217 error = udf_search_vat(ump, mapping);
3218 if (error)
3219 return ENOENT;
3220 break;
3221 case UDF_VTOP_TYPE_SPARABLE :
3222 /* load one of the sparable tables */
3223 error = udf_read_sparables(ump, mapping);
3224 if (error)
3225 return ENOENT;
3226 break;
3227 case UDF_VTOP_TYPE_META :
3228 /* load the associated file descriptors */
3229 error = udf_read_metadata_nodes(ump, mapping);
3230 if (error)
3231 return ENOENT;
3232 break;
3233 default:
3234 break;
3235 }
3236 pmap_size = pmap_pos[1];
3237 pmap_pos += pmap_size;
3238 }
3239
3240 /* read in and check unallocated and free space info if writing */
3241 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3242 error = udf_read_physical_partition_spacetables(ump);
3243 if (error)
3244 return error;
3245
3246 /* also read in metadata partition spacebitmap if defined */
3247 error = udf_read_metadata_partition_spacetable(ump);
3248 return error;
3249 }
3250
3251 return 0;
3252 }
3253
3254 /* --------------------------------------------------------------------- */
3255
3256 int
3257 udf_read_rootdirs(struct udf_mount *ump)
3258 {
3259 union dscrptr *dscr;
3260 /* struct udf_args *args = &ump->mount_args; */
3261 struct udf_node *rootdir_node, *streamdir_node;
3262 struct long_ad fsd_loc, *dir_loc;
3263 uint32_t lb_num, dummy;
3264 uint32_t fsd_len;
3265 int dscr_type;
3266 int error;
3267
3268 /* TODO implement FSD reading in separate function like integrity? */
3269 /* get fileset descriptor sequence */
3270 fsd_loc = ump->logical_vol->lv_fsd_loc;
3271 fsd_len = udf_rw32(fsd_loc.len);
3272
3273 dscr = NULL;
3274 error = 0;
3275 while (fsd_len || error) {
3276 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3277 /* translate fsd_loc to lb_num */
3278 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3279 if (error)
3280 break;
3281 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3282 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3283 /* end markers */
3284 if (error || (dscr == NULL))
3285 break;
3286
3287 /* analyse */
3288 dscr_type = udf_rw16(dscr->tag.id);
3289 if (dscr_type == TAGID_TERM)
3290 break;
3291 if (dscr_type != TAGID_FSD) {
3292 free(dscr, M_UDFVOLD);
3293 return ENOENT;
3294 }
3295
3296 /*
3297 * TODO check for multiple fileset descriptors; its only
3298 * picking the last now. Also check for FSD
3299 * correctness/interpretability
3300 */
3301
3302 /* update */
3303 if (ump->fileset_desc) {
3304 free(ump->fileset_desc, M_UDFVOLD);
3305 }
3306 ump->fileset_desc = &dscr->fsd;
3307 dscr = NULL;
3308
3309 /* continue to the next fsd */
3310 fsd_len -= ump->discinfo.sector_size;
3311 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3312
3313 /* follow up to fsd->next_ex (long_ad) if its not null */
3314 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3315 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3316 fsd_loc = ump->fileset_desc->next_ex;
3317 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3318 }
3319 }
3320 if (dscr)
3321 free(dscr, M_UDFVOLD);
3322
3323 /* there has to be one */
3324 if (ump->fileset_desc == NULL)
3325 return ENOENT;
3326
3327 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3328 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3329 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3330
3331 /*
3332 * Now the FSD is known, read in the rootdirectory and if one exists,
3333 * the system stream dir. Some files in the system streamdir are not
3334 * wanted in this implementation since they are not maintained. If
3335 * writing is enabled we'll delete these files if they exist.
3336 */
3337
3338 rootdir_node = streamdir_node = NULL;
3339 dir_loc = NULL;
3340
3341 /* try to read in the rootdir */
3342 dir_loc = &ump->fileset_desc->rootdir_icb;
3343 error = udf_get_node(ump, dir_loc, &rootdir_node);
3344 if (error)
3345 return ENOENT;
3346
3347 /* aparently it read in fine */
3348
3349 /*
3350 * Try the system stream directory; not very likely in the ones we
3351 * test, but for completeness.
3352 */
3353 dir_loc = &ump->fileset_desc->streamdir_icb;
3354 if (udf_rw32(dir_loc->len)) {
3355 printf("udf_read_rootdirs: streamdir defined ");
3356 error = udf_get_node(ump, dir_loc, &streamdir_node);
3357 if (error) {
3358 printf("but error in streamdir reading\n");
3359 } else {
3360 printf("but ignored\n");
3361 /*
3362 * TODO process streamdir `baddies' i.e. files we dont
3363 * want if R/W
3364 */
3365 }
3366 }
3367
3368 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3369
3370 /* release the vnodes again; they'll be auto-recycled later */
3371 if (streamdir_node) {
3372 vput(streamdir_node->vnode);
3373 }
3374 if (rootdir_node) {
3375 vput(rootdir_node->vnode);
3376 }
3377
3378 return 0;
3379 }
3380
3381 /* --------------------------------------------------------------------- */
3382
3383 /* To make absolutely sure we are NOT returning zero, add one :) */
3384
3385 long
3386 udf_get_node_id(const struct long_ad *icbptr)
3387 {
3388 /* ought to be enough since each mountpoint has its own chain */
3389 return udf_rw32(icbptr->loc.lb_num) + 1;
3390 }
3391
3392
3393 int
3394 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3395 {
3396 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3397 return -1;
3398 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3399 return 1;
3400
3401 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3402 return -1;
3403 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3404 return 1;
3405
3406 return 0;
3407 }
3408
3409
3410 static int
3411 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3412 {
3413 const struct udf_node *a_node = a;
3414 const struct udf_node *b_node = b;
3415
3416 return udf_compare_icb(&a_node->loc, &b_node->loc);
3417 }
3418
3419
3420 static int
3421 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3422 {
3423 const struct udf_node *a_node = a;
3424 const struct long_ad * const icb = key;
3425
3426 return udf_compare_icb(&a_node->loc, icb);
3427 }
3428
3429
3430 static const rb_tree_ops_t udf_node_rbtree_ops = {
3431 .rbto_compare_nodes = udf_compare_rbnodes,
3432 .rbto_compare_key = udf_compare_rbnode_icb,
3433 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3434 .rbto_context = NULL
3435 };
3436
3437
3438 void
3439 udf_init_nodes_tree(struct udf_mount *ump)
3440 {
3441
3442 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3443 }
3444
3445
3446 static struct udf_node *
3447 udf_node_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3448 {
3449 struct udf_node *udf_node;
3450 struct vnode *vp;
3451
3452 loop:
3453 mutex_enter(&ump->ihash_lock);
3454
3455 udf_node = rb_tree_find_node(&ump->udf_node_tree, icbptr);
3456 if (udf_node) {
3457 vp = udf_node->vnode;
3458 assert(vp);
3459 mutex_enter(vp->v_interlock);
3460 mutex_exit(&ump->ihash_lock);
3461 if (vget(vp, LK_EXCLUSIVE))
3462 goto loop;
3463 return udf_node;
3464 }
3465 mutex_exit(&ump->ihash_lock);
3466
3467 return NULL;
3468 }
3469
3470
3471 static void
3472 udf_register_node(struct udf_node *udf_node)
3473 {
3474 struct udf_mount *ump = udf_node->ump;
3475
3476 /* add node to the rb tree */
3477 mutex_enter(&ump->ihash_lock);
3478 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3479 mutex_exit(&ump->ihash_lock);
3480 }
3481
3482
3483 static void
3484 udf_deregister_node(struct udf_node *udf_node)
3485 {
3486 struct udf_mount *ump = udf_node->ump;
3487
3488 /* remove node from the rb tree */
3489 mutex_enter(&ump->ihash_lock);
3490 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3491 mutex_exit(&ump->ihash_lock);
3492 }
3493
3494 /* --------------------------------------------------------------------- */
3495
3496 static int
3497 udf_validate_session_start(struct udf_mount *ump)
3498 {
3499 struct mmc_trackinfo trackinfo;
3500 struct vrs_desc *vrs;
3501 uint32_t tracknr, sessionnr, sector, sector_size;
3502 uint32_t iso9660_vrs, write_track_start;
3503 uint8_t *buffer, *blank, *pos;
3504 int blks, max_sectors, vrs_len;
3505 int error;
3506
3507 /* disc appendable? */
3508 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3509 return EROFS;
3510
3511 /* already written here? if so, there should be an ISO VDS */
3512 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3513 return 0;
3514
3515 /*
3516 * Check if the first track of the session is blank and if so, copy or
3517 * create a dummy ISO descriptor so the disc is valid again.
3518 */
3519
3520 tracknr = ump->discinfo.first_track_last_session;
3521 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3522 trackinfo.tracknr = tracknr;
3523 error = udf_update_trackinfo(ump, &trackinfo);
3524 if (error)
3525 return error;
3526
3527 udf_dump_trackinfo(&trackinfo);
3528 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3529 KASSERT(trackinfo.sessionnr > 1);
3530
3531 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3532 write_track_start = trackinfo.next_writable;
3533
3534 /* we have to copy the ISO VRS from a former session */
3535 DPRINTF(VOLUMES, ("validate_session_start: "
3536 "blank or reserved track, copying VRS\n"));
3537
3538 /* sessionnr should be the session we're mounting */
3539 sessionnr = ump->mount_args.sessionnr;
3540
3541 /* start at the first track */
3542 tracknr = ump->discinfo.first_track;
3543 while (tracknr <= ump->discinfo.num_tracks) {
3544 trackinfo.tracknr = tracknr;
3545 error = udf_update_trackinfo(ump, &trackinfo);
3546 if (error) {
3547 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3548 return error;
3549 }
3550 if (trackinfo.sessionnr == sessionnr)
3551 break;
3552 tracknr++;
3553 }
3554 if (trackinfo.sessionnr != sessionnr) {
3555 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3556 return ENOENT;
3557 }
3558
3559 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3560 udf_dump_trackinfo(&trackinfo);
3561
3562 /*
3563 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3564 * minimum ISO `sector size' 2048
3565 */
3566 sector_size = ump->discinfo.sector_size;
3567 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3568 + trackinfo.track_start;
3569
3570 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3571 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3572 blks = MAX(1, 2048 / sector_size);
3573
3574 error = 0;
3575 for (sector = 0; sector < max_sectors; sector += blks) {
3576 pos = buffer + sector * sector_size;
3577 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3578 iso9660_vrs + sector, blks);
3579 if (error)
3580 break;
3581 /* check this ISO descriptor */
3582 vrs = (struct vrs_desc *) pos;
3583 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3584 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3585 continue;
3586 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3587 continue;
3588 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3589 continue;
3590 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3591 continue;
3592 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3593 continue;
3594 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3595 break;
3596 /* now what? for now, end of sequence */
3597 break;
3598 }
3599 vrs_len = sector + blks;
3600 if (error) {
3601 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3602 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3603
3604 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3605
3606 vrs = (struct vrs_desc *) (buffer);
3607 vrs->struct_type = 0;
3608 vrs->version = 1;
3609 memcpy(vrs->identifier,VRS_BEA01, 5);
3610
3611 vrs = (struct vrs_desc *) (buffer + 2048);
3612 vrs->struct_type = 0;
3613 vrs->version = 1;
3614 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3615 memcpy(vrs->identifier,VRS_NSR02, 5);
3616 } else {
3617 memcpy(vrs->identifier,VRS_NSR03, 5);
3618 }
3619
3620 vrs = (struct vrs_desc *) (buffer + 4096);
3621 vrs->struct_type = 0;
3622 vrs->version = 1;
3623 memcpy(vrs->identifier, VRS_TEA01, 5);
3624
3625 vrs_len = 3*blks;
3626 }
3627
3628 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3629
3630 /*
3631 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3632 * minimum ISO `sector size' 2048
3633 */
3634 sector_size = ump->discinfo.sector_size;
3635 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3636 + write_track_start;
3637
3638 /* write out 32 kb */
3639 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3640 memset(blank, 0, sector_size);
3641 error = 0;
3642 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3643 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3644 blank, sector, 1);
3645 if (error)
3646 break;
3647 }
3648 if (!error) {
3649 /* write out our ISO VRS */
3650 KASSERT(sector == iso9660_vrs);
3651 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3652 sector, vrs_len);
3653 sector += vrs_len;
3654 }
3655 if (!error) {
3656 /* fill upto the first anchor at S+256 */
3657 for (; sector < write_track_start+256; sector++) {
3658 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3659 blank, sector, 1);
3660 if (error)
3661 break;
3662 }
3663 }
3664 if (!error) {
3665 /* write out anchor; write at ABSOLUTE place! */
3666 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3667 (union dscrptr *) ump->anchors[0], sector, sector);
3668 if (error)
3669 printf("writeout of anchor failed!\n");
3670 }
3671
3672 free(blank, M_TEMP);
3673 free(buffer, M_TEMP);
3674
3675 if (error)
3676 printf("udf_open_session: error writing iso vrs! : "
3677 "leaving disc in compromised state!\n");
3678
3679 /* synchronise device caches */
3680 (void) udf_synchronise_caches(ump);
3681
3682 return error;
3683 }
3684
3685
3686 int
3687 udf_open_logvol(struct udf_mount *ump)
3688 {
3689 int logvol_integrity;
3690 int error;
3691
3692 /* already/still open? */
3693 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3694 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3695 return 0;
3696
3697 /* can we open it ? */
3698 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3699 return EROFS;
3700
3701 /* setup write parameters */
3702 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3703 if ((error = udf_setup_writeparams(ump)) != 0)
3704 return error;
3705
3706 /* determine data and metadata tracks (most likely same) */
3707 error = udf_search_writing_tracks(ump);
3708 if (error) {
3709 /* most likely lack of space */
3710 printf("udf_open_logvol: error searching writing tracks\n");
3711 return EROFS;
3712 }
3713
3714 /* writeout/update lvint on disc or only in memory */
3715 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3716 if (ump->lvopen & UDF_OPEN_SESSION) {
3717 /* TODO optional track reservation opening */
3718 error = udf_validate_session_start(ump);
3719 if (error)
3720 return error;
3721
3722 /* determine data and metadata tracks again */
3723 error = udf_search_writing_tracks(ump);
3724 }
3725
3726 /* mark it open */
3727 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3728
3729 /* do we need to write it out? */
3730 if (ump->lvopen & UDF_WRITE_LVINT) {
3731 error = udf_writeout_lvint(ump, ump->lvopen);
3732 /* if we couldn't write it mark it closed again */
3733 if (error) {
3734 ump->logvol_integrity->integrity_type =
3735 udf_rw32(UDF_INTEGRITY_CLOSED);
3736 return error;
3737 }
3738 }
3739
3740 return 0;
3741 }
3742
3743
3744 int
3745 udf_close_logvol(struct udf_mount *ump, int mntflags)
3746 {
3747 struct vnode *devvp = ump->devvp;
3748 struct mmc_op mmc_op;
3749 int logvol_integrity;
3750 int error = 0, error1 = 0, error2 = 0;
3751 int tracknr;
3752 int nvats, n, nok;
3753
3754 /* already/still closed? */
3755 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3756 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3757 return 0;
3758
3759 /* writeout/update lvint or write out VAT */
3760 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3761 #ifdef DIAGNOSTIC
3762 if (ump->lvclose & UDF_CLOSE_SESSION)
3763 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3764 #endif
3765
3766 if (ump->lvclose & UDF_WRITE_VAT) {
3767 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3768
3769 /* write out the VAT data and all its descriptors */
3770 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3771 udf_writeout_vat(ump);
3772 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3773
3774 (void) VOP_FSYNC(ump->vat_node->vnode,
3775 FSCRED, FSYNC_WAIT, 0, 0);
3776
3777 if (ump->lvclose & UDF_CLOSE_SESSION) {
3778 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3779 "as requested\n"));
3780 }
3781
3782 /* at least two DVD packets and 3 CD-R packets */
3783 nvats = 32;
3784
3785 #if notyet
3786 /*
3787 * TODO calculate the available space and if the disc is
3788 * allmost full, write out till end-256-1 with banks, write
3789 * AVDP and fill up with VATs, then close session and close
3790 * disc.
