udf_subr.c revision 1.141 1 /* $NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.141 2018/06/06 01:49:09 maya Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342
343 /* --------------------------------------------------------------------- */
344
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 int *first_tracknr, int *last_tracknr)
349 {
350 struct mmc_trackinfo trackinfo;
351 uint32_t tracknr, start_track, num_tracks;
352 int error;
353
354 /* if negative, sessionnr is relative to last session */
355 if (args->sessionnr < 0) {
356 args->sessionnr += ump->discinfo.num_sessions;
357 }
358
359 /* sanity */
360 if (args->sessionnr < 0)
361 args->sessionnr = 0;
362 if (args->sessionnr > ump->discinfo.num_sessions)
363 args->sessionnr = ump->discinfo.num_sessions;
364
365 /* search the tracks for this session, zero session nr indicates last */
366 if (args->sessionnr == 0)
367 args->sessionnr = ump->discinfo.num_sessions;
368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 args->sessionnr--;
370
371 /* sanity again */
372 if (args->sessionnr < 0)
373 args->sessionnr = 0;
374
375 /* search the first and last track of the specified session */
376 num_tracks = ump->discinfo.num_tracks;
377 start_track = ump->discinfo.first_track;
378
379 /* search for first track of this session */
380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 /* get track info */
382 trackinfo.tracknr = tracknr;
383 error = udf_update_trackinfo(ump, &trackinfo);
384 if (error)
385 return error;
386
387 if (trackinfo.sessionnr == args->sessionnr)
388 break;
389 }
390 *first_tracknr = tracknr;
391
392 /* search for last track of this session */
393 for (;tracknr <= num_tracks; tracknr++) {
394 /* get track info */
395 trackinfo.tracknr = tracknr;
396 error = udf_update_trackinfo(ump, &trackinfo);
397 if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 tracknr--;
399 break;
400 }
401 }
402 if (tracknr > num_tracks)
403 tracknr--;
404
405 *last_tracknr = tracknr;
406
407 if (*last_tracknr < *first_tracknr) {
408 printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 "drive returned garbage\n");
410 return EINVAL;
411 }
412
413 assert(*last_tracknr >= *first_tracknr);
414 return 0;
415 }
416
417
418 /*
419 * NOTE: this is the only routine in this file that directly peeks into the
420 * metadata file but since its at a larval state of the mount it can't hurt.
421 *
422 * XXX candidate for udf_allocation.c
423 * XXX clean me up!, change to new node reading code.
424 */
425
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 struct mmc_trackinfo *trackinfo)
429 {
430 struct part_desc *part;
431 struct file_entry *fe;
432 struct extfile_entry *efe;
433 struct short_ad *s_ad;
434 struct long_ad *l_ad;
435 uint32_t track_start, track_end;
436 uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 uint32_t sector_size, len, alloclen, plb_num;
438 uint8_t *pos;
439 int addr_type, icblen, icbflags;
440
441 /* get our track extents */
442 track_start = trackinfo->track_start;
443 track_end = track_start + trackinfo->track_size;
444
445 /* get our base partition extent */
446 KASSERT(ump->node_part == ump->fids_part);
447 part = ump->partitions[ump->vtop[ump->node_part]];
448 phys_part_start = udf_rw32(part->start_loc);
449 phys_part_end = phys_part_start + udf_rw32(part->part_len);
450
451 /* no use if its outside the physical partition */
452 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 return;
454
455 /*
456 * now follow all extents in the fe/efe to see if they refer to this
457 * track
458 */
459
460 sector_size = ump->discinfo.sector_size;
461
462 /* XXX should we claim exclusive access to the metafile ? */
463 /* TODO: move to new node read code */
464 fe = ump->metadata_node->fe;
465 efe = ump->metadata_node->efe;
466 if (fe) {
467 alloclen = udf_rw32(fe->l_ad);
468 pos = &fe->data[0] + udf_rw32(fe->l_ea);
469 icbflags = udf_rw16(fe->icbtag.flags);
470 } else {
471 assert(efe);
472 alloclen = udf_rw32(efe->l_ad);
473 pos = &efe->data[0] + udf_rw32(efe->l_ea);
474 icbflags = udf_rw16(efe->icbtag.flags);
475 }
476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477
478 while (alloclen) {
479 if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 icblen = sizeof(struct short_ad);
