Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.14
      1 /* $NetBSD: udf_subr.c,v 1.14 2006/08/22 16:52:41 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  */
     35 
     36 
     37 #include <sys/cdefs.h>
     38 #ifndef lint
     39 __RCSID("$NetBSD: udf_subr.c,v 1.14 2006/08/22 16:52:41 reinoud Exp $");
     40 #endif /* not lint */
     41 
     42 
     43 #if defined(_KERNEL_OPT)
     44 #include "opt_quota.h"
     45 #include "opt_compat_netbsd.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/namei.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/vnode.h>
     55 #include <miscfs/genfs/genfs_node.h>
     56 #include <sys/mount.h>
     57 #include <sys/buf.h>
     58 #include <sys/file.h>
     59 #include <sys/device.h>
     60 #include <sys/disklabel.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/malloc.h>
     63 #include <sys/dirent.h>
     64 #include <sys/stat.h>
     65 #include <sys/conf.h>
     66 #include <sys/kauth.h>
     67 
     68 #include <fs/udf/ecma167-udf.h>
     69 #include <fs/udf/udf_mount.h>
     70 
     71 #include "udf.h"
     72 #include "udf_subr.h"
     73 #include "udf_bswap.h"
     74 
     75 
     76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
     77 
     78 
     79 /* predefines */
     80 
     81 
     82 #if 0
     83 {
     84 	int i, j, dlen;
     85 	uint8_t *blob;
     86 
     87 	blob = (uint8_t *) fid;
     88 	dlen = file_size - (*offset);
     89 
     90 	printf("blob = %p\n", blob);
     91 	printf("dump of %d bytes\n", dlen);
     92 
     93 	for (i = 0; i < dlen; i+ = 16) {
     94 		printf("%04x ", i);
     95 		for (j = 0; j < 16; j++) {
     96 			if (i+j < dlen) {
     97 				printf("%02x ", blob[i+j]);
     98 			} else {
     99 				printf("   ");
    100 			}
    101 		}
    102 		for (j = 0; j < 16; j++) {
    103 			if (i+j < dlen) {
    104 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    105 					printf("%c", blob[i+j]);
    106 				} else {
    107 					printf(".");
    108 				}
    109 			}
    110 		}
    111 		printf("\n");
    112 	}
    113 	printf("\n");
    114 }
    115 Debugger();
    116 #endif
    117 
    118 
    119 /* --------------------------------------------------------------------- */
    120 
    121 /* STUB */
    122 
    123 static int
    124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
    125 {
    126 	int sector_size = ump->discinfo.sector_size;
    127 	int blks = sector_size / DEV_BSIZE;
    128 
    129 	/* NOTE bread() checks if block is in cache or not */
    130 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
    131 }
    132 
    133 
    134 /* --------------------------------------------------------------------- */
    135 
    136 /*
    137  * Check if the blob starts with a good UDF tag. Tags are protected by a
    138  * checksum over the reader except one byte at position 4 that is the checksum
    139  * itself.
    140  */
    141 
    142 int
    143 udf_check_tag(void *blob)
    144 {
    145 	struct desc_tag *tag = blob;
    146 	uint8_t *pos, sum, cnt;
    147 
    148 	/* check TAG header checksum */
    149 	pos = (uint8_t *) tag;
    150 	sum = 0;
    151 
    152 	for(cnt = 0; cnt < 16; cnt++) {
    153 		if (cnt != 4)
    154 			sum += *pos;
    155 		pos++;
    156 	}
    157 	if (sum != tag->cksum) {
    158 		/* bad tag header checksum; this is not a valid tag */
    159 		return EINVAL;
    160 	}
    161 
    162 	return 0;
    163 }
    164 
    165 /* --------------------------------------------------------------------- */
    166 
    167 /*
    168  * check tag payload will check descriptor CRC as specified.
    169  * If the descriptor is too short, it will return EIO otherwise EINVAL.
    170  */
    171 
    172 int
    173 udf_check_tag_payload(void *blob, uint32_t max_length)
    174 {
    175 	struct desc_tag *tag = blob;
    176 	uint16_t crc, crc_len;
    177 
    178 	crc_len = udf_rw16(tag->desc_crc_len);
    179 
    180 	/* check payload CRC if applicable */
    181 	if (crc_len == 0)
    182 		return 0;
    183 
    184 	if (crc_len > max_length)
    185 		return EIO;
    186 
    187 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    188 	if (crc != udf_rw16(tag->desc_crc)) {
    189 		/* bad payload CRC; this is a broken tag */
    190 		return EINVAL;
    191 	}
    192 
    193 	return 0;
    194 }
    195 
    196 /* --------------------------------------------------------------------- */
    197 
    198 int
    199 udf_validate_tag_sum(void *blob)
    200 {
    201 	struct desc_tag *tag = blob;
    202 	uint8_t *pos, sum, cnt;
    203 
    204 	/* calculate TAG header checksum */
    205 	pos = (uint8_t *) tag;
    206 	sum = 0;
    207 
    208 	for(cnt = 0; cnt < 16; cnt++) {
    209 		if (cnt != 4) sum += *pos;
    210 		pos++;
    211 	}
    212 	tag->cksum = sum;	/* 8 bit */
    213 
    214 	return 0;
    215 }
    216 
    217 /* --------------------------------------------------------------------- */
    218 
    219 /* assumes sector number of descriptor to be saved already present */
    220 
    221 int
    222 udf_validate_tag_and_crc_sums(void *blob)
    223 {
    224 	struct desc_tag *tag  = blob;
    225 	uint8_t         *btag = (uint8_t *) tag;
    226 	uint16_t crc, crc_len;
    227 
    228 	crc_len = udf_rw16(tag->desc_crc_len);
    229 
    230 	/* check payload CRC if applicable */
    231 	if (crc_len > 0) {
    232 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    233 		tag->desc_crc = udf_rw16(crc);
    234 	}
    235 
    236 	/* calculate TAG header checksum */
    237 	return udf_validate_tag_sum(blob);
    238 }
    239 
    240 /* --------------------------------------------------------------------- */
    241 
    242 /*
    243  * XXX note the different semantics from udfclient: for FIDs it still rounds
    244  * up to sectors. Use udf_fidsize() for a correct length.
    245  */
    246 
    247 int
    248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
    249 {
    250 	uint32_t size, tag_id, num_secs, elmsz;
    251 
    252 	tag_id = udf_rw16(dscr->tag.id);
    253 
    254 	switch (tag_id) {
    255 	case TAGID_LOGVOL :
    256 		size  = sizeof(struct logvol_desc) - 1;
    257 		size += udf_rw32(dscr->lvd.mt_l);
    258 		break;
    259 	case TAGID_UNALLOC_SPACE :
    260 		elmsz = sizeof(struct extent_ad);
    261 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    262 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    263 		break;
    264 	case TAGID_FID :
    265 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    266 		size = (size + 3) & ~3;
    267 		break;
    268 	case TAGID_LOGVOL_INTEGRITY :
    269 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    270 		size += udf_rw32(dscr->lvid.l_iu);
    271 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    272 		break;
    273 	case TAGID_SPACE_BITMAP :
    274 		size  = sizeof(struct space_bitmap_desc) - 1;
    275 		size += udf_rw32(dscr->sbd.num_bytes);
    276 		break;
    277 	case TAGID_SPARING_TABLE :
    278 		elmsz = sizeof(struct spare_map_entry);
    279 		size  = sizeof(struct udf_sparing_table) - elmsz;
    280 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    281 		break;
    282 	case TAGID_FENTRY :
    283 		size  = sizeof(struct file_entry);
    284 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    285 		break;
    286 	case TAGID_EXTFENTRY :
    287 		size  = sizeof(struct extfile_entry);
    288 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    289 		break;
    290 	case TAGID_FSD :
    291 		size  = sizeof(struct fileset_desc);
    292 		break;
    293 	default :
    294 		size = sizeof(union dscrptr);
    295 		break;
    296 	}
    297 
    298 	if ((size == 0) || (udf_sector_size == 0)) return 0;
    299 
    300 	/* round up in sectors */
    301 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
    302 	return num_secs * udf_sector_size;
    303 }
    304 
    305 
    306 static int
    307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
    308 {
    309 	uint32_t size;
    310 
    311 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    312 		panic("got udf_fidsize on non FID\n");
    313 
    314 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    315 	size = (size + 3) & ~3;
    316 
    317 	return size;
    318 }
    319 
    320 /* --------------------------------------------------------------------- */
    321 
    322 /*
    323  * Problem with read_descriptor are long descriptors spanning more than one
    324  * sector. Luckily long descriptors can't be in `logical space'.
    325  *
    326  * Size of allocated piece is returned in multiple of sector size due to
    327  * udf_calc_udf_malloc_size().
    328  */
    329 
    330 int
    331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
    332 		    struct malloc_type *mtype, union dscrptr **dstp)
    333 {
    334 	union dscrptr *src, *dst;
    335 	struct buf *bp;
    336 	uint8_t *pos;
    337 	int blks, blk, dscrlen;
    338 	int i, error, sector_size;
    339 
    340 	sector_size = ump->discinfo.sector_size;
    341 
    342 	*dstp = dst = NULL;
    343 	dscrlen = sector_size;
    344 
    345 	/* read initial piece */
    346 	error = udf_bread(ump, sector, &bp);
    347 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
    348 
    349 	if (!error) {
    350 		/* check if its a valid tag */
    351 		error = udf_check_tag(bp->b_data);
    352 		if (error) {
    353 			/* check if its an empty block */
    354 			pos = bp->b_data;
    355 			for (i = 0; i < sector_size; i++, pos++) {
    356 				if (*pos) break;
    357 			}
    358 			if (i == sector_size) {
    359 				/* return no error but with no dscrptr */
    360 				/* dispose first block */
    361 				brelse(bp);
    362 				return 0;
    363 			}
    364 		}
    365 	}
    366 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
    367 	if (!error) {
    368 		src = (union dscrptr *) bp->b_data;
    369 		dscrlen = udf_tagsize(src, sector_size);
    370 		dst = malloc(dscrlen, mtype, M_WAITOK);
    371 		memcpy(dst, src, dscrlen);
    372 	}
    373 	/* dispose first block */
    374 	bp->b_flags |= B_AGE;
    375 	brelse(bp);
    376 
    377 	if (!error && (dscrlen > sector_size)) {
    378 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
    379 		/*
    380 		 * Read the rest of descriptor. Since it is only used at mount
    381 		 * time its overdone to define and use a specific udf_breadn
    382 		 * for this alone.
