udf_subr.c revision 1.129 1 /* $NetBSD: udf_subr.c,v 1.129 2015/04/06 08:39:23 hannken Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.129 2015/04/06 08:39:23 hannken Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return 0;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return 0;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341
342 return 0;
343 }
344
345 /* --------------------------------------------------------------------- */
346
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 int *first_tracknr, int *last_tracknr)
351 {
352 struct mmc_trackinfo trackinfo;
353 uint32_t tracknr, start_track, num_tracks;
354 int error;
355
356 /* if negative, sessionnr is relative to last session */
357 if (args->sessionnr < 0) {
358 args->sessionnr += ump->discinfo.num_sessions;
359 }
360
361 /* sanity */
362 if (args->sessionnr < 0)
363 args->sessionnr = 0;
364 if (args->sessionnr > ump->discinfo.num_sessions)
365 args->sessionnr = ump->discinfo.num_sessions;
366
367 /* search the tracks for this session, zero session nr indicates last */
368 if (args->sessionnr == 0)
369 args->sessionnr = ump->discinfo.num_sessions;
370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 args->sessionnr--;
372
373 /* sanity again */
374 if (args->sessionnr < 0)
375 args->sessionnr = 0;
376
377 /* search the first and last track of the specified session */
378 num_tracks = ump->discinfo.num_tracks;
379 start_track = ump->discinfo.first_track;
380
381 /* search for first track of this session */
382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 /* get track info */
384 trackinfo.tracknr = tracknr;
385 error = udf_update_trackinfo(ump, &trackinfo);
386 if (error)
387 return error;
388
389 if (trackinfo.sessionnr == args->sessionnr)
390 break;
391 }
392 *first_tracknr = tracknr;
393
394 /* search for last track of this session */
395 for (;tracknr <= num_tracks; tracknr++) {
396 /* get track info */
397 trackinfo.tracknr = tracknr;
398 error = udf_update_trackinfo(ump, &trackinfo);
399 if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 tracknr--;
401 break;
402 }
403 }
404 if (tracknr > num_tracks)
405 tracknr--;
406
407 *last_tracknr = tracknr;
408
409 if (*last_tracknr < *first_tracknr) {
410 printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 "drive returned garbage\n");
412 return EINVAL;
413 }
414
415 assert(*last_tracknr >= *first_tracknr);
416 return 0;
417 }
418
419
420 /*
421 * NOTE: this is the only routine in this file that directly peeks into the
422 * metadata file but since its at a larval state of the mount it can't hurt.
423 *
424 * XXX candidate for udf_allocation.c
425 * XXX clean me up!, change to new node reading code.
426 */
427
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 struct mmc_trackinfo *trackinfo)
431 {
432 struct part_desc *part;
433 struct file_entry *fe;
434 struct extfile_entry *efe;
435 struct short_ad *s_ad;
436 struct long_ad *l_ad;
437 uint32_t track_start, track_end;
438 uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 uint32_t sector_size, len, alloclen, plb_num;
440 uint8_t *pos;
441 int addr_type, icblen, icbflags;
442
443 /* get our track extents */
444 track_start = trackinfo->track_start;
445 track_end = track_start + trackinfo->track_size;
446
447 /* get our base partition extent */
448 KASSERT(ump->node_part == ump->fids_part);
449 part = ump->partitions[ump->vtop[ump->node_part]];
450 phys_part_start = udf_rw32(part->start_loc);
451 phys_part_end = phys_part_start + udf_rw32(part->part_len);
452
453 /* no use if its outside the physical partition */
454 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 return;
456
457 /*
458 * now follow all extents in the fe/efe to see if they refer to this
459 * track
460 */
461
462 sector_size = ump->discinfo.sector_size;
463
464 /* XXX should we claim exclusive access to the metafile ? */
465 /* TODO: move to new node read code */
466 fe = ump->metadata_node->fe;
467 efe = ump->metadata_node->efe;
468 if (fe) {
469 alloclen = udf_rw32(fe->l_ad);
470 pos = &fe->data[0] + udf_rw32(fe->l_ea);
471 icbflags = udf_rw16(fe->icbtag.flags);
472 } else {
473 assert(efe);
474 alloclen = udf_rw32(efe->l_ad);
475 pos = &efe->data[0] + udf_rw32(efe->l_ea);
476 icbflags = udf_rw16(efe->icbtag.flags);
477 }
478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479
480 while (alloclen) {
481 if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 icblen = sizeof(struct short_ad);
483 s_ad = (struct short_ad *) pos;
484 len = udf_rw32(s_ad->len);
485 plb_num = udf_rw32(s_ad->lb_num);
486 } else {
487 /* should not be present, but why not */
488 icblen = sizeof(struct long_ad);
489 l_ad = (struct long_ad *) pos;
490 len = udf_rw32(l_ad->len);
491 plb_num = udf_rw32(l_ad->loc.lb_num);
492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 }
494 /* process extent */
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 /* search smallest extent */
1291 trace = &ump->lvint_trace[0];
1292 minext = trace->end - trace->start;
1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1294 trace = &ump->lvint_trace[ext];
1295 extlen = trace->end - trace->start;
1296 if (extlen == 0)
1297 break;
1298 minext = MIN(minext, extlen);
1299 }
1300 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1301 /* no sense wiping all */
1302 if (losing == minext)
1303 losing--;
1304
1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1306
1307 /* get buffer for pieces */
1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1309
1310 in_ext = 0;
1311 in_pos = losing;
1312 in_trace = &ump->lvint_trace[in_ext];
1313 in_len = in_trace->end - in_trace->start;
1314 out_ext = 0;
1315 out_wpos = 0;
1316 out_trace = &ump->lvint_trace[out_ext];
1317 out_len = out_trace->end - out_trace->start;
1318
1319 last_dscr = NULL;
1320 for(;;) {
1321 out_trace->pos = out_wpos;
1322 out_trace->wpos = out_trace->pos;
1323 if (in_pos >= in_len) {
1324 in_ext++;
1325 in_pos = 0;
1326 in_trace = &ump->lvint_trace[in_ext];
1327 in_len = in_trace->end - in_trace->start;
1328 }
1329 if (out_wpos >= out_len) {
1330 out_ext++;
1331 out_wpos = 0;
1332 out_trace = &ump->lvint_trace[out_ext];
1333 out_len = out_trace->end - out_trace->start;
1334 }
1335 /* copy overlap contents */
1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1338 if (cpy_len == 0)
1339 break;
1340
1341 /* copy */
1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1343 for (cnt = 0; cnt < cpy_len; cnt++) {
1344 /* read in our integrity descriptor */
1345 lb_num = in_trace->start + in_pos + cnt;
1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1347 &dscr);
1348 if (error) {
1349 /* copy last one */
1350 dscr = last_dscr;
1351 }
1352 bufs[cnt] = dscr;
1353 if (!error) {
1354 if (dscr == NULL) {
1355 out_trace->pos = out_wpos + cnt;
1356 out_trace->wpos = out_trace->pos;
1357 break; /* empty terminates */
1358 }
1359 dscr_type = udf_rw16(dscr->tag.id);
1360 if (dscr_type == TAGID_TERM) {
1361 out_trace->pos = out_wpos + cnt;
1362 out_trace->wpos = out_trace->pos;
1363 break; /* clean terminator */
1364 }
1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1366 panic( "UDF integrity sequence "
1367 "corrupted while mounted!\n");
1368 }
1369 last_dscr = dscr;
1370 }
1371 }
1372
1373 /* patch up if first entry was on error */
1374 if (bufs[0] == NULL) {
1375 for (cnt = 0; cnt < cpy_len; cnt++)
1376 if (bufs[cnt] != NULL)
1377 break;
1378 last_dscr = bufs[cnt];
1379 for (; cnt > 0; cnt--) {
1380 bufs[cnt] = last_dscr;
1381 }
1382 }
1383
1384 /* glue + write out */
1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1386 for (cnt = 0; cnt < cpy_len; cnt++) {
1387 lb_num = out_trace->start + out_wpos + cnt;
1388 lvint = &bufs[cnt]->lvid;
1389
1390 /* set continuation */
1391 len = 0;
1392 start = 0;
1393 if (out_wpos + cnt == out_len) {
1394 /* get continuation */
1395 trace = &ump->lvint_trace[out_ext+1];
1396 len = trace->end - trace->start;
1397 start = trace->start;
1398 }
1399 lvint->next_extent.len = udf_rw32(len);
1400 lvint->next_extent.loc = udf_rw32(start);
1401
1402 lb_num = trace->start + trace->wpos;
1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1404 bufs[cnt], lb_num, lb_num);
1405 DPRINTFIF(VOLUMES, error,
1406 ("error writing lvint lb_num\n"));
1407 }
1408
1409 /* free non repeating descriptors */
1410 last_dscr = NULL;
1411 for (cnt = 0; cnt < cpy_len; cnt++) {
1412 if (bufs[cnt] != last_dscr)
1413 free(bufs[cnt], M_UDFVOLD);
1414 last_dscr = bufs[cnt];
1415 }
1416
1417 /* advance */
1418 in_pos += cpy_len;
1419 out_wpos += cpy_len;
1420 }
1421
1422 free(bufs, M_TEMP);
1423
1424 return 0;
1425 }
1426
1427
1428 static int
1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1430 {
1431 struct udf_lvintq *trace;
1432 struct timeval now_v;
1433 struct timespec now_s;
1434 uint32_t sector;
1435 int logvol_integrity;
1436 int space, error;
1437
1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1439
1440 again:
1441 /* get free space in last chunk */
1442 trace = ump->lvint_trace;
1443 while (trace->wpos > (trace->end - trace->start)) {
1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1445 "wpos = %d\n", trace->start, trace->end,
1446 trace->pos, trace->wpos));
1447 trace++;
1448 }
1449
1450 /* check if there is space to append */
1451 space = (trace->end - trace->start) - trace->wpos;
1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1453 "space = %d\n", trace->start, trace->end, trace->pos,
1454 trace->wpos, space));
1455
1456 /* get state */
1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1460 /* TODO extent LVINT space if possible */
1461 return EROFS;
1462 }
1463 }
1464
1465 if (space < 1) {
1466 if (lvflag & UDF_APPENDONLY_LVINT)
1467 return EROFS;
1468 /* loose history by re-writing extents */
1469 error = udf_loose_lvint_history(ump);
1470 if (error)
1471 return error;
1472 goto again;
1473 }
1474
1475 /* update our integrity descriptor to identify us and timestamp it */
1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1477 microtime(&now_v);
1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1482
1483 /* writeout integrity descriptor */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1486 (union dscrptr *) ump->logvol_integrity,
1487 sector, sector);
1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1489 if (error)
1490 return error;
1491
1492 /* advance write position */
1493 trace->wpos++; space--;
1494 if (space >= 1) {
1495 /* append terminator */
1496 sector = trace->start + trace->wpos;
1497 error = udf_write_terminator(ump, sector);
1498
1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1500 }
1501
1502 space = (trace->end - trace->start) - trace->wpos;
1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1504 "space = %d\n", trace->start, trace->end, trace->pos,
1505 trace->wpos, space));
1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1507 "successfull\n"));
1508
1509 return error;
1510 }
1511
1512 /* --------------------------------------------------------------------- */
1513
1514 static int
1515 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1516 {
1517 union dscrptr *dscr;
1518 /* struct udf_args *args = &ump->mount_args; */
1519 struct part_desc *partd;
1520 struct part_hdr_desc *parthdr;
1521 struct udf_bitmap *bitmap;
1522 uint32_t phys_part;
1523 uint32_t lb_num, len;
1524 int error, dscr_type;
1525
1526 /* unallocated space map */
1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 partd = ump->partitions[phys_part];
1529 if (partd == NULL)
1530 continue;
1531 parthdr = &partd->_impl_use.part_hdr;
1532
1533 lb_num = udf_rw32(partd->start_loc);
1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1536 if (len == 0)
1537 continue;
1538
1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1541 if (!error && dscr) {
1542 /* analyse */
1543 dscr_type = udf_rw16(dscr->tag.id);
1544 if (dscr_type == TAGID_SPACE_BITMAP) {
1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1547
1548 /* fill in ump->part_unalloc_bits */
1549 bitmap = &ump->part_unalloc_bits[phys_part];
1550 bitmap->blob = (uint8_t *) dscr;
1551 bitmap->bits = dscr->sbd.data;
1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1553 bitmap->pages = NULL; /* TODO */
1554 bitmap->data_pos = 0;
1555 bitmap->metadata_pos = 0;
1556 } else {
1557 free(dscr, M_UDFVOLD);
1558
1559 printf( "UDF mount: error reading unallocated "
1560 "space bitmap\n");
1561 return EROFS;
1562 }
1563 } else {
1564 /* blank not allowed */
1565 printf("UDF mount: blank unallocated space bitmap\n");
1566 return EROFS;
1567 }
1568 }
1569
1570 /* unallocated space table (not supported) */
1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1572 partd = ump->partitions[phys_part];
1573 if (partd == NULL)
1574 continue;
1575 parthdr = &partd->_impl_use.part_hdr;
1576
1577 len = udf_rw32(parthdr->unalloc_space_table.len);
1578 if (len) {
1579 printf("UDF mount: space tables not supported\n");
1580 return EROFS;
1581 }
1582 }
1583
1584 /* freed space map */
1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1586 partd = ump->partitions[phys_part];
1587 if (partd == NULL)
1588 continue;
1589 parthdr = &partd->_impl_use.part_hdr;
1590
1591 /* freed space map */
1592 lb_num = udf_rw32(partd->start_loc);
1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1594 len = udf_rw32(parthdr->freed_space_bitmap.len);
1595 if (len == 0)
1596 continue;
1597
1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1600 if (!error && dscr) {
1601 /* analyse */
1602 dscr_type = udf_rw16(dscr->tag.id);
1603 if (dscr_type == TAGID_SPACE_BITMAP) {
1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1605 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1606
1607 /* fill in ump->part_freed_bits */
1608 bitmap = &ump->part_unalloc_bits[phys_part];
1609 bitmap->blob = (uint8_t *) dscr;
1610 bitmap->bits = dscr->sbd.data;
1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1612 bitmap->pages = NULL; /* TODO */
1613 bitmap->data_pos = 0;
1614 bitmap->metadata_pos = 0;
1615 } else {
1616 free(dscr, M_UDFVOLD);
1617
1618 printf( "UDF mount: error reading freed "
1619 "space bitmap\n");
1620 return EROFS;
1621 }
1622 } else {
1623 /* blank not allowed */
1624 printf("UDF mount: blank freed space bitmap\n");
1625 return EROFS;
1626 }
1627 }
1628
1629 /* freed space table (not supported) */
1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1631 partd = ump->partitions[phys_part];
1632 if (partd == NULL)
1633 continue;
1634 parthdr = &partd->_impl_use.part_hdr;
1635
1636 len = udf_rw32(parthdr->freed_space_table.len);
1637 if (len) {
1638 printf("UDF mount: space tables not supported\n");
1639 return EROFS;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646
1647 /* TODO implement async writeout */
1648 int
1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1650 {
1651 union dscrptr *dscr;
1652 /* struct udf_args *args = &ump->mount_args; */
1653 struct part_desc *partd;
1654 struct part_hdr_desc *parthdr;
1655 uint32_t phys_part;
1656 uint32_t lb_num, len, ptov;
1657 int error_all, error;
1658
1659 error_all = 0;
1660 /* unallocated space map */
1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1662 partd = ump->partitions[phys_part];
1663 if (partd == NULL)
1664 continue;
1665 parthdr = &partd->_impl_use.part_hdr;
1666
1667 ptov = udf_rw32(partd->start_loc);
1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1670 if (len == 0)
1671 continue;
1672
1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1674 lb_num + ptov));
1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1677 (union dscrptr *) dscr,
1678 ptov + lb_num, lb_num);
1679 if (error) {
1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1681 error_all = error;
1682 }
1683 }
1684
1685 /* freed space map */
1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1687 partd = ump->partitions[phys_part];
1688 if (partd == NULL)
1689 continue;
1690 parthdr = &partd->_impl_use.part_hdr;
1691
1692 /* freed space map */
1693 ptov = udf_rw32(partd->start_loc);
1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1695 len = udf_rw32(parthdr->freed_space_bitmap.len);
1696 if (len == 0)
1697 continue;
1698
1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1700 lb_num + ptov));
1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1703 (union dscrptr *) dscr,
1704 ptov + lb_num, lb_num);
1705 if (error) {
1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1707 error_all = error;
1708 }
1709 }
1710
1711 return error_all;
1712 }
1713
1714
1715 static int
1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1717 {
1718 struct udf_node *bitmap_node;
1719 union dscrptr *dscr;
1720 struct udf_bitmap *bitmap;
1721 uint64_t inflen;
1722 int error, dscr_type;
1723
1724 bitmap_node = ump->metadatabitmap_node;
1725
1726 /* only read in when metadata bitmap node is read in */
1727 if (bitmap_node == NULL)
1728 return 0;
1729
1730 if (bitmap_node->fe) {
1731 inflen = udf_rw64(bitmap_node->fe->inf_len);
1732 } else {
1733 KASSERT(bitmap_node->efe);
1734 inflen = udf_rw64(bitmap_node->efe->inf_len);
1735 }
1736
1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1738 "%"PRIu64" bytes\n", inflen));
1739
1740 /* allocate space for bitmap */
1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1742 if (!dscr)
1743 return ENOMEM;
1744
1745 /* set vnode type to regular file or we can't read from it! */
1746 bitmap_node->vnode->v_type = VREG;
1747
1748 /* read in complete metadata bitmap file */
1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1750 dscr,
1751 inflen, 0,
1752 UIO_SYSSPACE,
1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1754 NULL, NULL);
1755 if (error) {
1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1757 goto errorout;
1758 }
1759
1760 /* analyse */
1761 dscr_type = udf_rw16(dscr->tag.id);
1762 if (dscr_type == TAGID_SPACE_BITMAP) {
1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1764 ump->metadata_unalloc_dscr = &dscr->sbd;
1765
1766 /* fill in bitmap bits */
1767 bitmap = &ump->metadata_unalloc_bits;
1768 bitmap->blob = (uint8_t *) dscr;
1769 bitmap->bits = dscr->sbd.data;
1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1771 bitmap->pages = NULL; /* TODO */
1772 bitmap->data_pos = 0;
1773 bitmap->metadata_pos = 0;
1774 } else {
1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1776 goto errorout;
1777 }
1778
1779 return 0;
1780
1781 errorout:
1782 free(dscr, M_UDFVOLD);
1783 printf( "UDF mount: error reading unallocated "
1784 "space bitmap for metadata partition\n");
1785 return EROFS;
1786 }
1787
1788
1789 int
1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1791 {
1792 struct udf_node *bitmap_node;
1793 union dscrptr *dscr;
1794 uint64_t new_inflen;
1795 int dummy, error;
1796
1797 bitmap_node = ump->metadatabitmap_node;
1798
1799 /* only write out when metadata bitmap node is known */
1800 if (bitmap_node == NULL)
1801 return 0;
1802
1803 if (!bitmap_node->fe) {
1804 KASSERT(bitmap_node->efe);
1805 }
1806
1807 /* reduce length to zero */
1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1809 new_inflen = udf_tagsize(dscr, 1);
1810
1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1812 " for %"PRIu64" bytes\n", new_inflen));
1813
1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1815 if (error)
1816 printf("Error resizing metadata space bitmap\n");
1817
1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1819 dscr,
1820 new_inflen, 0,
1821 UIO_SYSSPACE,
1822 IO_ALTSEMANTICS, FSCRED,
1823 NULL, NULL);
1824
1825 bitmap_node->i_flags |= IN_MODIFIED;
1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1827 if (error == 0)
1828 error = VOP_FSYNC(bitmap_node->vnode,
1829 FSCRED, FSYNC_WAIT, 0, 0);
1830
1831 if (error)
1832 printf( "Error writing out metadata partition unalloced "
1833 "space bitmap!\n");
1834
1835 return error;
1836 }
1837
1838
1839 /* --------------------------------------------------------------------- */
1840
1841 /*
1842 * Checks if ump's vds information is correct and complete
1843 */
1844
1845 int
1846 udf_process_vds(struct udf_mount *ump) {
1847 union udf_pmap *mapping;
1848 /* struct udf_args *args = &ump->mount_args; */
1849 struct logvol_int_desc *lvint;
1850 struct udf_logvol_info *lvinfo;
1851 uint32_t n_pm;
1852 uint8_t *pmap_pos;
1853 char *domain_name, *map_name;
1854 const char *check_name;
1855 char bits[128];
1856 int pmap_stype, pmap_size;
1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1858 int n_phys, n_virt, n_spar, n_meta;
1859 int len;
1860
1861 if (ump == NULL)
1862 return ENOENT;
1863
1864 /* we need at least an anchor (trivial, but for safety) */
1865 if (ump->anchors[0] == NULL)
1866 return EINVAL;
1867
1868 /* we need at least one primary and one logical volume descriptor */
1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1870 return EINVAL;
1871
1872 /* we need at least one partition descriptor */
1873 if (ump->partitions[0] == NULL)
1874 return EINVAL;
1875
1876 /* check logical volume sector size verses device sector size */
1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1878 printf("UDF mount: format violation, lb_size != sector size\n");
1879 return EINVAL;
1880 }
1881
1882 /* check domain name */
1883 domain_name = ump->logical_vol->domain_id.id;
1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1886 return EINVAL;
1887 }
1888
1889 /* retrieve logical volume integrity sequence */
1890 (void)udf_retrieve_lvint(ump);
1891
1892 /*
1893 * We need at least one logvol integrity descriptor recorded. Note
1894 * that its OK to have an open logical volume integrity here. The VAT
1895 * will close/update the integrity.
