udf_subr.c revision 1.137 1 /* $NetBSD: udf_subr.c,v 1.137 2016/05/10 15:23:39 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.137 2016/05/10 15:23:39 reinoud Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 int
323 udf_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return 0;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return 0;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341
342 return 0;
343 }
344
345 /* --------------------------------------------------------------------- */
346
347 /* track/session searching for mounting */
348 int
349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
350 int *first_tracknr, int *last_tracknr)
351 {
352 struct mmc_trackinfo trackinfo;
353 uint32_t tracknr, start_track, num_tracks;
354 int error;
355
356 /* if negative, sessionnr is relative to last session */
357 if (args->sessionnr < 0) {
358 args->sessionnr += ump->discinfo.num_sessions;
359 }
360
361 /* sanity */
362 if (args->sessionnr < 0)
363 args->sessionnr = 0;
364 if (args->sessionnr > ump->discinfo.num_sessions)
365 args->sessionnr = ump->discinfo.num_sessions;
366
367 /* search the tracks for this session, zero session nr indicates last */
368 if (args->sessionnr == 0)
369 args->sessionnr = ump->discinfo.num_sessions;
370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
371 args->sessionnr--;
372
373 /* sanity again */
374 if (args->sessionnr < 0)
375 args->sessionnr = 0;
376
377 /* search the first and last track of the specified session */
378 num_tracks = ump->discinfo.num_tracks;
379 start_track = ump->discinfo.first_track;
380
381 /* search for first track of this session */
382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
383 /* get track info */
384 trackinfo.tracknr = tracknr;
385 error = udf_update_trackinfo(ump, &trackinfo);
386 if (error)
387 return error;
388
389 if (trackinfo.sessionnr == args->sessionnr)
390 break;
391 }
392 *first_tracknr = tracknr;
393
394 /* search for last track of this session */
395 for (;tracknr <= num_tracks; tracknr++) {
396 /* get track info */
397 trackinfo.tracknr = tracknr;
398 error = udf_update_trackinfo(ump, &trackinfo);
399 if (error || (trackinfo.sessionnr != args->sessionnr)) {
400 tracknr--;
401 break;
402 }
403 }
404 if (tracknr > num_tracks)
405 tracknr--;
406
407 *last_tracknr = tracknr;
408
409 if (*last_tracknr < *first_tracknr) {
410 printf( "udf_search_tracks: sanity check on drive+disc failed, "
411 "drive returned garbage\n");
412 return EINVAL;
413 }
414
415 assert(*last_tracknr >= *first_tracknr);
416 return 0;
417 }
418
419
420 /*
421 * NOTE: this is the only routine in this file that directly peeks into the
422 * metadata file but since its at a larval state of the mount it can't hurt.
423 *
424 * XXX candidate for udf_allocation.c
425 * XXX clean me up!, change to new node reading code.
426 */
427
428 static void
429 udf_check_track_metadata_overlap(struct udf_mount *ump,
430 struct mmc_trackinfo *trackinfo)
431 {
432 struct part_desc *part;
433 struct file_entry *fe;
434 struct extfile_entry *efe;
435 struct short_ad *s_ad;
436 struct long_ad *l_ad;
437 uint32_t track_start, track_end;
438 uint32_t phys_part_start, phys_part_end, part_start, part_end;
439 uint32_t sector_size, len, alloclen, plb_num;
440 uint8_t *pos;
441 int addr_type, icblen, icbflags;
442
443 /* get our track extents */
444 track_start = trackinfo->track_start;
445 track_end = track_start + trackinfo->track_size;
446
447 /* get our base partition extent */
448 KASSERT(ump->node_part == ump->fids_part);
449 part = ump->partitions[ump->vtop[ump->node_part]];
450 phys_part_start = udf_rw32(part->start_loc);
451 phys_part_end = phys_part_start + udf_rw32(part->part_len);
452
453 /* no use if its outside the physical partition */
454 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
455 return;
456
457 /*
458 * now follow all extents in the fe/efe to see if they refer to this
459 * track
460 */
461
462 sector_size = ump->discinfo.sector_size;
463
464 /* XXX should we claim exclusive access to the metafile ? */
465 /* TODO: move to new node read code */
466 fe = ump->metadata_node->fe;
467 efe = ump->metadata_node->efe;
468 if (fe) {
469 alloclen = udf_rw32(fe->l_ad);
470 pos = &fe->data[0] + udf_rw32(fe->l_ea);
471 icbflags = udf_rw16(fe->icbtag.flags);
472 } else {
473 assert(efe);
474 alloclen = udf_rw32(efe->l_ad);
475 pos = &efe->data[0] + udf_rw32(efe->l_ea);
476 icbflags = udf_rw16(efe->icbtag.flags);
477 }
478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
479
480 while (alloclen) {
481 if (addr_type == UDF_ICB_SHORT_ALLOC) {
482 icblen = sizeof(struct short_ad);
483 s_ad = (struct short_ad *) pos;
484 len = udf_rw32(s_ad->len);
485 plb_num = udf_rw32(s_ad->lb_num);
486 } else {
487 /* should not be present, but why not */
488 icblen = sizeof(struct long_ad);
489 l_ad = (struct long_ad *) pos;
490 len = udf_rw32(l_ad->len);
491 plb_num = udf_rw32(l_ad->loc.lb_num);
492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
493 }
494 /* process extent */
495 len = UDF_EXT_LEN(len);
496
497 part_start = phys_part_start + plb_num;
498 part_end = part_start + (len / sector_size);
499
500 if ((part_start >= track_start) && (part_end <= track_end)) {
501 /* extent is enclosed within this track */
502 ump->metadata_track = *trackinfo;
503 return;
504 }
505
506 pos += icblen;
507 alloclen -= icblen;
508 }
509 }
510
511
512 int
513 udf_search_writing_tracks(struct udf_mount *ump)
514 {
515 struct vnode *devvp = ump->devvp;
516 struct mmc_trackinfo trackinfo;
517 struct mmc_op mmc_op;
518 struct part_desc *part;
519 uint32_t tracknr, start_track, num_tracks;
520 uint32_t track_start, track_end, part_start, part_end;
521 int node_alloc, error;
522
523 /*
524 * in the CD/(HD)DVD/BD recordable device model a few tracks within
525 * the last session might be open but in the UDF device model at most
526 * three tracks can be open: a reserved track for delayed ISO VRS
527 * writing, a data track and a metadata track. We search here for the
528 * data track and the metadata track. Note that the reserved track is
529 * troublesome but can be detected by its small size of < 512 sectors.
530 */
531
532 /* update discinfo since it might have changed */
533 error = udf_update_discinfo(ump);
534 if (error)
535 return error;
536
537 num_tracks = ump->discinfo.num_tracks;
538 start_track = ump->discinfo.first_track;
539
540 /* fetch info on first and possibly only track */
541 trackinfo.tracknr = start_track;
542 error = udf_update_trackinfo(ump, &trackinfo);
543 if (error)
544 return error;
545
546 /* copy results to our mount point */
547 ump->data_track = trackinfo;
548 ump->metadata_track = trackinfo;
549
550 /* if not sequential, we're done */
551 if (num_tracks == 1)
552 return 0;
553
554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
555 /* get track info */
556 trackinfo.tracknr = tracknr;
557 error = udf_update_trackinfo(ump, &trackinfo);
558 if (error)
559 return error;
560
561 /*
562 * If this track is marked damaged, ask for repair. This is an
563 * optional command, so ignore its error but report warning.
564 */
565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
566 memset(&mmc_op, 0, sizeof(mmc_op));
567 mmc_op.operation = MMC_OP_REPAIRTRACK;
568 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
569 mmc_op.tracknr = tracknr;
570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
571 if (error)
572 (void)printf("Drive can't explicitly repair "
573 "damaged track %d, but it might "
574 "autorepair\n", tracknr);
575
576 /* reget track info */
577 error = udf_update_trackinfo(ump, &trackinfo);
578 if (error)
579 return error;
580 }
581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
582 continue;
583
584 track_start = trackinfo.track_start;
585 track_end = track_start + trackinfo.track_size;
586
587 /* check for overlap on data partition */
588 part = ump->partitions[ump->data_part];
589 part_start = udf_rw32(part->start_loc);
590 part_end = part_start + udf_rw32(part->part_len);
591 if ((part_start < track_end) && (part_end > track_start)) {
592 ump->data_track = trackinfo;
593 /* TODO check if UDF partition data_part is writable */
594 }
595
596 /* check for overlap on metadata partition */
597 node_alloc = ump->vtop_alloc[ump->node_part];
598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
599 (node_alloc == UDF_ALLOC_METABITMAP)) {
600 udf_check_track_metadata_overlap(ump, &trackinfo);
601 } else {
602 ump->metadata_track = trackinfo;
603 }
604 }
605
606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
607 return EROFS;
608
609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 return 0;
613 }
614
615 /* --------------------------------------------------------------------- */
616
617 /*
618 * Check if the blob starts with a good UDF tag. Tags are protected by a
619 * checksum over the reader except one byte at position 4 that is the checksum
620 * itself.
621 */
622
623 int
624 udf_check_tag(void *blob)
625 {
626 struct desc_tag *tag = blob;
627 uint8_t *pos, sum, cnt;
628
629 /* check TAG header checksum */
630 pos = (uint8_t *) tag;
631 sum = 0;
632
633 for(cnt = 0; cnt < 16; cnt++) {
634 if (cnt != 4)
635 sum += *pos;
636 pos++;
637 }
638 if (sum != tag->cksum) {
639 /* bad tag header checksum; this is not a valid tag */
640 return EINVAL;
641 }
642
643 return 0;
644 }
645
646
647 /*
648 * check tag payload will check descriptor CRC as specified.
649 * If the descriptor is too long, it will return EIO otherwise EINVAL.
650 */
651
652 int
653 udf_check_tag_payload(void *blob, uint32_t max_length)
654 {
655 struct desc_tag *tag = blob;
656 uint16_t crc, crc_len;
657
658 crc_len = udf_rw16(tag->desc_crc_len);
659
660 /* check payload CRC if applicable */
661 if (crc_len == 0)
662 return 0;
663
664 if (crc_len > max_length)
665 return EIO;
666
667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
668 if (crc != udf_rw16(tag->desc_crc)) {
669 /* bad payload CRC; this is a broken tag */
670 return EINVAL;
671 }
672
673 return 0;
674 }
675
676
677 void
678 udf_validate_tag_sum(void *blob)
679 {
680 struct desc_tag *tag = blob;
681 uint8_t *pos, sum, cnt;
682
683 /* calculate TAG header checksum */
684 pos = (uint8_t *) tag;
685 sum = 0;
686
687 for(cnt = 0; cnt < 16; cnt++) {
688 if (cnt != 4) sum += *pos;
689 pos++;
690 }
691 tag->cksum = sum; /* 8 bit */
692 }
693
694
695 /* assumes sector number of descriptor to be saved already present */
696 void
697 udf_validate_tag_and_crc_sums(void *blob)
698 {
699 struct desc_tag *tag = blob;
700 uint8_t *btag = (uint8_t *) tag;
701 uint16_t crc, crc_len;
702
703 crc_len = udf_rw16(tag->desc_crc_len);
704
705 /* check payload CRC if applicable */
706 if (crc_len > 0) {
707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
708 tag->desc_crc = udf_rw16(crc);
709 }
710
711 /* calculate TAG header checksum */
712 udf_validate_tag_sum(blob);
713 }
714
715 /* --------------------------------------------------------------------- */
716
717 /*
718 * XXX note the different semantics from udfclient: for FIDs it still rounds
719 * up to sectors. Use udf_fidsize() for a correct length.
720 */
721
722 int
723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
724 {
725 uint32_t size, tag_id, num_lb, elmsz;
726
727 tag_id = udf_rw16(dscr->tag.id);
728
729 switch (tag_id) {
730 case TAGID_LOGVOL :
731 size = sizeof(struct logvol_desc) - 1;
732 size += udf_rw32(dscr->lvd.mt_l);
733 break;
734 case TAGID_UNALLOC_SPACE :
735 elmsz = sizeof(struct extent_ad);
736 size = sizeof(struct unalloc_sp_desc) - elmsz;
737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
738 break;
739 case TAGID_FID :
740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
741 size = (size + 3) & ~3;
742 break;
743 case TAGID_LOGVOL_INTEGRITY :
744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
745 size += udf_rw32(dscr->lvid.l_iu);
746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
747 break;
748 case TAGID_SPACE_BITMAP :
749 size = sizeof(struct space_bitmap_desc) - 1;
750 size += udf_rw32(dscr->sbd.num_bytes);
751 break;
752 case TAGID_SPARING_TABLE :
753 elmsz = sizeof(struct spare_map_entry);
754 size = sizeof(struct udf_sparing_table) - elmsz;
755 size += udf_rw16(dscr->spt.rt_l) * elmsz;
756 break;
757 case TAGID_FENTRY :
758 size = sizeof(struct file_entry);
759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
760 break;
761 case TAGID_EXTFENTRY :
762 size = sizeof(struct extfile_entry);
763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
764 break;
765 case TAGID_FSD :
766 size = sizeof(struct fileset_desc);
767 break;
768 default :
769 size = sizeof(union dscrptr);
770 break;
771 }
772
773 if ((size == 0) || (lb_size == 0))
774 return 0;
775
776 if (lb_size == 1)
777 return size;
778
779 /* round up in sectors */
780 num_lb = (size + lb_size -1) / lb_size;
781 return num_lb * lb_size;
782 }
783
784
785 int
786 udf_fidsize(struct fileid_desc *fid)
787 {
788 uint32_t size;
789
790 if (udf_rw16(fid->tag.id) != TAGID_FID)
791 panic("got udf_fidsize on non FID\n");
792
793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
794 size = (size + 3) & ~3;
795
796 return size;
797 }
798
799 /* --------------------------------------------------------------------- */
800
801 void
802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
803 {
804 int ret;
805
806 mutex_enter(&udf_node->node_mutex);
807 /* wait until free */
808 while (udf_node->i_flags & IN_LOCKED) {
809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
810 /* TODO check if we should return error; abort */
811 if (ret == EWOULDBLOCK) {
812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
813 "wanted at %s:%d, previously locked at %s:%d\n",
814 udf_node, fname, lineno,
815 udf_node->lock_fname, udf_node->lock_lineno));
816 }
817 }
818 /* grab */
819 udf_node->i_flags |= IN_LOCKED | flag;
820 /* debug */
821 udf_node->lock_fname = fname;
822 udf_node->lock_lineno = lineno;
823
824 mutex_exit(&udf_node->node_mutex);
825 }
826
827
828 void
829 udf_unlock_node(struct udf_node *udf_node, int flag)
830 {
831 mutex_enter(&udf_node->node_mutex);
832 udf_node->i_flags &= ~(IN_LOCKED | flag);
833 cv_broadcast(&udf_node->node_lock);
834 mutex_exit(&udf_node->node_mutex);
835 }
836
837
838 /* --------------------------------------------------------------------- */
839
840 static int
841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
842 {
843 int error;
844
845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
846 (union dscrptr **) dst);
847 if (!error) {
848 /* blank terminator blocks are not allowed here */
849 if (*dst == NULL)
850 return ENOENT;
851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
852 error = ENOENT;
853 free(*dst, M_UDFVOLD);
854 *dst = NULL;
855 DPRINTF(VOLUMES, ("Not an anchor\n"));
856 }
857 }
858
859 return error;
860 }
861
862
863 int
864 udf_read_anchors(struct udf_mount *ump)
865 {
866 struct udf_args *args = &ump->mount_args;
867 struct mmc_trackinfo first_track;
868 struct mmc_trackinfo second_track;
869 struct mmc_trackinfo last_track;
870 struct anchor_vdp **anchorsp;
871 uint32_t track_start;
872 uint32_t track_end;
873 uint32_t positions[4];
874 int first_tracknr, last_tracknr;
875 int error, anch, ok, first_anchor;
876
877 /* search the first and last track of the specified session */
878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
879 if (!error) {
880 first_track.tracknr = first_tracknr;
881 error = udf_update_trackinfo(ump, &first_track);
882 }
883 if (!error) {
884 last_track.tracknr = last_tracknr;
885 error = udf_update_trackinfo(ump, &last_track);
886 }
887 if ((!error) && (first_tracknr != last_tracknr)) {
888 second_track.tracknr = first_tracknr+1;
889 error = udf_update_trackinfo(ump, &second_track);
890 }
891 if (error) {
892 printf("UDF mount: reading disc geometry failed\n");
893 return 0;
894 }
895
896 track_start = first_track.track_start;
897
898 /* `end' is not as straitforward as start. */
899 track_end = last_track.track_start
900 + last_track.track_size - last_track.free_blocks - 1;
901
902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
903 /* end of track is not straitforward here */
904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
905 track_end = last_track.last_recorded;
906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
907 track_end = last_track.next_writable
908 - ump->discinfo.link_block_penalty;
909 }
910
911 /* its no use reading a blank track */
912 first_anchor = 0;
913 if (first_track.flags & MMC_TRACKINFO_BLANK)
914 first_anchor = 1;
915
916 /* get our packet size */
917 ump->packet_size = first_track.packet_size;
918 if (first_track.flags & MMC_TRACKINFO_BLANK)
919 ump->packet_size = second_track.packet_size;
920
921 if (ump->packet_size <= 1) {
922 /* take max, but not bigger than 64 */
923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
924 ump->packet_size = MIN(ump->packet_size, 64);
925 }
926 KASSERT(ump->packet_size >= 1);
927
928 /* read anchors start+256, start+512, end-256, end */
929 positions[0] = track_start+256;
930 positions[1] = track_end-256;
931 positions[2] = track_end;
932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
934
935 ok = 0;
936 anchorsp = ump->anchors;
937 for (anch = first_anchor; anch < 4; anch++) {
938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
939 positions[anch]));
940 error = udf_read_anchor(ump, positions[anch], anchorsp);
941 if (!error) {
942 anchorsp++;
943 ok++;
944 }
945 }
946
947 /* VATs are only recorded on sequential media, but initialise */
948 ump->first_possible_vat_location = track_start + 2;
949 ump->last_possible_vat_location = track_end;
950
951 return ok;
952 }
953
954 /* --------------------------------------------------------------------- */
955
956 int
957 udf_get_c_type(struct udf_node *udf_node)
958 {
959 int isdir, what;
960
961 isdir = (udf_node->vnode->v_type == VDIR);
962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
963
964 if (udf_node->ump)
965 if (udf_node == udf_node->ump->metadatabitmap_node)
966 what = UDF_C_METADATA_SBM;
967
968 return what;
969 }
970
971
972 int
973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
974 {
975 int vpart_num;
976
977 vpart_num = ump->data_part;
978 if (udf_c_type == UDF_C_NODE)
979 vpart_num = ump->node_part;
980 if (udf_c_type == UDF_C_FIDS)
981 vpart_num = ump->fids_part;
982
983 return vpart_num;
984 }
985
986
987 /*
988 * BUGALERT: some rogue implementations use random physical partition
989 * numbers to break other implementations so lookup the number.
990 */
991
992 static uint16_t
993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
994 {
995 struct part_desc *part;
996 uint16_t phys_part;
997
998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
999 part = ump->partitions[phys_part];
1000 if (part == NULL)
1001 break;
1002 if (udf_rw16(part->part_num) == raw_phys_part)
1003 break;
1004 }
1005 return phys_part;
1006 }
1007
1008 /* --------------------------------------------------------------------- */
1009
1010 /* we dont try to be smart; we just record the parts */
1011 #define UDF_UPDATE_DSCR(name, dscr) \
1012 if (name) \
1013 free(name, M_UDFVOLD); \
1014 name = dscr;
1015
1016 static int
1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1018 {
1019 uint16_t phys_part, raw_phys_part;
1020
1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1022 udf_rw16(dscr->tag.id)));
1023 switch (udf_rw16(dscr->tag.id)) {
1024 case TAGID_PRI_VOL : /* primary partition */
1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1026 break;
1027 case TAGID_LOGVOL : /* logical volume */
1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1029 break;
1030 case TAGID_UNALLOC_SPACE : /* unallocated space */
1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1032 break;
1033 case TAGID_IMP_VOL : /* implementation */
1034 /* XXX do we care about multiple impl. descr ? */
1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1036 break;
1037 case TAGID_PARTITION : /* physical partition */
1038 /* not much use if its not allocated */
1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1040 free(dscr, M_UDFVOLD);
1041 break;
1042 }
1043
1044 /*
1045 * BUGALERT: some rogue implementations use random physical
1046 * partition numbers to break other implementations so lookup
1047 * the number.
1048 */
1049 raw_phys_part = udf_rw16(dscr->pd.part_num);
1050 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1051
1052 if (phys_part == UDF_PARTITIONS) {
1053 free(dscr, M_UDFVOLD);
1054 return EINVAL;
1055 }
1056
1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1058 break;
1059 case TAGID_VOL : /* volume space extender; rare */
1060 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1061 free(dscr, M_UDFVOLD);
1062 break;
1063 default :
1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1065 udf_rw16(dscr->tag.id)));
1066 free(dscr, M_UDFVOLD);
1067 }
1068
1069 return 0;
1070 }
1071 #undef UDF_UPDATE_DSCR
1072
1073 /* --------------------------------------------------------------------- */
1074
1075 static int
1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1077 {
1078 union dscrptr *dscr;
1079 uint32_t sector_size, dscr_size;
1080 int error;
1081
1082 sector_size = ump->discinfo.sector_size;
1083
1084 /* loc is sectornr, len is in bytes */
1085 error = EIO;
1086 while (len) {
1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1088 if (error)
1089 return error;
1090
1091 /* blank block is a terminator */
1092 if (dscr == NULL)
1093 return 0;
1094
1095 /* TERM descriptor is a terminator */
1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1097 free(dscr, M_UDFVOLD);
1098 return 0;
1099 }
1100
1101 /* process all others */
1102 dscr_size = udf_tagsize(dscr, sector_size);
1103 error = udf_process_vds_descriptor(ump, dscr);
1104 if (error) {
1105 free(dscr, M_UDFVOLD);
1106 break;
1107 }
1108 assert((dscr_size % sector_size) == 0);
1109
1110 len -= dscr_size;
1111 loc += dscr_size / sector_size;
1112 }
1113
1114 return error;
1115 }
1116
1117
1118 int
1119 udf_read_vds_space(struct udf_mount *ump)
1120 {
1121 /* struct udf_args *args = &ump->mount_args; */
1122 struct anchor_vdp *anchor, *anchor2;
1123 size_t size;
1124 uint32_t main_loc, main_len;
1125 uint32_t reserve_loc, reserve_len;
1126 int error;
1127
1128 /*
1129 * read in VDS space provided by the anchors; if one descriptor read
1130 * fails, try the mirror sector.
1131 *
1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1133 * avoids the `compatibility features' of DirectCD that may confuse
1134 * stuff completely.
1135 */
1136
1137 anchor = ump->anchors[0];
1138 anchor2 = ump->anchors[1];
1139 assert(anchor);
1140
1141 if (anchor2) {
1142 size = sizeof(struct extent_ad);
1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1144 anchor = anchor2;
1145 /* reserve is specified to be a literal copy of main */
1146 }
1147
1148 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1149 main_len = udf_rw32(anchor->main_vds_ex.len);
1150
1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1153
1154 error = udf_read_vds_extent(ump, main_loc, main_len);
1155 if (error) {
1156 printf("UDF mount: reading in reserve VDS extent\n");
1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1158 }
1159
1160 return error;
1161 }
1162
1163 /* --------------------------------------------------------------------- */
1164
1165 /*
1166 * Read in the logical volume integrity sequence pointed to by our logical
1167 * volume descriptor. Its a sequence that can be extended using fields in the
1168 * integrity descriptor itself. On sequential media only one is found, on
1169 * rewritable media a sequence of descriptors can be found as a form of
1170 * history keeping and on non sequential write-once media the chain is vital
1171 * to allow more and more descriptors to be written. The last descriptor
1172 * written in an extent needs to claim space for a new extent.