    383 		 */
    384 		blks = (dscrlen + sector_size -1) / sector_size;
    385 		for (blk = 1; blk < blks; blk++) {
    386 			error = udf_bread(ump, sector + blk, &bp);
    387 			if (error) {
    388 				brelse(bp);
    389 				break;
    390 			}
    391 			pos = (uint8_t *) dst + blk*sector_size;
    392 			memcpy(pos, bp->b_data, sector_size);
    393 
    394 			/* dispose block */
    395 			bp->b_flags |= B_AGE;
    396 			brelse(bp);
    397 		}
    398 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
    399 		    error));
    400 	}
    401 	if (!error) {
    402 		error = udf_check_tag_payload(dst, dscrlen);
    403 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
    404 	}
    405 	if (error && dst) {
    406 		free(dst, mtype);
    407 		dst = NULL;
    408 	}
    409 	*dstp = dst;
    410 
    411 	return error;
    412 }
    413 
    414 /* --------------------------------------------------------------------- */
    415 #ifdef DEBUG
    416 static void
    417 udf_dump_discinfo(struct udf_mount *ump)
    418 {
    419 	char   bits[128];
    420 	struct mmc_discinfo *di = &ump->discinfo;
    421 
    422 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    423 		return;
    424 
    425 	printf("Device/media info  :\n");
    426 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    427 	printf("\tderived class      %d\n", di->mmc_class);
    428 	printf("\tsector size        %d\n", di->sector_size);
    429 	printf("\tdisc state         %d\n", di->disc_state);
    430 	printf("\tlast ses state     %d\n", di->last_session_state);
    431 	printf("\tbg format state    %d\n", di->bg_format_state);
    432 	printf("\tfrst track         %d\n", di->first_track);
    433 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    434 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    435 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    436 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    437 		sizeof(bits));
    438 	printf("\tdisc flags         %s\n", bits);
    439 	printf("\tdisc id            %x\n", di->disc_id);
    440 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    441 
    442 	printf("\tnum sessions       %d\n", di->num_sessions);
    443 	printf("\tnum tracks         %d\n", di->num_tracks);
    444 
    445 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    446 	printf("\tcapabilities cur   %s\n", bits);
    447 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    448 	printf("\tcapabilities cap   %s\n", bits);
    449 }
    450 #else
    451 #define udf_dump_discinfo(a);
    452 #endif
    453 
    454 /* not called often */
    455 int
    456 udf_update_discinfo(struct udf_mount *ump)
    457 {
    458 	struct vnode *devvp = ump->devvp;
    459 	struct partinfo dpart;
    460 	struct mmc_discinfo *di;
    461 	int error;
    462 
    463 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    464 	di = &ump->discinfo;
    465 	memset(di, 0, sizeof(struct mmc_discinfo));
    466 
    467 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    468 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
    469 	if (error == 0) {
    470 		udf_dump_discinfo(ump);
    471 		return 0;
    472 	}
    473 
    474 	/* disc partition support */
    475 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
    476 	if (error)
    477 		return ENODEV;
    478 
    479 	/* set up a disc info profile for partitions */
    480 	di->mmc_profile		= 0x01;	/* disc type */
    481 	di->mmc_class		= MMC_CLASS_DISC;
    482 	di->disc_state		= MMC_STATE_CLOSED;
    483 	di->last_session_state	= MMC_STATE_CLOSED;
    484 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    485 	di->link_block_penalty	= 0;
    486 
    487 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    488 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    489 	di->mmc_cap    = di->mmc_cur;
    490 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    491 
    492 	/* TODO problem with last_possible_lba on resizable VND; request */
    493 	di->last_possible_lba = dpart.part->p_size;
    494 	di->sector_size       = dpart.disklab->d_secsize;
    495 	di->blockingnr        = 1;
    496 
    497 	di->num_sessions = 1;
    498 	di->num_tracks   = 1;
    499 
    500 	di->first_track  = 1;
    501 	di->first_track_last_session = di->last_track_last_session = 1;
    502 
    503 	udf_dump_discinfo(ump);
    504 	return 0;
    505 }
    506 
    507 /* --------------------------------------------------------------------- */
    508 
    509 int
    510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    511 {
    512 	struct vnode *devvp = ump->devvp;
    513 	struct mmc_discinfo *di = &ump->discinfo;
    514 	int error, class;
    515 
    516 	DPRINTF(VOLUMES, ("read track info\n"));
    517 
    518 	class = di->mmc_class;
    519 	if (class != MMC_CLASS_DISC) {
    520 		/* tracknr specified in struct ti */
    521 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
    522 			NOCRED, NULL);
    523 		return error;
    524 	}
    525 
    526 	/* disc partition support */
    527 	if (ti->tracknr != 1)
    528 		return EIO;
    529 
    530 	/* create fake ti (TODO check for resized vnds) */
    531 	ti->sessionnr  = 1;
    532 
    533 	ti->track_mode = 0;	/* XXX */
    534 	ti->data_mode  = 0;	/* XXX */
    535 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    536 
    537 	ti->track_start    = 0;
    538 	ti->packet_size    = 1;
    539 
    540 	/* TODO support for resizable vnd */
    541 	ti->track_size    = di->last_possible_lba;
    542 	ti->next_writable = di->last_possible_lba;
    543 	ti->last_recorded = ti->next_writable;
    544 	ti->free_blocks   = 0;
    545 
    546 	return 0;
    547 }
    548 
    549 /* --------------------------------------------------------------------- */
    550 
    551 /* track/session searching for mounting */
    552 
    553 static int
    554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    555 		  int *first_tracknr, int *last_tracknr)
    556 {
    557 	struct mmc_trackinfo trackinfo;
    558 	uint32_t tracknr, start_track, num_tracks;
    559 	int error;
    560 
    561 	/* if negative, sessionnr is relative to last session */
    562 	if (args->sessionnr < 0) {
    563 		args->sessionnr += ump->discinfo.num_sessions;
    564 		/* sanity */
    565 		if (args->sessionnr < 0)
    566 			args->sessionnr = 0;
    567 	}
    568 
    569 	/* sanity */
    570 	if (args->sessionnr > ump->discinfo.num_sessions)
    571 		args->sessionnr = ump->discinfo.num_sessions;
    572 
    573 	/* search the tracks for this session, zero session nr indicates last */
    574 	if (args->sessionnr == 0) {
    575 		args->sessionnr = ump->discinfo.num_sessions;
    576 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
    577 			args->sessionnr--;
    578 		}
    579 	}
    580 
    581 	/* search the first and last track of the specified session */
    582 	num_tracks  = ump->discinfo.num_tracks;
    583 	start_track = ump->discinfo.first_track;
    584 
    585 	/* search for first track of this session */
    586 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    587 		/* get track info */
    588 		trackinfo.tracknr = tracknr;
    589 		error = udf_update_trackinfo(ump, &trackinfo);
    590 		if (error)
    591 			return error;
    592 
    593 		if (trackinfo.sessionnr == args->sessionnr)
    594 			break;
    595 	}
    596 	*first_tracknr = tracknr;
    597 
    598 	/* search for last track of this session */
    599 	for (;tracknr <= num_tracks; tracknr++) {
    600 		/* get track info */
    601 		trackinfo.tracknr = tracknr;
    602 		error = udf_update_trackinfo(ump, &trackinfo);
    603 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    604 			tracknr--;
    605 			break;
    606 		}
    607 	}
    608 	if (tracknr > num_tracks)
    609 		tracknr--;
    610 
    611 	*last_tracknr = tracknr;
    612 
    613 	assert(*last_tracknr >= *first_tracknr);
    614 	return 0;
    615 }
    616 
    617 /* --------------------------------------------------------------------- */
    618 
    619 static int
    620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    621 {
    622 	int error;
    623 
    624 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
    625 			(union dscrptr **) dst);
    626 	if (!error) {
    627 		/* blank terminator blocks are not allowed here */
    628 		if (*dst == NULL)
    629 			return ENOENT;
    630 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    631 			error = ENOENT;
    632 			free(*dst, M_UDFVOLD);
    633 			*dst = NULL;
    634 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    635 		}
    636 	}
    637 
    638 	return error;
    639 }
    640 
    641 
    642 int
    643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
    644 {
    645 	struct mmc_trackinfo first_track;
    646 	struct mmc_trackinfo last_track;
    647 	struct anchor_vdp **anchorsp;
    648 	uint32_t track_start;
    649 	uint32_t track_end;
    650 	uint32_t positions[4];
    651 	int first_tracknr, last_tracknr;
    652 	int error, anch, ok, first_anchor;
    653 
    654 	/* search the first and last track of the specified session */
    655 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    656 	if (!error) {
    657 		first_track.tracknr = first_tracknr;
    658 		error = udf_update_trackinfo(ump, &first_track);
    659 	}
    660 	if (!error) {
    661 		last_track.tracknr = last_tracknr;
    662 		error = udf_update_trackinfo(ump, &last_track);
    663 	}
    664 	if (error) {
    665 		printf("UDF mount: reading disc geometry failed\n");
    666 		return 0;
    667 	}
    668 
    669 	track_start = first_track.track_start;
    670 
    671 	/* `end' is not as straitforward as start. */
    672 	track_end =   last_track.track_start
    673 		    + last_track.track_size - last_track.free_blocks - 1;
    674 
    675 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    676 		/* end of track is not straitforward here */
    677 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    678 			track_end = last_track.last_recorded;
    679 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    680 			track_end = last_track.next_writable
    681 				    - ump->discinfo.link_block_penalty;
    682 	}
    683 
    684 	/* its no use reading a blank track */
    685 	first_anchor = 0;
    686 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    687 		first_anchor = 1;
    688 
    689 	/* read anchors start+256, start+512, end-256, end */
    690 	positions[0] = track_start+256;
    691 	positions[1] =   track_end-256;
    692 	positions[2] =   track_end;
    693 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    694 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    695 
    696 	ok = 0;
    697 	anchorsp = ump->anchors;
    698 	for (anch = first_anchor; anch < 4; anch++) {
    699 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    700 		    positions[anch]));
    701 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    702 		if (!error) {
    703 			anchorsp++;
    704 			ok++;
    705 		}
    706 	}
    707 
    708 	/* VATs are only recorded on sequential media, but initialise */
    709 	ump->first_possible_vat_location = track_start + 256 + 1;
    710 	ump->last_possible_vat_location  = track_end
    711 		+ ump->discinfo.blockingnr;
    712 
    713 	return ok;
    714 }
    715 
    716 /* --------------------------------------------------------------------- */
    717 
    718 /* we dont try to be smart; we just record the parts */
    719 #define UDF_UPDATE_DSCR(name, dscr) \
    720 	if (name) \
    721 		free(name, M_UDFVOLD); \
    722 	name = dscr;
    723 
    724 static int
    725 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    726 {
    727 	uint16_t partnr;
    728 
    729 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    730 	    udf_rw16(dscr->tag.id)));
    731 	switch (udf_rw16(dscr->tag.id)) {
    732 	case TAGID_PRI_VOL :		/* primary partition		*/
    733 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    734 		break;
    735 	case TAGID_LOGVOL :		/* logical volume		*/
    736 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    737 		break;
    738 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    739 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    740 		break;
    741 	case TAGID_IMP_VOL :		/* implementation		*/
    742 		/* XXX do we care about multiple impl. descr ? */
    743 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    744 		break;
    745 	case TAGID_PARTITION :		/* physical partition		*/
    746 		/* not much use if its not allocated */
    747 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    748 			free(dscr, M_UDFVOLD);
    749 			break;
    750 		}
    751 
    752 		/* check partnr boundaries */
    753 		partnr = udf_rw16(dscr->pd.part_num);
    754 		if (partnr >= UDF_PARTITIONS)
    755 			return EINVAL;
    756 
    757 		UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
    758 		break;
    759 	case TAGID_VOL :		/* volume space extender; rare	*/
    760 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    761 		free(dscr, M_UDFVOLD);
    762 		break;
    763 	default :
    764 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    765 		    udf_rw16(dscr->tag.id)));
    766 		free(dscr, M_UDFVOLD);
    767 	}
    768 
    769 	return 0;
    770 }
    771 #undef UDF_UPDATE_DSCR
    772 
    773 /* --------------------------------------------------------------------- */
    774 
    775 static int
    776 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    777 {
    778 	union dscrptr *dscr;
    779 	uint32_t sector_size, dscr_size;
    780 	int error;
    781 
    782 	sector_size = ump->discinfo.sector_size;
    783 
    784 	/* loc is sectornr, len is in bytes */
    785 	error = EIO;
    786 	while (len) {
    787 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
    788 		if (error)
    789 			return error;
    790 
    791 		/* blank block is a terminator */
    792 		if (dscr == NULL)
    793 			return 0;
    794 
    795 		/* TERM descriptor is a terminator */
    796 		if (udf_rw16(dscr->tag.id) == TAGID_TERM)
    797 			return 0;
    798 
    799 		/* process all others */
    800 		dscr_size = udf_tagsize(dscr, sector_size);
    801 		error = udf_process_vds_descriptor(ump, dscr);
    802 		if (error) {
    803 			free(dscr, M_UDFVOLD);
    804 			break;
    805 		}
    806 		assert((dscr_size % sector_size) == 0);
    807 
    808 		len -= dscr_size;
    809 		loc += dscr_size / sector_size;
    810 	}
    811 
    812 	return error;
    813 }
    814 
    815 
    816 int
    817 udf_read_vds_space(struct udf_mount *ump)
    818 {
    819 	struct anchor_vdp *anchor, *anchor2;
    820 	size_t size;
    821 	uint32_t main_loc, main_len;
    822 	uint32_t reserve_loc, reserve_len;
    823 	int error;
    824 
    825 	/*
    826 	 * read in VDS space provided by the anchors; if one descriptor read
    827 	 * fails, try the mirror sector.
