udf_subr.c revision 1.136 1 /* $NetBSD: udf_subr.c,v 1.136 2016/01/27 00:06:49 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.136 2016/01/27 00:06:49 reinoud Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return 0;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return 0;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341
342 return 0;
343 }
344
345 /* --------------------------------------------------------------------- */
346
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 int *first_tracknr, int *last_tracknr)
351 {
352 struct mmc_trackinfo trackinfo;
353 uint32_t tracknr, start_track, num_tracks;
354 int error;
355
356 /* if negative, sessionnr is relative to last session */
357 if (args->sessionnr < 0) {
358 args->sessionnr += ump->discinfo.num_sessions;
359 }
360
361 /* sanity */
362 if (args->sessionnr < 0)
363 args->sessionnr = 0;
364 if (args->sessionnr > ump->discinfo.num_sessions)
365 args->sessionnr = ump->discinfo.num_sessions;
366
367 /* search the tracks for this session, zero session nr indicates last */
368 if (args->sessionnr == 0)
369 args->sessionnr = ump->discinfo.num_sessions;
370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 args->sessionnr--;
372
373 /* sanity again */
374 if (args->sessionnr < 0)
375 args->sessionnr = 0;
376
377 /* search the first and last track of the specified session */
378 num_tracks = ump->discinfo.num_tracks;
379 start_track = ump->discinfo.first_track;
380
381 /* search for first track of this session */
382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 /* get track info */
384 trackinfo.tracknr = tracknr;
385 error = udf_update_trackinfo(ump, &trackinfo);
386 if (error)
387 return error;
388
389 if (trackinfo.sessionnr == args->sessionnr)
390 break;
391 }
392 *first_tracknr = tracknr;
393
394 /* search for last track of this session */
395 for (;tracknr <= num_tracks; tracknr++) {
396 /* get track info */
397 trackinfo.tracknr = tracknr;
398 error = udf_update_trackinfo(ump, &trackinfo);
399 if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 tracknr--;
401 break;
402 }
403 }
404 if (tracknr > num_tracks)
405 tracknr--;
406
407 *last_tracknr = tracknr;
408
409 if (*last_tracknr < *first_tracknr) {
410 printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 "drive returned garbage\n");
412 return EINVAL;
413 }
414
415 assert(*last_tracknr >= *first_tracknr);
416 return 0;
417 }
418
419
420 /*
421 * NOTE: this is the only routine in this file that directly peeks into the
422 * metadata file but since its at a larval state of the mount it can't hurt.
423 *
424 * XXX candidate for udf_allocation.c
425 * XXX clean me up!, change to new node reading code.
426 */
427
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 struct mmc_trackinfo *trackinfo)
431 {
432 struct part_desc *part;
433 struct file_entry *fe;
434 struct extfile_entry *efe;
435 struct short_ad *s_ad;
436 struct long_ad *l_ad;
437 uint32_t track_start, track_end;
438 uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 uint32_t sector_size, len, alloclen, plb_num;
440 uint8_t *pos;
441 int addr_type, icblen, icbflags;
442
443 /* get our track extents */
444 track_start = trackinfo->track_start;
445 track_end = track_start + trackinfo->track_size;
446
447 /* get our base partition extent */
448 KASSERT(ump->node_part == ump->fids_part);
449 part = ump->partitions[ump->vtop[ump->node_part]];
450 phys_part_start = udf_rw32(part->start_loc);
451 phys_part_end = phys_part_start + udf_rw32(part->part_len);
452
453 /* no use if its outside the physical partition */
454 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 return;
456
457 /*
458 * now follow all extents in the fe/efe to see if they refer to this
459 * track
460 */
461
462 sector_size = ump->discinfo.sector_size;
463
464 /* XXX should we claim exclusive access to the metafile ? */
465 /* TODO: move to new node read code */
466 fe = ump->metadata_node->fe;
467 efe = ump->metadata_node->efe;
468 if (fe) {
469 alloclen = udf_rw32(fe->l_ad);
470 pos = &fe->data[0] + udf_rw32(fe->l_ea);
471 icbflags = udf_rw16(fe->icbtag.flags);
472 } else {
473 assert(efe);
474 alloclen = udf_rw32(efe->l_ad);
475 pos = &efe->data[0] + udf_rw32(efe->l_ea);
476 icbflags = udf_rw16(efe->icbtag.flags);
477 }
478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479
480 while (alloclen) {
481 if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 icblen = sizeof(struct short_ad);
483 s_ad = (struct short_ad *) pos;
484 len = udf_rw32(s_ad->len);
485 plb_num = udf_rw32(s_ad->lb_num);
486 } else {
487 /* should not be present, but why not */
488 icblen = sizeof(struct long_ad);
489 l_ad = (struct long_ad *) pos;
490 len = udf_rw32(l_ad->len);
491 plb_num = udf_rw32(l_ad->loc.lb_num);
492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 }
494 /* process extent */
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end + last_track.packet_size;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 /* search smallest extent */
1291 trace = &ump->lvint_trace[0];
1292 minext = trace->end - trace->start;
1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1294 trace = &ump->lvint_trace[ext];
1295 extlen = trace->end - trace->start;
1296 if (extlen == 0)
1297 break;
1298 minext = MIN(minext, extlen);
1299 }
1300 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1301 /* no sense wiping all */
1302 if (losing == minext)
1303 losing--;
1304
1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1306
1307 /* get buffer for pieces */
1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1309
1310 in_ext = 0;
1311 in_pos = losing;
1312 in_trace = &ump->lvint_trace[in_ext];
1313 in_len = in_trace->end - in_trace->start;
1314 out_ext = 0;
1315 out_wpos = 0;
1316 out_trace = &ump->lvint_trace[out_ext];
1317 out_len = out_trace->end - out_trace->start;
1318
1319 last_dscr = NULL;
1320 for(;;) {
1321 out_trace->pos = out_wpos;
1322 out_trace->wpos = out_trace->pos;
1323 if (in_pos >= in_len) {
1324 in_ext++;
1325 in_pos = 0;
1326 in_trace = &ump->lvint_trace[in_ext];
1327 in_len = in_trace->end - in_trace->start;
1328 }
1329 if (out_wpos >= out_len) {
1330 out_ext++;
1331 out_wpos = 0;
1332 out_trace = &ump->lvint_trace[out_ext];
1333 out_len = out_trace->end - out_trace->start;
1334 }
1335 /* copy overlap contents */
1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1338 if (cpy_len == 0)
1339 break;
1340
1341 /* copy */
1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1343 for (cnt = 0; cnt < cpy_len; cnt++) {
1344 /* read in our integrity descriptor */
1345 lb_num = in_trace->start + in_pos + cnt;
1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1347 &dscr);
1348 if (error) {
1349 /* copy last one */
1350 dscr = last_dscr;
1351 }
1352 bufs[cnt] = dscr;
1353 if (!error) {
1354 if (dscr == NULL) {
1355 out_trace->pos = out_wpos + cnt;
1356 out_trace->wpos = out_trace->pos;
1357 break; /* empty terminates */
1358 }
1359 dscr_type = udf_rw16(dscr->tag.id);
1360 if (dscr_type == TAGID_TERM) {
1361 out_trace->pos = out_wpos + cnt;
1362 out_trace->wpos = out_trace->pos;
1363 break; /* clean terminator */
1364 }
1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1366 panic( "UDF integrity sequence "
1367 "corrupted while mounted!\n");
1368 }
1369 last_dscr = dscr;
1370 }
1371 }
1372
1373 /* patch up if first entry was on error */
1374 if (bufs[0] == NULL) {
1375 for (cnt = 0; cnt < cpy_len; cnt++)
1376 if (bufs[cnt] != NULL)
1377 break;
1378 last_dscr = bufs[cnt];
1379 for (; cnt > 0; cnt--) {
1380 bufs[cnt] = last_dscr;
1381 }
1382 }
1383
1384 /* glue + write out */
1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1386 for (cnt = 0; cnt < cpy_len; cnt++) {
1387 lb_num = out_trace->start + out_wpos + cnt;
1388 lvint = &bufs[cnt]->lvid;
1389
1390 /* set continuation */
1391 len = 0;
1392 start = 0;
1393 if (out_wpos + cnt == out_len) {
1394 /* get continuation */
1395 trace = &ump->lvint_trace[out_ext+1];
1396 len = trace->end - trace->start;
1397 start = trace->start;
1398 }
1399 lvint->next_extent.len = udf_rw32(len);
1400 lvint->next_extent.loc = udf_rw32(start);
1401
1402 lb_num = trace->start + trace->wpos;
1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1404 bufs[cnt], lb_num, lb_num);
1405 DPRINTFIF(VOLUMES, error,
1406 ("error writing lvint lb_num\n"));
1407 }
1408
1409 /* free non repeating descriptors */
1410 last_dscr = NULL;
1411 for (cnt = 0; cnt < cpy_len; cnt++) {
1412 if (bufs[cnt] != last_dscr)
1413 free(bufs[cnt], M_UDFVOLD);
1414 last_dscr = bufs[cnt];
1415 }
1416
1417 /* advance */
1418 in_pos += cpy_len;
1419 out_wpos += cpy_len;
1420 }
1421
1422 free(bufs, M_TEMP);
1423
1424 return 0;
1425 }
1426
1427
1428 static int
1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1430 {
1431 struct udf_lvintq *trace;
1432 struct timeval now_v;
1433 struct timespec now_s;
1434 uint32_t sector;
1435 int logvol_integrity;
1436 int space, error;
1437
1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1439
1440 again:
1441 /* get free space in last chunk */
1442 trace = ump->lvint_trace;
1443 while (trace->wpos > (trace->end - trace->start)) {
1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1445 "wpos = %d\n", trace->start, trace->end,
1446 trace->pos, trace->wpos));
1447 trace++;
1448 }
1449
1450 /* check if there is space to append */
1451 space = (trace->end - trace->start) - trace->wpos;
1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1453 "space = %d\n", trace->start, trace->end, trace->pos,
1454 trace->wpos, space));
1455
1456 /* get state */
1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1460 /* TODO extent LVINT space if possible */
1461 return EROFS;
1462 }
1463 }
1464
1465 if (space < 1) {
1466 if (lvflag & UDF_APPENDONLY_LVINT)
1467 return EROFS;
1468 /* loose history by re-writing extents */
1469 error = udf_loose_lvint_history(ump);
1470 if (error)
1471 return error;
1472 goto again;
1473 }
1474
1475 /* update our integrity descriptor to identify us and timestamp it */
1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1477 microtime(&now_v);
1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1482
1483 /* writeout integrity descriptor */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1486 (union dscrptr *) ump->logvol_integrity,
1487 sector, sector);
1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1489 if (error)
1490 return error;
1491
1492 /* advance write position */
1493 trace->wpos++; space--;
1494 if (space >= 1) {
1495 /* append terminator */
1496 sector = trace->start + trace->wpos;
1497 error = udf_write_terminator(ump, sector);
1498
1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1500 }
1501
1502 space = (trace->end - trace->start) - trace->wpos;
1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1504 "space = %d\n", trace->start, trace->end, trace->pos,
1505 trace->wpos, space));
1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1507 "successfull\n"));
1508
1509 return error;
1510 }
1511
1512 /* --------------------------------------------------------------------- */
1513
1514 static int
1515 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1516 {
1517 union dscrptr *dscr;
1518 /* struct udf_args *args = &ump->mount_args; */
1519 struct part_desc *partd;
1520 struct part_hdr_desc *parthdr;
1521 struct udf_bitmap *bitmap;
1522 uint32_t phys_part;
1523 uint32_t lb_num, len;
1524 int error, dscr_type;
1525
1526 /* unallocated space map */
1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 partd = ump->partitions[phys_part];
1529 if (partd == NULL)
1530 continue;
1531 parthdr = &partd->_impl_use.part_hdr;
1532
1533 lb_num = udf_rw32(partd->start_loc);
1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1536 if (len == 0)
1537 continue;
1538
1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1541 if (!error && dscr) {
1542 /* analyse */
1543 dscr_type = udf_rw16(dscr->tag.id);
1544 if (dscr_type == TAGID_SPACE_BITMAP) {
1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1547
1548 /* fill in ump->part_unalloc_bits */
1549 bitmap = &ump->part_unalloc_bits[phys_part];
1550 bitmap->blob = (uint8_t *) dscr;
1551 bitmap->bits = dscr->sbd.data;
1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1553 bitmap->pages = NULL; /* TODO */
1554 bitmap->data_pos = 0;
1555 bitmap->metadata_pos = 0;
1556 } else {
1557 free(dscr, M_UDFVOLD);
1558
1559 printf( "UDF mount: error reading unallocated "
1560 "space bitmap\n");
1561 return EROFS;
1562 }
1563 } else {
1564 /* blank not allowed */
1565 printf("UDF mount: blank unallocated space bitmap\n");
1566 return EROFS;
1567 }
1568 }
1569
1570 /* unallocated space table (not supported) */
1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1572 partd = ump->partitions[phys_part];
1573 if (partd == NULL)
1574 continue;
1575 parthdr = &partd->_impl_use.part_hdr;
1576
1577 len = udf_rw32(parthdr->unalloc_space_table.len);
1578 if (len) {
1579 printf("UDF mount: space tables not supported\n");
1580 return EROFS;
1581 }
1582 }
1583
1584 /* freed space map */
1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1586 partd = ump->partitions[phys_part];
1587 if (partd == NULL)
1588 continue;
1589 parthdr = &partd->_impl_use.part_hdr;
1590
1591 /* freed space map */
1592 lb_num = udf_rw32(partd->start_loc);
1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1594 len = udf_rw32(parthdr->freed_space_bitmap.len);
1595 if (len == 0)
1596 continue;
1597
1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1600 if (!error && dscr) {
1601 /* analyse */
1602 dscr_type = udf_rw16(dscr->tag.id);
1603 if (dscr_type == TAGID_SPACE_BITMAP) {
1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1605 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1606
1607 /* fill in ump->part_freed_bits */
1608 bitmap = &ump->part_unalloc_bits[phys_part];
1609 bitmap->blob = (uint8_t *) dscr;
1610 bitmap->bits = dscr->sbd.data;
1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1612 bitmap->pages = NULL; /* TODO */
1613 bitmap->data_pos = 0;
1614 bitmap->metadata_pos = 0;
1615 } else {
1616 free(dscr, M_UDFVOLD);
1617
1618 printf( "UDF mount: error reading freed "
1619 "space bitmap\n");
1620 return EROFS;
1621 }
1622 } else {
1623 /* blank not allowed */
1624 printf("UDF mount: blank freed space bitmap\n");
1625 return EROFS;
1626 }
1627 }
1628
1629 /* freed space table (not supported) */
1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1631 partd = ump->partitions[phys_part];
1632 if (partd == NULL)
1633 continue;
1634 parthdr = &partd->_impl_use.part_hdr;
1635
1636 len = udf_rw32(parthdr->freed_space_table.len);
1637 if (len) {
1638 printf("UDF mount: space tables not supported\n");
1639 return EROFS;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646
1647 /* TODO implement async writeout */
1648 int
1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1650 {
1651 union dscrptr *dscr;
1652 /* struct udf_args *args = &ump->mount_args; */
1653 struct part_desc *partd;
1654 struct part_hdr_desc *parthdr;
1655 uint32_t phys_part;
1656 uint32_t lb_num, len, ptov;
1657 int error_all, error;
1658
1659 error_all = 0;
1660 /* unallocated space map */
1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1662 partd = ump->partitions[phys_part];
1663 if (partd == NULL)
1664 continue;
1665 parthdr = &partd->_impl_use.part_hdr;
1666
1667 ptov = udf_rw32(partd->start_loc);
1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1670 if (len == 0)
1671 continue;
1672
1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1674 lb_num + ptov));
1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1677 (union dscrptr *) dscr,
1678 ptov + lb_num, lb_num);
1679 if (error) {
1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1681 error_all = error;
1682 }
1683 }
1684
1685 /* freed space map */
1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1687 partd = ump->partitions[phys_part];
1688 if (partd == NULL)
1689 continue;
1690 parthdr = &partd->_impl_use.part_hdr;
1691
1692 /* freed space map */
1693 ptov = udf_rw32(partd->start_loc);
1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1695 len = udf_rw32(parthdr->freed_space_bitmap.len);
1696 if (len == 0)
1697 continue;
1698
1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1700 lb_num + ptov));
1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1703 (union dscrptr *) dscr,
1704 ptov + lb_num, lb_num);
1705 if (error) {
1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1707 error_all = error;
1708 }
1709 }
1710
1711 return error_all;
1712 }
1713
1714
1715 static int
1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1717 {
1718 struct udf_node *bitmap_node;
1719 union dscrptr *dscr;
1720 struct udf_bitmap *bitmap;
1721 uint64_t inflen;
1722 int error, dscr_type;
1723
1724 bitmap_node = ump->metadatabitmap_node;
1725
1726 /* only read in when metadata bitmap node is read in */
1727 if (bitmap_node == NULL)
1728 return 0;
1729
1730 if (bitmap_node->fe) {
1731 inflen = udf_rw64(bitmap_node->fe->inf_len);
1732 } else {
1733 KASSERT(bitmap_node->efe);
1734 inflen = udf_rw64(bitmap_node->efe->inf_len);
1735 }
1736
1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1738 "%"PRIu64" bytes\n", inflen));
1739
1740 /* allocate space for bitmap */
1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1742 if (!dscr)
1743 return ENOMEM;
1744
1745 /* set vnode type to regular file or we can't read from it! */
1746 bitmap_node->vnode->v_type = VREG;
1747
1748 /* read in complete metadata bitmap file */
1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1750 dscr,
1751 inflen, 0,
1752 UIO_SYSSPACE,
1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1754 NULL, NULL);
1755 if (error) {
1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1757 goto errorout;
1758 }
1759
1760 /* analyse */
1761 dscr_type = udf_rw16(dscr->tag.id);
1762 if (dscr_type == TAGID_SPACE_BITMAP) {
1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1764 ump->metadata_unalloc_dscr = &dscr->sbd;
1765
1766 /* fill in bitmap bits */
1767 bitmap = &ump->metadata_unalloc_bits;
1768 bitmap->blob = (uint8_t *) dscr;
1769 bitmap->bits = dscr->sbd.data;
1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1771 bitmap->pages = NULL; /* TODO */
1772 bitmap->data_pos = 0;
1773 bitmap->metadata_pos = 0;
1774 } else {
1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1776 goto errorout;
1777 }
1778
1779 return 0;
1780
1781 errorout:
1782 free(dscr, M_UDFVOLD);
1783 printf( "UDF mount: error reading unallocated "
1784 "space bitmap for metadata partition\n");
1785 return EROFS;
1786 }
1787
1788
1789 int
1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1791 {
1792 struct udf_node *bitmap_node;
1793 union dscrptr *dscr;
1794 uint64_t new_inflen;
1795 int dummy, error;
1796
1797 bitmap_node = ump->metadatabitmap_node;
1798
1799 /* only write out when metadata bitmap node is known */
1800 if (bitmap_node == NULL)
1801 return 0;
1802
1803 if (!bitmap_node->fe) {
1804 KASSERT(bitmap_node->efe);
1805 }
1806
1807 /* reduce length to zero */
1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1809 new_inflen = udf_tagsize(dscr, 1);
1810
1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1812 " for %"PRIu64" bytes\n", new_inflen));
1813
1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1815 if (error)
1816 printf("Error resizing metadata space bitmap\n");
1817
1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1819 dscr,
1820 new_inflen, 0,
1821 UIO_SYSSPACE,
1822 IO_ALTSEMANTICS, FSCRED,
1823 NULL, NULL);
1824
1825 bitmap_node->i_flags |= IN_MODIFIED;
1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1827 if (error == 0)
1828 error = VOP_FSYNC(bitmap_node->vnode,
1829 FSCRED, FSYNC_WAIT, 0, 0);
1830
1831 if (error)
1832 printf( "Error writing out metadata partition unalloced "
1833 "space bitmap!\n");
1834
1835 return error;
1836 }
1837
1838
1839 /* --------------------------------------------------------------------- */
1840
1841 /*
1842 * Checks if ump's vds information is correct and complete
1843 */
1844
1845 int
1846 udf_process_vds(struct udf_mount *ump) {
1847 union udf_pmap *mapping;
1848 /* struct udf_args *args = &ump->mount_args; */
1849 struct logvol_int_desc *lvint;
1850 struct udf_logvol_info *lvinfo;
1851 uint32_t n_pm;
1852 uint8_t *pmap_pos;
1853 char *domain_name, *map_name;
1854 const char *check_name;
1855 char bits[128];
1856 int pmap_stype, pmap_size;
1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1858 int n_phys, n_virt, n_spar, n_meta;
1859 int len;
1860
1861 if (ump == NULL)
1862 return ENOENT;
1863
1864 /* we need at least an anchor (trivial, but for safety) */
1865 if (ump->anchors[0] == NULL)
1866 return EINVAL;
1867
1868 /* we need at least one primary and one logical volume descriptor */
1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1870 return EINVAL;
1871
1872 /* we need at least one partition descriptor */
1873 if (ump->partitions[0] == NULL)
1874 return EINVAL;
1875
1876 /* check logical volume sector size verses device sector size */
1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1878 printf("UDF mount: format violation, lb_size != sector size\n");
1879 return EINVAL;
1880 }
1881
1882 /* check domain name */
1883 domain_name = ump->logical_vol->domain_id.id;
1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1886 return EINVAL;
1887 }
1888
1889 /* retrieve logical volume integrity sequence */
1890 (void)udf_retrieve_lvint(ump);
1891
1892 /*
1893 * We need at least one logvol integrity descriptor recorded. Note
1894 * that its OK to have an open logical volume integrity here. The VAT
1895 * will close/update the integrity.