3791 */
3792 if (ump->lvclose & UDF_FINALISE_DISC) {
3793 error = udf_write_phys_dscr_sync(ump, NULL,
3794 UDF_C_FLOAT_DSCR,
3795 (union dscrptr *) ump->anchors[0],
3796 0, 0);
3797 if (error)
3798 printf("writeout of anchor failed!\n");
3799
3800 /* pad space with VAT ICBs */
3801 nvats = 256;
3802 }
3803 #endif
3804
3805 /* write out a number of VAT nodes */
3806 nok = 0;
3807 for (n = 0; n < nvats; n++) {
3808 /* will now only write last FE/EFE */
3809 ump->vat_node->i_flags |= IN_MODIFIED;
3810 error = VOP_FSYNC(ump->vat_node->vnode,
3811 FSCRED, FSYNC_WAIT, 0, 0);
3812 if (!error)
3813 nok++;
3814 }
3815 if (nok < 14) {
3816 /* arbitrary; but at least one or two CD frames */
3817 printf("writeout of at least 14 VATs failed\n");
3818 return error;
3819 }
3820 }
3821
3822 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3823
3824 /* finish closing of session */
3825 if (ump->lvclose & UDF_CLOSE_SESSION) {
3826 error = udf_validate_session_start(ump);
3827 if (error)
3828 return error;
3829
3830 (void) udf_synchronise_caches(ump);
3831
3832 /* close all associated tracks */
3833 tracknr = ump->discinfo.first_track_last_session;
3834 error = 0;
3835 while (tracknr <= ump->discinfo.last_track_last_session) {
3836 DPRINTF(VOLUMES, ("\tclosing possible open "
3837 "track %d\n", tracknr));
3838 memset(&mmc_op, 0, sizeof(mmc_op));
3839 mmc_op.operation = MMC_OP_CLOSETRACK;
3840 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3841 mmc_op.tracknr = tracknr;
3842 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3843 FKIOCTL, NOCRED);
3844 if (error)
3845 printf("udf_close_logvol: closing of "
3846 "track %d failed\n", tracknr);
3847 tracknr ++;
3848 }
3849 if (!error) {
3850 DPRINTF(VOLUMES, ("closing session\n"));
3851 memset(&mmc_op, 0, sizeof(mmc_op));
3852 mmc_op.operation = MMC_OP_CLOSESESSION;
3853 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3854 mmc_op.sessionnr = ump->discinfo.num_sessions;
3855 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3856 FKIOCTL, NOCRED);
3857 if (error)
3858 printf("udf_close_logvol: closing of session"
3859 "failed\n");
3860 }
3861 if (!error)
3862 ump->lvopen |= UDF_OPEN_SESSION;
3863 if (error) {
3864 printf("udf_close_logvol: leaving disc as it is\n");
3865 ump->lvclose &= ~UDF_FINALISE_DISC;
3866 }
3867 }
3868
3869 if (ump->lvclose & UDF_FINALISE_DISC) {
3870 memset(&mmc_op, 0, sizeof(mmc_op));
3871 mmc_op.operation = MMC_OP_FINALISEDISC;
3872 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3873 mmc_op.sessionnr = ump->discinfo.num_sessions;
3874 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3875 FKIOCTL, NOCRED);
3876 if (error)
3877 printf("udf_close_logvol: finalising disc"
3878 "failed\n");
3879 }
3880
3881 /* write out partition bitmaps if requested */
3882 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3883 /* sync writeout metadata spacetable if existing */
3884 error1 = udf_write_metadata_partition_spacetable(ump, true);
3885 if (error1)
3886 printf( "udf_close_logvol: writeout of metadata space "
3887 "bitmap failed\n");
3888
3889 /* sync writeout partition spacetables */
3890 error2 = udf_write_physical_partition_spacetables(ump, true);
3891 if (error2)
3892 printf( "udf_close_logvol: writeout of space tables "
3893 "failed\n");
3894
3895 if (error1 || error2)
3896 return (error1 | error2);
3897
3898 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3899 }
3900
3901 /* write out metadata partition nodes if requested */
3902 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3903 /* sync writeout metadata descriptor node */
3904 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3905 if (error1)
3906 printf( "udf_close_logvol: writeout of metadata partition "
3907 "node failed\n");
3908
3909 /* duplicate metadata partition descriptor if needed */
3910 udf_synchronise_metadatamirror_node(ump);
3911
3912 /* sync writeout metadatamirror descriptor node */
3913 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3914 if (error2)
3915 printf( "udf_close_logvol: writeout of metadata partition "
3916 "mirror node failed\n");
3917
3918 if (error1 || error2)
3919 return (error1 | error2);
3920
3921 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3922 }
3923
3924 /* mark it closed */
3925 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3926
3927 /* do we need to write out the logical volume integrity? */
3928 if (ump->lvclose & UDF_WRITE_LVINT)
3929 error = udf_writeout_lvint(ump, ump->lvopen);
3930 if (error) {
3931 /* HELP now what? mark it open again for now */
3932 ump->logvol_integrity->integrity_type =
3933 udf_rw32(UDF_INTEGRITY_OPEN);
3934 return error;
3935 }
3936
3937 (void) udf_synchronise_caches(ump);
3938
3939 return 0;
3940 }
3941
3942 /* --------------------------------------------------------------------- */
3943
3944 /*
3945 * Genfs interfacing
3946 *
3947 * static const struct genfs_ops udf_genfsops = {
3948 * .gop_size = genfs_size,
3949 * size of transfers
3950 * .gop_alloc = udf_gop_alloc,
3951 * allocate len bytes at offset
3952 * .gop_write = genfs_gop_write,
3953 * putpages interface code
3954 * .gop_markupdate = udf_gop_markupdate,
3955 * set update/modify flags etc.
3956 * }
3957 */
3958
3959 /*
3960 * Genfs interface. These four functions are the only ones defined though not
3961 * documented... great....
3962 */
3963
3964 /*
3965 * Called for allocating an extent of the file either by VOP_WRITE() or by
3966 * genfs filling up gaps.
3967 */
3968 static int
3969 udf_gop_alloc(struct vnode *vp, off_t off,
3970 off_t len, int flags, kauth_cred_t cred)
3971 {
3972 struct udf_node *udf_node = VTOI(vp);
3973 struct udf_mount *ump = udf_node->ump;
3974 uint64_t lb_start, lb_end;
3975 uint32_t lb_size, num_lb;
3976 int udf_c_type, vpart_num, can_fail;
3977 int error;
3978
3979 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3980 off, len, flags? "SYNC":"NONE"));
3981
3982 /*
3983 * request the pages of our vnode and see how many pages will need to
3984 * be allocated and reserve that space
3985 */
3986 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3987 lb_start = off / lb_size;
3988 lb_end = (off + len + lb_size -1) / lb_size;
3989 num_lb = lb_end - lb_start;
3990
3991 udf_c_type = udf_get_c_type(udf_node);
3992 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3993
3994 /* all requests can fail */
3995 can_fail = true;
3996
3997 /* fid's (directories) can't fail */
3998 if (udf_c_type == UDF_C_FIDS)
3999 can_fail = false;
4000
4001 /* system files can't fail */
4002 if (vp->v_vflag & VV_SYSTEM)
4003 can_fail = false;
4004
4005 error = udf_reserve_space(ump, udf_node, udf_c_type,
4006 vpart_num, num_lb, can_fail);
4007
4008 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4009 lb_start, lb_end, num_lb));
4010
4011 return error;
4012 }
4013
4014
4015 /*
4016 * callback from genfs to update our flags
4017 */
4018 static void
4019 udf_gop_markupdate(struct vnode *vp, int flags)
4020 {
4021 struct udf_node *udf_node = VTOI(vp);
4022 u_long mask = 0;
4023
4024 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4025 mask = IN_ACCESS;
4026 }
4027 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4028 if (vp->v_type == VREG) {
4029 mask |= IN_CHANGE | IN_UPDATE;
4030 } else {
4031 mask |= IN_MODIFY;
4032 }
4033 }
4034 if (mask) {
4035 udf_node->i_flags |= mask;
4036 }
4037 }
4038
4039
4040 static const struct genfs_ops udf_genfsops = {
4041 .gop_size = genfs_size,
4042 .gop_alloc = udf_gop_alloc,
4043 .gop_write = genfs_gop_write_rwmap,
4044 .gop_markupdate = udf_gop_markupdate,
4045 };
4046
4047
4048 /* --------------------------------------------------------------------- */
4049
4050 int
4051 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4052 {
4053 union dscrptr *dscr;
4054 int error;
4055
4056 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4057 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4058
4059 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4060 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4061 (void) udf_validate_tag_and_crc_sums(dscr);
4062
4063 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4064 dscr, sector, sector);
4065
4066 free(dscr, M_TEMP);
4067
4068 return error;
4069 }
4070
4071
4072 /* --------------------------------------------------------------------- */
4073
4074 /* UDF<->unix converters */
4075
4076 /* --------------------------------------------------------------------- */
4077
4078 static mode_t
4079 udf_perm_to_unix_mode(uint32_t perm)
4080 {
4081 mode_t mode;
4082
4083 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4084 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4085 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4086
4087 return mode;
4088 }
4089
4090 /* --------------------------------------------------------------------- */
4091
4092 static uint32_t
4093 unix_mode_to_udf_perm(mode_t mode)
4094 {
4095 uint32_t perm;
4096
4097 perm = ((mode & S_IRWXO) );
4098 perm |= ((mode & S_IRWXG) << 2);
4099 perm |= ((mode & S_IRWXU) << 4);
4100 perm |= ((mode & S_IWOTH) << 3);
4101 perm |= ((mode & S_IWGRP) << 5);
4102 perm |= ((mode & S_IWUSR) << 7);
4103
4104 return perm;
4105 }
4106
4107 /* --------------------------------------------------------------------- */
4108
4109 static uint32_t
4110 udf_icb_to_unix_filetype(uint32_t icbftype)
4111 {
4112 switch (icbftype) {
4113 case UDF_ICB_FILETYPE_DIRECTORY :
4114 case UDF_ICB_FILETYPE_STREAMDIR :
4115 return S_IFDIR;
4116 case UDF_ICB_FILETYPE_FIFO :
4117 return S_IFIFO;
4118 case UDF_ICB_FILETYPE_CHARDEVICE :
4119 return S_IFCHR;
4120 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4121 return S_IFBLK;
4122 case UDF_ICB_FILETYPE_RANDOMACCESS :
4123 case UDF_ICB_FILETYPE_REALTIME :
4124 return S_IFREG;
4125 case UDF_ICB_FILETYPE_SYMLINK :
4126 return S_IFLNK;
4127 case UDF_ICB_FILETYPE_SOCKET :
4128 return S_IFSOCK;
4129 }
4130 /* no idea what this is */
4131 return 0;
4132 }
4133
4134 /* --------------------------------------------------------------------- */
4135
4136 void
4137 udf_to_unix_name(char *result, int result_len, char *id, int len,
4138 struct charspec *chsp)
4139 {
4140 uint16_t *raw_name, *unix_name;
4141 uint16_t *inchp, ch;
4142 uint8_t *outchp;
4143 const char *osta_id = "OSTA Compressed Unicode";
4144 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4145
4146 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4147 unix_name = raw_name + 1024; /* split space in half */
4148 assert(sizeof(char) == sizeof(uint8_t));
4149 outchp = (uint8_t *) result;
4150
4151 is_osta_typ0 = (chsp->type == 0);
4152 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4153 if (is_osta_typ0) {
4154 /* TODO clean up */
4155 *raw_name = *unix_name = 0;
4156 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4157 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4158 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4159 /* output UTF8 */
4160 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4161 ch = *inchp;
4162 nout = wput_utf8(outchp, result_len, ch);
4163 outchp += nout; result_len -= nout;
4164 if (!ch) break;
4165 }
4166 *outchp++ = 0;
4167 } else {
4168 /* assume 8bit char length byte latin-1 */
4169 assert(*id == 8);
4170 assert(strlen((char *) (id+1)) <= NAME_MAX);
4171 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4172 }
4173 free(raw_name, M_UDFTEMP);
4174 }
4175
4176 /* --------------------------------------------------------------------- */
4177
4178 void
4179 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4180 struct charspec *chsp)
4181 {
4182 uint16_t *raw_name;
4183 uint16_t *outchp;
4184 const char *inchp;
4185 const char *osta_id = "OSTA Compressed Unicode";
4186 int udf_chars, is_osta_typ0, bits;
4187 size_t cnt;
4188
4189 /* allocate temporary unicode-16 buffer */
4190 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4191
4192 /* convert utf8 to unicode-16 */
4193 *raw_name = 0;
4194 inchp = name;
4195 outchp = raw_name;
4196 bits = 8;
4197 for (cnt = name_len, udf_chars = 0; cnt;) {
4198 *outchp = wget_utf8(&inchp, &cnt);
4199 if (*outchp > 0xff)
4200 bits=16;
4201 outchp++;
4202 udf_chars++;
4203 }
4204 /* null terminate just in case */
4205 *outchp++ = 0;
4206
4207 is_osta_typ0 = (chsp->type == 0);
4208 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4209 if (is_osta_typ0) {
4210 udf_chars = udf_CompressUnicode(udf_chars, bits,
4211 (unicode_t *) raw_name,
4212 (byte *) result);
4213 } else {
4214 printf("unix to udf name: no CHSP0 ?\n");
4215 /* XXX assume 8bit char length byte latin-1 */
4216 *result++ = 8; udf_chars = 1;
4217 strncpy(result, name + 1, name_len);
4218 udf_chars += name_len;
4219 }
4220 *result_len = udf_chars;
4221 free(raw_name, M_UDFTEMP);
4222 }
4223
4224 /* --------------------------------------------------------------------- */
4225
4226 void
4227 udf_timestamp_to_timespec(struct udf_mount *ump,
4228 struct timestamp *timestamp,
4229 struct timespec *timespec)
4230 {
4231 struct clock_ymdhms ymdhms;
4232 uint32_t usecs, secs, nsecs;
4233 uint16_t tz;
4234
4235 /* fill in ymdhms structure from timestamp */
4236 memset(&ymdhms, 0, sizeof(ymdhms));
4237 ymdhms.dt_year = udf_rw16(timestamp->year);
4238 ymdhms.dt_mon = timestamp->month;
4239 ymdhms.dt_day = timestamp->day;
4240 ymdhms.dt_wday = 0; /* ? */
4241 ymdhms.dt_hour = timestamp->hour;
4242 ymdhms.dt_min = timestamp->minute;
4243 ymdhms.dt_sec = timestamp->second;
4244
4245 secs = clock_ymdhms_to_secs(&ymdhms);
4246 usecs = timestamp->usec +
4247 100*timestamp->hund_usec + 10000*timestamp->centisec;
4248 nsecs = usecs * 1000;
4249
4250 /*
4251 * Calculate the time zone. The timezone is 12 bit signed 2's
4252 * compliment, so we gotta do some extra magic to handle it right.