1896 */
1897 if (ump->logvol_integrity == NULL)
1898 return EINVAL;
1899
1900 /* process derived structures */
1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1902 lvint = ump->logvol_integrity;
1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1904 ump->logvol_info = lvinfo;
1905
1906 /* TODO check udf versions? */
1907
1908 /*
1909 * check logvol mappings: effective virt->log partmap translation
1910 * check and recording of the mapping results. Saves expensive
1911 * strncmp() in tight places.
1912 */
1913 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1915 pmap_pos = ump->logical_vol->maps;
1916
1917 if (n_pm > UDF_PMAPS) {
1918 printf("UDF mount: too many mappings\n");
1919 return EINVAL;
1920 }
1921
1922 /* count types and set partition numbers */
1923 ump->data_part = ump->node_part = ump->fids_part = 0;
1924 n_phys = n_virt = n_spar = n_meta = 0;
1925 for (log_part = 0; log_part < n_pm; log_part++) {
1926 mapping = (union udf_pmap *) pmap_pos;
1927 pmap_stype = pmap_pos[0];
1928 pmap_size = pmap_pos[1];
1929 switch (pmap_stype) {
1930 case 1: /* physical mapping */
1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1932 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1933 pmap_type = UDF_VTOP_TYPE_PHYS;
1934 n_phys++;
1935 ump->data_part = log_part;
1936 ump->node_part = log_part;
1937 ump->fids_part = log_part;
1938 break;
1939 case 2: /* virtual/sparable/meta mapping */
1940 map_name = mapping->pm2.part_id.id;
1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1942 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1944 len = UDF_REGID_ID_SIZE;
1945
1946 check_name = "*UDF Virtual Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_VIRT;
1949 n_virt++;
1950 ump->node_part = log_part;
1951 break;
1952 }
1953 check_name = "*UDF Sparable Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1956 n_spar++;
1957 ump->data_part = log_part;
1958 ump->node_part = log_part;
1959 ump->fids_part = log_part;
1960 break;
1961 }
1962 check_name = "*UDF Metadata Partition";
1963 if (strncmp(map_name, check_name, len) == 0) {
1964 pmap_type = UDF_VTOP_TYPE_META;
1965 n_meta++;
1966 ump->node_part = log_part;
1967 ump->fids_part = log_part;
1968 break;
1969 }
1970 break;
1971 default:
1972 return EINVAL;
1973 }
1974
1975 /*
1976 * BUGALERT: some rogue implementations use random physical
1977 * partition numbers to break other implementations so lookup
1978 * the number.
1979 */
1980 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1981
1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1983 raw_phys_part, phys_part, pmap_type));
1984
1985 if (phys_part == UDF_PARTITIONS)
1986 return EINVAL;
1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1988 return EINVAL;
1989
1990 ump->vtop [log_part] = phys_part;
1991 ump->vtop_tp[log_part] = pmap_type;
1992
1993 pmap_pos += pmap_size;
1994 }
1995 /* not winning the beauty contest */
1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1997
1998 /* test some basic UDF assertions/requirements */
1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2000 return EINVAL;
2001
2002 if (n_virt) {
2003 if ((n_phys == 0) || n_spar || n_meta)
2004 return EINVAL;
2005 }
2006 if (n_spar + n_phys == 0)
2007 return EINVAL;
2008
2009 /* select allocation type for each logical partition */
2010 for (log_part = 0; log_part < n_pm; log_part++) {
2011 maps_on = ump->vtop[log_part];
2012 switch (ump->vtop_tp[log_part]) {
2013 case UDF_VTOP_TYPE_PHYS :
2014 assert(maps_on == log_part);
2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2016 break;
2017 case UDF_VTOP_TYPE_VIRT :
2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2020 break;
2021 case UDF_VTOP_TYPE_SPARABLE :
2022 assert(maps_on == log_part);
2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 break;
2025 case UDF_VTOP_TYPE_META :
2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2028 /* special case for UDF 2.60 */
2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2031 }
2032 break;
2033 default:
2034 panic("bad alloction type in udf's ump->vtop\n");
2035 }
2036 }
2037
2038 /* determine logical volume open/closure actions */
2039 if (n_virt) {
2040 ump->lvopen = 0;
2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2042 ump->lvopen |= UDF_OPEN_SESSION ;
2043 ump->lvclose = UDF_WRITE_VAT;
2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2045 ump->lvclose |= UDF_CLOSE_SESSION;
2046 } else {
2047 /* `normal' rewritable or non sequential media */
2048 ump->lvopen = UDF_WRITE_LVINT;
2049 ump->lvclose = UDF_WRITE_LVINT;
2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2051 ump->lvopen |= UDF_APPENDONLY_LVINT;
2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2054 }
2055
2056 /*
2057 * Determine sheduler error behaviour. For virtual partitions, update
2058 * the trackinfo; for sparable partitions replace a whole block on the
2059 * sparable table. Allways requeue.
2060 */
2061 ump->lvreadwrite = 0;
2062 if (n_virt)
2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2064 if (n_spar)
2065 ump->lvreadwrite = UDF_REMAP_BLOCK;
2066
2067 /*
2068 * Select our sheduler
2069 */
2070 ump->strategy = &udf_strat_rmw;
2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2072 ump->strategy = &udf_strat_sequential;
2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2075 ump->strategy = &udf_strat_direct;
2076 if (n_spar)
2077 ump->strategy = &udf_strat_rmw;
2078
2079 #if 0
2080 /* read-only access won't benefit from the other shedulers */
2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2082 ump->strategy = &udf_strat_direct;
2083 #endif
2084
2085 /* print results */
2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2092
2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2099
2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2101 (ump->strategy == &udf_strat_direct) ? "Direct" :
2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2104
2105 /* signal its OK for now */
2106 return 0;
2107 }
2108
2109 /* --------------------------------------------------------------------- */
2110
2111 /*
2112 * Update logical volume name in all structures that keep a record of it. We
2113 * use memmove since each of them might be specified as a source.
2114 *
2115 * Note that it doesn't update the VAT structure!
2116 */
2117
2118 static void
2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2120 {
2121 struct logvol_desc *lvd = NULL;
2122 struct fileset_desc *fsd = NULL;
2123 struct udf_lv_info *lvi = NULL;
2124
2125 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2126 lvd = ump->logical_vol;
2127 fsd = ump->fileset_desc;
2128 if (ump->implementation)
2129 lvi = &ump->implementation->_impl_use.lv_info;
2130
2131 /* logvol's id might be specified as origional so use memmove here */
2132 memmove(lvd->logvol_id, logvol_id, 128);
2133 if (fsd)
2134 memmove(fsd->logvol_id, logvol_id, 128);
2135 if (lvi)
2136 memmove(lvi->logvol_id, logvol_id, 128);
2137 }
2138
2139 /* --------------------------------------------------------------------- */
2140
2141 void
2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2143 uint32_t sector)
2144 {
2145 assert(ump->logical_vol);
2146
2147 tag->id = udf_rw16(tagid);
2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2149 tag->cksum = 0;
2150 tag->reserved = 0;
2151 tag->serial_num = ump->logical_vol->tag.serial_num;
2152 tag->tag_loc = udf_rw32(sector);
2153 }
2154
2155
2156 uint64_t
2157 udf_advance_uniqueid(struct udf_mount *ump)
2158 {
2159 uint64_t unique_id;
2160
2161 mutex_enter(&ump->logvol_mutex);
2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2163 if (unique_id < 0x10)
2164 unique_id = 0x10;
2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2166 mutex_exit(&ump->logvol_mutex);
2167
2168 return unique_id;
2169 }
2170
2171
2172 static void
2173 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2174 {
2175 struct udf_mount *ump = udf_node->ump;
2176 uint32_t num_dirs, num_files;
2177 int udf_file_type;
2178
2179 /* get file type */
2180 if (udf_node->fe) {
2181 udf_file_type = udf_node->fe->icbtag.file_type;
2182 } else {
2183 udf_file_type = udf_node->efe->icbtag.file_type;
2184 }
2185
2186 /* adjust file count */
2187 mutex_enter(&ump->allocate_mutex);
2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2189 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2190 ump->logvol_info->num_directories =
2191 udf_rw32((num_dirs + sign));
2192 } else {
2193 num_files = udf_rw32(ump->logvol_info->num_files);
2194 ump->logvol_info->num_files =
2195 udf_rw32((num_files + sign));
2196 }
2197 mutex_exit(&ump->allocate_mutex);
2198 }
2199
2200
2201 void
2202 udf_osta_charset(struct charspec *charspec)
2203 {
2204 memset(charspec, 0, sizeof(struct charspec));
2205 charspec->type = 0;
2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2207 }
2208
2209
2210 /* first call udf_set_regid and then the suffix */
2211 void
2212 udf_set_regid(struct regid *regid, char const *name)
2213 {
2214 memset(regid, 0, sizeof(struct regid));
2215 regid->flags = 0; /* not dirty and not protected */
2216 strcpy((char *) regid->id, name);
2217 }
2218
2219
2220 void
2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2222 {
2223 uint16_t *ver;
2224
2225 ver = (uint16_t *) regid->id_suffix;
2226 *ver = ump->logvol_info->min_udf_readver;
2227 }
2228
2229
2230 void
2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2232 {
2233 uint16_t *ver;
2234
2235 ver = (uint16_t *) regid->id_suffix;
2236 *ver = ump->logvol_info->min_udf_readver;
2237
2238 regid->id_suffix[2] = 4; /* unix */
2239 regid->id_suffix[3] = 8; /* NetBSD */
2240 }
2241
2242
2243 void
2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2245 {
2246 regid->id_suffix[0] = 4; /* unix */
2247 regid->id_suffix[1] = 8; /* NetBSD */
2248 }
2249
2250
2251 void
2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 regid->id_suffix[0] = APP_VERSION_MAIN;
2255 regid->id_suffix[1] = APP_VERSION_SUB;
2256 }
2257
2258 static int
2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2260 struct long_ad *parent, uint64_t unique_id)
2261 {
2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2263 int fidsize = 40;
2264
2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2268 fid->icb = *parent;
2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2272
2273 return fidsize;
2274 }
2275
2276 /* --------------------------------------------------------------------- */
2277
2278 /*
2279 * Extended attribute support. UDF knows of 3 places for extended attributes:
2280 *
2281 * (a) inside the file's (e)fe in the length of the extended attribute area
2282 * before the allocation descriptors/filedata
2283 *
2284 * (b) in a file referenced by (e)fe->ext_attr_icb and
2285 *
2286 * (c) in the e(fe)'s associated stream directory that can hold various
2287 * sub-files. In the stream directory a few fixed named subfiles are reserved
2288 * for NT/Unix ACL's and OS/2 attributes.
2289 *
2290 * NOTE: Extended attributes are read randomly but allways written
2291 * *atomicaly*. For ACL's this interface is propably different but not known
2292 * to me yet.
2293 *
2294 * Order of extended attributes in a space :
2295 * ECMA 167 EAs
2296 * Non block aligned Implementation Use EAs
2297 * Block aligned Implementation Use EAs
2298 * Application Use EAs
2299 */
2300
2301 static int
2302 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2303 {
2304 uint16_t *spos;
2305
2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2307 /* checksum valid? */
2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2309 spos = (uint16_t *) implext->data;
2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2311 return EINVAL;
2312 }
2313 return 0;
2314 }
2315
2316 static void
2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2318 {
2319 uint16_t *spos;
2320
2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2322 /* set checksum */
2323 spos = (uint16_t *) implext->data;
2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2325 }
2326 }
2327
2328
2329 int
2330 udf_extattr_search_intern(struct udf_node *node,
2331 uint32_t sattr, char const *sattrname,
2332 uint32_t *offsetp, uint32_t *lengthp)
2333 {
2334 struct extattrhdr_desc *eahdr;
2335 struct extattr_entry *attrhdr;
2336 struct impl_extattr_entry *implext;
2337 uint32_t offset, a_l, sector_size;
2338 int32_t l_ea;
2339 uint8_t *pos;
2340 int error;
2341
2342 /* get mountpoint */
2343 sector_size = node->ump->discinfo.sector_size;
2344
2345 /* get information from fe/efe */
2346 if (node->fe) {
2347 l_ea = udf_rw32(node->fe->l_ea);
2348 eahdr = (struct extattrhdr_desc *) node->fe->data;
2349 } else {
2350 assert(node->efe);
2351 l_ea = udf_rw32(node->efe->l_ea);
2352 eahdr = (struct extattrhdr_desc *) node->efe->data;
2353 }
2354
2355 /* something recorded here? */
2356 if (l_ea == 0)
2357 return ENOENT;
2358
2359 /* check extended attribute tag; what to do if it fails? */
2360 error = udf_check_tag(eahdr);
2361 if (error)
2362 return EINVAL;
2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2364 return EINVAL;
2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2366 if (error)
2367 return EINVAL;
2368
2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2370
2371 /* looking for Ecma-167 attributes? */
2372 offset = sizeof(struct extattrhdr_desc);
2373
2374 /* looking for either implemenation use or application use */
2375 if (sattr == 2048) { /* [4/48.10.8] */
2376 offset = udf_rw32(eahdr->impl_attr_loc);
2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2378 return ENOENT;
2379 }
2380 if (sattr == 65536) { /* [4/48.10.9] */
2381 offset = udf_rw32(eahdr->appl_attr_loc);
2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2383 return ENOENT;
2384 }
2385
2386 /* paranoia check offset and l_ea */
2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2388 return EINVAL;
2389
2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2391
2392 /* find our extended attribute */
2393 l_ea -= offset;
2394 pos = (uint8_t *) eahdr + offset;
2395
2396 while (l_ea >= sizeof(struct extattr_entry)) {
2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2398 attrhdr = (struct extattr_entry *) pos;
2399 implext = (struct impl_extattr_entry *) pos;
2400
2401 /* get complete attribute length and check for roque values */
2402 a_l = udf_rw32(attrhdr->a_l);
2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2404 udf_rw32(attrhdr->type),
2405 attrhdr->subtype, a_l, l_ea));
2406 if ((a_l == 0) || (a_l > l_ea))
2407 return EINVAL;
2408
2409 if (attrhdr->type != sattr)
2410 goto next_attribute;
2411
2412 /* we might have found it! */
2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2414 *offsetp = offset;
2415 *lengthp = a_l;
2416 return 0; /* success */
2417 }
2418
2419 /*
2420 * Implementation use and application use extended attributes
2421 * have a name to identify. They share the same structure only
2422 * UDF implementation use extended attributes have a checksum
2423 * we need to check
2424 */
2425
2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2427 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2428 /* we have found our appl/implementation attribute */
2429 *offsetp = offset;
2430 *lengthp = a_l;
2431 return 0; /* success */
2432 }
2433
2434 next_attribute:
2435 /* next attribute */
2436 pos += a_l;
2437 l_ea -= a_l;
2438 offset += a_l;
2439 }
2440 /* not found */
2441 return ENOENT;
2442 }
2443
2444
2445 static void
2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2447 struct extattr_entry *extattr)
2448 {
2449 struct file_entry *fe;
2450 struct extfile_entry *efe;
2451 struct extattrhdr_desc *extattrhdr;
2452 struct impl_extattr_entry *implext;
2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2454 uint32_t *l_eap, l_ad;
2455 uint16_t *spos;
2456 uint8_t *bpos, *data;
2457
2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2459 fe = &dscr->fe;
2460 data = fe->data;
2461 l_eap = &fe->l_ea;
2462 l_ad = udf_rw32(fe->l_ad);
2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2464 efe = &dscr->efe;
2465 data = efe->data;
2466 l_eap = &efe->l_ea;
2467 l_ad = udf_rw32(efe->l_ad);
2468 } else {
2469 panic("Bad tag passed to udf_extattr_insert_internal");
2470 }
2471
2472 /* can't append already written to file descriptors yet */
2473 assert(l_ad == 0);
2474 __USE(l_ad);
2475
2476 /* should have a header! */
2477 extattrhdr = (struct extattrhdr_desc *) data;
2478 l_ea = udf_rw32(*l_eap);
2479 if (l_ea == 0) {
2480 /* create empty extended attribute header */
2481 exthdr_len = sizeof(struct extattrhdr_desc);
2482
2483 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2484 /* loc */ 0);
2485 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2486 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2487 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2488
2489 /* record extended attribute header length */
2490 l_ea = exthdr_len;
2491 *l_eap = udf_rw32(l_ea);
2492 }
2493
2494 /* extract locations */
2495 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2496 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2497 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2498 impl_attr_loc = l_ea;
2499 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2500 appl_attr_loc = l_ea;
2501
2502 /* Ecma 167 EAs */
2503 if (udf_rw32(extattr->type) < 2048) {
2504 assert(impl_attr_loc == l_ea);
2505 assert(appl_attr_loc == l_ea);
2506 }
2507
2508 /* implementation use extended attributes */
2509 if (udf_rw32(extattr->type) == 2048) {
2510 assert(appl_attr_loc == l_ea);
2511
2512 /* calculate and write extended attribute header checksum */
2513 implext = (struct impl_extattr_entry *) extattr;
2514 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2515 spos = (uint16_t *) implext->data;
2516 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2517 }
2518
2519 /* application use extended attributes */
2520 assert(udf_rw32(extattr->type) != 65536);
2521 assert(appl_attr_loc == l_ea);
2522
2523 /* append the attribute at the end of the current space */
2524 bpos = data + udf_rw32(*l_eap);
2525 a_l = udf_rw32(extattr->a_l);
2526
2527 /* update impl. attribute locations */
2528 if (udf_rw32(extattr->type) < 2048) {
2529 impl_attr_loc = l_ea + a_l;
2530 appl_attr_loc = l_ea + a_l;
2531 }
2532 if (udf_rw32(extattr->type) == 2048) {
2533 appl_attr_loc = l_ea + a_l;
2534 }
2535
2536 /* copy and advance */
2537 memcpy(bpos, extattr, a_l);
2538 l_ea += a_l;
2539 *l_eap = udf_rw32(l_ea);
2540
2541 /* do the `dance` again backwards */
2542 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2543 if (impl_attr_loc == l_ea)
2544 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2545 if (appl_attr_loc == l_ea)
2546 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2547 }
2548
2549 /* store offsets */
2550 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2551 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2552 }
2553
2554
2555 /* --------------------------------------------------------------------- */
2556
2557 static int
2558 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2559 {
2560 struct udf_mount *ump;
2561 struct udf_logvol_info *lvinfo;
2562 struct impl_extattr_entry *implext;
2563 struct vatlvext_extattr_entry lvext;
2564 const char *extstr = "*UDF VAT LVExtension";
2565 uint64_t vat_uniqueid;
2566 uint32_t offset, a_l;
2567 uint8_t *ea_start, *lvextpos;
2568 int error;
2569
2570 /* get mountpoint and lvinfo */
2571 ump = vat_node->ump;
2572 lvinfo = ump->logvol_info;
2573
2574 /* get information from fe/efe */
2575 if (vat_node->fe) {
2576 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2577 ea_start = vat_node->fe->data;
2578 } else {
2579 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2580 ea_start = vat_node->efe->data;
2581 }
2582
2583 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2584 if (error)
2585 return error;
2586
2587 implext = (struct impl_extattr_entry *) (ea_start + offset);
2588 error = udf_impl_extattr_check(implext);
2589 if (error)
2590 return error;
2591
2592 /* paranoia */
2593 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2594 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2595 return EINVAL;
2596 }
2597
2598 /*
2599 * we have found our "VAT LVExtension attribute. BUT due to a
2600 * bug in the specification it might not be word aligned so
2601 * copy first to avoid panics on some machines (!!)