1896 */
1897 if (ump->logvol_integrity == NULL)
1898 return EINVAL;
1899
1900 /* process derived structures */
1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1902 lvint = ump->logvol_integrity;
1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1904 ump->logvol_info = lvinfo;
1905
1906 /* TODO check udf versions? */
1907
1908 /*
1909 * check logvol mappings: effective virt->log partmap translation
1910 * check and recording of the mapping results. Saves expensive
1911 * strncmp() in tight places.
1912 */
1913 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1915 pmap_pos = ump->logical_vol->maps;
1916
1917 if (n_pm > UDF_PMAPS) {
1918 printf("UDF mount: too many mappings\n");
1919 return EINVAL;
1920 }
1921
1922 /* count types and set partition numbers */
1923 ump->data_part = ump->node_part = ump->fids_part = 0;
1924 n_phys = n_virt = n_spar = n_meta = 0;
1925 for (log_part = 0; log_part < n_pm; log_part++) {
1926 mapping = (union udf_pmap *) pmap_pos;
1927 pmap_stype = pmap_pos[0];
1928 pmap_size = pmap_pos[1];
1929 switch (pmap_stype) {
1930 case 1: /* physical mapping */
1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1932 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1933 pmap_type = UDF_VTOP_TYPE_PHYS;
1934 n_phys++;
1935 ump->data_part = log_part;
1936 ump->node_part = log_part;
1937 ump->fids_part = log_part;
1938 break;
1939 case 2: /* virtual/sparable/meta mapping */
1940 map_name = mapping->pm2.part_id.id;
1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1942 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1944 len = UDF_REGID_ID_SIZE;
1945
1946 check_name = "*UDF Virtual Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_VIRT;
1949 n_virt++;
1950 ump->node_part = log_part;
1951 break;
1952 }
1953 check_name = "*UDF Sparable Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1956 n_spar++;
1957 ump->data_part = log_part;
1958 ump->node_part = log_part;
1959 ump->fids_part = log_part;
1960 break;
1961 }
1962 check_name = "*UDF Metadata Partition";
1963 if (strncmp(map_name, check_name, len) == 0) {
1964 pmap_type = UDF_VTOP_TYPE_META;
1965 n_meta++;
1966 ump->node_part = log_part;
1967 ump->fids_part = log_part;
1968 break;
1969 }
1970 break;
1971 default:
1972 return EINVAL;
1973 }
1974
1975 /*
1976 * BUGALERT: some rogue implementations use random physical
1977 * partition numbers to break other implementations so lookup
1978 * the number.
1979 */
1980 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1981
1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1983 raw_phys_part, phys_part, pmap_type));
1984
1985 if (phys_part == UDF_PARTITIONS)
1986 return EINVAL;
1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1988 return EINVAL;
1989
1990 ump->vtop [log_part] = phys_part;
1991 ump->vtop_tp[log_part] = pmap_type;
1992
1993 pmap_pos += pmap_size;
1994 }
1995 /* not winning the beauty contest */
1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1997
1998 /* test some basic UDF assertions/requirements */
1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2000 return EINVAL;
2001
2002 if (n_virt) {
2003 if ((n_phys == 0) || n_spar || n_meta)
2004 return EINVAL;
2005 }
2006 if (n_spar + n_phys == 0)
2007 return EINVAL;
2008
2009 /* select allocation type for each logical partition */
2010 for (log_part = 0; log_part < n_pm; log_part++) {
2011 maps_on = ump->vtop[log_part];
2012 switch (ump->vtop_tp[log_part]) {
2013 case UDF_VTOP_TYPE_PHYS :
2014 assert(maps_on == log_part);
2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2016 break;
2017 case UDF_VTOP_TYPE_VIRT :
2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2020 break;
2021 case UDF_VTOP_TYPE_SPARABLE :
2022 assert(maps_on == log_part);
2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 break;
2025 case UDF_VTOP_TYPE_META :
2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2028 /* special case for UDF 2.60 */
2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2031 }
2032 break;
2033 default:
2034 panic("bad alloction type in udf's ump->vtop\n");
2035 }
2036 }
2037
2038 /* determine logical volume open/closure actions */
2039 if (n_virt) {
2040 ump->lvopen = 0;
2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2042 ump->lvopen |= UDF_OPEN_SESSION ;
2043 ump->lvclose = UDF_WRITE_VAT;
2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2045 ump->lvclose |= UDF_CLOSE_SESSION;
2046 } else {
2047 /* `normal' rewritable or non sequential media */
2048 ump->lvopen = UDF_WRITE_LVINT;
2049 ump->lvclose = UDF_WRITE_LVINT;
2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2051 ump->lvopen |= UDF_APPENDONLY_LVINT;
2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2054 }
2055
2056 /*
2057 * Determine sheduler error behaviour. For virtual partitions, update
2058 * the trackinfo; for sparable partitions replace a whole block on the
2059 * sparable table. Allways requeue.
2060 */
2061 ump->lvreadwrite = 0;
2062 if (n_virt)
2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2064 if (n_spar)
2065 ump->lvreadwrite = UDF_REMAP_BLOCK;
2066
2067 /*
2068 * Select our sheduler
2069 */
2070 ump->strategy = &udf_strat_rmw;
2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2072 ump->strategy = &udf_strat_sequential;
2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2075 ump->strategy = &udf_strat_direct;
2076 if (n_spar)
2077 ump->strategy = &udf_strat_rmw;
2078
2079 #if 0
2080 /* read-only access won't benefit from the other shedulers */
2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2082 ump->strategy = &udf_strat_direct;
2083 #endif
2084
2085 /* print results */
2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2092
2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2099
2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2101 (ump->strategy == &udf_strat_direct) ? "Direct" :
2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2104
2105 /* signal its OK for now */
2106 return 0;
2107 }
2108
2109 /* --------------------------------------------------------------------- */
2110
2111 /*
2112 * Update logical volume name in all structures that keep a record of it. We
2113 * use memmove since each of them might be specified as a source.
2114 *
2115 * Note that it doesn't update the VAT structure!
2116 */
2117
2118 static void
2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2120 {
2121 struct logvol_desc *lvd = NULL;
2122 struct fileset_desc *fsd = NULL;
2123 struct udf_lv_info *lvi = NULL;
2124
2125 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2126 lvd = ump->logical_vol;
2127 fsd = ump->fileset_desc;
2128 if (ump->implementation)
2129 lvi = &ump->implementation->_impl_use.lv_info;
2130
2131 /* logvol's id might be specified as origional so use memmove here */
2132 memmove(lvd->logvol_id, logvol_id, 128);
2133 if (fsd)
2134 memmove(fsd->logvol_id, logvol_id, 128);
2135 if (lvi)
2136 memmove(lvi->logvol_id, logvol_id, 128);
2137 }
2138
2139 /* --------------------------------------------------------------------- */
2140
2141 void
2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2143 uint32_t sector)
2144 {
2145 assert(ump->logical_vol);
2146
2147 tag->id = udf_rw16(tagid);
2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2149 tag->cksum = 0;
2150 tag->reserved = 0;
2151 tag->serial_num = ump->logical_vol->tag.serial_num;
2152 tag->tag_loc = udf_rw32(sector);
2153 }
2154
2155
2156 uint64_t
2157 udf_advance_uniqueid(struct udf_mount *ump)
2158 {
2159 uint64_t unique_id;
2160
2161 mutex_enter(&ump->logvol_mutex);
2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2163 if (unique_id < 0x10)
2164 unique_id = 0x10;
2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2166 mutex_exit(&ump->logvol_mutex);
2167
2168 return unique_id;
2169 }
2170
2171
2172 static void
2173 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2174 {
2175 struct udf_mount *ump = udf_node->ump;
2176 uint32_t num_dirs, num_files;
2177 int udf_file_type;
2178
2179 /* get file type */
2180 if (udf_node->fe) {
2181 udf_file_type = udf_node->fe->icbtag.file_type;
2182 } else {
2183 udf_file_type = udf_node->efe->icbtag.file_type;
2184 }
2185
2186 /* adjust file count */
2187 mutex_enter(&ump->allocate_mutex);
2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2189 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2190 ump->logvol_info->num_directories =
2191 udf_rw32((num_dirs + sign));
2192 } else {
2193 num_files = udf_rw32(ump->logvol_info->num_files);
2194 ump->logvol_info->num_files =
2195 udf_rw32((num_files + sign));
2196 }
2197 mutex_exit(&ump->allocate_mutex);
2198 }
2199
2200
2201 void
2202 udf_osta_charset(struct charspec *charspec)
2203 {
2204 memset(charspec, 0, sizeof(struct charspec));
2205 charspec->type = 0;
2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2207 }
2208
2209
2210 /* first call udf_set_regid and then the suffix */
2211 void
2212 udf_set_regid(struct regid *regid, char const *name)
2213 {
2214 memset(regid, 0, sizeof(struct regid));
2215 regid->flags = 0; /* not dirty and not protected */
2216 strcpy((char *) regid->id, name);
2217 }
2218
2219
2220 void
2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2222 {
2223 uint16_t *ver;
2224
2225 ver = (uint16_t *) regid->id_suffix;
2226 *ver = ump->logvol_info->min_udf_readver;
2227 }
2228
2229
2230 void
2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2232 {
2233 uint16_t *ver;
2234
2235 ver = (uint16_t *) regid->id_suffix;
2236 *ver = ump->logvol_info->min_udf_readver;
2237
2238 regid->id_suffix[2] = 4; /* unix */
2239 regid->id_suffix[3] = 8; /* NetBSD */
2240 }
2241
2242
2243 void
2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2245 {
2246 regid->id_suffix[0] = 4; /* unix */
2247 regid->id_suffix[1] = 8; /* NetBSD */
2248 }
2249
2250
2251 void
2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 regid->id_suffix[0] = APP_VERSION_MAIN;
2255 regid->id_suffix[1] = APP_VERSION_SUB;
2256 }
2257
2258 static int
2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2260 struct long_ad *parent, uint64_t unique_id)
2261 {
2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2263 int fidsize = 40;
2264
2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2268 fid->icb = *parent;
2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2272
2273 return fidsize;
2274 }
2275
2276 /* --------------------------------------------------------------------- */
2277
2278 /*
2279 * Extended attribute support. UDF knows of 3 places for extended attributes:
2280 *
2281 * (a) inside the file's (e)fe in the length of the extended attribute area
2282 * before the allocation descriptors/filedata
2283 *
2284 * (b) in a file referenced by (e)fe->ext_attr_icb and
2285 *
2286 * (c) in the e(fe)'s associated stream directory that can hold various
2287 * sub-files. In the stream directory a few fixed named subfiles are reserved
2288 * for NT/Unix ACL's and OS/2 attributes.
2289 *
2290 * NOTE: Extended attributes are read randomly but allways written
2291 * *atomicaly*. For ACL's this interface is propably different but not known
2292 * to me yet.
2293 *
2294 * Order of extended attributes in a space :
2295 * ECMA 167 EAs
2296 * Non block aligned Implementation Use EAs
2297 * Block aligned Implementation Use EAs
2298 * Application Use EAs
2299 */
2300
2301 static int
2302 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2303 {
2304 uint16_t *spos;
2305
2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2307 /* checksum valid? */
2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2309 spos = (uint16_t *) implext->data;
2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2311 return EINVAL;
2312 }
2313 return 0;
2314 }
2315
2316 static void
2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2318 {
2319 uint16_t *spos;
2320
2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2322 /* set checksum */
2323 spos = (uint16_t *) implext->data;
2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2325 }
2326 }
2327
2328
2329 int
2330 udf_extattr_search_intern(struct udf_node *node,
2331 uint32_t sattr, char const *sattrname,
2332 uint32_t *offsetp, uint32_t *lengthp)
2333 {
2334 struct extattrhdr_desc *eahdr;
2335 struct extattr_entry *attrhdr;
2336 struct impl_extattr_entry *implext;
2337 uint32_t offset, a_l, sector_size;
2338 int32_t l_ea;
2339 uint8_t *pos;
2340 int error;
2341
2342 /* get mountpoint */
2343 sector_size = node->ump->discinfo.sector_size;
2344
2345 /* get information from fe/efe */
2346 if (node->fe) {
2347 l_ea = udf_rw32(node->fe->l_ea);
2348 eahdr = (struct extattrhdr_desc *) node->fe->data;
2349 } else {
2350 assert(node->efe);
2351 l_ea = udf_rw32(node->efe->l_ea);
2352 eahdr = (struct extattrhdr_desc *) node->efe->data;
2353 }
2354
2355 /* something recorded here? */
2356 if (l_ea == 0)
2357 return ENOENT;
2358
2359 /* check extended attribute tag; what to do if it fails? */
2360 error = udf_check_tag(eahdr);
2361 if (error)
2362 return EINVAL;
2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2364 return EINVAL;
2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2366 if (error)
2367 return EINVAL;
2368
2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2370
2371 /* looking for Ecma-167 attributes? */
2372 offset = sizeof(struct extattrhdr_desc);
2373
2374 /* looking for either implemenation use or application use */
2375 if (sattr == 2048) { /* [4/48.10.8] */
2376 offset = udf_rw32(eahdr->impl_attr_loc);
2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2378 return ENOENT;
2379 }
2380 if (sattr == 65536) { /* [4/48.10.9] */
2381 offset = udf_rw32(eahdr->appl_attr_loc);
2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2383 return ENOENT;
2384 }
2385
2386 /* paranoia check offset and l_ea */
2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2388 return EINVAL;
2389
2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2391
2392 /* find our extended attribute */
2393 l_ea -= offset;
2394 pos = (uint8_t *) eahdr + offset;
2395
2396 while (l_ea >= sizeof(struct extattr_entry)) {
2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2398 attrhdr = (struct extattr_entry *) pos;
2399 implext = (struct impl_extattr_entry *) pos;
2400
2401 /* get complete attribute length and check for roque values */
2402 a_l = udf_rw32(attrhdr->a_l);
2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2404 udf_rw32(attrhdr->type),
2405 attrhdr->subtype, a_l, l_ea));
2406 if ((a_l == 0) || (a_l > l_ea))
2407 return EINVAL;
2408
2409 if (attrhdr->type != sattr)
2410 goto next_attribute;
2411
2412 /* we might have found it! */
2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2414 *offsetp = offset;
2415 *lengthp = a_l;
2416 return 0; /* success */
2417 }
2418
2419 /*
2420 * Implementation use and application use extended attributes
2421 * have a name to identify. They share the same structure only
2422 * UDF implementation use extended attributes have a checksum
2423 * we need to check
2424 */
2425
2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2427 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2428 /* we have found our appl/implementation attribute */
2429 *offsetp = offset;
2430 *lengthp = a_l;
2431 return 0; /* success */
2432 }
2433
2434 next_attribute:
2435 /* next attribute */
2436 pos += a_l;
2437 l_ea -= a_l;
2438 offset += a_l;
2439 }
2440 /* not found */
2441 return ENOENT;
2442 }
2443
2444
2445 static void
2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2447 struct extattr_entry *extattr)
2448 {
2449 struct file_entry *fe;
2450 struct extfile_entry *efe;
2451 struct extattrhdr_desc *extattrhdr;
2452 struct impl_extattr_entry *implext;
2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2454 uint32_t *l_eap, l_ad;
2455 uint16_t *spos;
2456 uint8_t *bpos, *data;
2457
2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2459 fe = &dscr->fe;
2460 data = fe->data;
2461 l_eap = &fe->l_ea;
2462 l_ad = udf_rw32(fe->l_ad);
2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2464 efe = &dscr->efe;
2465 data = efe->data;
2466 l_eap = &efe->l_ea;
2467 l_ad = udf_rw32(efe->l_ad);
2468 } else {
2469 panic("Bad tag passed to udf_extattr_insert_internal");
2470 }
2471
2472 /* can't append already written to file descriptors yet */
2473 assert(l_ad == 0);
2474 __USE(l_ad);
2475
2476 /* should have a header! */
2477 extattrhdr = (struct extattrhdr_desc *) data;
2478 l_ea = udf_rw32(*l_eap);
2479 if (l_ea == 0) {
2480 /* create empty extended attribute header */
2481 exthdr_len = sizeof(struct extattrhdr_desc);
2482
2483 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2484 /* loc */ 0);
2485 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2486 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2487 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2488
2489 /* record extended attribute header length */
2490 l_ea = exthdr_len;
2491 *l_eap = udf_rw32(l_ea);
2492 }
2493
2494 /* extract locations */
2495 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2496 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2497 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2498 impl_attr_loc = l_ea;
2499 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2500 appl_attr_loc = l_ea;
2501
2502 /* Ecma 167 EAs */
2503 if (udf_rw32(extattr->type) < 2048) {
2504 assert(impl_attr_loc == l_ea);
2505 assert(appl_attr_loc == l_ea);
2506 }
2507
2508 /* implementation use extended attributes */
2509 if (udf_rw32(extattr->type) == 2048) {
2510 assert(appl_attr_loc == l_ea);
2511
2512 /* calculate and write extended attribute header checksum */
2513 implext = (struct impl_extattr_entry *) extattr;
2514 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2515 spos = (uint16_t *) implext->data;
2516 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2517 }
2518
2519 /* application use extended attributes */
2520 assert(udf_rw32(extattr->type) != 65536);
2521 assert(appl_attr_loc == l_ea);
2522
2523 /* append the attribute at the end of the current space */
2524 bpos = data + udf_rw32(*l_eap);
2525 a_l = udf_rw32(extattr->a_l);
2526
2527 /* update impl. attribute locations */
2528 if (udf_rw32(extattr->type) < 2048) {
2529 impl_attr_loc = l_ea + a_l;
2530 appl_attr_loc = l_ea + a_l;
2531 }
2532 if (udf_rw32(extattr->type) == 2048) {
2533 appl_attr_loc = l_ea + a_l;
2534 }
2535
2536 /* copy and advance */
2537 memcpy(bpos, extattr, a_l);
2538 l_ea += a_l;
2539 *l_eap = udf_rw32(l_ea);
2540
2541 /* do the `dance` again backwards */
2542 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2543 if (impl_attr_loc == l_ea)
2544 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2545 if (appl_attr_loc == l_ea)
2546 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2547 }
2548
2549 /* store offsets */
2550 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2551 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2552 }
2553
2554
2555 /* --------------------------------------------------------------------- */
2556
2557 static int
2558 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2559 {
2560 struct udf_mount *ump;
2561 struct udf_logvol_info *lvinfo;
2562 struct impl_extattr_entry *implext;
2563 struct vatlvext_extattr_entry lvext;
2564 const char *extstr = "*UDF VAT LVExtension";
2565 uint64_t vat_uniqueid;
2566 uint32_t offset, a_l;
2567 uint8_t *ea_start, *lvextpos;
2568 int error;
2569
2570 /* get mountpoint and lvinfo */
2571 ump = vat_node->ump;
2572 lvinfo = ump->logvol_info;
2573
2574 /* get information from fe/efe */
2575 if (vat_node->fe) {
2576 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2577 ea_start = vat_node->fe->data;
2578 } else {
2579 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2580 ea_start = vat_node->efe->data;
2581 }
2582
2583 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2584 if (error)
2585 return error;
2586
2587 implext = (struct impl_extattr_entry *) (ea_start + offset);
2588 error = udf_impl_extattr_check(implext);
2589 if (error)
2590 return error;
2591
2592 /* paranoia */
2593 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2594 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2595 return EINVAL;
2596 }
2597
2598 /*
2599 * we have found our "VAT LVExtension attribute. BUT due to a
2600 * bug in the specification it might not be word aligned so
2601 * copy first to avoid panics on some machines (!!)