4253 */
4254 tz = udf_rw16(timestamp->type_tz);
4255 tz &= 0x0fff; /* only lower 12 bits are significant */
4256 if (tz & 0x0800) /* sign extention */
4257 tz |= 0xf000;
4258
4259 /* TODO check timezone conversion */
4260 /* check if we are specified a timezone to convert */
4261 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4262 if ((int16_t) tz != -2047)
4263 secs -= (int16_t) tz * 60;
4264 } else {
4265 secs -= ump->mount_args.gmtoff;
4266 }
4267
4268 timespec->tv_sec = secs;
4269 timespec->tv_nsec = nsecs;
4270 }
4271
4272
4273 void
4274 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4275 {
4276 struct clock_ymdhms ymdhms;
4277 uint32_t husec, usec, csec;
4278
4279 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4280
4281 usec = timespec->tv_nsec / 1000;
4282 husec = usec / 100;
4283 usec -= husec * 100; /* only 0-99 in usec */
4284 csec = husec / 100; /* only 0-99 in csec */
4285 husec -= csec * 100; /* only 0-99 in husec */
4286
4287 /* set method 1 for CUT/GMT */
4288 timestamp->type_tz = udf_rw16((1<<12) + 0);
4289 timestamp->year = udf_rw16(ymdhms.dt_year);
4290 timestamp->month = ymdhms.dt_mon;
4291 timestamp->day = ymdhms.dt_day;
4292 timestamp->hour = ymdhms.dt_hour;
4293 timestamp->minute = ymdhms.dt_min;
4294 timestamp->second = ymdhms.dt_sec;
4295 timestamp->centisec = csec;
4296 timestamp->hund_usec = husec;
4297 timestamp->usec = usec;
4298 }
4299
4300 /* --------------------------------------------------------------------- */
4301
4302 /*
4303 * Attribute and filetypes converters with get/set pairs
4304 */
4305
4306 uint32_t
4307 udf_getaccessmode(struct udf_node *udf_node)
4308 {
4309 struct file_entry *fe = udf_node->fe;
4310 struct extfile_entry *efe = udf_node->efe;
4311 uint32_t udf_perm, icbftype;
4312 uint32_t mode, ftype;
4313 uint16_t icbflags;
4314
4315 UDF_LOCK_NODE(udf_node, 0);
4316 if (fe) {
4317 udf_perm = udf_rw32(fe->perm);
4318 icbftype = fe->icbtag.file_type;
4319 icbflags = udf_rw16(fe->icbtag.flags);
4320 } else {
4321 assert(udf_node->efe);
4322 udf_perm = udf_rw32(efe->perm);
4323 icbftype = efe->icbtag.file_type;
4324 icbflags = udf_rw16(efe->icbtag.flags);
4325 }
4326
4327 mode = udf_perm_to_unix_mode(udf_perm);
4328 ftype = udf_icb_to_unix_filetype(icbftype);
4329
4330 /* set suid, sgid, sticky from flags in fe/efe */
4331 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4332 mode |= S_ISUID;
4333 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4334 mode |= S_ISGID;
4335 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4336 mode |= S_ISVTX;
4337
4338 UDF_UNLOCK_NODE(udf_node, 0);
4339
4340 return mode | ftype;
4341 }
4342
4343
4344 void
4345 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4346 {
4347 struct file_entry *fe = udf_node->fe;
4348 struct extfile_entry *efe = udf_node->efe;
4349 uint32_t udf_perm;
4350 uint16_t icbflags;
4351
4352 UDF_LOCK_NODE(udf_node, 0);
4353 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4354 if (fe) {
4355 icbflags = udf_rw16(fe->icbtag.flags);
4356 } else {
4357 icbflags = udf_rw16(efe->icbtag.flags);
4358 }
4359
4360 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4361 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4362 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4363 if (mode & S_ISUID)
4364 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4365 if (mode & S_ISGID)
4366 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4367 if (mode & S_ISVTX)
4368 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4369
4370 if (fe) {
4371 fe->perm = udf_rw32(udf_perm);
4372 fe->icbtag.flags = udf_rw16(icbflags);
4373 } else {
4374 efe->perm = udf_rw32(udf_perm);
4375 efe->icbtag.flags = udf_rw16(icbflags);
4376 }
4377
4378 UDF_UNLOCK_NODE(udf_node, 0);
4379 }
4380
4381
4382 void
4383 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4384 {
4385 struct udf_mount *ump = udf_node->ump;
4386 struct file_entry *fe = udf_node->fe;
4387 struct extfile_entry *efe = udf_node->efe;
4388 uid_t uid;
4389 gid_t gid;
4390
4391 UDF_LOCK_NODE(udf_node, 0);
4392 if (fe) {
4393 uid = (uid_t)udf_rw32(fe->uid);
4394 gid = (gid_t)udf_rw32(fe->gid);
4395 } else {
4396 assert(udf_node->efe);
4397 uid = (uid_t)udf_rw32(efe->uid);
4398 gid = (gid_t)udf_rw32(efe->gid);
4399 }
4400
4401 /* do the uid/gid translation game */
4402 if (uid == (uid_t) -1)
4403 uid = ump->mount_args.anon_uid;
4404 if (gid == (gid_t) -1)
4405 gid = ump->mount_args.anon_gid;
4406
4407 *uidp = uid;
4408 *gidp = gid;
4409
4410 UDF_UNLOCK_NODE(udf_node, 0);
4411 }
4412
4413
4414 void
4415 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4416 {
4417 struct udf_mount *ump = udf_node->ump;
4418 struct file_entry *fe = udf_node->fe;
4419 struct extfile_entry *efe = udf_node->efe;
4420 uid_t nobody_uid;
4421 gid_t nobody_gid;
4422
4423 UDF_LOCK_NODE(udf_node, 0);
4424
4425 /* do the uid/gid translation game */
4426 nobody_uid = ump->mount_args.nobody_uid;
4427 nobody_gid = ump->mount_args.nobody_gid;
4428 if (uid == nobody_uid)
4429 uid = (uid_t) -1;
4430 if (gid == nobody_gid)
4431 gid = (gid_t) -1;
4432
4433 if (fe) {
4434 fe->uid = udf_rw32((uint32_t) uid);
4435 fe->gid = udf_rw32((uint32_t) gid);
4436 } else {
4437 efe->uid = udf_rw32((uint32_t) uid);
4438 efe->gid = udf_rw32((uint32_t) gid);
4439 }
4440
4441 UDF_UNLOCK_NODE(udf_node, 0);
4442 }
4443
4444
4445 /* --------------------------------------------------------------------- */
4446
4447
4448 int
4449 udf_dirhash_fill(struct udf_node *dir_node)
4450 {
4451 struct vnode *dvp = dir_node->vnode;
4452 struct dirhash *dirh;
4453 struct file_entry *fe = dir_node->fe;
4454 struct extfile_entry *efe = dir_node->efe;
4455 struct fileid_desc *fid;
4456 struct dirent *dirent;
4457 uint64_t file_size, pre_diroffset, diroffset;
4458 uint32_t lb_size;
4459 int error;
4460
4461 /* make sure we have a dirhash to work on */
4462 dirh = dir_node->dir_hash;
4463 KASSERT(dirh);
4464 KASSERT(dirh->refcnt > 0);
4465
4466 if (dirh->flags & DIRH_BROKEN)
4467 return EIO;
4468 if (dirh->flags & DIRH_COMPLETE)
4469 return 0;
4470
4471 /* make sure we have a clean dirhash to add to */
4472 dirhash_purge_entries(dirh);
4473
4474 /* get directory filesize */
4475 if (fe) {
4476 file_size = udf_rw64(fe->inf_len);
4477 } else {
4478 assert(efe);
4479 file_size = udf_rw64(efe->inf_len);
4480 }
4481
4482 /* allocate temporary space for fid */
4483 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4484 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4485
4486 /* allocate temporary space for dirent */
4487 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4488
4489 error = 0;
4490 diroffset = 0;
4491 while (diroffset < file_size) {
4492 /* transfer a new fid/dirent */
4493 pre_diroffset = diroffset;
4494 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4495 if (error) {
4496 /* TODO what to do? continue but not add? */
4497 dirh->flags |= DIRH_BROKEN;
4498 dirhash_purge_entries(dirh);
4499 break;
4500 }
4501
4502 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4503 /* register deleted extent for reuse */
4504 dirhash_enter_freed(dirh, pre_diroffset,
4505 udf_fidsize(fid));
4506 } else {
4507 /* append to the dirhash */
4508 dirhash_enter(dirh, dirent, pre_diroffset,
4509 udf_fidsize(fid), 0);
4510 }
4511 }
4512 dirh->flags |= DIRH_COMPLETE;
4513
4514 free(fid, M_UDFTEMP);
4515 free(dirent, M_UDFTEMP);
4516
4517 return error;
4518 }
4519
4520
4521 /* --------------------------------------------------------------------- */
4522
4523 /*
4524 * Directory read and manipulation functions.