1173 */
1174
1175 static int
1176 udf_retrieve_lvint(struct udf_mount *ump)
1177 {
1178 union dscrptr *dscr;
1179 struct logvol_int_desc *lvint;
1180 struct udf_lvintq *trace;
1181 uint32_t lb_size, lbnum, len;
1182 int dscr_type, error, trace_len;
1183
1184 lb_size = udf_rw32(ump->logical_vol->lb_size);
1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1187
1188 /* clean trace */
1189 memset(ump->lvint_trace, 0,
1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1191
1192 trace_len = 0;
1193 trace = ump->lvint_trace;
1194 trace->start = lbnum;
1195 trace->end = lbnum + len/lb_size;
1196 trace->pos = 0;
1197 trace->wpos = 0;
1198
1199 lvint = NULL;
1200 dscr = NULL;
1201 error = 0;
1202 while (len) {
1203 trace->pos = lbnum - trace->start;
1204 trace->wpos = trace->pos + 1;
1205
1206 /* read in our integrity descriptor */
1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1208 if (!error) {
1209 if (dscr == NULL) {
1210 trace->wpos = trace->pos;
1211 break; /* empty terminates */
1212 }
1213 dscr_type = udf_rw16(dscr->tag.id);
1214 if (dscr_type == TAGID_TERM) {
1215 trace->wpos = trace->pos;
1216 break; /* clean terminator */
1217 }
1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1219 /* fatal... corrupt disc */
1220 error = ENOENT;
1221 break;
1222 }
1223 if (lvint)
1224 free(lvint, M_UDFVOLD);
1225 lvint = &dscr->lvid;
1226 dscr = NULL;
1227 } /* else hope for the best... maybe the next is ok */
1228
1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1231
1232 /* proceed sequential */
1233 lbnum += 1;
1234 len -= lb_size;
1235
1236 /* are we linking to a new piece? */
1237 if (dscr && lvint->next_extent.len) {
1238 len = udf_rw32(lvint->next_extent.len);
1239 lbnum = udf_rw32(lvint->next_extent.loc);
1240
1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1242 /* IEK! segment link full... */
1243 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1244 error = EINVAL;
1245 } else {
1246 trace++;
1247 trace_len++;
1248
1249 trace->start = lbnum;
1250 trace->end = lbnum + len/lb_size;
1251 trace->pos = 0;
1252 trace->wpos = 0;
1253 }
1254 }
1255 }
1256
1257 /* clean up the mess, esp. when there is an error */
1258 if (dscr)
1259 free(dscr, M_UDFVOLD);
1260
1261 if (error && lvint) {
1262 free(lvint, M_UDFVOLD);
1263 lvint = NULL;
1264 }
1265
1266 if (!lvint)
1267 error = ENOENT;
1268
1269 ump->logvol_integrity = lvint;
1270 return error;
1271 }
1272
1273
1274 static int
1275 udf_loose_lvint_history(struct udf_mount *ump)
1276 {
1277 union dscrptr **bufs, *dscr, *last_dscr;
1278 struct udf_lvintq *trace, *in_trace, *out_trace;
1279 struct logvol_int_desc *lvint;
1280 uint32_t in_ext, in_pos, in_len;
1281 uint32_t out_ext, out_wpos, out_len;
1282 uint32_t lb_num;
1283 uint32_t len, start;
1284 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1285 int losing;
1286 int error;
1287
1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1289
1290 /* search smallest extent */
1291 trace = &ump->lvint_trace[0];
1292 minext = trace->end - trace->start;
1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1294 trace = &ump->lvint_trace[ext];
1295 extlen = trace->end - trace->start;
1296 if (extlen == 0)
1297 break;
1298 minext = MIN(minext, extlen);
1299 }
1300 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1301 /* no sense wiping all */
1302 if (losing == minext)
1303 losing--;
1304
1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1306
1307 /* get buffer for pieces */
1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1309
1310 in_ext = 0;
1311 in_pos = losing;
1312 in_trace = &ump->lvint_trace[in_ext];
1313 in_len = in_trace->end - in_trace->start;
1314 out_ext = 0;
1315 out_wpos = 0;
1316 out_trace = &ump->lvint_trace[out_ext];
1317 out_len = out_trace->end - out_trace->start;
1318
1319 last_dscr = NULL;
1320 for(;;) {
1321 out_trace->pos = out_wpos;
1322 out_trace->wpos = out_trace->pos;
1323 if (in_pos >= in_len) {
1324 in_ext++;
1325 in_pos = 0;
1326 in_trace = &ump->lvint_trace[in_ext];
1327 in_len = in_trace->end - in_trace->start;
1328 }
1329 if (out_wpos >= out_len) {
1330 out_ext++;
1331 out_wpos = 0;
1332 out_trace = &ump->lvint_trace[out_ext];
1333 out_len = out_trace->end - out_trace->start;
1334 }
1335 /* copy overlap contents */
1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1338 if (cpy_len == 0)
1339 break;
1340
1341 /* copy */
1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1343 for (cnt = 0; cnt < cpy_len; cnt++) {
1344 /* read in our integrity descriptor */
1345 lb_num = in_trace->start + in_pos + cnt;
1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1347 &dscr);
1348 if (error) {
1349 /* copy last one */
1350 dscr = last_dscr;
1351 }
1352 bufs[cnt] = dscr;
1353 if (!error) {
1354 if (dscr == NULL) {
1355 out_trace->pos = out_wpos + cnt;
1356 out_trace->wpos = out_trace->pos;
1357 break; /* empty terminates */
1358 }
1359 dscr_type = udf_rw16(dscr->tag.id);
1360 if (dscr_type == TAGID_TERM) {
1361 out_trace->pos = out_wpos + cnt;
1362 out_trace->wpos = out_trace->pos;
1363 break; /* clean terminator */
1364 }
1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1366 panic( "UDF integrity sequence "
1367 "corrupted while mounted!\n");
1368 }
1369 last_dscr = dscr;
1370 }
1371 }
1372
1373 /* patch up if first entry was on error */
1374 if (bufs[0] == NULL) {
1375 for (cnt = 0; cnt < cpy_len; cnt++)
1376 if (bufs[cnt] != NULL)
1377 break;
1378 last_dscr = bufs[cnt];
1379 for (; cnt > 0; cnt--) {
1380 bufs[cnt] = last_dscr;
1381 }
1382 }
1383
1384 /* glue + write out */
1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1386 for (cnt = 0; cnt < cpy_len; cnt++) {
1387 lb_num = out_trace->start + out_wpos + cnt;
1388 lvint = &bufs[cnt]->lvid;
1389
1390 /* set continuation */
1391 len = 0;
1392 start = 0;
1393 if (out_wpos + cnt == out_len) {
1394 /* get continuation */
1395 trace = &ump->lvint_trace[out_ext+1];
1396 len = trace->end - trace->start;
1397 start = trace->start;
1398 }
1399 lvint->next_extent.len = udf_rw32(len);
1400 lvint->next_extent.loc = udf_rw32(start);
1401
1402 lb_num = trace->start + trace->wpos;
1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1404 bufs[cnt], lb_num, lb_num);
1405 DPRINTFIF(VOLUMES, error,
1406 ("error writing lvint lb_num\n"));
1407 }
1408
1409 /* free non repeating descriptors */
1410 last_dscr = NULL;
1411 for (cnt = 0; cnt < cpy_len; cnt++) {
1412 if (bufs[cnt] != last_dscr)
1413 free(bufs[cnt], M_UDFVOLD);
1414 last_dscr = bufs[cnt];
1415 }
1416
1417 /* advance */
1418 in_pos += cpy_len;
1419 out_wpos += cpy_len;
1420 }
1421
1422 free(bufs, M_TEMP);
1423
1424 return 0;
1425 }
1426
1427
1428 static int
1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1430 {
1431 struct udf_lvintq *trace;
1432 struct timeval now_v;
1433 struct timespec now_s;
1434 uint32_t sector;
1435 int logvol_integrity;
1436 int space, error;
1437
1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1439
1440 again:
1441 /* get free space in last chunk */
1442 trace = ump->lvint_trace;
1443 while (trace->wpos > (trace->end - trace->start)) {
1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1445 "wpos = %d\n", trace->start, trace->end,
1446 trace->pos, trace->wpos));
1447 trace++;
1448 }
1449
1450 /* check if there is space to append */
1451 space = (trace->end - trace->start) - trace->wpos;
1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1453 "space = %d\n", trace->start, trace->end, trace->pos,
1454 trace->wpos, space));
1455
1456 /* get state */
1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1460 /* TODO extent LVINT space if possible */
1461 return EROFS;
1462 }
1463 }
1464
1465 if (space < 1) {
1466 if (lvflag & UDF_APPENDONLY_LVINT)
1467 return EROFS;
1468 /* loose history by re-writing extents */
1469 error = udf_loose_lvint_history(ump);
1470 if (error)
1471 return error;
1472 goto again;
1473 }
1474
1475 /* update our integrity descriptor to identify us and timestamp it */
1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1477 microtime(&now_v);
1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1482
1483 /* writeout integrity descriptor */
1484 sector = trace->start + trace->wpos;
1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1486 (union dscrptr *) ump->logvol_integrity,
1487 sector, sector);
1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1489 if (error)
1490 return error;
1491
1492 /* advance write position */
1493 trace->wpos++; space--;
1494 if (space >= 1) {
1495 /* append terminator */
1496 sector = trace->start + trace->wpos;
1497 error = udf_write_terminator(ump, sector);
1498
1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1500 }
1501
1502 space = (trace->end - trace->start) - trace->wpos;
1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1504 "space = %d\n", trace->start, trace->end, trace->pos,
1505 trace->wpos, space));
1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1507 "successfull\n"));
1508
1509 return error;
1510 }
1511
1512 /* --------------------------------------------------------------------- */
1513
1514 static int
1515 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1516 {
1517 union dscrptr *dscr;
1518 /* struct udf_args *args = &ump->mount_args; */
1519 struct part_desc *partd;
1520 struct part_hdr_desc *parthdr;
1521 struct udf_bitmap *bitmap;
1522 uint32_t phys_part;
1523 uint32_t lb_num, len;
1524 int error, dscr_type;
1525
1526 /* unallocated space map */
1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1528 partd = ump->partitions[phys_part];
1529 if (partd == NULL)
1530 continue;
1531 parthdr = &partd->_impl_use.part_hdr;
1532
1533 lb_num = udf_rw32(partd->start_loc);
1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1536 if (len == 0)
1537 continue;
1538
1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1541 if (!error && dscr) {
1542 /* analyse */
1543 dscr_type = udf_rw16(dscr->tag.id);
1544 if (dscr_type == TAGID_SPACE_BITMAP) {
1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1547
1548 /* fill in ump->part_unalloc_bits */
1549 bitmap = &ump->part_unalloc_bits[phys_part];
1550 bitmap->blob = (uint8_t *) dscr;
1551 bitmap->bits = dscr->sbd.data;
1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1553 bitmap->pages = NULL; /* TODO */
1554 bitmap->data_pos = 0;
1555 bitmap->metadata_pos = 0;
1556 } else {
1557 free(dscr, M_UDFVOLD);
1558
1559 printf( "UDF mount: error reading unallocated "
1560 "space bitmap\n");
1561 return EROFS;
1562 }
1563 } else {
1564 /* blank not allowed */
1565 printf("UDF mount: blank unallocated space bitmap\n");
1566 return EROFS;
1567 }
1568 }
1569
1570 /* unallocated space table (not supported) */
1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1572 partd = ump->partitions[phys_part];
1573 if (partd == NULL)
1574 continue;
1575 parthdr = &partd->_impl_use.part_hdr;
1576
1577 len = udf_rw32(parthdr->unalloc_space_table.len);
1578 if (len) {
1579 printf("UDF mount: space tables not supported\n");
1580 return EROFS;
1581 }
1582 }
1583
1584 /* freed space map */
1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1586 partd = ump->partitions[phys_part];
1587 if (partd == NULL)
1588 continue;
1589 parthdr = &partd->_impl_use.part_hdr;
1590
1591 /* freed space map */
1592 lb_num = udf_rw32(partd->start_loc);
1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1594 len = udf_rw32(parthdr->freed_space_bitmap.len);
1595 if (len == 0)
1596 continue;
1597
1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1600 if (!error && dscr) {
1601 /* analyse */
1602 dscr_type = udf_rw16(dscr->tag.id);
1603 if (dscr_type == TAGID_SPACE_BITMAP) {
1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1605 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1606
1607 /* fill in ump->part_freed_bits */
1608 bitmap = &ump->part_unalloc_bits[phys_part];
1609 bitmap->blob = (uint8_t *) dscr;
1610 bitmap->bits = dscr->sbd.data;
1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1612 bitmap->pages = NULL; /* TODO */
1613 bitmap->data_pos = 0;
1614 bitmap->metadata_pos = 0;
1615 } else {
1616 free(dscr, M_UDFVOLD);
1617
1618 printf( "UDF mount: error reading freed "
1619 "space bitmap\n");
1620 return EROFS;
1621 }
1622 } else {
1623 /* blank not allowed */
1624 printf("UDF mount: blank freed space bitmap\n");
1625 return EROFS;
1626 }
1627 }
1628
1629 /* freed space table (not supported) */
1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1631 partd = ump->partitions[phys_part];
1632 if (partd == NULL)
1633 continue;
1634 parthdr = &partd->_impl_use.part_hdr;
1635
1636 len = udf_rw32(parthdr->freed_space_table.len);
1637 if (len) {
1638 printf("UDF mount: space tables not supported\n");
1639 return EROFS;
1640 }
1641 }
1642
1643 return 0;
1644 }
1645
1646
1647 /* TODO implement async writeout */
1648 int
1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1650 {
1651 union dscrptr *dscr;
1652 /* struct udf_args *args = &ump->mount_args; */
1653 struct part_desc *partd;
1654 struct part_hdr_desc *parthdr;
1655 uint32_t phys_part;
1656 uint32_t lb_num, len, ptov;
1657 int error_all, error;
1658
1659 error_all = 0;
1660 /* unallocated space map */
1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1662 partd = ump->partitions[phys_part];
1663 if (partd == NULL)
1664 continue;
1665 parthdr = &partd->_impl_use.part_hdr;
1666
1667 ptov = udf_rw32(partd->start_loc);
1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1670 if (len == 0)
1671 continue;
1672
1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1674 lb_num + ptov));
1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1677 (union dscrptr *) dscr,
1678 ptov + lb_num, lb_num);
1679 if (error) {
1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1681 error_all = error;
1682 }
1683 }
1684
1685 /* freed space map */
1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1687 partd = ump->partitions[phys_part];
1688 if (partd == NULL)
1689 continue;
1690 parthdr = &partd->_impl_use.part_hdr;
1691
1692 /* freed space map */
1693 ptov = udf_rw32(partd->start_loc);
1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1695 len = udf_rw32(parthdr->freed_space_bitmap.len);
1696 if (len == 0)
1697 continue;
1698
1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1700 lb_num + ptov));
1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1703 (union dscrptr *) dscr,
1704 ptov + lb_num, lb_num);
1705 if (error) {
1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1707 error_all = error;
1708 }
1709 }
1710
1711 return error_all;
1712 }
1713
1714
1715 static int
1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1717 {
1718 struct udf_node *bitmap_node;
1719 union dscrptr *dscr;
1720 struct udf_bitmap *bitmap;
1721 uint64_t inflen;
1722 int error, dscr_type;
1723
1724 bitmap_node = ump->metadatabitmap_node;
1725
1726 /* only read in when metadata bitmap node is read in */
1727 if (bitmap_node == NULL)
1728 return 0;
1729
1730 if (bitmap_node->fe) {
1731 inflen = udf_rw64(bitmap_node->fe->inf_len);
1732 } else {
1733 KASSERT(bitmap_node->efe);
1734 inflen = udf_rw64(bitmap_node->efe->inf_len);
1735 }
1736
1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1738 "%"PRIu64" bytes\n", inflen));
1739
1740 /* allocate space for bitmap */
1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1742 if (!dscr)
1743 return ENOMEM;
1744
1745 /* set vnode type to regular file or we can't read from it! */
1746 bitmap_node->vnode->v_type = VREG;
1747
1748 /* read in complete metadata bitmap file */
1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1750 dscr,
1751 inflen, 0,
1752 UIO_SYSSPACE,
1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1754 NULL, NULL);
1755 if (error) {
1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1757 goto errorout;
1758 }
1759
1760 /* analyse */
1761 dscr_type = udf_rw16(dscr->tag.id);
1762 if (dscr_type == TAGID_SPACE_BITMAP) {
1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1764 ump->metadata_unalloc_dscr = &dscr->sbd;
1765
1766 /* fill in bitmap bits */
1767 bitmap = &ump->metadata_unalloc_bits;
1768 bitmap->blob = (uint8_t *) dscr;
1769 bitmap->bits = dscr->sbd.data;
1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1771 bitmap->pages = NULL; /* TODO */
1772 bitmap->data_pos = 0;
1773 bitmap->metadata_pos = 0;
1774 } else {
1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1776 goto errorout;
1777 }
1778
1779 return 0;
1780
1781 errorout:
1782 free(dscr, M_UDFVOLD);
1783 printf( "UDF mount: error reading unallocated "
1784 "space bitmap for metadata partition\n");
1785 return EROFS;
1786 }
1787
1788
1789 int
1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1791 {
1792 struct udf_node *bitmap_node;
1793 union dscrptr *dscr;
1794 uint64_t new_inflen;
1795 int dummy, error;
1796
1797 bitmap_node = ump->metadatabitmap_node;
1798
1799 /* only write out when metadata bitmap node is known */
1800 if (bitmap_node == NULL)
1801 return 0;
1802
1803 if (!bitmap_node->fe) {
1804 KASSERT(bitmap_node->efe);
1805 }
1806
1807 /* reduce length to zero */
1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1809 new_inflen = udf_tagsize(dscr, 1);
1810
1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1812 " for %"PRIu64" bytes\n", new_inflen));
1813
1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1815 if (error)
1816 printf("Error resizing metadata space bitmap\n");
1817
1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1819 dscr,
1820 new_inflen, 0,
1821 UIO_SYSSPACE,
1822 IO_ALTSEMANTICS, FSCRED,
1823 NULL, NULL);
1824
1825 bitmap_node->i_flags |= IN_MODIFIED;
1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1827 if (error == 0)
1828 error = VOP_FSYNC(bitmap_node->vnode,
1829 FSCRED, FSYNC_WAIT, 0, 0);
1830
1831 if (error)
1832 printf( "Error writing out metadata partition unalloced "
1833 "space bitmap!\n");
1834
1835 return error;
1836 }
1837
1838
1839 /* --------------------------------------------------------------------- */
1840
1841 /*
1842 * Checks if ump's vds information is correct and complete
1843 */
1844
1845 int
1846 udf_process_vds(struct udf_mount *ump) {
1847 union udf_pmap *mapping;
1848 /* struct udf_args *args = &ump->mount_args; */
1849 struct logvol_int_desc *lvint;
1850 struct udf_logvol_info *lvinfo;
1851 uint32_t n_pm;
1852 uint8_t *pmap_pos;
1853 char *domain_name, *map_name;
1854 const char *check_name;
1855 char bits[128];
1856 int pmap_stype, pmap_size;
1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1858 int n_phys, n_virt, n_spar, n_meta;
1859 int len;
1860
1861 if (ump == NULL)
1862 return ENOENT;
1863
1864 /* we need at least an anchor (trivial, but for safety) */
1865 if (ump->anchors[0] == NULL)
1866 return EINVAL;
1867
1868 /* we need at least one primary and one logical volume descriptor */
1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1870 return EINVAL;
1871
1872 /* we need at least one partition descriptor */
1873 if (ump->partitions[0] == NULL)
1874 return EINVAL;
1875
1876 /* check logical volume sector size verses device sector size */
1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1878 printf("UDF mount: format violation, lb_size != sector size\n");
1879 return EINVAL;
1880 }
1881
1882 /* check domain name */
1883 domain_name = ump->logical_vol->domain_id.id;
1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1886 return EINVAL;
1887 }
1888
1889 /* retrieve logical volume integrity sequence */
1890 (void)udf_retrieve_lvint(ump);
1891
1892 /*
1893 * We need at least one logvol integrity descriptor recorded. Note
1894 * that its OK to have an open logical volume integrity here. The VAT
1895 * will close/update the integrity.
1896 */
1897 if (ump->logvol_integrity == NULL)
1898 return EINVAL;
1899
1900 /* process derived structures */
1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1902 lvint = ump->logvol_integrity;
1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1904 ump->logvol_info = lvinfo;
1905
1906 /* TODO check udf versions? */
1907
1908 /*
1909 * check logvol mappings: effective virt->log partmap translation
1910 * check and recording of the mapping results. Saves expensive
1911 * strncmp() in tight places.
1912 */
1913 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1915 pmap_pos = ump->logical_vol->maps;
1916
1917 if (n_pm > UDF_PMAPS) {
1918 printf("UDF mount: too many mappings\n");
1919 return EINVAL;
1920 }
1921
1922 /* count types and set partition numbers */
1923 ump->data_part = ump->node_part = ump->fids_part = 0;
1924 n_phys = n_virt = n_spar = n_meta = 0;
1925 for (log_part = 0; log_part < n_pm; log_part++) {
1926 mapping = (union udf_pmap *) pmap_pos;
1927 pmap_stype = pmap_pos[0];
1928 pmap_size = pmap_pos[1];
1929 switch (pmap_stype) {
1930 case 1: /* physical mapping */
1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1932 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1933 pmap_type = UDF_VTOP_TYPE_PHYS;
1934 n_phys++;
1935 ump->data_part = log_part;
1936 ump->node_part = log_part;
1937 ump->fids_part = log_part;
1938 break;
1939 case 2: /* virtual/sparable/meta mapping */
1940 map_name = mapping->pm2.part_id.id;
1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1942 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1944 len = UDF_REGID_ID_SIZE;
1945
1946 check_name = "*UDF Virtual Partition";
1947 if (strncmp(map_name, check_name, len) == 0) {
1948 pmap_type = UDF_VTOP_TYPE_VIRT;
1949 n_virt++;
1950 ump->node_part = log_part;
1951 break;
1952 }
1953 check_name = "*UDF Sparable Partition";
1954 if (strncmp(map_name, check_name, len) == 0) {
1955 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1956 n_spar++;
1957 ump->data_part = log_part;
1958 ump->node_part = log_part;
1959 ump->fids_part = log_part;
1960 break;
1961 }
1962 check_name = "*UDF Metadata Partition";
1963 if (strncmp(map_name, check_name, len) == 0) {
1964 pmap_type = UDF_VTOP_TYPE_META;
1965 n_meta++;
1966 ump->node_part = log_part;
1967 ump->fids_part = log_part;
1968 break;
1969 }
1970 break;
1971 default:
1972 return EINVAL;
1973 }
1974
1975 /*
1976 * BUGALERT: some rogue implementations use random physical
1977 * partition numbers to break other implementations so lookup
1978 * the number.