2602 */
2603 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2604 lvextpos = implext->data + udf_rw32(implext->iu_l);
2605 memcpy(&lvext, lvextpos, sizeof(lvext));
2606
2607 /* check if it was updated the last time */
2608 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2609 lvinfo->num_files = lvext.num_files;
2610 lvinfo->num_directories = lvext.num_directories;
2611 udf_update_logvolname(ump, lvext.logvol_id);
2612 } else {
2613 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2614 /* replace VAT LVExt by free space EA */
2615 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2616 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2617 udf_calc_impl_extattr_checksum(implext);
2618 }
2619
2620 return 0;
2621 }
2622
2623
2624 static int
2625 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2626 {
2627 struct udf_mount *ump;
2628 struct udf_logvol_info *lvinfo;
2629 struct impl_extattr_entry *implext;
2630 struct vatlvext_extattr_entry lvext;
2631 const char *extstr = "*UDF VAT LVExtension";
2632 uint64_t vat_uniqueid;
2633 uint32_t offset, a_l;
2634 uint8_t *ea_start, *lvextpos;
2635 int error;
2636
2637 /* get mountpoint and lvinfo */
2638 ump = vat_node->ump;
2639 lvinfo = ump->logvol_info;
2640
2641 /* get information from fe/efe */
2642 if (vat_node->fe) {
2643 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2644 ea_start = vat_node->fe->data;
2645 } else {
2646 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2647 ea_start = vat_node->efe->data;
2648 }
2649
2650 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2651 if (error)
2652 return error;
2653 /* found, it existed */
2654
2655 /* paranoia */
2656 implext = (struct impl_extattr_entry *) (ea_start + offset);
2657 error = udf_impl_extattr_check(implext);
2658 if (error) {
2659 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2660 return error;
2661 }
2662 /* it is correct */
2663
2664 /*
2665 * we have found our "VAT LVExtension attribute. BUT due to a
2666 * bug in the specification it might not be word aligned so
2667 * copy first to avoid panics on some machines (!!)
2668 */
2669 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2670 lvextpos = implext->data + udf_rw32(implext->iu_l);
2671
2672 lvext.unique_id_chk = vat_uniqueid;
2673 lvext.num_files = lvinfo->num_files;
2674 lvext.num_directories = lvinfo->num_directories;
2675 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2676
2677 memcpy(lvextpos, &lvext, sizeof(lvext));
2678
2679 return 0;
2680 }
2681
2682 /* --------------------------------------------------------------------- */
2683
2684 int
2685 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2686 {
2687 struct udf_mount *ump = vat_node->ump;
2688
2689 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2690 return EINVAL;
2691
2692 memcpy(blob, ump->vat_table + offset, size);
2693 return 0;
2694 }
2695
2696 int
2697 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2698 {
2699 struct udf_mount *ump = vat_node->ump;
2700 uint32_t offset_high;
2701 uint8_t *new_vat_table;
2702
2703 /* extent VAT allocation if needed */
2704 offset_high = offset + size;
2705 if (offset_high >= ump->vat_table_alloc_len) {
2706 /* realloc */
2707 new_vat_table = realloc(ump->vat_table,
2708 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2709 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2710 if (!new_vat_table) {
2711 printf("udf_vat_write: can't extent VAT, out of mem\n");
2712 return ENOMEM;
2713 }
2714 ump->vat_table = new_vat_table;
2715 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2716 }
2717 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2718
2719 memcpy(ump->vat_table + offset, blob, size);
2720 return 0;
2721 }
2722
2723 /* --------------------------------------------------------------------- */
2724
2725 /* TODO support previous VAT location writeout */
2726 static int
2727 udf_update_vat_descriptor(struct udf_mount *ump)
2728 {
2729 struct udf_node *vat_node = ump->vat_node;
2730 struct udf_logvol_info *lvinfo = ump->logvol_info;
2731 struct icb_tag *icbtag;
2732 struct udf_oldvat_tail *oldvat_tl;
2733 struct udf_vat *vat;
2734 uint64_t unique_id;
2735 uint32_t lb_size;
2736 uint8_t *raw_vat;
2737 int filetype, error;
2738
2739 KASSERT(vat_node);
2740 KASSERT(lvinfo);
2741 lb_size = udf_rw32(ump->logical_vol->lb_size);
2742
2743 /* get our new unique_id */
2744 unique_id = udf_advance_uniqueid(ump);
2745
2746 /* get information from fe/efe */
2747 if (vat_node->fe) {
2748 icbtag = &vat_node->fe->icbtag;
2749 vat_node->fe->unique_id = udf_rw64(unique_id);
2750 } else {
2751 icbtag = &vat_node->efe->icbtag;
2752 vat_node->efe->unique_id = udf_rw64(unique_id);
2753 }
2754
2755 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2756 filetype = icbtag->file_type;
2757 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2758
2759 /* allocate piece to process head or tail of VAT file */
2760 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2761
2762 if (filetype == 0) {
2763 /*
2764 * Update "*UDF VAT LVExtension" extended attribute from the
2765 * lvint if present.
2766 */
2767 udf_update_vat_extattr_from_lvid(vat_node);
2768
2769 /* setup identifying regid */
2770 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2771 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2772
2773 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2774 udf_add_udf_regid(ump, &oldvat_tl->id);
2775 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2776
2777 /* write out new tail of virtual allocation table file */
2778 error = udf_vat_write(vat_node, raw_vat,
2779 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2780 } else {
2781 /* compose the VAT2 header */
2782 vat = (struct udf_vat *) raw_vat;
2783 memset(vat, 0, sizeof(struct udf_vat));
2784
2785 vat->header_len = udf_rw16(152); /* as per spec */
2786 vat->impl_use_len = udf_rw16(0);
2787 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2788 vat->prev_vat = udf_rw32(0xffffffff);
2789 vat->num_files = lvinfo->num_files;
2790 vat->num_directories = lvinfo->num_directories;
2791 vat->min_udf_readver = lvinfo->min_udf_readver;
2792 vat->min_udf_writever = lvinfo->min_udf_writever;
2793 vat->max_udf_writever = lvinfo->max_udf_writever;
2794
2795 error = udf_vat_write(vat_node, raw_vat,
2796 sizeof(struct udf_vat), 0);
2797 }
2798 free(raw_vat, M_TEMP);
2799
2800 return error; /* success! */
2801 }
2802
2803
2804 int
2805 udf_writeout_vat(struct udf_mount *ump)
2806 {
2807 struct udf_node *vat_node = ump->vat_node;
2808 int error;
2809
2810 KASSERT(vat_node);
2811
2812 DPRINTF(CALL, ("udf_writeout_vat\n"));
2813
2814 // mutex_enter(&ump->allocate_mutex);
2815 udf_update_vat_descriptor(ump);
2816
2817 /* write out the VAT contents ; TODO intelligent writing */
2818 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2819 ump->vat_table, ump->vat_table_len, 0,
2820 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2821 if (error) {
2822 printf("udf_writeout_vat: failed to write out VAT contents\n");
2823 goto out;
2824 }
2825
2826 // mutex_exit(&ump->allocate_mutex);
2827
2828 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2829 if (error)
2830 goto out;
2831 error = VOP_FSYNC(ump->vat_node->vnode,
2832 FSCRED, FSYNC_WAIT, 0, 0);
2833 if (error)
2834 printf("udf_writeout_vat: error writing VAT node!\n");
2835 out:
2836
2837 return error;
2838 }
2839
2840 /* --------------------------------------------------------------------- */
2841
2842 /*
2843 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2844 * descriptor. If OK, read in complete VAT file.
2845 */
2846
2847 static int
2848 udf_check_for_vat(struct udf_node *vat_node)
2849 {
2850 struct udf_mount *ump;
2851 struct icb_tag *icbtag;
2852 struct timestamp *mtime;
2853 struct udf_vat *vat;
2854 struct udf_oldvat_tail *oldvat_tl;
2855 struct udf_logvol_info *lvinfo;
2856 uint64_t unique_id;
2857 uint32_t vat_length;
2858 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2859 uint32_t sector_size;
2860 uint32_t *raw_vat;
2861 uint8_t *vat_table;
2862 char *regid_name;
2863 int filetype;
2864 int error;
2865
2866 /* vat_length is really 64 bits though impossible */
2867
2868 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2869 if (!vat_node)
2870 return ENOENT;
2871
2872 /* get mount info */
2873 ump = vat_node->ump;
2874 sector_size = udf_rw32(ump->logical_vol->lb_size);
2875
2876 /* check assertions */
2877 assert(vat_node->fe || vat_node->efe);
2878 assert(ump->logvol_integrity);
2879
2880 /* set vnode type to regular file or we can't read from it! */
2881 vat_node->vnode->v_type = VREG;
2882
2883 /* get information from fe/efe */
2884 if (vat_node->fe) {
2885 vat_length = udf_rw64(vat_node->fe->inf_len);
2886 icbtag = &vat_node->fe->icbtag;
2887 mtime = &vat_node->fe->mtime;
2888 unique_id = udf_rw64(vat_node->fe->unique_id);
2889 } else {
2890 vat_length = udf_rw64(vat_node->efe->inf_len);
2891 icbtag = &vat_node->efe->icbtag;
2892 mtime = &vat_node->efe->mtime;
2893 unique_id = udf_rw64(vat_node->efe->unique_id);
2894 }
2895
2896 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2897 filetype = icbtag->file_type;
2898 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2899 return ENOENT;
2900
2901 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2902
2903 vat_table_alloc_len =
2904 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2905 * UDF_VAT_CHUNKSIZE;
2906
2907 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2908 M_CANFAIL | M_WAITOK);
2909 if (vat_table == NULL) {
2910 printf("allocation of %d bytes failed for VAT\n",
2911 vat_table_alloc_len);
2912 return ENOMEM;
2913 }
2914
2915 /* allocate piece to read in head or tail of VAT file */
2916 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2917
2918 /*
2919 * check contents of the file if its the old 1.50 VAT table format.
2920 * Its notoriously broken and allthough some implementations support an
2921 * extention as defined in the UDF 1.50 errata document, its doubtfull
2922 * to be useable since a lot of implementations don't maintain it.
2923 */
2924 lvinfo = ump->logvol_info;
2925
2926 if (filetype == 0) {
2927 /* definition */
2928 vat_offset = 0;
2929 vat_entries = (vat_length-36)/4;
2930
2931 /* read in tail of virtual allocation table file */
2932 error = vn_rdwr(UIO_READ, vat_node->vnode,
2933 (uint8_t *) raw_vat,
2934 sizeof(struct udf_oldvat_tail),
2935 vat_entries * 4,
2936 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2937 NULL, NULL);
2938 if (error)
2939 goto out;
2940
2941 /* check 1.50 VAT */
2942 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2943 regid_name = (char *) oldvat_tl->id.id;
2944 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2945 if (error) {
2946 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2947 error = ENOENT;
2948 goto out;
2949 }
2950
2951 /*
2952 * update LVID from "*UDF VAT LVExtension" extended attribute
2953 * if present.
2954 */
2955 udf_update_lvid_from_vat_extattr(vat_node);
2956 } else {
2957 /* read in head of virtual allocation table file */
2958 error = vn_rdwr(UIO_READ, vat_node->vnode,
2959 (uint8_t *) raw_vat,
2960 sizeof(struct udf_vat), 0,
2961 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2962 NULL, NULL);
2963 if (error)
2964 goto out;
2965
2966 /* definition */
2967 vat = (struct udf_vat *) raw_vat;
2968 vat_offset = vat->header_len;
2969 vat_entries = (vat_length - vat_offset)/4;
2970
2971 assert(lvinfo);
2972 lvinfo->num_files = vat->num_files;
2973 lvinfo->num_directories = vat->num_directories;
2974 lvinfo->min_udf_readver = vat->min_udf_readver;
2975 lvinfo->min_udf_writever = vat->min_udf_writever;
2976 lvinfo->max_udf_writever = vat->max_udf_writever;
2977
2978 udf_update_logvolname(ump, vat->logvol_id);
2979 }
2980
2981 /* read in complete VAT file */
2982 error = vn_rdwr(UIO_READ, vat_node->vnode,
2983 vat_table,
2984 vat_length, 0,
2985 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2986 NULL, NULL);
2987 if (error)
2988 printf("read in of complete VAT file failed (error %d)\n",
2989 error);
2990 if (error)
2991 goto out;
2992
2993 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2994 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2995 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2996 ump->logvol_integrity->time = *mtime;
2997
2998 ump->vat_table_len = vat_length;
2999 ump->vat_table_alloc_len = vat_table_alloc_len;
3000 ump->vat_table = vat_table;
3001 ump->vat_offset = vat_offset;
3002 ump->vat_entries = vat_entries;
3003 ump->vat_last_free_lb = 0; /* start at beginning */
3004
3005 out:
3006 if (error) {
3007 if (vat_table)
3008 free(vat_table, M_UDFVOLD);
3009 }
3010 free(raw_vat, M_TEMP);
3011
3012 return error;
3013 }
3014
3015 /* --------------------------------------------------------------------- */
3016
3017 static int
3018 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3019 {
3020 struct udf_node *vat_node;
3021 struct long_ad icb_loc;
3022 uint32_t early_vat_loc, vat_loc;
3023 int error;
3024
3025 /* mapping info not needed */
3026 mapping = mapping;
3027
3028 vat_loc = ump->last_possible_vat_location;
3029 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
3030
3031 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
3032 vat_loc, early_vat_loc));
3033 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3034
3035 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3036 vat_loc, early_vat_loc));
3037
3038 /* start looking from the end of the range */
3039 do {
3040 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3041 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3042 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3043
3044 error = udf_get_node(ump, &icb_loc, &vat_node);
3045 if (!error) {
3046 error = udf_check_for_vat(vat_node);
3047 DPRINTFIF(VOLUMES, !error,
3048 ("VAT accepted at %d\n", vat_loc));
3049 if (!error)
3050 break;
3051 }
3052 if (vat_node) {
3053 vput(vat_node->vnode);
3054 vat_node = NULL;
3055 }
3056 vat_loc--; /* walk backwards */
3057 } while (vat_loc >= early_vat_loc);
3058
3059 /* keep our VAT node around */
3060 if (vat_node) {
3061 UDF_SET_SYSTEMFILE(vat_node->vnode);
3062 ump->vat_node = vat_node;
3063 }
3064
3065 return error;
3066 }
3067
3068 /* --------------------------------------------------------------------- */
3069
3070 static int
3071 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3072 {
3073 union dscrptr *dscr;
3074 struct part_map_spare *pms = &mapping->pms;
3075 uint32_t lb_num;
3076 int spar, error;
3077
3078 /*
3079 * The partition mapping passed on to us specifies the information we
3080 * need to locate and initialise the sparable partition mapping
3081 * information we need.
3082 */
3083
3084 DPRINTF(VOLUMES, ("Read sparable table\n"));
3085 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3086 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3087
3088 for (spar = 0; spar < pms->n_st; spar++) {
3089 lb_num = pms->st_loc[spar];
3090 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3091 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3092 if (!error && dscr) {
3093 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3094 if (ump->sparing_table)
3095 free(ump->sparing_table, M_UDFVOLD);
3096 ump->sparing_table = &dscr->spt;
3097 dscr = NULL;
3098 DPRINTF(VOLUMES,
3099 ("Sparing table accepted (%d entries)\n",
3100 udf_rw16(ump->sparing_table->rt_l)));
3101 break; /* we're done */
3102 }
3103 }
3104 if (dscr)
3105 free(dscr, M_UDFVOLD);
3106 }
3107
3108 if (ump->sparing_table)
3109 return 0;
3110
3111 return ENOENT;
3112 }
3113
3114 /* --------------------------------------------------------------------- */
3115
3116 static int
3117 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3118 {
3119 struct part_map_meta *pmm = &mapping->pmm;
3120 struct long_ad icb_loc;
3121 struct vnode *vp;
3122 uint16_t raw_phys_part, phys_part;
3123 int error;
3124
3125 /*
3126 * BUGALERT: some rogue implementations use random physical
3127 * partition numbers to break other implementations so lookup
3128 * the number.
3129 */
3130
3131 /* extract our allocation parameters set up on format */
3132 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3133 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3134 ump->metadata_flags = mapping->pmm.flags;
3135
3136 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3137 raw_phys_part = udf_rw16(pmm->part_num);
3138 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3139
3140 icb_loc.loc.part_num = udf_rw16(phys_part);
3141
3142 DPRINTF(VOLUMES, ("Metadata file\n"));
3143 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3144 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3145 if (ump->metadata_node) {
3146 vp = ump->metadata_node->vnode;
3147 UDF_SET_SYSTEMFILE(vp);
3148 }
3149
3150 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3151 if (icb_loc.loc.lb_num != -1) {
3152 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3153 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3154 if (ump->metadatamirror_node) {
3155 vp = ump->metadatamirror_node->vnode;
3156 UDF_SET_SYSTEMFILE(vp);
3157 }
3158 }
3159
3160 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3161 if (icb_loc.loc.lb_num != -1) {
3162 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3163 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3164 if (ump->metadatabitmap_node) {
3165 vp = ump->metadatabitmap_node->vnode;
3166 UDF_SET_SYSTEMFILE(vp);
3167 }
3168 }
3169
3170 /* if we're mounting read-only we relax the requirements */
3171 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3172 error = EFAULT;
3173 if (ump->metadata_node)
3174 error = 0;
3175 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3176 printf( "udf mount: Metadata file not readable, "
3177 "substituting Metadata copy file\n");
3178 ump->metadata_node = ump->metadatamirror_node;
3179 ump->metadatamirror_node = NULL;
3180 error = 0;
3181 }
3182 } else {
3183 /* mounting read/write */
3184 /* XXX DISABLED! metadata writing is not working yet XXX */
3185 if (error)
3186 error = EROFS;
3187 }
3188 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3189 "metadata files\n"));
3190 return error;
3191 }
3192
3193 /* --------------------------------------------------------------------- */
3194
3195 int
3196 udf_read_vds_tables(struct udf_mount *ump)
3197 {
3198 union udf_pmap *mapping;
3199 /* struct udf_args *args = &ump->mount_args; */
3200 uint32_t n_pm;
3201 uint32_t log_part;
3202 uint8_t *pmap_pos;
3203 int pmap_size;
3204 int error;
3205
3206 /* Iterate (again) over the part mappings for locations */
3207 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3208 pmap_pos = ump->logical_vol->maps;
3209
3210 for (log_part = 0; log_part < n_pm; log_part++) {
3211 mapping = (union udf_pmap *) pmap_pos;
3212 switch (ump->vtop_tp[log_part]) {
3213 case UDF_VTOP_TYPE_PHYS :
3214 /* nothing */
3215 break;
3216 case UDF_VTOP_TYPE_VIRT :
3217 /* search and load VAT */
3218 error = udf_search_vat(ump, mapping);
3219 if (error)
3220 return ENOENT;
3221 break;
3222 case UDF_VTOP_TYPE_SPARABLE :
3223 /* load one of the sparable tables */
3224 error = udf_read_sparables(ump, mapping);
3225 if (error)
3226 return ENOENT;
3227 break;
3228 case UDF_VTOP_TYPE_META :
3229 /* load the associated file descriptors */
3230 error = udf_read_metadata_nodes(ump, mapping);
3231 if (error)
3232 return ENOENT;
3233 break;
3234 default:
3235 break;
3236 }
3237 pmap_size = pmap_pos[1];
3238 pmap_pos += pmap_size;
3239 }
3240
3241 /* read in and check unallocated and free space info if writing */
3242 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3243 error = udf_read_physical_partition_spacetables(ump);
3244 if (error)
3245 return error;
3246
3247 /* also read in metadata partition spacebitmap if defined */
3248 error = udf_read_metadata_partition_spacetable(ump);
3249 return error;
3250 }
3251
3252 return 0;
3253 }
3254
3255 /* --------------------------------------------------------------------- */
3256
3257 int
3258 udf_read_rootdirs(struct udf_mount *ump)
3259 {
3260 union dscrptr *dscr;
3261 /* struct udf_args *args = &ump->mount_args; */
3262 struct udf_node *rootdir_node, *streamdir_node;
3263 struct long_ad fsd_loc, *dir_loc;
3264 uint32_t lb_num, dummy;
3265 uint32_t fsd_len;
3266 int dscr_type;
3267 int error;
3268
3269 /* TODO implement FSD reading in separate function like integrity? */
3270 /* get fileset descriptor sequence */
3271 fsd_loc = ump->logical_vol->lv_fsd_loc;
3272 fsd_len = udf_rw32(fsd_loc.len);
3273
3274 dscr = NULL;
3275 error = 0;
3276 while (fsd_len || error) {
3277 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3278 /* translate fsd_loc to lb_num */
3279 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3280 if (error)
3281 break;
3282 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3283 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3284 /* end markers */
3285 if (error || (dscr == NULL))
3286 break;
3287
3288 /* analyse */
3289 dscr_type = udf_rw16(dscr->tag.id);
3290 if (dscr_type == TAGID_TERM)
3291 break;
3292 if (dscr_type != TAGID_FSD) {
3293 free(dscr, M_UDFVOLD);
3294 return ENOENT;
3295 }
3296
3297 /*
3298 * TODO check for multiple fileset descriptors; its only
3299 * picking the last now. Also check for FSD
3300 * correctness/interpretability
3301 */
3302
3303 /* update */
3304 if (ump->fileset_desc) {
3305 free(ump->fileset_desc, M_UDFVOLD);
3306 }
3307 ump->fileset_desc = &dscr->fsd;
3308 dscr = NULL;
3309
3310 /* continue to the next fsd */
3311 fsd_len -= ump->discinfo.sector_size;
3312 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3313
3314 /* follow up to fsd->next_ex (long_ad) if its not null */
3315 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3316 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3317 fsd_loc = ump->fileset_desc->next_ex;
3318 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3319 }
3320 }
3321 if (dscr)
3322 free(dscr, M_UDFVOLD);
3323
3324 /* there has to be one */
3325 if (ump->fileset_desc == NULL)
3326 return ENOENT;
3327
3328 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3329 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3330 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3331
3332 /*
3333 * Now the FSD is known, read in the rootdirectory and if one exists,
3334 * the system stream dir. Some files in the system streamdir are not
3335 * wanted in this implementation since they are not maintained. If
3336 * writing is enabled we'll delete these files if they exist.