    828 	 *
    829 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
    830 	 * avoids the `compatibility features' of DirectCD that may confuse
    831 	 * stuff completely.
    832 	 */
    833 
    834 	anchor  = ump->anchors[0];
    835 	anchor2 = ump->anchors[1];
    836 	assert(anchor);
    837 
    838 	if (anchor2) {
    839 		size = sizeof(struct extent_ad);
    840 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
    841 			anchor = anchor2;
    842 		/* reserve is specified to be a literal copy of main */
    843 	}
    844 
    845 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
    846 	main_len    = udf_rw32(anchor->main_vds_ex.len);
    847 
    848 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
    849 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
    850 
    851 	error = udf_read_vds_extent(ump, main_loc, main_len);
    852 	if (error) {
    853 		printf("UDF mount: reading in reserve VDS extent\n");
    854 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
    855 	}
    856 
    857 	return error;
    858 }
    859 
    860 /* --------------------------------------------------------------------- */
    861 
    862 /*
    863  * Read in the logical volume integrity sequence pointed to by our logical
    864  * volume descriptor. Its a sequence that can be extended using fields in the
    865  * integrity descriptor itself. On sequential media only one is found, on
    866  * rewritable media a sequence of descriptors can be found as a form of
    867  * history keeping and on non sequential write-once media the chain is vital
    868  * to allow more and more descriptors to be written. The last descriptor
    869  * written in an extent needs to claim space for a new extent.
    870  */
    871 
    872 static int
    873 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
    874 {
    875 	union dscrptr *dscr;
    876 	struct logvol_int_desc *lvint;
    877 	uint32_t sector_size, sector, len;
    878 	int dscr_type, error;
    879 
    880 	sector_size = ump->discinfo.sector_size;
    881 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
    882 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
    883 
    884 	lvint = NULL;
    885 	dscr  = NULL;
    886 	error = 0;
    887 	while (len) {
    888 		/* read in our integrity descriptor */
    889 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
    890 		if (!error) {
    891 			if (dscr == NULL)
    892 				break;		/* empty terminates */
    893 			dscr_type = udf_rw16(dscr->tag.id);
    894 			if (dscr_type == TAGID_TERM) {
    895 				break;		/* clean terminator */
    896 			}
    897 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
    898 				/* fatal... corrupt disc */
    899 				error = ENOENT;
    900 				break;
    901 			}
    902 			if (lvint)
    903 				free(lvint, M_UDFVOLD);
    904 			lvint = &dscr->lvid;
    905 			dscr = NULL;
    906 		} /* else hope for the best... maybe the next is ok */
    907 
    908 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
    909 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
    910 
    911 		/* proceed sequential */
    912 		sector += 1;
    913 		len    -= sector_size;
    914 
    915 		/* are we linking to a new piece? */
    916 		if (lvint->next_extent.len) {
    917 			len    = udf_rw32(lvint->next_extent.len);
    918 			sector = udf_rw32(lvint->next_extent.loc);
    919 		}
    920 	}
    921 
    922 	/* clean up the mess, esp. when there is an error */
    923 	if (dscr)
    924 		free(dscr, M_UDFVOLD);
    925 
    926 	if (error && lvint) {
    927 		free(lvint, M_UDFVOLD);
    928 		lvint = NULL;
    929 	}
    930 
    931 	if (!lvint)
    932 		error = ENOENT;
    933 
    934 	*lvintp = lvint;
    935 	return error;
    936 }
    937 
    938 /* --------------------------------------------------------------------- */
    939 
    940 /*
    941  * Checks if ump's vds information is correct and complete
    942  */
    943 
    944 int
    945 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
    946 	union udf_pmap *mapping;
    947 	struct logvol_int_desc *lvint;
    948 	struct udf_logvol_info *lvinfo;
    949 	uint32_t n_pm, mt_l;
    950 	uint8_t *pmap_pos;
    951 	char *domain_name, *map_name;
    952 	const char *check_name;
    953 	int pmap_stype, pmap_size;
    954 	int pmap_type, log_part, phys_part;
    955 	int n_phys, n_virt, n_spar, n_meta;
    956 	int len, error;
    957 
    958 	if (ump == NULL)
    959 		return ENOENT;
    960 
    961 	/* we need at least an anchor (trivial, but for safety) */
    962 	if (ump->anchors[0] == NULL)
    963 		return EINVAL;
    964 
    965 	/* we need at least one primary and one logical volume descriptor */
    966 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
    967 		return EINVAL;
    968 
    969 	/* we need at least one partition descriptor */
    970 	if (ump->partitions[0] == NULL)
    971 		return EINVAL;
    972 
    973 	/* check logical volume sector size verses device sector size */
    974 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
    975 		printf("UDF mount: format violation, lb_size != sector size\n");
    976 		return EINVAL;
    977 	}
    978 
    979 	domain_name = ump->logical_vol->domain_id.id;
    980 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
    981 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
    982 		return EINVAL;
    983 	}
    984 
    985 	/* retrieve logical volume integrity sequence */
    986 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
    987 
    988 	/*
    989 	 * We need at least one logvol integrity descriptor recorded.  Note
    990 	 * that its OK to have an open logical volume integrity here. The VAT
    991 	 * will close/update the integrity.
    992 	 */
    993 	if (ump->logvol_integrity == NULL)
    994 		return EINVAL;
    995 
    996 	/* process derived structures */
    997 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
    998 	lvint  = ump->logvol_integrity;
    999 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1000 	ump->logvol_info = lvinfo;
   1001 
   1002 	/* TODO check udf versions? */
   1003 
   1004 	/*
   1005 	 * check logvol mappings: effective virt->log partmap translation
   1006 	 * check and recording of the mapping results. Saves expensive
   1007 	 * strncmp() in tight places.
   1008 	 */
   1009 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1010 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1011 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1012 	pmap_pos =  ump->logical_vol->maps;
   1013 
   1014 	if (n_pm > UDF_PMAPS) {
   1015 		printf("UDF mount: too many mappings\n");
   1016 		return EINVAL;
   1017 	}
   1018 
   1019 	n_phys = n_virt = n_spar = n_meta = 0;
   1020 	for (log_part = 0; log_part < n_pm; log_part++) {
   1021 		mapping = (union udf_pmap *) pmap_pos;
   1022 		pmap_stype = pmap_pos[0];
   1023 		pmap_size  = pmap_pos[1];
   1024 		switch (pmap_stype) {
   1025 		case 1:	/* physical mapping */
   1026 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1027 			phys_part = udf_rw16(mapping->pm1.part_num);
   1028 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1029 			n_phys++;
   1030 			break;
   1031 		case 2: /* virtual/sparable/meta mapping */
   1032 			map_name  = mapping->pm2.part_id.id;
   1033 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1034 			phys_part = udf_rw16(mapping->pm2.part_num);
   1035 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1036 			len = UDF_REGID_ID_SIZE;
   1037 
   1038 			check_name = "*UDF Virtual Partition";
   1039 			if (strncmp(map_name, check_name, len) == 0) {
   1040 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1041 				n_virt++;
   1042 				break;
   1043 			}
   1044 			check_name = "*UDF Sparable Partition";
   1045 			if (strncmp(map_name, check_name, len) == 0) {
   1046 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1047 				n_spar++;
   1048 				break;
   1049 			}
   1050 			check_name = "*UDF Metadata Partition";
   1051 			if (strncmp(map_name, check_name, len) == 0) {
   1052 				pmap_type = UDF_VTOP_TYPE_META;
   1053 				n_meta++;
   1054 				break;
   1055 			}
   1056 			break;
   1057 		default:
   1058 			return EINVAL;
   1059 		}
   1060 
   1061 		DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
   1062 		    pmap_type));
   1063 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1064 			return EINVAL;
   1065 
   1066 		ump->vtop   [log_part] = phys_part;
   1067 		ump->vtop_tp[log_part] = pmap_type;
   1068 
   1069 		pmap_pos += pmap_size;
   1070 	}
   1071 	/* not winning the beauty contest */
   1072 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1073 
   1074 	/* test some basic UDF assertions/requirements */
   1075 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1076 		return EINVAL;
   1077 
   1078 	if (n_virt) {
   1079 		if ((n_phys == 0) || n_spar || n_meta)
   1080 			return EINVAL;
   1081 	}
   1082 	if (n_spar + n_phys == 0)
   1083 		return EINVAL;
   1084 
   1085 	/* vat's can only be on a sequential media */
   1086 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
   1087 	if (n_virt)
   1088 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1089 
   1090 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
   1091 	if (n_virt)
   1092 		ump->meta_alloc = UDF_ALLOC_VAT;
   1093 	if (n_meta)
   1094 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
   1095 
   1096 	/* special cases for pseudo-overwrite */
   1097 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1098 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1099 		if (n_meta) {
   1100 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
   1101 		} else {
   1102 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
   1103 		}
   1104 	}
   1105 
   1106 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
   1107 	    ump->data_alloc, ump->meta_alloc));
   1108 	/* TODO determine partitions to write data and metadata ? */
   1109 
   1110 	/* signal its OK for now */
   1111 	return 0;
   1112 }
   1113 
   1114 /* --------------------------------------------------------------------- */
   1115 
   1116 /*
   1117  * Read in complete VAT file and check if its indeed a VAT file descriptor
   1118  */
   1119 
   1120 static int
   1121 udf_check_for_vat(struct udf_node *vat_node)
   1122 {
   1123 	struct udf_mount *ump;
   1124 	struct icb_tag   *icbtag;
   1125 	struct timestamp *mtime;
   1126 	struct regid     *regid;
   1127 	struct udf_vat   *vat;
   1128 	struct udf_logvol_info *lvinfo;
   1129 	uint32_t  vat_length, alloc_length;
   1130 	uint32_t  vat_offset, vat_entries;
   1131 	uint32_t  sector_size;
   1132 	uint32_t  sectors;
   1133 	uint32_t *raw_vat;
   1134 	char     *regid_name;
   1135 	int filetype;
   1136 	int error;
   1137 
   1138 	/* vat_length is really 64 bits though impossible */
   1139 
   1140 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   1141 	if (!vat_node)
   1142 		return ENOENT;
   1143 
   1144 	/* get mount info */
   1145 	ump = vat_node->ump;
   1146 
   1147 	/* check assertions */
   1148 	assert(vat_node->fe || vat_node->efe);
   1149 	assert(ump->logvol_integrity);
   1150 
   1151 	/* get information from fe/efe */
   1152 	if (vat_node->fe) {
   1153 		vat_length = udf_rw64(vat_node->fe->inf_len);
   1154 		icbtag = &vat_node->fe->icbtag;
   1155 		mtime  = &vat_node->fe->mtime;
   1156 	} else {
   1157 		vat_length = udf_rw64(vat_node->efe->inf_len);
   1158 		icbtag = &vat_node->efe->icbtag;
   1159 		mtime  = &vat_node->efe->mtime;
   1160 	}
   1161 
   1162 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   1163 	filetype = icbtag->file_type;
   1164 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   1165 		return ENOENT;
   1166 
   1167 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   1168 	/* place a sanity check on the length; currently 1Mb in size */
   1169 	if (vat_length > 1*1024*1024)
   1170 		return ENOENT;
   1171 
   1172 	/* get sector size */
   1173 	sector_size = vat_node->ump->discinfo.sector_size;
   1174 
   1175 	/* calculate how many sectors to read in and how much to allocate */
   1176 	sectors = (vat_length + sector_size -1) / sector_size;
   1177 	alloc_length = (sectors + 2) * sector_size;
   1178 
   1179 	/* try to allocate the space */
   1180 	ump->vat_table_alloc_length = alloc_length;
   1181 	ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
   1182 	if (!ump->vat_table)
   1183 		return ENOMEM;		/* impossible to allocate */
   1184 	DPRINTF(VOLUMES, ("\talloced fine\n"));
   1185 
   1186 	/* read it in! */
   1187 	raw_vat = (uint32_t *) ump->vat_table;
   1188 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
   1189 	if (error) {
   1190 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
   1191 		/* not completely readable... :( bomb out */
   1192 		free(ump->vat_table, M_UDFMNT);
   1193 		ump->vat_table = NULL;
   1194 		return error;
   1195 	}
   1196 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
   1197 
   1198 	/*
   1199 	 * check contents of the file if its the old 1.50 VAT table format.