1979 */
1980 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1981
1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1983 raw_phys_part, phys_part, pmap_type));
1984
1985 if (phys_part == UDF_PARTITIONS)
1986 return EINVAL;
1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1988 return EINVAL;
1989
1990 ump->vtop [log_part] = phys_part;
1991 ump->vtop_tp[log_part] = pmap_type;
1992
1993 pmap_pos += pmap_size;
1994 }
1995 /* not winning the beauty contest */
1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1997
1998 /* test some basic UDF assertions/requirements */
1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2000 return EINVAL;
2001
2002 if (n_virt) {
2003 if ((n_phys == 0) || n_spar || n_meta)
2004 return EINVAL;
2005 }
2006 if (n_spar + n_phys == 0)
2007 return EINVAL;
2008
2009 /* select allocation type for each logical partition */
2010 for (log_part = 0; log_part < n_pm; log_part++) {
2011 maps_on = ump->vtop[log_part];
2012 switch (ump->vtop_tp[log_part]) {
2013 case UDF_VTOP_TYPE_PHYS :
2014 assert(maps_on == log_part);
2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2016 break;
2017 case UDF_VTOP_TYPE_VIRT :
2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2020 break;
2021 case UDF_VTOP_TYPE_SPARABLE :
2022 assert(maps_on == log_part);
2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2024 break;
2025 case UDF_VTOP_TYPE_META :
2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2028 /* special case for UDF 2.60 */
2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2031 }
2032 break;
2033 default:
2034 panic("bad alloction type in udf's ump->vtop\n");
2035 }
2036 }
2037
2038 /* determine logical volume open/closure actions */
2039 if (n_virt) {
2040 ump->lvopen = 0;
2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2042 ump->lvopen |= UDF_OPEN_SESSION ;
2043 ump->lvclose = UDF_WRITE_VAT;
2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2045 ump->lvclose |= UDF_CLOSE_SESSION;
2046 } else {
2047 /* `normal' rewritable or non sequential media */
2048 ump->lvopen = UDF_WRITE_LVINT;
2049 ump->lvclose = UDF_WRITE_LVINT;
2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2051 ump->lvopen |= UDF_APPENDONLY_LVINT;
2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2054 }
2055
2056 /*
2057 * Determine sheduler error behaviour. For virtual partitions, update
2058 * the trackinfo; for sparable partitions replace a whole block on the
2059 * sparable table. Allways requeue.
2060 */
2061 ump->lvreadwrite = 0;
2062 if (n_virt)
2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2064 if (n_spar)
2065 ump->lvreadwrite = UDF_REMAP_BLOCK;
2066
2067 /*
2068 * Select our sheduler
2069 */
2070 ump->strategy = &udf_strat_rmw;
2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2072 ump->strategy = &udf_strat_sequential;
2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2075 ump->strategy = &udf_strat_direct;
2076 if (n_spar)
2077 ump->strategy = &udf_strat_rmw;
2078
2079 #if 0
2080 /* read-only access won't benefit from the other shedulers */
2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2082 ump->strategy = &udf_strat_direct;
2083 #endif
2084
2085 /* print results */
2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2092
2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2099
2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2101 (ump->strategy == &udf_strat_direct) ? "Direct" :
2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2104
2105 /* signal its OK for now */
2106 return 0;
2107 }
2108
2109 /* --------------------------------------------------------------------- */
2110
2111 /*
2112 * Update logical volume name in all structures that keep a record of it. We
2113 * use memmove since each of them might be specified as a source.
2114 *
2115 * Note that it doesn't update the VAT structure!
2116 */
2117
2118 static void
2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2120 {
2121 struct logvol_desc *lvd = NULL;
2122 struct fileset_desc *fsd = NULL;
2123 struct udf_lv_info *lvi = NULL;
2124
2125 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2126 lvd = ump->logical_vol;
2127 fsd = ump->fileset_desc;
2128 if (ump->implementation)
2129 lvi = &ump->implementation->_impl_use.lv_info;
2130
2131 /* logvol's id might be specified as origional so use memmove here */
2132 memmove(lvd->logvol_id, logvol_id, 128);
2133 if (fsd)
2134 memmove(fsd->logvol_id, logvol_id, 128);
2135 if (lvi)
2136 memmove(lvi->logvol_id, logvol_id, 128);
2137 }
2138
2139 /* --------------------------------------------------------------------- */
2140
2141 void
2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2143 uint32_t sector)
2144 {
2145 assert(ump->logical_vol);
2146
2147 tag->id = udf_rw16(tagid);
2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2149 tag->cksum = 0;
2150 tag->reserved = 0;
2151 tag->serial_num = ump->logical_vol->tag.serial_num;
2152 tag->tag_loc = udf_rw32(sector);
2153 }
2154
2155
2156 uint64_t
2157 udf_advance_uniqueid(struct udf_mount *ump)
2158 {
2159 uint64_t unique_id;
2160
2161 mutex_enter(&ump->logvol_mutex);
2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2163 if (unique_id < 0x10)
2164 unique_id = 0x10;
2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2166 mutex_exit(&ump->logvol_mutex);
2167
2168 return unique_id;
2169 }
2170
2171
2172 static void
2173 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2174 {
2175 struct udf_mount *ump = udf_node->ump;
2176 uint32_t num_dirs, num_files;
2177 int udf_file_type;
2178
2179 /* get file type */
2180 if (udf_node->fe) {
2181 udf_file_type = udf_node->fe->icbtag.file_type;
2182 } else {
2183 udf_file_type = udf_node->efe->icbtag.file_type;
2184 }
2185
2186 /* adjust file count */
2187 mutex_enter(&ump->allocate_mutex);
2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2189 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2190 ump->logvol_info->num_directories =
2191 udf_rw32((num_dirs + sign));
2192 } else {
2193 num_files = udf_rw32(ump->logvol_info->num_files);
2194 ump->logvol_info->num_files =
2195 udf_rw32((num_files + sign));
2196 }
2197 mutex_exit(&ump->allocate_mutex);
2198 }
2199
2200
2201 void
2202 udf_osta_charset(struct charspec *charspec)
2203 {
2204 memset(charspec, 0, sizeof(struct charspec));
2205 charspec->type = 0;
2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2207 }
2208
2209
2210 /* first call udf_set_regid and then the suffix */
2211 void
2212 udf_set_regid(struct regid *regid, char const *name)
2213 {
2214 memset(regid, 0, sizeof(struct regid));
2215 regid->flags = 0; /* not dirty and not protected */
2216 strcpy((char *) regid->id, name);
2217 }
2218
2219
2220 void
2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2222 {
2223 uint16_t *ver;
2224
2225 ver = (uint16_t *) regid->id_suffix;
2226 *ver = ump->logvol_info->min_udf_readver;
2227 }
2228
2229
2230 void
2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2232 {
2233 uint16_t *ver;
2234
2235 ver = (uint16_t *) regid->id_suffix;
2236 *ver = ump->logvol_info->min_udf_readver;
2237
2238 regid->id_suffix[2] = 4; /* unix */
2239 regid->id_suffix[3] = 8; /* NetBSD */
2240 }
2241
2242
2243 void
2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2245 {
2246 regid->id_suffix[0] = 4; /* unix */
2247 regid->id_suffix[1] = 8; /* NetBSD */
2248 }
2249
2250
2251 void
2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2253 {
2254 regid->id_suffix[0] = APP_VERSION_MAIN;
2255 regid->id_suffix[1] = APP_VERSION_SUB;
2256 }
2257
2258 static int
2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2260 struct long_ad *parent, uint64_t unique_id)
2261 {
2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2263 int fidsize = 40;
2264
2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2268 fid->icb = *parent;
2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2272
2273 return fidsize;
2274 }
2275
2276 /* --------------------------------------------------------------------- */
2277
2278 /*
2279 * Extended attribute support. UDF knows of 3 places for extended attributes:
2280 *
2281 * (a) inside the file's (e)fe in the length of the extended attribute area
2282 * before the allocation descriptors/filedata
2283 *
2284 * (b) in a file referenced by (e)fe->ext_attr_icb and
2285 *
2286 * (c) in the e(fe)'s associated stream directory that can hold various
2287 * sub-files. In the stream directory a few fixed named subfiles are reserved
2288 * for NT/Unix ACL's and OS/2 attributes.
2289 *
2290 * NOTE: Extended attributes are read randomly but allways written
2291 * *atomicaly*. For ACL's this interface is propably different but not known
2292 * to me yet.
2293 *
2294 * Order of extended attributes in a space :
2295 * ECMA 167 EAs
2296 * Non block aligned Implementation Use EAs
2297 * Block aligned Implementation Use EAs
2298 * Application Use EAs
2299 */
2300
2301 static int
2302 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2303 {
2304 uint16_t *spos;
2305
2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2307 /* checksum valid? */
2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2309 spos = (uint16_t *) implext->data;
2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2311 return EINVAL;
2312 }
2313 return 0;
2314 }
2315
2316 static void
2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2318 {
2319 uint16_t *spos;
2320
2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2322 /* set checksum */
2323 spos = (uint16_t *) implext->data;
2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2325 }
2326 }
2327
2328
2329 int
2330 udf_extattr_search_intern(struct udf_node *node,
2331 uint32_t sattr, char const *sattrname,
2332 uint32_t *offsetp, uint32_t *lengthp)
2333 {
2334 struct extattrhdr_desc *eahdr;
2335 struct extattr_entry *attrhdr;
2336 struct impl_extattr_entry *implext;
2337 uint32_t offset, a_l, sector_size;
2338 int32_t l_ea;
2339 uint8_t *pos;
2340 int error;
2341
2342 /* get mountpoint */
2343 sector_size = node->ump->discinfo.sector_size;
2344
2345 /* get information from fe/efe */
2346 if (node->fe) {
2347 l_ea = udf_rw32(node->fe->l_ea);
2348 eahdr = (struct extattrhdr_desc *) node->fe->data;
2349 } else {
2350 assert(node->efe);
2351 l_ea = udf_rw32(node->efe->l_ea);
2352 eahdr = (struct extattrhdr_desc *) node->efe->data;
2353 }
2354
2355 /* something recorded here? */
2356 if (l_ea == 0)
2357 return ENOENT;
2358
2359 /* check extended attribute tag; what to do if it fails? */
2360 error = udf_check_tag(eahdr);
2361 if (error)
2362 return EINVAL;
2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2364 return EINVAL;
2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2366 if (error)
2367 return EINVAL;
2368
2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2370
2371 /* looking for Ecma-167 attributes? */
2372 offset = sizeof(struct extattrhdr_desc);
2373
2374 /* looking for either implemenation use or application use */
2375 if (sattr == 2048) { /* [4/48.10.8] */
2376 offset = udf_rw32(eahdr->impl_attr_loc);
2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2378 return ENOENT;
2379 }
2380 if (sattr == 65536) { /* [4/48.10.9] */
2381 offset = udf_rw32(eahdr->appl_attr_loc);
2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2383 return ENOENT;
2384 }
2385
2386 /* paranoia check offset and l_ea */
2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2388 return EINVAL;
2389
2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2391
2392 /* find our extended attribute */
2393 l_ea -= offset;
2394 pos = (uint8_t *) eahdr + offset;
2395
2396 while (l_ea >= sizeof(struct extattr_entry)) {
2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2398 attrhdr = (struct extattr_entry *) pos;
2399 implext = (struct impl_extattr_entry *) pos;
2400
2401 /* get complete attribute length and check for roque values */
2402 a_l = udf_rw32(attrhdr->a_l);
2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2404 udf_rw32(attrhdr->type),
2405 attrhdr->subtype, a_l, l_ea));
2406 if ((a_l == 0) || (a_l > l_ea))
2407 return EINVAL;
2408
2409 if (attrhdr->type != sattr)
2410 goto next_attribute;
2411
2412 /* we might have found it! */
2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2414 *offsetp = offset;
2415 *lengthp = a_l;
2416 return 0; /* success */
2417 }
2418
2419 /*
2420 * Implementation use and application use extended attributes
2421 * have a name to identify. They share the same structure only
2422 * UDF implementation use extended attributes have a checksum
2423 * we need to check
2424 */
2425
2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2427 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2428 /* we have found our appl/implementation attribute */
2429 *offsetp = offset;
2430 *lengthp = a_l;
2431 return 0; /* success */
2432 }
2433
2434 next_attribute:
2435 /* next attribute */
2436 pos += a_l;
2437 l_ea -= a_l;
2438 offset += a_l;
2439 }
2440 /* not found */
2441 return ENOENT;
2442 }
2443
2444
2445 static void
2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2447 struct extattr_entry *extattr)
2448 {
2449 struct file_entry *fe;
2450 struct extfile_entry *efe;
2451 struct extattrhdr_desc *extattrhdr;
2452 struct impl_extattr_entry *implext;
2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2454 uint32_t *l_eap, l_ad;
2455 uint16_t *spos;
2456 uint8_t *bpos, *data;
2457
2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2459 fe = &dscr->fe;
2460 data = fe->data;
2461 l_eap = &fe->l_ea;
2462 l_ad = udf_rw32(fe->l_ad);
2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2464 efe = &dscr->efe;
2465 data = efe->data;
2466 l_eap = &efe->l_ea;
2467 l_ad = udf_rw32(efe->l_ad);
2468 } else {
2469 panic("Bad tag passed to udf_extattr_insert_internal");
2470 }
2471
2472 /* can't append already written to file descriptors yet */
2473 assert(l_ad == 0);
2474 __USE(l_ad);
2475
2476 /* should have a header! */
2477 extattrhdr = (struct extattrhdr_desc *) data;
2478 l_ea = udf_rw32(*l_eap);
2479 if (l_ea == 0) {
2480 /* create empty extended attribute header */
2481 exthdr_len = sizeof(struct extattrhdr_desc);
2482
2483 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2484 /* loc */ 0);
2485 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2486 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2487 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2488
2489 /* record extended attribute header length */
2490 l_ea = exthdr_len;
2491 *l_eap = udf_rw32(l_ea);
2492 }
2493
2494 /* extract locations */
2495 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2496 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2497 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2498 impl_attr_loc = l_ea;
2499 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2500 appl_attr_loc = l_ea;
2501
2502 /* Ecma 167 EAs */
2503 if (udf_rw32(extattr->type) < 2048) {
2504 assert(impl_attr_loc == l_ea);
2505 assert(appl_attr_loc == l_ea);
2506 }
2507
2508 /* implementation use extended attributes */
2509 if (udf_rw32(extattr->type) == 2048) {
2510 assert(appl_attr_loc == l_ea);
2511
2512 /* calculate and write extended attribute header checksum */
2513 implext = (struct impl_extattr_entry *) extattr;
2514 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2515 spos = (uint16_t *) implext->data;
2516 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2517 }
2518
2519 /* application use extended attributes */
2520 assert(udf_rw32(extattr->type) != 65536);
2521 assert(appl_attr_loc == l_ea);
2522
2523 /* append the attribute at the end of the current space */
2524 bpos = data + udf_rw32(*l_eap);
2525 a_l = udf_rw32(extattr->a_l);
2526
2527 /* update impl. attribute locations */
2528 if (udf_rw32(extattr->type) < 2048) {
2529 impl_attr_loc = l_ea + a_l;
2530 appl_attr_loc = l_ea + a_l;
2531 }
2532 if (udf_rw32(extattr->type) == 2048) {
2533 appl_attr_loc = l_ea + a_l;
2534 }
2535
2536 /* copy and advance */
2537 memcpy(bpos, extattr, a_l);
2538 l_ea += a_l;
2539 *l_eap = udf_rw32(l_ea);
2540
2541 /* do the `dance` again backwards */
2542 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2543 if (impl_attr_loc == l_ea)
2544 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2545 if (appl_attr_loc == l_ea)
2546 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2547 }
2548
2549 /* store offsets */
2550 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2551 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2552 }
2553
2554
2555 /* --------------------------------------------------------------------- */
2556
2557 static int
2558 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2559 {
2560 struct udf_mount *ump;
2561 struct udf_logvol_info *lvinfo;
2562 struct impl_extattr_entry *implext;
2563 struct vatlvext_extattr_entry lvext;
2564 const char *extstr = "*UDF VAT LVExtension";
2565 uint64_t vat_uniqueid;
2566 uint32_t offset, a_l;
2567 uint8_t *ea_start, *lvextpos;
2568 int error;
2569
2570 /* get mountpoint and lvinfo */
2571 ump = vat_node->ump;
2572 lvinfo = ump->logvol_info;
2573
2574 /* get information from fe/efe */
2575 if (vat_node->fe) {
2576 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2577 ea_start = vat_node->fe->data;
2578 } else {
2579 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2580 ea_start = vat_node->efe->data;
2581 }
2582
2583 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2584 if (error)
2585 return error;
2586
2587 implext = (struct impl_extattr_entry *) (ea_start + offset);
2588 error = udf_impl_extattr_check(implext);
2589 if (error)
2590 return error;
2591
2592 /* paranoia */
2593 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2594 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2595 return EINVAL;
2596 }
2597
2598 /*
2599 * we have found our "VAT LVExtension attribute. BUT due to a
2600 * bug in the specification it might not be word aligned so
2601 * copy first to avoid panics on some machines (!!)
2602 */
2603 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2604 lvextpos = implext->data + udf_rw32(implext->iu_l);
2605 memcpy(&lvext, lvextpos, sizeof(lvext));
2606
2607 /* check if it was updated the last time */
2608 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2609 lvinfo->num_files = lvext.num_files;
2610 lvinfo->num_directories = lvext.num_directories;
2611 udf_update_logvolname(ump, lvext.logvol_id);
2612 } else {
2613 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2614 /* replace VAT LVExt by free space EA */
2615 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2616 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2617 udf_calc_impl_extattr_checksum(implext);
2618 }
2619
2620 return 0;
2621 }
2622
2623
2624 static int
2625 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2626 {
2627 struct udf_mount *ump;
2628 struct udf_logvol_info *lvinfo;
2629 struct impl_extattr_entry *implext;
2630 struct vatlvext_extattr_entry lvext;
2631 const char *extstr = "*UDF VAT LVExtension";
2632 uint64_t vat_uniqueid;
2633 uint32_t offset, a_l;
2634 uint8_t *ea_start, *lvextpos;
2635 int error;
2636
2637 /* get mountpoint and lvinfo */
2638 ump = vat_node->ump;
2639 lvinfo = ump->logvol_info;
2640
2641 /* get information from fe/efe */
2642 if (vat_node->fe) {
2643 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2644 ea_start = vat_node->fe->data;
2645 } else {
2646 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2647 ea_start = vat_node->efe->data;
2648 }
2649
2650 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2651 if (error)
2652 return error;
2653 /* found, it existed */
2654
2655 /* paranoia */
2656 implext = (struct impl_extattr_entry *) (ea_start + offset);
2657 error = udf_impl_extattr_check(implext);
2658 if (error) {
2659 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2660 return error;
2661 }
2662 /* it is correct */
2663
2664 /*
2665 * we have found our "VAT LVExtension attribute. BUT due to a
2666 * bug in the specification it might not be word aligned so
2667 * copy first to avoid panics on some machines (!!)
2668 */
2669 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2670 lvextpos = implext->data + udf_rw32(implext->iu_l);
2671
2672 lvext.unique_id_chk = vat_uniqueid;
2673 lvext.num_files = lvinfo->num_files;
2674 lvext.num_directories = lvinfo->num_directories;
2675 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2676
2677 memcpy(lvextpos, &lvext, sizeof(lvext));
2678
2679 return 0;
2680 }
2681
2682 /* --------------------------------------------------------------------- */
2683
2684 int
2685 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2686 {
2687 struct udf_mount *ump = vat_node->ump;
2688
2689 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2690 return EINVAL;
2691
2692 memcpy(blob, ump->vat_table + offset, size);
2693 return 0;
2694 }
2695
2696 int
2697 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2698 {
2699 struct udf_mount *ump = vat_node->ump;
2700 uint32_t offset_high;
2701 uint8_t *new_vat_table;
2702
2703 /* extent VAT allocation if needed */
2704 offset_high = offset + size;
2705 if (offset_high >= ump->vat_table_alloc_len) {
2706 /* realloc */
2707 new_vat_table = realloc(ump->vat_table,
2708 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2709 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2710 if (!new_vat_table) {
2711 printf("udf_vat_write: can't extent VAT, out of mem\n");
2712 return ENOMEM;
2713 }
2714 ump->vat_table = new_vat_table;
2715 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2716 }
2717 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2718
2719 memcpy(ump->vat_table + offset, blob, size);
2720 return 0;
2721 }
2722
2723 /* --------------------------------------------------------------------- */
2724
2725 /* TODO support previous VAT location writeout */
2726 static int
2727 udf_update_vat_descriptor(struct udf_mount *ump)
2728 {
2729 struct udf_node *vat_node = ump->vat_node;
2730 struct udf_logvol_info *lvinfo = ump->logvol_info;
2731 struct icb_tag *icbtag;
2732 struct udf_oldvat_tail *oldvat_tl;
2733 struct udf_vat *vat;
2734 uint64_t unique_id;
2735 uint32_t lb_size;
2736 uint8_t *raw_vat;
2737 int filetype, error;
2738
2739 KASSERT(vat_node);
2740 KASSERT(lvinfo);
2741 lb_size = udf_rw32(ump->logical_vol->lb_size);
2742
2743 /* get our new unique_id */
2744 unique_id = udf_advance_uniqueid(ump);
2745
2746 /* get information from fe/efe */
2747 if (vat_node->fe) {
2748 icbtag = &vat_node->fe->icbtag;
2749 vat_node->fe->unique_id = udf_rw64(unique_id);
2750 } else {
2751 icbtag = &vat_node->efe->icbtag;
2752 vat_node->efe->unique_id = udf_rw64(unique_id);
2753 }
2754
2755 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2756 filetype = icbtag->file_type;
2757 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2758
2759 /* allocate piece to process head or tail of VAT file */
2760 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2761
2762 if (filetype == 0) {
2763 /*
2764 * Update "*UDF VAT LVExtension" extended attribute from the
2765 * lvint if present.
2766 */
2767 udf_update_vat_extattr_from_lvid(vat_node);
2768
2769 /* setup identifying regid */
2770 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2771 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2772
2773 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2774 udf_add_udf_regid(ump, &oldvat_tl->id);
2775 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2776
2777 /* write out new tail of virtual allocation table file */
2778 error = udf_vat_write(vat_node, raw_vat,
2779 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2780 } else {
2781 /* compose the VAT2 header */
2782 vat = (struct udf_vat *) raw_vat;
2783 memset(vat, 0, sizeof(struct udf_vat));
2784
2785 vat->header_len = udf_rw16(152); /* as per spec */
2786 vat->impl_use_len = udf_rw16(0);
2787 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2788 vat->prev_vat = udf_rw32(0xffffffff);
2789 vat->num_files = lvinfo->num_files;
2790 vat->num_directories = lvinfo->num_directories;
2791 vat->min_udf_readver = lvinfo->min_udf_readver;
2792 vat->min_udf_writever = lvinfo->min_udf_writever;
2793 vat->max_udf_writever = lvinfo->max_udf_writever;
2794
2795 error = udf_vat_write(vat_node, raw_vat,
2796 sizeof(struct udf_vat), 0);
2797 }
2798 free(raw_vat, M_TEMP);
2799
2800 return error; /* success! */
2801 }
2802
2803
2804 int
2805 udf_writeout_vat(struct udf_mount *ump)
2806 {
2807 struct udf_node *vat_node = ump->vat_node;
2808 int error;
2809
2810 KASSERT(vat_node);
2811
2812 DPRINTF(CALL, ("udf_writeout_vat\n"));
2813
2814 // mutex_enter(&ump->allocate_mutex);
2815 udf_update_vat_descriptor(ump);
2816
2817 /* write out the VAT contents ; TODO intelligent writing */
2818 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2819 ump->vat_table, ump->vat_table_len, 0,
2820 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2821 if (error) {
2822 printf("udf_writeout_vat: failed to write out VAT contents\n");
2823 goto out;
2824 }
2825
2826 // mutex_exit(&ump->allocate_mutex);
2827
2828 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2829 if (error)
2830 goto out;
2831 error = VOP_FSYNC(ump->vat_node->vnode,
2832 FSCRED, FSYNC_WAIT, 0, 0);
2833 if (error)
2834 printf("udf_writeout_vat: error writing VAT node!\n");
2835 out:
2836
2837 return error;
2838 }
2839
2840 /* --------------------------------------------------------------------- */
2841
2842 /*
2843 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2844 * descriptor. If OK, read in complete VAT file.