2602 */
2603 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2604 lvextpos = implext->data + udf_rw32(implext->iu_l);
2605 memcpy(&lvext, lvextpos, sizeof(lvext));
2606
2607 /* check if it was updated the last time */
2608 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2609 lvinfo->num_files = lvext.num_files;
2610 lvinfo->num_directories = lvext.num_directories;
2611 udf_update_logvolname(ump, lvext.logvol_id);
2612 } else {
2613 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2614 /* replace VAT LVExt by free space EA */
2615 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2616 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2617 udf_calc_impl_extattr_checksum(implext);
2618 }
2619
2620 return 0;
2621 }
2622
2623
2624 static int
2625 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2626 {
2627 struct udf_mount *ump;
2628 struct udf_logvol_info *lvinfo;
2629 struct impl_extattr_entry *implext;
2630 struct vatlvext_extattr_entry lvext;
2631 const char *extstr = "*UDF VAT LVExtension";
2632 uint64_t vat_uniqueid;
2633 uint32_t offset, a_l;
2634 uint8_t *ea_start, *lvextpos;
2635 int error;
2636
2637 /* get mountpoint and lvinfo */
2638 ump = vat_node->ump;
2639 lvinfo = ump->logvol_info;
2640
2641 /* get information from fe/efe */
2642 if (vat_node->fe) {
2643 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2644 ea_start = vat_node->fe->data;
2645 } else {
2646 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2647 ea_start = vat_node->efe->data;
2648 }
2649
2650 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2651 if (error)
2652 return error;
2653 /* found, it existed */
2654
2655 /* paranoia */
2656 implext = (struct impl_extattr_entry *) (ea_start + offset);
2657 error = udf_impl_extattr_check(implext);
2658 if (error) {
2659 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2660 return error;
2661 }
2662 /* it is correct */
2663
2664 /*
2665 * we have found our "VAT LVExtension attribute. BUT due to a
2666 * bug in the specification it might not be word aligned so
2667 * copy first to avoid panics on some machines (!!)
2668 */
2669 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2670 lvextpos = implext->data + udf_rw32(implext->iu_l);
2671
2672 lvext.unique_id_chk = vat_uniqueid;
2673 lvext.num_files = lvinfo->num_files;
2674 lvext.num_directories = lvinfo->num_directories;
2675 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2676
2677 memcpy(lvextpos, &lvext, sizeof(lvext));
2678
2679 return 0;
2680 }
2681
2682 /* --------------------------------------------------------------------- */
2683
2684 int
2685 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2686 {
2687 struct udf_mount *ump = vat_node->ump;
2688
2689 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2690 return EINVAL;
2691
2692 memcpy(blob, ump->vat_table + offset, size);
2693 return 0;
2694 }
2695
2696 int
2697 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2698 {
2699 struct udf_mount *ump = vat_node->ump;
2700 uint32_t offset_high;
2701 uint8_t *new_vat_table;
2702
2703 /* extent VAT allocation if needed */
2704 offset_high = offset + size;
2705 if (offset_high >= ump->vat_table_alloc_len) {
2706 /* realloc */
2707 new_vat_table = realloc(ump->vat_table,
2708 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2709 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2710 if (!new_vat_table) {
2711 printf("udf_vat_write: can't extent VAT, out of mem\n");
2712 return ENOMEM;
2713 }
2714 ump->vat_table = new_vat_table;
2715 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2716 }
2717 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2718
2719 memcpy(ump->vat_table + offset, blob, size);
2720 return 0;
2721 }
2722
2723 /* --------------------------------------------------------------------- */
2724
2725 /* TODO support previous VAT location writeout */
2726 static int
2727 udf_update_vat_descriptor(struct udf_mount *ump)
2728 {
2729 struct udf_node *vat_node = ump->vat_node;
2730 struct udf_logvol_info *lvinfo = ump->logvol_info;
2731 struct icb_tag *icbtag;
2732 struct udf_oldvat_tail *oldvat_tl;
2733 struct udf_vat *vat;
2734 uint64_t unique_id;
2735 uint32_t lb_size;
2736 uint8_t *raw_vat;
2737 int filetype, error;
2738
2739 KASSERT(vat_node);
2740 KASSERT(lvinfo);
2741 lb_size = udf_rw32(ump->logical_vol->lb_size);
2742
2743 /* get our new unique_id */
2744 unique_id = udf_advance_uniqueid(ump);
2745
2746 /* get information from fe/efe */
2747 if (vat_node->fe) {
2748 icbtag = &vat_node->fe->icbtag;
2749 vat_node->fe->unique_id = udf_rw64(unique_id);
2750 } else {
2751 icbtag = &vat_node->efe->icbtag;
2752 vat_node->efe->unique_id = udf_rw64(unique_id);
2753 }
2754
2755 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2756 filetype = icbtag->file_type;
2757 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2758
2759 /* allocate piece to process head or tail of VAT file */
2760 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2761
2762 if (filetype == 0) {
2763 /*
2764 * Update "*UDF VAT LVExtension" extended attribute from the
2765 * lvint if present.
2766 */
2767 udf_update_vat_extattr_from_lvid(vat_node);
2768
2769 /* setup identifying regid */
2770 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2771 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2772
2773 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2774 udf_add_udf_regid(ump, &oldvat_tl->id);
2775 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2776
2777 /* write out new tail of virtual allocation table file */
2778 error = udf_vat_write(vat_node, raw_vat,
2779 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2780 } else {
2781 /* compose the VAT2 header */
2782 vat = (struct udf_vat *) raw_vat;
2783 memset(vat, 0, sizeof(struct udf_vat));
2784
2785 vat->header_len = udf_rw16(152); /* as per spec */
2786 vat->impl_use_len = udf_rw16(0);
2787 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2788 vat->prev_vat = udf_rw32(0xffffffff);
2789 vat->num_files = lvinfo->num_files;
2790 vat->num_directories = lvinfo->num_directories;
2791 vat->min_udf_readver = lvinfo->min_udf_readver;
2792 vat->min_udf_writever = lvinfo->min_udf_writever;
2793 vat->max_udf_writever = lvinfo->max_udf_writever;
2794
2795 error = udf_vat_write(vat_node, raw_vat,
2796 sizeof(struct udf_vat), 0);
2797 }
2798 free(raw_vat, M_TEMP);
2799
2800 return error; /* success! */
2801 }
2802
2803
2804 int
2805 udf_writeout_vat(struct udf_mount *ump)
2806 {
2807 struct udf_node *vat_node = ump->vat_node;
2808 int error;
2809
2810 KASSERT(vat_node);
2811
2812 DPRINTF(CALL, ("udf_writeout_vat\n"));
2813
2814 // mutex_enter(&ump->allocate_mutex);
2815 udf_update_vat_descriptor(ump);
2816
2817 /* write out the VAT contents ; TODO intelligent writing */
2818 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2819 ump->vat_table, ump->vat_table_len, 0,
2820 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2821 if (error) {
2822 printf("udf_writeout_vat: failed to write out VAT contents\n");
2823 goto out;
2824 }
2825
2826 // mutex_exit(&ump->allocate_mutex);
2827
2828 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2829 if (error)
2830 goto out;
2831 error = VOP_FSYNC(ump->vat_node->vnode,
2832 FSCRED, FSYNC_WAIT, 0, 0);
2833 if (error)
2834 printf("udf_writeout_vat: error writing VAT node!\n");
2835 out:
2836
2837 return error;
2838 }
2839
2840 /* --------------------------------------------------------------------- */
2841
2842 /*
2843 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2844 * descriptor. If OK, read in complete VAT file.
2845 */
2846
2847 static int
2848 udf_check_for_vat(struct udf_node *vat_node)
2849 {
2850 struct udf_mount *ump;
2851 struct icb_tag *icbtag;
2852 struct timestamp *mtime;
2853 struct udf_vat *vat;
2854 struct udf_oldvat_tail *oldvat_tl;
2855 struct udf_logvol_info *lvinfo;
2856 uint64_t unique_id;
2857 uint32_t vat_length;
2858 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2859 uint32_t sector_size;
2860 uint32_t *raw_vat;
2861 uint8_t *vat_table;
2862 char *regid_name;
2863 int filetype;
2864 int error;
2865
2866 /* vat_length is really 64 bits though impossible */
2867
2868 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2869 if (!vat_node)
2870 return ENOENT;
2871
2872 /* get mount info */
2873 ump = vat_node->ump;
2874 sector_size = udf_rw32(ump->logical_vol->lb_size);
2875
2876 /* check assertions */
2877 assert(vat_node->fe || vat_node->efe);
2878 assert(ump->logvol_integrity);
2879
2880 /* set vnode type to regular file or we can't read from it! */
2881 vat_node->vnode->v_type = VREG;
2882
2883 /* get information from fe/efe */
2884 if (vat_node->fe) {
2885 vat_length = udf_rw64(vat_node->fe->inf_len);
2886 icbtag = &vat_node->fe->icbtag;
2887 mtime = &vat_node->fe->mtime;
2888 unique_id = udf_rw64(vat_node->fe->unique_id);
2889 } else {
2890 vat_length = udf_rw64(vat_node->efe->inf_len);
2891 icbtag = &vat_node->efe->icbtag;
2892 mtime = &vat_node->efe->mtime;
2893 unique_id = udf_rw64(vat_node->efe->unique_id);
2894 }
2895
2896 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2897 filetype = icbtag->file_type;
2898 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2899 return ENOENT;
2900
2901 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2902
2903 vat_table_alloc_len =
2904 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2905 * UDF_VAT_CHUNKSIZE;
2906
2907 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2908 M_CANFAIL | M_WAITOK);
2909 if (vat_table == NULL) {
2910 printf("allocation of %d bytes failed for VAT\n",
2911 vat_table_alloc_len);
2912 return ENOMEM;
2913 }
2914
2915 /* allocate piece to read in head or tail of VAT file */
2916 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2917
2918 /*
2919 * check contents of the file if its the old 1.50 VAT table format.
2920 * Its notoriously broken and allthough some implementations support an
2921 * extention as defined in the UDF 1.50 errata document, its doubtfull
2922 * to be useable since a lot of implementations don't maintain it.
2923 */
2924 lvinfo = ump->logvol_info;
2925
2926 if (filetype == 0) {
2927 /* definition */
2928 vat_offset = 0;
2929 vat_entries = (vat_length-36)/4;
2930
2931 /* read in tail of virtual allocation table file */
2932 error = vn_rdwr(UIO_READ, vat_node->vnode,
2933 (uint8_t *) raw_vat,
2934 sizeof(struct udf_oldvat_tail),
2935 vat_entries * 4,
2936 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2937 NULL, NULL);
2938 if (error)
2939 goto out;
2940
2941 /* check 1.50 VAT */
2942 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2943 regid_name = (char *) oldvat_tl->id.id;
2944 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2945 if (error) {
2946 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2947 error = ENOENT;
2948 goto out;
2949 }
2950
2951 /*
2952 * update LVID from "*UDF VAT LVExtension" extended attribute
2953 * if present.
2954 */
2955 udf_update_lvid_from_vat_extattr(vat_node);
2956 } else {
2957 /* read in head of virtual allocation table file */
2958 error = vn_rdwr(UIO_READ, vat_node->vnode,
2959 (uint8_t *) raw_vat,
2960 sizeof(struct udf_vat), 0,
2961 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2962 NULL, NULL);
2963 if (error)
2964 goto out;
2965
2966 /* definition */
2967 vat = (struct udf_vat *) raw_vat;
2968 vat_offset = vat->header_len;
2969 vat_entries = (vat_length - vat_offset)/4;
2970
2971 assert(lvinfo);
2972 lvinfo->num_files = vat->num_files;
2973 lvinfo->num_directories = vat->num_directories;
2974 lvinfo->min_udf_readver = vat->min_udf_readver;
2975 lvinfo->min_udf_writever = vat->min_udf_writever;
2976 lvinfo->max_udf_writever = vat->max_udf_writever;
2977
2978 udf_update_logvolname(ump, vat->logvol_id);
2979 }
2980
2981 /* read in complete VAT file */
2982 error = vn_rdwr(UIO_READ, vat_node->vnode,
2983 vat_table,
2984 vat_length, 0,
2985 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2986 NULL, NULL);
2987 if (error)
2988 printf("read in of complete VAT file failed (error %d)\n",
2989 error);
2990 if (error)
2991 goto out;
2992
2993 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2994 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2995 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2996 ump->logvol_integrity->time = *mtime;
2997
2998 ump->vat_table_len = vat_length;
2999 ump->vat_table_alloc_len = vat_table_alloc_len;
3000 ump->vat_table = vat_table;
3001 ump->vat_offset = vat_offset;
3002 ump->vat_entries = vat_entries;
3003 ump->vat_last_free_lb = 0; /* start at beginning */
3004
3005 out:
3006 if (error) {
3007 if (vat_table)
3008 free(vat_table, M_UDFVOLD);
3009 }
3010 free(raw_vat, M_TEMP);
3011
3012 return error;
3013 }
3014
3015 /* --------------------------------------------------------------------- */
3016
3017 static int
3018 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3019 {
3020 struct udf_node *vat_node;
3021 struct long_ad icb_loc;
3022 uint32_t early_vat_loc, vat_loc;
3023 int error;
3024
3025 /* mapping info not needed */
3026 mapping = mapping;
3027
3028 vat_loc = ump->last_possible_vat_location;
3029 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3030
3031 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3032 vat_loc, early_vat_loc));
3033 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3034
3035 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3036 vat_loc, early_vat_loc));
3037
3038 /* start looking from the end of the range */
3039 do {
3040 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3041 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3042 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3043
3044 error = udf_get_node(ump, &icb_loc, &vat_node);
3045 if (!error) {
3046 error = udf_check_for_vat(vat_node);
3047 DPRINTFIF(VOLUMES, !error,
3048 ("VAT accepted at %d\n", vat_loc));
3049 if (!error)
3050 break;
3051 }
3052 if (vat_node) {
3053 vput(vat_node->vnode);
3054 vat_node = NULL;
3055 }
3056 vat_loc--; /* walk backwards */
3057 } while (vat_loc >= early_vat_loc);
3058
3059 /* keep our VAT node around */
3060 if (vat_node) {
3061 UDF_SET_SYSTEMFILE(vat_node->vnode);
3062 ump->vat_node = vat_node;
3063 }
3064
3065 return error;
3066 }
3067
3068 /* --------------------------------------------------------------------- */
3069
3070 static int
3071 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3072 {
3073 union dscrptr *dscr;
3074 struct part_map_spare *pms = &mapping->pms;
3075 uint32_t lb_num;
3076 int spar, error;
3077
3078 /*
3079 * The partition mapping passed on to us specifies the information we
3080 * need to locate and initialise the sparable partition mapping
3081 * information we need.
3082 */
3083
3084 DPRINTF(VOLUMES, ("Read sparable table\n"));
3085 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3086 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3087
3088 for (spar = 0; spar < pms->n_st; spar++) {
3089 lb_num = pms->st_loc[spar];
3090 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3091 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3092 if (!error && dscr) {
3093 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3094 if (ump->sparing_table)
3095 free(ump->sparing_table, M_UDFVOLD);
3096 ump->sparing_table = &dscr->spt;
3097 dscr = NULL;
3098 DPRINTF(VOLUMES,
3099 ("Sparing table accepted (%d entries)\n",
3100 udf_rw16(ump->sparing_table->rt_l)));
3101 break; /* we're done */
3102 }
3103 }
3104 if (dscr)
3105 free(dscr, M_UDFVOLD);
3106 }
3107
3108 if (ump->sparing_table)
3109 return 0;
3110
3111 return ENOENT;
3112 }
3113
3114 /* --------------------------------------------------------------------- */
3115
3116 static int
3117 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3118 {
3119 struct part_map_meta *pmm = &mapping->pmm;
3120 struct long_ad icb_loc;
3121 struct vnode *vp;
3122 uint16_t raw_phys_part, phys_part;
3123 int error;
3124
3125 /*
3126 * BUGALERT: some rogue implementations use random physical
3127 * partition numbers to break other implementations so lookup
3128 * the number.
3129 */
3130
3131 /* extract our allocation parameters set up on format */
3132 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3133 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3134 ump->metadata_flags = mapping->pmm.flags;
3135
3136 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3137 raw_phys_part = udf_rw16(pmm->part_num);
3138 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3139
3140 icb_loc.loc.part_num = udf_rw16(phys_part);
3141
3142 DPRINTF(VOLUMES, ("Metadata file\n"));
3143 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3144 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3145 if (ump->metadata_node) {
3146 vp = ump->metadata_node->vnode;
3147 UDF_SET_SYSTEMFILE(vp);
3148 }
3149
3150 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3151 if (icb_loc.loc.lb_num != -1) {
3152 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3153 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3154 if (ump->metadatamirror_node) {
3155 vp = ump->metadatamirror_node->vnode;
3156 UDF_SET_SYSTEMFILE(vp);
3157 }
3158 }
3159
3160 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3161 if (icb_loc.loc.lb_num != -1) {
3162 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3163 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3164 if (ump->metadatabitmap_node) {
3165 vp = ump->metadatabitmap_node->vnode;
3166 UDF_SET_SYSTEMFILE(vp);
3167 }
3168 }
3169
3170 /* if we're mounting read-only we relax the requirements */
3171 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3172 error = EFAULT;
3173 if (ump->metadata_node)
3174 error = 0;
3175 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3176 printf( "udf mount: Metadata file not readable, "
3177 "substituting Metadata copy file\n");
3178 ump->metadata_node = ump->metadatamirror_node;
3179 ump->metadatamirror_node = NULL;
3180 error = 0;
3181 }
3182 } else {
3183 /* mounting read/write */
3184 /* XXX DISABLED! metadata writing is not working yet XXX */
3185 if (error)
3186 error = EROFS;
3187 }
3188 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3189 "metadata files\n"));
3190 return error;
3191 }
3192
3193 /* --------------------------------------------------------------------- */
3194
3195 int
3196 udf_read_vds_tables(struct udf_mount *ump)
3197 {
3198 union udf_pmap *mapping;
3199 /* struct udf_args *args = &ump->mount_args; */
3200 uint32_t n_pm;
3201 uint32_t log_part;
3202 uint8_t *pmap_pos;
3203 int pmap_size;
3204 int error;
3205
3206 /* Iterate (again) over the part mappings for locations */
3207 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3208 pmap_pos = ump->logical_vol->maps;
3209
3210 for (log_part = 0; log_part < n_pm; log_part++) {
3211 mapping = (union udf_pmap *) pmap_pos;
3212 switch (ump->vtop_tp[log_part]) {
3213 case UDF_VTOP_TYPE_PHYS :
3214 /* nothing */
3215 break;
3216 case UDF_VTOP_TYPE_VIRT :
3217 /* search and load VAT */
3218 error = udf_search_vat(ump, mapping);
3219 if (error)
3220 return ENOENT;
3221 break;
3222 case UDF_VTOP_TYPE_SPARABLE :
3223 /* load one of the sparable tables */
3224 error = udf_read_sparables(ump, mapping);
3225 if (error)
3226 return ENOENT;
3227 break;
3228 case UDF_VTOP_TYPE_META :
3229 /* load the associated file descriptors */
3230 error = udf_read_metadata_nodes(ump, mapping);
3231 if (error)
3232 return ENOENT;
3233 break;
3234 default:
3235 break;
3236 }
3237 pmap_size = pmap_pos[1];
3238 pmap_pos += pmap_size;
3239 }
3240
3241 /* read in and check unallocated and free space info if writing */
3242 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3243 error = udf_read_physical_partition_spacetables(ump);
3244 if (error)
3245 return error;
3246
3247 /* also read in metadata partition spacebitmap if defined */
3248 error = udf_read_metadata_partition_spacetable(ump);
3249 return error;
3250 }
3251
3252 return 0;
3253 }
3254
3255 /* --------------------------------------------------------------------- */
3256
3257 int
3258 udf_read_rootdirs(struct udf_mount *ump)
3259 {
3260 union dscrptr *dscr;
3261 /* struct udf_args *args = &ump->mount_args; */
3262 struct udf_node *rootdir_node, *streamdir_node;
3263 struct long_ad fsd_loc, *dir_loc;
3264 uint32_t lb_num, dummy;
3265 uint32_t fsd_len;
3266 int dscr_type;
3267 int error;
3268
3269 /* TODO implement FSD reading in separate function like integrity? */
3270 /* get fileset descriptor sequence */
3271 fsd_loc = ump->logical_vol->lv_fsd_loc;
3272 fsd_len = udf_rw32(fsd_loc.len);
3273
3274 dscr = NULL;
3275 error = 0;
3276 while (fsd_len || error) {
3277 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3278 /* translate fsd_loc to lb_num */
3279 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3280 if (error)
3281 break;
3282 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3283 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3284 /* end markers */
3285 if (error || (dscr == NULL))
3286 break;
3287
3288 /* analyse */
3289 dscr_type = udf_rw16(dscr->tag.id);
3290 if (dscr_type == TAGID_TERM)
3291 break;
3292 if (dscr_type != TAGID_FSD) {
3293 free(dscr, M_UDFVOLD);
3294 return ENOENT;
3295 }
3296
3297 /*
3298 * TODO check for multiple fileset descriptors; its only
3299 * picking the last now. Also check for FSD
3300 * correctness/interpretability
3301 */
3302
3303 /* update */
3304 if (ump->fileset_desc) {
3305 free(ump->fileset_desc, M_UDFVOLD);
3306 }
3307 ump->fileset_desc = &dscr->fsd;
3308 dscr = NULL;
3309
3310 /* continue to the next fsd */
3311 fsd_len -= ump->discinfo.sector_size;
3312 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3313
3314 /* follow up to fsd->next_ex (long_ad) if its not null */
3315 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3316 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3317 fsd_loc = ump->fileset_desc->next_ex;
3318 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3319 }
3320 }
3321 if (dscr)
3322 free(dscr, M_UDFVOLD);
3323
3324 /* there has to be one */
3325 if (ump->fileset_desc == NULL)
3326 return ENOENT;
3327
3328 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3329 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3330 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3331
3332 /*
3333 * Now the FSD is known, read in the rootdirectory and if one exists,
3334 * the system stream dir. Some files in the system streamdir are not
3335 * wanted in this implementation since they are not maintained. If
3336 * writing is enabled we'll delete these files if they exist.