   1200 	 * Its notoriously broken and allthough some implementations support an
   1201 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   1202 	 * to be useable since a lot of implementations don't maintain it.
   1203 	 */
   1204 	lvinfo = ump->logvol_info;
   1205 
   1206 	if (filetype == 0) {
   1207 		/* definition */
   1208 		vat_offset  = 0;
   1209 		vat_entries = (vat_length-36)/4;
   1210 
   1211 		/* check 1.50 VAT */
   1212 		regid = (struct regid *) (raw_vat + vat_entries);
   1213 		regid_name = (char *) regid->id;
   1214 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   1215 		if (error) {
   1216 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   1217 			free(ump->vat_table, M_UDFMNT);
   1218 			ump->vat_table = NULL;
   1219 			return ENOENT;
   1220 		}
   1221 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
   1222 	} else {
   1223 		vat = (struct udf_vat *) raw_vat;
   1224 
   1225 		/* definition */
   1226 		vat_offset  = vat->header_len;
   1227 		vat_entries = (vat_length - vat_offset)/4;
   1228 
   1229 		assert(lvinfo);
   1230 		lvinfo->num_files        = vat->num_files;
   1231 		lvinfo->num_directories  = vat->num_directories;
   1232 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   1233 		lvinfo->min_udf_writever = vat->min_udf_writever;
   1234 		lvinfo->max_udf_writever = vat->max_udf_writever;
   1235 	}
   1236 
   1237 	ump->vat_offset  = vat_offset;
   1238 	ump->vat_entries = vat_entries;
   1239 
   1240 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   1241 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   1242 	ump->logvol_integrity->time           = *mtime;
   1243 
   1244 	return 0;	/* success! */
   1245 }
   1246 
   1247 /* --------------------------------------------------------------------- */
   1248 
   1249 static int
   1250 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   1251 {
   1252 	struct udf_node *vat_node;
   1253 	struct long_ad	 icb_loc;
   1254 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   1255 	int error;
   1256 
   1257 	/* mapping info not needed */
   1258 	mapping = mapping;
   1259 
   1260 	vat_loc = ump->last_possible_vat_location;
   1261 	early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
   1262 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   1263 	late_vat_loc  = vat_loc + 1024;
   1264 
   1265 	/* TODO first search last sector? */
   1266 	do {
   1267 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   1268 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   1269 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   1270 
   1271 		error = udf_get_node(ump, &icb_loc, &vat_node);
   1272 		if (!error) error = udf_check_for_vat(vat_node);
   1273 		if (!error) break;
   1274 		if (vat_node) {
   1275 			vput(vat_node->vnode);
   1276 			udf_dispose_node(vat_node);
   1277 		}
   1278 		vat_loc--;	/* walk backwards */
   1279 	} while (vat_loc >= early_vat_loc);
   1280 
   1281 	/* we don't need our VAT node anymore */
   1282 	if (vat_node) {
   1283 		vput(vat_node->vnode);
   1284 		udf_dispose_node(vat_node);
   1285 	}
   1286 
   1287 	return error;
   1288 }
   1289 
   1290 /* --------------------------------------------------------------------- */
   1291 
   1292 static int
   1293 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   1294 {
   1295 	union dscrptr *dscr;
   1296 	struct part_map_spare *pms = (struct part_map_spare *) mapping;
   1297 	uint32_t lb_num;
   1298 	int spar, error;
   1299 
   1300 	/*
   1301 	 * The partition mapping passed on to us specifies the information we
   1302 	 * need to locate and initialise the sparable partition mapping
   1303 	 * information we need.
   1304 	 */
   1305 
   1306 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   1307 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
   1308 	for (spar = 0; spar < pms->n_st; spar++) {
   1309 		lb_num = pms->st_loc[spar];
   1310 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   1311 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1312 		if (!error && dscr) {
   1313 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   1314 				if (ump->sparing_table)
   1315 					free(ump->sparing_table, M_UDFVOLD);
   1316 				ump->sparing_table = &dscr->spt;
   1317 				dscr = NULL;
   1318 				DPRINTF(VOLUMES,
   1319 				    ("Sparing table accepted (%d entries)\n",
   1320 				     udf_rw16(ump->sparing_table->rt_l)));
   1321 				break;	/* we're done */
   1322 			}
   1323 		}
   1324 		if (dscr)
   1325 			free(dscr, M_UDFVOLD);
   1326 	}
   1327 
   1328 	if (ump->sparing_table)
   1329 		return 0;
   1330 
   1331 	return ENOENT;
   1332 }
   1333 
   1334 /* --------------------------------------------------------------------- */
   1335 
   1336 int
   1337 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
   1338 {
   1339 	union udf_pmap *mapping;
   1340 	uint32_t n_pm, mt_l;
   1341 	uint32_t log_part;
   1342 	uint8_t *pmap_pos;
   1343 	int pmap_size;
   1344 	int error;
   1345 
   1346 	/* We have to iterate again over the part mappings for locations   */
   1347 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1348 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1349 	pmap_pos =  ump->logical_vol->maps;
   1350 
   1351 	for (log_part = 0; log_part < n_pm; log_part++) {
   1352 		mapping = (union udf_pmap *) pmap_pos;
   1353 		switch (ump->vtop_tp[log_part]) {
   1354 		case UDF_VTOP_TYPE_PHYS :
   1355 			/* nothing */
   1356 			break;
   1357 		case UDF_VTOP_TYPE_VIRT :
   1358 			/* search and load VAT */
   1359 			error = udf_search_vat(ump, mapping);
   1360 			if (error)
   1361 				return ENOENT;
   1362 			break;
   1363 		case UDF_VTOP_TYPE_SPARABLE :
   1364 			/* load one of the sparable tables */
   1365 			error = udf_read_sparables(ump, mapping);
   1366 			break;
   1367 		case UDF_VTOP_TYPE_META :
   1368 			/* TODO load metafile and metabitmapfile FE/EFEs */
   1369 			break;
   1370 		default:
   1371 			break;
   1372 		}
   1373 		pmap_size  = pmap_pos[1];
   1374 		pmap_pos  += pmap_size;
   1375 	}
   1376 
   1377 	return 0;
   1378 }
   1379 
   1380 /* --------------------------------------------------------------------- */
   1381 
   1382 int
   1383 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
   1384 {
   1385 	struct udf_node *rootdir_node, *streamdir_node;
   1386 	union dscrptr *dscr;
   1387 	struct long_ad  fsd_loc, *dir_loc;
   1388 	uint32_t lb_num, dummy;
   1389 	uint32_t fsd_len;
   1390 	int dscr_type;
   1391 	int error;
   1392 
   1393 	/* TODO implement FSD reading in seperate function like integrity? */
   1394 	/* get fileset descriptor sequence */
   1395 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   1396 	fsd_len = udf_rw32(fsd_loc.len);
   1397 
   1398 	dscr  = NULL;
   1399 	error = 0;
   1400 	while (fsd_len || error) {
   1401 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   1402 		/* translate fsd_loc to lb_num */
   1403 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   1404 		if (error)
   1405 			break;
   1406 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   1407 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1408 		/* end markers */
   1409 		if (error || (dscr == NULL))
   1410 			break;
   1411 
   1412 		/* analyse */
   1413 		dscr_type = udf_rw16(dscr->tag.id);
   1414 		if (dscr_type == TAGID_TERM)
   1415 			break;
   1416 		if (dscr_type != TAGID_FSD) {
   1417 			free(dscr, M_UDFVOLD);
   1418 			return ENOENT;
   1419 		}
   1420 
   1421 		/*
   1422 		 * TODO check for multiple fileset descriptors; its only
   1423 		 * picking the last now. Also check for FSD
   1424 		 * correctness/interpretability
   1425 		 */
   1426 
   1427 		/* update */
   1428 		if (ump->fileset_desc) {
   1429 			free(ump->fileset_desc, M_UDFVOLD);
   1430 		}
   1431 		ump->fileset_desc = &dscr->fsd;
   1432 		dscr = NULL;
   1433 
   1434 		/* continue to the next fsd */
   1435 		fsd_len -= ump->discinfo.sector_size;
   1436 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   1437 
   1438 		/* follow up to fsd->next_ex (long_ad) if its not null */
   1439 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   1440 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   1441 			fsd_loc = ump->fileset_desc->next_ex;
   1442 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   1443 		}
   1444 	}
   1445 	if (dscr)
   1446 		free(dscr, M_UDFVOLD);
   1447 
   1448 	/* there has to be one */
   1449 	if (ump->fileset_desc == NULL)
   1450 		return ENOENT;
   1451 
   1452 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   1453 
   1454 	/*
   1455 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   1456 	 * the system stream dir. Some files in the system streamdir are not
   1457 	 * wanted in this implementation since they are not maintained. If
   1458 	 * writing is enabled we'll delete these files if they exist.
   1459 	 */
   1460 
   1461 	rootdir_node = streamdir_node = NULL;
   1462 	dir_loc = NULL;
   1463 
   1464 	/* try to read in the rootdir */
   1465 	dir_loc = &ump->fileset_desc->rootdir_icb;
   1466 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   1467 	if (error)
   1468 		return ENOENT;
   1469 
   1470 	/* aparently it read in fine */
   1471 
   1472 	/*
   1473 	 * Try the system stream directory; not very likely in the ones we
   1474 	 * test, but for completeness.