3337 */
3338
3339 rootdir_node = streamdir_node = NULL;
3340 dir_loc = NULL;
3341
3342 /* try to read in the rootdir */
3343 dir_loc = &ump->fileset_desc->rootdir_icb;
3344 error = udf_get_node(ump, dir_loc, &rootdir_node);
3345 if (error)
3346 return ENOENT;
3347
3348 /* aparently it read in fine */
3349
3350 /*
3351 * Try the system stream directory; not very likely in the ones we
3352 * test, but for completeness.
3353 */
3354 dir_loc = &ump->fileset_desc->streamdir_icb;
3355 if (udf_rw32(dir_loc->len)) {
3356 printf("udf_read_rootdirs: streamdir defined ");
3357 error = udf_get_node(ump, dir_loc, &streamdir_node);
3358 if (error) {
3359 printf("but error in streamdir reading\n");
3360 } else {
3361 printf("but ignored\n");
3362 /*
3363 * TODO process streamdir `baddies' i.e. files we dont
3364 * want if R/W
3365 */
3366 }
3367 }
3368
3369 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3370
3371 /* release the vnodes again; they'll be auto-recycled later */
3372 if (streamdir_node) {
3373 vput(streamdir_node->vnode);
3374 }
3375 if (rootdir_node) {
3376 vput(rootdir_node->vnode);
3377 }
3378
3379 return 0;
3380 }
3381
3382 /* --------------------------------------------------------------------- */
3383
3384 /* To make absolutely sure we are NOT returning zero, add one :) */
3385
3386 long
3387 udf_get_node_id(const struct long_ad *icbptr)
3388 {
3389 /* ought to be enough since each mountpoint has its own chain */
3390 return udf_rw32(icbptr->loc.lb_num) + 1;
3391 }
3392
3393
3394 int
3395 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3396 {
3397 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3398 return -1;
3399 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3400 return 1;
3401
3402 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3403 return -1;
3404 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3405 return 1;
3406
3407 return 0;
3408 }
3409
3410
3411 static int
3412 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3413 {
3414 const struct udf_node *a_node = a;
3415 const struct udf_node *b_node = b;
3416
3417 return udf_compare_icb(&a_node->loc, &b_node->loc);
3418 }
3419
3420
3421 static int
3422 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3423 {
3424 const struct udf_node *a_node = a;
3425 const struct long_ad * const icb = key;
3426
3427 return udf_compare_icb(&a_node->loc, icb);
3428 }
3429
3430
3431 static const rb_tree_ops_t udf_node_rbtree_ops = {
3432 .rbto_compare_nodes = udf_compare_rbnodes,
3433 .rbto_compare_key = udf_compare_rbnode_icb,
3434 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3435 .rbto_context = NULL
3436 };
3437
3438
3439 void
3440 udf_init_nodes_tree(struct udf_mount *ump)
3441 {
3442
3443 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3444 }
3445
3446
3447 /* --------------------------------------------------------------------- */
3448
3449 static int
3450 udf_validate_session_start(struct udf_mount *ump)
3451 {
3452 struct mmc_trackinfo trackinfo;
3453 struct vrs_desc *vrs;
3454 uint32_t tracknr, sessionnr, sector, sector_size;
3455 uint32_t iso9660_vrs, write_track_start;
3456 uint8_t *buffer, *blank, *pos;
3457 int blks, max_sectors, vrs_len;
3458 int error;
3459
3460 /* disc appendable? */
3461 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3462 return EROFS;
3463
3464 /* already written here? if so, there should be an ISO VDS */
3465 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3466 return 0;
3467
3468 /*
3469 * Check if the first track of the session is blank and if so, copy or
3470 * create a dummy ISO descriptor so the disc is valid again.
3471 */
3472
3473 tracknr = ump->discinfo.first_track_last_session;
3474 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3475 trackinfo.tracknr = tracknr;
3476 error = udf_update_trackinfo(ump, &trackinfo);
3477 if (error)
3478 return error;
3479
3480 udf_dump_trackinfo(&trackinfo);
3481 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3482 KASSERT(trackinfo.sessionnr > 1);
3483
3484 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3485 write_track_start = trackinfo.next_writable;
3486
3487 /* we have to copy the ISO VRS from a former session */
3488 DPRINTF(VOLUMES, ("validate_session_start: "
3489 "blank or reserved track, copying VRS\n"));
3490
3491 /* sessionnr should be the session we're mounting */
3492 sessionnr = ump->mount_args.sessionnr;
3493
3494 /* start at the first track */
3495 tracknr = ump->discinfo.first_track;
3496 while (tracknr <= ump->discinfo.num_tracks) {
3497 trackinfo.tracknr = tracknr;
3498 error = udf_update_trackinfo(ump, &trackinfo);
3499 if (error) {
3500 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3501 return error;
3502 }
3503 if (trackinfo.sessionnr == sessionnr)
3504 break;
3505 tracknr++;
3506 }
3507 if (trackinfo.sessionnr != sessionnr) {
3508 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3509 return ENOENT;
3510 }
3511
3512 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3513 udf_dump_trackinfo(&trackinfo);
3514
3515 /*
3516 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3517 * minimum ISO `sector size' 2048
3518 */
3519 sector_size = ump->discinfo.sector_size;
3520 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3521 + trackinfo.track_start;
3522
3523 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3524 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3525 blks = MAX(1, 2048 / sector_size);
3526
3527 error = 0;
3528 for (sector = 0; sector < max_sectors; sector += blks) {
3529 pos = buffer + sector * sector_size;
3530 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3531 iso9660_vrs + sector, blks);
3532 if (error)
3533 break;
3534 /* check this ISO descriptor */
3535 vrs = (struct vrs_desc *) pos;
3536 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3537 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3538 continue;
3539 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3540 continue;
3541 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3542 continue;
3543 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3544 continue;
3545 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3546 continue;
3547 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3548 break;
3549 /* now what? for now, end of sequence */
3550 break;
3551 }
3552 vrs_len = sector + blks;
3553 if (error) {
3554 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3555 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3556
3557 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3558
3559 vrs = (struct vrs_desc *) (buffer);
3560 vrs->struct_type = 0;
3561 vrs->version = 1;
3562 memcpy(vrs->identifier,VRS_BEA01, 5);
3563
3564 vrs = (struct vrs_desc *) (buffer + 2048);
3565 vrs->struct_type = 0;
3566 vrs->version = 1;
3567 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3568 memcpy(vrs->identifier,VRS_NSR02, 5);
3569 } else {
3570 memcpy(vrs->identifier,VRS_NSR03, 5);
3571 }
3572
3573 vrs = (struct vrs_desc *) (buffer + 4096);
3574 vrs->struct_type = 0;
3575 vrs->version = 1;
3576 memcpy(vrs->identifier, VRS_TEA01, 5);
3577
3578 vrs_len = 3*blks;
3579 }
3580
3581 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3582
3583 /*
3584 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3585 * minimum ISO `sector size' 2048
3586 */
3587 sector_size = ump->discinfo.sector_size;
3588 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3589 + write_track_start;
3590
3591 /* write out 32 kb */
3592 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3593 memset(blank, 0, sector_size);
3594 error = 0;
3595 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3596 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3597 blank, sector, 1);
3598 if (error)
3599 break;
3600 }
3601 if (!error) {
3602 /* write out our ISO VRS */
3603 KASSERT(sector == iso9660_vrs);
3604 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3605 sector, vrs_len);
3606 sector += vrs_len;
3607 }
3608 if (!error) {
3609 /* fill upto the first anchor at S+256 */
3610 for (; sector < write_track_start+256; sector++) {
3611 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3612 blank, sector, 1);
3613 if (error)
3614 break;
3615 }
3616 }
3617 if (!error) {
3618 /* write out anchor; write at ABSOLUTE place! */
3619 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3620 (union dscrptr *) ump->anchors[0], sector, sector);
3621 if (error)
3622 printf("writeout of anchor failed!\n");
3623 }
3624
3625 free(blank, M_TEMP);
3626 free(buffer, M_TEMP);
3627
3628 if (error)
3629 printf("udf_open_session: error writing iso vrs! : "
3630 "leaving disc in compromised state!\n");
3631
3632 /* synchronise device caches */
3633 (void) udf_synchronise_caches(ump);
3634
3635 return error;
3636 }
3637
3638
3639 int
3640 udf_open_logvol(struct udf_mount *ump)
3641 {
3642 int logvol_integrity;
3643 int error;
3644
3645 /* already/still open? */
3646 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3647 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3648 return 0;
3649
3650 /* can we open it ? */
3651 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3652 return EROFS;
3653
3654 /* setup write parameters */
3655 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3656 if ((error = udf_setup_writeparams(ump)) != 0)
3657 return error;
3658
3659 /* determine data and metadata tracks (most likely same) */
3660 error = udf_search_writing_tracks(ump);
3661 if (error) {
3662 /* most likely lack of space */
3663 printf("udf_open_logvol: error searching writing tracks\n");
3664 return EROFS;
3665 }
3666
3667 /* writeout/update lvint on disc or only in memory */
3668 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3669 if (ump->lvopen & UDF_OPEN_SESSION) {
3670 /* TODO optional track reservation opening */
3671 error = udf_validate_session_start(ump);
3672 if (error)
3673 return error;
3674
3675 /* determine data and metadata tracks again */
3676 error = udf_search_writing_tracks(ump);
3677 }
3678
3679 /* mark it open */
3680 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3681
3682 /* do we need to write it out? */
3683 if (ump->lvopen & UDF_WRITE_LVINT) {
3684 error = udf_writeout_lvint(ump, ump->lvopen);
3685 /* if we couldn't write it mark it closed again */
3686 if (error) {
3687 ump->logvol_integrity->integrity_type =
3688 udf_rw32(UDF_INTEGRITY_CLOSED);
3689 return error;
3690 }
3691 }
3692
3693 return 0;
3694 }
3695
3696
3697 int
3698 udf_close_logvol(struct udf_mount *ump, int mntflags)
3699 {
3700 struct vnode *devvp = ump->devvp;
3701 struct mmc_op mmc_op;
3702 int logvol_integrity;
3703 int error = 0, error1 = 0, error2 = 0;
3704 int tracknr;
3705 int nvats, n, nok;
3706
3707 /* already/still closed? */
3708 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3709 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3710 return 0;
3711
3712 /* writeout/update lvint or write out VAT */
3713 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3714 #ifdef DIAGNOSTIC
3715 if (ump->lvclose & UDF_CLOSE_SESSION)
3716 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3717 #endif
3718
3719 if (ump->lvclose & UDF_WRITE_VAT) {
3720 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3721
3722 /* write out the VAT data and all its descriptors */
3723 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3724 udf_writeout_vat(ump);
3725 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3726
3727 (void) VOP_FSYNC(ump->vat_node->vnode,
3728 FSCRED, FSYNC_WAIT, 0, 0);
3729
3730 if (ump->lvclose & UDF_CLOSE_SESSION) {
3731 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3732 "as requested\n"));
3733 }
3734
3735 /* at least two DVD packets and 3 CD-R packets */
3736 nvats = 32;
3737
3738 #if notyet
3739 /*
3740 * TODO calculate the available space and if the disc is
3741 * allmost full, write out till end-256-1 with banks, write
3742 * AVDP and fill up with VATs, then close session and close
3743 * disc.
3744 */
3745 if (ump->lvclose & UDF_FINALISE_DISC) {
3746 error = udf_write_phys_dscr_sync(ump, NULL,
3747 UDF_C_FLOAT_DSCR,
3748 (union dscrptr *) ump->anchors[0],
3749 0, 0);
3750 if (error)
3751 printf("writeout of anchor failed!\n");
3752
3753 /* pad space with VAT ICBs */
3754 nvats = 256;
3755 }
3756 #endif
3757
3758 /* write out a number of VAT nodes */
3759 nok = 0;
3760 for (n = 0; n < nvats; n++) {
3761 /* will now only write last FE/EFE */
3762 ump->vat_node->i_flags |= IN_MODIFIED;
3763 error = VOP_FSYNC(ump->vat_node->vnode,
3764 FSCRED, FSYNC_WAIT, 0, 0);
3765 if (!error)
3766 nok++;
3767 }
3768 if (nok < 14) {
3769 /* arbitrary; but at least one or two CD frames */
3770 printf("writeout of at least 14 VATs failed\n");
3771 return error;
3772 }
3773 }
3774
3775 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3776
3777 /* finish closing of session */
3778 if (ump->lvclose & UDF_CLOSE_SESSION) {
3779 error = udf_validate_session_start(ump);
3780 if (error)
3781 return error;
3782
3783 (void) udf_synchronise_caches(ump);
3784
3785 /* close all associated tracks */
3786 tracknr = ump->discinfo.first_track_last_session;
3787 error = 0;
3788 while (tracknr <= ump->discinfo.last_track_last_session) {
3789 DPRINTF(VOLUMES, ("\tclosing possible open "
3790 "track %d\n", tracknr));
3791 memset(&mmc_op, 0, sizeof(mmc_op));
3792 mmc_op.operation = MMC_OP_CLOSETRACK;
3793 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3794 mmc_op.tracknr = tracknr;
3795 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3796 FKIOCTL, NOCRED);
3797 if (error)
3798 printf("udf_close_logvol: closing of "
3799 "track %d failed\n", tracknr);
3800 tracknr ++;
3801 }
3802 if (!error) {
3803 DPRINTF(VOLUMES, ("closing session\n"));
3804 memset(&mmc_op, 0, sizeof(mmc_op));
3805 mmc_op.operation = MMC_OP_CLOSESESSION;
3806 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3807 mmc_op.sessionnr = ump->discinfo.num_sessions;
3808 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3809 FKIOCTL, NOCRED);
3810 if (error)
3811 printf("udf_close_logvol: closing of session"
3812 "failed\n");
3813 }
3814 if (!error)
3815 ump->lvopen |= UDF_OPEN_SESSION;
3816 if (error) {
3817 printf("udf_close_logvol: leaving disc as it is\n");
3818 ump->lvclose &= ~UDF_FINALISE_DISC;
3819 }
3820 }
3821
3822 if (ump->lvclose & UDF_FINALISE_DISC) {
3823 memset(&mmc_op, 0, sizeof(mmc_op));
3824 mmc_op.operation = MMC_OP_FINALISEDISC;
3825 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3826 mmc_op.sessionnr = ump->discinfo.num_sessions;
3827 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3828 FKIOCTL, NOCRED);
3829 if (error)
3830 printf("udf_close_logvol: finalising disc"
3831 "failed\n");
3832 }
3833
3834 /* write out partition bitmaps if requested */
3835 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3836 /* sync writeout metadata spacetable if existing */
3837 error1 = udf_write_metadata_partition_spacetable(ump, true);
3838 if (error1)
3839 printf( "udf_close_logvol: writeout of metadata space "
3840 "bitmap failed\n");
3841
3842 /* sync writeout partition spacetables */
3843 error2 = udf_write_physical_partition_spacetables(ump, true);
3844 if (error2)
3845 printf( "udf_close_logvol: writeout of space tables "
3846 "failed\n");
3847
3848 if (error1 || error2)
3849 return (error1 | error2);
3850
3851 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3852 }
3853
3854 /* write out metadata partition nodes if requested */
3855 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3856 /* sync writeout metadata descriptor node */
3857 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3858 if (error1)
3859 printf( "udf_close_logvol: writeout of metadata partition "
3860 "node failed\n");
3861
3862 /* duplicate metadata partition descriptor if needed */
3863 udf_synchronise_metadatamirror_node(ump);
3864
3865 /* sync writeout metadatamirror descriptor node */
3866 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3867 if (error2)
3868 printf( "udf_close_logvol: writeout of metadata partition "
3869 "mirror node failed\n");
3870
3871 if (error1 || error2)
3872 return (error1 | error2);
3873
3874 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3875 }
3876
3877 /* mark it closed */
3878 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3879
3880 /* do we need to write out the logical volume integrity? */
3881 if (ump->lvclose & UDF_WRITE_LVINT)
3882 error = udf_writeout_lvint(ump, ump->lvopen);
3883 if (error) {
3884 /* HELP now what? mark it open again for now */
3885 ump->logvol_integrity->integrity_type =
3886 udf_rw32(UDF_INTEGRITY_OPEN);
3887 return error;
3888 }
3889
3890 (void) udf_synchronise_caches(ump);
3891
3892 return 0;
3893 }
3894
3895 /* --------------------------------------------------------------------- */
3896
3897 /*
3898 * Genfs interfacing
3899 *
3900 * static const struct genfs_ops udf_genfsops = {
3901 * .gop_size = genfs_size,
3902 * size of transfers
3903 * .gop_alloc = udf_gop_alloc,
3904 * allocate len bytes at offset
3905 * .gop_write = genfs_gop_write,
3906 * putpages interface code
3907 * .gop_markupdate = udf_gop_markupdate,
3908 * set update/modify flags etc.
3909 * }
3910 */
3911
3912 /*
3913 * Genfs interface. These four functions are the only ones defined though not
3914 * documented... great....
3915 */
3916
3917 /*
3918 * Called for allocating an extent of the file either by VOP_WRITE() or by
3919 * genfs filling up gaps.