3337 */
3338
3339 rootdir_node = streamdir_node = NULL;
3340 dir_loc = NULL;
3341
3342 /* try to read in the rootdir */
3343 dir_loc = &ump->fileset_desc->rootdir_icb;
3344 error = udf_get_node(ump, dir_loc, &rootdir_node);
3345 if (error)
3346 return ENOENT;
3347
3348 /* aparently it read in fine */
3349
3350 /*
3351 * Try the system stream directory; not very likely in the ones we
3352 * test, but for completeness.
3353 */
3354 dir_loc = &ump->fileset_desc->streamdir_icb;
3355 if (udf_rw32(dir_loc->len)) {
3356 printf("udf_read_rootdirs: streamdir defined ");
3357 error = udf_get_node(ump, dir_loc, &streamdir_node);
3358 if (error) {
3359 printf("but error in streamdir reading\n");
3360 } else {
3361 printf("but ignored\n");
3362 /*
3363 * TODO process streamdir `baddies' i.e. files we dont
3364 * want if R/W
3365 */
3366 }
3367 }
3368
3369 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3370
3371 /* release the vnodes again; they'll be auto-recycled later */
3372 if (streamdir_node) {
3373 vput(streamdir_node->vnode);
3374 }
3375 if (rootdir_node) {
3376 vput(rootdir_node->vnode);
3377 }
3378
3379 return 0;
3380 }
3381
3382 /* --------------------------------------------------------------------- */
3383
3384 /* To make absolutely sure we are NOT returning zero, add one :) */
3385
3386 long
3387 udf_get_node_id(const struct long_ad *icbptr)
3388 {
3389 /* ought to be enough since each mountpoint has its own chain */
3390 return udf_rw32(icbptr->loc.lb_num) + 1;
3391 }
3392
3393
3394 int
3395 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3396 {
3397 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3398 return -1;
3399 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3400 return 1;
3401
3402 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3403 return -1;
3404 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3405 return 1;
3406
3407 return 0;
3408 }
3409
3410
3411 static int
3412 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3413 {
3414 const struct udf_node *a_node = a;
3415 const struct udf_node *b_node = b;
3416
3417 return udf_compare_icb(&a_node->loc, &b_node->loc);
3418 }
3419
3420
3421 static int
3422 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3423 {
3424 const struct udf_node *a_node = a;
3425 const struct long_ad * const icb = key;
3426
3427 return udf_compare_icb(&a_node->loc, icb);
3428 }
3429
3430
3431 static const rb_tree_ops_t udf_node_rbtree_ops = {
3432 .rbto_compare_nodes = udf_compare_rbnodes,
3433 .rbto_compare_key = udf_compare_rbnode_icb,
3434 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3435 .rbto_context = NULL
3436 };
3437
3438
3439 void
3440 udf_init_nodes_tree(struct udf_mount *ump)
3441 {
3442
3443 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3444 }
3445
3446
3447 static void
3448 udf_register_node(struct udf_node *udf_node)
3449 {
3450 struct udf_mount *ump = udf_node->ump;
3451
3452 /* add node to the rb tree */
3453 mutex_enter(&ump->ihash_lock);
3454 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
3455 mutex_exit(&ump->ihash_lock);
3456 }
3457
3458
3459 static void
3460 udf_deregister_node(struct udf_node *udf_node)
3461 {
3462 struct udf_mount *ump = udf_node->ump;
3463
3464 /* remove node from the rb tree */
3465 mutex_enter(&ump->ihash_lock);
3466 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
3467 mutex_exit(&ump->ihash_lock);
3468 }
3469
3470 /* --------------------------------------------------------------------- */
3471
3472 static int
3473 udf_validate_session_start(struct udf_mount *ump)
3474 {
3475 struct mmc_trackinfo trackinfo;
3476 struct vrs_desc *vrs;
3477 uint32_t tracknr, sessionnr, sector, sector_size;
3478 uint32_t iso9660_vrs, write_track_start;
3479 uint8_t *buffer, *blank, *pos;
3480 int blks, max_sectors, vrs_len;
3481 int error;
3482
3483 /* disc appendable? */
3484 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3485 return EROFS;
3486
3487 /* already written here? if so, there should be an ISO VDS */
3488 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3489 return 0;
3490
3491 /*
3492 * Check if the first track of the session is blank and if so, copy or
3493 * create a dummy ISO descriptor so the disc is valid again.
3494 */
3495
3496 tracknr = ump->discinfo.first_track_last_session;
3497 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3498 trackinfo.tracknr = tracknr;
3499 error = udf_update_trackinfo(ump, &trackinfo);
3500 if (error)
3501 return error;
3502
3503 udf_dump_trackinfo(&trackinfo);
3504 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3505 KASSERT(trackinfo.sessionnr > 1);
3506
3507 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3508 write_track_start = trackinfo.next_writable;
3509
3510 /* we have to copy the ISO VRS from a former session */
3511 DPRINTF(VOLUMES, ("validate_session_start: "
3512 "blank or reserved track, copying VRS\n"));
3513
3514 /* sessionnr should be the session we're mounting */
3515 sessionnr = ump->mount_args.sessionnr;
3516
3517 /* start at the first track */
3518 tracknr = ump->discinfo.first_track;
3519 while (tracknr <= ump->discinfo.num_tracks) {
3520 trackinfo.tracknr = tracknr;
3521 error = udf_update_trackinfo(ump, &trackinfo);
3522 if (error) {
3523 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3524 return error;
3525 }
3526 if (trackinfo.sessionnr == sessionnr)
3527 break;
3528 tracknr++;
3529 }
3530 if (trackinfo.sessionnr != sessionnr) {
3531 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3532 return ENOENT;
3533 }
3534
3535 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3536 udf_dump_trackinfo(&trackinfo);
3537
3538 /*
3539 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3540 * minimum ISO `sector size' 2048
3541 */
3542 sector_size = ump->discinfo.sector_size;
3543 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3544 + trackinfo.track_start;
3545
3546 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3547 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3548 blks = MAX(1, 2048 / sector_size);
3549
3550 error = 0;
3551 for (sector = 0; sector < max_sectors; sector += blks) {
3552 pos = buffer + sector * sector_size;
3553 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3554 iso9660_vrs + sector, blks);
3555 if (error)
3556 break;
3557 /* check this ISO descriptor */
3558 vrs = (struct vrs_desc *) pos;
3559 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3560 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3561 continue;
3562 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3563 continue;
3564 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3565 continue;
3566 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3567 continue;
3568 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3569 continue;
3570 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3571 break;
3572 /* now what? for now, end of sequence */
3573 break;
3574 }
3575 vrs_len = sector + blks;
3576 if (error) {
3577 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3578 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3579
3580 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3581
3582 vrs = (struct vrs_desc *) (buffer);
3583 vrs->struct_type = 0;
3584 vrs->version = 1;
3585 memcpy(vrs->identifier,VRS_BEA01, 5);
3586
3587 vrs = (struct vrs_desc *) (buffer + 2048);
3588 vrs->struct_type = 0;
3589 vrs->version = 1;
3590 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3591 memcpy(vrs->identifier,VRS_NSR02, 5);
3592 } else {
3593 memcpy(vrs->identifier,VRS_NSR03, 5);
3594 }
3595
3596 vrs = (struct vrs_desc *) (buffer + 4096);
3597 vrs->struct_type = 0;
3598 vrs->version = 1;
3599 memcpy(vrs->identifier, VRS_TEA01, 5);
3600
3601 vrs_len = 3*blks;
3602 }
3603
3604 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3605
3606 /*
3607 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3608 * minimum ISO `sector size' 2048
3609 */
3610 sector_size = ump->discinfo.sector_size;
3611 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3612 + write_track_start;
3613
3614 /* write out 32 kb */
3615 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3616 memset(blank, 0, sector_size);
3617 error = 0;
3618 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3619 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3620 blank, sector, 1);
3621 if (error)
3622 break;
3623 }
3624 if (!error) {
3625 /* write out our ISO VRS */
3626 KASSERT(sector == iso9660_vrs);
3627 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3628 sector, vrs_len);
3629 sector += vrs_len;
3630 }
3631 if (!error) {
3632 /* fill upto the first anchor at S+256 */
3633 for (; sector < write_track_start+256; sector++) {
3634 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3635 blank, sector, 1);
3636 if (error)
3637 break;
3638 }
3639 }
3640 if (!error) {
3641 /* write out anchor; write at ABSOLUTE place! */
3642 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3643 (union dscrptr *) ump->anchors[0], sector, sector);
3644 if (error)
3645 printf("writeout of anchor failed!\n");
3646 }
3647
3648 free(blank, M_TEMP);
3649 free(buffer, M_TEMP);
3650
3651 if (error)
3652 printf("udf_open_session: error writing iso vrs! : "
3653 "leaving disc in compromised state!\n");
3654
3655 /* synchronise device caches */
3656 (void) udf_synchronise_caches(ump);
3657
3658 return error;
3659 }
3660
3661
3662 int
3663 udf_open_logvol(struct udf_mount *ump)
3664 {
3665 int logvol_integrity;
3666 int error;
3667
3668 /* already/still open? */
3669 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3670 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3671 return 0;
3672
3673 /* can we open it ? */
3674 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3675 return EROFS;
3676
3677 /* setup write parameters */
3678 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3679 if ((error = udf_setup_writeparams(ump)) != 0)
3680 return error;
3681
3682 /* determine data and metadata tracks (most likely same) */
3683 error = udf_search_writing_tracks(ump);
3684 if (error) {
3685 /* most likely lack of space */
3686 printf("udf_open_logvol: error searching writing tracks\n");
3687 return EROFS;
3688 }
3689
3690 /* writeout/update lvint on disc or only in memory */
3691 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3692 if (ump->lvopen & UDF_OPEN_SESSION) {
3693 /* TODO optional track reservation opening */
3694 error = udf_validate_session_start(ump);
3695 if (error)
3696 return error;
3697
3698 /* determine data and metadata tracks again */
3699 error = udf_search_writing_tracks(ump);
3700 }
3701
3702 /* mark it open */
3703 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3704
3705 /* do we need to write it out? */
3706 if (ump->lvopen & UDF_WRITE_LVINT) {
3707 error = udf_writeout_lvint(ump, ump->lvopen);
3708 /* if we couldn't write it mark it closed again */
3709 if (error) {
3710 ump->logvol_integrity->integrity_type =
3711 udf_rw32(UDF_INTEGRITY_CLOSED);
3712 return error;
3713 }
3714 }
3715
3716 return 0;
3717 }
3718
3719
3720 int
3721 udf_close_logvol(struct udf_mount *ump, int mntflags)
3722 {
3723 struct vnode *devvp = ump->devvp;
3724 struct mmc_op mmc_op;
3725 int logvol_integrity;
3726 int error = 0, error1 = 0, error2 = 0;
3727 int tracknr;
3728 int nvats, n, nok;
3729
3730 /* already/still closed? */
3731 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3732 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3733 return 0;
3734
3735 /* writeout/update lvint or write out VAT */
3736 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3737 #ifdef DIAGNOSTIC
3738 if (ump->lvclose & UDF_CLOSE_SESSION)
3739 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3740 #endif
3741
3742 if (ump->lvclose & UDF_WRITE_VAT) {
3743 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3744
3745 /* write out the VAT data and all its descriptors */
3746 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3747 udf_writeout_vat(ump);
3748 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3749
3750 (void) VOP_FSYNC(ump->vat_node->vnode,
3751 FSCRED, FSYNC_WAIT, 0, 0);
3752
3753 if (ump->lvclose & UDF_CLOSE_SESSION) {
3754 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3755 "as requested\n"));
3756 }
3757
3758 /* at least two DVD packets and 3 CD-R packets */
3759 nvats = 32;
3760
3761 #if notyet
3762 /*
3763 * TODO calculate the available space and if the disc is
3764 * allmost full, write out till end-256-1 with banks, write
3765 * AVDP and fill up with VATs, then close session and close
3766 * disc.
3767 */
3768 if (ump->lvclose & UDF_FINALISE_DISC) {
3769 error = udf_write_phys_dscr_sync(ump, NULL,
3770 UDF_C_FLOAT_DSCR,
3771 (union dscrptr *) ump->anchors[0],
3772 0, 0);
3773 if (error)
3774 printf("writeout of anchor failed!\n");
3775
3776 /* pad space with VAT ICBs */
3777 nvats = 256;
3778 }
3779 #endif
3780
3781 /* write out a number of VAT nodes */
3782 nok = 0;
3783 for (n = 0; n < nvats; n++) {
3784 /* will now only write last FE/EFE */
3785 ump->vat_node->i_flags |= IN_MODIFIED;
3786 error = VOP_FSYNC(ump->vat_node->vnode,
3787 FSCRED, FSYNC_WAIT, 0, 0);
3788 if (!error)
3789 nok++;
3790 }
3791 if (nok < 14) {
3792 /* arbitrary; but at least one or two CD frames */
3793 printf("writeout of at least 14 VATs failed\n");
3794 return error;
3795 }
3796 }
3797
3798 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3799
3800 /* finish closing of session */
3801 if (ump->lvclose & UDF_CLOSE_SESSION) {
3802 error = udf_validate_session_start(ump);
3803 if (error)
3804 return error;
3805
3806 (void) udf_synchronise_caches(ump);
3807
3808 /* close all associated tracks */
3809 tracknr = ump->discinfo.first_track_last_session;
3810 error = 0;
3811 while (tracknr <= ump->discinfo.last_track_last_session) {
3812 DPRINTF(VOLUMES, ("\tclosing possible open "
3813 "track %d\n", tracknr));
3814 memset(&mmc_op, 0, sizeof(mmc_op));
3815 mmc_op.operation = MMC_OP_CLOSETRACK;
3816 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3817 mmc_op.tracknr = tracknr;
3818 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3819 FKIOCTL, NOCRED);
3820 if (error)
3821 printf("udf_close_logvol: closing of "
3822 "track %d failed\n", tracknr);
3823 tracknr ++;
3824 }
3825 if (!error) {
3826 DPRINTF(VOLUMES, ("closing session\n"));
3827 memset(&mmc_op, 0, sizeof(mmc_op));
3828 mmc_op.operation = MMC_OP_CLOSESESSION;
3829 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3830 mmc_op.sessionnr = ump->discinfo.num_sessions;
3831 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3832 FKIOCTL, NOCRED);
3833 if (error)
3834 printf("udf_close_logvol: closing of session"
3835 "failed\n");
3836 }
3837 if (!error)
3838 ump->lvopen |= UDF_OPEN_SESSION;
3839 if (error) {
3840 printf("udf_close_logvol: leaving disc as it is\n");
3841 ump->lvclose &= ~UDF_FINALISE_DISC;
3842 }
3843 }
3844
3845 if (ump->lvclose & UDF_FINALISE_DISC) {
3846 memset(&mmc_op, 0, sizeof(mmc_op));
3847 mmc_op.operation = MMC_OP_FINALISEDISC;
3848 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3849 mmc_op.sessionnr = ump->discinfo.num_sessions;
3850 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3851 FKIOCTL, NOCRED);
3852 if (error)
3853 printf("udf_close_logvol: finalising disc"
3854 "failed\n");
3855 }
3856
3857 /* write out partition bitmaps if requested */
3858 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3859 /* sync writeout metadata spacetable if existing */
3860 error1 = udf_write_metadata_partition_spacetable(ump, true);
3861 if (error1)
3862 printf( "udf_close_logvol: writeout of metadata space "
3863 "bitmap failed\n");
3864
3865 /* sync writeout partition spacetables */
3866 error2 = udf_write_physical_partition_spacetables(ump, true);
3867 if (error2)
3868 printf( "udf_close_logvol: writeout of space tables "
3869 "failed\n");
3870
3871 if (error1 || error2)
3872 return (error1 | error2);
3873
3874 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3875 }
3876
3877 /* write out metadata partition nodes if requested */
3878 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3879 /* sync writeout metadata descriptor node */
3880 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3881 if (error1)
3882 printf( "udf_close_logvol: writeout of metadata partition "
3883 "node failed\n");
3884
3885 /* duplicate metadata partition descriptor if needed */
3886 udf_synchronise_metadatamirror_node(ump);
3887
3888 /* sync writeout metadatamirror descriptor node */
3889 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3890 if (error2)
3891 printf( "udf_close_logvol: writeout of metadata partition "
3892 "mirror node failed\n");
3893
3894 if (error1 || error2)
3895 return (error1 | error2);
3896
3897 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3898 }
3899
3900 /* mark it closed */
3901 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3902
3903 /* do we need to write out the logical volume integrity? */
3904 if (ump->lvclose & UDF_WRITE_LVINT)
3905 error = udf_writeout_lvint(ump, ump->lvopen);
3906 if (error) {
3907 /* HELP now what? mark it open again for now */
3908 ump->logvol_integrity->integrity_type =
3909 udf_rw32(UDF_INTEGRITY_OPEN);
3910 return error;
3911 }
3912
3913 (void) udf_synchronise_caches(ump);
3914
3915 return 0;
3916 }
3917
3918 /* --------------------------------------------------------------------- */
3919
3920 /*
3921 * Genfs interfacing
3922 *
3923 * static const struct genfs_ops udf_genfsops = {
3924 * .gop_size = genfs_size,
3925 * size of transfers
3926 * .gop_alloc = udf_gop_alloc,
3927 * allocate len bytes at offset
3928 * .gop_write = genfs_gop_write,
3929 * putpages interface code
3930 * .gop_markupdate = udf_gop_markupdate,
3931 * set update/modify flags etc.
3932 * }
3933 */
3934
3935 /*
3936 * Genfs interface. These four functions are the only ones defined though not
3937 * documented... great....
3938 */
3939
3940 /*
3941 * Called for allocating an extent of the file either by VOP_WRITE() or by
3942 * genfs filling up gaps.