2845 */
2846
2847 static int
2848 udf_check_for_vat(struct udf_node *vat_node)
2849 {
2850 struct udf_mount *ump;
2851 struct icb_tag *icbtag;
2852 struct timestamp *mtime;
2853 struct udf_vat *vat;
2854 struct udf_oldvat_tail *oldvat_tl;
2855 struct udf_logvol_info *lvinfo;
2856 uint64_t unique_id;
2857 uint32_t vat_length;
2858 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2859 uint32_t sector_size;
2860 uint32_t *raw_vat;
2861 uint8_t *vat_table;
2862 char *regid_name;
2863 int filetype;
2864 int error;
2865
2866 /* vat_length is really 64 bits though impossible */
2867
2868 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2869 if (!vat_node)
2870 return ENOENT;
2871
2872 /* get mount info */
2873 ump = vat_node->ump;
2874 sector_size = udf_rw32(ump->logical_vol->lb_size);
2875
2876 /* check assertions */
2877 assert(vat_node->fe || vat_node->efe);
2878 assert(ump->logvol_integrity);
2879
2880 /* set vnode type to regular file or we can't read from it! */
2881 vat_node->vnode->v_type = VREG;
2882
2883 /* get information from fe/efe */
2884 if (vat_node->fe) {
2885 vat_length = udf_rw64(vat_node->fe->inf_len);
2886 icbtag = &vat_node->fe->icbtag;
2887 mtime = &vat_node->fe->mtime;
2888 unique_id = udf_rw64(vat_node->fe->unique_id);
2889 } else {
2890 vat_length = udf_rw64(vat_node->efe->inf_len);
2891 icbtag = &vat_node->efe->icbtag;
2892 mtime = &vat_node->efe->mtime;
2893 unique_id = udf_rw64(vat_node->efe->unique_id);
2894 }
2895
2896 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2897 filetype = icbtag->file_type;
2898 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2899 return ENOENT;
2900
2901 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2902
2903 vat_table_alloc_len =
2904 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2905 * UDF_VAT_CHUNKSIZE;
2906
2907 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2908 M_CANFAIL | M_WAITOK);
2909 if (vat_table == NULL) {
2910 printf("allocation of %d bytes failed for VAT\n",
2911 vat_table_alloc_len);
2912 return ENOMEM;
2913 }
2914
2915 /* allocate piece to read in head or tail of VAT file */
2916 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2917
2918 /*
2919 * check contents of the file if its the old 1.50 VAT table format.
2920 * Its notoriously broken and allthough some implementations support an
2921 * extention as defined in the UDF 1.50 errata document, its doubtfull
2922 * to be useable since a lot of implementations don't maintain it.
2923 */
2924 lvinfo = ump->logvol_info;
2925
2926 if (filetype == 0) {
2927 /* definition */
2928 vat_offset = 0;
2929 vat_entries = (vat_length-36)/4;
2930
2931 /* read in tail of virtual allocation table file */
2932 error = vn_rdwr(UIO_READ, vat_node->vnode,
2933 (uint8_t *) raw_vat,
2934 sizeof(struct udf_oldvat_tail),
2935 vat_entries * 4,
2936 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2937 NULL, NULL);
2938 if (error)
2939 goto out;
2940
2941 /* check 1.50 VAT */
2942 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2943 regid_name = (char *) oldvat_tl->id.id;
2944 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2945 if (error) {
2946 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2947 error = ENOENT;
2948 goto out;
2949 }
2950
2951 /*
2952 * update LVID from "*UDF VAT LVExtension" extended attribute
2953 * if present.
2954 */
2955 udf_update_lvid_from_vat_extattr(vat_node);
2956 } else {
2957 /* read in head of virtual allocation table file */
2958 error = vn_rdwr(UIO_READ, vat_node->vnode,
2959 (uint8_t *) raw_vat,
2960 sizeof(struct udf_vat), 0,
2961 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2962 NULL, NULL);
2963 if (error)
2964 goto out;
2965
2966 /* definition */
2967 vat = (struct udf_vat *) raw_vat;
2968 vat_offset = vat->header_len;
2969 vat_entries = (vat_length - vat_offset)/4;
2970
2971 assert(lvinfo);
2972 lvinfo->num_files = vat->num_files;
2973 lvinfo->num_directories = vat->num_directories;
2974 lvinfo->min_udf_readver = vat->min_udf_readver;
2975 lvinfo->min_udf_writever = vat->min_udf_writever;
2976 lvinfo->max_udf_writever = vat->max_udf_writever;
2977
2978 udf_update_logvolname(ump, vat->logvol_id);
2979 }
2980
2981 /* read in complete VAT file */
2982 error = vn_rdwr(UIO_READ, vat_node->vnode,
2983 vat_table,
2984 vat_length, 0,
2985 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2986 NULL, NULL);
2987 if (error)
2988 printf("read in of complete VAT file failed (error %d)\n",
2989 error);
2990 if (error)
2991 goto out;
2992
2993 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2994 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2995 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2996 ump->logvol_integrity->time = *mtime;
2997
2998 /* if we're updating, free old allocated space */
2999 if (ump->vat_table)
3000 free(ump->vat_table, M_UDFVOLD);
3001
3002 ump->vat_table_len = vat_length;
3003 ump->vat_table_alloc_len = vat_table_alloc_len;
3004 ump->vat_table = vat_table;
3005 ump->vat_offset = vat_offset;
3006 ump->vat_entries = vat_entries;
3007 ump->vat_last_free_lb = 0; /* start at beginning */
3008
3009 out:
3010 if (error) {
3011 if (vat_table)
3012 free(vat_table, M_UDFVOLD);
3013 }
3014 free(raw_vat, M_TEMP);
3015
3016 return error;
3017 }
3018
3019 /* --------------------------------------------------------------------- */
3020
3021 static int
3022 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3023 {
3024 struct udf_node *vat_node, *accepted_vat_node;
3025 struct long_ad icb_loc;
3026 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3027 int error;
3028
3029 /* mapping info not needed */
3030 mapping = mapping;
3031
3032 DPRINTF(VOLUMES, ("Searching VAT\n"));
3033
3034 /*
3035 * Start reading forward in blocks from the first possible vat
3036 * location. If not found in this block, start again a bit before
3037 * until we get a hit.
3038 */
3039 late_vat_loc = ump->last_possible_vat_location;
3040 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3041
3042 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3043 accepted_vat_node = NULL;
3044 do {
3045 vat_loc = early_vat_loc;
3046 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3047 early_vat_loc, late_vat_loc));
3048 do {
3049 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3050 vat_loc));
3051 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3052 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3053
3054 error = udf_get_node(ump, &icb_loc, &vat_node);
3055 if (!error) {
3056 error = udf_check_for_vat(vat_node);
3057 vat_node->i_flags = 0; /* reset access */
3058 }
3059 if (!error) {
3060 DPRINTFIF(VOLUMES, !error,
3061 ("VAT candidate accepted at %d\n",
3062 vat_loc));
3063 if (accepted_vat_node)
3064 vput(accepted_vat_node->vnode);
3065 accepted_vat_node = vat_node;
3066 accepted_vat_node->i_flags |= IN_NO_DELETE;
3067 vat_node = NULL;
3068 }
3069 if (vat_node)
3070 vput(vat_node->vnode);
3071 vat_loc++; /* walk forward */
3072 } while (vat_loc < late_vat_loc);
3073 if (accepted_vat_node)
3074 break;
3075
3076 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3077 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3078 } while (late_vat_loc > ump->first_possible_vat_location);
3079
3080 /* keep our last accepted VAT node around */
3081 if (accepted_vat_node) {
3082 /* revert no delete flag again to avoid potential side effects */
3083 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3084
3085 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3086 ump->vat_node = accepted_vat_node;
3087 return 0;
3088 }
3089
3090 return error;
3091 }
3092
3093 /* --------------------------------------------------------------------- */
3094
3095 static int
3096 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3097 {
3098 union dscrptr *dscr;
3099 struct part_map_spare *pms = &mapping->pms;
3100 uint32_t lb_num;
3101 int spar, error;
3102
3103 /*
3104 * The partition mapping passed on to us specifies the information we
3105 * need to locate and initialise the sparable partition mapping
3106 * information we need.
3107 */
3108
3109 DPRINTF(VOLUMES, ("Read sparable table\n"));
3110 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3111 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3112
3113 for (spar = 0; spar < pms->n_st; spar++) {
3114 lb_num = pms->st_loc[spar];
3115 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3116 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3117 if (!error && dscr) {
3118 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3119 if (ump->sparing_table)
3120 free(ump->sparing_table, M_UDFVOLD);
3121 ump->sparing_table = &dscr->spt;
3122 dscr = NULL;
3123 DPRINTF(VOLUMES,
3124 ("Sparing table accepted (%d entries)\n",
3125 udf_rw16(ump->sparing_table->rt_l)));
3126 break; /* we're done */
3127 }
3128 }
3129 if (dscr)
3130 free(dscr, M_UDFVOLD);
3131 }
3132
3133 if (ump->sparing_table)
3134 return 0;
3135
3136 return ENOENT;
3137 }
3138
3139 /* --------------------------------------------------------------------- */
3140
3141 static int
3142 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3143 {
3144 struct part_map_meta *pmm = &mapping->pmm;
3145 struct long_ad icb_loc;
3146 struct vnode *vp;
3147 uint16_t raw_phys_part, phys_part;
3148 int error;
3149
3150 /*
3151 * BUGALERT: some rogue implementations use random physical
3152 * partition numbers to break other implementations so lookup
3153 * the number.
3154 */
3155
3156 /* extract our allocation parameters set up on format */
3157 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3158 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3159 ump->metadata_flags = mapping->pmm.flags;
3160
3161 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3162 raw_phys_part = udf_rw16(pmm->part_num);
3163 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3164
3165 icb_loc.loc.part_num = udf_rw16(phys_part);
3166
3167 DPRINTF(VOLUMES, ("Metadata file\n"));
3168 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3169 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3170 if (ump->metadata_node) {
3171 vp = ump->metadata_node->vnode;
3172 UDF_SET_SYSTEMFILE(vp);
3173 }
3174
3175 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3176 if (icb_loc.loc.lb_num != -1) {
3177 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3178 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3179 if (ump->metadatamirror_node) {
3180 vp = ump->metadatamirror_node->vnode;
3181 UDF_SET_SYSTEMFILE(vp);
3182 }
3183 }
3184
3185 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3186 if (icb_loc.loc.lb_num != -1) {
3187 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3188 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3189 if (ump->metadatabitmap_node) {
3190 vp = ump->metadatabitmap_node->vnode;
3191 UDF_SET_SYSTEMFILE(vp);
3192 }
3193 }
3194
3195 /* if we're mounting read-only we relax the requirements */
3196 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3197 error = EFAULT;
3198 if (ump->metadata_node)
3199 error = 0;
3200 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3201 printf( "udf mount: Metadata file not readable, "
3202 "substituting Metadata copy file\n");
3203 ump->metadata_node = ump->metadatamirror_node;
3204 ump->metadatamirror_node = NULL;
3205 error = 0;
3206 }
3207 } else {
3208 /* mounting read/write */
3209 /* XXX DISABLED! metadata writing is not working yet XXX */
3210 if (error)
3211 error = EROFS;
3212 }
3213 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3214 "metadata files\n"));
3215 return error;
3216 }
3217
3218 /* --------------------------------------------------------------------- */
3219
3220 int
3221 udf_read_vds_tables(struct udf_mount *ump)
3222 {
3223 union udf_pmap *mapping;
3224 /* struct udf_args *args = &ump->mount_args; */
3225 uint32_t n_pm;
3226 uint32_t log_part;
3227 uint8_t *pmap_pos;
3228 int pmap_size;
3229 int error;
3230
3231 /* Iterate (again) over the part mappings for locations */
3232 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3233 pmap_pos = ump->logical_vol->maps;
3234
3235 for (log_part = 0; log_part < n_pm; log_part++) {
3236 mapping = (union udf_pmap *) pmap_pos;
3237 switch (ump->vtop_tp[log_part]) {
3238 case UDF_VTOP_TYPE_PHYS :
3239 /* nothing */
3240 break;
3241 case UDF_VTOP_TYPE_VIRT :
3242 /* search and load VAT */
3243 error = udf_search_vat(ump, mapping);
3244 if (error)
3245 return ENOENT;
3246 break;
3247 case UDF_VTOP_TYPE_SPARABLE :
3248 /* load one of the sparable tables */
3249 error = udf_read_sparables(ump, mapping);
3250 if (error)
3251 return ENOENT;
3252 break;
3253 case UDF_VTOP_TYPE_META :
3254 /* load the associated file descriptors */
3255 error = udf_read_metadata_nodes(ump, mapping);
3256 if (error)
3257 return ENOENT;
3258 break;
3259 default:
3260 break;
3261 }
3262 pmap_size = pmap_pos[1];
3263 pmap_pos += pmap_size;
3264 }
3265
3266 /* read in and check unallocated and free space info if writing */
3267 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3268 error = udf_read_physical_partition_spacetables(ump);
3269 if (error)
3270 return error;
3271
3272 /* also read in metadata partition spacebitmap if defined */
3273 error = udf_read_metadata_partition_spacetable(ump);
3274 return error;
3275 }
3276
3277 return 0;
3278 }
3279
3280 /* --------------------------------------------------------------------- */
3281
3282 int
3283 udf_read_rootdirs(struct udf_mount *ump)
3284 {
3285 union dscrptr *dscr;
3286 /* struct udf_args *args = &ump->mount_args; */
3287 struct udf_node *rootdir_node, *streamdir_node;
3288 struct long_ad fsd_loc, *dir_loc;
3289 uint32_t lb_num, dummy;
3290 uint32_t fsd_len;
3291 int dscr_type;
3292 int error;
3293
3294 /* TODO implement FSD reading in separate function like integrity? */
3295 /* get fileset descriptor sequence */
3296 fsd_loc = ump->logical_vol->lv_fsd_loc;
3297 fsd_len = udf_rw32(fsd_loc.len);
3298
3299 dscr = NULL;
3300 error = 0;
3301 while (fsd_len || error) {
3302 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3303 /* translate fsd_loc to lb_num */
3304 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3305 if (error)
3306 break;
3307 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3308 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3309 /* end markers */
3310 if (error || (dscr == NULL))
3311 break;
3312
3313 /* analyse */
3314 dscr_type = udf_rw16(dscr->tag.id);
3315 if (dscr_type == TAGID_TERM)
3316 break;
3317 if (dscr_type != TAGID_FSD) {
3318 free(dscr, M_UDFVOLD);
3319 return ENOENT;
3320 }
3321
3322 /*
3323 * TODO check for multiple fileset descriptors; its only
3324 * picking the last now. Also check for FSD
3325 * correctness/interpretability
3326 */
3327
3328 /* update */
3329 if (ump->fileset_desc) {
3330 free(ump->fileset_desc, M_UDFVOLD);
3331 }
3332 ump->fileset_desc = &dscr->fsd;
3333 dscr = NULL;
3334
3335 /* continue to the next fsd */
3336 fsd_len -= ump->discinfo.sector_size;
3337 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3338
3339 /* follow up to fsd->next_ex (long_ad) if its not null */
3340 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3341 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3342 fsd_loc = ump->fileset_desc->next_ex;
3343 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3344 }
3345 }
3346 if (dscr)
3347 free(dscr, M_UDFVOLD);
3348
3349 /* there has to be one */
3350 if (ump->fileset_desc == NULL)
3351 return ENOENT;
3352
3353 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3354 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3355 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3356
3357 /*
3358 * Now the FSD is known, read in the rootdirectory and if one exists,
3359 * the system stream dir. Some files in the system streamdir are not
3360 * wanted in this implementation since they are not maintained. If
3361 * writing is enabled we'll delete these files if they exist.
3362 */
3363
3364 rootdir_node = streamdir_node = NULL;
3365 dir_loc = NULL;
3366
3367 /* try to read in the rootdir */
3368 dir_loc = &ump->fileset_desc->rootdir_icb;
3369 error = udf_get_node(ump, dir_loc, &rootdir_node);
3370 if (error)
3371 return ENOENT;
3372
3373 /* aparently it read in fine */
3374
3375 /*
3376 * Try the system stream directory; not very likely in the ones we
3377 * test, but for completeness.
3378 */
3379 dir_loc = &ump->fileset_desc->streamdir_icb;
3380 if (udf_rw32(dir_loc->len)) {
3381 printf("udf_read_rootdirs: streamdir defined ");
3382 error = udf_get_node(ump, dir_loc, &streamdir_node);
3383 if (error) {
3384 printf("but error in streamdir reading\n");
3385 } else {
3386 printf("but ignored\n");
3387 /*
3388 * TODO process streamdir `baddies' i.e. files we dont
3389 * want if R/W
3390 */
3391 }
3392 }
3393
3394 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3395
3396 /* release the vnodes again; they'll be auto-recycled later */
3397 if (streamdir_node) {
3398 vput(streamdir_node->vnode);
3399 }
3400 if (rootdir_node) {
3401 vput(rootdir_node->vnode);
3402 }
3403
3404 return 0;
3405 }
3406
3407 /* --------------------------------------------------------------------- */
3408
3409 /* To make absolutely sure we are NOT returning zero, add one :) */
3410
3411 long
3412 udf_get_node_id(const struct long_ad *icbptr)
3413 {
3414 /* ought to be enough since each mountpoint has its own chain */
3415 return udf_rw32(icbptr->loc.lb_num) + 1;
3416 }
3417
3418
3419 int
3420 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3421 {
3422 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3423 return -1;
3424 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3425 return 1;
3426
3427 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3428 return -1;
3429 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3430 return 1;
3431
3432 return 0;
3433 }
3434
3435
3436 static int
3437 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3438 {
3439 const struct udf_node *a_node = a;
3440 const struct udf_node *b_node = b;
3441
3442 return udf_compare_icb(&a_node->loc, &b_node->loc);
3443 }
3444
3445
3446 static int
3447 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3448 {
3449 const struct udf_node *a_node = a;
3450 const struct long_ad * const icb = key;
3451
3452 return udf_compare_icb(&a_node->loc, icb);
3453 }
3454
3455
3456 static const rb_tree_ops_t udf_node_rbtree_ops = {
3457 .rbto_compare_nodes = udf_compare_rbnodes,
3458 .rbto_compare_key = udf_compare_rbnode_icb,
3459 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3460 .rbto_context = NULL
3461 };
3462
3463
3464 void
3465 udf_init_nodes_tree(struct udf_mount *ump)
3466 {
3467
3468 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3469 }
3470
3471
3472 /* --------------------------------------------------------------------- */
3473
3474 static int
3475 udf_validate_session_start(struct udf_mount *ump)
3476 {
3477 struct mmc_trackinfo trackinfo;
3478 struct vrs_desc *vrs;
3479 uint32_t tracknr, sessionnr, sector, sector_size;
3480 uint32_t iso9660_vrs, write_track_start;
3481 uint8_t *buffer, *blank, *pos;
3482 int blks, max_sectors, vrs_len;
3483 int error;
3484
3485 /* disc appendable? */
3486 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3487 return EROFS;
3488
3489 /* already written here? if so, there should be an ISO VDS */
3490 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3491 return 0;
3492
3493 /*
3494 * Check if the first track of the session is blank and if so, copy or
3495 * create a dummy ISO descriptor so the disc is valid again.
3496 */
3497
3498 tracknr = ump->discinfo.first_track_last_session;
3499 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3500 trackinfo.tracknr = tracknr;
3501 error = udf_update_trackinfo(ump, &trackinfo);
3502 if (error)
3503 return error;
3504
3505 udf_dump_trackinfo(&trackinfo);
3506 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3507 KASSERT(trackinfo.sessionnr > 1);
3508
3509 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3510 write_track_start = trackinfo.next_writable;
3511
3512 /* we have to copy the ISO VRS from a former session */
3513 DPRINTF(VOLUMES, ("validate_session_start: "
3514 "blank or reserved track, copying VRS\n"));
3515
3516 /* sessionnr should be the session we're mounting */
3517 sessionnr = ump->mount_args.sessionnr;
3518
3519 /* start at the first track */
3520 tracknr = ump->discinfo.first_track;
3521 while (tracknr <= ump->discinfo.num_tracks) {
3522 trackinfo.tracknr = tracknr;
3523 error = udf_update_trackinfo(ump, &trackinfo);
3524 if (error) {
3525 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3526 return error;
3527 }
3528 if (trackinfo.sessionnr == sessionnr)
3529 break;
3530 tracknr++;
3531 }
3532 if (trackinfo.sessionnr != sessionnr) {
3533 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3534 return ENOENT;
3535 }
3536
3537 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3538 udf_dump_trackinfo(&trackinfo);
3539
3540 /*
3541 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3542 * minimum ISO `sector size' 2048
3543 */
3544 sector_size = ump->discinfo.sector_size;
3545 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3546 + trackinfo.track_start;
3547
3548 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3549 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3550 blks = MAX(1, 2048 / sector_size);
3551
3552 error = 0;
3553 for (sector = 0; sector < max_sectors; sector += blks) {
3554 pos = buffer + sector * sector_size;
3555 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3556 iso9660_vrs + sector, blks);
3557 if (error)
3558 break;
3559 /* check this ISO descriptor */
3560 vrs = (struct vrs_desc *) pos;
3561 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3562 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3563 continue;
3564 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3565 continue;
3566 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3567 continue;
3568 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3569 continue;
3570 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3571 continue;
3572 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3573 break;
3574 /* now what? for now, end of sequence */
3575 break;
3576 }
3577 vrs_len = sector + blks;
3578 if (error) {
3579 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3580 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3581
3582 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3583
3584 vrs = (struct vrs_desc *) (buffer);
3585 vrs->struct_type = 0;
3586 vrs->version = 1;
3587 memcpy(vrs->identifier,VRS_BEA01, 5);
3588
3589 vrs = (struct vrs_desc *) (buffer + 2048);
3590 vrs->struct_type = 0;
3591 vrs->version = 1;
3592 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3593 memcpy(vrs->identifier,VRS_NSR02, 5);
3594 } else {
3595 memcpy(vrs->identifier,VRS_NSR03, 5);
3596 }
3597
3598 vrs = (struct vrs_desc *) (buffer + 4096);
3599 vrs->struct_type = 0;
3600 vrs->version = 1;
3601 memcpy(vrs->identifier, VRS_TEA01, 5);
3602
3603 vrs_len = 3*blks;
3604 }
3605
3606 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3607
3608 /*
3609 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3610 * minimum ISO `sector size' 2048
3611 */
3612 sector_size = ump->discinfo.sector_size;
3613 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3614 + write_track_start;
3615
3616 /* write out 32 kb */
3617 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3618 memset(blank, 0, sector_size);
3619 error = 0;
3620 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3621 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3622 blank, sector, 1);
3623 if (error)
3624 break;
3625 }
3626 if (!error) {
3627 /* write out our ISO VRS */
3628 KASSERT(sector == iso9660_vrs);
3629 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3630 sector, vrs_len);
3631 sector += vrs_len;
3632 }
3633 if (!error) {
3634 /* fill upto the first anchor at S+256 */
3635 for (; sector < write_track_start+256; sector++) {
3636 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3637 blank, sector, 1);
3638 if (error)
3639 break;
3640 }
3641 }
3642 if (!error) {
3643 /* write out anchor; write at ABSOLUTE place! */
3644 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3645 (union dscrptr *) ump->anchors[0], sector, sector);
3646 if (error)
3647 printf("writeout of anchor failed!\n");
3648 }
3649
3650 free(blank, M_TEMP);
3651 free(buffer, M_TEMP);
3652
3653 if (error)
3654 printf("udf_open_session: error writing iso vrs! : "
3655 "leaving disc in compromised state!\n");
3656
3657 /* synchronise device caches */
3658 (void) udf_synchronise_caches(ump);
3659
3660 return error;
3661 }
3662
3663
3664 int
3665 udf_open_logvol(struct udf_mount *ump)
3666 {
3667 int logvol_integrity;
3668 int error;
3669
3670 /* already/still open? */
3671 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3672 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3673 return 0;
3674
3675 /* can we open it ? */
3676 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3677 return EROFS;
3678
3679 /* setup write parameters */
3680 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3681 if ((error = udf_setup_writeparams(ump)) != 0)
3682 return error;
3683
3684 /* determine data and metadata tracks (most likely same) */
3685 error = udf_search_writing_tracks(ump);
3686 if (error) {
3687 /* most likely lack of space */
3688 printf("udf_open_logvol: error searching writing tracks\n");
3689 return EROFS;
3690 }
3691
3692 /* writeout/update lvint on disc or only in memory */
3693 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3694 if (ump->lvopen & UDF_OPEN_SESSION) {
3695 /* TODO optional track reservation opening */
3696 error = udf_validate_session_start(ump);
3697 if (error)
3698 return error;
3699
3700 /* determine data and metadata tracks again */
3701 error = udf_search_writing_tracks(ump);
3702
3703 if (ump->lvclose & UDF_WRITE_VAT) {
3704 /*
3705 * we writeout the VAT to get a self-sustained session
3706 * for fsck
3707 */
3708 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3709
3710 /* write out the VAT data and all its descriptors */
3711 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3712 udf_writeout_vat(ump);
3713 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3714
3715 (void) VOP_FSYNC(ump->vat_node->vnode,
3716 FSCRED, FSYNC_WAIT, 0, 0);
3717 }
3718 }
3719
3720 /* mark it open */
3721 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3722
3723 /* do we need to write it out? */
3724 if (ump->lvopen & UDF_WRITE_LVINT) {
3725 error = udf_writeout_lvint(ump, ump->lvopen);
3726 /* if we couldn't write it mark it closed again */
3727 if (error) {
3728 ump->logvol_integrity->integrity_type =
3729 udf_rw32(UDF_INTEGRITY_CLOSED);
3730 return error;
3731 }
3732 }
3733
3734 return 0;
3735 }
3736
3737
3738 int
3739 udf_close_logvol(struct udf_mount *ump, int mntflags)
3740 {
3741 struct vnode *devvp = ump->devvp;
3742 struct mmc_op mmc_op;
3743 int logvol_integrity;
3744 int error = 0, error1 = 0, error2 = 0;
3745 int tracknr;
3746 int nvats, n, nok;
3747
3748 /* already/still closed? */
3749 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3750 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3751 return 0;
3752
3753 /* writeout/update lvint or write out VAT */
3754 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3755 #ifdef DIAGNOSTIC
3756 if (ump->lvclose & UDF_CLOSE_SESSION)
3757 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3758 #endif
3759
3760 if (ump->lvclose & UDF_WRITE_VAT) {
3761 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3762
3763 /* write out the VAT data and all its descriptors */
3764 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3765 udf_writeout_vat(ump);
3766 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
3767
3768 (void) VOP_FSYNC(ump->vat_node->vnode,
3769 FSCRED, FSYNC_WAIT, 0, 0);
3770
3771 if (ump->lvclose & UDF_CLOSE_SESSION) {
3772 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3773 "as requested\n"));
3774 }
3775
3776 /* at least two DVD packets and 3 CD-R packets */
3777 nvats = 32;
3778
3779 #if notyet
3780 /*
3781 * TODO calculate the available space and if the disc is
3782 * allmost full, write out till end-256-1 with banks, write
3783 * AVDP and fill up with VATs, then close session and close
3784 * disc.