3920 */
3921 static int
3922 udf_gop_alloc(struct vnode *vp, off_t off,
3923 off_t len, int flags, kauth_cred_t cred)
3924 {
3925 struct udf_node *udf_node = VTOI(vp);
3926 struct udf_mount *ump = udf_node->ump;
3927 uint64_t lb_start, lb_end;
3928 uint32_t lb_size, num_lb;
3929 int udf_c_type, vpart_num, can_fail;
3930 int error;
3931
3932 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3933 off, len, flags? "SYNC":"NONE"));
3934
3935 /*
3936 * request the pages of our vnode and see how many pages will need to
3937 * be allocated and reserve that space
3938 */
3939 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3940 lb_start = off / lb_size;
3941 lb_end = (off + len + lb_size -1) / lb_size;
3942 num_lb = lb_end - lb_start;
3943
3944 udf_c_type = udf_get_c_type(udf_node);
3945 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3946
3947 /* all requests can fail */
3948 can_fail = true;
3949
3950 /* fid's (directories) can't fail */
3951 if (udf_c_type == UDF_C_FIDS)
3952 can_fail = false;
3953
3954 /* system files can't fail */
3955 if (vp->v_vflag & VV_SYSTEM)
3956 can_fail = false;
3957
3958 error = udf_reserve_space(ump, udf_node, udf_c_type,
3959 vpart_num, num_lb, can_fail);
3960
3961 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3962 lb_start, lb_end, num_lb));
3963
3964 return error;
3965 }
3966
3967
3968 /*
3969 * callback from genfs to update our flags
3970 */
3971 static void
3972 udf_gop_markupdate(struct vnode *vp, int flags)
3973 {
3974 struct udf_node *udf_node = VTOI(vp);
3975 u_long mask = 0;
3976
3977 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3978 mask = IN_ACCESS;
3979 }
3980 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3981 if (vp->v_type == VREG) {
3982 mask |= IN_CHANGE | IN_UPDATE;
3983 } else {
3984 mask |= IN_MODIFY;
3985 }
3986 }
3987 if (mask) {
3988 udf_node->i_flags |= mask;
3989 }
3990 }
3991
3992
3993 static const struct genfs_ops udf_genfsops = {
3994 .gop_size = genfs_size,
3995 .gop_alloc = udf_gop_alloc,
3996 .gop_write = genfs_gop_write_rwmap,
3997 .gop_markupdate = udf_gop_markupdate,
3998 };
3999
4000
4001 /* --------------------------------------------------------------------- */
4002
4003 int
4004 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4005 {
4006 union dscrptr *dscr;
4007 int error;
4008
4009 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4010 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4011
4012 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4013 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4014 (void) udf_validate_tag_and_crc_sums(dscr);
4015
4016 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4017 dscr, sector, sector);
4018
4019 free(dscr, M_TEMP);
4020
4021 return error;
4022 }
4023
4024
4025 /* --------------------------------------------------------------------- */
4026
4027 /* UDF<->unix converters */
4028
4029 /* --------------------------------------------------------------------- */
4030
4031 static mode_t
4032 udf_perm_to_unix_mode(uint32_t perm)
4033 {
4034 mode_t mode;
4035
4036 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4037 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4038 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4039
4040 return mode;
4041 }
4042
4043 /* --------------------------------------------------------------------- */
4044
4045 static uint32_t
4046 unix_mode_to_udf_perm(mode_t mode)
4047 {
4048 uint32_t perm;
4049
4050 perm = ((mode & S_IRWXO) );
4051 perm |= ((mode & S_IRWXG) << 2);
4052 perm |= ((mode & S_IRWXU) << 4);
4053 perm |= ((mode & S_IWOTH) << 3);
4054 perm |= ((mode & S_IWGRP) << 5);
4055 perm |= ((mode & S_IWUSR) << 7);
4056
4057 return perm;
4058 }
4059
4060 /* --------------------------------------------------------------------- */
4061
4062 static uint32_t
4063 udf_icb_to_unix_filetype(uint32_t icbftype)
4064 {
4065 switch (icbftype) {
4066 case UDF_ICB_FILETYPE_DIRECTORY :
4067 case UDF_ICB_FILETYPE_STREAMDIR :
4068 return S_IFDIR;
4069 case UDF_ICB_FILETYPE_FIFO :
4070 return S_IFIFO;
4071 case UDF_ICB_FILETYPE_CHARDEVICE :
4072 return S_IFCHR;
4073 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4074 return S_IFBLK;
4075 case UDF_ICB_FILETYPE_RANDOMACCESS :
4076 case UDF_ICB_FILETYPE_REALTIME :
4077 return S_IFREG;
4078 case UDF_ICB_FILETYPE_SYMLINK :
4079 return S_IFLNK;
4080 case UDF_ICB_FILETYPE_SOCKET :
4081 return S_IFSOCK;
4082 }
4083 /* no idea what this is */
4084 return 0;
4085 }
4086
4087 /* --------------------------------------------------------------------- */
4088
4089 void
4090 udf_to_unix_name(char *result, int result_len, char *id, int len,
4091 struct charspec *chsp)
4092 {
4093 uint16_t *raw_name, *unix_name;
4094 uint16_t *inchp, ch;
4095 uint8_t *outchp;
4096 const char *osta_id = "OSTA Compressed Unicode";
4097 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4098
4099 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4100 unix_name = raw_name + 1024; /* split space in half */
4101 assert(sizeof(char) == sizeof(uint8_t));
4102 outchp = (uint8_t *) result;
4103
4104 is_osta_typ0 = (chsp->type == 0);
4105 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4106 if (is_osta_typ0) {
4107 /* TODO clean up */
4108 *raw_name = *unix_name = 0;
4109 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4110 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4111 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4112 /* output UTF8 */
4113 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4114 ch = *inchp;
4115 nout = wput_utf8(outchp, result_len, ch);
4116 outchp += nout; result_len -= nout;
4117 if (!ch) break;
4118 }
4119 *outchp++ = 0;
4120 } else {
4121 /* assume 8bit char length byte latin-1 */
4122 assert(*id == 8);
4123 assert(strlen((char *) (id+1)) <= NAME_MAX);
4124 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4125 }
4126 free(raw_name, M_UDFTEMP);
4127 }
4128
4129 /* --------------------------------------------------------------------- */
4130
4131 void
4132 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4133 struct charspec *chsp)
4134 {
4135 uint16_t *raw_name;
4136 uint16_t *outchp;
4137 const char *inchp;
4138 const char *osta_id = "OSTA Compressed Unicode";
4139 int udf_chars, is_osta_typ0, bits;
4140 size_t cnt;
4141
4142 /* allocate temporary unicode-16 buffer */
4143 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4144
4145 /* convert utf8 to unicode-16 */
4146 *raw_name = 0;
4147 inchp = name;
4148 outchp = raw_name;
4149 bits = 8;
4150 for (cnt = name_len, udf_chars = 0; cnt;) {
4151 *outchp = wget_utf8(&inchp, &cnt);
4152 if (*outchp > 0xff)
4153 bits=16;
4154 outchp++;
4155 udf_chars++;
4156 }
4157 /* null terminate just in case */
4158 *outchp++ = 0;
4159
4160 is_osta_typ0 = (chsp->type == 0);
4161 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4162 if (is_osta_typ0) {
4163 udf_chars = udf_CompressUnicode(udf_chars, bits,
4164 (unicode_t *) raw_name,
4165 (byte *) result);
4166 } else {
4167 printf("unix to udf name: no CHSP0 ?\n");
4168 /* XXX assume 8bit char length byte latin-1 */
4169 *result++ = 8; udf_chars = 1;
4170 strncpy(result, name + 1, name_len);
4171 udf_chars += name_len;
4172 }
4173 *result_len = udf_chars;
4174 free(raw_name, M_UDFTEMP);
4175 }
4176
4177 /* --------------------------------------------------------------------- */
4178
4179 void
4180 udf_timestamp_to_timespec(struct udf_mount *ump,
4181 struct timestamp *timestamp,
4182 struct timespec *timespec)
4183 {
4184 struct clock_ymdhms ymdhms;
4185 uint32_t usecs, secs, nsecs;
4186 uint16_t tz;
4187
4188 /* fill in ymdhms structure from timestamp */
4189 memset(&ymdhms, 0, sizeof(ymdhms));
4190 ymdhms.dt_year = udf_rw16(timestamp->year);
4191 ymdhms.dt_mon = timestamp->month;
4192 ymdhms.dt_day = timestamp->day;
4193 ymdhms.dt_wday = 0; /* ? */
4194 ymdhms.dt_hour = timestamp->hour;
4195 ymdhms.dt_min = timestamp->minute;
4196 ymdhms.dt_sec = timestamp->second;
4197
4198 secs = clock_ymdhms_to_secs(&ymdhms);
4199 usecs = timestamp->usec +
4200 100*timestamp->hund_usec + 10000*timestamp->centisec;
4201 nsecs = usecs * 1000;
4202
4203 /*
4204 * Calculate the time zone. The timezone is 12 bit signed 2's
4205 * compliment, so we gotta do some extra magic to handle it right.
4206 */
4207 tz = udf_rw16(timestamp->type_tz);
4208 tz &= 0x0fff; /* only lower 12 bits are significant */
4209 if (tz & 0x0800) /* sign extention */
4210 tz |= 0xf000;
4211
4212 /* TODO check timezone conversion */
4213 /* check if we are specified a timezone to convert */
4214 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4215 if ((int16_t) tz != -2047)
4216 secs -= (int16_t) tz * 60;
4217 } else {
4218 secs -= ump->mount_args.gmtoff;
4219 }
4220
4221 timespec->tv_sec = secs;
4222 timespec->tv_nsec = nsecs;
4223 }
4224
4225
4226 void
4227 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4228 {
4229 struct clock_ymdhms ymdhms;
4230 uint32_t husec, usec, csec;
4231
4232 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4233
4234 usec = timespec->tv_nsec / 1000;
4235 husec = usec / 100;
4236 usec -= husec * 100; /* only 0-99 in usec */
4237 csec = husec / 100; /* only 0-99 in csec */
4238 husec -= csec * 100; /* only 0-99 in husec */
4239
4240 /* set method 1 for CUT/GMT */
4241 timestamp->type_tz = udf_rw16((1<<12) + 0);
4242 timestamp->year = udf_rw16(ymdhms.dt_year);
4243 timestamp->month = ymdhms.dt_mon;
4244 timestamp->day = ymdhms.dt_day;
4245 timestamp->hour = ymdhms.dt_hour;
4246 timestamp->minute = ymdhms.dt_min;
4247 timestamp->second = ymdhms.dt_sec;
4248 timestamp->centisec = csec;
4249 timestamp->hund_usec = husec;
4250 timestamp->usec = usec;
4251 }
4252
4253 /* --------------------------------------------------------------------- */
4254
4255 /*
4256 * Attribute and filetypes converters with get/set pairs
4257 */
4258
4259 uint32_t
4260 udf_getaccessmode(struct udf_node *udf_node)
4261 {
4262 struct file_entry *fe = udf_node->fe;
4263 struct extfile_entry *efe = udf_node->efe;
4264 uint32_t udf_perm, icbftype;
4265 uint32_t mode, ftype;
4266 uint16_t icbflags;
4267
4268 UDF_LOCK_NODE(udf_node, 0);
4269 if (fe) {
4270 udf_perm = udf_rw32(fe->perm);
4271 icbftype = fe->icbtag.file_type;
4272 icbflags = udf_rw16(fe->icbtag.flags);
4273 } else {
4274 assert(udf_node->efe);
4275 udf_perm = udf_rw32(efe->perm);
4276 icbftype = efe->icbtag.file_type;
4277 icbflags = udf_rw16(efe->icbtag.flags);
4278 }
4279
4280 mode = udf_perm_to_unix_mode(udf_perm);
4281 ftype = udf_icb_to_unix_filetype(icbftype);
4282
4283 /* set suid, sgid, sticky from flags in fe/efe */
4284 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4285 mode |= S_ISUID;
4286 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4287 mode |= S_ISGID;
4288 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4289 mode |= S_ISVTX;
4290
4291 UDF_UNLOCK_NODE(udf_node, 0);
4292
4293 return mode | ftype;
4294 }
4295
4296
4297 void
4298 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4299 {
4300 struct file_entry *fe = udf_node->fe;
4301 struct extfile_entry *efe = udf_node->efe;
4302 uint32_t udf_perm;
4303 uint16_t icbflags;
4304
4305 UDF_LOCK_NODE(udf_node, 0);
4306 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4307 if (fe) {
4308 icbflags = udf_rw16(fe->icbtag.flags);
4309 } else {
4310 icbflags = udf_rw16(efe->icbtag.flags);
4311 }
4312
4313 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4314 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4315 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4316 if (mode & S_ISUID)
4317 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4318 if (mode & S_ISGID)
4319 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4320 if (mode & S_ISVTX)
4321 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4322
4323 if (fe) {
4324 fe->perm = udf_rw32(udf_perm);
4325 fe->icbtag.flags = udf_rw16(icbflags);
4326 } else {
4327 efe->perm = udf_rw32(udf_perm);
4328 efe->icbtag.flags = udf_rw16(icbflags);
4329 }
4330
4331 UDF_UNLOCK_NODE(udf_node, 0);
4332 }
4333
4334
4335 void
4336 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4337 {
4338 struct udf_mount *ump = udf_node->ump;
4339 struct file_entry *fe = udf_node->fe;
4340 struct extfile_entry *efe = udf_node->efe;
4341 uid_t uid;
4342 gid_t gid;
4343
4344 UDF_LOCK_NODE(udf_node, 0);
4345 if (fe) {
4346 uid = (uid_t)udf_rw32(fe->uid);
4347 gid = (gid_t)udf_rw32(fe->gid);
4348 } else {
4349 assert(udf_node->efe);
4350 uid = (uid_t)udf_rw32(efe->uid);
4351 gid = (gid_t)udf_rw32(efe->gid);
4352 }
4353
4354 /* do the uid/gid translation game */
4355 if (uid == (uid_t) -1)
4356 uid = ump->mount_args.anon_uid;
4357 if (gid == (gid_t) -1)
4358 gid = ump->mount_args.anon_gid;
4359
4360 *uidp = uid;
4361 *gidp = gid;
4362
4363 UDF_UNLOCK_NODE(udf_node, 0);
4364 }
4365
4366
4367 void
4368 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4369 {
4370 struct udf_mount *ump = udf_node->ump;
4371 struct file_entry *fe = udf_node->fe;
4372 struct extfile_entry *efe = udf_node->efe;
4373 uid_t nobody_uid;
4374 gid_t nobody_gid;
4375
4376 UDF_LOCK_NODE(udf_node, 0);
4377
4378 /* do the uid/gid translation game */
4379 nobody_uid = ump->mount_args.nobody_uid;
4380 nobody_gid = ump->mount_args.nobody_gid;
4381 if (uid == nobody_uid)
4382 uid = (uid_t) -1;
4383 if (gid == nobody_gid)
4384 gid = (gid_t) -1;
4385
4386 if (fe) {
4387 fe->uid = udf_rw32((uint32_t) uid);
4388 fe->gid = udf_rw32((uint32_t) gid);
4389 } else {
4390 efe->uid = udf_rw32((uint32_t) uid);
4391 efe->gid = udf_rw32((uint32_t) gid);
4392 }
4393
4394 UDF_UNLOCK_NODE(udf_node, 0);
4395 }
4396
4397
4398 /* --------------------------------------------------------------------- */
4399
4400
4401 int
4402 udf_dirhash_fill(struct udf_node *dir_node)
4403 {
4404 struct vnode *dvp = dir_node->vnode;
4405 struct dirhash *dirh;
4406 struct file_entry *fe = dir_node->fe;
4407 struct extfile_entry *efe = dir_node->efe;
4408 struct fileid_desc *fid;
4409 struct dirent *dirent;
4410 uint64_t file_size, pre_diroffset, diroffset;
4411 uint32_t lb_size;
4412 int error;
4413
4414 /* make sure we have a dirhash to work on */
4415 dirh = dir_node->dir_hash;
4416 KASSERT(dirh);
4417 KASSERT(dirh->refcnt > 0);
4418
4419 if (dirh->flags & DIRH_BROKEN)
4420 return EIO;
4421 if (dirh->flags & DIRH_COMPLETE)
4422 return 0;
4423
4424 /* make sure we have a clean dirhash to add to */
4425 dirhash_purge_entries(dirh);
4426
4427 /* get directory filesize */
4428 if (fe) {
4429 file_size = udf_rw64(fe->inf_len);
4430 } else {
4431 assert(efe);
4432 file_size = udf_rw64(efe->inf_len);
4433 }
4434
4435 /* allocate temporary space for fid */
4436 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4437 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4438
4439 /* allocate temporary space for dirent */
4440 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4441
4442 error = 0;
4443 diroffset = 0;
4444 while (diroffset < file_size) {
4445 /* transfer a new fid/dirent */
4446 pre_diroffset = diroffset;
4447 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4448 if (error) {
4449 /* TODO what to do? continue but not add? */
4450 dirh->flags |= DIRH_BROKEN;
4451 dirhash_purge_entries(dirh);
4452 break;
4453 }
4454
4455 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4456 /* register deleted extent for reuse */
4457 dirhash_enter_freed(dirh, pre_diroffset,
4458 udf_fidsize(fid));
4459 } else {
4460 /* append to the dirhash */
4461 dirhash_enter(dirh, dirent, pre_diroffset,
4462 udf_fidsize(fid), 0);
4463 }
4464 }
4465 dirh->flags |= DIRH_COMPLETE;
4466
4467 free(fid, M_UDFTEMP);
4468 free(dirent, M_UDFTEMP);
4469
4470 return error;
4471 }
4472
4473
4474 /* --------------------------------------------------------------------- */
4475
4476 /*
4477 * Directory read and manipulation functions.
4478 *
4479 */
4480
4481 int
4482 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4483 struct long_ad *icb_loc, int *found)
4484 {
4485 struct udf_node *dir_node = VTOI(vp);
4486 struct dirhash *dirh;
4487 struct dirhash_entry *dirh_ep;
4488 struct fileid_desc *fid;
4489 struct dirent *dirent, *s_dirent;
4490 struct charspec osta_charspec;
4491 uint64_t diroffset;
4492 uint32_t lb_size;
4493 int hit, error;
4494
4495 /* set default return */
4496 *found = 0;
4497
4498 /* get our dirhash and make sure its read in */
4499 dirhash_get(&dir_node->dir_hash);
4500 error = udf_dirhash_fill(dir_node);
4501 if (error) {
4502 dirhash_put(dir_node->dir_hash);
4503 return error;
4504 }
4505 dirh = dir_node->dir_hash;
4506
4507 /* allocate temporary space for fid */
4508 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4509 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4510 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4511 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4512
4513 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4514 namelen, namelen, name));
4515
4516 /* convert given unix name to canonical unix name */
4517 udf_osta_charset(&osta_charspec);
4518 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4519 name, namelen, &osta_charspec);
4520 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4521 (char *) fid->data, fid->l_fi,
4522 &osta_charspec);
4523 s_dirent->d_namlen = strlen(s_dirent->d_name);
4524
4525 /* search our dirhash hits */
4526 memset(icb_loc, 0, sizeof(*icb_loc));
4527 dirh_ep = NULL;
4528 for (;;) {
4529 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4530 /* if no hit, abort the search */
4531 if (!hit)
4532 break;
4533
4534 /* check this hit */
4535 diroffset = dirh_ep->offset;
4536
4537 /* transfer a new fid/dirent */
4538 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4539 if (error)
4540 break;
4541
4542 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4543 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4544
4545 /* see if its our entry */
4546 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4547 *found = 1;
4548 *icb_loc = fid->icb;
4549 break;
4550 }
4551 }
4552 free(fid, M_UDFTEMP);
4553 free(dirent, M_UDFTEMP);
4554 free(s_dirent, M_UDFTEMP);
4555
4556 dirhash_put(dir_node->dir_hash);
4557
4558 return error;
4559 }
4560
4561 /* --------------------------------------------------------------------- */
4562
4563 static int
4564 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4565 struct long_ad *node_icb, struct long_ad *parent_icb,
4566 uint64_t parent_unique_id)
4567 {
4568 struct timespec now;
4569 struct icb_tag *icb;
4570 struct filetimes_extattr_entry *ft_extattr;
4571 uint64_t unique_id;
4572 uint32_t fidsize, lb_num;
4573 uint8_t *bpos;
4574 int crclen, attrlen;
4575
4576 lb_num = udf_rw32(node_icb->loc.lb_num);
4577 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4578 icb = &fe->icbtag;
4579
4580 /*
4581 * Always use strategy type 4 unless on WORM wich we don't support
4582 * (yet). Fill in defaults and set for internal allocation of data.
4583 */
4584 icb->strat_type = udf_rw16(4);
4585 icb->max_num_entries = udf_rw16(1);
4586 icb->file_type = file_type; /* 8 bit */
4587 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4588
4589 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4590 fe->link_cnt = udf_rw16(0); /* explicit setting */
4591
4592 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4593
4594 vfs_timestamp(&now);
4595 udf_timespec_to_timestamp(&now, &fe->atime);
4596 udf_timespec_to_timestamp(&now, &fe->attrtime);
4597 udf_timespec_to_timestamp(&now, &fe->mtime);
4598
4599 udf_set_regid(&fe->imp_id, IMPL_NAME);
4600 udf_add_impl_regid(ump, &fe->imp_id);
4601
4602 unique_id = udf_advance_uniqueid(ump);
4603 fe->unique_id = udf_rw64(unique_id);
4604 fe->l_ea = udf_rw32(0);
4605
4606 /* create extended attribute to record our creation time */
4607 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4608 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4609 memset(ft_extattr, 0, attrlen);
4610 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4611 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4612 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4613 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4614 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4615 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4616
4617 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4618 (struct extattr_entry *) ft_extattr);
4619 free(ft_extattr, M_UDFTEMP);
4620
4621 /* if its a directory, create '..' */
4622 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4623 fidsize = 0;
4624 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4625 fidsize = udf_create_parentfid(ump,
4626 (struct fileid_desc *) bpos, parent_icb,
4627 parent_unique_id);
4628 }
4629
4630 /* record fidlength information */
4631 fe->inf_len = udf_rw64(fidsize);
4632 fe->l_ad = udf_rw32(fidsize);
4633 fe->logblks_rec = udf_rw64(0); /* intern */
4634
4635 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4636 crclen += udf_rw32(fe->l_ea) + fidsize;
4637 fe->tag.desc_crc_len = udf_rw16(crclen);
4638
4639 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4640
4641 return fidsize;
4642 }
4643
4644 /* --------------------------------------------------------------------- */
4645
4646 static int
4647 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4648 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4649 uint64_t parent_unique_id)
4650 {
4651 struct timespec now;
4652 struct icb_tag *icb;
4653 uint64_t unique_id;
4654 uint32_t fidsize, lb_num;
4655 uint8_t *bpos;
4656 int crclen;
4657
4658 lb_num = udf_rw32(node_icb->loc.lb_num);
4659 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4660 icb = &efe->icbtag;
4661
4662 /*
4663 * Always use strategy type 4 unless on WORM wich we don't support
4664 * (yet). Fill in defaults and set for internal allocation of data.