3943 */
3944 static int
3945 udf_gop_alloc(struct vnode *vp, off_t off,
3946 off_t len, int flags, kauth_cred_t cred)
3947 {
3948 struct udf_node *udf_node = VTOI(vp);
3949 struct udf_mount *ump = udf_node->ump;
3950 uint64_t lb_start, lb_end;
3951 uint32_t lb_size, num_lb;
3952 int udf_c_type, vpart_num, can_fail;
3953 int error;
3954
3955 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3956 off, len, flags? "SYNC":"NONE"));
3957
3958 /*
3959 * request the pages of our vnode and see how many pages will need to
3960 * be allocated and reserve that space
3961 */
3962 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3963 lb_start = off / lb_size;
3964 lb_end = (off + len + lb_size -1) / lb_size;
3965 num_lb = lb_end - lb_start;
3966
3967 udf_c_type = udf_get_c_type(udf_node);
3968 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3969
3970 /* all requests can fail */
3971 can_fail = true;
3972
3973 /* fid's (directories) can't fail */
3974 if (udf_c_type == UDF_C_FIDS)
3975 can_fail = false;
3976
3977 /* system files can't fail */
3978 if (vp->v_vflag & VV_SYSTEM)
3979 can_fail = false;
3980
3981 error = udf_reserve_space(ump, udf_node, udf_c_type,
3982 vpart_num, num_lb, can_fail);
3983
3984 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3985 lb_start, lb_end, num_lb));
3986
3987 return error;
3988 }
3989
3990
3991 /*
3992 * callback from genfs to update our flags
3993 */
3994 static void
3995 udf_gop_markupdate(struct vnode *vp, int flags)
3996 {
3997 struct udf_node *udf_node = VTOI(vp);
3998 u_long mask = 0;
3999
4000 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4001 mask = IN_ACCESS;
4002 }
4003 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4004 if (vp->v_type == VREG) {
4005 mask |= IN_CHANGE | IN_UPDATE;
4006 } else {
4007 mask |= IN_MODIFY;
4008 }
4009 }
4010 if (mask) {
4011 udf_node->i_flags |= mask;
4012 }
4013 }
4014
4015
4016 static const struct genfs_ops udf_genfsops = {
4017 .gop_size = genfs_size,
4018 .gop_alloc = udf_gop_alloc,
4019 .gop_write = genfs_gop_write_rwmap,
4020 .gop_markupdate = udf_gop_markupdate,
4021 };
4022
4023
4024 /* --------------------------------------------------------------------- */
4025
4026 int
4027 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4028 {
4029 union dscrptr *dscr;
4030 int error;
4031
4032 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4033 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4034
4035 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4036 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4037 (void) udf_validate_tag_and_crc_sums(dscr);
4038
4039 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4040 dscr, sector, sector);
4041
4042 free(dscr, M_TEMP);
4043
4044 return error;
4045 }
4046
4047
4048 /* --------------------------------------------------------------------- */
4049
4050 /* UDF<->unix converters */
4051
4052 /* --------------------------------------------------------------------- */
4053
4054 static mode_t
4055 udf_perm_to_unix_mode(uint32_t perm)
4056 {
4057 mode_t mode;
4058
4059 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4060 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4061 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4062
4063 return mode;
4064 }
4065
4066 /* --------------------------------------------------------------------- */
4067
4068 static uint32_t
4069 unix_mode_to_udf_perm(mode_t mode)
4070 {
4071 uint32_t perm;
4072
4073 perm = ((mode & S_IRWXO) );
4074 perm |= ((mode & S_IRWXG) << 2);
4075 perm |= ((mode & S_IRWXU) << 4);
4076 perm |= ((mode & S_IWOTH) << 3);
4077 perm |= ((mode & S_IWGRP) << 5);
4078 perm |= ((mode & S_IWUSR) << 7);
4079
4080 return perm;
4081 }
4082
4083 /* --------------------------------------------------------------------- */
4084
4085 static uint32_t
4086 udf_icb_to_unix_filetype(uint32_t icbftype)
4087 {
4088 switch (icbftype) {
4089 case UDF_ICB_FILETYPE_DIRECTORY :
4090 case UDF_ICB_FILETYPE_STREAMDIR :
4091 return S_IFDIR;
4092 case UDF_ICB_FILETYPE_FIFO :
4093 return S_IFIFO;
4094 case UDF_ICB_FILETYPE_CHARDEVICE :
4095 return S_IFCHR;
4096 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4097 return S_IFBLK;
4098 case UDF_ICB_FILETYPE_RANDOMACCESS :
4099 case UDF_ICB_FILETYPE_REALTIME :
4100 return S_IFREG;
4101 case UDF_ICB_FILETYPE_SYMLINK :
4102 return S_IFLNK;
4103 case UDF_ICB_FILETYPE_SOCKET :
4104 return S_IFSOCK;
4105 }
4106 /* no idea what this is */
4107 return 0;
4108 }
4109
4110 /* --------------------------------------------------------------------- */
4111
4112 void
4113 udf_to_unix_name(char *result, int result_len, char *id, int len,
4114 struct charspec *chsp)
4115 {
4116 uint16_t *raw_name, *unix_name;
4117 uint16_t *inchp, ch;
4118 uint8_t *outchp;
4119 const char *osta_id = "OSTA Compressed Unicode";
4120 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4121
4122 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4123 unix_name = raw_name + 1024; /* split space in half */
4124 assert(sizeof(char) == sizeof(uint8_t));
4125 outchp = (uint8_t *) result;
4126
4127 is_osta_typ0 = (chsp->type == 0);
4128 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4129 if (is_osta_typ0) {
4130 /* TODO clean up */
4131 *raw_name = *unix_name = 0;
4132 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4133 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4134 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4135 /* output UTF8 */
4136 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4137 ch = *inchp;
4138 nout = wput_utf8(outchp, result_len, ch);
4139 outchp += nout; result_len -= nout;
4140 if (!ch) break;
4141 }
4142 *outchp++ = 0;
4143 } else {
4144 /* assume 8bit char length byte latin-1 */
4145 assert(*id == 8);
4146 assert(strlen((char *) (id+1)) <= NAME_MAX);
4147 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4148 }
4149 free(raw_name, M_UDFTEMP);
4150 }
4151
4152 /* --------------------------------------------------------------------- */
4153
4154 void
4155 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4156 struct charspec *chsp)
4157 {
4158 uint16_t *raw_name;
4159 uint16_t *outchp;
4160 const char *inchp;
4161 const char *osta_id = "OSTA Compressed Unicode";
4162 int udf_chars, is_osta_typ0, bits;
4163 size_t cnt;
4164
4165 /* allocate temporary unicode-16 buffer */
4166 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4167
4168 /* convert utf8 to unicode-16 */
4169 *raw_name = 0;
4170 inchp = name;
4171 outchp = raw_name;
4172 bits = 8;
4173 for (cnt = name_len, udf_chars = 0; cnt;) {
4174 *outchp = wget_utf8(&inchp, &cnt);
4175 if (*outchp > 0xff)
4176 bits=16;
4177 outchp++;
4178 udf_chars++;
4179 }
4180 /* null terminate just in case */
4181 *outchp++ = 0;
4182
4183 is_osta_typ0 = (chsp->type == 0);
4184 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4185 if (is_osta_typ0) {
4186 udf_chars = udf_CompressUnicode(udf_chars, bits,
4187 (unicode_t *) raw_name,
4188 (byte *) result);
4189 } else {
4190 printf("unix to udf name: no CHSP0 ?\n");
4191 /* XXX assume 8bit char length byte latin-1 */
4192 *result++ = 8; udf_chars = 1;
4193 strncpy(result, name + 1, name_len);
4194 udf_chars += name_len;
4195 }
4196 *result_len = udf_chars;
4197 free(raw_name, M_UDFTEMP);
4198 }
4199
4200 /* --------------------------------------------------------------------- */
4201
4202 void
4203 udf_timestamp_to_timespec(struct udf_mount *ump,
4204 struct timestamp *timestamp,
4205 struct timespec *timespec)
4206 {
4207 struct clock_ymdhms ymdhms;
4208 uint32_t usecs, secs, nsecs;
4209 uint16_t tz;
4210
4211 /* fill in ymdhms structure from timestamp */
4212 memset(&ymdhms, 0, sizeof(ymdhms));
4213 ymdhms.dt_year = udf_rw16(timestamp->year);
4214 ymdhms.dt_mon = timestamp->month;
4215 ymdhms.dt_day = timestamp->day;
4216 ymdhms.dt_wday = 0; /* ? */
4217 ymdhms.dt_hour = timestamp->hour;
4218 ymdhms.dt_min = timestamp->minute;
4219 ymdhms.dt_sec = timestamp->second;
4220
4221 secs = clock_ymdhms_to_secs(&ymdhms);
4222 usecs = timestamp->usec +
4223 100*timestamp->hund_usec + 10000*timestamp->centisec;
4224 nsecs = usecs * 1000;
4225
4226 /*
4227 * Calculate the time zone. The timezone is 12 bit signed 2's
4228 * compliment, so we gotta do some extra magic to handle it right.
4229 */
4230 tz = udf_rw16(timestamp->type_tz);
4231 tz &= 0x0fff; /* only lower 12 bits are significant */
4232 if (tz & 0x0800) /* sign extention */
4233 tz |= 0xf000;
4234
4235 /* TODO check timezone conversion */
4236 /* check if we are specified a timezone to convert */
4237 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4238 if ((int16_t) tz != -2047)
4239 secs -= (int16_t) tz * 60;
4240 } else {
4241 secs -= ump->mount_args.gmtoff;
4242 }
4243
4244 timespec->tv_sec = secs;
4245 timespec->tv_nsec = nsecs;
4246 }
4247
4248
4249 void
4250 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4251 {
4252 struct clock_ymdhms ymdhms;
4253 uint32_t husec, usec, csec;
4254
4255 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4256
4257 usec = timespec->tv_nsec / 1000;
4258 husec = usec / 100;
4259 usec -= husec * 100; /* only 0-99 in usec */
4260 csec = husec / 100; /* only 0-99 in csec */
4261 husec -= csec * 100; /* only 0-99 in husec */
4262
4263 /* set method 1 for CUT/GMT */
4264 timestamp->type_tz = udf_rw16((1<<12) + 0);
4265 timestamp->year = udf_rw16(ymdhms.dt_year);
4266 timestamp->month = ymdhms.dt_mon;
4267 timestamp->day = ymdhms.dt_day;
4268 timestamp->hour = ymdhms.dt_hour;
4269 timestamp->minute = ymdhms.dt_min;
4270 timestamp->second = ymdhms.dt_sec;
4271 timestamp->centisec = csec;
4272 timestamp->hund_usec = husec;
4273 timestamp->usec = usec;
4274 }
4275
4276 /* --------------------------------------------------------------------- */
4277
4278 /*
4279 * Attribute and filetypes converters with get/set pairs
4280 */
4281
4282 uint32_t
4283 udf_getaccessmode(struct udf_node *udf_node)
4284 {
4285 struct file_entry *fe = udf_node->fe;
4286 struct extfile_entry *efe = udf_node->efe;
4287 uint32_t udf_perm, icbftype;
4288 uint32_t mode, ftype;
4289 uint16_t icbflags;
4290
4291 UDF_LOCK_NODE(udf_node, 0);
4292 if (fe) {
4293 udf_perm = udf_rw32(fe->perm);
4294 icbftype = fe->icbtag.file_type;
4295 icbflags = udf_rw16(fe->icbtag.flags);
4296 } else {
4297 assert(udf_node->efe);
4298 udf_perm = udf_rw32(efe->perm);
4299 icbftype = efe->icbtag.file_type;
4300 icbflags = udf_rw16(efe->icbtag.flags);
4301 }
4302
4303 mode = udf_perm_to_unix_mode(udf_perm);
4304 ftype = udf_icb_to_unix_filetype(icbftype);
4305
4306 /* set suid, sgid, sticky from flags in fe/efe */
4307 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4308 mode |= S_ISUID;
4309 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4310 mode |= S_ISGID;
4311 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4312 mode |= S_ISVTX;
4313
4314 UDF_UNLOCK_NODE(udf_node, 0);
4315
4316 return mode | ftype;
4317 }
4318
4319
4320 void
4321 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4322 {
4323 struct file_entry *fe = udf_node->fe;
4324 struct extfile_entry *efe = udf_node->efe;
4325 uint32_t udf_perm;
4326 uint16_t icbflags;
4327
4328 UDF_LOCK_NODE(udf_node, 0);
4329 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4330 if (fe) {
4331 icbflags = udf_rw16(fe->icbtag.flags);
4332 } else {
4333 icbflags = udf_rw16(efe->icbtag.flags);
4334 }
4335
4336 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4337 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4338 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4339 if (mode & S_ISUID)
4340 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4341 if (mode & S_ISGID)
4342 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4343 if (mode & S_ISVTX)
4344 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4345
4346 if (fe) {
4347 fe->perm = udf_rw32(udf_perm);
4348 fe->icbtag.flags = udf_rw16(icbflags);
4349 } else {
4350 efe->perm = udf_rw32(udf_perm);
4351 efe->icbtag.flags = udf_rw16(icbflags);
4352 }
4353
4354 UDF_UNLOCK_NODE(udf_node, 0);
4355 }
4356
4357
4358 void
4359 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4360 {
4361 struct udf_mount *ump = udf_node->ump;
4362 struct file_entry *fe = udf_node->fe;
4363 struct extfile_entry *efe = udf_node->efe;
4364 uid_t uid;
4365 gid_t gid;
4366
4367 UDF_LOCK_NODE(udf_node, 0);
4368 if (fe) {
4369 uid = (uid_t)udf_rw32(fe->uid);
4370 gid = (gid_t)udf_rw32(fe->gid);
4371 } else {
4372 assert(udf_node->efe);
4373 uid = (uid_t)udf_rw32(efe->uid);
4374 gid = (gid_t)udf_rw32(efe->gid);
4375 }
4376
4377 /* do the uid/gid translation game */
4378 if (uid == (uid_t) -1)
4379 uid = ump->mount_args.anon_uid;
4380 if (gid == (gid_t) -1)
4381 gid = ump->mount_args.anon_gid;
4382
4383 *uidp = uid;
4384 *gidp = gid;
4385
4386 UDF_UNLOCK_NODE(udf_node, 0);
4387 }
4388
4389
4390 void
4391 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4392 {
4393 struct udf_mount *ump = udf_node->ump;
4394 struct file_entry *fe = udf_node->fe;
4395 struct extfile_entry *efe = udf_node->efe;
4396 uid_t nobody_uid;
4397 gid_t nobody_gid;
4398
4399 UDF_LOCK_NODE(udf_node, 0);
4400
4401 /* do the uid/gid translation game */
4402 nobody_uid = ump->mount_args.nobody_uid;
4403 nobody_gid = ump->mount_args.nobody_gid;
4404 if (uid == nobody_uid)
4405 uid = (uid_t) -1;
4406 if (gid == nobody_gid)
4407 gid = (gid_t) -1;
4408
4409 if (fe) {
4410 fe->uid = udf_rw32((uint32_t) uid);
4411 fe->gid = udf_rw32((uint32_t) gid);
4412 } else {
4413 efe->uid = udf_rw32((uint32_t) uid);
4414 efe->gid = udf_rw32((uint32_t) gid);
4415 }
4416
4417 UDF_UNLOCK_NODE(udf_node, 0);
4418 }
4419
4420
4421 /* --------------------------------------------------------------------- */
4422
4423
4424 int
4425 udf_dirhash_fill(struct udf_node *dir_node)
4426 {
4427 struct vnode *dvp = dir_node->vnode;
4428 struct dirhash *dirh;
4429 struct file_entry *fe = dir_node->fe;
4430 struct extfile_entry *efe = dir_node->efe;
4431 struct fileid_desc *fid;
4432 struct dirent *dirent;
4433 uint64_t file_size, pre_diroffset, diroffset;
4434 uint32_t lb_size;
4435 int error;
4436
4437 /* make sure we have a dirhash to work on */
4438 dirh = dir_node->dir_hash;
4439 KASSERT(dirh);
4440 KASSERT(dirh->refcnt > 0);
4441
4442 if (dirh->flags & DIRH_BROKEN)
4443 return EIO;
4444 if (dirh->flags & DIRH_COMPLETE)
4445 return 0;
4446
4447 /* make sure we have a clean dirhash to add to */
4448 dirhash_purge_entries(dirh);
4449
4450 /* get directory filesize */
4451 if (fe) {
4452 file_size = udf_rw64(fe->inf_len);
4453 } else {
4454 assert(efe);
4455 file_size = udf_rw64(efe->inf_len);
4456 }
4457
4458 /* allocate temporary space for fid */
4459 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4460 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4461
4462 /* allocate temporary space for dirent */
4463 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4464
4465 error = 0;
4466 diroffset = 0;
4467 while (diroffset < file_size) {
4468 /* transfer a new fid/dirent */
4469 pre_diroffset = diroffset;
4470 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4471 if (error) {
4472 /* TODO what to do? continue but not add? */
4473 dirh->flags |= DIRH_BROKEN;
4474 dirhash_purge_entries(dirh);
4475 break;
4476 }
4477
4478 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4479 /* register deleted extent for reuse */
4480 dirhash_enter_freed(dirh, pre_diroffset,
4481 udf_fidsize(fid));
4482 } else {
4483 /* append to the dirhash */
4484 dirhash_enter(dirh, dirent, pre_diroffset,
4485 udf_fidsize(fid), 0);
4486 }
4487 }
4488 dirh->flags |= DIRH_COMPLETE;
4489
4490 free(fid, M_UDFTEMP);
4491 free(dirent, M_UDFTEMP);
4492
4493 return error;
4494 }
4495
4496
4497 /* --------------------------------------------------------------------- */
4498
4499 /*
4500 * Directory read and manipulation functions.
4501 *
4502 */
4503
4504 int
4505 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4506 struct long_ad *icb_loc, int *found)
4507 {
4508 struct udf_node *dir_node = VTOI(vp);
4509 struct dirhash *dirh;
4510 struct dirhash_entry *dirh_ep;
4511 struct fileid_desc *fid;
4512 struct dirent *dirent;
4513 uint64_t diroffset;
4514 uint32_t lb_size;
4515 int hit, error;
4516
4517 /* set default return */
4518 *found = 0;
4519
4520 /* get our dirhash and make sure its read in */
4521 dirhash_get(&dir_node->dir_hash);
4522 error = udf_dirhash_fill(dir_node);
4523 if (error) {
4524 dirhash_put(dir_node->dir_hash);
4525 return error;
4526 }
4527 dirh = dir_node->dir_hash;
4528
4529 /* allocate temporary space for fid */
4530 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4531 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4532 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4533
4534 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4535 namelen, namelen, name));
4536
4537 /* search our dirhash hits */
4538 memset(icb_loc, 0, sizeof(*icb_loc));
4539 dirh_ep = NULL;
4540 for (;;) {
4541 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4542 /* if no hit, abort the search */
4543 if (!hit)
4544 break;
4545
4546 /* check this hit */
4547 diroffset = dirh_ep->offset;
4548
4549 /* transfer a new fid/dirent */
4550 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4551 if (error)
4552 break;
4553
4554 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4555 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4556
4557 /* see if its our entry */
4558 #ifdef DIAGNOSTIC
4559 if (dirent->d_namlen != namelen) {
4560 printf("WARNING: dirhash_lookup() returned wrong "
4561 "d_namelen: %d and ought to be %d\n",
4562 dirent->d_namlen, namelen);
4563 printf("\tlooked for `%s' and got `%s'\n",
4564 name, dirent->d_name);
4565 }
4566 #endif
4567 if (strncmp(dirent->d_name, name, namelen) == 0) {
4568 *found = 1;
4569 *icb_loc = fid->icb;
4570 break;
4571 }
4572 }
4573 free(fid, M_UDFTEMP);
4574 free(dirent, M_UDFTEMP);
4575
4576 dirhash_put(dir_node->dir_hash);
4577
4578 return error;
4579 }
4580
4581 /* --------------------------------------------------------------------- */
4582
4583 static int
4584 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4585 struct long_ad *node_icb, struct long_ad *parent_icb,
4586 uint64_t parent_unique_id)
4587 {
4588 struct timespec now;
4589 struct icb_tag *icb;
4590 struct filetimes_extattr_entry *ft_extattr;
4591 uint64_t unique_id;
4592 uint32_t fidsize, lb_num;
4593 uint8_t *bpos;
4594 int crclen, attrlen;
4595
4596 lb_num = udf_rw32(node_icb->loc.lb_num);
4597 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4598 icb = &fe->icbtag;
4599
4600 /*
4601 * Always use strategy type 4 unless on WORM wich we don't support
4602 * (yet). Fill in defaults and set for internal allocation of data.
4603 */
4604 icb->strat_type = udf_rw16(4);
4605 icb->max_num_entries = udf_rw16(1);
4606 icb->file_type = file_type; /* 8 bit */
4607 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4608
4609 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4610 fe->link_cnt = udf_rw16(0); /* explicit setting */
4611
4612 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4613
4614 vfs_timestamp(&now);
4615 udf_timespec_to_timestamp(&now, &fe->atime);
4616 udf_timespec_to_timestamp(&now, &fe->attrtime);
4617 udf_timespec_to_timestamp(&now, &fe->mtime);
4618
4619 udf_set_regid(&fe->imp_id, IMPL_NAME);
4620 udf_add_impl_regid(ump, &fe->imp_id);
4621
4622 unique_id = udf_advance_uniqueid(ump);
4623 fe->unique_id = udf_rw64(unique_id);
4624 fe->l_ea = udf_rw32(0);
4625
4626 /* create extended attribute to record our creation time */
4627 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4628 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4629 memset(ft_extattr, 0, attrlen);
4630 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4631 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4632 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4633 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4634 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4635 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4636
4637 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4638 (struct extattr_entry *) ft_extattr);
4639 free(ft_extattr, M_UDFTEMP);
4640
4641 /* if its a directory, create '..' */
4642 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4643 fidsize = 0;
4644 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4645 fidsize = udf_create_parentfid(ump,
4646 (struct fileid_desc *) bpos, parent_icb,
4647 parent_unique_id);
4648 }
4649
4650 /* record fidlength information */
4651 fe->inf_len = udf_rw64(fidsize);
4652 fe->l_ad = udf_rw32(fidsize);
4653 fe->logblks_rec = udf_rw64(0); /* intern */
4654
4655 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4656 crclen += udf_rw32(fe->l_ea) + fidsize;
4657 fe->tag.desc_crc_len = udf_rw16(crclen);
4658
4659 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4660
4661 return fidsize;
4662 }
4663
4664 /* --------------------------------------------------------------------- */
4665
4666 static int
4667 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4668 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4669 uint64_t parent_unique_id)
4670 {
4671 struct timespec now;
4672 struct icb_tag *icb;
4673 uint64_t unique_id;
4674 uint32_t fidsize, lb_num;
4675 uint8_t *bpos;
4676 int crclen;
4677
4678 lb_num = udf_rw32(node_icb->loc.lb_num);
4679 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4680 icb = &efe->icbtag;
4681
4682 /*
4683 * Always use strategy type 4 unless on WORM wich we don't support
4684 * (yet). Fill in defaults and set for internal allocation of data.