481 s_ad = (struct short_ad *) pos;
482 len = udf_rw32(s_ad->len);
483 plb_num = udf_rw32(s_ad->lb_num);
484 } else {
485 /* should not be present, but why not */
486 icblen = sizeof(struct long_ad);
487 l_ad = (struct long_ad *) pos;
488 len = udf_rw32(l_ad->len);
489 plb_num = udf_rw32(l_ad->loc.lb_num);
490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 }
492 /* process extent */
493 len = UDF_EXT_LEN(len);
494
495 part_start = phys_part_start + plb_num;
496 part_end = part_start + (len / sector_size);
497
498 if ((part_start >= track_start) && (part_end <= track_end)) {
499 /* extent is enclosed within this track */
500 ump->metadata_track = *trackinfo;
501 return;
502 }
503
504 pos += icblen;
505 alloclen -= icblen;
506 }
507 }
508
509
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_trackinfo trackinfo;
515 struct mmc_op mmc_op;
516 struct part_desc *part;
517 uint32_t tracknr, start_track, num_tracks;
518 uint32_t track_start, track_end, part_start, part_end;
519 int node_alloc, error;
520
521 /*
522 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 * the last session might be open but in the UDF device model at most
524 * three tracks can be open: a reserved track for delayed ISO VRS
525 * writing, a data track and a metadata track. We search here for the
526 * data track and the metadata track. Note that the reserved track is
527 * troublesome but can be detected by its small size of < 512 sectors.
528 */
529
530 /* update discinfo since it might have changed */
531 error = udf_update_discinfo(ump);
532 if (error)
533 return error;
534
535 num_tracks = ump->discinfo.num_tracks;
536 start_track = ump->discinfo.first_track;
537
538 /* fetch info on first and possibly only track */
539 trackinfo.tracknr = start_track;
540 error = udf_update_trackinfo(ump, &trackinfo);
541 if (error)
542 return error;
543
544 /* copy results to our mount point */
545 ump->data_track = trackinfo;
546 ump->metadata_track = trackinfo;
547
548 /* if not sequential, we're done */
549 if (num_tracks == 1)
550 return 0;
551
552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 /* get track info */
554 trackinfo.tracknr = tracknr;
555 error = udf_update_trackinfo(ump, &trackinfo);
556 if (error)
557 return error;
558
559 /*
560 * If this track is marked damaged, ask for repair. This is an
561 * optional command, so ignore its error but report warning.
562 */
563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 memset(&mmc_op, 0, sizeof(mmc_op));
565 mmc_op.operation = MMC_OP_REPAIRTRACK;
566 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 mmc_op.tracknr = tracknr;
568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 if (error)
570 (void)printf("Drive can't explicitly repair "
571 "damaged track %d, but it might "
572 "autorepair\n", tracknr);
573
574 /* reget track info */
575 error = udf_update_trackinfo(ump, &trackinfo);
576 if (error)
577 return error;
578 }
579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 continue;
581
582 track_start = trackinfo.track_start;
583 track_end = track_start + trackinfo.track_size;
584
585 /* check for overlap on data partition */
586 part = ump->partitions[ump->data_part];
587 part_start = udf_rw32(part->start_loc);
588 part_end = part_start + udf_rw32(part->part_len);
589 if ((part_start < track_end) && (part_end > track_start)) {
590 ump->data_track = trackinfo;
591 /* TODO check if UDF partition data_part is writable */
592 }
593
594 /* check for overlap on metadata partition */
595 node_alloc = ump->vtop_alloc[ump->node_part];
596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 (node_alloc == UDF_ALLOC_METABITMAP)) {
598 udf_check_track_metadata_overlap(ump, &trackinfo);
599 } else {
600 ump->metadata_track = trackinfo;
601 }
602 }
603
604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 return EROFS;
606
607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 return EROFS;
609
610 return 0;
611 }
612
613 /* --------------------------------------------------------------------- */
614
615 /*
616 * Check if the blob starts with a good UDF tag. Tags are protected by a
617 * checksum over the reader except one byte at position 4 that is the checksum
618 * itself.