3785 */
3786 if (ump->lvclose & UDF_FINALISE_DISC) {
3787 error = udf_write_phys_dscr_sync(ump, NULL,
3788 UDF_C_FLOAT_DSCR,
3789 (union dscrptr *) ump->anchors[0],
3790 0, 0);
3791 if (error)
3792 printf("writeout of anchor failed!\n");
3793
3794 /* pad space with VAT ICBs */
3795 nvats = 256;
3796 }
3797 #endif
3798
3799 /* write out a number of VAT nodes */
3800 nok = 0;
3801 for (n = 0; n < nvats; n++) {
3802 /* will now only write last FE/EFE */
3803 ump->vat_node->i_flags |= IN_MODIFIED;
3804 error = VOP_FSYNC(ump->vat_node->vnode,
3805 FSCRED, FSYNC_WAIT, 0, 0);
3806 if (!error)
3807 nok++;
3808 }
3809 if (nok < 14) {
3810 /* arbitrary; but at least one or two CD frames */
3811 printf("writeout of at least 14 VATs failed\n");
3812 return error;
3813 }
3814 }
3815
3816 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3817
3818 /* finish closing of session */
3819 if (ump->lvclose & UDF_CLOSE_SESSION) {
3820 error = udf_validate_session_start(ump);
3821 if (error)
3822 return error;
3823
3824 (void) udf_synchronise_caches(ump);
3825
3826 /* close all associated tracks */
3827 tracknr = ump->discinfo.first_track_last_session;
3828 error = 0;
3829 while (tracknr <= ump->discinfo.last_track_last_session) {
3830 DPRINTF(VOLUMES, ("\tclosing possible open "
3831 "track %d\n", tracknr));
3832 memset(&mmc_op, 0, sizeof(mmc_op));
3833 mmc_op.operation = MMC_OP_CLOSETRACK;
3834 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3835 mmc_op.tracknr = tracknr;
3836 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3837 FKIOCTL, NOCRED);
3838 if (error)
3839 printf("udf_close_logvol: closing of "
3840 "track %d failed\n", tracknr);
3841 tracknr ++;
3842 }
3843 if (!error) {
3844 DPRINTF(VOLUMES, ("closing session\n"));
3845 memset(&mmc_op, 0, sizeof(mmc_op));
3846 mmc_op.operation = MMC_OP_CLOSESESSION;
3847 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3848 mmc_op.sessionnr = ump->discinfo.num_sessions;
3849 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3850 FKIOCTL, NOCRED);
3851 if (error)
3852 printf("udf_close_logvol: closing of session"
3853 "failed\n");
3854 }
3855 if (!error)
3856 ump->lvopen |= UDF_OPEN_SESSION;
3857 if (error) {
3858 printf("udf_close_logvol: leaving disc as it is\n");
3859 ump->lvclose &= ~UDF_FINALISE_DISC;
3860 }
3861 }
3862
3863 if (ump->lvclose & UDF_FINALISE_DISC) {
3864 memset(&mmc_op, 0, sizeof(mmc_op));
3865 mmc_op.operation = MMC_OP_FINALISEDISC;
3866 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3867 mmc_op.sessionnr = ump->discinfo.num_sessions;
3868 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3869 FKIOCTL, NOCRED);
3870 if (error)
3871 printf("udf_close_logvol: finalising disc"
3872 "failed\n");
3873 }
3874
3875 /* write out partition bitmaps if requested */
3876 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3877 /* sync writeout metadata spacetable if existing */
3878 error1 = udf_write_metadata_partition_spacetable(ump, true);
3879 if (error1)
3880 printf( "udf_close_logvol: writeout of metadata space "
3881 "bitmap failed\n");
3882
3883 /* sync writeout partition spacetables */
3884 error2 = udf_write_physical_partition_spacetables(ump, true);
3885 if (error2)
3886 printf( "udf_close_logvol: writeout of space tables "
3887 "failed\n");
3888
3889 if (error1 || error2)
3890 return (error1 | error2);
3891
3892 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3893 }
3894
3895 /* write out metadata partition nodes if requested */
3896 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3897 /* sync writeout metadata descriptor node */
3898 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3899 if (error1)
3900 printf( "udf_close_logvol: writeout of metadata partition "
3901 "node failed\n");
3902
3903 /* duplicate metadata partition descriptor if needed */
3904 udf_synchronise_metadatamirror_node(ump);
3905
3906 /* sync writeout metadatamirror descriptor node */
3907 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3908 if (error2)
3909 printf( "udf_close_logvol: writeout of metadata partition "
3910 "mirror node failed\n");
3911
3912 if (error1 || error2)
3913 return (error1 | error2);
3914
3915 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3916 }
3917
3918 /* mark it closed */
3919 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3920
3921 /* do we need to write out the logical volume integrity? */
3922 if (ump->lvclose & UDF_WRITE_LVINT)
3923 error = udf_writeout_lvint(ump, ump->lvopen);
3924 if (error) {
3925 /* HELP now what? mark it open again for now */
3926 ump->logvol_integrity->integrity_type =
3927 udf_rw32(UDF_INTEGRITY_OPEN);
3928 return error;
3929 }
3930
3931 (void) udf_synchronise_caches(ump);
3932
3933 return 0;
3934 }
3935
3936 /* --------------------------------------------------------------------- */
3937
3938 /*
3939 * Genfs interfacing
3940 *
3941 * static const struct genfs_ops udf_genfsops = {
3942 * .gop_size = genfs_size,
3943 * size of transfers
3944 * .gop_alloc = udf_gop_alloc,
3945 * allocate len bytes at offset
3946 * .gop_write = genfs_gop_write,
3947 * putpages interface code
3948 * .gop_markupdate = udf_gop_markupdate,
3949 * set update/modify flags etc.
3950 * }
3951 */
3952
3953 /*
3954 * Genfs interface. These four functions are the only ones defined though not
3955 * documented... great....
3956 */
3957
3958 /*
3959 * Called for allocating an extent of the file either by VOP_WRITE() or by
3960 * genfs filling up gaps.
3961 */
3962 static int
3963 udf_gop_alloc(struct vnode *vp, off_t off,
3964 off_t len, int flags, kauth_cred_t cred)
3965 {
3966 struct udf_node *udf_node = VTOI(vp);
3967 struct udf_mount *ump = udf_node->ump;
3968 uint64_t lb_start, lb_end;
3969 uint32_t lb_size, num_lb;
3970 int udf_c_type, vpart_num, can_fail;
3971 int error;
3972
3973 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3974 off, len, flags? "SYNC":"NONE"));
3975
3976 /*
3977 * request the pages of our vnode and see how many pages will need to
3978 * be allocated and reserve that space
3979 */
3980 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3981 lb_start = off / lb_size;
3982 lb_end = (off + len + lb_size -1) / lb_size;
3983 num_lb = lb_end - lb_start;
3984
3985 udf_c_type = udf_get_c_type(udf_node);
3986 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3987
3988 /* all requests can fail */
3989 can_fail = true;
3990
3991 /* fid's (directories) can't fail */
3992 if (udf_c_type == UDF_C_FIDS)
3993 can_fail = false;
3994
3995 /* system files can't fail */
3996 if (vp->v_vflag & VV_SYSTEM)
3997 can_fail = false;
3998
3999 error = udf_reserve_space(ump, udf_node, udf_c_type,
4000 vpart_num, num_lb, can_fail);
4001
4002 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4003 lb_start, lb_end, num_lb));
4004
4005 return error;
4006 }
4007
4008
4009 /*
4010 * callback from genfs to update our flags
4011 */
4012 static void
4013 udf_gop_markupdate(struct vnode *vp, int flags)
4014 {
4015 struct udf_node *udf_node = VTOI(vp);
4016 u_long mask = 0;
4017
4018 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4019 mask = IN_ACCESS;
4020 }
4021 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4022 if (vp->v_type == VREG) {
4023 mask |= IN_CHANGE | IN_UPDATE;
4024 } else {
4025 mask |= IN_MODIFY;
4026 }
4027 }
4028 if (mask) {
4029 udf_node->i_flags |= mask;
4030 }
4031 }
4032
4033
4034 static const struct genfs_ops udf_genfsops = {
4035 .gop_size = genfs_size,
4036 .gop_alloc = udf_gop_alloc,
4037 .gop_write = genfs_gop_write_rwmap,
4038 .gop_markupdate = udf_gop_markupdate,
4039 };
4040
4041
4042 /* --------------------------------------------------------------------- */
4043
4044 int
4045 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4046 {
4047 union dscrptr *dscr;
4048 int error;
4049
4050 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4051 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4052
4053 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4054 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4055 (void) udf_validate_tag_and_crc_sums(dscr);
4056
4057 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4058 dscr, sector, sector);
4059
4060 free(dscr, M_TEMP);
4061
4062 return error;
4063 }
4064
4065
4066 /* --------------------------------------------------------------------- */
4067
4068 /* UDF<->unix converters */
4069
4070 /* --------------------------------------------------------------------- */
4071
4072 static mode_t
4073 udf_perm_to_unix_mode(uint32_t perm)
4074 {
4075 mode_t mode;
4076
4077 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4078 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4079 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4080
4081 return mode;
4082 }
4083
4084 /* --------------------------------------------------------------------- */
4085
4086 static uint32_t
4087 unix_mode_to_udf_perm(mode_t mode)
4088 {
4089 uint32_t perm;
4090
4091 perm = ((mode & S_IRWXO) );
4092 perm |= ((mode & S_IRWXG) << 2);
4093 perm |= ((mode & S_IRWXU) << 4);
4094 perm |= ((mode & S_IWOTH) << 3);
4095 perm |= ((mode & S_IWGRP) << 5);
4096 perm |= ((mode & S_IWUSR) << 7);
4097
4098 return perm;
4099 }
4100
4101 /* --------------------------------------------------------------------- */
4102
4103 static uint32_t
4104 udf_icb_to_unix_filetype(uint32_t icbftype)
4105 {
4106 switch (icbftype) {
4107 case UDF_ICB_FILETYPE_DIRECTORY :
4108 case UDF_ICB_FILETYPE_STREAMDIR :
4109 return S_IFDIR;
4110 case UDF_ICB_FILETYPE_FIFO :
4111 return S_IFIFO;
4112 case UDF_ICB_FILETYPE_CHARDEVICE :
4113 return S_IFCHR;
4114 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4115 return S_IFBLK;
4116 case UDF_ICB_FILETYPE_RANDOMACCESS :
4117 case UDF_ICB_FILETYPE_REALTIME :
4118 return S_IFREG;
4119 case UDF_ICB_FILETYPE_SYMLINK :
4120 return S_IFLNK;
4121 case UDF_ICB_FILETYPE_SOCKET :
4122 return S_IFSOCK;
4123 }
4124 /* no idea what this is */
4125 return 0;
4126 }
4127
4128 /* --------------------------------------------------------------------- */
4129
4130 void
4131 udf_to_unix_name(char *result, int result_len, char *id, int len,
4132 struct charspec *chsp)
4133 {
4134 uint16_t *raw_name, *unix_name;
4135 uint16_t *inchp, ch;
4136 uint8_t *outchp;
4137 const char *osta_id = "OSTA Compressed Unicode";
4138 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4139
4140 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4141 unix_name = raw_name + 1024; /* split space in half */
4142 assert(sizeof(char) == sizeof(uint8_t));
4143 outchp = (uint8_t *) result;
4144
4145 is_osta_typ0 = (chsp->type == 0);
4146 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4147 if (is_osta_typ0) {
4148 /* TODO clean up */
4149 *raw_name = *unix_name = 0;
4150 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4151 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4152 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4153 /* output UTF8 */
4154 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4155 ch = *inchp;
4156 nout = wput_utf8(outchp, result_len, ch);
4157 outchp += nout; result_len -= nout;
4158 if (!ch) break;
4159 }
4160 *outchp++ = 0;
4161 } else {
4162 /* assume 8bit char length byte latin-1 */
4163 assert(*id == 8);
4164 assert(strlen((char *) (id+1)) <= NAME_MAX);
4165 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4166 }
4167 free(raw_name, M_UDFTEMP);
4168 }
4169
4170 /* --------------------------------------------------------------------- */
4171
4172 void
4173 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4174 struct charspec *chsp)
4175 {
4176 uint16_t *raw_name;
4177 uint16_t *outchp;
4178 const char *inchp;
4179 const char *osta_id = "OSTA Compressed Unicode";
4180 int udf_chars, is_osta_typ0, bits;
4181 size_t cnt;
4182
4183 /* allocate temporary unicode-16 buffer */
4184 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4185
4186 /* convert utf8 to unicode-16 */
4187 *raw_name = 0;
4188 inchp = name;
4189 outchp = raw_name;
4190 bits = 8;
4191 for (cnt = name_len, udf_chars = 0; cnt;) {
4192 *outchp = wget_utf8(&inchp, &cnt);
4193 if (*outchp > 0xff)
4194 bits=16;
4195 outchp++;
4196 udf_chars++;
4197 }
4198 /* null terminate just in case */
4199 *outchp++ = 0;
4200
4201 is_osta_typ0 = (chsp->type == 0);
4202 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4203 if (is_osta_typ0) {
4204 udf_chars = udf_CompressUnicode(udf_chars, bits,
4205 (unicode_t *) raw_name,
4206 (byte *) result);
4207 } else {
4208 printf("unix to udf name: no CHSP0 ?\n");
4209 /* XXX assume 8bit char length byte latin-1 */
4210 *result++ = 8; udf_chars = 1;
4211 strncpy(result, name + 1, name_len);
4212 udf_chars += name_len;
4213 }
4214 *result_len = udf_chars;
4215 free(raw_name, M_UDFTEMP);
4216 }
4217
4218 /* --------------------------------------------------------------------- */
4219
4220 void
4221 udf_timestamp_to_timespec(struct udf_mount *ump,
4222 struct timestamp *timestamp,
4223 struct timespec *timespec)
4224 {
4225 struct clock_ymdhms ymdhms;
4226 uint32_t usecs, secs, nsecs;
4227 uint16_t tz;
4228
4229 /* fill in ymdhms structure from timestamp */
4230 memset(&ymdhms, 0, sizeof(ymdhms));
4231 ymdhms.dt_year = udf_rw16(timestamp->year);
4232 ymdhms.dt_mon = timestamp->month;
4233 ymdhms.dt_day = timestamp->day;
4234 ymdhms.dt_wday = 0; /* ? */
4235 ymdhms.dt_hour = timestamp->hour;
4236 ymdhms.dt_min = timestamp->minute;
4237 ymdhms.dt_sec = timestamp->second;
4238
4239 secs = clock_ymdhms_to_secs(&ymdhms);
4240 usecs = timestamp->usec +
4241 100*timestamp->hund_usec + 10000*timestamp->centisec;
4242 nsecs = usecs * 1000;
4243
4244 /*
4245 * Calculate the time zone. The timezone is 12 bit signed 2's
4246 * compliment, so we gotta do some extra magic to handle it right.
4247 */
4248 tz = udf_rw16(timestamp->type_tz);
4249 tz &= 0x0fff; /* only lower 12 bits are significant */
4250 if (tz & 0x0800) /* sign extention */
4251 tz |= 0xf000;
4252
4253 /* TODO check timezone conversion */
4254 /* check if we are specified a timezone to convert */
4255 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4256 if ((int16_t) tz != -2047)
4257 secs -= (int16_t) tz * 60;
4258 } else {
4259 secs -= ump->mount_args.gmtoff;
4260 }
4261
4262 timespec->tv_sec = secs;
4263 timespec->tv_nsec = nsecs;
4264 }
4265
4266
4267 void
4268 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4269 {
4270 struct clock_ymdhms ymdhms;
4271 uint32_t husec, usec, csec;
4272
4273 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4274
4275 usec = timespec->tv_nsec / 1000;
4276 husec = usec / 100;
4277 usec -= husec * 100; /* only 0-99 in usec */
4278 csec = husec / 100; /* only 0-99 in csec */
4279 husec -= csec * 100; /* only 0-99 in husec */
4280
4281 /* set method 1 for CUT/GMT */
4282 timestamp->type_tz = udf_rw16((1<<12) + 0);
4283 timestamp->year = udf_rw16(ymdhms.dt_year);
4284 timestamp->month = ymdhms.dt_mon;
4285 timestamp->day = ymdhms.dt_day;
4286 timestamp->hour = ymdhms.dt_hour;
4287 timestamp->minute = ymdhms.dt_min;
4288 timestamp->second = ymdhms.dt_sec;
4289 timestamp->centisec = csec;
4290 timestamp->hund_usec = husec;
4291 timestamp->usec = usec;
4292 }
4293
4294 /* --------------------------------------------------------------------- */
4295
4296 /*
4297 * Attribute and filetypes converters with get/set pairs
4298 */
4299
4300 uint32_t
4301 udf_getaccessmode(struct udf_node *udf_node)
4302 {
4303 struct file_entry *fe = udf_node->fe;
4304 struct extfile_entry *efe = udf_node->efe;
4305 uint32_t udf_perm, icbftype;
4306 uint32_t mode, ftype;
4307 uint16_t icbflags;
4308
4309 UDF_LOCK_NODE(udf_node, 0);
4310 if (fe) {
4311 udf_perm = udf_rw32(fe->perm);
4312 icbftype = fe->icbtag.file_type;
4313 icbflags = udf_rw16(fe->icbtag.flags);
4314 } else {
4315 assert(udf_node->efe);
4316 udf_perm = udf_rw32(efe->perm);
4317 icbftype = efe->icbtag.file_type;
4318 icbflags = udf_rw16(efe->icbtag.flags);
4319 }
4320
4321 mode = udf_perm_to_unix_mode(udf_perm);
4322 ftype = udf_icb_to_unix_filetype(icbftype);
4323
4324 /* set suid, sgid, sticky from flags in fe/efe */
4325 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4326 mode |= S_ISUID;
4327 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4328 mode |= S_ISGID;
4329 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4330 mode |= S_ISVTX;
4331
4332 UDF_UNLOCK_NODE(udf_node, 0);
4333
4334 return mode | ftype;
4335 }
4336
4337
4338 void
4339 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4340 {
4341 struct file_entry *fe = udf_node->fe;
4342 struct extfile_entry *efe = udf_node->efe;
4343 uint32_t udf_perm;
4344 uint16_t icbflags;
4345
4346 UDF_LOCK_NODE(udf_node, 0);
4347 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4348 if (fe) {
4349 icbflags = udf_rw16(fe->icbtag.flags);
4350 } else {
4351 icbflags = udf_rw16(efe->icbtag.flags);
4352 }
4353
4354 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4355 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4356 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4357 if (mode & S_ISUID)
4358 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4359 if (mode & S_ISGID)
4360 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4361 if (mode & S_ISVTX)
4362 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4363
4364 if (fe) {
4365 fe->perm = udf_rw32(udf_perm);
4366 fe->icbtag.flags = udf_rw16(icbflags);
4367 } else {
4368 efe->perm = udf_rw32(udf_perm);
4369 efe->icbtag.flags = udf_rw16(icbflags);
4370 }
4371
4372 UDF_UNLOCK_NODE(udf_node, 0);
4373 }
4374
4375
4376 void
4377 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4378 {
4379 struct udf_mount *ump = udf_node->ump;
4380 struct file_entry *fe = udf_node->fe;
4381 struct extfile_entry *efe = udf_node->efe;
4382 uid_t uid;
4383 gid_t gid;
4384
4385 UDF_LOCK_NODE(udf_node, 0);
4386 if (fe) {
4387 uid = (uid_t)udf_rw32(fe->uid);
4388 gid = (gid_t)udf_rw32(fe->gid);
4389 } else {
4390 assert(udf_node->efe);
4391 uid = (uid_t)udf_rw32(efe->uid);
4392 gid = (gid_t)udf_rw32(efe->gid);
4393 }
4394
4395 /* do the uid/gid translation game */
4396 if (uid == (uid_t) -1)
4397 uid = ump->mount_args.anon_uid;
4398 if (gid == (gid_t) -1)
4399 gid = ump->mount_args.anon_gid;
4400
4401 *uidp = uid;
4402 *gidp = gid;
4403
4404 UDF_UNLOCK_NODE(udf_node, 0);
4405 }
4406
4407
4408 void
4409 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4410 {
4411 struct udf_mount *ump = udf_node->ump;
4412 struct file_entry *fe = udf_node->fe;
4413 struct extfile_entry *efe = udf_node->efe;
4414 uid_t nobody_uid;
4415 gid_t nobody_gid;
4416
4417 UDF_LOCK_NODE(udf_node, 0);
4418
4419 /* do the uid/gid translation game */
4420 nobody_uid = ump->mount_args.nobody_uid;
4421 nobody_gid = ump->mount_args.nobody_gid;
4422 if (uid == nobody_uid)
4423 uid = (uid_t) -1;
4424 if (gid == nobody_gid)
4425 gid = (gid_t) -1;
4426
4427 if (fe) {
4428 fe->uid = udf_rw32((uint32_t) uid);
4429 fe->gid = udf_rw32((uint32_t) gid);
4430 } else {
4431 efe->uid = udf_rw32((uint32_t) uid);
4432 efe->gid = udf_rw32((uint32_t) gid);
4433 }
4434
4435 UDF_UNLOCK_NODE(udf_node, 0);
4436 }
4437
4438
4439 /* --------------------------------------------------------------------- */
4440
4441
4442 int
4443 udf_dirhash_fill(struct udf_node *dir_node)
4444 {
4445 struct vnode *dvp = dir_node->vnode;
4446 struct dirhash *dirh;
4447 struct file_entry *fe = dir_node->fe;
4448 struct extfile_entry *efe = dir_node->efe;
4449 struct fileid_desc *fid;
4450 struct dirent *dirent;
4451 uint64_t file_size, pre_diroffset, diroffset;
4452 uint32_t lb_size;
4453 int error;
4454
4455 /* make sure we have a dirhash to work on */
4456 dirh = dir_node->dir_hash;
4457 KASSERT(dirh);
4458 KASSERT(dirh->refcnt > 0);
4459
4460 if (dirh->flags & DIRH_BROKEN)
4461 return EIO;
4462 if (dirh->flags & DIRH_COMPLETE)
4463 return 0;
4464
4465 /* make sure we have a clean dirhash to add to */
4466 dirhash_purge_entries(dirh);
4467
4468 /* get directory filesize */
4469 if (fe) {
4470 file_size = udf_rw64(fe->inf_len);
4471 } else {
4472 assert(efe);
4473 file_size = udf_rw64(efe->inf_len);
4474 }
4475
4476 /* allocate temporary space for fid */
4477 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4478 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4479
4480 /* allocate temporary space for dirent */
4481 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4482
4483 error = 0;
4484 diroffset = 0;
4485 while (diroffset < file_size) {
4486 /* transfer a new fid/dirent */
4487 pre_diroffset = diroffset;
4488 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4489 if (error) {
4490 /* TODO what to do? continue but not add? */
4491 dirh->flags |= DIRH_BROKEN;
4492 dirhash_purge_entries(dirh);
4493 break;
4494 }
4495
4496 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4497 /* register deleted extent for reuse */
4498 dirhash_enter_freed(dirh, pre_diroffset,
4499 udf_fidsize(fid));
4500 } else {
4501 /* append to the dirhash */
4502 dirhash_enter(dirh, dirent, pre_diroffset,
4503 udf_fidsize(fid), 0);
4504 }
4505 }
4506 dirh->flags |= DIRH_COMPLETE;
4507
4508 free(fid, M_UDFTEMP);
4509 free(dirent, M_UDFTEMP);
4510
4511 return error;
4512 }
4513
4514
4515 /* --------------------------------------------------------------------- */
4516
4517 /*
4518 * Directory read and manipulation functions.