4685 */
4686 icb->strat_type = udf_rw16(4);
4687 icb->max_num_entries = udf_rw16(1);
4688 icb->file_type = file_type; /* 8 bit */
4689 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4690
4691 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4692 efe->link_cnt = udf_rw16(0); /* explicit setting */
4693
4694 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4695
4696 vfs_timestamp(&now);
4697 udf_timespec_to_timestamp(&now, &efe->ctime);
4698 udf_timespec_to_timestamp(&now, &efe->atime);
4699 udf_timespec_to_timestamp(&now, &efe->attrtime);
4700 udf_timespec_to_timestamp(&now, &efe->mtime);
4701
4702 udf_set_regid(&efe->imp_id, IMPL_NAME);
4703 udf_add_impl_regid(ump, &efe->imp_id);
4704
4705 unique_id = udf_advance_uniqueid(ump);
4706 efe->unique_id = udf_rw64(unique_id);
4707 efe->l_ea = udf_rw32(0);
4708
4709 /* if its a directory, create '..' */
4710 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4711 fidsize = 0;
4712 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4713 fidsize = udf_create_parentfid(ump,
4714 (struct fileid_desc *) bpos, parent_icb,
4715 parent_unique_id);
4716 }
4717
4718 /* record fidlength information */
4719 efe->obj_size = udf_rw64(fidsize);
4720 efe->inf_len = udf_rw64(fidsize);
4721 efe->l_ad = udf_rw32(fidsize);
4722 efe->logblks_rec = udf_rw64(0); /* intern */
4723
4724 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4725 crclen += udf_rw32(efe->l_ea) + fidsize;
4726 efe->tag.desc_crc_len = udf_rw16(crclen);
4727
4728 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4729
4730 return fidsize;
4731 }
4732
4733 /* --------------------------------------------------------------------- */
4734
4735 int
4736 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4737 struct udf_node *udf_node, struct componentname *cnp)
4738 {
4739 struct vnode *dvp = dir_node->vnode;
4740 struct dirhash *dirh;
4741 struct dirhash_entry *dirh_ep;
4742 struct file_entry *fe = dir_node->fe;
4743 struct fileid_desc *fid;
4744 struct dirent *dirent;
4745 uint64_t diroffset;
4746 uint32_t lb_size, fidsize;
4747 int found, error;
4748 char const *name = cnp->cn_nameptr;
4749 int namelen = cnp->cn_namelen;
4750 int hit, refcnt;
4751
4752 /* get our dirhash and make sure its read in */
4753 dirhash_get(&dir_node->dir_hash);
4754 error = udf_dirhash_fill(dir_node);
4755 if (error) {
4756 dirhash_put(dir_node->dir_hash);
4757 return error;
4758 }
4759 dirh = dir_node->dir_hash;
4760
4761 /* get directory filesize */
4762 if (!fe) {
4763 assert(dir_node->efe);
4764 }
4765
4766 /* allocate temporary space for fid */
4767 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4768 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4769 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4770
4771 /* search our dirhash hits */
4772 found = 0;
4773 dirh_ep = NULL;
4774 for (;;) {
4775 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4776 /* if no hit, abort the search */
4777 if (!hit)
4778 break;
4779
4780 /* check this hit */
4781 diroffset = dirh_ep->offset;
4782
4783 /* transfer a new fid/dirent */
4784 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4785 if (error)
4786 break;
4787
4788 /* see if its our entry */
4789 KASSERT(dirent->d_namlen == namelen);
4790 if (strncmp(dirent->d_name, name, namelen) == 0) {
4791 found = 1;
4792 break;
4793 }
4794 }
4795
4796 if (!found)
4797 error = ENOENT;
4798 if (error)
4799 goto error_out;
4800
4801 /* mark deleted */
4802 fid->file_char |= UDF_FILE_CHAR_DEL;
4803 #ifdef UDF_COMPLETE_DELETE
4804 memset(&fid->icb, 0, sizeof(fid->icb));
4805 #endif
4806 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4807
4808 /* get size of fid and compensate for the read_fid_stream advance */
4809 fidsize = udf_fidsize(fid);
4810 diroffset -= fidsize;
4811
4812 /* write out */
4813 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4814 fid, fidsize, diroffset,
4815 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4816 FSCRED, NULL, NULL);
4817 if (error)
4818 goto error_out;
4819
4820 /* get reference count of attached node */
4821 if (udf_node->fe) {
4822 refcnt = udf_rw16(udf_node->fe->link_cnt);
4823 } else {
4824 KASSERT(udf_node->efe);
4825 refcnt = udf_rw16(udf_node->efe->link_cnt);
4826 }
4827 #ifdef UDF_COMPLETE_DELETE
4828 /* substract reference counter in attached node */
4829 refcnt -= 1;
4830 if (udf_node->fe) {
4831 udf_node->fe->link_cnt = udf_rw16(refcnt);
4832 } else {
4833 udf_node->efe->link_cnt = udf_rw16(refcnt);
4834 }
4835
4836 /* prevent writeout when refcnt == 0 */
4837 if (refcnt == 0)
4838 udf_node->i_flags |= IN_DELETED;
4839
4840 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4841 int drefcnt;
4842
4843 /* substract reference counter in directory node */
4844 /* note subtract 2 (?) for its was also backreferenced */
4845 if (dir_node->fe) {
4846 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4847 drefcnt -= 1;
4848 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4849 } else {
4850 KASSERT(dir_node->efe);
4851 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4852 drefcnt -= 1;
4853 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4854 }
4855 }
4856
4857 udf_node->i_flags |= IN_MODIFIED;
4858 dir_node->i_flags |= IN_MODIFIED;
4859 #endif
4860 /* if it is/was a hardlink adjust the file count */
4861 if (refcnt > 0)
4862 udf_adjust_filecount(udf_node, -1);
4863
4864 /* remove from the dirhash */
4865 dirhash_remove(dirh, dirent, diroffset,
4866 udf_fidsize(fid));
4867
4868 error_out:
4869 free(fid, M_UDFTEMP);
4870 free(dirent, M_UDFTEMP);
4871
4872 dirhash_put(dir_node->dir_hash);
4873
4874 return error;
4875 }
4876
4877 /* --------------------------------------------------------------------- */
4878
4879 int
4880 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4881 struct udf_node *new_parent_node)
4882 {
4883 struct vnode *dvp = dir_node->vnode;
4884 struct dirhash *dirh;
4885 struct dirhash_entry *dirh_ep;
4886 struct file_entry *fe;
4887 struct extfile_entry *efe;
4888 struct fileid_desc *fid;
4889 struct dirent *dirent;
4890 uint64_t diroffset;
4891 uint64_t new_parent_unique_id;
4892 uint32_t lb_size, fidsize;
4893 int found, error;
4894 char const *name = "..";
4895 int namelen = 2;
4896 int hit;
4897
4898 /* get our dirhash and make sure its read in */
4899 dirhash_get(&dir_node->dir_hash);
4900 error = udf_dirhash_fill(dir_node);
4901 if (error) {
4902 dirhash_put(dir_node->dir_hash);
4903 return error;
4904 }
4905 dirh = dir_node->dir_hash;
4906
4907 /* get new parent's unique ID */
4908 fe = new_parent_node->fe;
4909 efe = new_parent_node->efe;
4910 if (fe) {
4911 new_parent_unique_id = udf_rw64(fe->unique_id);
4912 } else {
4913 assert(efe);
4914 new_parent_unique_id = udf_rw64(efe->unique_id);
4915 }
4916
4917 /* get directory filesize */
4918 fe = dir_node->fe;
4919 efe = dir_node->efe;
4920 if (!fe) {
4921 assert(efe);
4922 }
4923
4924 /* allocate temporary space for fid */
4925 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4926 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4927 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4928
4929 /*
4930 * NOTE the standard does not dictate the FID entry '..' should be
4931 * first, though in practice it will most likely be.
4932 */
4933
4934 /* search our dirhash hits */
4935 found = 0;
4936 dirh_ep = NULL;
4937 for (;;) {
4938 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4939 /* if no hit, abort the search */
4940 if (!hit)
4941 break;
4942
4943 /* check this hit */
4944 diroffset = dirh_ep->offset;
4945
4946 /* transfer a new fid/dirent */
4947 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4948 if (error)
4949 break;
4950
4951 /* see if its our entry */
4952 KASSERT(dirent->d_namlen == namelen);
4953 if (strncmp(dirent->d_name, name, namelen) == 0) {
4954 found = 1;
4955 break;
4956 }
4957 }
4958
4959 if (!found)
4960 error = ENOENT;
4961 if (error)
4962 goto error_out;
4963
4964 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4965 fid->icb = new_parent_node->write_loc;
4966 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4967
4968 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4969
4970 /* get size of fid and compensate for the read_fid_stream advance */
4971 fidsize = udf_fidsize(fid);
4972 diroffset -= fidsize;
4973
4974 /* write out */
4975 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4976 fid, fidsize, diroffset,
4977 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4978 FSCRED, NULL, NULL);
4979
4980 /* nothing to be done in the dirhash */
4981
4982 error_out:
4983 free(fid, M_UDFTEMP);
4984 free(dirent, M_UDFTEMP);
4985
4986 dirhash_put(dir_node->dir_hash);
4987
4988 return error;
4989 }
4990
4991 /* --------------------------------------------------------------------- */
4992
4993 /*
4994 * We are not allowed to split the fid tag itself over an logical block so
4995 * check the space remaining in the logical block.
4996 *
4997 * We try to select the smallest candidate for recycling or when none is
4998 * found, append a new one at the end of the directory.
4999 */
5000
5001 int
5002 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5003 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5004 {
5005 struct vnode *dvp = dir_node->vnode;
5006 struct dirhash *dirh;
5007 struct dirhash_entry *dirh_ep;
5008 struct fileid_desc *fid;
5009 struct icb_tag *icbtag;
5010 struct charspec osta_charspec;
5011 struct dirent dirent;
5012 uint64_t unique_id, dir_size;
5013 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5014 uint32_t chosen_size, chosen_size_diff;
5015 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5016 int file_char, refcnt, icbflags, addr_type, hit, error;
5017
5018 /* get our dirhash and make sure its read in */
5019 dirhash_get(&dir_node->dir_hash);
5020 error = udf_dirhash_fill(dir_node);
5021 if (error) {
5022 dirhash_put(dir_node->dir_hash);
5023 return error;
5024 }
5025 dirh = dir_node->dir_hash;
5026
5027 /* get info */
5028 lb_size = udf_rw32(ump->logical_vol->lb_size);
5029 udf_osta_charset(&osta_charspec);
5030
5031 if (dir_node->fe) {
5032 dir_size = udf_rw64(dir_node->fe->inf_len);
5033 icbtag = &dir_node->fe->icbtag;
5034 } else {
5035 dir_size = udf_rw64(dir_node->efe->inf_len);
5036 icbtag = &dir_node->efe->icbtag;
5037 }
5038
5039 icbflags = udf_rw16(icbtag->flags);
5040 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5041
5042 if (udf_node->fe) {
5043 unique_id = udf_rw64(udf_node->fe->unique_id);
5044 refcnt = udf_rw16(udf_node->fe->link_cnt);
5045 } else {
5046 unique_id = udf_rw64(udf_node->efe->unique_id);
5047 refcnt = udf_rw16(udf_node->efe->link_cnt);
5048 }
5049
5050 if (refcnt > 0) {
5051 unique_id = udf_advance_uniqueid(ump);
5052 udf_adjust_filecount(udf_node, 1);
5053 }
5054
5055 /* determine file characteristics */
5056 file_char = 0; /* visible non deleted file and not stream metadata */
5057 if (vap->va_type == VDIR)
5058 file_char = UDF_FILE_CHAR_DIR;
5059
5060 /* malloc scrap buffer */
5061 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5062
5063 /* calculate _minimum_ fid size */
5064 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5065 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5066 fidsize = UDF_FID_SIZE + fid->l_fi;
5067 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5068
5069 /* find position that will fit the FID */
5070 chosen_fid_pos = dir_size;
5071 chosen_size = 0;
5072 chosen_size_diff = UINT_MAX;
5073
5074 /* shut up gcc */
5075 dirent.d_namlen = 0;
5076
5077 /* search our dirhash hits */
5078 error = 0;
5079 dirh_ep = NULL;
5080 for (;;) {
5081 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5082 /* if no hit, abort the search */
5083 if (!hit)
5084 break;
5085
5086 /* check this hit for size */
5087 this_fidsize = dirh_ep->entry_size;
5088
5089 /* check this hit */
5090 fid_pos = dirh_ep->offset;
5091 end_fid_pos = fid_pos + this_fidsize;
5092 size_diff = this_fidsize - fidsize;
5093 lb_rest = lb_size - (end_fid_pos % lb_size);
5094
5095 #ifndef UDF_COMPLETE_DELETE
5096 /* transfer a new fid/dirent */
5097 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5098 if (error)
5099 goto error_out;
5100
5101 /* only reuse entries that are wiped */
5102 /* check if the len + loc are marked zero */
5103 if (udf_rw32(fid->icb.len) != 0)
5104 continue;
5105 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5106 continue;
5107 if (udf_rw16(fid->icb.loc.part_num) != 0)
5108 continue;
5109 #endif /* UDF_COMPLETE_DELETE */
5110
5111 /* select if not splitting the tag and its smaller */
5112 if ((size_diff >= 0) &&
5113 (size_diff < chosen_size_diff) &&
5114 (lb_rest >= sizeof(struct desc_tag)))
5115 {
5116 /* UDF 2.3.4.2+3 specifies rules for iu size */
5117 if ((size_diff == 0) || (size_diff >= 32)) {
5118 chosen_fid_pos = fid_pos;
5119 chosen_size = this_fidsize;
5120 chosen_size_diff = size_diff;
5121 }
5122 }
5123 }
5124
5125
5126 /* extend directory if no other candidate found */
5127 if (chosen_size == 0) {
5128 chosen_fid_pos = dir_size;
5129 chosen_size = fidsize;
5130 chosen_size_diff = 0;
5131
5132 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5133 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5134 /* pre-grow directory to see if we're to switch */
5135 udf_grow_node(dir_node, dir_size + chosen_size);
5136
5137 icbflags = udf_rw16(icbtag->flags);
5138 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5139 }
5140
5141 /* make sure the next fid desc_tag won't be splitted */
5142 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5143 end_fid_pos = chosen_fid_pos + chosen_size;
5144 lb_rest = lb_size - (end_fid_pos % lb_size);
5145
5146 /* pad with implementation use regid if needed */
5147 if (lb_rest < sizeof(struct desc_tag))
5148 chosen_size += 32;
5149 }
5150 }
5151 chosen_size_diff = chosen_size - fidsize;
5152
5153 /* populate the FID */
5154 memset(fid, 0, lb_size);
5155 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5156 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5157 fid->file_char = file_char;
5158 fid->icb = udf_node->loc;
5159 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5160 fid->l_iu = udf_rw16(0);
5161
5162 if (chosen_size > fidsize) {
5163 /* insert implementation-use regid to space it correctly */
5164 fid->l_iu = udf_rw16(chosen_size_diff);
5165
5166 /* set implementation use */
5167 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5168 udf_add_impl_regid(ump, (struct regid *) fid->data);
5169 }
5170
5171 /* fill in name */
5172 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5173 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5174
5175 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5176 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5177
5178 /* writeout FID/update parent directory */
5179 error = vn_rdwr(UIO_WRITE, dvp,
5180 fid, chosen_size, chosen_fid_pos,
5181 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5182 FSCRED, NULL, NULL);
5183
5184 if (error)
5185 goto error_out;
5186
5187 /* add reference counter in attached node */
5188 if (udf_node->fe) {
5189 refcnt = udf_rw16(udf_node->fe->link_cnt);
5190 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5191 } else {
5192 KASSERT(udf_node->efe);
5193 refcnt = udf_rw16(udf_node->efe->link_cnt);
5194 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5195 }
5196
5197 /* mark not deleted if it was... just in case, but do warn */
5198 if (udf_node->i_flags & IN_DELETED) {
5199 printf("udf: warning, marking a file undeleted\n");
5200 udf_node->i_flags &= ~IN_DELETED;
5201 }
5202
5203 if (file_char & UDF_FILE_CHAR_DIR) {
5204 /* add reference counter in directory node for '..' */
5205 if (dir_node->fe) {
5206 refcnt = udf_rw16(dir_node->fe->link_cnt);
5207 refcnt++;
5208 dir_node->fe->link_cnt = udf_rw16(refcnt);
5209 } else {
5210 KASSERT(dir_node->efe);
5211 refcnt = udf_rw16(dir_node->efe->link_cnt);
5212 refcnt++;
5213 dir_node->efe->link_cnt = udf_rw16(refcnt);
5214 }
5215 }
5216
5217 /* append to the dirhash */
5218 /* NOTE do not use dirent anymore or it won't match later! */
5219 udf_to_unix_name(dirent.d_name, NAME_MAX,
5220 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5221 dirent.d_namlen = strlen(dirent.d_name);
5222 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5223 udf_fidsize(fid), 1);
5224
5225 /* note updates */
5226 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5227 /* VN_KNOTE(udf_node, ...) */
5228 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5229
5230 error_out:
5231 free(fid, M_TEMP);
5232
5233 dirhash_put(dir_node->dir_hash);
5234
5235 return error;
5236 }
5237
5238 /* --------------------------------------------------------------------- */
5239
5240 /*
5241 * Each node can have an attached streamdir node though not recursively. These
5242 * are otherwise known as named substreams/named extended attributes that have
5243 * no size limitations.
5244 *
5245 * `Normal' extended attributes are indicated with a number and are recorded
5246 * in either the fe/efe descriptor itself for small descriptors or recorded in
5247 * the attached extended attribute file. Since these spaces can get
5248 * fragmented, care ought to be taken.
5249 *
5250 * Since the size of the space reserved for allocation descriptors is limited,
5251 * there is a mechanim provided for extending this space; this is done by a
5252 * special extent to allow schrinking of the allocations without breaking the
5253 * linkage to the allocation extent descriptor.
5254 */
5255
5256 int
5257 udf_loadvnode(struct mount *mp, struct vnode *vp,
5258 const void *key, size_t key_len, const void **new_key)
5259 {
5260 union dscrptr *dscr;
5261 struct udf_mount *ump;
5262 struct udf_node *udf_node;
5263 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5264 uint64_t file_size;
5265 uint32_t lb_size, sector, dummy;
5266 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5267 int slot, eof, error;
5268 int num_indir_followed = 0;
5269
5270 DPRINTF(NODE, ("udf_loadvnode called\n"));
5271 udf_node = NULL;
5272 ump = VFSTOUDF(mp);
5273
5274 KASSERT(key_len == sizeof(node_icb_loc.loc));
5275 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5276 node_icb_loc.len = ump->logical_vol->lb_size;
5277 memcpy(&node_icb_loc.loc, key, key_len);
5278
5279 /* garbage check: translate udf_node_icb_loc to sectornr */
5280 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5281 if (error) {
5282 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5283 /* no use, this will fail anyway */
5284 return EINVAL;
5285 }
5286
5287 /* build udf_node (do initialise!) */
5288 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5289 memset(udf_node, 0, sizeof(struct udf_node));
5290
5291 vp->v_tag = VT_UDF;
5292 vp->v_op = udf_vnodeop_p;
5293 vp->v_data = udf_node;
5294
5295 /* initialise crosslinks, note location of fe/efe for hashing */
5296 udf_node->ump = ump;
5297 udf_node->vnode = vp;
5298 udf_node->loc = node_icb_loc;
5299 udf_node->lockf = 0;
5300 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5301 cv_init(&udf_node->node_lock, "udf_nlk");
5302 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5303 udf_node->outstanding_bufs = 0;
5304 udf_node->outstanding_nodedscr = 0;
5305 udf_node->uncommitted_lbs = 0;
5306
5307 /* check if we're fetching the root */
5308 if (ump->fileset_desc)
5309 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5310 sizeof(struct long_ad)) == 0)
5311 vp->v_vflag |= VV_ROOT;
5312
5313 /* insert into the hash lookup */
5314 udf_register_node(udf_node);
5315
5316 icb_loc = node_icb_loc;
5317 needs_indirect = 0;
5318 strat4096 = 0;
5319 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5320 file_size = 0;
5321 lb_size = udf_rw32(ump->logical_vol->lb_size);
5322
5323 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5324 do {
5325 /* try to read in fe/efe */
5326 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5327
5328 /* blank sector marks end of sequence, check this */
5329 if ((dscr == NULL) && (!strat4096))
5330 error = ENOENT;
5331
5332 /* break if read error or blank sector */
5333 if (error || (dscr == NULL))
5334 break;
5335
5336 /* process descriptor based on the descriptor type */
5337 dscr_type = udf_rw16(dscr->tag.id);
5338 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5339
5340 /* if dealing with an indirect entry, follow the link */
5341 if (dscr_type == TAGID_INDIRECTENTRY) {
5342 needs_indirect = 0;
5343 next_icb_loc = dscr->inde.indirect_icb;
5344 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5345 icb_loc = next_icb_loc;
5346 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5347 error = EMLINK;
5348 break;
5349 }
5350 continue;
5351 }
5352
5353 /* only file entries and extended file entries allowed here */
5354 if ((dscr_type != TAGID_FENTRY) &&
5355 (dscr_type != TAGID_EXTFENTRY)) {
5356 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5357 error = ENOENT;
5358 break;
5359 }
5360
5361 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5362
5363 /* choose this one */
5364 last_fe_icb_loc = icb_loc;
5365
5366 /* record and process/update (ext)fentry */
5367 if (dscr_type == TAGID_FENTRY) {
5368 if (udf_node->fe)
5369 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5370 udf_node->fe);
5371 udf_node->fe = &dscr->fe;
5372 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5373 udf_file_type = udf_node->fe->icbtag.file_type;
5374 file_size = udf_rw64(udf_node->fe->inf_len);
5375 } else {
5376 if (udf_node->efe)
5377 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5378 udf_node->efe);
5379 udf_node->efe = &dscr->efe;
5380 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5381 udf_file_type = udf_node->efe->icbtag.file_type;
5382 file_size = udf_rw64(udf_node->efe->inf_len);
5383 }
5384
5385 /* check recording strategy (structure) */
5386
5387 /*
5388 * Strategy 4096 is a daisy linked chain terminating with an
5389 * unrecorded sector or a TERM descriptor. The next
5390 * descriptor is to be found in the sector that follows the
5391 * current sector.