619 */
620
621 int
622 udf_check_tag(void *blob)
623 {
624 struct desc_tag *tag = blob;
625 uint8_t *pos, sum, cnt;
626
627 /* check TAG header checksum */
628 pos = (uint8_t *) tag;
629 sum = 0;
630
631 for(cnt = 0; cnt < 16; cnt++) {
632 if (cnt != 4)
633 sum += *pos;
634 pos++;
635 }
636 if (sum != tag->cksum) {
637 /* bad tag header checksum; this is not a valid tag */
638 return EINVAL;
639 }
640
641 return 0;
642 }
643
644
645 /*
646 * check tag payload will check descriptor CRC as specified.
647 * If the descriptor is too long, it will return EIO otherwise EINVAL.
648 */
649
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 struct desc_tag *tag = blob;
654 uint16_t crc, crc_len;
655
656 crc_len = udf_rw16(tag->desc_crc_len);
657
658 /* check payload CRC if applicable */
659 if (crc_len == 0)
660 return 0;
661
662 if (crc_len > max_length)
663 return EIO;
664
665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 if (crc != udf_rw16(tag->desc_crc)) {
667 /* bad payload CRC; this is a broken tag */
668 return EINVAL;
669 }
670
671 return 0;
672 }
673
674
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 struct desc_tag *tag = blob;
679 uint8_t *pos, sum, cnt;
680
681 /* calculate TAG header checksum */
682 pos = (uint8_t *) tag;
683 sum = 0;
684
685 for(cnt = 0; cnt < 16; cnt++) {
686 if (cnt != 4) sum += *pos;
687 pos++;
688 }
689 tag->cksum = sum; /* 8 bit */
690 }
691
692
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 struct desc_tag *tag = blob;
698 uint8_t *btag = (uint8_t *) tag;
699 uint16_t crc, crc_len;
700
701 crc_len = udf_rw16(tag->desc_crc_len);
702
703 /* check payload CRC if applicable */
704 if (crc_len > 0) {
705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 tag->desc_crc = udf_rw16(crc);
707 }
708
709 /* calculate TAG header checksum */
710 udf_validate_tag_sum(blob);
711 }
712
713 /* --------------------------------------------------------------------- */
714
715 /*
716 * XXX note the different semantics from udfclient: for FIDs it still rounds
717 * up to sectors. Use udf_fidsize() for a correct length.
718 */
719
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 uint32_t size, tag_id, num_lb, elmsz;
724
725 tag_id = udf_rw16(dscr->tag.id);
726
727 switch (tag_id) {
728 case TAGID_LOGVOL :
729 size = sizeof(struct logvol_desc) - 1;
730 size += udf_rw32(dscr->lvd.mt_l);
731 break;
732 case TAGID_UNALLOC_SPACE :
733 elmsz = sizeof(struct extent_ad);
734 size = sizeof(struct unalloc_sp_desc) - elmsz;
735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 break;
737 case TAGID_FID :
738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 size = (size + 3) & ~3;
740 break;
741 case TAGID_LOGVOL_INTEGRITY :
742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 size += udf_rw32(dscr->lvid.l_iu);
744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 break;
746 case TAGID_SPACE_BITMAP :
747 size = sizeof(struct space_bitmap_desc) - 1;
748 size += udf_rw32(dscr->sbd.num_bytes);
749 break;
750 case TAGID_SPARING_TABLE :
751 elmsz = sizeof(struct spare_map_entry);
752 size = sizeof(struct udf_sparing_table) - elmsz;
753 size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 break;
755 case TAGID_FENTRY :
756 size = sizeof(struct file_entry);
757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 break;
759 case TAGID_EXTFENTRY :
760 size = sizeof(struct extfile_entry);
761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 break;
763 case TAGID_FSD :
764 size = sizeof(struct fileset_desc);
765 break;
766 default :
767 size = sizeof(union dscrptr);
768 break;
769 }
770
771 if ((size == 0) || (lb_size == 0))
772 return 0;
773
774 if (lb_size == 1)
775 return size;
776
777 /* round up in sectors */
778 num_lb = (size + lb_size -1) / lb_size;
779 return num_lb * lb_size;
780 }
781
782
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 uint32_t size;
787
788 if (udf_rw16(fid->tag.id) != TAGID_FID)
789 panic("got udf_fidsize on non FID\n");
790
791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 size = (size + 3) & ~3;
793
794 return size;
795 }
796
797 /* --------------------------------------------------------------------- */
798
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 int ret;
803
804 mutex_enter(&udf_node->node_mutex);
805 /* wait until free */
806 while (udf_node->i_flags & IN_LOCKED) {
807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 /* TODO check if we should return error; abort */
809 if (ret == EWOULDBLOCK) {
810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 "wanted at %s:%d, previously locked at %s:%d\n",
812 udf_node, fname, lineno,
813 udf_node->lock_fname, udf_node->lock_lineno));