4665 */
4666 icb->strat_type = udf_rw16(4);
4667 icb->max_num_entries = udf_rw16(1);
4668 icb->file_type = file_type; /* 8 bit */
4669 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4670
4671 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4672 efe->link_cnt = udf_rw16(0); /* explicit setting */
4673
4674 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4675
4676 vfs_timestamp(&now);
4677 udf_timespec_to_timestamp(&now, &efe->ctime);
4678 udf_timespec_to_timestamp(&now, &efe->atime);
4679 udf_timespec_to_timestamp(&now, &efe->attrtime);
4680 udf_timespec_to_timestamp(&now, &efe->mtime);
4681
4682 udf_set_regid(&efe->imp_id, IMPL_NAME);
4683 udf_add_impl_regid(ump, &efe->imp_id);
4684
4685 unique_id = udf_advance_uniqueid(ump);
4686 efe->unique_id = udf_rw64(unique_id);
4687 efe->l_ea = udf_rw32(0);
4688
4689 /* if its a directory, create '..' */
4690 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4691 fidsize = 0;
4692 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4693 fidsize = udf_create_parentfid(ump,
4694 (struct fileid_desc *) bpos, parent_icb,
4695 parent_unique_id);
4696 }
4697
4698 /* record fidlength information */
4699 efe->obj_size = udf_rw64(fidsize);
4700 efe->inf_len = udf_rw64(fidsize);
4701 efe->l_ad = udf_rw32(fidsize);
4702 efe->logblks_rec = udf_rw64(0); /* intern */
4703
4704 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4705 crclen += udf_rw32(efe->l_ea) + fidsize;
4706 efe->tag.desc_crc_len = udf_rw16(crclen);
4707
4708 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4709
4710 return fidsize;
4711 }
4712
4713 /* --------------------------------------------------------------------- */
4714
4715 int
4716 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4717 struct udf_node *udf_node, struct componentname *cnp)
4718 {
4719 struct vnode *dvp = dir_node->vnode;
4720 struct dirhash *dirh;
4721 struct dirhash_entry *dirh_ep;
4722 struct file_entry *fe = dir_node->fe;
4723 struct fileid_desc *fid;
4724 struct dirent *dirent, *s_dirent;
4725 struct charspec osta_charspec;
4726 uint64_t diroffset;
4727 uint32_t lb_size, fidsize;
4728 int found, error;
4729 int hit, refcnt;
4730
4731 /* get our dirhash and make sure its read in */
4732 dirhash_get(&dir_node->dir_hash);
4733 error = udf_dirhash_fill(dir_node);
4734 if (error) {
4735 dirhash_put(dir_node->dir_hash);
4736 return error;
4737 }
4738 dirh = dir_node->dir_hash;
4739
4740 /* get directory filesize */
4741 if (!fe) {
4742 assert(dir_node->efe);
4743 }
4744
4745 /* allocate temporary space for fid and dirents */
4746 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4747 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4748 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4749 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4750
4751 /* convert given unix name to canonical unix name */
4752 udf_osta_charset(&osta_charspec);
4753 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4754 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4755 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4756 (char *) fid->data, fid->l_fi,
4757 &osta_charspec);
4758 s_dirent->d_namlen = strlen(s_dirent->d_name);
4759
4760 /* search our dirhash hits */
4761 found = 0;
4762 dirh_ep = NULL;
4763 for (;;) {
4764 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4765 /* if no hit, abort the search */
4766 if (!hit)
4767 break;
4768
4769 /* check this hit */
4770 diroffset = dirh_ep->offset;
4771
4772 /* transfer a new fid/dirent */
4773 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4774 if (error)
4775 break;
4776
4777 /* see if its our entry */
4778 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4779 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4780 found = 1;
4781 break;
4782 }
4783 }
4784
4785 if (!found)
4786 error = ENOENT;
4787 if (error)
4788 goto error_out;
4789
4790 /* mark deleted */
4791 fid->file_char |= UDF_FILE_CHAR_DEL;
4792 #ifdef UDF_COMPLETE_DELETE
4793 memset(&fid->icb, 0, sizeof(fid->icb));
4794 #endif
4795 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4796
4797 /* get size of fid and compensate for the read_fid_stream advance */
4798 fidsize = udf_fidsize(fid);
4799 diroffset -= fidsize;
4800
4801 /* write out */
4802 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4803 fid, fidsize, diroffset,
4804 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4805 FSCRED, NULL, NULL);
4806 if (error)
4807 goto error_out;
4808
4809 /* get reference count of attached node */
4810 if (udf_node->fe) {
4811 refcnt = udf_rw16(udf_node->fe->link_cnt);
4812 } else {
4813 KASSERT(udf_node->efe);
4814 refcnt = udf_rw16(udf_node->efe->link_cnt);
4815 }
4816 #ifdef UDF_COMPLETE_DELETE
4817 /* substract reference counter in attached node */
4818 refcnt -= 1;
4819 if (udf_node->fe) {
4820 udf_node->fe->link_cnt = udf_rw16(refcnt);
4821 } else {
4822 udf_node->efe->link_cnt = udf_rw16(refcnt);
4823 }
4824
4825 /* prevent writeout when refcnt == 0 */
4826 if (refcnt == 0)
4827 udf_node->i_flags |= IN_DELETED;
4828
4829 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4830 int drefcnt;
4831
4832 /* substract reference counter in directory node */
4833 /* note subtract 2 (?) for its was also backreferenced */
4834 if (dir_node->fe) {
4835 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4836 drefcnt -= 1;
4837 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4838 } else {
4839 KASSERT(dir_node->efe);
4840 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4841 drefcnt -= 1;
4842 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4843 }
4844 }
4845
4846 udf_node->i_flags |= IN_MODIFIED;
4847 dir_node->i_flags |= IN_MODIFIED;
4848 #endif
4849 /* if it is/was a hardlink adjust the file count */
4850 if (refcnt > 0)
4851 udf_adjust_filecount(udf_node, -1);
4852
4853 /* remove from the dirhash */
4854 dirhash_remove(dirh, dirent, diroffset,
4855 udf_fidsize(fid));
4856
4857 error_out:
4858 free(fid, M_UDFTEMP);
4859 free(dirent, M_UDFTEMP);
4860 free(s_dirent, M_UDFTEMP);
4861
4862 dirhash_put(dir_node->dir_hash);
4863
4864 return error;
4865 }
4866
4867 /* --------------------------------------------------------------------- */
4868
4869 int
4870 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4871 struct udf_node *new_parent_node)
4872 {
4873 struct vnode *dvp = dir_node->vnode;
4874 struct dirhash *dirh;
4875 struct dirhash_entry *dirh_ep;
4876 struct file_entry *fe;
4877 struct extfile_entry *efe;
4878 struct fileid_desc *fid;
4879 struct dirent *dirent;
4880 uint64_t diroffset;
4881 uint64_t new_parent_unique_id;
4882 uint32_t lb_size, fidsize;
4883 int found, error;
4884 char const *name = "..";
4885 int namelen = 2;
4886 int hit;
4887
4888 /* get our dirhash and make sure its read in */
4889 dirhash_get(&dir_node->dir_hash);
4890 error = udf_dirhash_fill(dir_node);
4891 if (error) {
4892 dirhash_put(dir_node->dir_hash);
4893 return error;
4894 }
4895 dirh = dir_node->dir_hash;
4896
4897 /* get new parent's unique ID */
4898 fe = new_parent_node->fe;
4899 efe = new_parent_node->efe;
4900 if (fe) {
4901 new_parent_unique_id = udf_rw64(fe->unique_id);
4902 } else {
4903 assert(efe);
4904 new_parent_unique_id = udf_rw64(efe->unique_id);
4905 }
4906
4907 /* get directory filesize */
4908 fe = dir_node->fe;
4909 efe = dir_node->efe;
4910 if (!fe) {
4911 assert(efe);
4912 }
4913
4914 /* allocate temporary space for fid */
4915 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4916 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4917 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4918
4919 /*
4920 * NOTE the standard does not dictate the FID entry '..' should be
4921 * first, though in practice it will most likely be.
4922 */
4923
4924 /* search our dirhash hits */
4925 found = 0;
4926 dirh_ep = NULL;
4927 for (;;) {
4928 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4929 /* if no hit, abort the search */
4930 if (!hit)
4931 break;
4932
4933 /* check this hit */
4934 diroffset = dirh_ep->offset;
4935
4936 /* transfer a new fid/dirent */
4937 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4938 if (error)
4939 break;
4940
4941 /* see if its our entry */
4942 KASSERT(dirent->d_namlen == namelen);
4943 if (strncmp(dirent->d_name, name, namelen) == 0) {
4944 found = 1;
4945 break;
4946 }
4947 }
4948
4949 if (!found)
4950 error = ENOENT;
4951 if (error)
4952 goto error_out;
4953
4954 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4955 fid->icb = new_parent_node->write_loc;
4956 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4957
4958 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4959
4960 /* get size of fid and compensate for the read_fid_stream advance */
4961 fidsize = udf_fidsize(fid);
4962 diroffset -= fidsize;
4963
4964 /* write out */
4965 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4966 fid, fidsize, diroffset,
4967 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4968 FSCRED, NULL, NULL);
4969
4970 /* nothing to be done in the dirhash */
4971
4972 error_out:
4973 free(fid, M_UDFTEMP);
4974 free(dirent, M_UDFTEMP);
4975
4976 dirhash_put(dir_node->dir_hash);
4977
4978 return error;
4979 }
4980
4981 /* --------------------------------------------------------------------- */
4982
4983 /*
4984 * We are not allowed to split the fid tag itself over an logical block so
4985 * check the space remaining in the logical block.
4986 *
4987 * We try to select the smallest candidate for recycling or when none is
4988 * found, append a new one at the end of the directory.
4989 */
4990
4991 int
4992 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4993 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4994 {
4995 struct vnode *dvp = dir_node->vnode;
4996 struct dirhash *dirh;
4997 struct dirhash_entry *dirh_ep;
4998 struct fileid_desc *fid;
4999 struct icb_tag *icbtag;
5000 struct charspec osta_charspec;
5001 struct dirent dirent;
5002 uint64_t unique_id, dir_size;
5003 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5004 uint32_t chosen_size, chosen_size_diff;
5005 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5006 int file_char, refcnt, icbflags, addr_type, hit, error;
5007
5008 /* get our dirhash and make sure its read in */
5009 dirhash_get(&dir_node->dir_hash);
5010 error = udf_dirhash_fill(dir_node);
5011 if (error) {
5012 dirhash_put(dir_node->dir_hash);
5013 return error;
5014 }
5015 dirh = dir_node->dir_hash;
5016
5017 /* get info */
5018 lb_size = udf_rw32(ump->logical_vol->lb_size);
5019 udf_osta_charset(&osta_charspec);
5020
5021 if (dir_node->fe) {
5022 dir_size = udf_rw64(dir_node->fe->inf_len);
5023 icbtag = &dir_node->fe->icbtag;
5024 } else {
5025 dir_size = udf_rw64(dir_node->efe->inf_len);
5026 icbtag = &dir_node->efe->icbtag;
5027 }
5028
5029 icbflags = udf_rw16(icbtag->flags);
5030 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5031
5032 if (udf_node->fe) {
5033 unique_id = udf_rw64(udf_node->fe->unique_id);
5034 refcnt = udf_rw16(udf_node->fe->link_cnt);
5035 } else {
5036 unique_id = udf_rw64(udf_node->efe->unique_id);
5037 refcnt = udf_rw16(udf_node->efe->link_cnt);
5038 }
5039
5040 if (refcnt > 0) {
5041 unique_id = udf_advance_uniqueid(ump);
5042 udf_adjust_filecount(udf_node, 1);
5043 }
5044
5045 /* determine file characteristics */
5046 file_char = 0; /* visible non deleted file and not stream metadata */
5047 if (vap->va_type == VDIR)
5048 file_char = UDF_FILE_CHAR_DIR;
5049
5050 /* malloc scrap buffer */
5051 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5052
5053 /* calculate _minimum_ fid size */
5054 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5055 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5056 fidsize = UDF_FID_SIZE + fid->l_fi;
5057 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5058
5059 /* find position that will fit the FID */
5060 chosen_fid_pos = dir_size;
5061 chosen_size = 0;
5062 chosen_size_diff = UINT_MAX;
5063
5064 /* shut up gcc */
5065 dirent.d_namlen = 0;
5066
5067 /* search our dirhash hits */
5068 error = 0;
5069 dirh_ep = NULL;
5070 for (;;) {
5071 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5072 /* if no hit, abort the search */
5073 if (!hit)
5074 break;
5075
5076 /* check this hit for size */
5077 this_fidsize = dirh_ep->entry_size;
5078
5079 /* check this hit */
5080 fid_pos = dirh_ep->offset;
5081 end_fid_pos = fid_pos + this_fidsize;
5082 size_diff = this_fidsize - fidsize;
5083 lb_rest = lb_size - (end_fid_pos % lb_size);
5084
5085 #ifndef UDF_COMPLETE_DELETE
5086 /* transfer a new fid/dirent */
5087 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5088 if (error)
5089 goto error_out;
5090
5091 /* only reuse entries that are wiped */
5092 /* check if the len + loc are marked zero */
5093 if (udf_rw32(fid->icb.len) != 0)
5094 continue;
5095 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5096 continue;
5097 if (udf_rw16(fid->icb.loc.part_num) != 0)
5098 continue;
5099 #endif /* UDF_COMPLETE_DELETE */
5100
5101 /* select if not splitting the tag and its smaller */
5102 if ((size_diff >= 0) &&
5103 (size_diff < chosen_size_diff) &&
5104 (lb_rest >= sizeof(struct desc_tag)))
5105 {
5106 /* UDF 2.3.4.2+3 specifies rules for iu size */
5107 if ((size_diff == 0) || (size_diff >= 32)) {
5108 chosen_fid_pos = fid_pos;
5109 chosen_size = this_fidsize;
5110 chosen_size_diff = size_diff;
5111 }
5112 }
5113 }
5114
5115
5116 /* extend directory if no other candidate found */
5117 if (chosen_size == 0) {
5118 chosen_fid_pos = dir_size;
5119 chosen_size = fidsize;
5120 chosen_size_diff = 0;
5121
5122 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5123 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5124 /* pre-grow directory to see if we're to switch */
5125 udf_grow_node(dir_node, dir_size + chosen_size);
5126
5127 icbflags = udf_rw16(icbtag->flags);
5128 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5129 }
5130
5131 /* make sure the next fid desc_tag won't be splitted */
5132 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5133 end_fid_pos = chosen_fid_pos + chosen_size;
5134 lb_rest = lb_size - (end_fid_pos % lb_size);
5135
5136 /* pad with implementation use regid if needed */
5137 if (lb_rest < sizeof(struct desc_tag))
5138 chosen_size += 32;
5139 }
5140 }
5141 chosen_size_diff = chosen_size - fidsize;
5142
5143 /* populate the FID */
5144 memset(fid, 0, lb_size);
5145 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5146 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5147 fid->file_char = file_char;
5148 fid->icb = udf_node->loc;
5149 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5150 fid->l_iu = udf_rw16(0);
5151
5152 if (chosen_size > fidsize) {
5153 /* insert implementation-use regid to space it correctly */
5154 fid->l_iu = udf_rw16(chosen_size_diff);
5155
5156 /* set implementation use */
5157 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5158 udf_add_impl_regid(ump, (struct regid *) fid->data);
5159 }
5160
5161 /* fill in name */
5162 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5163 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5164
5165 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5166 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5167
5168 /* writeout FID/update parent directory */
5169 error = vn_rdwr(UIO_WRITE, dvp,
5170 fid, chosen_size, chosen_fid_pos,
5171 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5172 FSCRED, NULL, NULL);
5173
5174 if (error)
5175 goto error_out;
5176
5177 /* add reference counter in attached node */
5178 if (udf_node->fe) {
5179 refcnt = udf_rw16(udf_node->fe->link_cnt);
5180 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5181 } else {
5182 KASSERT(udf_node->efe);
5183 refcnt = udf_rw16(udf_node->efe->link_cnt);
5184 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5185 }
5186
5187 /* mark not deleted if it was... just in case, but do warn */
5188 if (udf_node->i_flags & IN_DELETED) {
5189 printf("udf: warning, marking a file undeleted\n");
5190 udf_node->i_flags &= ~IN_DELETED;
5191 }
5192
5193 if (file_char & UDF_FILE_CHAR_DIR) {
5194 /* add reference counter in directory node for '..' */
5195 if (dir_node->fe) {
5196 refcnt = udf_rw16(dir_node->fe->link_cnt);
5197 refcnt++;
5198 dir_node->fe->link_cnt = udf_rw16(refcnt);
5199 } else {
5200 KASSERT(dir_node->efe);
5201 refcnt = udf_rw16(dir_node->efe->link_cnt);
5202 refcnt++;
5203 dir_node->efe->link_cnt = udf_rw16(refcnt);
5204 }
5205 }
5206
5207 /* append to the dirhash */
5208 /* NOTE do not use dirent anymore or it won't match later! */
5209 udf_to_unix_name(dirent.d_name, NAME_MAX,
5210 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5211 dirent.d_namlen = strlen(dirent.d_name);
5212 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5213 udf_fidsize(fid), 1);
5214
5215 /* note updates */
5216 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5217 /* VN_KNOTE(udf_node, ...) */
5218 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5219
5220 error_out:
5221 free(fid, M_TEMP);
5222
5223 dirhash_put(dir_node->dir_hash);
5224
5225 return error;
5226 }
5227
5228 /* --------------------------------------------------------------------- */
5229
5230 /*
5231 * Each node can have an attached streamdir node though not recursively. These
5232 * are otherwise known as named substreams/named extended attributes that have
5233 * no size limitations.
5234 *
5235 * `Normal' extended attributes are indicated with a number and are recorded
5236 * in either the fe/efe descriptor itself for small descriptors or recorded in
5237 * the attached extended attribute file. Since these spaces can get
5238 * fragmented, care ought to be taken.
5239 *
5240 * Since the size of the space reserved for allocation descriptors is limited,
5241 * there is a mechanim provided for extending this space; this is done by a
5242 * special extent to allow schrinking of the allocations without breaking the
5243 * linkage to the allocation extent descriptor.
5244 */
5245
5246 int
5247 udf_loadvnode(struct mount *mp, struct vnode *vp,
5248 const void *key, size_t key_len, const void **new_key)
5249 {
5250 union dscrptr *dscr;
5251 struct udf_mount *ump;
5252 struct udf_node *udf_node;
5253 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5254 uint64_t file_size;
5255 uint32_t lb_size, sector, dummy;
5256 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5257 int slot, eof, error;
5258 int num_indir_followed = 0;
5259
5260 DPRINTF(NODE, ("udf_loadvnode called\n"));
5261 udf_node = NULL;
5262 ump = VFSTOUDF(mp);
5263
5264 KASSERT(key_len == sizeof(node_icb_loc.loc));
5265 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5266 node_icb_loc.len = ump->logical_vol->lb_size;
5267 memcpy(&node_icb_loc.loc, key, key_len);
5268
5269 /* garbage check: translate udf_node_icb_loc to sectornr */
5270 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5271 if (error) {
5272 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5273 /* no use, this will fail anyway */
5274 return EINVAL;
5275 }
5276
5277 /* build udf_node (do initialise!) */
5278 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5279 memset(udf_node, 0, sizeof(struct udf_node));
5280
5281 vp->v_tag = VT_UDF;
5282 vp->v_op = udf_vnodeop_p;
5283 vp->v_data = udf_node;
5284
5285 /* initialise crosslinks, note location of fe/efe for hashing */
5286 udf_node->ump = ump;
5287 udf_node->vnode = vp;
5288 udf_node->loc = node_icb_loc;
5289 udf_node->lockf = 0;
5290 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5291 cv_init(&udf_node->node_lock, "udf_nlk");
5292 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5293 udf_node->outstanding_bufs = 0;
5294 udf_node->outstanding_nodedscr = 0;
5295 udf_node->uncommitted_lbs = 0;
5296
5297 /* check if we're fetching the root */
5298 if (ump->fileset_desc)
5299 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5300 sizeof(struct long_ad)) == 0)
5301 vp->v_vflag |= VV_ROOT;
5302
5303 icb_loc = node_icb_loc;
5304 needs_indirect = 0;
5305 strat4096 = 0;
5306 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5307 file_size = 0;
5308 lb_size = udf_rw32(ump->logical_vol->lb_size);
5309
5310 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5311 do {
5312 /* try to read in fe/efe */
5313 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5314
5315 /* blank sector marks end of sequence, check this */
5316 if ((dscr == NULL) && (!strat4096))
5317 error = ENOENT;
5318
5319 /* break if read error or blank sector */
5320 if (error || (dscr == NULL))
5321 break;
5322
5323 /* process descriptor based on the descriptor type */
5324 dscr_type = udf_rw16(dscr->tag.id);
5325 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5326
5327 /* if dealing with an indirect entry, follow the link */
5328 if (dscr_type == TAGID_INDIRECTENTRY) {
5329 needs_indirect = 0;
5330 next_icb_loc = dscr->inde.indirect_icb;
5331 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5332 icb_loc = next_icb_loc;
5333 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5334 error = EMLINK;
5335 break;
5336 }
5337 continue;
5338 }
5339
5340 /* only file entries and extended file entries allowed here */
5341 if ((dscr_type != TAGID_FENTRY) &&
5342 (dscr_type != TAGID_EXTFENTRY)) {
5343 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5344 error = ENOENT;
5345 break;
5346 }
5347
5348 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5349
5350 /* choose this one */
5351 last_fe_icb_loc = icb_loc;
5352
5353 /* record and process/update (ext)fentry */
5354 if (dscr_type == TAGID_FENTRY) {
5355 if (udf_node->fe)
5356 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5357 udf_node->fe);
5358 udf_node->fe = &dscr->fe;
5359 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5360 udf_file_type = udf_node->fe->icbtag.file_type;
5361 file_size = udf_rw64(udf_node->fe->inf_len);
5362 } else {
5363 if (udf_node->efe)
5364 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5365 udf_node->efe);
5366 udf_node->efe = &dscr->efe;
5367 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5368 udf_file_type = udf_node->efe->icbtag.file_type;
5369 file_size = udf_rw64(udf_node->efe->inf_len);
5370 }
5371
5372 /* check recording strategy (structure) */
5373
5374 /*
5375 * Strategy 4096 is a daisy linked chain terminating with an
5376 * unrecorded sector or a TERM descriptor. The next
5377 * descriptor is to be found in the sector that follows the
5378 * current sector.