   1475 	 */
   1476 	dir_loc = &ump->fileset_desc->streamdir_icb;
   1477 	if (udf_rw32(dir_loc->len)) {
   1478 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   1479 		if (error)
   1480 			printf("udf mount: streamdir defined but ignored\n");
   1481 		if (!error) {
   1482 			/*
   1483 			 * TODO process streamdir `baddies' i.e. files we dont
   1484 			 * want if R/W
   1485 			 */
   1486 		}
   1487 	}
   1488 
   1489 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   1490 
   1491 	/* release the vnodes again; they'll be auto-recycled later */
   1492 	if (streamdir_node) {
   1493 		vput(streamdir_node->vnode);
   1494 	}
   1495 	if (rootdir_node) {
   1496 		vput(rootdir_node->vnode);
   1497 	}
   1498 
   1499 	return 0;
   1500 }
   1501 
   1502 /* --------------------------------------------------------------------- */
   1503 
   1504 int
   1505 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
   1506 		   uint32_t *lb_numres, uint32_t *extres)
   1507 {
   1508 	struct part_desc       *pdesc;
   1509 	struct spare_map_entry *sme;
   1510 	uint32_t *trans;
   1511 	uint32_t  lb_num, lb_rel, lb_packet;
   1512 	int rel, vpart, part;
   1513 
   1514 	assert(ump && icb_loc && lb_numres);
   1515 
   1516 	vpart  = udf_rw16(icb_loc->loc.part_num);
   1517 	lb_num = udf_rw32(icb_loc->loc.lb_num);
   1518 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
   1519 		return EINVAL;
   1520 
   1521 	switch (ump->vtop_tp[vpart]) {
   1522 	case UDF_VTOP_TYPE_RAW :
   1523 		/* 1:1 to the end of the device */
   1524 		*lb_numres = lb_num;
   1525 		*extres = INT_MAX;
   1526 		return 0;
   1527 	case UDF_VTOP_TYPE_PHYS :
   1528 		/* transform into its disc logical block */
   1529 		part = ump->vtop[vpart];
   1530 		pdesc = ump->partitions[part];
   1531 		if (lb_num > udf_rw32(pdesc->part_len))
   1532 			return EINVAL;
   1533 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1534 
   1535 		/* extent from here to the end of the partition */
   1536 		*extres = udf_rw32(pdesc->part_len) - lb_num;
   1537 		return 0;
   1538 	case UDF_VTOP_TYPE_VIRT :
   1539 		/* only maps one sector, lookup in VAT */
   1540 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
   1541 			return EINVAL;
   1542 
   1543 		/* lookup in virtual allocation table */
   1544 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
   1545 		lb_num = udf_rw32(trans[lb_num]);
   1546 
   1547 		/* transform into its disc logical block */
   1548 		part = ump->vtop[vpart];
   1549 		pdesc = ump->partitions[part];
   1550 		if (lb_num > udf_rw32(pdesc->part_len))
   1551 			return EINVAL;
   1552 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1553 
   1554 		/* just one logical block */
   1555 		*extres = 1;
   1556 		return 0;
   1557 	case UDF_VTOP_TYPE_SPARABLE :
   1558 		/* check if the packet containing the lb_num is remapped */
   1559 		lb_packet = lb_num / ump->sparable_packet_len;
   1560 		lb_rel    = lb_num % ump->sparable_packet_len;
   1561 
   1562 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
   1563 			sme = &ump->sparing_table->entries[rel];
   1564 			if (lb_packet == udf_rw32(sme->org)) {
   1565 				/* NOTE maps to absolute disc logical block! */
   1566 				*lb_numres = udf_rw32(sme->map) + lb_rel;
   1567 				*extres    = ump->sparable_packet_len - lb_rel;
   1568 				return 0;
   1569 			}
   1570 		}
   1571 
   1572 		/* transform into its disc logical block */
   1573 		part = ump->vtop[vpart];
   1574 		pdesc = ump->partitions[part];
   1575 		if (lb_num > udf_rw32(pdesc->part_len))
   1576 			return EINVAL;
   1577 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1578 
   1579 		/* rest of block */
   1580 		*extres = ump->sparable_packet_len - lb_rel;
   1581 		return 0;
   1582 	case UDF_VTOP_TYPE_META :
   1583 	default:
   1584 		printf("UDF vtop translation scheme %d unimplemented yet\n",
   1585 			ump->vtop_tp[vpart]);
   1586 	}
   1587 
   1588 	return EINVAL;
   1589 }
   1590 
   1591 /* --------------------------------------------------------------------- */
   1592 
   1593 /* To make absolutely sure we are NOT returning zero, add one :) */
   1594 
   1595 long
   1596 udf_calchash(struct long_ad *icbptr)
   1597 {
   1598 	/* ought to be enough since each mountpoint has its own chain */
   1599 	return udf_rw32(icbptr->loc.lb_num) + 1;
   1600 }
   1601 
   1602 /* --------------------------------------------------------------------- */
   1603 
   1604 static struct udf_node *
   1605 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
   1606 {
   1607 	struct udf_node *unp;
   1608 	struct vnode *vp;
   1609 	uint32_t hashline;
   1610 
   1611 loop:
   1612 	simple_lock(&ump->ihash_slock);
   1613 
   1614 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   1615 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
   1616 		assert(unp);
   1617 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
   1618 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
   1619 			vp = unp->vnode;
   1620 			assert(vp);
   1621 			simple_lock(&vp->v_interlock);
   1622 			simple_unlock(&ump->ihash_slock);
   1623 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   1624 				goto loop;
   1625 			return unp;
   1626 		}
   1627 	}
   1628 	simple_unlock(&ump->ihash_slock);
   1629 
   1630 	return NULL;
   1631 }
   1632 
   1633 /* --------------------------------------------------------------------- */
   1634 
   1635 static void
   1636 udf_hashins(struct udf_node *unp)
   1637 {
   1638 	struct udf_mount *ump;
   1639 	uint32_t hashline;
   1640 
   1641 	ump = unp->ump;
   1642 	simple_lock(&ump->ihash_slock);
   1643 
   1644 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
   1645 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
   1646 
   1647 	simple_unlock(&ump->ihash_slock);
   1648 }
   1649 
   1650 /* --------------------------------------------------------------------- */
   1651 
   1652 static void
   1653 udf_hashrem(struct udf_node *unp)
   1654 {
   1655 	struct udf_mount *ump;
   1656 
   1657 	ump = unp->ump;
   1658 	simple_lock(&ump->ihash_slock);
   1659 
   1660 	LIST_REMOVE(unp, hashchain);
   1661 
   1662 	simple_unlock(&ump->ihash_slock);
   1663 }
   1664 
   1665 /* --------------------------------------------------------------------- */
   1666 
   1667 int
   1668 udf_dispose_locked_node(struct udf_node *node)
   1669 {
   1670 	if (!node)
   1671 		return 0;
   1672 	if (node->vnode)
   1673 		VOP_UNLOCK(node->vnode, 0);
   1674 	return udf_dispose_node(node);
   1675 }
   1676 
   1677 /* --------------------------------------------------------------------- */
   1678 
   1679 int
   1680 udf_dispose_node(struct udf_node *node)
   1681 {
   1682 	struct vnode *vp;
   1683 
   1684 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
   1685 	if (!node) {
   1686 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   1687 		return 0;
   1688 	}
   1689 
   1690 	vp  = node->vnode;
   1691 
   1692 	/* TODO extended attributes and streamdir */
   1693 
   1694 	/* remove from our hash lookup table */
   1695 	udf_hashrem(node);
   1696 
   1697 	/* dissociate our udf_node from the vnode */
   1698 	vp->v_data = NULL;
   1699 
   1700 	/* free associated memory and the node itself */
   1701 	if (node->fe)
   1702 		pool_put(node->ump->desc_pool, node->fe);
   1703 	if (node->efe)
   1704 		pool_put(node->ump->desc_pool, node->efe);
   1705 	pool_put(&udf_node_pool, node);
   1706 
   1707 	return 0;
   1708 }
   1709 
   1710 /* --------------------------------------------------------------------- */
   1711 
   1712 /*
   1713  * Genfs interfacing
   1714  *
   1715  * static const struct genfs_ops udffs_genfsops = {
   1716  * 	.gop_size = genfs_size,
   1717  * 		size of transfers
   1718  * 	.gop_alloc = udf_gop_alloc,
   1719  * 		unknown
   1720  * 	.gop_write = genfs_gop_write,
   1721  * 		putpages interface code
   1722  * 	.gop_markupdate = udf_gop_markupdate,
   1723  * 		set update/modify flags etc.
   1724  * }
   1725  */
   1726 
   1727 /*
   1728  * Genfs interface. These four functions are the only ones defined though not
   1729  * documented... great.... why is chosen for the `.' initialisers i dont know
   1730  * but other filingsystems seem to use it this way.
   1731  */
   1732 
   1733 static int
   1734 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
   1735     kauth_cred_t cred)
   1736 {
   1737 	return 0;
   1738 }
   1739 
   1740 
   1741 static void
   1742 udf_gop_markupdate(struct vnode *vp, int flags)
   1743 {
   1744 	struct udf_node *udf_node = VTOI(vp);
   1745 	u_long mask;
   1746 
   1747 	udf_node = udf_node;	/* shut up gcc */
   1748 
   1749 	mask = 0;
   1750 #ifdef notyet
   1751 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   1752 		mask = UDF_SET_ACCESS;
   1753 	}
   1754 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   1755 		mask |= UDF_SET_UPDATE;
   1756 	}
   1757 	if (mask) {
   1758 		udf_node->update_flag |= mask;
   1759 	}
   1760 #endif
   1761 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
   1762 }
   1763 
   1764 
   1765 static const struct genfs_ops udf_genfsops = {
   1766 	.gop_size = genfs_size,
   1767 	.gop_alloc = udf_gop_alloc,
   1768 	.gop_write = genfs_gop_write,
   1769 	.gop_markupdate = udf_gop_markupdate,
   1770 };
   1771 
   1772 /* --------------------------------------------------------------------- */
   1773 
   1774 /*
   1775  * Each node can have an attached streamdir node though not
   1776  * recursively. These are otherwise known as named substreams/named
   1777  * extended attributes that have no size limitations.
   1778  *
   1779  * `Normal' extended attributes are indicated with a number and are recorded
   1780  * in either the fe/efe descriptor itself for small descriptors or recorded in
   1781  * the attached extended attribute file. Since this file can get fragmented,
   1782  * care ought to be taken.