814 }
815 }
816 /* grab */
817 udf_node->i_flags |= IN_LOCKED | flag;
818 /* debug */
819 udf_node->lock_fname = fname;
820 udf_node->lock_lineno = lineno;
821
822 mutex_exit(&udf_node->node_mutex);
823 }
824
825
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 mutex_enter(&udf_node->node_mutex);
830 udf_node->i_flags &= ~(IN_LOCKED | flag);
831 cv_broadcast(&udf_node->node_lock);
832 mutex_exit(&udf_node->node_mutex);
833 }
834
835
836 /* --------------------------------------------------------------------- */
837
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 int error;
842
843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 (union dscrptr **) dst);
845 if (!error) {
846 /* blank terminator blocks are not allowed here */
847 if (*dst == NULL)
848 return ENOENT;
849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 error = ENOENT;
851 free(*dst, M_UDFVOLD);
852 *dst = NULL;
853 DPRINTF(VOLUMES, ("Not an anchor\n"));
854 }
855 }
856
857 return error;
858 }
859
860
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 struct udf_args *args = &ump->mount_args;
865 struct mmc_trackinfo first_track;
866 struct mmc_trackinfo second_track;
867 struct mmc_trackinfo last_track;
868 struct anchor_vdp **anchorsp;
869 uint32_t track_start;
870 uint32_t track_end;
871 uint32_t positions[4];
872 int first_tracknr, last_tracknr;
873 int error, anch, ok, first_anchor;
874
875 /* search the first and last track of the specified session */
876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 if (!error) {
878 first_track.tracknr = first_tracknr;
879 error = udf_update_trackinfo(ump, &first_track);
880 }
881 if (!error) {
882 last_track.tracknr = last_tracknr;
883 error = udf_update_trackinfo(ump, &last_track);
884 }
885 if ((!error) && (first_tracknr != last_tracknr)) {
886 second_track.tracknr = first_tracknr+1;
887 error = udf_update_trackinfo(ump, &second_track);
888 }
889 if (error) {
890 printf("UDF mount: reading disc geometry failed\n");
891 return 0;
892 }
893
894 track_start = first_track.track_start;
895
896 /* `end' is not as straitforward as start. */
897 track_end = last_track.track_start
898 + last_track.track_size - last_track.free_blocks - 1;
899
900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 /* end of track is not straitforward here */
902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 track_end = last_track.last_recorded;
904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 track_end = last_track.next_writable
906 - ump->discinfo.link_block_penalty;
907 }
908
909 /* its no use reading a blank track */
910 first_anchor = 0;
911 if (first_track.flags & MMC_TRACKINFO_BLANK)
912 first_anchor = 1;
913
914 /* get our packet size */
915 ump->packet_size = first_track.packet_size;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 ump->packet_size = second_track.packet_size;
918
919 if (ump->packet_size <= 1) {
920 /* take max, but not bigger than 64 */
921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 ump->packet_size = MIN(ump->packet_size, 64);
923 }
924 KASSERT(ump->packet_size >= 1);
925
926 /* read anchors start+256, start+512, end-256, end */
927 positions[0] = track_start+256;
928 positions[1] = track_end-256;
929 positions[2] = track_end;
930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
932
933 ok = 0;
934 anchorsp = ump->anchors;
935 for (anch = first_anchor; anch < 4; anch++) {
936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 positions[anch]));
938 error = udf_read_anchor(ump, positions[anch], anchorsp);
939 if (!error) {
940 anchorsp++;
941 ok++;
942 }
943 }
944
945 /* VATs are only recorded on sequential media, but initialise */
946 ump->first_possible_vat_location = track_start + 2;
947 ump->last_possible_vat_location = track_end;
948
949 return ok;
950 }
951
952 /* --------------------------------------------------------------------- */
953
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 int isdir, what;
958
959 isdir = (udf_node->vnode->v_type == VDIR);
960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961
962 if (udf_node->ump)
963 if (udf_node == udf_node->ump->metadatabitmap_node)
964 what = UDF_C_METADATA_SBM;
965
966 return what;
967 }
968
969
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 int vpart_num;
974
975 vpart_num = ump->data_part;
976 if (udf_c_type == UDF_C_NODE)
977 vpart_num = ump->node_part;
978 if (udf_c_type == UDF_C_FIDS)
979 vpart_num = ump->fids_part;
980
981 return vpart_num;
982 }
983
984
985 /*
986 * BUGALERT: some rogue implementations use random physical partition
987 * numbers to break other implementations so lookup the number.