4519 *
4520 */
4521
4522 int
4523 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4524 struct long_ad *icb_loc, int *found)
4525 {
4526 struct udf_node *dir_node = VTOI(vp);
4527 struct dirhash *dirh;
4528 struct dirhash_entry *dirh_ep;
4529 struct fileid_desc *fid;
4530 struct dirent *dirent, *s_dirent;
4531 struct charspec osta_charspec;
4532 uint64_t diroffset;
4533 uint32_t lb_size;
4534 int hit, error;
4535
4536 /* set default return */
4537 *found = 0;
4538
4539 /* get our dirhash and make sure its read in */
4540 dirhash_get(&dir_node->dir_hash);
4541 error = udf_dirhash_fill(dir_node);
4542 if (error) {
4543 dirhash_put(dir_node->dir_hash);
4544 return error;
4545 }
4546 dirh = dir_node->dir_hash;
4547
4548 /* allocate temporary space for fid */
4549 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4550 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4551 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4552 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4553
4554 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4555 namelen, namelen, name));
4556
4557 /* convert given unix name to canonical unix name */
4558 udf_osta_charset(&osta_charspec);
4559 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4560 name, namelen, &osta_charspec);
4561 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4562 (char *) fid->data, fid->l_fi,
4563 &osta_charspec);
4564 s_dirent->d_namlen = strlen(s_dirent->d_name);
4565
4566 /* search our dirhash hits */
4567 memset(icb_loc, 0, sizeof(*icb_loc));
4568 dirh_ep = NULL;
4569 for (;;) {
4570 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4571 /* if no hit, abort the search */
4572 if (!hit)
4573 break;
4574
4575 /* check this hit */
4576 diroffset = dirh_ep->offset;
4577
4578 /* transfer a new fid/dirent */
4579 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4580 if (error)
4581 break;
4582
4583 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4584 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4585
4586 /* see if its our entry */
4587 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4588 *found = 1;
4589 *icb_loc = fid->icb;
4590 break;
4591 }
4592 }
4593 free(fid, M_UDFTEMP);
4594 free(dirent, M_UDFTEMP);
4595 free(s_dirent, M_UDFTEMP);
4596
4597 dirhash_put(dir_node->dir_hash);
4598
4599 return error;
4600 }
4601
4602 /* --------------------------------------------------------------------- */
4603
4604 static int
4605 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4606 struct long_ad *node_icb, struct long_ad *parent_icb,
4607 uint64_t parent_unique_id)
4608 {
4609 struct timespec now;
4610 struct icb_tag *icb;
4611 struct filetimes_extattr_entry *ft_extattr;
4612 uint64_t unique_id;
4613 uint32_t fidsize, lb_num;
4614 uint8_t *bpos;
4615 int crclen, attrlen;
4616
4617 lb_num = udf_rw32(node_icb->loc.lb_num);
4618 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4619 icb = &fe->icbtag;
4620
4621 /*
4622 * Always use strategy type 4 unless on WORM wich we don't support
4623 * (yet). Fill in defaults and set for internal allocation of data.
4624 */
4625 icb->strat_type = udf_rw16(4);
4626 icb->max_num_entries = udf_rw16(1);
4627 icb->file_type = file_type; /* 8 bit */
4628 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4629
4630 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4631 fe->link_cnt = udf_rw16(0); /* explicit setting */
4632
4633 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4634
4635 vfs_timestamp(&now);
4636 udf_timespec_to_timestamp(&now, &fe->atime);
4637 udf_timespec_to_timestamp(&now, &fe->attrtime);
4638 udf_timespec_to_timestamp(&now, &fe->mtime);
4639
4640 udf_set_regid(&fe->imp_id, IMPL_NAME);
4641 udf_add_impl_regid(ump, &fe->imp_id);
4642
4643 unique_id = udf_advance_uniqueid(ump);
4644 fe->unique_id = udf_rw64(unique_id);
4645 fe->l_ea = udf_rw32(0);
4646
4647 /* create extended attribute to record our creation time */
4648 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4649 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4650 memset(ft_extattr, 0, attrlen);
4651 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4652 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4653 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4654 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4655 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4656 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4657
4658 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4659 (struct extattr_entry *) ft_extattr);
4660 free(ft_extattr, M_UDFTEMP);
4661
4662 /* if its a directory, create '..' */
4663 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4664 fidsize = 0;
4665 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4666 fidsize = udf_create_parentfid(ump,
4667 (struct fileid_desc *) bpos, parent_icb,
4668 parent_unique_id);
4669 }
4670
4671 /* record fidlength information */
4672 fe->inf_len = udf_rw64(fidsize);
4673 fe->l_ad = udf_rw32(fidsize);
4674 fe->logblks_rec = udf_rw64(0); /* intern */
4675
4676 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4677 crclen += udf_rw32(fe->l_ea) + fidsize;
4678 fe->tag.desc_crc_len = udf_rw16(crclen);
4679
4680 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4681
4682 return fidsize;
4683 }
4684
4685 /* --------------------------------------------------------------------- */
4686
4687 static int
4688 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4689 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4690 uint64_t parent_unique_id)
4691 {
4692 struct timespec now;
4693 struct icb_tag *icb;
4694 uint64_t unique_id;
4695 uint32_t fidsize, lb_num;
4696 uint8_t *bpos;
4697 int crclen;
4698
4699 lb_num = udf_rw32(node_icb->loc.lb_num);
4700 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4701 icb = &efe->icbtag;
4702
4703 /*
4704 * Always use strategy type 4 unless on WORM wich we don't support
4705 * (yet). Fill in defaults and set for internal allocation of data.
4706 */
4707 icb->strat_type = udf_rw16(4);
4708 icb->max_num_entries = udf_rw16(1);
4709 icb->file_type = file_type; /* 8 bit */
4710 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4711
4712 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4713 efe->link_cnt = udf_rw16(0); /* explicit setting */
4714
4715 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4716
4717 vfs_timestamp(&now);
4718 udf_timespec_to_timestamp(&now, &efe->ctime);
4719 udf_timespec_to_timestamp(&now, &efe->atime);
4720 udf_timespec_to_timestamp(&now, &efe->attrtime);
4721 udf_timespec_to_timestamp(&now, &efe->mtime);
4722
4723 udf_set_regid(&efe->imp_id, IMPL_NAME);
4724 udf_add_impl_regid(ump, &efe->imp_id);
4725
4726 unique_id = udf_advance_uniqueid(ump);
4727 efe->unique_id = udf_rw64(unique_id);
4728 efe->l_ea = udf_rw32(0);
4729
4730 /* if its a directory, create '..' */
4731 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4732 fidsize = 0;
4733 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4734 fidsize = udf_create_parentfid(ump,
4735 (struct fileid_desc *) bpos, parent_icb,
4736 parent_unique_id);
4737 }
4738
4739 /* record fidlength information */
4740 efe->obj_size = udf_rw64(fidsize);
4741 efe->inf_len = udf_rw64(fidsize);
4742 efe->l_ad = udf_rw32(fidsize);
4743 efe->logblks_rec = udf_rw64(0); /* intern */
4744
4745 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4746 crclen += udf_rw32(efe->l_ea) + fidsize;
4747 efe->tag.desc_crc_len = udf_rw16(crclen);
4748
4749 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4750
4751 return fidsize;
4752 }
4753
4754 /* --------------------------------------------------------------------- */
4755
4756 int
4757 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4758 struct udf_node *udf_node, struct componentname *cnp)
4759 {
4760 struct vnode *dvp = dir_node->vnode;
4761 struct dirhash *dirh;
4762 struct dirhash_entry *dirh_ep;
4763 struct file_entry *fe = dir_node->fe;
4764 struct fileid_desc *fid;
4765 struct dirent *dirent, *s_dirent;
4766 struct charspec osta_charspec;
4767 uint64_t diroffset;
4768 uint32_t lb_size, fidsize;
4769 int found, error;
4770 int hit, refcnt;
4771
4772 /* get our dirhash and make sure its read in */
4773 dirhash_get(&dir_node->dir_hash);
4774 error = udf_dirhash_fill(dir_node);
4775 if (error) {
4776 dirhash_put(dir_node->dir_hash);
4777 return error;
4778 }
4779 dirh = dir_node->dir_hash;
4780
4781 /* get directory filesize */
4782 if (!fe) {
4783 assert(dir_node->efe);
4784 }
4785
4786 /* allocate temporary space for fid and dirents */
4787 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4788 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4789 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4790 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4791
4792 /* convert given unix name to canonical unix name */
4793 udf_osta_charset(&osta_charspec);
4794 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4795 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4796 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4797 (char *) fid->data, fid->l_fi,
4798 &osta_charspec);
4799 s_dirent->d_namlen = strlen(s_dirent->d_name);
4800
4801 /* search our dirhash hits */
4802 found = 0;
4803 dirh_ep = NULL;
4804 for (;;) {
4805 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4806 /* if no hit, abort the search */
4807 if (!hit)
4808 break;
4809
4810 /* check this hit */
4811 diroffset = dirh_ep->offset;
4812
4813 /* transfer a new fid/dirent */
4814 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4815 if (error)
4816 break;
4817
4818 /* see if its our entry */
4819 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4820 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4821 found = 1;
4822 break;
4823 }
4824 }
4825
4826 if (!found)
4827 error = ENOENT;
4828 if (error)
4829 goto error_out;
4830
4831 /* mark deleted */
4832 fid->file_char |= UDF_FILE_CHAR_DEL;
4833 #ifdef UDF_COMPLETE_DELETE
4834 memset(&fid->icb, 0, sizeof(fid->icb));
4835 #endif
4836 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4837
4838 /* get size of fid and compensate for the read_fid_stream advance */
4839 fidsize = udf_fidsize(fid);
4840 diroffset -= fidsize;
4841
4842 /* write out */
4843 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4844 fid, fidsize, diroffset,
4845 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4846 FSCRED, NULL, NULL);
4847 if (error)
4848 goto error_out;
4849
4850 /* get reference count of attached node */
4851 if (udf_node->fe) {
4852 refcnt = udf_rw16(udf_node->fe->link_cnt);
4853 } else {
4854 KASSERT(udf_node->efe);
4855 refcnt = udf_rw16(udf_node->efe->link_cnt);
4856 }
4857 #ifdef UDF_COMPLETE_DELETE
4858 /* substract reference counter in attached node */
4859 refcnt -= 1;
4860 if (udf_node->fe) {
4861 udf_node->fe->link_cnt = udf_rw16(refcnt);
4862 } else {
4863 udf_node->efe->link_cnt = udf_rw16(refcnt);
4864 }
4865
4866 /* prevent writeout when refcnt == 0 */
4867 if (refcnt == 0)
4868 udf_node->i_flags |= IN_DELETED;
4869
4870 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4871 int drefcnt;
4872
4873 /* substract reference counter in directory node */
4874 /* note subtract 2 (?) for its was also backreferenced */
4875 if (dir_node->fe) {
4876 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4877 drefcnt -= 1;
4878 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4879 } else {
4880 KASSERT(dir_node->efe);
4881 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4882 drefcnt -= 1;
4883 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4884 }
4885 }
4886
4887 udf_node->i_flags |= IN_MODIFIED;
4888 dir_node->i_flags |= IN_MODIFIED;
4889 #endif
4890 /* if it is/was a hardlink adjust the file count */
4891 if (refcnt > 0)
4892 udf_adjust_filecount(udf_node, -1);
4893
4894 /* remove from the dirhash */
4895 dirhash_remove(dirh, dirent, diroffset,
4896 udf_fidsize(fid));
4897
4898 error_out:
4899 free(fid, M_UDFTEMP);
4900 free(dirent, M_UDFTEMP);
4901 free(s_dirent, M_UDFTEMP);
4902
4903 dirhash_put(dir_node->dir_hash);
4904
4905 return error;
4906 }
4907
4908 /* --------------------------------------------------------------------- */
4909
4910 int
4911 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4912 struct udf_node *new_parent_node)
4913 {
4914 struct vnode *dvp = dir_node->vnode;
4915 struct dirhash *dirh;
4916 struct dirhash_entry *dirh_ep;
4917 struct file_entry *fe;
4918 struct extfile_entry *efe;
4919 struct fileid_desc *fid;
4920 struct dirent *dirent;
4921 uint64_t diroffset;
4922 uint64_t new_parent_unique_id;
4923 uint32_t lb_size, fidsize;
4924 int found, error;
4925 char const *name = "..";
4926 int namelen = 2;
4927 int hit;
4928
4929 /* get our dirhash and make sure its read in */
4930 dirhash_get(&dir_node->dir_hash);
4931 error = udf_dirhash_fill(dir_node);
4932 if (error) {
4933 dirhash_put(dir_node->dir_hash);
4934 return error;
4935 }
4936 dirh = dir_node->dir_hash;
4937
4938 /* get new parent's unique ID */
4939 fe = new_parent_node->fe;
4940 efe = new_parent_node->efe;
4941 if (fe) {
4942 new_parent_unique_id = udf_rw64(fe->unique_id);
4943 } else {
4944 assert(efe);
4945 new_parent_unique_id = udf_rw64(efe->unique_id);
4946 }
4947
4948 /* get directory filesize */
4949 fe = dir_node->fe;
4950 efe = dir_node->efe;
4951 if (!fe) {
4952 assert(efe);
4953 }
4954
4955 /* allocate temporary space for fid */
4956 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4957 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4958 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4959
4960 /*
4961 * NOTE the standard does not dictate the FID entry '..' should be
4962 * first, though in practice it will most likely be.
4963 */
4964
4965 /* search our dirhash hits */
4966 found = 0;
4967 dirh_ep = NULL;
4968 for (;;) {
4969 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4970 /* if no hit, abort the search */
4971 if (!hit)
4972 break;
4973
4974 /* check this hit */
4975 diroffset = dirh_ep->offset;
4976
4977 /* transfer a new fid/dirent */
4978 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4979 if (error)
4980 break;
4981
4982 /* see if its our entry */
4983 KASSERT(dirent->d_namlen == namelen);
4984 if (strncmp(dirent->d_name, name, namelen) == 0) {
4985 found = 1;
4986 break;
4987 }
4988 }
4989
4990 if (!found)
4991 error = ENOENT;
4992 if (error)
4993 goto error_out;
4994
4995 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4996 fid->icb = new_parent_node->write_loc;
4997 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4998
4999 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5000
5001 /* get size of fid and compensate for the read_fid_stream advance */
5002 fidsize = udf_fidsize(fid);
5003 diroffset -= fidsize;
5004
5005 /* write out */
5006 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5007 fid, fidsize, diroffset,
5008 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5009 FSCRED, NULL, NULL);
5010
5011 /* nothing to be done in the dirhash */
5012
5013 error_out:
5014 free(fid, M_UDFTEMP);
5015 free(dirent, M_UDFTEMP);
5016
5017 dirhash_put(dir_node->dir_hash);
5018
5019 return error;
5020 }
5021
5022 /* --------------------------------------------------------------------- */
5023
5024 /*
5025 * We are not allowed to split the fid tag itself over an logical block so
5026 * check the space remaining in the logical block.
5027 *
5028 * We try to select the smallest candidate for recycling or when none is
5029 * found, append a new one at the end of the directory.
5030 */
5031
5032 int
5033 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5034 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5035 {
5036 struct vnode *dvp = dir_node->vnode;
5037 struct dirhash *dirh;
5038 struct dirhash_entry *dirh_ep;
5039 struct fileid_desc *fid;
5040 struct icb_tag *icbtag;
5041 struct charspec osta_charspec;
5042 struct dirent dirent;
5043 uint64_t unique_id, dir_size;
5044 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5045 uint32_t chosen_size, chosen_size_diff;
5046 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5047 int file_char, refcnt, icbflags, addr_type, hit, error;
5048
5049 /* get our dirhash and make sure its read in */
5050 dirhash_get(&dir_node->dir_hash);
5051 error = udf_dirhash_fill(dir_node);
5052 if (error) {
5053 dirhash_put(dir_node->dir_hash);
5054 return error;
5055 }
5056 dirh = dir_node->dir_hash;
5057
5058 /* get info */
5059 lb_size = udf_rw32(ump->logical_vol->lb_size);
5060 udf_osta_charset(&osta_charspec);
5061
5062 if (dir_node->fe) {
5063 dir_size = udf_rw64(dir_node->fe->inf_len);
5064 icbtag = &dir_node->fe->icbtag;
5065 } else {
5066 dir_size = udf_rw64(dir_node->efe->inf_len);
5067 icbtag = &dir_node->efe->icbtag;
5068 }
5069
5070 icbflags = udf_rw16(icbtag->flags);
5071 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5072
5073 if (udf_node->fe) {
5074 unique_id = udf_rw64(udf_node->fe->unique_id);
5075 refcnt = udf_rw16(udf_node->fe->link_cnt);
5076 } else {
5077 unique_id = udf_rw64(udf_node->efe->unique_id);
5078 refcnt = udf_rw16(udf_node->efe->link_cnt);
5079 }
5080
5081 if (refcnt > 0) {
5082 unique_id = udf_advance_uniqueid(ump);
5083 udf_adjust_filecount(udf_node, 1);
5084 }
5085
5086 /* determine file characteristics */
5087 file_char = 0; /* visible non deleted file and not stream metadata */
5088 if (vap->va_type == VDIR)
5089 file_char = UDF_FILE_CHAR_DIR;
5090
5091 /* malloc scrap buffer */
5092 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5093
5094 /* calculate _minimum_ fid size */
5095 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5096 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5097 fidsize = UDF_FID_SIZE + fid->l_fi;
5098 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5099
5100 /* find position that will fit the FID */
5101 chosen_fid_pos = dir_size;
5102 chosen_size = 0;
5103 chosen_size_diff = UINT_MAX;
5104
5105 /* shut up gcc */
5106 dirent.d_namlen = 0;
5107
5108 /* search our dirhash hits */
5109 error = 0;
5110 dirh_ep = NULL;
5111 for (;;) {
5112 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5113 /* if no hit, abort the search */
5114 if (!hit)
5115 break;
5116
5117 /* check this hit for size */
5118 this_fidsize = dirh_ep->entry_size;
5119
5120 /* check this hit */
5121 fid_pos = dirh_ep->offset;
5122 end_fid_pos = fid_pos + this_fidsize;
5123 size_diff = this_fidsize - fidsize;
5124 lb_rest = lb_size - (end_fid_pos % lb_size);
5125
5126 #ifndef UDF_COMPLETE_DELETE
5127 /* transfer a new fid/dirent */
5128 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5129 if (error)
5130 goto error_out;
5131
5132 /* only reuse entries that are wiped */
5133 /* check if the len + loc are marked zero */
5134 if (udf_rw32(fid->icb.len) != 0)
5135 continue;
5136 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5137 continue;
5138 if (udf_rw16(fid->icb.loc.part_num) != 0)
5139 continue;
5140 #endif /* UDF_COMPLETE_DELETE */
5141
5142 /* select if not splitting the tag and its smaller */
5143 if ((size_diff >= 0) &&
5144 (size_diff < chosen_size_diff) &&
5145 (lb_rest >= sizeof(struct desc_tag)))
5146 {
5147 /* UDF 2.3.4.2+3 specifies rules for iu size */
5148 if ((size_diff == 0) || (size_diff >= 32)) {
5149 chosen_fid_pos = fid_pos;
5150 chosen_size = this_fidsize;
5151 chosen_size_diff = size_diff;
5152 }
5153 }
5154 }
5155
5156
5157 /* extend directory if no other candidate found */
5158 if (chosen_size == 0) {
5159 chosen_fid_pos = dir_size;
5160 chosen_size = fidsize;
5161 chosen_size_diff = 0;
5162
5163 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5164 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5165 /* pre-grow directory to see if we're to switch */
5166 udf_grow_node(dir_node, dir_size + chosen_size);
5167
5168 icbflags = udf_rw16(icbtag->flags);
5169 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5170 }
5171
5172 /* make sure the next fid desc_tag won't be splitted */
5173 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5174 end_fid_pos = chosen_fid_pos + chosen_size;
5175 lb_rest = lb_size - (end_fid_pos % lb_size);
5176
5177 /* pad with implementation use regid if needed */
5178 if (lb_rest < sizeof(struct desc_tag))
5179 chosen_size += 32;
5180 }
5181 }
5182 chosen_size_diff = chosen_size - fidsize;
5183
5184 /* populate the FID */
5185 memset(fid, 0, lb_size);
5186 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5187 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5188 fid->file_char = file_char;
5189 fid->icb = udf_node->loc;
5190 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5191 fid->l_iu = udf_rw16(0);
5192
5193 if (chosen_size > fidsize) {
5194 /* insert implementation-use regid to space it correctly */
5195 fid->l_iu = udf_rw16(chosen_size_diff);
5196
5197 /* set implementation use */
5198 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5199 udf_add_impl_regid(ump, (struct regid *) fid->data);
5200 }
5201
5202 /* fill in name */
5203 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5204 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5205
5206 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5207 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5208
5209 /* writeout FID/update parent directory */
5210 error = vn_rdwr(UIO_WRITE, dvp,
5211 fid, chosen_size, chosen_fid_pos,
5212 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5213 FSCRED, NULL, NULL);
5214
5215 if (error)
5216 goto error_out;
5217
5218 /* add reference counter in attached node */
5219 if (udf_node->fe) {
5220 refcnt = udf_rw16(udf_node->fe->link_cnt);
5221 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5222 } else {
5223 KASSERT(udf_node->efe);
5224 refcnt = udf_rw16(udf_node->efe->link_cnt);
5225 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5226 }
5227
5228 /* mark not deleted if it was... just in case, but do warn */
5229 if (udf_node->i_flags & IN_DELETED) {
5230 printf("udf: warning, marking a file undeleted\n");
5231 udf_node->i_flags &= ~IN_DELETED;
5232 }
5233
5234 if (file_char & UDF_FILE_CHAR_DIR) {
5235 /* add reference counter in directory node for '..' */
5236 if (dir_node->fe) {
5237 refcnt = udf_rw16(dir_node->fe->link_cnt);
5238 refcnt++;
5239 dir_node->fe->link_cnt = udf_rw16(refcnt);
5240 } else {
5241 KASSERT(dir_node->efe);
5242 refcnt = udf_rw16(dir_node->efe->link_cnt);
5243 refcnt++;
5244 dir_node->efe->link_cnt = udf_rw16(refcnt);
5245 }
5246 }
5247
5248 /* append to the dirhash */
5249 /* NOTE do not use dirent anymore or it won't match later! */
5250 udf_to_unix_name(dirent.d_name, NAME_MAX,
5251 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5252 dirent.d_namlen = strlen(dirent.d_name);
5253 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5254 udf_fidsize(fid), 1);
5255
5256 /* note updates */
5257 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5258 /* VN_KNOTE(udf_node, ...) */
5259 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5260
5261 error_out:
5262 free(fid, M_TEMP);
5263
5264 dirhash_put(dir_node->dir_hash);
5265
5266 return error;
5267 }
5268
5269 /* --------------------------------------------------------------------- */
5270
5271 /*
5272 * Each node can have an attached streamdir node though not recursively. These
5273 * are otherwise known as named substreams/named extended attributes that have
5274 * no size limitations.