4525 *
4526 */
4527
4528 int
4529 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4530 struct long_ad *icb_loc, int *found)
4531 {
4532 struct udf_node *dir_node = VTOI(vp);
4533 struct dirhash *dirh;
4534 struct dirhash_entry *dirh_ep;
4535 struct fileid_desc *fid;
4536 struct dirent *dirent;
4537 uint64_t diroffset;
4538 uint32_t lb_size;
4539 int hit, error;
4540
4541 /* set default return */
4542 *found = 0;
4543
4544 /* get our dirhash and make sure its read in */
4545 dirhash_get(&dir_node->dir_hash);
4546 error = udf_dirhash_fill(dir_node);
4547 if (error) {
4548 dirhash_put(dir_node->dir_hash);
4549 return error;
4550 }
4551 dirh = dir_node->dir_hash;
4552
4553 /* allocate temporary space for fid */
4554 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4555 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4556 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4557
4558 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4559 namelen, namelen, name));
4560
4561 /* search our dirhash hits */
4562 memset(icb_loc, 0, sizeof(*icb_loc));
4563 dirh_ep = NULL;
4564 for (;;) {
4565 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4566 /* if no hit, abort the search */
4567 if (!hit)
4568 break;
4569
4570 /* check this hit */
4571 diroffset = dirh_ep->offset;
4572
4573 /* transfer a new fid/dirent */
4574 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4575 if (error)
4576 break;
4577
4578 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4579 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4580
4581 /* see if its our entry */
4582 #ifdef DIAGNOSTIC
4583 if (dirent->d_namlen != namelen) {
4584 printf("WARNING: dirhash_lookup() returned wrong "
4585 "d_namelen: %d and ought to be %d\n",
4586 dirent->d_namlen, namelen);
4587 printf("\tlooked for `%s' and got `%s'\n",
4588 name, dirent->d_name);
4589 }
4590 #endif
4591 if (strncmp(dirent->d_name, name, namelen) == 0) {
4592 *found = 1;
4593 *icb_loc = fid->icb;
4594 break;
4595 }
4596 }
4597 free(fid, M_UDFTEMP);
4598 free(dirent, M_UDFTEMP);
4599
4600 dirhash_put(dir_node->dir_hash);
4601
4602 return error;
4603 }
4604
4605 /* --------------------------------------------------------------------- */
4606
4607 static int
4608 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4609 struct long_ad *node_icb, struct long_ad *parent_icb,
4610 uint64_t parent_unique_id)
4611 {
4612 struct timespec now;
4613 struct icb_tag *icb;
4614 struct filetimes_extattr_entry *ft_extattr;
4615 uint64_t unique_id;
4616 uint32_t fidsize, lb_num;
4617 uint8_t *bpos;
4618 int crclen, attrlen;
4619
4620 lb_num = udf_rw32(node_icb->loc.lb_num);
4621 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4622 icb = &fe->icbtag;
4623
4624 /*
4625 * Always use strategy type 4 unless on WORM wich we don't support
4626 * (yet). Fill in defaults and set for internal allocation of data.
4627 */
4628 icb->strat_type = udf_rw16(4);
4629 icb->max_num_entries = udf_rw16(1);
4630 icb->file_type = file_type; /* 8 bit */
4631 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4632
4633 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4634 fe->link_cnt = udf_rw16(0); /* explicit setting */
4635
4636 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4637
4638 vfs_timestamp(&now);
4639 udf_timespec_to_timestamp(&now, &fe->atime);
4640 udf_timespec_to_timestamp(&now, &fe->attrtime);
4641 udf_timespec_to_timestamp(&now, &fe->mtime);
4642
4643 udf_set_regid(&fe->imp_id, IMPL_NAME);
4644 udf_add_impl_regid(ump, &fe->imp_id);
4645
4646 unique_id = udf_advance_uniqueid(ump);
4647 fe->unique_id = udf_rw64(unique_id);
4648 fe->l_ea = udf_rw32(0);
4649
4650 /* create extended attribute to record our creation time */
4651 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4652 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4653 memset(ft_extattr, 0, attrlen);
4654 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4655 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4656 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4657 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4658 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4659 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4660
4661 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4662 (struct extattr_entry *) ft_extattr);
4663 free(ft_extattr, M_UDFTEMP);
4664
4665 /* if its a directory, create '..' */
4666 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4667 fidsize = 0;
4668 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4669 fidsize = udf_create_parentfid(ump,
4670 (struct fileid_desc *) bpos, parent_icb,
4671 parent_unique_id);
4672 }
4673
4674 /* record fidlength information */
4675 fe->inf_len = udf_rw64(fidsize);
4676 fe->l_ad = udf_rw32(fidsize);
4677 fe->logblks_rec = udf_rw64(0); /* intern */
4678
4679 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4680 crclen += udf_rw32(fe->l_ea) + fidsize;
4681 fe->tag.desc_crc_len = udf_rw16(crclen);
4682
4683 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4684
4685 return fidsize;
4686 }
4687
4688 /* --------------------------------------------------------------------- */
4689
4690 static int
4691 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4692 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4693 uint64_t parent_unique_id)
4694 {
4695 struct timespec now;
4696 struct icb_tag *icb;
4697 uint64_t unique_id;
4698 uint32_t fidsize, lb_num;
4699 uint8_t *bpos;
4700 int crclen;
4701
4702 lb_num = udf_rw32(node_icb->loc.lb_num);
4703 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4704 icb = &efe->icbtag;
4705
4706 /*
4707 * Always use strategy type 4 unless on WORM wich we don't support
4708 * (yet). Fill in defaults and set for internal allocation of data.
4709 */
4710 icb->strat_type = udf_rw16(4);
4711 icb->max_num_entries = udf_rw16(1);
4712 icb->file_type = file_type; /* 8 bit */
4713 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4714
4715 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4716 efe->link_cnt = udf_rw16(0); /* explicit setting */
4717
4718 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4719
4720 vfs_timestamp(&now);
4721 udf_timespec_to_timestamp(&now, &efe->ctime);
4722 udf_timespec_to_timestamp(&now, &efe->atime);
4723 udf_timespec_to_timestamp(&now, &efe->attrtime);
4724 udf_timespec_to_timestamp(&now, &efe->mtime);
4725
4726 udf_set_regid(&efe->imp_id, IMPL_NAME);
4727 udf_add_impl_regid(ump, &efe->imp_id);
4728
4729 unique_id = udf_advance_uniqueid(ump);
4730 efe->unique_id = udf_rw64(unique_id);
4731 efe->l_ea = udf_rw32(0);
4732
4733 /* if its a directory, create '..' */
4734 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4735 fidsize = 0;
4736 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4737 fidsize = udf_create_parentfid(ump,
4738 (struct fileid_desc *) bpos, parent_icb,
4739 parent_unique_id);
4740 }
4741
4742 /* record fidlength information */
4743 efe->obj_size = udf_rw64(fidsize);
4744 efe->inf_len = udf_rw64(fidsize);
4745 efe->l_ad = udf_rw32(fidsize);
4746 efe->logblks_rec = udf_rw64(0); /* intern */
4747
4748 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4749 crclen += udf_rw32(efe->l_ea) + fidsize;
4750 efe->tag.desc_crc_len = udf_rw16(crclen);
4751
4752 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4753
4754 return fidsize;
4755 }
4756
4757 /* --------------------------------------------------------------------- */
4758
4759 int
4760 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4761 struct udf_node *udf_node, struct componentname *cnp)
4762 {
4763 struct vnode *dvp = dir_node->vnode;
4764 struct dirhash *dirh;
4765 struct dirhash_entry *dirh_ep;
4766 struct file_entry *fe = dir_node->fe;
4767 struct fileid_desc *fid;
4768 struct dirent *dirent;
4769 uint64_t diroffset;
4770 uint32_t lb_size, fidsize;
4771 int found, error;
4772 char const *name = cnp->cn_nameptr;
4773 int namelen = cnp->cn_namelen;
4774 int hit, refcnt;
4775
4776 /* get our dirhash and make sure its read in */
4777 dirhash_get(&dir_node->dir_hash);
4778 error = udf_dirhash_fill(dir_node);
4779 if (error) {
4780 dirhash_put(dir_node->dir_hash);
4781 return error;
4782 }
4783 dirh = dir_node->dir_hash;
4784
4785 /* get directory filesize */
4786 if (!fe) {
4787 assert(dir_node->efe);
4788 }
4789
4790 /* allocate temporary space for fid */
4791 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4792 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4793 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4794
4795 /* search our dirhash hits */
4796 found = 0;
4797 dirh_ep = NULL;
4798 for (;;) {
4799 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4800 /* if no hit, abort the search */
4801 if (!hit)
4802 break;
4803
4804 /* check this hit */
4805 diroffset = dirh_ep->offset;
4806
4807 /* transfer a new fid/dirent */
4808 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4809 if (error)
4810 break;
4811
4812 /* see if its our entry */
4813 KASSERT(dirent->d_namlen == namelen);
4814 if (strncmp(dirent->d_name, name, namelen) == 0) {
4815 found = 1;
4816 break;
4817 }
4818 }
4819
4820 if (!found)
4821 error = ENOENT;
4822 if (error)
4823 goto error_out;
4824
4825 /* mark deleted */
4826 fid->file_char |= UDF_FILE_CHAR_DEL;
4827 #ifdef UDF_COMPLETE_DELETE
4828 memset(&fid->icb, 0, sizeof(fid->icb));
4829 #endif
4830 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4831
4832 /* get size of fid and compensate for the read_fid_stream advance */
4833 fidsize = udf_fidsize(fid);
4834 diroffset -= fidsize;
4835
4836 /* write out */
4837 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4838 fid, fidsize, diroffset,
4839 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4840 FSCRED, NULL, NULL);
4841 if (error)
4842 goto error_out;
4843
4844 /* get reference count of attached node */
4845 if (udf_node->fe) {
4846 refcnt = udf_rw16(udf_node->fe->link_cnt);
4847 } else {
4848 KASSERT(udf_node->efe);
4849 refcnt = udf_rw16(udf_node->efe->link_cnt);
4850 }
4851 #ifdef UDF_COMPLETE_DELETE
4852 /* substract reference counter in attached node */
4853 refcnt -= 1;
4854 if (udf_node->fe) {
4855 udf_node->fe->link_cnt = udf_rw16(refcnt);
4856 } else {
4857 udf_node->efe->link_cnt = udf_rw16(refcnt);
4858 }
4859
4860 /* prevent writeout when refcnt == 0 */
4861 if (refcnt == 0)
4862 udf_node->i_flags |= IN_DELETED;
4863
4864 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4865 int drefcnt;
4866
4867 /* substract reference counter in directory node */
4868 /* note subtract 2 (?) for its was also backreferenced */
4869 if (dir_node->fe) {
4870 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4871 drefcnt -= 1;
4872 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4873 } else {
4874 KASSERT(dir_node->efe);
4875 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4876 drefcnt -= 1;
4877 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4878 }
4879 }
4880
4881 udf_node->i_flags |= IN_MODIFIED;
4882 dir_node->i_flags |= IN_MODIFIED;
4883 #endif
4884 /* if it is/was a hardlink adjust the file count */
4885 if (refcnt > 0)
4886 udf_adjust_filecount(udf_node, -1);
4887
4888 /* remove from the dirhash */
4889 dirhash_remove(dirh, dirent, diroffset,
4890 udf_fidsize(fid));
4891
4892 error_out:
4893 free(fid, M_UDFTEMP);
4894 free(dirent, M_UDFTEMP);
4895
4896 dirhash_put(dir_node->dir_hash);
4897
4898 return error;
4899 }
4900
4901 /* --------------------------------------------------------------------- */
4902
4903 int
4904 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4905 struct udf_node *new_parent_node)
4906 {
4907 struct vnode *dvp = dir_node->vnode;
4908 struct dirhash *dirh;
4909 struct dirhash_entry *dirh_ep;
4910 struct file_entry *fe;
4911 struct extfile_entry *efe;
4912 struct fileid_desc *fid;
4913 struct dirent *dirent;
4914 uint64_t diroffset;
4915 uint64_t new_parent_unique_id;
4916 uint32_t lb_size, fidsize;
4917 int found, error;
4918 char const *name = "..";
4919 int namelen = 2;
4920 int hit;
4921
4922 /* get our dirhash and make sure its read in */
4923 dirhash_get(&dir_node->dir_hash);
4924 error = udf_dirhash_fill(dir_node);
4925 if (error) {
4926 dirhash_put(dir_node->dir_hash);
4927 return error;
4928 }
4929 dirh = dir_node->dir_hash;
4930
4931 /* get new parent's unique ID */
4932 fe = new_parent_node->fe;
4933 efe = new_parent_node->efe;
4934 if (fe) {
4935 new_parent_unique_id = udf_rw64(fe->unique_id);
4936 } else {
4937 assert(efe);
4938 new_parent_unique_id = udf_rw64(efe->unique_id);
4939 }
4940
4941 /* get directory filesize */
4942 fe = dir_node->fe;
4943 efe = dir_node->efe;
4944 if (!fe) {
4945 assert(efe);
4946 }
4947
4948 /* allocate temporary space for fid */
4949 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4950 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4951 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4952
4953 /*
4954 * NOTE the standard does not dictate the FID entry '..' should be
4955 * first, though in practice it will most likely be.
4956 */
4957
4958 /* search our dirhash hits */
4959 found = 0;
4960 dirh_ep = NULL;
4961 for (;;) {
4962 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4963 /* if no hit, abort the search */
4964 if (!hit)
4965 break;
4966
4967 /* check this hit */
4968 diroffset = dirh_ep->offset;
4969
4970 /* transfer a new fid/dirent */
4971 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4972 if (error)
4973 break;
4974
4975 /* see if its our entry */
4976 KASSERT(dirent->d_namlen == namelen);
4977 if (strncmp(dirent->d_name, name, namelen) == 0) {
4978 found = 1;
4979 break;
4980 }
4981 }
4982
4983 if (!found)
4984 error = ENOENT;
4985 if (error)
4986 goto error_out;
4987
4988 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4989 fid->icb = new_parent_node->write_loc;
4990 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4991
4992 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4993
4994 /* get size of fid and compensate for the read_fid_stream advance */
4995 fidsize = udf_fidsize(fid);
4996 diroffset -= fidsize;
4997
4998 /* write out */
4999 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5000 fid, fidsize, diroffset,
5001 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5002 FSCRED, NULL, NULL);
5003
5004 /* nothing to be done in the dirhash */
5005
5006 error_out:
5007 free(fid, M_UDFTEMP);
5008 free(dirent, M_UDFTEMP);
5009
5010 dirhash_put(dir_node->dir_hash);
5011
5012 return error;
5013 }
5014
5015 /* --------------------------------------------------------------------- */
5016
5017 /*
5018 * We are not allowed to split the fid tag itself over an logical block so
5019 * check the space remaining in the logical block.