5379 */
5380 if (strat == 4096) {
5381 strat4096 = 1;
5382 needs_indirect = 1;
5383
5384 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5385 }
5386
5387 /*
5388 * Strategy 4 is the normal strategy and terminates, but if
5389 * we're in strategy 4096, we can't have strategy 4 mixed in
5390 */
5391
5392 if (strat == 4) {
5393 if (strat4096) {
5394 error = EINVAL;
5395 break;
5396 }
5397 break; /* done */
5398 }
5399 } while (!error);
5400
5401 /* first round of cleanup code */
5402 if (error) {
5403 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5404 /* recycle udf_node */
5405 udf_dispose_node(udf_node);
5406
5407 return EINVAL; /* error code ok? */
5408 }
5409 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5410
5411 /* assert no references to dscr anymore beyong this point */
5412 assert((udf_node->fe) || (udf_node->efe));
5413 dscr = NULL;
5414
5415 /*
5416 * Remember where to record an updated version of the descriptor. If
5417 * there is a sequence of indirect entries, icb_loc will have been
5418 * updated. Its the write disipline to allocate new space and to make
5419 * sure the chain is maintained.
5420 *
5421 * `needs_indirect' flags if the next location is to be filled with
5422 * with an indirect entry.
5423 */
5424 udf_node->write_loc = icb_loc;
5425 udf_node->needs_indirect = needs_indirect;
5426
5427 /*
5428 * Go trough all allocations extents of this descriptor and when
5429 * encountering a redirect read in the allocation extension. These are
5430 * daisy-chained.
5431 */
5432 UDF_LOCK_NODE(udf_node, 0);
5433 udf_node->num_extensions = 0;
5434
5435 error = 0;
5436 slot = 0;
5437 for (;;) {
5438 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5439 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5440 "lb_num = %d, part = %d\n", slot, eof,
5441 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5442 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5443 udf_rw32(icb_loc.loc.lb_num),
5444 udf_rw16(icb_loc.loc.part_num)));
5445 if (eof)
5446 break;
5447 slot++;
5448
5449 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5450 continue;
5451
5452 DPRINTF(NODE, ("\tgot redirect extent\n"));
5453 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5454 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5455 "too many allocation extensions on "
5456 "udf_node\n"));
5457 error = EINVAL;
5458 break;
5459 }
5460
5461 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5462 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5463 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5464 "extension size in udf_node\n"));
5465 error = EINVAL;
5466 break;
5467 }
5468
5469 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5470 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5471 /* load in allocation extent */
5472 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5473 if (error || (dscr == NULL))
5474 break;
5475
5476 /* process read-in descriptor */
5477 dscr_type = udf_rw16(dscr->tag.id);
5478
5479 if (dscr_type != TAGID_ALLOCEXTENT) {
5480 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5481 error = ENOENT;
5482 break;
5483 }
5484
5485 DPRINTF(NODE, ("\trecording redirect extent\n"));
5486 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5487 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5488
5489 udf_node->num_extensions++;
5490
5491 } /* while */
5492 UDF_UNLOCK_NODE(udf_node, 0);
5493
5494 /* second round of cleanup code */
5495 if (error) {
5496 /* recycle udf_node */
5497 udf_dispose_node(udf_node);
5498
5499 return EINVAL; /* error code ok? */
5500 }
5501
5502 DPRINTF(NODE, ("\tnode read in fine\n"));
5503
5504 /*
5505 * Translate UDF filetypes into vnode types.
5506 *
5507 * Systemfiles like the meta main and mirror files are not treated as
5508 * normal files, so we type them as having no type. UDF dictates that
5509 * they are not allowed to be visible.
5510 */
5511
5512 switch (udf_file_type) {
5513 case UDF_ICB_FILETYPE_DIRECTORY :
5514 case UDF_ICB_FILETYPE_STREAMDIR :
5515 vp->v_type = VDIR;
5516 break;
5517 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5518 vp->v_type = VBLK;
5519 break;
5520 case UDF_ICB_FILETYPE_CHARDEVICE :
5521 vp->v_type = VCHR;
5522 break;
5523 case UDF_ICB_FILETYPE_SOCKET :
5524 vp->v_type = VSOCK;
5525 break;
5526 case UDF_ICB_FILETYPE_FIFO :
5527 vp->v_type = VFIFO;
5528 break;
5529 case UDF_ICB_FILETYPE_SYMLINK :
5530 vp->v_type = VLNK;
5531 break;
5532 case UDF_ICB_FILETYPE_VAT :
5533 case UDF_ICB_FILETYPE_META_MAIN :
5534 case UDF_ICB_FILETYPE_META_MIRROR :
5535 vp->v_type = VNON;
5536 break;
5537 case UDF_ICB_FILETYPE_RANDOMACCESS :
5538 case UDF_ICB_FILETYPE_REALTIME :
5539 vp->v_type = VREG;
5540 break;
5541 default:
5542 /* YIKES, something else */
5543 vp->v_type = VNON;
5544 }
5545
5546 /* TODO specfs, fifofs etc etc. vnops setting */
5547
5548 /* don't forget to set vnode's v_size */
5549 uvm_vnp_setsize(vp, file_size);
5550
5551 /* TODO ext attr and streamdir udf_nodes */
5552
5553 *new_key = &udf_node->loc.loc;
5554
5555 return 0;
5556 }
5557
5558 int
5559 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5560 struct udf_node **udf_noderes)
5561 {
5562 int error;
5563 struct vnode *vp;
5564
5565 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5566 sizeof(node_icb_loc->loc), &vp);
5567 if (error)
5568 return error;
5569 error = vn_lock(vp, LK_EXCLUSIVE);
5570 if (error) {
5571 vrele(vp);
5572 return error;
5573 }
5574 *udf_noderes = VTOI(vp);
5575 return 0;
5576 }
5577
5578 /* --------------------------------------------------------------------- */
5579
5580 int
5581 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5582 {
5583 union dscrptr *dscr;
5584 struct long_ad *loc;
5585 int extnr, error;
5586
5587 DPRINTF(NODE, ("udf_writeout_node called\n"));
5588
5589 KASSERT(udf_node->outstanding_bufs == 0);
5590 KASSERT(udf_node->outstanding_nodedscr == 0);
5591
5592 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5593
5594 if (udf_node->i_flags & IN_DELETED) {
5595 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5596 udf_cleanup_reservation(udf_node);
5597 return 0;
5598 }
5599
5600 /* lock node; unlocked in callback */
5601 UDF_LOCK_NODE(udf_node, 0);
5602
5603 /* remove pending reservations, we're written out */
5604 udf_cleanup_reservation(udf_node);
5605
5606 /* at least one descriptor writeout */
5607 udf_node->outstanding_nodedscr = 1;
5608
5609 /* we're going to write out the descriptor so clear the flags */
5610 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5611
5612 /* if we were rebuild, write out the allocation extents */
5613 if (udf_node->i_flags & IN_NODE_REBUILD) {
5614 /* mark outstanding node descriptors and issue them */
5615 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5616 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5617 loc = &udf_node->ext_loc[extnr];
5618 dscr = (union dscrptr *) udf_node->ext[extnr];
5619 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5620 if (error)
5621 return error;
5622 }
5623 /* mark allocation extents written out */
5624 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5625 }
5626
5627 if (udf_node->fe) {
5628 KASSERT(udf_node->efe == NULL);
5629 dscr = (union dscrptr *) udf_node->fe;
5630 } else {
5631 KASSERT(udf_node->efe);
5632 KASSERT(udf_node->fe == NULL);
5633 dscr = (union dscrptr *) udf_node->efe;
5634 }
5635 KASSERT(dscr);
5636
5637 loc = &udf_node->write_loc;
5638 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5639
5640 return error;
5641 }
5642
5643 /* --------------------------------------------------------------------- */
5644
5645 int
5646 udf_dispose_node(struct udf_node *udf_node)
5647 {
5648 struct vnode *vp;
5649 int extnr;
5650
5651 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5652 if (!udf_node) {
5653 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5654 return 0;
5655 }
5656
5657 vp = udf_node->vnode;
5658 #ifdef DIAGNOSTIC
5659 if (vp->v_numoutput)
5660 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5661 "v_numoutput = %d", udf_node, vp->v_numoutput);
5662 #endif
5663
5664 udf_cleanup_reservation(udf_node);
5665
5666 /* TODO extended attributes and streamdir */
5667
5668 /* remove dirhash if present */
5669 dirhash_purge(&udf_node->dir_hash);
5670
5671 /* destroy our lock */
5672 mutex_destroy(&udf_node->node_mutex);
5673 cv_destroy(&udf_node->node_lock);
5674
5675 /* dissociate our udf_node from the vnode */
5676 genfs_node_destroy(udf_node->vnode);
5677 mutex_enter(vp->v_interlock);
5678 vp->v_data = NULL;
5679 mutex_exit(vp->v_interlock);
5680
5681 /* free associated memory and the node itself */
5682 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5683 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5684 udf_node->ext[extnr]);
5685 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5686 }
5687
5688 if (udf_node->fe)
5689 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5690 udf_node->fe);
5691 if (udf_node->efe)
5692 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5693 udf_node->efe);
5694
5695 udf_node->fe = (void *) 0xdeadaaaa;
5696 udf_node->efe = (void *) 0xdeadbbbb;
5697 udf_node->ump = (void *) 0xdeadbeef;
5698 pool_put(&udf_node_pool, udf_node);
5699
5700 return 0;
5701 }
5702
5703
5704
5705 /*
5706 * create a new node using the specified dvp, vap and cnp.
5707 * This allows special files to be created. Use with care.
5708 */
5709
5710 int
5711 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5712 struct vattr *vap, kauth_cred_t cred,
5713 size_t *key_len, const void **new_key)
5714 {
5715 union dscrptr *dscr;
5716 struct udf_node *dir_node = VTOI(dvp);
5717 struct udf_node *udf_node;
5718 struct udf_mount *ump = dir_node->ump;
5719 struct long_ad node_icb_loc;
5720 uint64_t parent_unique_id;
5721 uint64_t lmapping;
5722 uint32_t lb_size, lb_num;
5723 uint16_t vpart_num;
5724 uid_t uid;
5725 gid_t gid, parent_gid;
5726 int (**vnodeops)(void *);
5727 int udf_file_type, fid_size, error;
5728
5729 vnodeops = udf_vnodeop_p;
5730 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5731
5732 switch (vap->va_type) {
5733 case VREG :
5734 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5735 break;
5736 case VDIR :
5737 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5738 break;
5739 case VLNK :
5740 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5741 break;
5742 case VBLK :
5743 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5744 /* specfs */
5745 return ENOTSUP;
5746 break;
5747 case VCHR :
5748 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5749 /* specfs */
5750 return ENOTSUP;
5751 break;
5752 case VFIFO :
5753 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5754 /* fifofs */
5755 return ENOTSUP;
5756 break;
5757 case VSOCK :
5758 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5759 return ENOTSUP;
5760 break;
5761 case VNON :
5762 case VBAD :
5763 default :
5764 /* nothing; can we even create these? */
5765 return EINVAL;
5766 }
5767
5768 lb_size = udf_rw32(ump->logical_vol->lb_size);
5769
5770 /* reserve space for one logical block */
5771 vpart_num = ump->node_part;
5772 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5773 vpart_num, 1, /* can_fail */ true);
5774 if (error)
5775 return error;
5776
5777 /* allocate node */
5778 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5779 vpart_num, 1, &lmapping);
5780 if (error) {
5781 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5782 return error;
5783 }
5784
5785 lb_num = lmapping;
5786
5787 /* initialise pointer to location */
5788 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5789 node_icb_loc.len = udf_rw32(lb_size);
5790 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5791 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5792
5793 /* build udf_node (do initialise!) */
5794 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5795 memset(udf_node, 0, sizeof(struct udf_node));
5796
5797 /* initialise crosslinks, note location of fe/efe for hashing */
5798 /* bugalert: synchronise with udf_get_node() */
5799 udf_node->ump = ump;
5800 udf_node->vnode = vp;
5801 vp->v_data = udf_node;
5802 udf_node->loc = node_icb_loc;
5803 udf_node->write_loc = node_icb_loc;
5804 udf_node->lockf = 0;
5805 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5806 cv_init(&udf_node->node_lock, "udf_nlk");
5807 udf_node->outstanding_bufs = 0;
5808 udf_node->outstanding_nodedscr = 0;
5809 udf_node->uncommitted_lbs = 0;
5810
5811 vp->v_tag = VT_UDF;
5812 vp->v_op = vnodeops;
5813
5814 /* initialise genfs */
5815 genfs_node_init(vp, &udf_genfsops);
5816
5817 /* get parent's unique ID for refering '..' if its a directory */
5818 if (dir_node->fe) {
5819 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5820 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5821 } else {
5822 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5823 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5824 }
5825
5826 /* get descriptor */
5827 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5828
5829 /* choose a fe or an efe for it */
5830 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5831 udf_node->fe = &dscr->fe;
5832 fid_size = udf_create_new_fe(ump, udf_node->fe,
5833 udf_file_type, &udf_node->loc,
5834 &dir_node->loc, parent_unique_id);
5835 /* TODO add extended attribute for creation time */
5836 } else {
5837 udf_node->efe = &dscr->efe;
5838 fid_size = udf_create_new_efe(ump, udf_node->efe,
5839 udf_file_type, &udf_node->loc,
5840 &dir_node->loc, parent_unique_id);
5841 }
5842 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5843
5844 /* update vnode's size and type */
5845 vp->v_type = vap->va_type;
5846 uvm_vnp_setsize(vp, fid_size);
5847
5848 /* set access mode */
5849 udf_setaccessmode(udf_node, vap->va_mode);
5850
5851 /* set ownership */
5852 uid = kauth_cred_geteuid(cred);
5853 gid = parent_gid;
5854 udf_setownership(udf_node, uid, gid);
5855
5856 *key_len = sizeof(udf_node->loc.loc);;
5857 *new_key = &udf_node->loc.loc;
5858
5859 return 0;
5860 }
5861
5862
5863 int
5864 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5865 struct componentname *cnp)
5866 {
5867 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5868 struct udf_mount *ump = dir_node->ump;
5869 int error;
5870
5871 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5872 if (error)
5873 return error;
5874
5875 udf_node = VTOI(*vpp);
5876 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5877 if (error) {
5878 struct long_ad *node_icb_loc = &udf_node->loc;
5879 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5880 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5881
5882 /* free disc allocation for node */
5883 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5884
5885 /* recycle udf_node */
5886 udf_dispose_node(udf_node);
5887 vrele(*vpp);
5888
5889 *vpp = NULL;
5890 return error;
5891 }
5892
5893 /* adjust file count */
5894 udf_adjust_filecount(udf_node, 1);
5895
5896 return 0;
5897 }
5898
5899 /* --------------------------------------------------------------------- */
5900
5901 static void
5902 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5903 {
5904 struct udf_mount *ump = udf_node->ump;
5905 uint32_t lb_size, lb_num, len, num_lb;
5906 uint16_t vpart_num;
5907
5908 /* is there really one? */
5909 if (mem == NULL)
5910 return;
5911
5912 /* got a descriptor here */
5913 len = UDF_EXT_LEN(udf_rw32(loc->len));
5914 lb_num = udf_rw32(loc->loc.lb_num);
5915 vpart_num = udf_rw16(loc->loc.part_num);
5916
5917 lb_size = udf_rw32(ump->logical_vol->lb_size);
5918 num_lb = (len + lb_size -1) / lb_size;
5919
5920 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5921 }
5922
5923 void
5924 udf_delete_node(struct udf_node *udf_node)
5925 {
5926 void *dscr;
5927 struct long_ad *loc;
5928 int extnr, lvint, dummy;
5929
5930 /* paranoia check on integrity; should be open!; we could panic */
5931 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5932 if (lvint == UDF_INTEGRITY_CLOSED)
5933 printf("\tIntegrity was CLOSED!\n");
5934
5935 /* whatever the node type, change its size to zero */
5936 (void) udf_resize_node(udf_node, 0, &dummy);
5937
5938 /* force it to be `clean'; no use writing it out */
5939 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5940 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5941
5942 /* adjust file count */
5943 udf_adjust_filecount(udf_node, -1);
5944
5945 /*
5946 * Free its allocated descriptors; memory will be released when
5947 * vop_reclaim() is called.