5275 *
5276 * `Normal' extended attributes are indicated with a number and are recorded
5277 * in either the fe/efe descriptor itself for small descriptors or recorded in
5278 * the attached extended attribute file. Since these spaces can get
5279 * fragmented, care ought to be taken.
5280 *
5281 * Since the size of the space reserved for allocation descriptors is limited,
5282 * there is a mechanim provided for extending this space; this is done by a
5283 * special extent to allow schrinking of the allocations without breaking the
5284 * linkage to the allocation extent descriptor.
5285 */
5286
5287 int
5288 udf_loadvnode(struct mount *mp, struct vnode *vp,
5289 const void *key, size_t key_len, const void **new_key)
5290 {
5291 union dscrptr *dscr;
5292 struct udf_mount *ump;
5293 struct udf_node *udf_node;
5294 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5295 uint64_t file_size;
5296 uint32_t lb_size, sector, dummy;
5297 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5298 int slot, eof, error;
5299 int num_indir_followed = 0;
5300
5301 DPRINTF(NODE, ("udf_loadvnode called\n"));
5302 udf_node = NULL;
5303 ump = VFSTOUDF(mp);
5304
5305 KASSERT(key_len == sizeof(node_icb_loc.loc));
5306 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5307 node_icb_loc.len = ump->logical_vol->lb_size;
5308 memcpy(&node_icb_loc.loc, key, key_len);
5309
5310 /* garbage check: translate udf_node_icb_loc to sectornr */
5311 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5312 if (error) {
5313 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5314 /* no use, this will fail anyway */
5315 return EINVAL;
5316 }
5317
5318 /* build udf_node (do initialise!) */
5319 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5320 memset(udf_node, 0, sizeof(struct udf_node));
5321
5322 vp->v_tag = VT_UDF;
5323 vp->v_op = udf_vnodeop_p;
5324 vp->v_data = udf_node;
5325
5326 /* initialise crosslinks, note location of fe/efe for hashing */
5327 udf_node->ump = ump;
5328 udf_node->vnode = vp;
5329 udf_node->loc = node_icb_loc;
5330 udf_node->lockf = 0;
5331 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5332 cv_init(&udf_node->node_lock, "udf_nlk");
5333 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5334 udf_node->outstanding_bufs = 0;
5335 udf_node->outstanding_nodedscr = 0;
5336 udf_node->uncommitted_lbs = 0;
5337
5338 /* check if we're fetching the root */
5339 if (ump->fileset_desc)
5340 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5341 sizeof(struct long_ad)) == 0)
5342 vp->v_vflag |= VV_ROOT;
5343
5344 icb_loc = node_icb_loc;
5345 needs_indirect = 0;
5346 strat4096 = 0;
5347 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5348 file_size = 0;
5349 lb_size = udf_rw32(ump->logical_vol->lb_size);
5350
5351 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5352 do {
5353 /* try to read in fe/efe */
5354 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5355
5356 /* blank sector marks end of sequence, check this */
5357 if ((dscr == NULL) && (!strat4096))
5358 error = ENOENT;
5359
5360 /* break if read error or blank sector */
5361 if (error || (dscr == NULL))
5362 break;
5363
5364 /* process descriptor based on the descriptor type */
5365 dscr_type = udf_rw16(dscr->tag.id);
5366 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5367
5368 /* if dealing with an indirect entry, follow the link */
5369 if (dscr_type == TAGID_INDIRECTENTRY) {
5370 needs_indirect = 0;
5371 next_icb_loc = dscr->inde.indirect_icb;
5372 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5373 icb_loc = next_icb_loc;
5374 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5375 error = EMLINK;
5376 break;
5377 }
5378 continue;
5379 }
5380
5381 /* only file entries and extended file entries allowed here */
5382 if ((dscr_type != TAGID_FENTRY) &&
5383 (dscr_type != TAGID_EXTFENTRY)) {
5384 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5385 error = ENOENT;
5386 break;
5387 }
5388
5389 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5390
5391 /* choose this one */
5392 last_fe_icb_loc = icb_loc;
5393
5394 /* record and process/update (ext)fentry */
5395 if (dscr_type == TAGID_FENTRY) {
5396 if (udf_node->fe)
5397 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5398 udf_node->fe);
5399 udf_node->fe = &dscr->fe;
5400 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5401 udf_file_type = udf_node->fe->icbtag.file_type;
5402 file_size = udf_rw64(udf_node->fe->inf_len);
5403 } else {
5404 if (udf_node->efe)
5405 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5406 udf_node->efe);
5407 udf_node->efe = &dscr->efe;
5408 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5409 udf_file_type = udf_node->efe->icbtag.file_type;
5410 file_size = udf_rw64(udf_node->efe->inf_len);
5411 }
5412
5413 /* check recording strategy (structure) */
5414
5415 /*
5416 * Strategy 4096 is a daisy linked chain terminating with an
5417 * unrecorded sector or a TERM descriptor. The next
5418 * descriptor is to be found in the sector that follows the
5419 * current sector.
5420 */
5421 if (strat == 4096) {
5422 strat4096 = 1;
5423 needs_indirect = 1;
5424
5425 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5426 }
5427
5428 /*
5429 * Strategy 4 is the normal strategy and terminates, but if
5430 * we're in strategy 4096, we can't have strategy 4 mixed in
5431 */
5432
5433 if (strat == 4) {
5434 if (strat4096) {
5435 error = EINVAL;
5436 break;
5437 }
5438 break; /* done */
5439 }
5440 } while (!error);
5441
5442 /* first round of cleanup code */
5443 if (error) {
5444 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5445 /* recycle udf_node */
5446 udf_dispose_node(udf_node);
5447
5448 return EINVAL; /* error code ok? */
5449 }
5450 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5451
5452 /* assert no references to dscr anymore beyong this point */
5453 assert((udf_node->fe) || (udf_node->efe));
5454 dscr = NULL;
5455
5456 /*
5457 * Remember where to record an updated version of the descriptor. If
5458 * there is a sequence of indirect entries, icb_loc will have been
5459 * updated. Its the write disipline to allocate new space and to make
5460 * sure the chain is maintained.
5461 *
5462 * `needs_indirect' flags if the next location is to be filled with
5463 * with an indirect entry.
5464 */
5465 udf_node->write_loc = icb_loc;
5466 udf_node->needs_indirect = needs_indirect;
5467
5468 /*
5469 * Go trough all allocations extents of this descriptor and when
5470 * encountering a redirect read in the allocation extension. These are
5471 * daisy-chained.
5472 */
5473 UDF_LOCK_NODE(udf_node, 0);
5474 udf_node->num_extensions = 0;
5475
5476 error = 0;
5477 slot = 0;
5478 for (;;) {
5479 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5480 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5481 "lb_num = %d, part = %d\n", slot, eof,
5482 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5483 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5484 udf_rw32(icb_loc.loc.lb_num),
5485 udf_rw16(icb_loc.loc.part_num)));
5486 if (eof)
5487 break;
5488 slot++;
5489
5490 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5491 continue;
5492
5493 DPRINTF(NODE, ("\tgot redirect extent\n"));
5494 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5495 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5496 "too many allocation extensions on "
5497 "udf_node\n"));
5498 error = EINVAL;
5499 break;
5500 }
5501
5502 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5503 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5504 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5505 "extension size in udf_node\n"));
5506 error = EINVAL;
5507 break;
5508 }
5509
5510 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5511 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5512 /* load in allocation extent */
5513 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5514 if (error || (dscr == NULL))
5515 break;
5516
5517 /* process read-in descriptor */
5518 dscr_type = udf_rw16(dscr->tag.id);
5519
5520 if (dscr_type != TAGID_ALLOCEXTENT) {
5521 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5522 error = ENOENT;
5523 break;
5524 }
5525
5526 DPRINTF(NODE, ("\trecording redirect extent\n"));
5527 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5528 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5529
5530 udf_node->num_extensions++;
5531
5532 } /* while */
5533 UDF_UNLOCK_NODE(udf_node, 0);
5534
5535 /* second round of cleanup code */
5536 if (error) {
5537 /* recycle udf_node */
5538 udf_dispose_node(udf_node);
5539
5540 return EINVAL; /* error code ok? */
5541 }
5542
5543 DPRINTF(NODE, ("\tnode read in fine\n"));
5544
5545 /*
5546 * Translate UDF filetypes into vnode types.
5547 *
5548 * Systemfiles like the meta main and mirror files are not treated as
5549 * normal files, so we type them as having no type. UDF dictates that
5550 * they are not allowed to be visible.
5551 */
5552
5553 switch (udf_file_type) {
5554 case UDF_ICB_FILETYPE_DIRECTORY :
5555 case UDF_ICB_FILETYPE_STREAMDIR :
5556 vp->v_type = VDIR;
5557 break;
5558 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5559 vp->v_type = VBLK;
5560 break;
5561 case UDF_ICB_FILETYPE_CHARDEVICE :
5562 vp->v_type = VCHR;
5563 break;
5564 case UDF_ICB_FILETYPE_SOCKET :
5565 vp->v_type = VSOCK;
5566 break;
5567 case UDF_ICB_FILETYPE_FIFO :
5568 vp->v_type = VFIFO;
5569 break;
5570 case UDF_ICB_FILETYPE_SYMLINK :
5571 vp->v_type = VLNK;
5572 break;
5573 case UDF_ICB_FILETYPE_VAT :
5574 case UDF_ICB_FILETYPE_META_MAIN :
5575 case UDF_ICB_FILETYPE_META_MIRROR :
5576 vp->v_type = VNON;
5577 break;
5578 case UDF_ICB_FILETYPE_RANDOMACCESS :
5579 case UDF_ICB_FILETYPE_REALTIME :
5580 vp->v_type = VREG;
5581 break;
5582 default:
5583 /* YIKES, something else */
5584 vp->v_type = VNON;
5585 }
5586
5587 /* TODO specfs, fifofs etc etc. vnops setting */
5588
5589 /* don't forget to set vnode's v_size */
5590 uvm_vnp_setsize(vp, file_size);
5591
5592 /* TODO ext attr and streamdir udf_nodes */
5593
5594 *new_key = &udf_node->loc.loc;
5595
5596 return 0;
5597 }
5598
5599 int
5600 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5601 struct udf_node **udf_noderes)
5602 {
5603 int error;
5604 struct vnode *vp;
5605
5606 *udf_noderes = NULL;
5607
5608 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5609 sizeof(node_icb_loc->loc), &vp);
5610 if (error)
5611 return error;
5612 error = vn_lock(vp, LK_EXCLUSIVE);
5613 if (error) {
5614 vrele(vp);
5615 return error;
5616 }
5617 *udf_noderes = VTOI(vp);
5618 return 0;
5619 }
5620
5621 /* --------------------------------------------------------------------- */
5622
5623 int
5624 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5625 {
5626 union dscrptr *dscr;
5627 struct long_ad *loc;
5628 int extnr, error;
5629
5630 DPRINTF(NODE, ("udf_writeout_node called\n"));
5631
5632 KASSERT(udf_node->outstanding_bufs == 0);
5633 KASSERT(udf_node->outstanding_nodedscr == 0);
5634
5635 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5636
5637 if (udf_node->i_flags & IN_DELETED) {
5638 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5639 udf_cleanup_reservation(udf_node);
5640 return 0;
5641 }
5642
5643 /* lock node; unlocked in callback */
5644 UDF_LOCK_NODE(udf_node, 0);
5645
5646 /* remove pending reservations, we're written out */
5647 udf_cleanup_reservation(udf_node);
5648
5649 /* at least one descriptor writeout */
5650 udf_node->outstanding_nodedscr = 1;
5651
5652 /* we're going to write out the descriptor so clear the flags */
5653 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5654
5655 /* if we were rebuild, write out the allocation extents */
5656 if (udf_node->i_flags & IN_NODE_REBUILD) {
5657 /* mark outstanding node descriptors and issue them */
5658 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5659 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5660 loc = &udf_node->ext_loc[extnr];
5661 dscr = (union dscrptr *) udf_node->ext[extnr];
5662 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5663 if (error)
5664 return error;
5665 }
5666 /* mark allocation extents written out */
5667 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5668 }
5669
5670 if (udf_node->fe) {
5671 KASSERT(udf_node->efe == NULL);
5672 dscr = (union dscrptr *) udf_node->fe;
5673 } else {
5674 KASSERT(udf_node->efe);
5675 KASSERT(udf_node->fe == NULL);
5676 dscr = (union dscrptr *) udf_node->efe;
5677 }
5678 KASSERT(dscr);
5679
5680 loc = &udf_node->write_loc;
5681 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5682
5683 return error;
5684 }
5685
5686 /* --------------------------------------------------------------------- */
5687
5688 int
5689 udf_dispose_node(struct udf_node *udf_node)
5690 {
5691 struct vnode *vp;
5692 int extnr;
5693
5694 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5695 if (!udf_node) {
5696 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5697 return 0;
5698 }
5699
5700 vp = udf_node->vnode;
5701 #ifdef DIAGNOSTIC
5702 if (vp->v_numoutput)
5703 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5704 "v_numoutput = %d", udf_node, vp->v_numoutput);
5705 #endif
5706
5707 udf_cleanup_reservation(udf_node);
5708
5709 /* TODO extended attributes and streamdir */
5710
5711 /* remove dirhash if present */
5712 dirhash_purge(&udf_node->dir_hash);
5713
5714 /* destroy our lock */
5715 mutex_destroy(&udf_node->node_mutex);
5716 cv_destroy(&udf_node->node_lock);
5717
5718 /* dissociate our udf_node from the vnode */
5719 genfs_node_destroy(udf_node->vnode);
5720 mutex_enter(vp->v_interlock);
5721 vp->v_data = NULL;
5722 mutex_exit(vp->v_interlock);
5723
5724 /* free associated memory and the node itself */
5725 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5726 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5727 udf_node->ext[extnr]);
5728 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5729 }
5730
5731 if (udf_node->fe)
5732 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5733 udf_node->fe);
5734 if (udf_node->efe)
5735 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5736 udf_node->efe);
5737
5738 udf_node->fe = (void *) 0xdeadaaaa;
5739 udf_node->efe = (void *) 0xdeadbbbb;
5740 udf_node->ump = (void *) 0xdeadbeef;
5741 pool_put(&udf_node_pool, udf_node);
5742
5743 return 0;
5744 }
5745
5746
5747
5748 /*
5749 * create a new node using the specified dvp, vap and cnp.
5750 * This allows special files to be created. Use with care.
5751 */
5752
5753 int
5754 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5755 struct vattr *vap, kauth_cred_t cred,
5756 size_t *key_len, const void **new_key)
5757 {
5758 union dscrptr *dscr;
5759 struct udf_node *dir_node = VTOI(dvp);
5760 struct udf_node *udf_node;
5761 struct udf_mount *ump = dir_node->ump;
5762 struct long_ad node_icb_loc;
5763 uint64_t parent_unique_id;
5764 uint64_t lmapping;
5765 uint32_t lb_size, lb_num;
5766 uint16_t vpart_num;
5767 uid_t uid;
5768 gid_t gid, parent_gid;
5769 int (**vnodeops)(void *);
5770 int udf_file_type, fid_size, error;
5771
5772 vnodeops = udf_vnodeop_p;
5773 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5774
5775 switch (vap->va_type) {
5776 case VREG :
5777 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5778 break;
5779 case VDIR :
5780 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5781 break;
5782 case VLNK :
5783 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5784 break;
5785 case VBLK :
5786 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5787 /* specfs */
5788 return ENOTSUP;
5789 break;
5790 case VCHR :
5791 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5792 /* specfs */
5793 return ENOTSUP;
5794 break;
5795 case VFIFO :
5796 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5797 /* fifofs */
5798 return ENOTSUP;
5799 break;
5800 case VSOCK :
5801 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5802 return ENOTSUP;
5803 break;
5804 case VNON :
5805 case VBAD :
5806 default :
5807 /* nothing; can we even create these? */
5808 return EINVAL;
5809 }
5810
5811 lb_size = udf_rw32(ump->logical_vol->lb_size);
5812
5813 /* reserve space for one logical block */
5814 vpart_num = ump->node_part;
5815 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5816 vpart_num, 1, /* can_fail */ true);
5817 if (error)
5818 return error;
5819
5820 /* allocate node */
5821 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5822 vpart_num, 1, &lmapping);
5823 if (error) {
5824 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5825 return error;
5826 }
5827
5828 lb_num = lmapping;
5829
5830 /* initialise pointer to location */
5831 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5832 node_icb_loc.len = udf_rw32(lb_size);
5833 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5834 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5835
5836 /* build udf_node (do initialise!) */
5837 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5838 memset(udf_node, 0, sizeof(struct udf_node));
5839
5840 /* initialise crosslinks, note location of fe/efe for hashing */
5841 /* bugalert: synchronise with udf_get_node() */
5842 udf_node->ump = ump;
5843 udf_node->vnode = vp;
5844 vp->v_data = udf_node;
5845 udf_node->loc = node_icb_loc;
5846 udf_node->write_loc = node_icb_loc;
5847 udf_node->lockf = 0;
5848 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5849 cv_init(&udf_node->node_lock, "udf_nlk");
5850 udf_node->outstanding_bufs = 0;
5851 udf_node->outstanding_nodedscr = 0;
5852 udf_node->uncommitted_lbs = 0;
5853
5854 vp->v_tag = VT_UDF;
5855 vp->v_op = vnodeops;
5856
5857 /* initialise genfs */
5858 genfs_node_init(vp, &udf_genfsops);
5859
5860 /* get parent's unique ID for refering '..' if its a directory */
5861 if (dir_node->fe) {
5862 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5863 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5864 } else {
5865 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5866 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5867 }
5868
5869 /* get descriptor */
5870 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5871
5872 /* choose a fe or an efe for it */
5873 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5874 udf_node->fe = &dscr->fe;
5875 fid_size = udf_create_new_fe(ump, udf_node->fe,
5876 udf_file_type, &udf_node->loc,
5877 &dir_node->loc, parent_unique_id);
5878 /* TODO add extended attribute for creation time */
5879 } else {
5880 udf_node->efe = &dscr->efe;
5881 fid_size = udf_create_new_efe(ump, udf_node->efe,
5882 udf_file_type, &udf_node->loc,
5883 &dir_node->loc, parent_unique_id);
5884 }
5885 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5886
5887 /* update vnode's size and type */
5888 vp->v_type = vap->va_type;
5889 uvm_vnp_setsize(vp, fid_size);
5890
5891 /* set access mode */
5892 udf_setaccessmode(udf_node, vap->va_mode);
5893
5894 /* set ownership */
5895 uid = kauth_cred_geteuid(cred);
5896 gid = parent_gid;
5897 udf_setownership(udf_node, uid, gid);
5898
5899 *key_len = sizeof(udf_node->loc.loc);;
5900 *new_key = &udf_node->loc.loc;
5901
5902 return 0;
5903 }
5904
5905
5906 int
5907 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5908 struct componentname *cnp)
5909 {
5910 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5911 struct udf_mount *ump = dir_node->ump;
5912 int error;
5913
5914 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5915 if (error)
5916 return error;
5917
5918 udf_node = VTOI(*vpp);
5919 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5920 if (error) {
5921 struct long_ad *node_icb_loc = &udf_node->loc;
5922 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5923 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5924
5925 /* free disc allocation for node */
5926 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5927
5928 /* recycle udf_node */
5929 udf_dispose_node(udf_node);
5930 vrele(*vpp);
5931
5932 *vpp = NULL;
5933 return error;
5934 }
5935
5936 /* adjust file count */
5937 udf_adjust_filecount(udf_node, 1);
5938
5939 return 0;
5940 }
5941
5942 /* --------------------------------------------------------------------- */
5943
5944 static void
5945 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5946 {
5947 struct udf_mount *ump = udf_node->ump;
5948 uint32_t lb_size, lb_num, len, num_lb;
5949 uint16_t vpart_num;
5950
5951 /* is there really one? */
5952 if (mem == NULL)
5953 return;
5954
5955 /* got a descriptor here */
5956 len = UDF_EXT_LEN(udf_rw32(loc->len));
5957 lb_num = udf_rw32(loc->loc.lb_num);
5958 vpart_num = udf_rw16(loc->loc.part_num);
5959
5960 lb_size = udf_rw32(ump->logical_vol->lb_size);
5961 num_lb = (len + lb_size -1) / lb_size;
5962
5963 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5964 }
5965
5966 void
5967 udf_delete_node(struct udf_node *udf_node)
5968 {
5969 void *dscr;
5970 struct long_ad *loc;
5971 int extnr, lvint, dummy;
5972
5973 if (udf_node->i_flags & IN_NO_DELETE)
5974 return;
5975
5976 /* paranoia check on integrity; should be open!; we could panic */
5977 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5978 if (lvint == UDF_INTEGRITY_CLOSED)
5979 printf("\tIntegrity was CLOSED!\n");
5980
5981 /* whatever the node type, change its size to zero */
5982 (void) udf_resize_node(udf_node, 0, &dummy);
5983
5984 /* force it to be `clean'; no use writing it out */
5985 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5986 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5987
5988 /* adjust file count */
5989 udf_adjust_filecount(udf_node, -1);
5990
5991 /*
5992 * Free its allocated descriptors; memory will be released when
5993 * vop_reclaim() is called.