5020 *
5021 * We try to select the smallest candidate for recycling or when none is
5022 * found, append a new one at the end of the directory.
5023 */
5024
5025 int
5026 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5027 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5028 {
5029 struct vnode *dvp = dir_node->vnode;
5030 struct dirhash *dirh;
5031 struct dirhash_entry *dirh_ep;
5032 struct fileid_desc *fid;
5033 struct icb_tag *icbtag;
5034 struct charspec osta_charspec;
5035 struct dirent dirent;
5036 uint64_t unique_id, dir_size;
5037 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5038 uint32_t chosen_size, chosen_size_diff;
5039 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5040 int file_char, refcnt, icbflags, addr_type, hit, error;
5041
5042 /* get our dirhash and make sure its read in */
5043 dirhash_get(&dir_node->dir_hash);
5044 error = udf_dirhash_fill(dir_node);
5045 if (error) {
5046 dirhash_put(dir_node->dir_hash);
5047 return error;
5048 }
5049 dirh = dir_node->dir_hash;
5050
5051 /* get info */
5052 lb_size = udf_rw32(ump->logical_vol->lb_size);
5053 udf_osta_charset(&osta_charspec);
5054
5055 if (dir_node->fe) {
5056 dir_size = udf_rw64(dir_node->fe->inf_len);
5057 icbtag = &dir_node->fe->icbtag;
5058 } else {
5059 dir_size = udf_rw64(dir_node->efe->inf_len);
5060 icbtag = &dir_node->efe->icbtag;
5061 }
5062
5063 icbflags = udf_rw16(icbtag->flags);
5064 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5065
5066 if (udf_node->fe) {
5067 unique_id = udf_rw64(udf_node->fe->unique_id);
5068 refcnt = udf_rw16(udf_node->fe->link_cnt);
5069 } else {
5070 unique_id = udf_rw64(udf_node->efe->unique_id);
5071 refcnt = udf_rw16(udf_node->efe->link_cnt);
5072 }
5073
5074 if (refcnt > 0) {
5075 unique_id = udf_advance_uniqueid(ump);
5076 udf_adjust_filecount(udf_node, 1);
5077 }
5078
5079 /* determine file characteristics */
5080 file_char = 0; /* visible non deleted file and not stream metadata */
5081 if (vap->va_type == VDIR)
5082 file_char = UDF_FILE_CHAR_DIR;
5083
5084 /* malloc scrap buffer */
5085 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5086
5087 /* calculate _minimum_ fid size */
5088 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5089 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5090 fidsize = UDF_FID_SIZE + fid->l_fi;
5091 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5092
5093 /* find position that will fit the FID */
5094 chosen_fid_pos = dir_size;
5095 chosen_size = 0;
5096 chosen_size_diff = UINT_MAX;
5097
5098 /* shut up gcc */
5099 dirent.d_namlen = 0;
5100
5101 /* search our dirhash hits */
5102 error = 0;
5103 dirh_ep = NULL;
5104 for (;;) {
5105 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5106 /* if no hit, abort the search */
5107 if (!hit)
5108 break;
5109
5110 /* check this hit for size */
5111 this_fidsize = dirh_ep->entry_size;
5112
5113 /* check this hit */
5114 fid_pos = dirh_ep->offset;
5115 end_fid_pos = fid_pos + this_fidsize;
5116 size_diff = this_fidsize - fidsize;
5117 lb_rest = lb_size - (end_fid_pos % lb_size);
5118
5119 #ifndef UDF_COMPLETE_DELETE
5120 /* transfer a new fid/dirent */
5121 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5122 if (error)
5123 goto error_out;
5124
5125 /* only reuse entries that are wiped */
5126 /* check if the len + loc are marked zero */
5127 if (udf_rw32(fid->icb.len) != 0)
5128 continue;
5129 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5130 continue;
5131 if (udf_rw16(fid->icb.loc.part_num) != 0)
5132 continue;
5133 #endif /* UDF_COMPLETE_DELETE */
5134
5135 /* select if not splitting the tag and its smaller */
5136 if ((size_diff >= 0) &&
5137 (size_diff < chosen_size_diff) &&
5138 (lb_rest >= sizeof(struct desc_tag)))
5139 {
5140 /* UDF 2.3.4.2+3 specifies rules for iu size */
5141 if ((size_diff == 0) || (size_diff >= 32)) {
5142 chosen_fid_pos = fid_pos;
5143 chosen_size = this_fidsize;
5144 chosen_size_diff = size_diff;
5145 }
5146 }
5147 }
5148
5149
5150 /* extend directory if no other candidate found */
5151 if (chosen_size == 0) {
5152 chosen_fid_pos = dir_size;
5153 chosen_size = fidsize;
5154 chosen_size_diff = 0;
5155
5156 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5157 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5158 /* pre-grow directory to see if we're to switch */
5159 udf_grow_node(dir_node, dir_size + chosen_size);
5160
5161 icbflags = udf_rw16(icbtag->flags);
5162 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5163 }
5164
5165 /* make sure the next fid desc_tag won't be splitted */
5166 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5167 end_fid_pos = chosen_fid_pos + chosen_size;
5168 lb_rest = lb_size - (end_fid_pos % lb_size);
5169
5170 /* pad with implementation use regid if needed */
5171 if (lb_rest < sizeof(struct desc_tag))
5172 chosen_size += 32;
5173 }
5174 }
5175 chosen_size_diff = chosen_size - fidsize;
5176
5177 /* populate the FID */
5178 memset(fid, 0, lb_size);
5179 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5180 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5181 fid->file_char = file_char;
5182 fid->icb = udf_node->loc;
5183 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5184 fid->l_iu = udf_rw16(0);
5185
5186 if (chosen_size > fidsize) {
5187 /* insert implementation-use regid to space it correctly */
5188 fid->l_iu = udf_rw16(chosen_size_diff);
5189
5190 /* set implementation use */
5191 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5192 udf_add_impl_regid(ump, (struct regid *) fid->data);
5193 }
5194
5195 /* fill in name */
5196 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5197 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5198
5199 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5200 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5201
5202 /* writeout FID/update parent directory */
5203 error = vn_rdwr(UIO_WRITE, dvp,
5204 fid, chosen_size, chosen_fid_pos,
5205 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5206 FSCRED, NULL, NULL);
5207
5208 if (error)
5209 goto error_out;
5210
5211 /* add reference counter in attached node */
5212 if (udf_node->fe) {
5213 refcnt = udf_rw16(udf_node->fe->link_cnt);
5214 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5215 } else {
5216 KASSERT(udf_node->efe);
5217 refcnt = udf_rw16(udf_node->efe->link_cnt);
5218 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5219 }
5220
5221 /* mark not deleted if it was... just in case, but do warn */
5222 if (udf_node->i_flags & IN_DELETED) {
5223 printf("udf: warning, marking a file undeleted\n");
5224 udf_node->i_flags &= ~IN_DELETED;
5225 }
5226
5227 if (file_char & UDF_FILE_CHAR_DIR) {
5228 /* add reference counter in directory node for '..' */
5229 if (dir_node->fe) {
5230 refcnt = udf_rw16(dir_node->fe->link_cnt);
5231 refcnt++;
5232 dir_node->fe->link_cnt = udf_rw16(refcnt);
5233 } else {
5234 KASSERT(dir_node->efe);
5235 refcnt = udf_rw16(dir_node->efe->link_cnt);
5236 refcnt++;
5237 dir_node->efe->link_cnt = udf_rw16(refcnt);
5238 }
5239 }
5240
5241 /* append to the dirhash */
5242 /* NOTE do not use dirent anymore or it won't match later! */
5243 udf_to_unix_name(dirent.d_name, NAME_MAX,
5244 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5245 dirent.d_namlen = strlen(dirent.d_name);
5246 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5247 udf_fidsize(fid), 1);
5248
5249 /* note updates */
5250 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5251 /* VN_KNOTE(udf_node, ...) */
5252 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5253
5254 error_out:
5255 free(fid, M_TEMP);
5256
5257 dirhash_put(dir_node->dir_hash);
5258
5259 return error;
5260 }
5261
5262 /* --------------------------------------------------------------------- */
5263
5264 /*
5265 * Each node can have an attached streamdir node though not recursively. These
5266 * are otherwise known as named substreams/named extended attributes that have
5267 * no size limitations.
5268 *
5269 * `Normal' extended attributes are indicated with a number and are recorded
5270 * in either the fe/efe descriptor itself for small descriptors or recorded in
5271 * the attached extended attribute file. Since these spaces can get
5272 * fragmented, care ought to be taken.
5273 *
5274 * Since the size of the space reserved for allocation descriptors is limited,
5275 * there is a mechanim provided for extending this space; this is done by a
5276 * special extent to allow schrinking of the allocations without breaking the
5277 * linkage to the allocation extent descriptor.
5278 */
5279
5280 int
5281 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5282 struct udf_node **udf_noderes)
5283 {
5284 union dscrptr *dscr;
5285 struct udf_node *udf_node;
5286 struct vnode *nvp;
5287 struct long_ad icb_loc, last_fe_icb_loc;
5288 uint64_t file_size;
5289 uint32_t lb_size, sector, dummy;
5290 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5291 int slot, eof, error;
5292
5293 DPRINTF(NODE, ("udf_get_node called\n"));
5294 *udf_noderes = udf_node = NULL;
5295
5296 /* lock to disallow simultanious creation of same udf_node */
5297 mutex_enter(&ump->get_node_lock);
5298
5299 DPRINTF(NODE, ("\tlookup in hash table\n"));
5300 /* lookup in hash table */
5301 assert(ump);
5302 assert(node_icb_loc);
5303 udf_node = udf_node_lookup(ump, node_icb_loc);
5304 if (udf_node) {
5305 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5306 /* vnode is returned locked */
5307 *udf_noderes = udf_node;
5308 mutex_exit(&ump->get_node_lock);
5309 return 0;
5310 }
5311
5312 /* garbage check: translate udf_node_icb_loc to sectornr */
5313 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5314 if (error) {
5315 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5316 /* no use, this will fail anyway */
5317 mutex_exit(&ump->get_node_lock);
5318 return EINVAL;
5319 }
5320
5321 /* build udf_node (do initialise!) */
5322 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5323 memset(udf_node, 0, sizeof(struct udf_node));
5324
5325 DPRINTF(NODE, ("\tget new vnode\n"));
5326 /* give it a vnode */
5327 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, NULL, &nvp);
5328 if (error) {
5329 pool_put(&udf_node_pool, udf_node);
5330 mutex_exit(&ump->get_node_lock);
5331 return error;
5332 }
5333
5334 /* always return locked vnode */
5335 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5336 /* recycle vnode and unlock; simultanious will fail too */
5337 ungetnewvnode(nvp);
5338 mutex_exit(&ump->get_node_lock);
5339 return error;
5340 }
5341
5342 /* initialise crosslinks, note location of fe/efe for hashing */
5343 udf_node->ump = ump;
5344 udf_node->vnode = nvp;
5345 nvp->v_data = udf_node;
5346 udf_node->loc = *node_icb_loc;
5347 udf_node->lockf = 0;
5348 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5349 cv_init(&udf_node->node_lock, "udf_nlk");
5350 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5351 udf_node->outstanding_bufs = 0;
5352 udf_node->outstanding_nodedscr = 0;
5353 udf_node->uncommitted_lbs = 0;
5354
5355 /* check if we're fetching the root */
5356 if (ump->fileset_desc)
5357 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5358 sizeof(struct long_ad)) == 0)
5359 nvp->v_vflag |= VV_ROOT;
5360
5361 /* insert into the hash lookup */
5362 udf_register_node(udf_node);
5363
5364 /* safe to unlock, the entry is in the hash table, vnode is locked */
5365 mutex_exit(&ump->get_node_lock);
5366
5367 icb_loc = *node_icb_loc;
5368 needs_indirect = 0;
5369 strat4096 = 0;
5370 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5371 file_size = 0;
5372 lb_size = udf_rw32(ump->logical_vol->lb_size);
5373
5374 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5375 do {
5376 /* try to read in fe/efe */
5377 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5378
5379 /* blank sector marks end of sequence, check this */
5380 if ((dscr == NULL) && (!strat4096))
5381 error = ENOENT;
5382
5383 /* break if read error or blank sector */
5384 if (error || (dscr == NULL))
5385 break;
5386
5387 /* process descriptor based on the descriptor type */
5388 dscr_type = udf_rw16(dscr->tag.id);
5389 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5390
5391 /* if dealing with an indirect entry, follow the link */
5392 if (dscr_type == TAGID_INDIRECTENTRY) {
5393 needs_indirect = 0;
5394 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5395 icb_loc = dscr->inde.indirect_icb;
5396 continue;
5397 }
5398
5399 /* only file entries and extended file entries allowed here */
5400 if ((dscr_type != TAGID_FENTRY) &&
5401 (dscr_type != TAGID_EXTFENTRY)) {
5402 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5403 error = ENOENT;
5404 break;
5405 }
5406
5407 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5408
5409 /* choose this one */
5410 last_fe_icb_loc = icb_loc;
5411
5412 /* record and process/update (ext)fentry */
5413 if (dscr_type == TAGID_FENTRY) {
5414 if (udf_node->fe)
5415 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5416 udf_node->fe);
5417 udf_node->fe = &dscr->fe;
5418 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5419 udf_file_type = udf_node->fe->icbtag.file_type;
5420 file_size = udf_rw64(udf_node->fe->inf_len);
5421 } else {
5422 if (udf_node->efe)
5423 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5424 udf_node->efe);
5425 udf_node->efe = &dscr->efe;
5426 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5427 udf_file_type = udf_node->efe->icbtag.file_type;
5428 file_size = udf_rw64(udf_node->efe->inf_len);
5429 }
5430
5431 /* check recording strategy (structure) */
5432
5433 /*
5434 * Strategy 4096 is a daisy linked chain terminating with an
5435 * unrecorded sector or a TERM descriptor. The next
5436 * descriptor is to be found in the sector that follows the
5437 * current sector.