5392 */
5393 if (strat == 4096) {
5394 strat4096 = 1;
5395 needs_indirect = 1;
5396
5397 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5398 }
5399
5400 /*
5401 * Strategy 4 is the normal strategy and terminates, but if
5402 * we're in strategy 4096, we can't have strategy 4 mixed in
5403 */
5404
5405 if (strat == 4) {
5406 if (strat4096) {
5407 error = EINVAL;
5408 break;
5409 }
5410 break; /* done */
5411 }
5412 } while (!error);
5413
5414 /* first round of cleanup code */
5415 if (error) {
5416 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5417 /* recycle udf_node */
5418 udf_dispose_node(udf_node);
5419
5420 return EINVAL; /* error code ok? */
5421 }
5422 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5423
5424 /* assert no references to dscr anymore beyong this point */
5425 assert((udf_node->fe) || (udf_node->efe));
5426 dscr = NULL;
5427
5428 /*
5429 * Remember where to record an updated version of the descriptor. If
5430 * there is a sequence of indirect entries, icb_loc will have been
5431 * updated. Its the write disipline to allocate new space and to make
5432 * sure the chain is maintained.
5433 *
5434 * `needs_indirect' flags if the next location is to be filled with
5435 * with an indirect entry.
5436 */
5437 udf_node->write_loc = icb_loc;
5438 udf_node->needs_indirect = needs_indirect;
5439
5440 /*
5441 * Go trough all allocations extents of this descriptor and when
5442 * encountering a redirect read in the allocation extension. These are
5443 * daisy-chained.
5444 */
5445 UDF_LOCK_NODE(udf_node, 0);
5446 udf_node->num_extensions = 0;
5447
5448 error = 0;
5449 slot = 0;
5450 for (;;) {
5451 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5452 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5453 "lb_num = %d, part = %d\n", slot, eof,
5454 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5455 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5456 udf_rw32(icb_loc.loc.lb_num),
5457 udf_rw16(icb_loc.loc.part_num)));
5458 if (eof)
5459 break;
5460 slot++;
5461
5462 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5463 continue;
5464
5465 DPRINTF(NODE, ("\tgot redirect extent\n"));
5466 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5467 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5468 "too many allocation extensions on "
5469 "udf_node\n"));
5470 error = EINVAL;
5471 break;
5472 }
5473
5474 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5475 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5476 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5477 "extension size in udf_node\n"));
5478 error = EINVAL;
5479 break;
5480 }
5481
5482 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5483 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5484 /* load in allocation extent */
5485 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5486 if (error || (dscr == NULL))
5487 break;
5488
5489 /* process read-in descriptor */
5490 dscr_type = udf_rw16(dscr->tag.id);
5491
5492 if (dscr_type != TAGID_ALLOCEXTENT) {
5493 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5494 error = ENOENT;
5495 break;
5496 }
5497
5498 DPRINTF(NODE, ("\trecording redirect extent\n"));
5499 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5500 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5501
5502 udf_node->num_extensions++;
5503
5504 } /* while */
5505 UDF_UNLOCK_NODE(udf_node, 0);
5506
5507 /* second round of cleanup code */
5508 if (error) {
5509 /* recycle udf_node */
5510 udf_dispose_node(udf_node);
5511
5512 return EINVAL; /* error code ok? */
5513 }
5514
5515 DPRINTF(NODE, ("\tnode read in fine\n"));
5516
5517 /*
5518 * Translate UDF filetypes into vnode types.
5519 *
5520 * Systemfiles like the meta main and mirror files are not treated as
5521 * normal files, so we type them as having no type. UDF dictates that
5522 * they are not allowed to be visible.
5523 */
5524
5525 switch (udf_file_type) {
5526 case UDF_ICB_FILETYPE_DIRECTORY :
5527 case UDF_ICB_FILETYPE_STREAMDIR :
5528 vp->v_type = VDIR;
5529 break;
5530 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5531 vp->v_type = VBLK;
5532 break;
5533 case UDF_ICB_FILETYPE_CHARDEVICE :
5534 vp->v_type = VCHR;
5535 break;
5536 case UDF_ICB_FILETYPE_SOCKET :
5537 vp->v_type = VSOCK;
5538 break;
5539 case UDF_ICB_FILETYPE_FIFO :
5540 vp->v_type = VFIFO;
5541 break;
5542 case UDF_ICB_FILETYPE_SYMLINK :
5543 vp->v_type = VLNK;
5544 break;
5545 case UDF_ICB_FILETYPE_VAT :
5546 case UDF_ICB_FILETYPE_META_MAIN :
5547 case UDF_ICB_FILETYPE_META_MIRROR :
5548 vp->v_type = VNON;
5549 break;
5550 case UDF_ICB_FILETYPE_RANDOMACCESS :
5551 case UDF_ICB_FILETYPE_REALTIME :
5552 vp->v_type = VREG;
5553 break;
5554 default:
5555 /* YIKES, something else */
5556 vp->v_type = VNON;
5557 }
5558
5559 /* TODO specfs, fifofs etc etc. vnops setting */
5560
5561 /* don't forget to set vnode's v_size */
5562 uvm_vnp_setsize(vp, file_size);
5563
5564 /* TODO ext attr and streamdir udf_nodes */
5565
5566 *new_key = &udf_node->loc.loc;
5567
5568 return 0;
5569 }
5570
5571 int
5572 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5573 struct udf_node **udf_noderes)
5574 {
5575 int error;
5576 struct vnode *vp;
5577
5578 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5579 sizeof(node_icb_loc->loc), &vp);
5580 if (error)
5581 return error;
5582 error = vn_lock(vp, LK_EXCLUSIVE);
5583 if (error) {
5584 vrele(vp);
5585 return error;
5586 }
5587 *udf_noderes = VTOI(vp);
5588 return 0;
5589 }
5590
5591 /* --------------------------------------------------------------------- */
5592
5593 int
5594 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5595 {
5596 union dscrptr *dscr;
5597 struct long_ad *loc;
5598 int extnr, error;
5599
5600 DPRINTF(NODE, ("udf_writeout_node called\n"));
5601
5602 KASSERT(udf_node->outstanding_bufs == 0);
5603 KASSERT(udf_node->outstanding_nodedscr == 0);
5604
5605 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5606
5607 if (udf_node->i_flags & IN_DELETED) {
5608 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5609 udf_cleanup_reservation(udf_node);
5610 return 0;
5611 }
5612
5613 /* lock node; unlocked in callback */
5614 UDF_LOCK_NODE(udf_node, 0);
5615
5616 /* remove pending reservations, we're written out */
5617 udf_cleanup_reservation(udf_node);
5618
5619 /* at least one descriptor writeout */
5620 udf_node->outstanding_nodedscr = 1;
5621
5622 /* we're going to write out the descriptor so clear the flags */
5623 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5624
5625 /* if we were rebuild, write out the allocation extents */
5626 if (udf_node->i_flags & IN_NODE_REBUILD) {
5627 /* mark outstanding node descriptors and issue them */
5628 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5629 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5630 loc = &udf_node->ext_loc[extnr];
5631 dscr = (union dscrptr *) udf_node->ext[extnr];
5632 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5633 if (error)
5634 return error;
5635 }
5636 /* mark allocation extents written out */
5637 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5638 }
5639
5640 if (udf_node->fe) {
5641 KASSERT(udf_node->efe == NULL);
5642 dscr = (union dscrptr *) udf_node->fe;
5643 } else {
5644 KASSERT(udf_node->efe);
5645 KASSERT(udf_node->fe == NULL);
5646 dscr = (union dscrptr *) udf_node->efe;
5647 }
5648 KASSERT(dscr);
5649
5650 loc = &udf_node->write_loc;
5651 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5652
5653 return error;
5654 }
5655
5656 /* --------------------------------------------------------------------- */
5657
5658 int
5659 udf_dispose_node(struct udf_node *udf_node)
5660 {
5661 struct vnode *vp;
5662 int extnr;
5663
5664 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5665 if (!udf_node) {
5666 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5667 return 0;
5668 }
5669
5670 vp = udf_node->vnode;
5671 #ifdef DIAGNOSTIC
5672 if (vp->v_numoutput)
5673 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5674 "v_numoutput = %d", udf_node, vp->v_numoutput);
5675 #endif
5676
5677 udf_cleanup_reservation(udf_node);
5678
5679 /* TODO extended attributes and streamdir */
5680
5681 /* remove dirhash if present */
5682 dirhash_purge(&udf_node->dir_hash);
5683
5684 /* remove from our hash lookup table */
5685 udf_deregister_node(udf_node);
5686
5687 /* destroy our lock */
5688 mutex_destroy(&udf_node->node_mutex);
5689 cv_destroy(&udf_node->node_lock);
5690
5691 /* dissociate our udf_node from the vnode */
5692 genfs_node_destroy(udf_node->vnode);
5693 vp->v_data = NULL;
5694
5695 /* free associated memory and the node itself */
5696 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5697 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5698 udf_node->ext[extnr]);
5699 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5700 }
5701
5702 if (udf_node->fe)
5703 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5704 udf_node->fe);
5705 if (udf_node->efe)
5706 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5707 udf_node->efe);
5708
5709 udf_node->fe = (void *) 0xdeadaaaa;
5710 udf_node->efe = (void *) 0xdeadbbbb;
5711 udf_node->ump = (void *) 0xdeadbeef;
5712 pool_put(&udf_node_pool, udf_node);
5713
5714 return 0;
5715 }
5716
5717
5718
5719 /*
5720 * create a new node using the specified dvp, vap and cnp.
5721 * This allows special files to be created. Use with care.
5722 */
5723
5724 int
5725 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5726 struct vattr *vap, kauth_cred_t cred,
5727 size_t *key_len, const void **new_key)
5728 {
5729 union dscrptr *dscr;
5730 struct udf_node *dir_node = VTOI(dvp);
5731 struct udf_node *udf_node;
5732 struct udf_mount *ump = dir_node->ump;
5733 struct long_ad node_icb_loc;
5734 uint64_t parent_unique_id;
5735 uint64_t lmapping;
5736 uint32_t lb_size, lb_num;
5737 uint16_t vpart_num;
5738 uid_t uid;
5739 gid_t gid, parent_gid;
5740 int (**vnodeops)(void *);
5741 int udf_file_type, fid_size, error;
5742
5743 vnodeops = udf_vnodeop_p;
5744 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5745
5746 switch (vap->va_type) {
5747 case VREG :
5748 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5749 break;
5750 case VDIR :
5751 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5752 break;
5753 case VLNK :
5754 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5755 break;
5756 case VBLK :
5757 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5758 /* specfs */
5759 return ENOTSUP;
5760 break;
5761 case VCHR :
5762 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5763 /* specfs */
5764 return ENOTSUP;
5765 break;
5766 case VFIFO :
5767 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5768 /* fifofs */
5769 return ENOTSUP;
5770 break;
5771 case VSOCK :
5772 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5773 return ENOTSUP;
5774 break;
5775 case VNON :
5776 case VBAD :
5777 default :
5778 /* nothing; can we even create these? */
5779 return EINVAL;
5780 }
5781
5782 lb_size = udf_rw32(ump->logical_vol->lb_size);
5783
5784 /* reserve space for one logical block */
5785 vpart_num = ump->node_part;
5786 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5787 vpart_num, 1, /* can_fail */ true);
5788 if (error)
5789 return error;
5790
5791 /* allocate node */
5792 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5793 vpart_num, 1, &lmapping);
5794 if (error) {
5795 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5796 return error;
5797 }
5798
5799 lb_num = lmapping;
5800
5801 /* initialise pointer to location */
5802 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5803 node_icb_loc.len = udf_rw32(lb_size);
5804 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5805 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5806
5807 /* build udf_node (do initialise!) */
5808 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5809 memset(udf_node, 0, sizeof(struct udf_node));
5810
5811 /* initialise crosslinks, note location of fe/efe for hashing */
5812 /* bugalert: synchronise with udf_get_node() */
5813 udf_node->ump = ump;
5814 udf_node->vnode = vp;
5815 vp->v_data = udf_node;
5816 udf_node->loc = node_icb_loc;
5817 udf_node->write_loc = node_icb_loc;
5818 udf_node->lockf = 0;
5819 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5820 cv_init(&udf_node->node_lock, "udf_nlk");
5821 udf_node->outstanding_bufs = 0;
5822 udf_node->outstanding_nodedscr = 0;
5823 udf_node->uncommitted_lbs = 0;
5824
5825 vp->v_tag = VT_UDF;
5826 vp->v_op = vnodeops;
5827
5828 /* initialise genfs */
5829 genfs_node_init(vp, &udf_genfsops);
5830
5831 /* insert into the hash lookup */
5832 udf_register_node(udf_node);
5833
5834 /* get parent's unique ID for refering '..' if its a directory */
5835 if (dir_node->fe) {
5836 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5837 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5838 } else {
5839 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5840 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5841 }
5842
5843 /* get descriptor */
5844 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5845
5846 /* choose a fe or an efe for it */
5847 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5848 udf_node->fe = &dscr->fe;
5849 fid_size = udf_create_new_fe(ump, udf_node->fe,
5850 udf_file_type, &udf_node->loc,
5851 &dir_node->loc, parent_unique_id);
5852 /* TODO add extended attribute for creation time */
5853 } else {
5854 udf_node->efe = &dscr->efe;
5855 fid_size = udf_create_new_efe(ump, udf_node->efe,
5856 udf_file_type, &udf_node->loc,
5857 &dir_node->loc, parent_unique_id);
5858 }
5859 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5860
5861 /* update vnode's size and type */
5862 vp->v_type = vap->va_type;
5863 uvm_vnp_setsize(vp, fid_size);
5864
5865 /* set access mode */
5866 udf_setaccessmode(udf_node, vap->va_mode);
5867
5868 /* set ownership */
5869 uid = kauth_cred_geteuid(cred);
5870 gid = parent_gid;
5871 udf_setownership(udf_node, uid, gid);
5872
5873 *key_len = sizeof(udf_node->loc.loc);;
5874 *new_key = &udf_node->loc.loc;
5875
5876 return 0;
5877 }
5878
5879
5880 int
5881 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5882 struct componentname *cnp)
5883 {
5884 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5885 struct udf_mount *ump = dir_node->ump;
5886 int error;
5887
5888 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5889 if (error)
5890 return error;
5891
5892 udf_node = VTOI(*vpp);
5893 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5894 if (error) {
5895 struct long_ad *node_icb_loc = &udf_node->loc;
5896 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5897 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5898
5899 /* free disc allocation for node */
5900 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5901
5902 /* recycle udf_node */
5903 udf_dispose_node(udf_node);
5904 vrele(*vpp);
5905
5906 *vpp = NULL;
5907 return error;
5908 }
5909
5910 /* adjust file count */
5911 udf_adjust_filecount(udf_node, 1);
5912
5913 return 0;
5914 }
5915
5916 /* --------------------------------------------------------------------- */
5917
5918 static void
5919 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5920 {
5921 struct udf_mount *ump = udf_node->ump;
5922 uint32_t lb_size, lb_num, len, num_lb;
5923 uint16_t vpart_num;
5924
5925 /* is there really one? */
5926 if (mem == NULL)
5927 return;
5928
5929 /* got a descriptor here */
5930 len = UDF_EXT_LEN(udf_rw32(loc->len));
5931 lb_num = udf_rw32(loc->loc.lb_num);
5932 vpart_num = udf_rw16(loc->loc.part_num);
5933
5934 lb_size = udf_rw32(ump->logical_vol->lb_size);
5935 num_lb = (len + lb_size -1) / lb_size;
5936
5937 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5938 }
5939
5940 void
5941 udf_delete_node(struct udf_node *udf_node)
5942 {
5943 void *dscr;
5944 struct long_ad *loc;
5945 int extnr, lvint, dummy;
5946
5947 /* paranoia check on integrity; should be open!; we could panic */
5948 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5949 if (lvint == UDF_INTEGRITY_CLOSED)
5950 printf("\tIntegrity was CLOSED!\n");
5951
5952 /* whatever the node type, change its size to zero */
5953 (void) udf_resize_node(udf_node, 0, &dummy);
5954
5955 /* force it to be `clean'; no use writing it out */
5956 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5957 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5958
5959 /* adjust file count */
5960 udf_adjust_filecount(udf_node, -1);
5961
5962 /*
5963 * Free its allocated descriptors; memory will be released when
5964 * vop_reclaim() is called.