5994 */
5995 loc = &udf_node->loc;
5996
5997 dscr = udf_node->fe;
5998 udf_free_descriptor_space(udf_node, loc, dscr);
5999 dscr = udf_node->efe;
6000 udf_free_descriptor_space(udf_node, loc, dscr);
6001
6002 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6003 dscr = udf_node->ext[extnr];
6004 loc = &udf_node->ext_loc[extnr];
6005 udf_free_descriptor_space(udf_node, loc, dscr);
6006 }
6007 }
6008
6009 /* --------------------------------------------------------------------- */
6010
6011 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6012 int
6013 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6014 {
6015 struct file_entry *fe = udf_node->fe;
6016 struct extfile_entry *efe = udf_node->efe;
6017 uint64_t file_size;
6018 int error;
6019
6020 if (fe) {
6021 file_size = udf_rw64(fe->inf_len);
6022 } else {
6023 assert(udf_node->efe);
6024 file_size = udf_rw64(efe->inf_len);
6025 }
6026
6027 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6028 file_size, new_size));
6029
6030 /* if not changing, we're done */
6031 if (file_size == new_size)
6032 return 0;
6033
6034 *extended = (new_size > file_size);
6035 if (*extended) {
6036 error = udf_grow_node(udf_node, new_size);
6037 } else {
6038 error = udf_shrink_node(udf_node, new_size);
6039 }
6040
6041 return error;
6042 }
6043
6044
6045 /* --------------------------------------------------------------------- */
6046
6047 void
6048 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6049 struct timespec *mod, struct timespec *birth)
6050 {
6051 struct timespec now;
6052 struct file_entry *fe;
6053 struct extfile_entry *efe;
6054 struct filetimes_extattr_entry *ft_extattr;
6055 struct timestamp *atime, *mtime, *attrtime, *ctime;
6056 struct timestamp fe_ctime;
6057 struct timespec cur_birth;
6058 uint32_t offset, a_l;
6059 uint8_t *filedata;
6060 int error;
6061
6062 /* protect against rogue values */
6063 if (!udf_node)
6064 return;
6065
6066 fe = udf_node->fe;
6067 efe = udf_node->efe;
6068
6069 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6070 return;
6071
6072 /* get descriptor information */
6073 if (fe) {
6074 atime = &fe->atime;
6075 mtime = &fe->mtime;
6076 attrtime = &fe->attrtime;
6077 filedata = fe->data;
6078
6079 /* initial save dummy setting */
6080 ctime = &fe_ctime;
6081
6082 /* check our extended attribute if present */
6083 error = udf_extattr_search_intern(udf_node,
6084 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6085 if (!error) {
6086 ft_extattr = (struct filetimes_extattr_entry *)
6087 (filedata + offset);
6088 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6089 ctime = &ft_extattr->times[0];
6090 }
6091 /* TODO create the extended attribute if not found ? */
6092 } else {
6093 assert(udf_node->efe);
6094 atime = &efe->atime;
6095 mtime = &efe->mtime;
6096 attrtime = &efe->attrtime;
6097 ctime = &efe->ctime;
6098 }
6099
6100 vfs_timestamp(&now);
6101
6102 /* set access time */
6103 if (udf_node->i_flags & IN_ACCESS) {
6104 if (acc == NULL)
6105 acc = &now;
6106 udf_timespec_to_timestamp(acc, atime);
6107 }
6108
6109 /* set modification time */
6110 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6111 if (mod == NULL)
6112 mod = &now;
6113 udf_timespec_to_timestamp(mod, mtime);
6114
6115 /* ensure birthtime is older than set modification! */
6116 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6117 if ((cur_birth.tv_sec > mod->tv_sec) ||
6118 ((cur_birth.tv_sec == mod->tv_sec) &&
6119 (cur_birth.tv_nsec > mod->tv_nsec))) {
6120 udf_timespec_to_timestamp(mod, ctime);
6121 }
6122 }
6123
6124 /* update birthtime if specified */
6125 /* XXX we assume here that given birthtime is older than mod */
6126 if (birth && (birth->tv_sec != VNOVAL)) {
6127 udf_timespec_to_timestamp(birth, ctime);
6128 }
6129
6130 /* set change time */
6131 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6132 udf_timespec_to_timestamp(&now, attrtime);
6133
6134 /* notify updates to the node itself */
6135 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6136 udf_node->i_flags |= IN_ACCESSED;
6137 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6138 udf_node->i_flags |= IN_MODIFIED;
6139
6140 /* clear modification flags */
6141 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6142 }
6143
6144 /* --------------------------------------------------------------------- */
6145
6146 int
6147 udf_update(struct vnode *vp, struct timespec *acc,
6148 struct timespec *mod, struct timespec *birth, int updflags)
6149 {
6150 union dscrptr *dscrptr;
6151 struct udf_node *udf_node = VTOI(vp);
6152 struct udf_mount *ump = udf_node->ump;
6153 struct regid *impl_id;
6154 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6155 int waitfor, flags;
6156
6157 #ifdef DEBUG
6158 char bits[128];
6159 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6160 updflags));
6161 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6162 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6163 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6164 #endif
6165
6166 /* set our times */
6167 udf_itimes(udf_node, acc, mod, birth);
6168
6169 /* set our implementation id */
6170 if (udf_node->fe) {
6171 dscrptr = (union dscrptr *) udf_node->fe;
6172 impl_id = &udf_node->fe->imp_id;
6173 } else {
6174 dscrptr = (union dscrptr *) udf_node->efe;
6175 impl_id = &udf_node->efe->imp_id;
6176 }
6177
6178 /* set our ID */
6179 udf_set_regid(impl_id, IMPL_NAME);
6180 udf_add_impl_regid(ump, impl_id);
6181
6182 /* update our crc! on RMW we are not allowed to change a thing */
6183 udf_validate_tag_and_crc_sums(dscrptr);
6184
6185 /* if called when mounted readonly, never write back */
6186 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6187 return 0;
6188
6189 /* check if the node is dirty 'enough'*/
6190 if (updflags & UPDATE_CLOSE) {
6191 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6192 } else {
6193 flags = udf_node->i_flags & IN_MODIFIED;
6194 }
6195 if (flags == 0)
6196 return 0;
6197
6198 /* determine if we need to write sync or async */
6199 waitfor = 0;
6200 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6201 /* sync mounted */
6202 waitfor = updflags & UPDATE_WAIT;
6203 if (updflags & UPDATE_DIROP)
6204 waitfor |= UPDATE_WAIT;
6205 }
6206 if (waitfor)
6207 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6208
6209 return 0;
6210 }
6211
6212
6213 /* --------------------------------------------------------------------- */
6214
6215
6216 /*
6217 * Read one fid and process it into a dirent and advance to the next (*fid)
6218 * has to be allocated a logical block in size, (*dirent) struct dirent length
6219 */
6220
6221 int
6222 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6223 struct fileid_desc *fid, struct dirent *dirent)
6224 {
6225 struct udf_node *dir_node = VTOI(vp);
6226 struct udf_mount *ump = dir_node->ump;
6227 struct file_entry *fe = dir_node->fe;
6228 struct extfile_entry *efe = dir_node->efe;
6229 uint32_t fid_size, lb_size;
6230 uint64_t file_size;
6231 char *fid_name;
6232 int enough, error;
6233
6234 assert(fid);
6235 assert(dirent);
6236 assert(dir_node);
6237 assert(offset);
6238 assert(*offset != 1);
6239
6240 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6241 /* check if we're past the end of the directory */
6242 if (fe) {
6243 file_size = udf_rw64(fe->inf_len);
6244 } else {
6245 assert(dir_node->efe);
6246 file_size = udf_rw64(efe->inf_len);
6247 }
6248 if (*offset >= file_size)
6249 return EINVAL;
6250
6251 /* get maximum length of FID descriptor */
6252 lb_size = udf_rw32(ump->logical_vol->lb_size);
6253
6254 /* initialise return values */
6255 fid_size = 0;
6256 memset(dirent, 0, sizeof(struct dirent));
6257 memset(fid, 0, lb_size);
6258
6259 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6260 if (!enough) {
6261 /* short dir ... */
6262 return EIO;
6263 }
6264
6265 error = vn_rdwr(UIO_READ, vp,
6266 fid, MIN(file_size - (*offset), lb_size), *offset,
6267 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6268 NULL, NULL);
6269 if (error)
6270 return error;
6271
6272 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6273 /*
6274 * Check if we got a whole descriptor.
6275 * TODO Try to `resync' directory stream when something is very wrong.
6276 */
6277
6278 /* check if our FID header is OK */
6279 error = udf_check_tag(fid);
6280 if (error) {
6281 goto brokendir;
6282 }
6283 DPRINTF(FIDS, ("\ttag check ok\n"));
6284
6285 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6286 error = EIO;
6287 goto brokendir;
6288 }
6289 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6290
6291 /* check for length */
6292 fid_size = udf_fidsize(fid);
6293 enough = (file_size - (*offset) >= fid_size);
6294 if (!enough) {
6295 error = EIO;
6296 goto brokendir;
6297 }
6298 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6299
6300 /* check FID contents */
6301 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6302 brokendir:
6303 if (error) {
6304 /* note that is sometimes a bit quick to report */
6305 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6306 /* RESYNC? */
6307 /* TODO: use udf_resync_fid_stream */
6308 return EIO;
6309 }
6310 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6311
6312 /* we got a whole and valid descriptor! */
6313 DPRINTF(FIDS, ("\tinterpret FID\n"));
6314
6315 /* create resulting dirent structure */
6316 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6317 udf_to_unix_name(dirent->d_name, NAME_MAX,
6318 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6319
6320 /* '..' has no name, so provide one */
6321 if (fid->file_char & UDF_FILE_CHAR_PAR)
6322 strcpy(dirent->d_name, "..");
6323
6324 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6325 dirent->d_namlen = strlen(dirent->d_name);
6326 dirent->d_reclen = _DIRENT_SIZE(dirent);
6327
6328 /*
6329 * Note that its not worth trying to go for the filetypes now... its
6330 * too expensive too
6331 */
6332 dirent->d_type = DT_UNKNOWN;
6333
6334 /* initial guess for filetype we can make */
6335 if (fid->file_char & UDF_FILE_CHAR_DIR)
6336 dirent->d_type = DT_DIR;
6337
6338 /* advance */
6339 *offset += fid_size;
6340
6341 return error;
6342 }
6343
6344
6345 /* --------------------------------------------------------------------- */
6346
6347 static void
6348 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6349 {
6350 struct udf_node *udf_node, *n_udf_node;
6351 struct vnode *vp;
6352 int vdirty, error;
6353
6354 KASSERT(mutex_owned(&ump->sync_lock));
6355
6356 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6357 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6358 for (;udf_node; udf_node = n_udf_node) {
6359 DPRINTF(SYNC, ("."));
6360
6361 vp = udf_node->vnode;
6362
6363 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6364 udf_node, RB_DIR_RIGHT);
6365
6366 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6367 if (error) {
6368 KASSERT(error == EBUSY);
6369 *ndirty += 1;
6370 continue;
6371 }
6372
6373 switch (pass) {
6374 case 1:
6375 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6376 break;
6377 case 2:
6378 vdirty = vp->v_numoutput;
6379 if (vp->v_tag == VT_UDF)
6380 vdirty += udf_node->outstanding_bufs +
6381 udf_node->outstanding_nodedscr;
6382 if (vdirty == 0)
6383 VOP_FSYNC(vp, cred, 0,0,0);
6384 *ndirty += vdirty;
6385 break;
6386 case 3:
6387 vdirty = vp->v_numoutput;
6388 if (vp->v_tag == VT_UDF)
6389 vdirty += udf_node->outstanding_bufs +
6390 udf_node->outstanding_nodedscr;
6391 *ndirty += vdirty;
6392 break;
6393 }
6394
6395 VOP_UNLOCK(vp);
6396 }
6397 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6398 }
6399
6400
6401 static bool
6402 udf_sync_selector(void *cl, struct vnode *vp)
6403 {
6404 struct udf_node *udf_node = VTOI(vp);
6405
6406 if (vp->v_vflag & VV_SYSTEM)
6407 return false;
6408 if (vp->v_type == VNON)
6409 return false;
6410 if (udf_node == NULL)
6411 return false;
6412 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6413 return false;
6414 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6415 return false;
6416
6417 return true;
6418 }
6419
6420 void
6421 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6422 {
6423 struct vnode_iterator *marker;
6424 struct vnode *vp;
6425 struct udf_node *udf_node, *udf_next_node;
6426 int dummy, ndirty;
6427
6428 if (waitfor == MNT_LAZY)
6429 return;
6430
6431 mutex_enter(&ump->sync_lock);
6432
6433 /* Fill the rbtree with nodes to sync. */
6434 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6435 while ((vp = vfs_vnode_iterator_next(marker,
6436 udf_sync_selector, NULL)) != NULL) {
6437 udf_node = VTOI(vp);
6438 udf_node->i_flags |= IN_SYNCED;
6439 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6440 }
6441 vfs_vnode_iterator_destroy(marker);
6442
6443 dummy = 0;
6444 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6445 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6446 udf_sync_pass(ump, cred, 1, &dummy);
6447
6448 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6449 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6450 udf_sync_pass(ump, cred, 2, &dummy);
6451
6452 if (waitfor == MNT_WAIT) {
6453 recount:
6454 ndirty = ump->devvp->v_numoutput;
6455 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6456 ndirty));
6457 udf_sync_pass(ump, cred, 3, &ndirty);
6458 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6459 ndirty));
6460
6461 if (ndirty) {
6462 /* 1/4 second wait */
6463 kpause("udfsync2", false, hz/4, NULL);
6464 goto recount;
6465 }
6466 }
6467
6468 /* Clean the rbtree. */
6469 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6470 udf_node; udf_node = udf_next_node) {
6471 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6472 udf_node, RB_DIR_RIGHT);
6473 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6474 udf_node->i_flags &= ~IN_SYNCED;
6475 vrele(udf_node->vnode);
6476 }
6477
6478 mutex_exit(&ump->sync_lock);
6479 }
6480
6481 /* --------------------------------------------------------------------- */
6482
6483 /*
6484 * Read and write file extent in/from the buffer.
6485 *
6486 * The splitup of the extent into seperate request-buffers is to minimise
6487 * copying around as much as possible.
6488 *
6489 * block based file reading and writing
6490 */
6491
6492 static int
6493 udf_read_internal(struct udf_node *node, uint8_t *blob)
6494 {
6495 struct udf_mount *ump;
6496 struct file_entry *fe = node->fe;
6497 struct extfile_entry *efe = node->efe;
6498 uint64_t inflen;
6499 uint32_t sector_size;
6500 uint8_t *srcpos;
6501 int icbflags, addr_type;
6502
6503 /* get extent and do some paranoia checks */
6504 ump = node->ump;
6505 sector_size = ump->discinfo.sector_size;
6506
6507 /*
6508 * XXX there should be real bounds-checking logic here,
6509 * in case ->l_ea or ->inf_len contains nonsense.
6510 */
6511
6512 if (fe) {
6513 inflen = udf_rw64(fe->inf_len);
6514 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6515 icbflags = udf_rw16(fe->icbtag.flags);
6516 } else {
6517 assert(node->efe);
6518 inflen = udf_rw64(efe->inf_len);
6519 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6520 icbflags = udf_rw16(efe->icbtag.flags);
6521 }
6522 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6523
6524 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6525 __USE(addr_type);
6526 assert(inflen < sector_size);
6527
6528 /* copy out info */
6529 memcpy(blob, srcpos, inflen);
6530 memset(&blob[inflen], 0, sector_size - inflen);
6531
6532 return 0;
6533 }
6534
6535
6536 static int
6537 udf_write_internal(struct udf_node *node, uint8_t *blob)
6538 {
6539 struct udf_mount *ump;
6540 struct file_entry *fe = node->fe;
6541 struct extfile_entry *efe = node->efe;
6542 uint64_t inflen;
6543 uint32_t sector_size;
6544 uint8_t *pos;
6545 int icbflags, addr_type;
6546
6547 /* get extent and do some paranoia checks */
6548 ump = node->ump;
6549 sector_size = ump->discinfo.sector_size;
6550
6551 if (fe) {
6552 inflen = udf_rw64(fe->inf_len);
6553 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6554 icbflags = udf_rw16(fe->icbtag.flags);
6555 } else {
6556 assert(node->efe);
6557 inflen = udf_rw64(efe->inf_len);
6558 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6559 icbflags = udf_rw16(efe->icbtag.flags);
6560 }
6561 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6562
6563 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6564 __USE(addr_type);
6565 assert(inflen < sector_size);
6566 __USE(sector_size);
6567
6568 /* copy in blob */
6569 /* memset(pos, 0, inflen); */
6570 memcpy(pos, blob, inflen);
6571
6572 return 0;
6573 }
6574
6575
6576 void
6577 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6578 {
6579 struct buf *nestbuf;
6580 struct udf_mount *ump = udf_node->ump;
6581 uint64_t *mapping;
6582 uint64_t run_start;
6583 uint32_t sector_size;
6584 uint32_t buf_offset, sector, rbuflen, rblk;
6585 uint32_t from, lblkno;
6586 uint32_t sectors;
6587 uint8_t *buf_pos;
6588 int error, run_length, what;
6589
6590 sector_size = udf_node->ump->discinfo.sector_size;
6591
6592 from = buf->b_blkno;
6593 sectors = buf->b_bcount / sector_size;
6594
6595 what = udf_get_c_type(udf_node);
6596
6597 /* assure we have enough translation slots */
6598 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6599 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6600
6601 if (sectors > UDF_MAX_MAPPINGS) {
6602 printf("udf_read_filebuf: implementation limit on bufsize\n");
6603 buf->b_error = EIO;
6604 biodone(buf);
6605 return;
6606 }
6607
6608 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6609
6610 error = 0;
6611 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6612 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6613 if (error) {
6614 buf->b_error = error;
6615 biodone(buf);
6616 goto out;
6617 }
6618 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6619
6620 /* pre-check if its an internal */
6621 if (*mapping == UDF_TRANS_INTERN) {
6622 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6623 if (error)
6624 buf->b_error = error;
6625 biodone(buf);
6626 goto out;
6627 }
6628 DPRINTF(READ, ("\tnot intern\n"));
6629
6630 #ifdef DEBUG
6631 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6632 printf("Returned translation table:\n");
6633 for (sector = 0; sector < sectors; sector++) {
6634 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6635 }
6636 }
6637 #endif
6638
6639 /* request read-in of data from disc sheduler */
6640 buf->b_resid = buf->b_bcount;
6641 for (sector = 0; sector < sectors; sector++) {
6642 buf_offset = sector * sector_size;
6643 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6644 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6645
6646 /* check if its zero or unmapped to stop reading */
6647 switch (mapping[sector]) {
6648 case UDF_TRANS_UNMAPPED:
6649 case UDF_TRANS_ZERO:
6650 /* copy zero sector TODO runlength like below */
6651 memset(buf_pos, 0, sector_size);
6652 DPRINTF(READ, ("\treturning zero sector\n"));
6653 nestiobuf_done(buf, sector_size, 0);
6654 break;
6655 default :
6656 DPRINTF(READ, ("\tread sector "
6657 "%"PRIu64"\n", mapping[sector]));
6658
6659 lblkno = from + sector;
6660 run_start = mapping[sector];
6661 run_length = 1;
6662 while (sector < sectors-1) {
6663 if (mapping[sector+1] != mapping[sector]+1)
6664 break;
6665 run_length++;
6666 sector++;
6667 }
6668
6669 /*
6670 * nest an iobuf and mark it for async reading. Since
6671 * we're using nested buffers, they can't be cached by
6672 * design.
6673 */
6674 rbuflen = run_length * sector_size;
6675 rblk = run_start * (sector_size/DEV_BSIZE);
6676
6677 nestbuf = getiobuf(NULL, true);
6678 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6679 /* nestbuf is B_ASYNC */
6680
6681 /* identify this nestbuf */
6682 nestbuf->b_lblkno = lblkno;
6683 assert(nestbuf->b_vp == udf_node->vnode);
6684
6685 /* CD shedules on raw blkno */
6686 nestbuf->b_blkno = rblk;
6687 nestbuf->b_proc = NULL;
6688 nestbuf->b_rawblkno = rblk;
6689 nestbuf->b_udf_c_type = what;
6690
6691 udf_discstrat_queuebuf(ump, nestbuf);
6692 }
6693 }
6694 out:
6695 /* if we're synchronously reading, wait for the completion */
6696 if ((buf->b_flags & B_ASYNC) == 0)
6697 biowait(buf);
6698
6699 DPRINTF(READ, ("\tend of read_filebuf\n"));
6700 free(mapping, M_TEMP);
6701 return;
6702 }
6703
6704
6705 void
6706 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6707 {
6708 struct buf *nestbuf;
6709 struct udf_mount *ump = udf_node->ump;
6710 uint64_t *mapping;
6711 uint64_t run_start;
6712 uint32_t lb_size;
6713 uint32_t buf_offset, lb_num, rbuflen, rblk;
6714 uint32_t from, lblkno;
6715 uint32_t num_lb;
6716 int error, run_length, what, s;
6717
6718 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6719
6720 from = buf->b_blkno;
6721 num_lb = buf->b_bcount / lb_size;
6722
6723 what = udf_get_c_type(udf_node);
6724
6725 /* assure we have enough translation slots */
6726 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6727 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6728
6729 if (num_lb > UDF_MAX_MAPPINGS) {
6730 printf("udf_write_filebuf: implementation limit on bufsize\n");
6731 buf->b_error = EIO;
6732 biodone(buf);
6733 return;
6734 }
6735
6736 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6737
6738 error = 0;
6739 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6740 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6741 if (error) {
6742 buf->b_error = error;
6743 biodone(buf);
6744 goto out;
6745 }
6746 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6747
6748 /* if its internally mapped, we can write it in the descriptor itself */
6749 if (*mapping == UDF_TRANS_INTERN) {
6750 /* TODO paranoia check if we ARE going to have enough space */
6751 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6752 if (error)
6753 buf->b_error = error;
6754 biodone(buf);
6755 goto out;
6756 }
6757 DPRINTF(WRITE, ("\tnot intern\n"));
6758
6759 /* request write out of data to disc sheduler */
6760 buf->b_resid = buf->b_bcount;
6761 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6762 buf_offset = lb_num * lb_size;
6763 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6764
6765 /*
6766 * Mappings are not that important here. Just before we write
6767 * the lb_num we late-allocate them when needed and update the
6768 * mapping in the udf_node.
6769 */
6770
6771 /* XXX why not ignore the mapping altogether ? */
6772 DPRINTF(WRITE, ("\twrite lb_num "
6773 "%"PRIu64, mapping[lb_num]));
6774
6775 lblkno = from + lb_num;
6776 run_start = mapping[lb_num];
6777 run_length = 1;
6778 while (lb_num < num_lb-1) {
6779 if (mapping[lb_num+1] != mapping[lb_num]+1)
6780 if (mapping[lb_num+1] != mapping[lb_num])
6781 break;
6782 run_length++;
6783 lb_num++;
6784 }
6785 DPRINTF(WRITE, ("+ %d\n", run_length));
6786
6787 /* nest an iobuf on the master buffer for the extent */
6788 rbuflen = run_length * lb_size;
6789 rblk = run_start * (lb_size/DEV_BSIZE);
6790
6791 nestbuf = getiobuf(NULL, true);
6792 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6793 /* nestbuf is B_ASYNC */
6794
6795 /* identify this nestbuf */
6796 nestbuf->b_lblkno = lblkno;
6797 KASSERT(nestbuf->b_vp == udf_node->vnode);
6798
6799 /* CD shedules on raw blkno */
6800 nestbuf->b_blkno = rblk;
6801 nestbuf->b_proc = NULL;
6802 nestbuf->b_rawblkno = rblk;
6803 nestbuf->b_udf_c_type = what;
6804
6805 /* increment our outstanding bufs counter */
6806 s = splbio();
6807 udf_node->outstanding_bufs++;
6808 splx(s);
6809
6810 udf_discstrat_queuebuf(ump, nestbuf);
6811 }
6812 out:
6813 /* if we're synchronously writing, wait for the completion */
6814 if ((buf->b_flags & B_ASYNC) == 0)
6815 biowait(buf);
6816
6817 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6818 free(mapping, M_TEMP);
6819 return;
6820 }
6821
6822 /* --------------------------------------------------------------------- */
6823