5438 */
5439 if (strat == 4096) {
5440 strat4096 = 1;
5441 needs_indirect = 1;
5442
5443 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5444 }
5445
5446 /*
5447 * Strategy 4 is the normal strategy and terminates, but if
5448 * we're in strategy 4096, we can't have strategy 4 mixed in
5449 */
5450
5451 if (strat == 4) {
5452 if (strat4096) {
5453 error = EINVAL;
5454 break;
5455 }
5456 break; /* done */
5457 }
5458 } while (!error);
5459
5460 /* first round of cleanup code */
5461 if (error) {
5462 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5463 /* recycle udf_node */
5464 udf_dispose_node(udf_node);
5465
5466 VOP_UNLOCK(nvp);
5467 nvp->v_data = NULL;
5468 ungetnewvnode(nvp);
5469
5470 return EINVAL; /* error code ok? */
5471 }
5472 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5473
5474 /* assert no references to dscr anymore beyong this point */
5475 assert((udf_node->fe) || (udf_node->efe));
5476 dscr = NULL;
5477
5478 /*
5479 * Remember where to record an updated version of the descriptor. If
5480 * there is a sequence of indirect entries, icb_loc will have been
5481 * updated. Its the write disipline to allocate new space and to make
5482 * sure the chain is maintained.
5483 *
5484 * `needs_indirect' flags if the next location is to be filled with
5485 * with an indirect entry.
5486 */
5487 udf_node->write_loc = icb_loc;
5488 udf_node->needs_indirect = needs_indirect;
5489
5490 /*
5491 * Go trough all allocations extents of this descriptor and when
5492 * encountering a redirect read in the allocation extension. These are
5493 * daisy-chained.
5494 */
5495 UDF_LOCK_NODE(udf_node, 0);
5496 udf_node->num_extensions = 0;
5497
5498 error = 0;
5499 slot = 0;
5500 for (;;) {
5501 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5502 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5503 "lb_num = %d, part = %d\n", slot, eof,
5504 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5505 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5506 udf_rw32(icb_loc.loc.lb_num),
5507 udf_rw16(icb_loc.loc.part_num)));
5508 if (eof)
5509 break;
5510 slot++;
5511
5512 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5513 continue;
5514
5515 DPRINTF(NODE, ("\tgot redirect extent\n"));
5516 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5517 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5518 "too many allocation extensions on "
5519 "udf_node\n"));
5520 error = EINVAL;
5521 break;
5522 }
5523
5524 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5525 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5526 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5527 "extension size in udf_node\n"));
5528 error = EINVAL;
5529 break;
5530 }
5531
5532 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5533 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5534 /* load in allocation extent */
5535 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5536 if (error || (dscr == NULL))
5537 break;
5538
5539 /* process read-in descriptor */
5540 dscr_type = udf_rw16(dscr->tag.id);
5541
5542 if (dscr_type != TAGID_ALLOCEXTENT) {
5543 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5544 error = ENOENT;
5545 break;
5546 }
5547
5548 DPRINTF(NODE, ("\trecording redirect extent\n"));
5549 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5550 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5551
5552 udf_node->num_extensions++;
5553
5554 } /* while */
5555 UDF_UNLOCK_NODE(udf_node, 0);
5556
5557 /* second round of cleanup code */
5558 if (error) {
5559 /* recycle udf_node */
5560 udf_dispose_node(udf_node);
5561
5562 VOP_UNLOCK(nvp);
5563 nvp->v_data = NULL;
5564 ungetnewvnode(nvp);
5565
5566 return EINVAL; /* error code ok? */
5567 }
5568
5569 DPRINTF(NODE, ("\tnode read in fine\n"));
5570
5571 /*
5572 * Translate UDF filetypes into vnode types.
5573 *
5574 * Systemfiles like the meta main and mirror files are not treated as
5575 * normal files, so we type them as having no type. UDF dictates that
5576 * they are not allowed to be visible.
5577 */
5578
5579 switch (udf_file_type) {
5580 case UDF_ICB_FILETYPE_DIRECTORY :
5581 case UDF_ICB_FILETYPE_STREAMDIR :
5582 nvp->v_type = VDIR;
5583 break;
5584 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5585 nvp->v_type = VBLK;
5586 break;
5587 case UDF_ICB_FILETYPE_CHARDEVICE :
5588 nvp->v_type = VCHR;
5589 break;
5590 case UDF_ICB_FILETYPE_SOCKET :
5591 nvp->v_type = VSOCK;
5592 break;
5593 case UDF_ICB_FILETYPE_FIFO :
5594 nvp->v_type = VFIFO;
5595 break;
5596 case UDF_ICB_FILETYPE_SYMLINK :
5597 nvp->v_type = VLNK;
5598 break;
5599 case UDF_ICB_FILETYPE_VAT :
5600 case UDF_ICB_FILETYPE_META_MAIN :
5601 case UDF_ICB_FILETYPE_META_MIRROR :
5602 nvp->v_type = VNON;
5603 break;
5604 case UDF_ICB_FILETYPE_RANDOMACCESS :
5605 case UDF_ICB_FILETYPE_REALTIME :
5606 nvp->v_type = VREG;
5607 break;
5608 default:
5609 /* YIKES, something else */
5610 nvp->v_type = VNON;
5611 }
5612
5613 /* TODO specfs, fifofs etc etc. vnops setting */
5614
5615 /* don't forget to set vnode's v_size */
5616 uvm_vnp_setsize(nvp, file_size);
5617
5618 /* TODO ext attr and streamdir udf_nodes */
5619
5620 *udf_noderes = udf_node;
5621
5622 return 0;
5623 }
5624
5625 /* --------------------------------------------------------------------- */
5626
5627 int
5628 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5629 {
5630 union dscrptr *dscr;
5631 struct long_ad *loc;
5632 int extnr, error;
5633
5634 DPRINTF(NODE, ("udf_writeout_node called\n"));
5635
5636 KASSERT(udf_node->outstanding_bufs == 0);
5637 KASSERT(udf_node->outstanding_nodedscr == 0);
5638
5639 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5640
5641 if (udf_node->i_flags & IN_DELETED) {
5642 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5643 udf_cleanup_reservation(udf_node);
5644 return 0;
5645 }
5646
5647 /* lock node; unlocked in callback */
5648 UDF_LOCK_NODE(udf_node, 0);
5649
5650 /* remove pending reservations, we're written out */
5651 udf_cleanup_reservation(udf_node);
5652
5653 /* at least one descriptor writeout */
5654 udf_node->outstanding_nodedscr = 1;
5655
5656 /* we're going to write out the descriptor so clear the flags */
5657 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5658
5659 /* if we were rebuild, write out the allocation extents */
5660 if (udf_node->i_flags & IN_NODE_REBUILD) {
5661 /* mark outstanding node descriptors and issue them */
5662 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5663 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5664 loc = &udf_node->ext_loc[extnr];
5665 dscr = (union dscrptr *) udf_node->ext[extnr];
5666 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5667 if (error)
5668 return error;
5669 }
5670 /* mark allocation extents written out */
5671 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5672 }
5673
5674 if (udf_node->fe) {
5675 KASSERT(udf_node->efe == NULL);
5676 dscr = (union dscrptr *) udf_node->fe;
5677 } else {
5678 KASSERT(udf_node->efe);
5679 KASSERT(udf_node->fe == NULL);
5680 dscr = (union dscrptr *) udf_node->efe;
5681 }
5682 KASSERT(dscr);
5683
5684 loc = &udf_node->write_loc;
5685 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5686
5687 return error;
5688 }
5689
5690 /* --------------------------------------------------------------------- */
5691
5692 int
5693 udf_dispose_node(struct udf_node *udf_node)
5694 {
5695 struct vnode *vp;
5696 int extnr;
5697
5698 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5699 if (!udf_node) {
5700 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5701 return 0;
5702 }
5703
5704 vp = udf_node->vnode;
5705 #ifdef DIAGNOSTIC
5706 if (vp->v_numoutput)
5707 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5708 "v_numoutput = %d", udf_node, vp->v_numoutput);
5709 #endif
5710
5711 udf_cleanup_reservation(udf_node);
5712
5713 /* TODO extended attributes and streamdir */
5714
5715 /* remove dirhash if present */
5716 dirhash_purge(&udf_node->dir_hash);
5717
5718 /* remove from our hash lookup table */
5719 udf_deregister_node(udf_node);
5720
5721 /* destroy our lock */
5722 mutex_destroy(&udf_node->node_mutex);
5723 cv_destroy(&udf_node->node_lock);
5724
5725 /* dissociate our udf_node from the vnode */
5726 genfs_node_destroy(udf_node->vnode);
5727 vp->v_data = NULL;
5728
5729 /* free associated memory and the node itself */
5730 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5731 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5732 udf_node->ext[extnr]);
5733 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5734 }
5735
5736 if (udf_node->fe)
5737 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5738 udf_node->fe);
5739 if (udf_node->efe)
5740 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5741 udf_node->efe);
5742
5743 udf_node->fe = (void *) 0xdeadaaaa;
5744 udf_node->efe = (void *) 0xdeadbbbb;
5745 udf_node->ump = (void *) 0xdeadbeef;
5746 pool_put(&udf_node_pool, udf_node);
5747
5748 return 0;
5749 }
5750
5751
5752
5753 /*
5754 * create a new node using the specified vnodeops, vap and cnp but with the
5755 * udf_file_type. This allows special files to be created. Use with care.