5948 */
5949 loc = &udf_node->loc;
5950
5951 dscr = udf_node->fe;
5952 udf_free_descriptor_space(udf_node, loc, dscr);
5953 dscr = udf_node->efe;
5954 udf_free_descriptor_space(udf_node, loc, dscr);
5955
5956 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5957 dscr = udf_node->ext[extnr];
5958 loc = &udf_node->ext_loc[extnr];
5959 udf_free_descriptor_space(udf_node, loc, dscr);
5960 }
5961 }
5962
5963 /* --------------------------------------------------------------------- */
5964
5965 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5966 int
5967 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5968 {
5969 struct file_entry *fe = udf_node->fe;
5970 struct extfile_entry *efe = udf_node->efe;
5971 uint64_t file_size;
5972 int error;
5973
5974 if (fe) {
5975 file_size = udf_rw64(fe->inf_len);
5976 } else {
5977 assert(udf_node->efe);
5978 file_size = udf_rw64(efe->inf_len);
5979 }
5980
5981 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5982 file_size, new_size));
5983
5984 /* if not changing, we're done */
5985 if (file_size == new_size)
5986 return 0;
5987
5988 *extended = (new_size > file_size);
5989 if (*extended) {
5990 error = udf_grow_node(udf_node, new_size);
5991 } else {
5992 error = udf_shrink_node(udf_node, new_size);
5993 }
5994
5995 return error;
5996 }
5997
5998
5999 /* --------------------------------------------------------------------- */
6000
6001 void
6002 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6003 struct timespec *mod, struct timespec *birth)
6004 {
6005 struct timespec now;
6006 struct file_entry *fe;
6007 struct extfile_entry *efe;
6008 struct filetimes_extattr_entry *ft_extattr;
6009 struct timestamp *atime, *mtime, *attrtime, *ctime;
6010 struct timestamp fe_ctime;
6011 struct timespec cur_birth;
6012 uint32_t offset, a_l;
6013 uint8_t *filedata;
6014 int error;
6015
6016 /* protect against rogue values */
6017 if (!udf_node)
6018 return;
6019
6020 fe = udf_node->fe;
6021 efe = udf_node->efe;
6022
6023 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6024 return;
6025
6026 /* get descriptor information */
6027 if (fe) {
6028 atime = &fe->atime;
6029 mtime = &fe->mtime;
6030 attrtime = &fe->attrtime;
6031 filedata = fe->data;
6032
6033 /* initial save dummy setting */
6034 ctime = &fe_ctime;
6035
6036 /* check our extended attribute if present */
6037 error = udf_extattr_search_intern(udf_node,
6038 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6039 if (!error) {
6040 ft_extattr = (struct filetimes_extattr_entry *)
6041 (filedata + offset);
6042 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6043 ctime = &ft_extattr->times[0];
6044 }
6045 /* TODO create the extended attribute if not found ? */
6046 } else {
6047 assert(udf_node->efe);
6048 atime = &efe->atime;
6049 mtime = &efe->mtime;
6050 attrtime = &efe->attrtime;
6051 ctime = &efe->ctime;
6052 }
6053
6054 vfs_timestamp(&now);
6055
6056 /* set access time */
6057 if (udf_node->i_flags & IN_ACCESS) {
6058 if (acc == NULL)
6059 acc = &now;
6060 udf_timespec_to_timestamp(acc, atime);
6061 }
6062
6063 /* set modification time */
6064 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6065 if (mod == NULL)
6066 mod = &now;
6067 udf_timespec_to_timestamp(mod, mtime);
6068
6069 /* ensure birthtime is older than set modification! */
6070 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6071 if ((cur_birth.tv_sec > mod->tv_sec) ||
6072 ((cur_birth.tv_sec == mod->tv_sec) &&
6073 (cur_birth.tv_nsec > mod->tv_nsec))) {
6074 udf_timespec_to_timestamp(mod, ctime);
6075 }
6076 }
6077
6078 /* update birthtime if specified */
6079 /* XXX we assume here that given birthtime is older than mod */
6080 if (birth && (birth->tv_sec != VNOVAL)) {
6081 udf_timespec_to_timestamp(birth, ctime);
6082 }
6083
6084 /* set change time */
6085 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6086 udf_timespec_to_timestamp(&now, attrtime);
6087
6088 /* notify updates to the node itself */
6089 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6090 udf_node->i_flags |= IN_ACCESSED;
6091 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6092 udf_node->i_flags |= IN_MODIFIED;
6093
6094 /* clear modification flags */
6095 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6096 }
6097
6098 /* --------------------------------------------------------------------- */
6099
6100 int
6101 udf_update(struct vnode *vp, struct timespec *acc,
6102 struct timespec *mod, struct timespec *birth, int updflags)
6103 {
6104 union dscrptr *dscrptr;
6105 struct udf_node *udf_node = VTOI(vp);
6106 struct udf_mount *ump = udf_node->ump;
6107 struct regid *impl_id;
6108 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6109 int waitfor, flags;
6110
6111 #ifdef DEBUG
6112 char bits[128];
6113 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6114 updflags));
6115 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6116 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6117 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6118 #endif
6119
6120 /* set our times */
6121 udf_itimes(udf_node, acc, mod, birth);
6122
6123 /* set our implementation id */
6124 if (udf_node->fe) {
6125 dscrptr = (union dscrptr *) udf_node->fe;
6126 impl_id = &udf_node->fe->imp_id;
6127 } else {
6128 dscrptr = (union dscrptr *) udf_node->efe;
6129 impl_id = &udf_node->efe->imp_id;
6130 }
6131
6132 /* set our ID */
6133 udf_set_regid(impl_id, IMPL_NAME);
6134 udf_add_impl_regid(ump, impl_id);
6135
6136 /* update our crc! on RMW we are not allowed to change a thing */
6137 udf_validate_tag_and_crc_sums(dscrptr);
6138
6139 /* if called when mounted readonly, never write back */
6140 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6141 return 0;
6142
6143 /* check if the node is dirty 'enough'*/
6144 if (updflags & UPDATE_CLOSE) {
6145 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6146 } else {
6147 flags = udf_node->i_flags & IN_MODIFIED;
6148 }
6149 if (flags == 0)
6150 return 0;
6151
6152 /* determine if we need to write sync or async */
6153 waitfor = 0;
6154 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6155 /* sync mounted */
6156 waitfor = updflags & UPDATE_WAIT;
6157 if (updflags & UPDATE_DIROP)
6158 waitfor |= UPDATE_WAIT;
6159 }
6160 if (waitfor)
6161 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6162
6163 return 0;
6164 }
6165
6166
6167 /* --------------------------------------------------------------------- */
6168
6169
6170 /*
6171 * Read one fid and process it into a dirent and advance to the next (*fid)
6172 * has to be allocated a logical block in size, (*dirent) struct dirent length
6173 */
6174
6175 int
6176 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6177 struct fileid_desc *fid, struct dirent *dirent)
6178 {
6179 struct udf_node *dir_node = VTOI(vp);
6180 struct udf_mount *ump = dir_node->ump;
6181 struct file_entry *fe = dir_node->fe;
6182 struct extfile_entry *efe = dir_node->efe;
6183 uint32_t fid_size, lb_size;
6184 uint64_t file_size;
6185 char *fid_name;
6186 int enough, error;
6187
6188 assert(fid);
6189 assert(dirent);
6190 assert(dir_node);
6191 assert(offset);
6192 assert(*offset != 1);
6193
6194 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6195 /* check if we're past the end of the directory */
6196 if (fe) {
6197 file_size = udf_rw64(fe->inf_len);
6198 } else {
6199 assert(dir_node->efe);
6200 file_size = udf_rw64(efe->inf_len);
6201 }
6202 if (*offset >= file_size)
6203 return EINVAL;
6204
6205 /* get maximum length of FID descriptor */
6206 lb_size = udf_rw32(ump->logical_vol->lb_size);
6207
6208 /* initialise return values */
6209 fid_size = 0;
6210 memset(dirent, 0, sizeof(struct dirent));
6211 memset(fid, 0, lb_size);
6212
6213 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6214 if (!enough) {
6215 /* short dir ... */
6216 return EIO;
6217 }
6218
6219 error = vn_rdwr(UIO_READ, vp,
6220 fid, MIN(file_size - (*offset), lb_size), *offset,
6221 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6222 NULL, NULL);
6223 if (error)
6224 return error;
6225
6226 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6227 /*
6228 * Check if we got a whole descriptor.
6229 * TODO Try to `resync' directory stream when something is very wrong.
6230 */
6231
6232 /* check if our FID header is OK */
6233 error = udf_check_tag(fid);
6234 if (error) {
6235 goto brokendir;
6236 }
6237 DPRINTF(FIDS, ("\ttag check ok\n"));
6238
6239 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6240 error = EIO;
6241 goto brokendir;
6242 }
6243 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6244
6245 /* check for length */
6246 fid_size = udf_fidsize(fid);
6247 enough = (file_size - (*offset) >= fid_size);
6248 if (!enough) {
6249 error = EIO;
6250 goto brokendir;
6251 }
6252 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6253
6254 /* check FID contents */
6255 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6256 brokendir:
6257 if (error) {
6258 /* note that is sometimes a bit quick to report */
6259 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6260 /* RESYNC? */
6261 /* TODO: use udf_resync_fid_stream */
6262 return EIO;
6263 }
6264 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6265
6266 /* we got a whole and valid descriptor! */
6267 DPRINTF(FIDS, ("\tinterpret FID\n"));
6268
6269 /* create resulting dirent structure */
6270 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6271 udf_to_unix_name(dirent->d_name, NAME_MAX,
6272 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6273
6274 /* '..' has no name, so provide one */
6275 if (fid->file_char & UDF_FILE_CHAR_PAR)
6276 strcpy(dirent->d_name, "..");
6277
6278 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6279 dirent->d_namlen = strlen(dirent->d_name);
6280 dirent->d_reclen = _DIRENT_SIZE(dirent);
6281
6282 /*
6283 * Note that its not worth trying to go for the filetypes now... its
6284 * too expensive too
6285 */
6286 dirent->d_type = DT_UNKNOWN;
6287
6288 /* initial guess for filetype we can make */
6289 if (fid->file_char & UDF_FILE_CHAR_DIR)
6290 dirent->d_type = DT_DIR;
6291
6292 /* advance */
6293 *offset += fid_size;
6294
6295 return error;
6296 }
6297
6298
6299 /* --------------------------------------------------------------------- */
6300
6301 static void
6302 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6303 {
6304 struct udf_node *udf_node, *n_udf_node;
6305 struct vnode *vp;
6306 int vdirty, error;
6307
6308 KASSERT(mutex_owned(&ump->sync_lock));
6309
6310 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6311 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6312 for (;udf_node; udf_node = n_udf_node) {
6313 DPRINTF(SYNC, ("."));
6314
6315 vp = udf_node->vnode;
6316
6317 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6318 udf_node, RB_DIR_RIGHT);
6319
6320 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6321 if (error) {
6322 KASSERT(error == EBUSY);
6323 *ndirty += 1;
6324 continue;
6325 }
6326
6327 switch (pass) {
6328 case 1:
6329 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6330 break;
6331 case 2:
6332 vdirty = vp->v_numoutput;
6333 if (vp->v_tag == VT_UDF)
6334 vdirty += udf_node->outstanding_bufs +
6335 udf_node->outstanding_nodedscr;
6336 if (vdirty == 0)
6337 VOP_FSYNC(vp, cred, 0,0,0);
6338 *ndirty += vdirty;
6339 break;
6340 case 3:
6341 vdirty = vp->v_numoutput;
6342 if (vp->v_tag == VT_UDF)
6343 vdirty += udf_node->outstanding_bufs +
6344 udf_node->outstanding_nodedscr;
6345 *ndirty += vdirty;
6346 break;
6347 }
6348
6349 VOP_UNLOCK(vp);
6350 }
6351 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6352 }
6353
6354
6355 static bool
6356 udf_sync_selector(void *cl, struct vnode *vp)
6357 {
6358 struct udf_node *udf_node = VTOI(vp);
6359
6360 if (vp->v_vflag & VV_SYSTEM)
6361 return false;
6362 if (vp->v_type == VNON)
6363 return false;
6364 if (udf_node == NULL)
6365 return false;
6366 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6367 return false;
6368 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6369 return false;
6370
6371 return true;
6372 }
6373
6374 void
6375 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6376 {
6377 struct vnode_iterator *marker;
6378 struct vnode *vp;
6379 struct udf_node *udf_node, *udf_next_node;
6380 int dummy, ndirty;
6381
6382 if (waitfor == MNT_LAZY)
6383 return;
6384
6385 mutex_enter(&ump->sync_lock);
6386
6387 /* Fill the rbtree with nodes to sync. */
6388 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6389 while ((vp = vfs_vnode_iterator_next(marker,
6390 udf_sync_selector, NULL)) != NULL) {
6391 udf_node = VTOI(vp);
6392 udf_node->i_flags |= IN_SYNCED;
6393 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6394 }
6395 vfs_vnode_iterator_destroy(marker);
6396
6397 dummy = 0;
6398 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6399 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6400 udf_sync_pass(ump, cred, 1, &dummy);
6401
6402 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6403 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6404 udf_sync_pass(ump, cred, 2, &dummy);
6405
6406 if (waitfor == MNT_WAIT) {
6407 recount:
6408 ndirty = ump->devvp->v_numoutput;
6409 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6410 ndirty));
6411 udf_sync_pass(ump, cred, 3, &ndirty);
6412 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6413 ndirty));
6414
6415 if (ndirty) {
6416 /* 1/4 second wait */
6417 kpause("udfsync2", false, hz/4, NULL);
6418 goto recount;
6419 }
6420 }
6421
6422 /* Clean the rbtree. */
6423 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6424 udf_node; udf_node = udf_next_node) {
6425 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6426 udf_node, RB_DIR_RIGHT);
6427 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6428 udf_node->i_flags &= ~IN_SYNCED;
6429 vrele(udf_node->vnode);
6430 }
6431
6432 mutex_exit(&ump->sync_lock);
6433 }
6434
6435 /* --------------------------------------------------------------------- */
6436
6437 /*
6438 * Read and write file extent in/from the buffer.
6439 *
6440 * The splitup of the extent into seperate request-buffers is to minimise
6441 * copying around as much as possible.
6442 *
6443 * block based file reading and writing
6444 */
6445
6446 static int
6447 udf_read_internal(struct udf_node *node, uint8_t *blob)
6448 {
6449 struct udf_mount *ump;
6450 struct file_entry *fe = node->fe;
6451 struct extfile_entry *efe = node->efe;
6452 uint64_t inflen;
6453 uint32_t sector_size;
6454 uint8_t *srcpos;
6455 int icbflags, addr_type;
6456
6457 /* get extent and do some paranoia checks */
6458 ump = node->ump;
6459 sector_size = ump->discinfo.sector_size;
6460
6461 /*
6462 * XXX there should be real bounds-checking logic here,
6463 * in case ->l_ea or ->inf_len contains nonsense.
6464 */
6465
6466 if (fe) {
6467 inflen = udf_rw64(fe->inf_len);
6468 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6469 icbflags = udf_rw16(fe->icbtag.flags);
6470 } else {
6471 assert(node->efe);
6472 inflen = udf_rw64(efe->inf_len);
6473 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6474 icbflags = udf_rw16(efe->icbtag.flags);
6475 }
6476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6477
6478 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6479 __USE(addr_type);
6480 assert(inflen < sector_size);
6481
6482 /* copy out info */
6483 memcpy(blob, srcpos, inflen);
6484 memset(&blob[inflen], 0, sector_size - inflen);
6485
6486 return 0;
6487 }
6488
6489
6490 static int
6491 udf_write_internal(struct udf_node *node, uint8_t *blob)
6492 {
6493 struct udf_mount *ump;
6494 struct file_entry *fe = node->fe;
6495 struct extfile_entry *efe = node->efe;
6496 uint64_t inflen;
6497 uint32_t sector_size;
6498 uint8_t *pos;
6499 int icbflags, addr_type;
6500
6501 /* get extent and do some paranoia checks */
6502 ump = node->ump;
6503 sector_size = ump->discinfo.sector_size;
6504
6505 if (fe) {
6506 inflen = udf_rw64(fe->inf_len);
6507 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6508 icbflags = udf_rw16(fe->icbtag.flags);
6509 } else {
6510 assert(node->efe);
6511 inflen = udf_rw64(efe->inf_len);
6512 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6513 icbflags = udf_rw16(efe->icbtag.flags);
6514 }
6515 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6516
6517 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6518 __USE(addr_type);
6519 assert(inflen < sector_size);
6520 __USE(sector_size);
6521
6522 /* copy in blob */
6523 /* memset(pos, 0, inflen); */
6524 memcpy(pos, blob, inflen);
6525
6526 return 0;
6527 }
6528
6529
6530 void
6531 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6532 {
6533 struct buf *nestbuf;
6534 struct udf_mount *ump = udf_node->ump;
6535 uint64_t *mapping;
6536 uint64_t run_start;
6537 uint32_t sector_size;
6538 uint32_t buf_offset, sector, rbuflen, rblk;
6539 uint32_t from, lblkno;
6540 uint32_t sectors;
6541 uint8_t *buf_pos;
6542 int error, run_length, what;
6543
6544 sector_size = udf_node->ump->discinfo.sector_size;
6545
6546 from = buf->b_blkno;
6547 sectors = buf->b_bcount / sector_size;
6548
6549 what = udf_get_c_type(udf_node);
6550
6551 /* assure we have enough translation slots */
6552 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6553 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6554
6555 if (sectors > UDF_MAX_MAPPINGS) {
6556 printf("udf_read_filebuf: implementation limit on bufsize\n");
6557 buf->b_error = EIO;
6558 biodone(buf);
6559 return;
6560 }
6561
6562 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6563
6564 error = 0;
6565 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6566 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6567 if (error) {
6568 buf->b_error = error;
6569 biodone(buf);
6570 goto out;
6571 }
6572 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6573
6574 /* pre-check if its an internal */
6575 if (*mapping == UDF_TRANS_INTERN) {
6576 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6577 if (error)
6578 buf->b_error = error;
6579 biodone(buf);
6580 goto out;
6581 }
6582 DPRINTF(READ, ("\tnot intern\n"));
6583
6584 #ifdef DEBUG
6585 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6586 printf("Returned translation table:\n");
6587 for (sector = 0; sector < sectors; sector++) {
6588 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6589 }
6590 }
6591 #endif
6592
6593 /* request read-in of data from disc sheduler */
6594 buf->b_resid = buf->b_bcount;
6595 for (sector = 0; sector < sectors; sector++) {
6596 buf_offset = sector * sector_size;
6597 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6598 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6599
6600 /* check if its zero or unmapped to stop reading */
6601 switch (mapping[sector]) {
6602 case UDF_TRANS_UNMAPPED:
6603 case UDF_TRANS_ZERO:
6604 /* copy zero sector TODO runlength like below */
6605 memset(buf_pos, 0, sector_size);
6606 DPRINTF(READ, ("\treturning zero sector\n"));
6607 nestiobuf_done(buf, sector_size, 0);
6608 break;
6609 default :
6610 DPRINTF(READ, ("\tread sector "
6611 "%"PRIu64"\n", mapping[sector]));
6612
6613 lblkno = from + sector;
6614 run_start = mapping[sector];
6615 run_length = 1;
6616 while (sector < sectors-1) {
6617 if (mapping[sector+1] != mapping[sector]+1)
6618 break;
6619 run_length++;
6620 sector++;
6621 }
6622
6623 /*
6624 * nest an iobuf and mark it for async reading. Since
6625 * we're using nested buffers, they can't be cached by
6626 * design.
6627 */
6628 rbuflen = run_length * sector_size;
6629 rblk = run_start * (sector_size/DEV_BSIZE);
6630
6631 nestbuf = getiobuf(NULL, true);
6632 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6633 /* nestbuf is B_ASYNC */
6634
6635 /* identify this nestbuf */
6636 nestbuf->b_lblkno = lblkno;
6637 assert(nestbuf->b_vp == udf_node->vnode);
6638
6639 /* CD shedules on raw blkno */
6640 nestbuf->b_blkno = rblk;
6641 nestbuf->b_proc = NULL;
6642 nestbuf->b_rawblkno = rblk;
6643 nestbuf->b_udf_c_type = what;
6644
6645 udf_discstrat_queuebuf(ump, nestbuf);
6646 }
6647 }
6648 out:
6649 /* if we're synchronously reading, wait for the completion */
6650 if ((buf->b_flags & B_ASYNC) == 0)
6651 biowait(buf);
6652
6653 DPRINTF(READ, ("\tend of read_filebuf\n"));
6654 free(mapping, M_TEMP);
6655 return;
6656 }
6657
6658
6659 void
6660 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6661 {
6662 struct buf *nestbuf;
6663 struct udf_mount *ump = udf_node->ump;
6664 uint64_t *mapping;
6665 uint64_t run_start;
6666 uint32_t lb_size;
6667 uint32_t buf_offset, lb_num, rbuflen, rblk;
6668 uint32_t from, lblkno;
6669 uint32_t num_lb;
6670 int error, run_length, what, s;
6671
6672 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6673
6674 from = buf->b_blkno;
6675 num_lb = buf->b_bcount / lb_size;
6676
6677 what = udf_get_c_type(udf_node);
6678
6679 /* assure we have enough translation slots */
6680 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6681 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6682
6683 if (num_lb > UDF_MAX_MAPPINGS) {
6684 printf("udf_write_filebuf: implementation limit on bufsize\n");
6685 buf->b_error = EIO;
6686 biodone(buf);
6687 return;
6688 }
6689
6690 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6691
6692 error = 0;
6693 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6694 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6695 if (error) {
6696 buf->b_error = error;
6697 biodone(buf);
6698 goto out;
6699 }
6700 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6701
6702 /* if its internally mapped, we can write it in the descriptor itself */
6703 if (*mapping == UDF_TRANS_INTERN) {
6704 /* TODO paranoia check if we ARE going to have enough space */
6705 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6706 if (error)
6707 buf->b_error = error;
6708 biodone(buf);
6709 goto out;
6710 }
6711 DPRINTF(WRITE, ("\tnot intern\n"));
6712
6713 /* request write out of data to disc sheduler */
6714 buf->b_resid = buf->b_bcount;
6715 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6716 buf_offset = lb_num * lb_size;
6717 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6718
6719 /*
6720 * Mappings are not that important here. Just before we write
6721 * the lb_num we late-allocate them when needed and update the
6722 * mapping in the udf_node.
6723 */
6724
6725 /* XXX why not ignore the mapping altogether ? */
6726 DPRINTF(WRITE, ("\twrite lb_num "
6727 "%"PRIu64, mapping[lb_num]));
6728
6729 lblkno = from + lb_num;
6730 run_start = mapping[lb_num];
6731 run_length = 1;
6732 while (lb_num < num_lb-1) {
6733 if (mapping[lb_num+1] != mapping[lb_num]+1)
6734 if (mapping[lb_num+1] != mapping[lb_num])
6735 break;
6736 run_length++;
6737 lb_num++;
6738 }
6739 DPRINTF(WRITE, ("+ %d\n", run_length));
6740
6741 /* nest an iobuf on the master buffer for the extent */
6742 rbuflen = run_length * lb_size;
6743 rblk = run_start * (lb_size/DEV_BSIZE);
6744
6745 nestbuf = getiobuf(NULL, true);
6746 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6747 /* nestbuf is B_ASYNC */
6748
6749 /* identify this nestbuf */
6750 nestbuf->b_lblkno = lblkno;
6751 KASSERT(nestbuf->b_vp == udf_node->vnode);
6752
6753 /* CD shedules on raw blkno */
6754 nestbuf->b_blkno = rblk;
6755 nestbuf->b_proc = NULL;
6756 nestbuf->b_rawblkno = rblk;
6757 nestbuf->b_udf_c_type = what;
6758
6759 /* increment our outstanding bufs counter */
6760 s = splbio();
6761 udf_node->outstanding_bufs++;
6762 splx(s);
6763
6764 udf_discstrat_queuebuf(ump, nestbuf);
6765 }
6766 out:
6767 /* if we're synchronously writing, wait for the completion */
6768 if ((buf->b_flags & B_ASYNC) == 0)
6769 biowait(buf);
6770
6771 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6772 free(mapping, M_TEMP);
6773 return;
6774 }
6775
6776 /* --------------------------------------------------------------------- */
6777