988 */
989
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 struct part_desc *part;
994 uint16_t phys_part;
995
996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 part = ump->partitions[phys_part];
998 if (part == NULL)
999 break;
1000 if (udf_rw16(part->part_num) == raw_phys_part)
1001 break;
1002 }
1003 return phys_part;
1004 }
1005
1006 /* --------------------------------------------------------------------- */
1007
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 if (name) \
1011 free(name, M_UDFVOLD); \
1012 name = dscr;
1013
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 uint16_t phys_part, raw_phys_part;
1018
1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 switch (udf_rw16(dscr->tag.id)) {
1022 case TAGID_PRI_VOL : /* primary partition */
1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 break;
1025 case TAGID_LOGVOL : /* logical volume */
1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 break;
1028 case TAGID_UNALLOC_SPACE : /* unallocated space */
1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 break;
1031 case TAGID_IMP_VOL : /* implementation */
1032 /* XXX do we care about multiple impl. descr ? */
1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 break;
1035 case TAGID_PARTITION : /* physical partition */
1036 /* not much use if its not allocated */
1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 free(dscr, M_UDFVOLD);
1039 break;
1040 }
1041
1042 /*
1043 * BUGALERT: some rogue implementations use random physical
1044 * partition numbers to break other implementations so lookup
1045 * the number.
1046 */
1047 raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049
1050 if (phys_part == UDF_PARTITIONS) {
1051 free(dscr, M_UDFVOLD);
1052 return EINVAL;
1053 }
1054
1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 break;
1057 case TAGID_VOL : /* volume space extender; rare */
1058 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 default :
1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 udf_rw16(dscr->tag.id)));
1064 free(dscr, M_UDFVOLD);
1065 }
1066
1067 return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070
1071 /* --------------------------------------------------------------------- */
1072
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 union dscrptr *dscr;
1077 uint32_t sector_size, dscr_size;
1078 int error;
1079
1080 sector_size = ump->discinfo.sector_size;
1081
1082 /* loc is sectornr, len is in bytes */
1083 error = EIO;
1084 while (len) {
1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 if (error)
1087 return error;
1088
1089 /* blank block is a terminator */
1090 if (dscr == NULL)
1091 return 0;
1092
1093 /* TERM descriptor is a terminator */
1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 free(dscr, M_UDFVOLD);
1096 return 0;
1097 }
1098
1099 /* process all others */
1100 dscr_size = udf_tagsize(dscr, sector_size);
1101 error = udf_process_vds_descriptor(ump, dscr);
1102 if (error) {
1103 free(dscr, M_UDFVOLD);
1104 break;
1105 }
1106 assert((dscr_size % sector_size) == 0);
1107
1108 len -= dscr_size;
1109 loc += dscr_size / sector_size;
1110 }
1111
1112 return error;
1113 }
1114
1115
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 /* struct udf_args *args = &ump->mount_args; */
1120 struct anchor_vdp *anchor, *anchor2;
1121 size_t size;
1122 uint32_t main_loc, main_len;
1123 uint32_t reserve_loc, reserve_len;
1124 int error;
1125
1126 /*
1127 * read in VDS space provided by the anchors; if one descriptor read
1128 * fails, try the mirror sector.
1129 *
1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 * avoids the `compatibility features' of DirectCD that may confuse
1132 * stuff completely.