5756 */
5757
5758 static int
5759 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5760 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5761 {
5762 union dscrptr *dscr;
5763 struct udf_node *dir_node = VTOI(dvp);
5764 struct udf_node *udf_node;
5765 struct udf_mount *ump = dir_node->ump;
5766 struct vnode *nvp;
5767 struct long_ad node_icb_loc;
5768 uint64_t parent_unique_id;
5769 uint64_t lmapping;
5770 uint32_t lb_size, lb_num;
5771 uint16_t vpart_num;
5772 uid_t uid;
5773 gid_t gid, parent_gid;
5774 int fid_size, error;
5775
5776 lb_size = udf_rw32(ump->logical_vol->lb_size);
5777 *vpp = NULL;
5778
5779 /* allocate vnode */
5780 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, NULL, &nvp);
5781 if (error)
5782 return error;
5783
5784 /* reserve space for one logical block */
5785 vpart_num = ump->node_part;
5786 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5787 vpart_num, 1, /* can_fail */ true);
5788 if (error)
5789 goto error_out_unget;
5790
5791 /* allocate node */
5792 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5793 vpart_num, 1, &lmapping);
5794 if (error)
5795 goto error_out_unreserve;
5796 lb_num = lmapping;
5797
5798 /* initialise pointer to location */
5799 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5800 node_icb_loc.len = udf_rw32(lb_size);
5801 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5802 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5803
5804 /* build udf_node (do initialise!) */
5805 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5806 memset(udf_node, 0, sizeof(struct udf_node));
5807
5808 /* initialise crosslinks, note location of fe/efe for hashing */
5809 /* bugalert: synchronise with udf_get_node() */
5810 udf_node->ump = ump;
5811 udf_node->vnode = nvp;
5812 nvp->v_data = udf_node;
5813 udf_node->loc = node_icb_loc;
5814 udf_node->write_loc = node_icb_loc;
5815 udf_node->lockf = 0;
5816 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5817 cv_init(&udf_node->node_lock, "udf_nlk");
5818 udf_node->outstanding_bufs = 0;
5819 udf_node->outstanding_nodedscr = 0;
5820 udf_node->uncommitted_lbs = 0;
5821
5822 /* initialise genfs */
5823 genfs_node_init(nvp, &udf_genfsops);
5824
5825 /* insert into the hash lookup */
5826 udf_register_node(udf_node);
5827
5828 /* get parent's unique ID for refering '..' if its a directory */
5829 if (dir_node->fe) {
5830 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5831 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5832 } else {
5833 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5834 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5835 }
5836
5837 /* get descriptor */
5838 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5839
5840 /* choose a fe or an efe for it */
5841 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5842 udf_node->fe = &dscr->fe;
5843 fid_size = udf_create_new_fe(ump, udf_node->fe,
5844 udf_file_type, &udf_node->loc,
5845 &dir_node->loc, parent_unique_id);
5846 /* TODO add extended attribute for creation time */
5847 } else {
5848 udf_node->efe = &dscr->efe;
5849 fid_size = udf_create_new_efe(ump, udf_node->efe,
5850 udf_file_type, &udf_node->loc,
5851 &dir_node->loc, parent_unique_id);
5852 }
5853 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5854
5855 /* update vnode's size and type */
5856 nvp->v_type = vap->va_type;
5857 uvm_vnp_setsize(nvp, fid_size);
5858
5859 /* set access mode */
5860 udf_setaccessmode(udf_node, vap->va_mode);
5861
5862 /* set ownership */
5863 uid = kauth_cred_geteuid(cnp->cn_cred);
5864 gid = parent_gid;
5865 udf_setownership(udf_node, uid, gid);
5866
5867 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5868 if (error) {
5869 /* free disc allocation for node */
5870 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5871
5872 /* recycle udf_node */
5873 udf_dispose_node(udf_node);
5874 vrele(nvp);
5875
5876 *vpp = NULL;
5877 return error;
5878 }
5879
5880 /* adjust file count */
5881 udf_adjust_filecount(udf_node, 1);
5882
5883 /* return result */
5884 *vpp = nvp;
5885
5886 return 0;
5887
5888 error_out_unreserve:
5889 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5890
5891 error_out_unget:
5892 nvp->v_data = NULL;
5893 ungetnewvnode(nvp);
5894
5895 return error;
5896 }
5897
5898
5899 int
5900 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5901 struct componentname *cnp)
5902 {
5903 int (**vnodeops)(void *);
5904 int udf_file_type;
5905
5906 DPRINTF(NODE, ("udf_create_node called\n"));
5907
5908 /* what type are we creating ? */
5909 vnodeops = udf_vnodeop_p;
5910 /* start with a default */
5911 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5912
5913 *vpp = NULL;
5914
5915 switch (vap->va_type) {
5916 case VREG :
5917 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5918 break;
5919 case VDIR :
5920 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5921 break;
5922 case VLNK :
5923 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5924 break;
5925 case VBLK :
5926 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5927 /* specfs */
5928 return ENOTSUP;
5929 break;
5930 case VCHR :
5931 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5932 /* specfs */
5933 return ENOTSUP;
5934 break;
5935 case VFIFO :
5936 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5937 /* specfs */
5938 return ENOTSUP;
5939 break;
5940 case VSOCK :
5941 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5942 /* specfs */
5943 return ENOTSUP;
5944 break;
5945 case VNON :
5946 case VBAD :
5947 default :
5948 /* nothing; can we even create these? */
5949 return EINVAL;
5950 }
5951
5952 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5953 }
5954
5955 /* --------------------------------------------------------------------- */
5956
5957 static void
5958 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5959 {
5960 struct udf_mount *ump = udf_node->ump;
5961 uint32_t lb_size, lb_num, len, num_lb;
5962 uint16_t vpart_num;
5963
5964 /* is there really one? */
5965 if (mem == NULL)
5966 return;
5967
5968 /* got a descriptor here */
5969 len = UDF_EXT_LEN(udf_rw32(loc->len));
5970 lb_num = udf_rw32(loc->loc.lb_num);
5971 vpart_num = udf_rw16(loc->loc.part_num);
5972
5973 lb_size = udf_rw32(ump->logical_vol->lb_size);
5974 num_lb = (len + lb_size -1) / lb_size;
5975
5976 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5977 }
5978
5979 void
5980 udf_delete_node(struct udf_node *udf_node)
5981 {
5982 void *dscr;
5983 struct long_ad *loc;
5984 int extnr, lvint, dummy;
5985
5986 /* paranoia check on integrity; should be open!; we could panic */
5987 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5988 if (lvint == UDF_INTEGRITY_CLOSED)
5989 printf("\tIntegrity was CLOSED!\n");
5990
5991 /* whatever the node type, change its size to zero */
5992 (void) udf_resize_node(udf_node, 0, &dummy);
5993
5994 /* force it to be `clean'; no use writing it out */
5995 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5996 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5997
5998 /* adjust file count */
5999 udf_adjust_filecount(udf_node, -1);
6000
6001 /*
6002 * Free its allocated descriptors; memory will be released when
6003 * vop_reclaim() is called.
6004 */
6005 loc = &udf_node->loc;
6006
6007 dscr = udf_node->fe;
6008 udf_free_descriptor_space(udf_node, loc, dscr);
6009 dscr = udf_node->efe;
6010 udf_free_descriptor_space(udf_node, loc, dscr);
6011
6012 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6013 dscr = udf_node->ext[extnr];
6014 loc = &udf_node->ext_loc[extnr];
6015 udf_free_descriptor_space(udf_node, loc, dscr);
6016 }
6017 }
6018
6019 /* --------------------------------------------------------------------- */
6020
6021 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6022 int
6023 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6024 {
6025 struct file_entry *fe = udf_node->fe;
6026 struct extfile_entry *efe = udf_node->efe;
6027 uint64_t file_size;
6028 int error;
6029
6030 if (fe) {
6031 file_size = udf_rw64(fe->inf_len);
6032 } else {
6033 assert(udf_node->efe);
6034 file_size = udf_rw64(efe->inf_len);
6035 }
6036
6037 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6038 file_size, new_size));
6039
6040 /* if not changing, we're done */
6041 if (file_size == new_size)
6042 return 0;
6043
6044 *extended = (new_size > file_size);
6045 if (*extended) {
6046 error = udf_grow_node(udf_node, new_size);
6047 } else {
6048 error = udf_shrink_node(udf_node, new_size);
6049 }
6050
6051 return error;
6052 }
6053
6054
6055 /* --------------------------------------------------------------------- */
6056
6057 void
6058 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6059 struct timespec *mod, struct timespec *birth)
6060 {
6061 struct timespec now;
6062 struct file_entry *fe;
6063 struct extfile_entry *efe;
6064 struct filetimes_extattr_entry *ft_extattr;
6065 struct timestamp *atime, *mtime, *attrtime, *ctime;
6066 struct timestamp fe_ctime;
6067 struct timespec cur_birth;
6068 uint32_t offset, a_l;
6069 uint8_t *filedata;
6070 int error;
6071
6072 /* protect against rogue values */
6073 if (!udf_node)
6074 return;
6075
6076 fe = udf_node->fe;
6077 efe = udf_node->efe;
6078
6079 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6080 return;
6081
6082 /* get descriptor information */
6083 if (fe) {
6084 atime = &fe->atime;
6085 mtime = &fe->mtime;
6086 attrtime = &fe->attrtime;
6087 filedata = fe->data;
6088
6089 /* initial save dummy setting */
6090 ctime = &fe_ctime;
6091
6092 /* check our extended attribute if present */
6093 error = udf_extattr_search_intern(udf_node,
6094 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6095 if (!error) {
6096 ft_extattr = (struct filetimes_extattr_entry *)
6097 (filedata + offset);
6098 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6099 ctime = &ft_extattr->times[0];
6100 }
6101 /* TODO create the extended attribute if not found ? */
6102 } else {
6103 assert(udf_node->efe);
6104 atime = &efe->atime;
6105 mtime = &efe->mtime;
6106 attrtime = &efe->attrtime;
6107 ctime = &efe->ctime;
6108 }
6109
6110 vfs_timestamp(&now);
6111
6112 /* set access time */
6113 if (udf_node->i_flags & IN_ACCESS) {
6114 if (acc == NULL)
6115 acc = &now;
6116 udf_timespec_to_timestamp(acc, atime);
6117 }
6118
6119 /* set modification time */
6120 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6121 if (mod == NULL)
6122 mod = &now;
6123 udf_timespec_to_timestamp(mod, mtime);
6124
6125 /* ensure birthtime is older than set modification! */
6126 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6127 if ((cur_birth.tv_sec > mod->tv_sec) ||
6128 ((cur_birth.tv_sec == mod->tv_sec) &&
6129 (cur_birth.tv_nsec > mod->tv_nsec))) {
6130 udf_timespec_to_timestamp(mod, ctime);
6131 }
6132 }
6133
6134 /* update birthtime if specified */
6135 /* XXX we assume here that given birthtime is older than mod */
6136 if (birth && (birth->tv_sec != VNOVAL)) {
6137 udf_timespec_to_timestamp(birth, ctime);
6138 }
6139
6140 /* set change time */
6141 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6142 udf_timespec_to_timestamp(&now, attrtime);
6143
6144 /* notify updates to the node itself */
6145 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6146 udf_node->i_flags |= IN_ACCESSED;
6147 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6148 udf_node->i_flags |= IN_MODIFIED;
6149
6150 /* clear modification flags */
6151 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6152 }
6153
6154 /* --------------------------------------------------------------------- */
6155
6156 int
6157 udf_update(struct vnode *vp, struct timespec *acc,
6158 struct timespec *mod, struct timespec *birth, int updflags)
6159 {
6160 union dscrptr *dscrptr;
6161 struct udf_node *udf_node = VTOI(vp);
6162 struct udf_mount *ump = udf_node->ump;
6163 struct regid *impl_id;
6164 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6165 int waitfor, flags;
6166
6167 #ifdef DEBUG
6168 char bits[128];
6169 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6170 updflags));
6171 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6172 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6173 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6174 #endif
6175
6176 /* set our times */
6177 udf_itimes(udf_node, acc, mod, birth);
6178
6179 /* set our implementation id */
6180 if (udf_node->fe) {
6181 dscrptr = (union dscrptr *) udf_node->fe;
6182 impl_id = &udf_node->fe->imp_id;
6183 } else {
6184 dscrptr = (union dscrptr *) udf_node->efe;
6185 impl_id = &udf_node->efe->imp_id;
6186 }
6187
6188 /* set our ID */
6189 udf_set_regid(impl_id, IMPL_NAME);
6190 udf_add_impl_regid(ump, impl_id);
6191
6192 /* update our crc! on RMW we are not allowed to change a thing */
6193 udf_validate_tag_and_crc_sums(dscrptr);
6194
6195 /* if called when mounted readonly, never write back */
6196 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6197 return 0;
6198
6199 /* check if the node is dirty 'enough'*/
6200 if (updflags & UPDATE_CLOSE) {
6201 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6202 } else {
6203 flags = udf_node->i_flags & IN_MODIFIED;
6204 }
6205 if (flags == 0)
6206 return 0;
6207
6208 /* determine if we need to write sync or async */
6209 waitfor = 0;
6210 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6211 /* sync mounted */
6212 waitfor = updflags & UPDATE_WAIT;
6213 if (updflags & UPDATE_DIROP)
6214 waitfor |= UPDATE_WAIT;
6215 }
6216 if (waitfor)
6217 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6218
6219 return 0;
6220 }
6221
6222
6223 /* --------------------------------------------------------------------- */
6224
6225
6226 /*
6227 * Read one fid and process it into a dirent and advance to the next (*fid)
6228 * has to be allocated a logical block in size, (*dirent) struct dirent length
6229 */
6230
6231 int
6232 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6233 struct fileid_desc *fid, struct dirent *dirent)
6234 {
6235 struct udf_node *dir_node = VTOI(vp);
6236 struct udf_mount *ump = dir_node->ump;
6237 struct file_entry *fe = dir_node->fe;
6238 struct extfile_entry *efe = dir_node->efe;
6239 uint32_t fid_size, lb_size;
6240 uint64_t file_size;
6241 char *fid_name;
6242 int enough, error;
6243
6244 assert(fid);
6245 assert(dirent);
6246 assert(dir_node);
6247 assert(offset);
6248 assert(*offset != 1);
6249
6250 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6251 /* check if we're past the end of the directory */
6252 if (fe) {
6253 file_size = udf_rw64(fe->inf_len);
6254 } else {
6255 assert(dir_node->efe);
6256 file_size = udf_rw64(efe->inf_len);
6257 }
6258 if (*offset >= file_size)
6259 return EINVAL;
6260
6261 /* get maximum length of FID descriptor */
6262 lb_size = udf_rw32(ump->logical_vol->lb_size);
6263
6264 /* initialise return values */
6265 fid_size = 0;
6266 memset(dirent, 0, sizeof(struct dirent));
6267 memset(fid, 0, lb_size);
6268
6269 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6270 if (!enough) {
6271 /* short dir ... */
6272 return EIO;
6273 }
6274
6275 error = vn_rdwr(UIO_READ, vp,
6276 fid, MIN(file_size - (*offset), lb_size), *offset,
6277 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6278 NULL, NULL);
6279 if (error)
6280 return error;
6281
6282 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6283 /*
6284 * Check if we got a whole descriptor.
6285 * TODO Try to `resync' directory stream when something is very wrong.