   1783  */
   1784 
   1785 int
   1786 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   1787 	     struct udf_node **noderes)
   1788 {
   1789 	union dscrptr   *dscr, *tmpdscr;
   1790 	struct udf_node *node;
   1791 	struct vnode    *nvp;
   1792 	struct long_ad   icb_loc;
   1793 	extern int (**udf_vnodeop_p)(void *);
   1794 	uint64_t file_size;
   1795 	uint32_t lb_size, sector, dummy;
   1796 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   1797 	int error;
   1798 
   1799 	DPRINTF(NODE, ("udf_get_node called\n"));
   1800 	*noderes = node = NULL;
   1801 
   1802 	/* lock to disallow simultanious creation of same node */
   1803 	lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
   1804 
   1805 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   1806 	/* lookup in hash table */
   1807 	assert(ump);
   1808 	assert(node_icb_loc);
   1809 	node = udf_hashget(ump, node_icb_loc);
   1810 	if (node) {
   1811 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   1812 		/* vnode is returned locked */
   1813 		*noderes = node;
   1814 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1815 		return 0;
   1816 	}
   1817 
   1818 	/* garbage check: translate node_icb_loc to sectornr */
   1819 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   1820 	if (error) {
   1821 		/* no use, this will fail anyway */
   1822 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1823 		return EINVAL;
   1824 	}
   1825 
   1826 	/* build node (do initialise!) */
   1827 	node = pool_get(&udf_node_pool, PR_WAITOK);
   1828 	memset(node, 0, sizeof(struct udf_node));
   1829 
   1830 	DPRINTF(NODE, ("\tget new vnode\n"));
   1831 	/* give it a vnode */
   1832 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   1833         if (error) {
   1834 		pool_put(&udf_node_pool, node);
   1835 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1836 		return error;
   1837 	}
   1838 
   1839 	/* allways return locked vnode */
   1840 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   1841 		/* recycle vnode and unlock; simultanious will fail too */
   1842 		ungetnewvnode(nvp);
   1843 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1844 		return error;
   1845 	}
   1846 
   1847 	/* initialise crosslinks, note location of fe/efe for hashing */
   1848 	node->ump    =  ump;
   1849 	node->vnode  =  nvp;
   1850 	nvp->v_data  =  node;
   1851 	node->loc    = *node_icb_loc;
   1852 	node->lockf  =  0;
   1853 
   1854 	/* insert into the hash lookup */
   1855 	udf_hashins(node);
   1856 
   1857 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   1858 	lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1859 
   1860 	icb_loc = *node_icb_loc;
   1861 	needs_indirect = 0;
   1862 	strat4096 = 0;
   1863 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   1864 	file_size = 0;
   1865 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1866 
   1867 	do {
   1868 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
   1869 		if (error)
   1870 			break;
   1871 
   1872 		/* try to read in fe/efe */
   1873 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
   1874 
   1875 		/* blank sector marks end of sequence, check this */
   1876 		if ((tmpdscr == NULL) &&  (!strat4096))
   1877 			error = ENOENT;
   1878 
   1879 		/* break if read error or blank sector */
   1880 		if (error || (tmpdscr == NULL))
   1881 			break;
   1882 
   1883 		/* process descriptor based on the descriptor type */
   1884 		dscr_type = udf_rw16(tmpdscr->tag.id);
   1885 
   1886 		/* if dealing with an indirect entry, follow the link */
   1887 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
   1888 			needs_indirect = 0;
   1889 			icb_loc = tmpdscr->inde.indirect_icb;
   1890 			free(tmpdscr, M_UDFTEMP);
   1891 			continue;
   1892 		}
   1893 
   1894 		/* only file entries and extended file entries allowed here */
   1895 		if ((dscr_type != TAGID_FENTRY) &&
   1896 		    (dscr_type != TAGID_EXTFENTRY)) {
   1897 			free(tmpdscr, M_UDFTEMP);
   1898 			error = ENOENT;
   1899 			break;
   1900 		}
   1901 
   1902 		/* get descriptor space from our pool */
   1903 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
   1904 
   1905 		dscr = pool_get(ump->desc_pool, PR_WAITOK);
   1906 		memcpy(dscr, tmpdscr, lb_size);
   1907 		free(tmpdscr, M_UDFTEMP);
   1908 
   1909 		/* record and process/update (ext)fentry */
   1910 		if (dscr_type == TAGID_FENTRY) {
   1911 			if (node->fe)
   1912 				pool_put(ump->desc_pool, node->fe);
   1913 			node->fe  = &dscr->fe;
   1914 			strat = udf_rw16(node->fe->icbtag.strat_type);
   1915 			udf_file_type = node->fe->icbtag.file_type;
   1916 			file_size = udf_rw64(node->fe->inf_len);
   1917 		} else {
   1918 			if (node->efe)
   1919 				pool_put(ump->desc_pool, node->efe);
   1920 			node->efe = &dscr->efe;
   1921 			strat = udf_rw16(node->efe->icbtag.strat_type);
   1922 			udf_file_type = node->efe->icbtag.file_type;
   1923 			file_size = udf_rw64(node->efe->inf_len);
   1924 		}
   1925 
   1926 		/* check recording strategy (structure) */
   1927 
   1928 		/*
   1929 		 * Strategy 4096 is a daisy linked chain terminating with an
   1930 		 * unrecorded sector or a TERM descriptor. The next
   1931 		 * descriptor is to be found in the sector that follows the
   1932 		 * current sector.
   1933 		 */
   1934 		if (strat == 4096) {
   1935 			strat4096 = 1;
   1936 			needs_indirect = 1;
   1937 
   1938 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   1939 		}
   1940 
   1941 		/*
   1942 		 * Strategy 4 is the normal strategy and terminates, but if
   1943 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   1944 		 */
   1945 
   1946 		if (strat == 4) {
   1947 			if (strat4096) {
   1948 				error = EINVAL;
   1949 				break;
   1950 			}
   1951 			break;		/* done */
   1952 		}
   1953 	} while (!error);
   1954 
   1955 	if (error) {
   1956 		/* recycle udf_node */
   1957 		udf_dispose_node(node);
   1958 
   1959 		/* recycle vnode */
   1960 		nvp->v_data = NULL;
   1961 		ungetnewvnode(nvp);
   1962 
   1963 		return EINVAL;		/* error code ok? */
   1964 	}
   1965 
   1966 	/* post process and initialise node */
   1967 
   1968 	/* assert no references to dscr anymore beyong this point */
   1969 	assert((node->fe) || (node->efe));
   1970 	dscr = NULL;
   1971 
   1972 	/*
   1973 	 * Record where to record an updated version of the descriptor. If
   1974 	 * there is a sequence of indirect entries, icb_loc will have been
   1975 	 * updated. Its the write disipline to allocate new space and to make
   1976 	 * sure the chain is maintained.
   1977 	 *
   1978 	 * `needs_indirect' flags if the next location is to be filled with
   1979 	 * with an indirect entry.
   1980 	 */
   1981 	node->next_loc = icb_loc;
   1982 	node->needs_indirect = needs_indirect;
   1983 
   1984 	/*
   1985 	 * Translate UDF filetypes into vnode types.
   1986 	 *
   1987 	 * Systemfiles like the meta main and mirror files are not treated as
   1988 	 * normal files, so we type them as having no type. UDF dictates that
   1989 	 * they are not allowed to be visible.
   1990 	 */
   1991 
   1992 	/* TODO specfs, fifofs etc etc. vnops setting */
   1993 	switch (udf_file_type) {
   1994 	case UDF_ICB_FILETYPE_DIRECTORY :
   1995 	case UDF_ICB_FILETYPE_STREAMDIR :
   1996 		nvp->v_type = VDIR;
   1997 		break;
   1998 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   1999 		nvp->v_type = VBLK;
   2000 		break;
   2001 	case UDF_ICB_FILETYPE_CHARDEVICE :
   2002 		nvp->v_type = VCHR;
   2003 		break;
   2004 	case UDF_ICB_FILETYPE_SYMLINK :
   2005 		nvp->v_type = VLNK;
   2006 		break;
   2007 	case UDF_ICB_FILETYPE_META_MAIN :
   2008 	case UDF_ICB_FILETYPE_META_MIRROR :
   2009 		nvp->v_type = VNON;
   2010 		break;
   2011 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2012 		nvp->v_type = VREG;
   2013 		break;
   2014 	default:
   2015 		/* YIKES, either a block/char device, fifo or something else */
   2016 		nvp->v_type = VNON;
   2017 	}
   2018 
   2019 	/* initialise genfs */
   2020 	genfs_node_init(nvp, &udf_genfsops);
   2021 
   2022 	/* don't forget to set vnode's v_size */
   2023 	nvp->v_size = file_size;
   2024 
   2025 	/* TODO ext attr and streamdir nodes */
   2026 
   2027 	*noderes = node;
   2028 
   2029 	return 0;
   2030 }
   2031 
   2032 /* --------------------------------------------------------------------- */
   2033 
   2034 /* UDF<->unix converters */
   2035 
   2036 /* --------------------------------------------------------------------- */
   2037 
   2038 static mode_t
   2039 udf_perm_to_unix_mode(uint32_t perm)
   2040 {
   2041 	mode_t mode;
   2042 
   2043 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   2044 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   2045 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   2046 
   2047 	return mode;
   2048 }
   2049 
   2050 /* --------------------------------------------------------------------- */
   2051 
   2052 #ifdef notyet
   2053 static uint32_t
   2054 unix_mode_to_udf_perm(mode_t mode)
   2055 {
   2056 	uint32_t perm;
   2057 
   2058 	perm  = ((mode & S_IRWXO)     );
   2059 	perm |= ((mode & S_IRWXG) << 2);
   2060 	perm |= ((mode & S_IRWXU) << 4);
   2061 	perm |= ((mode & S_IWOTH) << 3);
   2062 	perm |= ((mode & S_IWGRP) << 5);
   2063 	perm |= ((mode & S_IWUSR) << 7);
   2064 
   2065 	return perm;
   2066 }
   2067 #endif
   2068 
   2069 /* --------------------------------------------------------------------- */
   2070 
   2071 static uint32_t
   2072 udf_icb_to_unix_filetype(uint32_t icbftype)
   2073 {
   2074 	switch (icbftype) {
   2075 	case UDF_ICB_FILETYPE_DIRECTORY :
   2076 	case UDF_ICB_FILETYPE_STREAMDIR :
   2077 		return S_IFDIR;
   2078 	case UDF_ICB_FILETYPE_FIFO :
   2079 		return S_IFIFO;
   2080 	case UDF_ICB_FILETYPE_CHARDEVICE :
   2081 		return S_IFCHR;
   2082 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   2083 		return S_IFBLK;
   2084 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2085 		return S_IFREG;
   2086 	case UDF_ICB_FILETYPE_SYMLINK :
   2087 		return S_IFLNK;
   2088 	case UDF_ICB_FILETYPE_SOCKET :
   2089 		return S_IFSOCK;
   2090 	}
   2091 	/* no idea what this is */
   2092 	return 0;
   2093 }
   2094 
   2095 /* --------------------------------------------------------------------- */
   2096 
   2097 /* TODO KNF-ify */
   2098 
   2099 void
   2100 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
   2101 {
   2102 	uint16_t *raw_name, *unix_name;
   2103 	uint16_t *inchp, ch;
   2104 	uint8_t	 *outchp;
   2105 	int       ucode_chars, nice_uchars;
   2106 
   2107 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   2108 	unix_name = raw_name + 1024;			/* split space in half */
   2109 	assert(sizeof(char) == sizeof(uint8_t));
   2110 	outchp = (uint8_t *) result;
   2111 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2112 		*raw_name = *unix_name = 0;
   2113 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   2114 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   2115 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   2116 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   2117 			ch = *inchp;
   2118 			/* XXX sloppy unicode -> latin */
   2119 			*outchp++ = ch & 255;
   2120 			if (!ch) break;
   2121 		}
   2122 		*outchp++ = 0;
   2123 	} else {
   2124 		/* assume 8bit char length byte latin-1 */
   2125 		assert(*id == 8);
   2126 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   2127 	}
   2128 	free(raw_name, M_UDFTEMP);
   2129 }
   2130 
   2131 /* --------------------------------------------------------------------- */
   2132 
   2133 /* TODO KNF-ify */
   2134 
   2135 void
   2136 unix_to_udf_name(char *result, char *name,
   2137 		 uint8_t *result_len, struct charspec *chsp)
   2138 {
   2139 	uint16_t *raw_name;
   2140 	int       udf_chars, name_len;
   2141 	char     *inchp;
   2142 	uint16_t *outchp;
   2143 
   2144 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   2145 	/* convert latin-1 or whatever to unicode-16 */
   2146 	*raw_name = 0;
   2147 	name_len  = 0;
   2148 	inchp  = name;
   2149 	outchp = raw_name;
   2150 	while (*inchp) {
   2151 		*outchp++ = (uint16_t) (*inchp++);
   2152 		name_len++;
   2153 	}
   2154 
   2155 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2156 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
   2157 	} else {
   2158 		/* XXX assume 8bit char length byte latin-1 */
   2159 		*result++ = 8; udf_chars = 1;
   2160 		strncpy(result, name + 1, strlen(name+1));
   2161 		udf_chars += strlen(name);
   2162 	}
   2163 	*result_len = udf_chars;
   2164 	free(raw_name, M_UDFTEMP);
   2165 }
   2166 
   2167 /* --------------------------------------------------------------------- */
   2168 
   2169 /*
   2170  * Timestamp to timespec conversion code is taken with small modifications
   2171  * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
   2172  * permission from Scott.