5965 */
5966 loc = &udf_node->loc;
5967
5968 dscr = udf_node->fe;
5969 udf_free_descriptor_space(udf_node, loc, dscr);
5970 dscr = udf_node->efe;
5971 udf_free_descriptor_space(udf_node, loc, dscr);
5972
5973 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5974 dscr = udf_node->ext[extnr];
5975 loc = &udf_node->ext_loc[extnr];
5976 udf_free_descriptor_space(udf_node, loc, dscr);
5977 }
5978 }
5979
5980 /* --------------------------------------------------------------------- */
5981
5982 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5983 int
5984 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5985 {
5986 struct file_entry *fe = udf_node->fe;
5987 struct extfile_entry *efe = udf_node->efe;
5988 uint64_t file_size;
5989 int error;
5990
5991 if (fe) {
5992 file_size = udf_rw64(fe->inf_len);
5993 } else {
5994 assert(udf_node->efe);
5995 file_size = udf_rw64(efe->inf_len);
5996 }
5997
5998 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5999 file_size, new_size));
6000
6001 /* if not changing, we're done */
6002 if (file_size == new_size)
6003 return 0;
6004
6005 *extended = (new_size > file_size);
6006 if (*extended) {
6007 error = udf_grow_node(udf_node, new_size);
6008 } else {
6009 error = udf_shrink_node(udf_node, new_size);
6010 }
6011
6012 return error;
6013 }
6014
6015
6016 /* --------------------------------------------------------------------- */
6017
6018 void
6019 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6020 struct timespec *mod, struct timespec *birth)
6021 {
6022 struct timespec now;
6023 struct file_entry *fe;
6024 struct extfile_entry *efe;
6025 struct filetimes_extattr_entry *ft_extattr;
6026 struct timestamp *atime, *mtime, *attrtime, *ctime;
6027 struct timestamp fe_ctime;
6028 struct timespec cur_birth;
6029 uint32_t offset, a_l;
6030 uint8_t *filedata;
6031 int error;
6032
6033 /* protect against rogue values */
6034 if (!udf_node)
6035 return;
6036
6037 fe = udf_node->fe;
6038 efe = udf_node->efe;
6039
6040 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6041 return;
6042
6043 /* get descriptor information */
6044 if (fe) {
6045 atime = &fe->atime;
6046 mtime = &fe->mtime;
6047 attrtime = &fe->attrtime;
6048 filedata = fe->data;
6049
6050 /* initial save dummy setting */
6051 ctime = &fe_ctime;
6052
6053 /* check our extended attribute if present */
6054 error = udf_extattr_search_intern(udf_node,
6055 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6056 if (!error) {
6057 ft_extattr = (struct filetimes_extattr_entry *)
6058 (filedata + offset);
6059 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6060 ctime = &ft_extattr->times[0];
6061 }
6062 /* TODO create the extended attribute if not found ? */
6063 } else {
6064 assert(udf_node->efe);
6065 atime = &efe->atime;
6066 mtime = &efe->mtime;
6067 attrtime = &efe->attrtime;
6068 ctime = &efe->ctime;
6069 }
6070
6071 vfs_timestamp(&now);
6072
6073 /* set access time */
6074 if (udf_node->i_flags & IN_ACCESS) {
6075 if (acc == NULL)
6076 acc = &now;
6077 udf_timespec_to_timestamp(acc, atime);
6078 }
6079
6080 /* set modification time */
6081 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6082 if (mod == NULL)
6083 mod = &now;
6084 udf_timespec_to_timestamp(mod, mtime);
6085
6086 /* ensure birthtime is older than set modification! */
6087 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6088 if ((cur_birth.tv_sec > mod->tv_sec) ||
6089 ((cur_birth.tv_sec == mod->tv_sec) &&
6090 (cur_birth.tv_nsec > mod->tv_nsec))) {
6091 udf_timespec_to_timestamp(mod, ctime);
6092 }
6093 }
6094
6095 /* update birthtime if specified */
6096 /* XXX we assume here that given birthtime is older than mod */
6097 if (birth && (birth->tv_sec != VNOVAL)) {
6098 udf_timespec_to_timestamp(birth, ctime);
6099 }
6100
6101 /* set change time */
6102 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6103 udf_timespec_to_timestamp(&now, attrtime);
6104
6105 /* notify updates to the node itself */
6106 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6107 udf_node->i_flags |= IN_ACCESSED;
6108 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6109 udf_node->i_flags |= IN_MODIFIED;
6110
6111 /* clear modification flags */
6112 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6113 }
6114
6115 /* --------------------------------------------------------------------- */
6116
6117 int
6118 udf_update(struct vnode *vp, struct timespec *acc,
6119 struct timespec *mod, struct timespec *birth, int updflags)
6120 {
6121 union dscrptr *dscrptr;
6122 struct udf_node *udf_node = VTOI(vp);
6123 struct udf_mount *ump = udf_node->ump;
6124 struct regid *impl_id;
6125 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6126 int waitfor, flags;
6127
6128 #ifdef DEBUG
6129 char bits[128];
6130 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6131 updflags));
6132 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6133 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6134 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6135 #endif
6136
6137 /* set our times */
6138 udf_itimes(udf_node, acc, mod, birth);
6139
6140 /* set our implementation id */
6141 if (udf_node->fe) {
6142 dscrptr = (union dscrptr *) udf_node->fe;
6143 impl_id = &udf_node->fe->imp_id;
6144 } else {
6145 dscrptr = (union dscrptr *) udf_node->efe;
6146 impl_id = &udf_node->efe->imp_id;
6147 }
6148
6149 /* set our ID */
6150 udf_set_regid(impl_id, IMPL_NAME);
6151 udf_add_impl_regid(ump, impl_id);
6152
6153 /* update our crc! on RMW we are not allowed to change a thing */
6154 udf_validate_tag_and_crc_sums(dscrptr);
6155
6156 /* if called when mounted readonly, never write back */
6157 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6158 return 0;
6159
6160 /* check if the node is dirty 'enough'*/
6161 if (updflags & UPDATE_CLOSE) {
6162 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6163 } else {
6164 flags = udf_node->i_flags & IN_MODIFIED;
6165 }
6166 if (flags == 0)
6167 return 0;
6168
6169 /* determine if we need to write sync or async */
6170 waitfor = 0;
6171 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6172 /* sync mounted */
6173 waitfor = updflags & UPDATE_WAIT;
6174 if (updflags & UPDATE_DIROP)
6175 waitfor |= UPDATE_WAIT;
6176 }
6177 if (waitfor)
6178 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6179
6180 return 0;
6181 }
6182
6183
6184 /* --------------------------------------------------------------------- */
6185
6186
6187 /*
6188 * Read one fid and process it into a dirent and advance to the next (*fid)
6189 * has to be allocated a logical block in size, (*dirent) struct dirent length
6190 */
6191
6192 int
6193 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6194 struct fileid_desc *fid, struct dirent *dirent)
6195 {
6196 struct udf_node *dir_node = VTOI(vp);
6197 struct udf_mount *ump = dir_node->ump;
6198 struct file_entry *fe = dir_node->fe;
6199 struct extfile_entry *efe = dir_node->efe;
6200 uint32_t fid_size, lb_size;
6201 uint64_t file_size;
6202 char *fid_name;
6203 int enough, error;
6204
6205 assert(fid);
6206 assert(dirent);
6207 assert(dir_node);
6208 assert(offset);
6209 assert(*offset != 1);
6210
6211 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6212 /* check if we're past the end of the directory */
6213 if (fe) {
6214 file_size = udf_rw64(fe->inf_len);
6215 } else {
6216 assert(dir_node->efe);
6217 file_size = udf_rw64(efe->inf_len);
6218 }
6219 if (*offset >= file_size)
6220 return EINVAL;
6221
6222 /* get maximum length of FID descriptor */
6223 lb_size = udf_rw32(ump->logical_vol->lb_size);
6224
6225 /* initialise return values */
6226 fid_size = 0;
6227 memset(dirent, 0, sizeof(struct dirent));
6228 memset(fid, 0, lb_size);
6229
6230 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6231 if (!enough) {
6232 /* short dir ... */
6233 return EIO;
6234 }
6235
6236 error = vn_rdwr(UIO_READ, vp,
6237 fid, MIN(file_size - (*offset), lb_size), *offset,
6238 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6239 NULL, NULL);
6240 if (error)
6241 return error;
6242
6243 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6244 /*
6245 * Check if we got a whole descriptor.
6246 * TODO Try to `resync' directory stream when something is very wrong.
6247 */
6248
6249 /* check if our FID header is OK */
6250 error = udf_check_tag(fid);
6251 if (error) {
6252 goto brokendir;
6253 }
6254 DPRINTF(FIDS, ("\ttag check ok\n"));
6255
6256 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6257 error = EIO;
6258 goto brokendir;
6259 }
6260 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6261
6262 /* check for length */
6263 fid_size = udf_fidsize(fid);
6264 enough = (file_size - (*offset) >= fid_size);
6265 if (!enough) {
6266 error = EIO;
6267 goto brokendir;
6268 }
6269 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6270
6271 /* check FID contents */
6272 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6273 brokendir:
6274 if (error) {
6275 /* note that is sometimes a bit quick to report */
6276 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6277 /* RESYNC? */
6278 /* TODO: use udf_resync_fid_stream */
6279 return EIO;
6280 }
6281 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6282
6283 /* we got a whole and valid descriptor! */
6284 DPRINTF(FIDS, ("\tinterpret FID\n"));
6285
6286 /* create resulting dirent structure */
6287 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6288 udf_to_unix_name(dirent->d_name, NAME_MAX,
6289 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6290
6291 /* '..' has no name, so provide one */
6292 if (fid->file_char & UDF_FILE_CHAR_PAR)
6293 strcpy(dirent->d_name, "..");
6294
6295 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6296 dirent->d_namlen = strlen(dirent->d_name);
6297 dirent->d_reclen = _DIRENT_SIZE(dirent);
6298
6299 /*
6300 * Note that its not worth trying to go for the filetypes now... its
6301 * too expensive too
6302 */
6303 dirent->d_type = DT_UNKNOWN;
6304
6305 /* initial guess for filetype we can make */
6306 if (fid->file_char & UDF_FILE_CHAR_DIR)
6307 dirent->d_type = DT_DIR;
6308
6309 /* advance */
6310 *offset += fid_size;
6311
6312 return error;
6313 }
6314
6315
6316 /* --------------------------------------------------------------------- */
6317
6318 static void
6319 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6320 int pass, int *ndirty)
6321 {
6322 struct udf_node *udf_node, *n_udf_node;
6323 struct vnode *vp;
6324 int vdirty, error;
6325 int on_type, on_flags, on_vnode;
6326
6327 derailed:
6328 KASSERT(mutex_owned(&mntvnode_lock));
6329
6330 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6331 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6332 for (;udf_node; udf_node = n_udf_node) {
6333 DPRINTF(SYNC, ("."));
6334
6335 udf_node->i_flags &= ~IN_SYNCED;
6336 vp = udf_node->vnode;
6337
6338 mutex_enter(vp->v_interlock);
6339 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6340 udf_node, RB_DIR_RIGHT);
6341
6342 if (n_udf_node)
6343 n_udf_node->i_flags |= IN_SYNCED;
6344
6345 /* system nodes are not synced this way */
6346 if (vp->v_vflag & VV_SYSTEM) {
6347 mutex_exit(vp->v_interlock);
6348 continue;
6349 }
6350
6351 /* check if its dirty enough to even try */
6352 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6353 on_flags = ((udf_node->i_flags &
6354 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6355 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6356 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6357 if (on_type || (on_flags || on_vnode)) { /* XXX */
6358 /* not dirty (enough?) */
6359 mutex_exit(vp->v_interlock);
6360 continue;
6361 }
6362
6363 mutex_exit(&mntvnode_lock);
6364 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT);
6365 if (error) {
6366 mutex_enter(&mntvnode_lock);
6367 if (error == ENOENT)
6368 goto derailed;
6369 *ndirty += 1;
6370 continue;
6371 }
6372
6373 switch (pass) {
6374 case 1:
6375 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6376 break;
6377 case 2:
6378 vdirty = vp->v_numoutput;
6379 if (vp->v_tag == VT_UDF)
6380 vdirty += udf_node->outstanding_bufs +
6381 udf_node->outstanding_nodedscr;
6382 if (vdirty == 0)
6383 VOP_FSYNC(vp, cred, 0,0,0);
6384 *ndirty += vdirty;
6385 break;
6386 case 3:
6387 vdirty = vp->v_numoutput;
6388 if (vp->v_tag == VT_UDF)
6389 vdirty += udf_node->outstanding_bufs +
6390 udf_node->outstanding_nodedscr;
6391 *ndirty += vdirty;
6392 break;
6393 }
6394
6395 vput(vp);
6396 mutex_enter(&mntvnode_lock);
6397 }
6398 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6399 }
6400
6401
6402 void
6403 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6404 {
6405 int dummy, ndirty;
6406
6407 mutex_enter(&mntvnode_lock);
6408 recount:
6409 dummy = 0;
6410 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6411 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6412 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6413
6414 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6415 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6416 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6417
6418 if (waitfor == MNT_WAIT) {
6419 ndirty = ump->devvp->v_numoutput;
6420 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6421 ndirty));
6422 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6423 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6424 ndirty));
6425
6426 if (ndirty) {
6427 /* 1/4 second wait */
6428 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6429 hz/4);
6430 goto recount;
6431 }
6432 }
6433
6434 mutex_exit(&mntvnode_lock);
6435 }
6436
6437 /* --------------------------------------------------------------------- */
6438
6439 /*
6440 * Read and write file extent in/from the buffer.
6441 *
6442 * The splitup of the extent into seperate request-buffers is to minimise
6443 * copying around as much as possible.
6444 *
6445 * block based file reading and writing
6446 */
6447
6448 static int
6449 udf_read_internal(struct udf_node *node, uint8_t *blob)
6450 {
6451 struct udf_mount *ump;
6452 struct file_entry *fe = node->fe;
6453 struct extfile_entry *efe = node->efe;
6454 uint64_t inflen;
6455 uint32_t sector_size;
6456 uint8_t *pos;
6457 int icbflags, addr_type;
6458
6459 /* get extent and do some paranoia checks */
6460 ump = node->ump;
6461 sector_size = ump->discinfo.sector_size;
6462
6463 if (fe) {
6464 inflen = udf_rw64(fe->inf_len);
6465 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6466 icbflags = udf_rw16(fe->icbtag.flags);
6467 } else {
6468 assert(node->efe);
6469 inflen = udf_rw64(efe->inf_len);
6470 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6471 icbflags = udf_rw16(efe->icbtag.flags);
6472 }
6473 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6474
6475 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6476 __USE(addr_type);
6477 assert(inflen < sector_size);
6478
6479 /* copy out info */
6480 memset(blob, 0, sector_size);
6481 memcpy(blob, pos, inflen);
6482
6483 return 0;
6484 }
6485
6486
6487 static int
6488 udf_write_internal(struct udf_node *node, uint8_t *blob)
6489 {
6490 struct udf_mount *ump;
6491 struct file_entry *fe = node->fe;
6492 struct extfile_entry *efe = node->efe;
6493 uint64_t inflen;
6494 uint32_t sector_size;
6495 uint8_t *pos;
6496 int icbflags, addr_type;
6497
6498 /* get extent and do some paranoia checks */
6499 ump = node->ump;
6500 sector_size = ump->discinfo.sector_size;
6501
6502 if (fe) {
6503 inflen = udf_rw64(fe->inf_len);
6504 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6505 icbflags = udf_rw16(fe->icbtag.flags);
6506 } else {
6507 assert(node->efe);
6508 inflen = udf_rw64(efe->inf_len);
6509 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6510 icbflags = udf_rw16(efe->icbtag.flags);
6511 }
6512 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6513
6514 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6515 __USE(addr_type);
6516 assert(inflen < sector_size);
6517 __USE(sector_size);
6518
6519 /* copy in blob */
6520 /* memset(pos, 0, inflen); */
6521 memcpy(pos, blob, inflen);
6522
6523 return 0;
6524 }
6525
6526
6527 void
6528 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6529 {
6530 struct buf *nestbuf;
6531 struct udf_mount *ump = udf_node->ump;
6532 uint64_t *mapping;
6533 uint64_t run_start;
6534 uint32_t sector_size;
6535 uint32_t buf_offset, sector, rbuflen, rblk;
6536 uint32_t from, lblkno;
6537 uint32_t sectors;
6538 uint8_t *buf_pos;
6539 int error, run_length, what;
6540
6541 sector_size = udf_node->ump->discinfo.sector_size;
6542
6543 from = buf->b_blkno;
6544 sectors = buf->b_bcount / sector_size;
6545
6546 what = udf_get_c_type(udf_node);
6547
6548 /* assure we have enough translation slots */
6549 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6550 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6551
6552 if (sectors > UDF_MAX_MAPPINGS) {
6553 printf("udf_read_filebuf: implementation limit on bufsize\n");
6554 buf->b_error = EIO;
6555 biodone(buf);
6556 return;
6557 }
6558
6559 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6560
6561 error = 0;
6562 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6563 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6564 if (error) {
6565 buf->b_error = error;
6566 biodone(buf);
6567 goto out;
6568 }
6569 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6570
6571 /* pre-check if its an internal */
6572 if (*mapping == UDF_TRANS_INTERN) {
6573 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6574 if (error)
6575 buf->b_error = error;
6576 biodone(buf);
6577 goto out;
6578 }
6579 DPRINTF(READ, ("\tnot intern\n"));
6580
6581 #ifdef DEBUG
6582 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6583 printf("Returned translation table:\n");
6584 for (sector = 0; sector < sectors; sector++) {
6585 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6586 }
6587 }
6588 #endif
6589
6590 /* request read-in of data from disc sheduler */
6591 buf->b_resid = buf->b_bcount;
6592 for (sector = 0; sector < sectors; sector++) {
6593 buf_offset = sector * sector_size;
6594 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6595 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6596
6597 /* check if its zero or unmapped to stop reading */
6598 switch (mapping[sector]) {
6599 case UDF_TRANS_UNMAPPED:
6600 case UDF_TRANS_ZERO:
6601 /* copy zero sector TODO runlength like below */
6602 memset(buf_pos, 0, sector_size);
6603 DPRINTF(READ, ("\treturning zero sector\n"));
6604 nestiobuf_done(buf, sector_size, 0);
6605 break;
6606 default :
6607 DPRINTF(READ, ("\tread sector "
6608 "%"PRIu64"\n", mapping[sector]));
6609
6610 lblkno = from + sector;
6611 run_start = mapping[sector];
6612 run_length = 1;
6613 while (sector < sectors-1) {
6614 if (mapping[sector+1] != mapping[sector]+1)
6615 break;
6616 run_length++;
6617 sector++;
6618 }
6619
6620 /*
6621 * nest an iobuf and mark it for async reading. Since
6622 * we're using nested buffers, they can't be cached by
6623 * design.
6624 */
6625 rbuflen = run_length * sector_size;
6626 rblk = run_start * (sector_size/DEV_BSIZE);
6627
6628 nestbuf = getiobuf(NULL, true);
6629 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6630 /* nestbuf is B_ASYNC */
6631
6632 /* identify this nestbuf */
6633 nestbuf->b_lblkno = lblkno;
6634 assert(nestbuf->b_vp == udf_node->vnode);
6635
6636 /* CD shedules on raw blkno */
6637 nestbuf->b_blkno = rblk;
6638 nestbuf->b_proc = NULL;
6639 nestbuf->b_rawblkno = rblk;
6640 nestbuf->b_udf_c_type = what;
6641
6642 udf_discstrat_queuebuf(ump, nestbuf);
6643 }
6644 }
6645 out:
6646 /* if we're synchronously reading, wait for the completion */
6647 if ((buf->b_flags & B_ASYNC) == 0)
6648 biowait(buf);
6649
6650 DPRINTF(READ, ("\tend of read_filebuf\n"));
6651 free(mapping, M_TEMP);
6652 return;
6653 }
6654
6655
6656 void
6657 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6658 {
6659 struct buf *nestbuf;
6660 struct udf_mount *ump = udf_node->ump;
6661 uint64_t *mapping;
6662 uint64_t run_start;
6663 uint32_t lb_size;
6664 uint32_t buf_offset, lb_num, rbuflen, rblk;
6665 uint32_t from, lblkno;
6666 uint32_t num_lb;
6667 int error, run_length, what, s;
6668
6669 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6670
6671 from = buf->b_blkno;
6672 num_lb = buf->b_bcount / lb_size;
6673
6674 what = udf_get_c_type(udf_node);
6675
6676 /* assure we have enough translation slots */
6677 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6678 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6679
6680 if (num_lb > UDF_MAX_MAPPINGS) {
6681 printf("udf_write_filebuf: implementation limit on bufsize\n");
6682 buf->b_error = EIO;
6683 biodone(buf);
6684 return;
6685 }
6686
6687 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6688
6689 error = 0;
6690 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6691 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6692 if (error) {
6693 buf->b_error = error;
6694 biodone(buf);
6695 goto out;
6696 }
6697 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6698
6699 /* if its internally mapped, we can write it in the descriptor itself */
6700 if (*mapping == UDF_TRANS_INTERN) {
6701 /* TODO paranoia check if we ARE going to have enough space */
6702 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6703 if (error)
6704 buf->b_error = error;
6705 biodone(buf);
6706 goto out;
6707 }
6708 DPRINTF(WRITE, ("\tnot intern\n"));
6709
6710 /* request write out of data to disc sheduler */
6711 buf->b_resid = buf->b_bcount;
6712 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6713 buf_offset = lb_num * lb_size;
6714 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6715
6716 /*
6717 * Mappings are not that important here. Just before we write
6718 * the lb_num we late-allocate them when needed and update the
6719 * mapping in the udf_node.
6720 */
6721
6722 /* XXX why not ignore the mapping altogether ? */
6723 DPRINTF(WRITE, ("\twrite lb_num "
6724 "%"PRIu64, mapping[lb_num]));
6725
6726 lblkno = from + lb_num;
6727 run_start = mapping[lb_num];
6728 run_length = 1;
6729 while (lb_num < num_lb-1) {
6730 if (mapping[lb_num+1] != mapping[lb_num]+1)
6731 if (mapping[lb_num+1] != mapping[lb_num])
6732 break;
6733 run_length++;
6734 lb_num++;
6735 }
6736 DPRINTF(WRITE, ("+ %d\n", run_length));
6737
6738 /* nest an iobuf on the master buffer for the extent */
6739 rbuflen = run_length * lb_size;
6740 rblk = run_start * (lb_size/DEV_BSIZE);
6741
6742 nestbuf = getiobuf(NULL, true);
6743 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6744 /* nestbuf is B_ASYNC */
6745
6746 /* identify this nestbuf */
6747 nestbuf->b_lblkno = lblkno;
6748 KASSERT(nestbuf->b_vp == udf_node->vnode);
6749
6750 /* CD shedules on raw blkno */
6751 nestbuf->b_blkno = rblk;
6752 nestbuf->b_proc = NULL;
6753 nestbuf->b_rawblkno = rblk;
6754 nestbuf->b_udf_c_type = what;
6755
6756 /* increment our outstanding bufs counter */
6757 s = splbio();
6758 udf_node->outstanding_bufs++;
6759 splx(s);
6760
6761 udf_discstrat_queuebuf(ump, nestbuf);
6762 }
6763 out:
6764 /* if we're synchronously writing, wait for the completion */
6765 if ((buf->b_flags & B_ASYNC) == 0)
6766 biowait(buf);
6767
6768 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6769 free(mapping, M_TEMP);
6770 return;
6771 }
6772
6773 /* --------------------------------------------------------------------- */
6774