6286 */
6287
6288 /* check if our FID header is OK */
6289 error = udf_check_tag(fid);
6290 if (error) {
6291 goto brokendir;
6292 }
6293 DPRINTF(FIDS, ("\ttag check ok\n"));
6294
6295 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6296 error = EIO;
6297 goto brokendir;
6298 }
6299 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6300
6301 /* check for length */
6302 fid_size = udf_fidsize(fid);
6303 enough = (file_size - (*offset) >= fid_size);
6304 if (!enough) {
6305 error = EIO;
6306 goto brokendir;
6307 }
6308 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6309
6310 /* check FID contents */
6311 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6312 brokendir:
6313 if (error) {
6314 /* note that is sometimes a bit quick to report */
6315 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6316 /* RESYNC? */
6317 /* TODO: use udf_resync_fid_stream */
6318 return EIO;
6319 }
6320 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6321
6322 /* we got a whole and valid descriptor! */
6323 DPRINTF(FIDS, ("\tinterpret FID\n"));
6324
6325 /* create resulting dirent structure */
6326 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6327 udf_to_unix_name(dirent->d_name, NAME_MAX,
6328 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6329
6330 /* '..' has no name, so provide one */
6331 if (fid->file_char & UDF_FILE_CHAR_PAR)
6332 strcpy(dirent->d_name, "..");
6333
6334 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6335 dirent->d_namlen = strlen(dirent->d_name);
6336 dirent->d_reclen = _DIRENT_SIZE(dirent);
6337
6338 /*
6339 * Note that its not worth trying to go for the filetypes now... its
6340 * too expensive too
6341 */
6342 dirent->d_type = DT_UNKNOWN;
6343
6344 /* initial guess for filetype we can make */
6345 if (fid->file_char & UDF_FILE_CHAR_DIR)
6346 dirent->d_type = DT_DIR;
6347
6348 /* advance */
6349 *offset += fid_size;
6350
6351 return error;
6352 }
6353
6354
6355 /* --------------------------------------------------------------------- */
6356
6357 static void
6358 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6359 int pass, int *ndirty)
6360 {
6361 struct udf_node *udf_node, *n_udf_node;
6362 struct vnode *vp;
6363 int vdirty, error;
6364 int on_type, on_flags, on_vnode;
6365
6366 derailed:
6367 KASSERT(mutex_owned(&mntvnode_lock));
6368
6369 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6370 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6371 for (;udf_node; udf_node = n_udf_node) {
6372 DPRINTF(SYNC, ("."));
6373
6374 udf_node->i_flags &= ~IN_SYNCED;
6375 vp = udf_node->vnode;
6376
6377 mutex_enter(vp->v_interlock);
6378 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6379 udf_node, RB_DIR_RIGHT);
6380
6381 if (n_udf_node)
6382 n_udf_node->i_flags |= IN_SYNCED;
6383
6384 /* system nodes are not synced this way */
6385 if (vp->v_vflag & VV_SYSTEM) {
6386 mutex_exit(vp->v_interlock);
6387 continue;
6388 }
6389
6390 /* check if its dirty enough to even try */
6391 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6392 on_flags = ((udf_node->i_flags &
6393 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6394 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6395 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6396 if (on_type || (on_flags || on_vnode)) { /* XXX */
6397 /* not dirty (enough?) */
6398 mutex_exit(vp->v_interlock);
6399 continue;
6400 }
6401
6402 mutex_exit(&mntvnode_lock);
6403 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6404 if (error) {
6405 mutex_enter(&mntvnode_lock);
6406 if (error == ENOENT)
6407 goto derailed;
6408 *ndirty += 1;
6409 continue;
6410 }
6411
6412 switch (pass) {
6413 case 1:
6414 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6415 break;
6416 case 2:
6417 vdirty = vp->v_numoutput;
6418 if (vp->v_tag == VT_UDF)
6419 vdirty += udf_node->outstanding_bufs +
6420 udf_node->outstanding_nodedscr;
6421 if (vdirty == 0)
6422 VOP_FSYNC(vp, cred, 0,0,0);
6423 *ndirty += vdirty;
6424 break;
6425 case 3:
6426 vdirty = vp->v_numoutput;
6427 if (vp->v_tag == VT_UDF)
6428 vdirty += udf_node->outstanding_bufs +
6429 udf_node->outstanding_nodedscr;
6430 *ndirty += vdirty;
6431 break;
6432 }
6433
6434 vput(vp);
6435 mutex_enter(&mntvnode_lock);
6436 }
6437 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6438 }
6439
6440
6441 void
6442 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6443 {
6444 int dummy, ndirty;
6445
6446 mutex_enter(&mntvnode_lock);
6447 recount:
6448 dummy = 0;
6449 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6450 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6451 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6452
6453 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6454 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6455 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6456
6457 if (waitfor == MNT_WAIT) {
6458 ndirty = ump->devvp->v_numoutput;
6459 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6460 ndirty));
6461 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6462 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6463 ndirty));
6464
6465 if (ndirty) {
6466 /* 1/4 second wait */
6467 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6468 hz/4);
6469 goto recount;
6470 }
6471 }
6472
6473 mutex_exit(&mntvnode_lock);
6474 }
6475
6476 /* --------------------------------------------------------------------- */
6477
6478 /*
6479 * Read and write file extent in/from the buffer.
6480 *
6481 * The splitup of the extent into seperate request-buffers is to minimise
6482 * copying around as much as possible.
6483 *
6484 * block based file reading and writing
6485 */
6486
6487 static int
6488 udf_read_internal(struct udf_node *node, uint8_t *blob)
6489 {
6490 struct udf_mount *ump;
6491 struct file_entry *fe = node->fe;
6492 struct extfile_entry *efe = node->efe;
6493 uint64_t inflen;
6494 uint32_t sector_size;
6495 uint8_t *pos;
6496 int icbflags, addr_type;
6497
6498 /* get extent and do some paranoia checks */
6499 ump = node->ump;
6500 sector_size = ump->discinfo.sector_size;
6501
6502 if (fe) {
6503 inflen = udf_rw64(fe->inf_len);
6504 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6505 icbflags = udf_rw16(fe->icbtag.flags);
6506 } else {
6507 assert(node->efe);
6508 inflen = udf_rw64(efe->inf_len);
6509 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6510 icbflags = udf_rw16(efe->icbtag.flags);
6511 }
6512 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6513
6514 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6515 assert(inflen < sector_size);
6516
6517 /* copy out info */
6518 memset(blob, 0, sector_size);
6519 memcpy(blob, pos, inflen);
6520
6521 return 0;
6522 }
6523
6524
6525 static int
6526 udf_write_internal(struct udf_node *node, uint8_t *blob)
6527 {
6528 struct udf_mount *ump;
6529 struct file_entry *fe = node->fe;
6530 struct extfile_entry *efe = node->efe;
6531 uint64_t inflen;
6532 uint32_t sector_size;
6533 uint8_t *pos;
6534 int icbflags, addr_type;
6535
6536 /* get extent and do some paranoia checks */
6537 ump = node->ump;
6538 sector_size = ump->discinfo.sector_size;
6539
6540 if (fe) {
6541 inflen = udf_rw64(fe->inf_len);
6542 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6543 icbflags = udf_rw16(fe->icbtag.flags);
6544 } else {
6545 assert(node->efe);
6546 inflen = udf_rw64(efe->inf_len);
6547 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6548 icbflags = udf_rw16(efe->icbtag.flags);
6549 }
6550 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6551
6552 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6553 assert(inflen < sector_size);
6554
6555 /* copy in blob */
6556 /* memset(pos, 0, inflen); */
6557 memcpy(pos, blob, inflen);
6558
6559 return 0;
6560 }
6561
6562
6563 void
6564 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6565 {
6566 struct buf *nestbuf;
6567 struct udf_mount *ump = udf_node->ump;
6568 uint64_t *mapping;
6569 uint64_t run_start;
6570 uint32_t sector_size;
6571 uint32_t buf_offset, sector, rbuflen, rblk;
6572 uint32_t from, lblkno;
6573 uint32_t sectors;
6574 uint8_t *buf_pos;
6575 int error, run_length, what;
6576
6577 sector_size = udf_node->ump->discinfo.sector_size;
6578
6579 from = buf->b_blkno;
6580 sectors = buf->b_bcount / sector_size;
6581
6582 what = udf_get_c_type(udf_node);
6583
6584 /* assure we have enough translation slots */
6585 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6586 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6587
6588 if (sectors > UDF_MAX_MAPPINGS) {
6589 printf("udf_read_filebuf: implementation limit on bufsize\n");
6590 buf->b_error = EIO;
6591 biodone(buf);
6592 return;
6593 }
6594
6595 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6596
6597 error = 0;
6598 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6599 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6600 if (error) {
6601 buf->b_error = error;
6602 biodone(buf);
6603 goto out;
6604 }
6605 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6606
6607 /* pre-check if its an internal */
6608 if (*mapping == UDF_TRANS_INTERN) {
6609 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6610 if (error)
6611 buf->b_error = error;
6612 biodone(buf);
6613 goto out;
6614 }
6615 DPRINTF(READ, ("\tnot intern\n"));
6616
6617 #ifdef DEBUG
6618 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6619 printf("Returned translation table:\n");
6620 for (sector = 0; sector < sectors; sector++) {
6621 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6622 }
6623 }
6624 #endif
6625
6626 /* request read-in of data from disc sheduler */
6627 buf->b_resid = buf->b_bcount;
6628 for (sector = 0; sector < sectors; sector++) {
6629 buf_offset = sector * sector_size;
6630 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6631 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6632
6633 /* check if its zero or unmapped to stop reading */
6634 switch (mapping[sector]) {
6635 case UDF_TRANS_UNMAPPED:
6636 case UDF_TRANS_ZERO:
6637 /* copy zero sector TODO runlength like below */
6638 memset(buf_pos, 0, sector_size);
6639 DPRINTF(READ, ("\treturning zero sector\n"));
6640 nestiobuf_done(buf, sector_size, 0);
6641 break;
6642 default :
6643 DPRINTF(READ, ("\tread sector "
6644 "%"PRIu64"\n", mapping[sector]));
6645
6646 lblkno = from + sector;
6647 run_start = mapping[sector];
6648 run_length = 1;
6649 while (sector < sectors-1) {
6650 if (mapping[sector+1] != mapping[sector]+1)
6651 break;
6652 run_length++;
6653 sector++;
6654 }
6655
6656 /*
6657 * nest an iobuf and mark it for async reading. Since
6658 * we're using nested buffers, they can't be cached by
6659 * design.
6660 */
6661 rbuflen = run_length * sector_size;
6662 rblk = run_start * (sector_size/DEV_BSIZE);
6663
6664 nestbuf = getiobuf(NULL, true);
6665 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6666 /* nestbuf is B_ASYNC */
6667
6668 /* identify this nestbuf */
6669 nestbuf->b_lblkno = lblkno;
6670 assert(nestbuf->b_vp == udf_node->vnode);
6671
6672 /* CD shedules on raw blkno */
6673 nestbuf->b_blkno = rblk;
6674 nestbuf->b_proc = NULL;
6675 nestbuf->b_rawblkno = rblk;
6676 nestbuf->b_udf_c_type = what;
6677
6678 udf_discstrat_queuebuf(ump, nestbuf);
6679 }
6680 }
6681 out:
6682 /* if we're synchronously reading, wait for the completion */
6683 if ((buf->b_flags & B_ASYNC) == 0)
6684 biowait(buf);
6685
6686 DPRINTF(READ, ("\tend of read_filebuf\n"));
6687 free(mapping, M_TEMP);
6688 return;
6689 }
6690
6691
6692 void
6693 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6694 {
6695 struct buf *nestbuf;
6696 struct udf_mount *ump = udf_node->ump;
6697 uint64_t *mapping;
6698 uint64_t run_start;
6699 uint32_t lb_size;
6700 uint32_t buf_offset, lb_num, rbuflen, rblk;
6701 uint32_t from, lblkno;
6702 uint32_t num_lb;
6703 int error, run_length, what, s;
6704
6705 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6706
6707 from = buf->b_blkno;
6708 num_lb = buf->b_bcount / lb_size;
6709
6710 what = udf_get_c_type(udf_node);
6711
6712 /* assure we have enough translation slots */
6713 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6714 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6715
6716 if (num_lb > UDF_MAX_MAPPINGS) {
6717 printf("udf_write_filebuf: implementation limit on bufsize\n");
6718 buf->b_error = EIO;
6719 biodone(buf);
6720 return;
6721 }
6722
6723 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6724
6725 error = 0;
6726 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6727 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6728 if (error) {
6729 buf->b_error = error;
6730 biodone(buf);
6731 goto out;
6732 }
6733 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6734
6735 /* if its internally mapped, we can write it in the descriptor itself */
6736 if (*mapping == UDF_TRANS_INTERN) {
6737 /* TODO paranoia check if we ARE going to have enough space */
6738 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6739 if (error)
6740 buf->b_error = error;
6741 biodone(buf);
6742 goto out;
6743 }
6744 DPRINTF(WRITE, ("\tnot intern\n"));
6745
6746 /* request write out of data to disc sheduler */
6747 buf->b_resid = buf->b_bcount;
6748 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6749 buf_offset = lb_num * lb_size;
6750 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6751
6752 /*
6753 * Mappings are not that important here. Just before we write
6754 * the lb_num we late-allocate them when needed and update the
6755 * mapping in the udf_node.
6756 */
6757
6758 /* XXX why not ignore the mapping altogether ? */
6759 DPRINTF(WRITE, ("\twrite lb_num "
6760 "%"PRIu64, mapping[lb_num]));
6761
6762 lblkno = from + lb_num;
6763 run_start = mapping[lb_num];
6764 run_length = 1;
6765 while (lb_num < num_lb-1) {
6766 if (mapping[lb_num+1] != mapping[lb_num]+1)
6767 if (mapping[lb_num+1] != mapping[lb_num])
6768 break;
6769 run_length++;
6770 lb_num++;
6771 }
6772 DPRINTF(WRITE, ("+ %d\n", run_length));
6773
6774 /* nest an iobuf on the master buffer for the extent */
6775 rbuflen = run_length * lb_size;
6776 rblk = run_start * (lb_size/DEV_BSIZE);
6777
6778 nestbuf = getiobuf(NULL, true);
6779 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6780 /* nestbuf is B_ASYNC */
6781
6782 /* identify this nestbuf */
6783 nestbuf->b_lblkno = lblkno;
6784 KASSERT(nestbuf->b_vp == udf_node->vnode);
6785
6786 /* CD shedules on raw blkno */
6787 nestbuf->b_blkno = rblk;
6788 nestbuf->b_proc = NULL;
6789 nestbuf->b_rawblkno = rblk;
6790 nestbuf->b_udf_c_type = what;
6791
6792 /* increment our outstanding bufs counter */
6793 s = splbio();
6794 udf_node->outstanding_bufs++;
6795 splx(s);
6796
6797 udf_discstrat_queuebuf(ump, nestbuf);
6798 }
6799 out:
6800 /* if we're synchronously writing, wait for the completion */
6801 if ((buf->b_flags & B_ASYNC) == 0)
6802 biowait(buf);
6803
6804 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6805 free(mapping, M_TEMP);
6806 return;
6807 }
6808
6809 /* --------------------------------------------------------------------- */
6810