   2173  */
   2174 
   2175 static int mon_lens[2][12] = {
   2176 	{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
   2177 	{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
   2178 };
   2179 
   2180 
   2181 static int
   2182 udf_isaleapyear(int year)
   2183 {
   2184 	int i;
   2185 
   2186 	i  = (year % 4) ? 0 : 1;
   2187 	i &= (year % 100) ? 1 : 0;
   2188 	i |= (year % 400) ? 0 : 1;
   2189 
   2190 	return i;
   2191 }
   2192 
   2193 
   2194 void
   2195 udf_timestamp_to_timespec(struct udf_mount *ump,
   2196 			  struct timestamp *timestamp,
   2197 		          struct timespec  *timespec)
   2198 {
   2199 	uint32_t usecs, secs, nsecs;
   2200 	uint16_t tz;
   2201 	int i, lpyear, daysinyear, year;
   2202 
   2203 	timespec->tv_sec  = secs  = 0;
   2204 	timespec->tv_nsec = nsecs = 0;
   2205 
   2206        /*
   2207 	* DirectCD seems to like using bogus year values.
   2208 	*
   2209 	* Distrust time->month especially, since it will be used for an array
   2210 	* index.
   2211 	*/
   2212 	year = udf_rw16(timestamp->year);
   2213 	if ((year < 1970) || (timestamp->month > 12)) {
   2214 		return;
   2215 	}
   2216 
   2217 	/* Calculate the time and day
   2218 	 * Day is 1-31, Month is 1-12
   2219 	 */
   2220 
   2221 	usecs = timestamp->usec +
   2222 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   2223 	nsecs = usecs * 1000;
   2224 	secs  = timestamp->second;
   2225 	secs += timestamp->minute * 60;
   2226 	secs += timestamp->hour * 3600;
   2227 	secs += (timestamp->day-1) * 3600 * 24;
   2228 
   2229 	/* Calclulate the month */
   2230 	lpyear = udf_isaleapyear(year);
   2231 	for (i = 1; i < timestamp->month; i++)
   2232 		secs += mon_lens[lpyear][i-1] * 3600 * 24;
   2233 
   2234 	for (i = 1970; i < year; i++) {
   2235 		daysinyear = udf_isaleapyear(i) + 365 ;
   2236 		secs += daysinyear * 3600 * 24;
   2237 	}
   2238 
   2239 	/*
   2240 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   2241 	 * compliment, so we gotta do some extra magic to handle it right.
   2242 	 */
   2243 	tz  = udf_rw16(timestamp->type_tz);
   2244 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   2245 	if (tz & 0x0800)		/* sign extention */
   2246 		tz |= 0xf000;
   2247 
   2248 	/* TODO check timezone conversion */
   2249 	/* check if we are specified a timezone to convert */
   2250 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   2251 		if ((int16_t) tz != -2047)
   2252 			secs -= (int16_t) tz * 60;
   2253 	} else {
   2254 		secs -= ump->mount_args.gmtoff;
   2255 	}
   2256 
   2257 	timespec->tv_sec  = secs;
   2258 	timespec->tv_nsec = nsecs;
   2259 }
   2260 
   2261 /* --------------------------------------------------------------------- */
   2262 
   2263 /*
   2264  * Attribute and filetypes converters with get/set pairs
   2265  */
   2266 
   2267 uint32_t
   2268 udf_getaccessmode(struct udf_node *udf_node)
   2269 {
   2270 	struct file_entry *fe;
   2271 	struct extfile_entry *efe;
   2272 	uint32_t udf_perm, icbftype;
   2273 	uint32_t mode, ftype;
   2274 	uint16_t icbflags;
   2275 
   2276 	if (udf_node->fe) {
   2277 		fe = udf_node->fe;
   2278 		udf_perm = udf_rw32(fe->perm);
   2279 		icbftype = fe->icbtag.file_type;
   2280 		icbflags = udf_rw16(fe->icbtag.flags);
   2281 	} else {
   2282 		assert(udf_node->efe);
   2283 		efe = udf_node->efe;
   2284 		udf_perm = udf_rw32(efe->perm);
   2285 		icbftype = efe->icbtag.file_type;
   2286 		icbflags = udf_rw16(efe->icbtag.flags);
   2287 	}
   2288 
   2289 	mode  = udf_perm_to_unix_mode(udf_perm);
   2290 	ftype = udf_icb_to_unix_filetype(icbftype);
   2291 
   2292 	/* set suid, sgid, sticky from flags in fe/efe */
   2293 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   2294 		mode |= S_ISUID;
   2295 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   2296 		mode |= S_ISGID;
   2297 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   2298 		mode |= S_ISVTX;
   2299 
   2300 	return mode | ftype;
   2301 }
   2302 
   2303 /* --------------------------------------------------------------------- */
   2304 
   2305 /*
   2306  * Directory read and manipulation functions
   2307  */
   2308 
   2309 int
   2310 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   2311 		       struct long_ad *icb_loc)
   2312 {
   2313 	struct udf_node  *dir_node = VTOI(vp);
   2314 	struct file_entry    *fe;
   2315 	struct extfile_entry *efe;
   2316 	struct fileid_desc *fid;
   2317 	struct dirent dirent;
   2318 	uint64_t file_size, diroffset;
   2319 	uint32_t lb_size;
   2320 	int found, error;
   2321 
   2322 	/* get directory filesize */
   2323 	if (dir_node->fe) {
   2324 		fe = dir_node->fe;
   2325 		file_size = udf_rw64(fe->inf_len);
   2326 	} else {
   2327 		assert(dir_node->efe);
   2328 		efe = dir_node->efe;
   2329 		file_size = udf_rw64(efe->inf_len);
   2330 	}
   2331 
   2332 	/* allocate temporary space for fid */
   2333 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   2334 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   2335 
   2336 	found = 0;
   2337 	diroffset = 0;
   2338 	while (!found && (diroffset < file_size)) {
   2339 		/* transfer a new fid/dirent */
   2340 		error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
   2341 		if (error)
   2342 			break;
   2343 
   2344 		/* skip deleted entries */
   2345 		if (fid->file_char & UDF_FILE_CHAR_DEL)
   2346 			continue;
   2347 
   2348 		if ((strlen(dirent.d_name) == namelen) &&
   2349 		    (strncmp(dirent.d_name, name, namelen) == 0)) {
   2350 			found = 1;
   2351 			*icb_loc = fid->icb;
   2352 		}
   2353 	}
   2354 	free(fid, M_TEMP);
   2355 
   2356 	return found;
   2357 }
   2358 
   2359 /* --------------------------------------------------------------------- */
   2360 
   2361 /*
   2362  * Read one fid and process it into a dirent and advance to the next (*fid)
   2363  * has to be allocated a logical block in size, (*dirent) struct dirent length
   2364  */
   2365 
   2366 int
   2367 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   2368 		    struct fileid_desc *fid, struct dirent *dirent)
   2369 {
   2370 	struct udf_node  *dir_node = VTOI(vp);
   2371 	struct udf_mount *ump = dir_node->ump;
   2372 	struct file_entry    *fe;
   2373 	struct extfile_entry *efe;
   2374 	struct uio    dir_uio;
   2375 	struct iovec  dir_iovec;
   2376 	uint32_t      entry_length, lb_size;
   2377 	uint64_t      file_size;
   2378 	char         *fid_name;
   2379 	int           enough, error;
   2380 
   2381 	assert(fid);
   2382 	assert(dirent);
   2383 	assert(dir_node);
   2384 	assert(offset);
   2385 	assert(*offset != 1);
   2386 
   2387 	DPRINTF(FIDS, ("read_fid_stream called\n"));
   2388 	/* check if we're past the end of the directory */
   2389 	if (dir_node->fe) {
   2390 		fe = dir_node->fe;
   2391 		file_size = udf_rw64(fe->inf_len);
   2392 	} else {
   2393 		assert(dir_node->efe);
   2394 		efe = dir_node->efe;
   2395 		file_size = udf_rw64(efe->inf_len);
   2396 	}
   2397 	if (*offset >= file_size)
   2398 		return EINVAL;
   2399 
   2400 	/* get maximum length of FID descriptor */
   2401 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2402 
   2403 	/* initialise return values */
   2404 	entry_length = 0;
   2405 	memset(dirent, 0, sizeof(struct dirent));
   2406 	memset(fid, 0, lb_size);
   2407 
   2408 	/* TODO use vn_rdwr instead of creating our own uio */
   2409 	/* read part of the directory */
   2410 	memset(&dir_uio, 0, sizeof(struct uio));
   2411 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
   2412 	dir_uio.uio_iovcnt = 1;
   2413 	dir_uio.uio_iov    = &dir_iovec;
   2414 	UIO_SETUP_SYSSPACE(&dir_uio);
   2415 	dir_iovec.iov_base = fid;
   2416 	dir_iovec.iov_len  = lb_size;
   2417 	dir_uio.uio_offset = *offset;
   2418 
   2419 	/* limit length of read in piece */
   2420 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
   2421 
   2422 	/* read the part into the fid space */
   2423 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
   2424 	if (error)
   2425 		return error;
   2426 
   2427 	/*
   2428 	 * Check if we got a whole descriptor.
   2429 	 * XXX Try to `resync' directory stream when something is very wrong.
   2430 	 *
   2431 	 */
   2432 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
   2433 	if (!enough) {
   2434 		/* short dir ... */
   2435 		return EIO;
   2436 	}
   2437 
   2438 	/* check if our FID header is OK */
   2439 	error = udf_check_tag(fid);
   2440 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
   2441 	if (!error) {
   2442 		if (udf_rw16(fid->tag.id) != TAGID_FID)
   2443 			error = ENOENT;
   2444 	}
   2445 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
   2446 
   2447 	/* check for length */
   2448 	if (!error) {
   2449 		entry_length = udf_fidsize(fid, lb_size);
   2450 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
   2451 	}
   2452 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
   2453 	    entry_length, enough?"yes":"no"));
   2454 
   2455 	if (!enough) {
   2456 		/* short dir ... bomb out */
   2457 		return EIO;
   2458 	}
   2459 
   2460 	/* check FID contents */
   2461 	if (!error) {
   2462 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   2463 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
   2464 	}
   2465 	if (error) {
   2466 		/* note that is sometimes a bit quick to report */
   2467 		printf("BROKEN DIRECTORY ENTRY\n");
   2468 		/* RESYNC? */
   2469 		/* TODO: use udf_resync_fid_stream */
   2470 		return EIO;
   2471 	}
   2472 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   2473 
   2474 	/* we got a whole and valid descriptor! */
   2475 
   2476 	/* create resulting dirent structure */
   2477 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   2478 	udf_to_unix_name(dirent->d_name,
   2479 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   2480 
   2481 	/* '..' has no name, so provide one */
   2482 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   2483 		strcpy(dirent->d_name, "..");
   2484 
   2485 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   2486 	dirent->d_namlen = strlen(dirent->d_name);
   2487 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   2488 
   2489 	/*
   2490 	 * Note that its not worth trying to go for the filetypes now... its
   2491 	 * too expensive too
   2492 	 */
   2493 	dirent->d_type = DT_UNKNOWN;
   2494 
   2495 	/* initial guess for filetype we can make */
   2496 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   2497 		dirent->d_type = DT_DIR;
   2498 
   2499 	/* advance */
   2500 	*offset += entry_length;
   2501 
   2502 	return error;
   2503 }
   2504 
   2505 /* --------------------------------------------------------------------- */
   2506 
   2507 /*
   2508  * block based file reading and writing
   2509  */
   2510 
   2511 static int
   2512 udf_read_internal(struct udf_node *node, uint8_t *blob)
   2513 {
   2514 	struct udf_mount *ump;
   2515 	struct file_entry *fe;
   2516 	struct extfile_entry *efe;
   2517 	uint64_t inflen;
   2518 	uint32_t sector_size;
   2519 	uint8_t  *pos;
   2520 	int icbflags, addr_type;
   2521 
   2522 	/* shut up gcc */
   2523 	inflen = addr_type = icbflags = 0;
   2524 	pos = NULL;
   2525 
   2526 	/* get extent and do some paranoia checks */
   2527 	ump = node->ump;
   2528 	sector_size = ump->discinfo.sector_size;
   2529 
   2530 	fe  = node->fe;
   2531 	efe = node->efe;
   2532 	if (fe) {
   2533 		inflen   = udf_rw64(fe->inf_len);
   2534 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2535 		icbflags = udf_rw16(fe->icbtag.flags);
   2536 	}
   2537 	if (efe) {
   2538 		inflen   = udf_rw64(efe->inf_len);
   2539 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2540 		icbflags = udf_rw16(efe->icbtag.flags);
   2541 	}
   2542 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2543 
   2544 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   2545 	assert(inflen < sector_size);
   2546 
   2547 	/* copy out info */
   2548 	memset(blob, 0, sector_size);
   2549 	memcpy(blob, pos, inflen);
   2550 
   2551 	return 0;
   2552 }
   2553 
   2554 /* --------------------------------------------------------------------- */
   2555 
   2556 /*
   2557  * Read file extent reads an extent specified in sectors from the file. It is
   2558  * sector based; i.e. no `fancy' offsets.
   2559  */
   2560 
   2561 int
   2562 udf_read_file_extent(struct udf_node *node,
   2563 		     uint32_t from, uint32_t sectors,
   2564 		     uint8_t *blob)
   2565 {
   2566 	struct buf buf;
   2567 	uint32_t sector_size;
   2568 
   2569 	BUF_INIT(&buf);
   2570 
   2571 	sector_size = node->ump->discinfo.sector_size;
   2572 
   2573 	buf.b_bufsize = sectors * sector_size;
   2574 	buf.b_data    = blob;
   2575 	buf.b_bcount  = buf.b_bufsize;
   2576 	buf.b_resid   = buf.b_bcount;
   2577 	buf.b_flags   = B_BUSY | B_READ;
   2578 	buf.b_vp      = node->vnode;
   2579 	buf.b_proc    = NULL;
   2580 
   2581 	buf.b_blkno  = from;
   2582 	buf.b_lblkno = 0;
   2583 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
   2584 
   2585 	udf_read_filebuf(node, &buf);
   2586 	return biowait(&buf);
   2587 }
   2588 
   2589 
   2590 /* --------------------------------------------------------------------- */
   2591 
   2592 /*
   2593  * Read file extent in the buffer.
   2594  *
   2595  * The splitup of the extent into seperate request-buffers is to minimise
   2596  * copying around as much as possible.
   2597  */
   2598 
   2599 
   2600 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
   2601 #define FILEBUFSECT 128
   2602 
   2603 void
   2604 udf_read_filebuf(struct udf_node *node, struct buf *buf)
   2605 {
   2606 	struct buf *nestbuf;
   2607 	uint64_t   *mapping;
   2608 	uint64_t    run_start;
   2609 	uint32_t    sector_size;
   2610 	uint32_t    buf_offset, sector, rbuflen, rblk;
   2611 	uint8_t    *buf_pos;
   2612 	int error, run_length;
   2613 
   2614 	uint32_t  from;
   2615 	uint32_t  sectors;
   2616 
   2617 	sector_size = node->ump->discinfo.sector_size;
   2618 
   2619 	from    = buf->b_blkno;
   2620 	sectors = buf->b_bcount / sector_size;
   2621 
   2622 	/* assure we have enough translation slots */
   2623 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
   2624 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
   2625 
   2626 	if (sectors > FILEBUFSECT) {
   2627 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   2628 		buf->b_error  = EIO;
   2629 		buf->b_flags |= B_ERROR;
   2630 		biodone(buf);
   2631 		return;
   2632 	}
   2633 
   2634 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
   2635 
   2636 	error = 0;
   2637 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   2638 	error = udf_translate_file_extent(node, from, sectors, mapping);
   2639 	if (error) {
   2640 		buf->b_error  = error;
   2641 		buf->b_flags |= B_ERROR;
   2642 		biodone(buf);
   2643 		goto out;
   2644 	}
   2645 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   2646 
   2647 	/* pre-check if internal or parts are zero */
   2648 	if (*mapping == UDF_TRANS_INTERN) {
   2649 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
   2650 		if (error) {
   2651 			buf->b_error  = error;
   2652 			buf->b_flags |= B_ERROR;
   2653 		}
   2654 		biodone(buf);
   2655 		goto out;
   2656 	}
   2657 	DPRINTF(READ, ("\tnot intern\n"));
   2658 
   2659 	/* request read-in of data from disc sheduler */
   2660 	buf->b_resid = buf->b_bcount;
   2661 	for (sector = 0; sector < sectors; sector++) {
   2662 		buf_offset = sector * sector_size;
   2663 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   2664 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   2665 
   2666 		switch (mapping[sector]) {
   2667 		case UDF_TRANS_UNMAPPED:
   2668 		case UDF_TRANS_ZERO:
   2669 			/* copy zero sector */
   2670 			memset(buf_pos, 0, sector_size);
   2671 			DPRINTF(READ, ("\treturning zero sector\n"));
   2672 			nestiobuf_done(buf, sector_size, 0);
   2673 			break;
   2674 		default :
   2675 			DPRINTF(READ, ("\tread sector "
   2676 			    "%"PRIu64"\n", mapping[sector]));
   2677 
   2678 			run_start  = mapping[sector];
   2679 			run_length = 1;
   2680 			while (sector < sectors-1) {
   2681 				if (mapping[sector+1] != mapping[sector]+1)
   2682 					break;
   2683 				run_length++;
   2684 				sector++;
   2685 			}
   2686 
   2687 			/*
   2688 			 * nest an iobuf and mark it for async reading. Since
   2689 			 * we're using nested buffers, they can't be cached by
   2690 			 * design.
   2691 			 */
   2692 			rbuflen = run_length * sector_size;
   2693 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   2694 
   2695 			nestbuf = getiobuf();
   2696 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   2697 			/* nestbuf is B_ASYNC */
   2698 
   2699 			/* CD shedules on raw blkno */
   2700 			nestbuf->b_blkno    = rblk;
   2701 			nestbuf->b_proc     = NULL;
   2702 			nestbuf->b_cylinder = 0;
   2703 			nestbuf->b_rawblkno = rblk;
   2704 			VOP_STRATEGY(node->ump->devvp, nestbuf);
   2705 		}
   2706 	}
   2707 out:
   2708 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   2709 	free(mapping, M_TEMP);
   2710 	return;
   2711 }
   2712 #undef FILEBUFSECT
   2713 
   2714 
   2715 /* --------------------------------------------------------------------- */
   2716 
   2717 /*
   2718  * Translate an extent (in sectors) into sector numbers; used for read and
   2719  * write operations. DOESNT't check extents.
   2720  */
   2721 
   2722 int
   2723 udf_translate_file_extent(struct udf_node *node,
   2724 		          uint32_t from, uint32_t pages,
   2725 			  uint64_t *map)
   2726 {
   2727 	struct udf_mount *ump;
   2728 	struct file_entry *fe;
   2729 	struct extfile_entry *efe;
   2730 	struct short_ad *s_ad;
   2731 	struct long_ad  *l_ad, t_ad;
   2732 	uint64_t transsec;
   2733 	uint32_t sector_size, transsec32;
   2734 	uint32_t overlap, translen;
   2735 	uint32_t vpart_num, lb_num, len, alloclen;
   2736 	uint8_t *pos;
   2737 	int error, flags, addr_type, icblen, icbflags;
   2738 
   2739 	if (!node)
   2740 		return ENOENT;
   2741 
   2742 	/* shut up gcc */
   2743 	alloclen = addr_type = icbflags = 0;
   2744 	pos = NULL;
   2745 
   2746 	/* do the work */
   2747 	ump = node->ump;
   2748 	sector_size = ump->discinfo.sector_size;
   2749 	fe  = node->fe;
   2750 	efe = node->efe;
   2751 	if (fe) {
   2752 		alloclen = udf_rw32(fe->l_ad);
   2753 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2754 		icbflags = udf_rw16(fe->icbtag.flags);
   2755 	}
   2756 	if (efe) {
   2757 		alloclen = udf_rw32(efe->l_ad);
   2758 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2759 		icbflags = udf_rw16(efe->icbtag.flags);
   2760 	}
   2761 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2762 
   2763 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
   2764 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
   2765 
   2766 	vpart_num = udf_rw16(node->loc.loc.part_num);
   2767 	lb_num = len = icblen = 0;	/* shut up gcc */
   2768 	while (pages && alloclen) {
   2769 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
   2770 		switch (addr_type) {
   2771 		case UDF_ICB_INTERN_ALLOC :
   2772 			/* TODO check extents? */
   2773 			*map = UDF_TRANS_INTERN;
   2774 			return 0;
   2775 		case UDF_ICB_SHORT_ALLOC :
   2776 			icblen = sizeof(struct short_ad);
   2777 			s_ad   = (struct short_ad *) pos;
   2778 			len       = udf_rw32(s_ad->len);
   2779 			lb_num    = udf_rw32(s_ad->lb_num);
   2780 			break;
   2781 		case UDF_ICB_LONG_ALLOC  :
   2782 			icblen = sizeof(struct long_ad);
   2783 			l_ad   = (struct long_ad *) pos;
   2784 			len       = udf_rw32(l_ad->len);
   2785 			lb_num    = udf_rw32(l_ad->loc.lb_num);
   2786 			vpart_num = udf_rw16(l_ad->loc.part_num);
   2787 			DPRINTFIF(TRANSLATE,
   2788 			    (l_ad->impl.im_used.flags &
   2789 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
   2790 			    ("UDF: got an `extent erased' flag in long_ad\n"));
   2791 			break;
   2792 		default:
   2793 			/* can't be here */
   2794 			return EINVAL;	/* for sure */
   2795 		}
   2796 
   2797 		/* process extent */
   2798 		flags   = UDF_EXT_FLAGS(len);
   2799 		len     = UDF_EXT_LEN(len);
   2800 
   2801 		overlap = (len + sector_size -1) / sector_size;
   2802 		if (from) {
   2803 			if (from > overlap) {
   2804 				from -= overlap;
   2805 				overlap = 0;
   2806 			} else {
   2807 				lb_num  += from;	/* advance in extent */
   2808 				overlap -= from;
   2809 				from = 0;
   2810 			}
   2811 		}
   2812 
   2813 		overlap = MIN(overlap, pages);
   2814 		while (overlap) {
   2815 			switch (flags) {
   2816 			case UDF_EXT_REDIRECT :
   2817 				/* no support for allocation extentions yet */
   2818 				/* TODO support for allocation extention */
   2819 				return ENOENT;
   2820 			case UDF_EXT_FREED :
   2821 			case UDF_EXT_FREE :
   2822 				transsec = UDF_TRANS_ZERO;
   2823 				translen = overlap;
   2824 				while (overlap && pages && translen) {
   2825 					*map++ = transsec;
   2826 					overlap--; pages--; translen--;
   2827 				}
   2828 				break;
   2829 			case UDF_EXT_ALLOCATED :
   2830 				t_ad.loc.lb_num   = udf_rw32(lb_num);
   2831 				t_ad.loc.part_num = udf_rw16(vpart_num);
   2832 				error = udf_translate_vtop(ump,
   2833 						&t_ad, &transsec32, &translen);
   2834 				transsec = transsec32;
   2835 				if (error)
   2836 					return error;
   2837 				while (overlap && pages && translen) {
   2838 					*map++ = transsec;
   2839 					transsec++;
   2840 					overlap--; pages--; translen--;
   2841 				}
   2842 				break;
   2843 			}
   2844 		}
   2845 		pos      += icblen;
   2846 		alloclen -= icblen;
   2847 	}
   2848 	return 0;
   2849 }
   2850 
   2851 /* --------------------------------------------------------------------- */
   2852 
   2853