1133 */
1134
1135 anchor = ump->anchors[0];
1136 anchor2 = ump->anchors[1];
1137 assert(anchor);
1138
1139 if (anchor2) {
1140 size = sizeof(struct extent_ad);
1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 anchor = anchor2;
1143 /* reserve is specified to be a literal copy of main */
1144 }
1145
1146 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1147 main_len = udf_rw32(anchor->main_vds_ex.len);
1148
1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151
1152 error = udf_read_vds_extent(ump, main_loc, main_len);
1153 if (error) {
1154 printf("UDF mount: reading in reserve VDS extent\n");
1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 }
1157
1158 return error;
1159 }
1160
1161 /* --------------------------------------------------------------------- */
1162
1163 /*
1164 * Read in the logical volume integrity sequence pointed to by our logical
1165 * volume descriptor. Its a sequence that can be extended using fields in the
1166 * integrity descriptor itself. On sequential media only one is found, on
1167 * rewritable media a sequence of descriptors can be found as a form of
1168 * history keeping and on non sequential write-once media the chain is vital
1169 * to allow more and more descriptors to be written. The last descriptor
1170 * written in an extent needs to claim space for a new extent.
1171 */
1172
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 union dscrptr *dscr;
1177 struct logvol_int_desc *lvint;
1178 struct udf_lvintq *trace;
1179 uint32_t lb_size, lbnum, len;
1180 int dscr_type, error, trace_len;
1181
1182 lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185
1186 /* clean trace */
1187 memset(ump->lvint_trace, 0,
1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189
1190 trace_len = 0;
1191 trace = ump->lvint_trace;
1192 trace->start = lbnum;
1193 trace->end = lbnum + len/lb_size;
1194 trace->pos = 0;
1195 trace->wpos = 0;
1196
1197 lvint = NULL;
1198 dscr = NULL;
1199 error = 0;
1200 while (len) {
1201 trace->pos = lbnum - trace->start;
1202 trace->wpos = trace->pos + 1;
1203
1204 /* read in our integrity descriptor */
1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 if (!error) {
1207 if (dscr == NULL) {
1208 trace->wpos = trace->pos;
1209 break; /* empty terminates */
1210 }
1211 dscr_type = udf_rw16(dscr->tag.id);
1212 if (dscr_type == TAGID_TERM) {
1213 trace->wpos = trace->pos;
1214 break; /* clean terminator */
1215 }
1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 /* fatal... corrupt disc */
1218 error = ENOENT;
1219 break;
1220 }
1221 if (lvint)
1222 free(lvint, M_UDFVOLD);
1223 lvint = &dscr->lvid;
1224 dscr = NULL;
1225 } /* else hope for the best... maybe the next is ok */
1226
1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229
1230 /* proceed sequential */
1231 lbnum += 1;
1232 len -= lb_size;
1233
1234 /* are we linking to a new piece? */
1235 if (dscr && lvint->next_extent.len) {
1236 len = udf_rw32(lvint->next_extent.len);
1237 lbnum = udf_rw32(lvint->next_extent.loc);
1238
1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 /* IEK! segment link full... */
1241 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 error = EINVAL;
1243 } else {
1244 trace++;
1245 trace_len++;
1246
1247 trace->start = lbnum;
1248 trace->end = lbnum + len/lb_size;
1249 trace->pos = 0;
1250 trace->wpos = 0;
1251 }
1252 }
1253 }
1254
1255 /* clean up the mess, esp. when there is an error */
1256 if (dscr)
1257 free(dscr, M_UDFVOLD);
1258
1259 if (error && lvint) {
1260 free(lvint, M_UDFVOLD);
1261 lvint = NULL;
1262 }
1263
1264 if (!lvint)
1265 error = ENOENT;
1266
1267 ump->logvol_integrity = lvint;
1268 return error;
1269 }
1270
1271
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 union dscrptr **bufs, *dscr, *last_dscr;
1276 struct udf_lvintq *trace, *in_trace, *out_trace;
1277 struct logvol_int_desc *lvint;
1278 uint32_t in_ext, in_pos, in_len;
1279 uint32_t out_ext, out_wpos, out_len;
1280 uint32_t lb_num;
1281 uint32_t len, start;
1282 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1283 int losing;
1284 int error;
1285
1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287
1288 /* search smallest extent */
1289 trace = &ump->lvint_trace[0];
1290 minext = trace->end - trace->start;
1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 trace = &ump->lvint_trace[ext];
1293 extlen = trace->end - trace->start;
1294 if (extlen == 0)
1295 break;
1296 minext = MIN(minext, extlen);
1297 }
1298 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1299 /* no sense wiping all */
1300 if (losing == minext)
1301 losing--;
1302
1303 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1304
1305 /* get buffer for pieces */
1306 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1307
1308 in_ext = 0;
1309 in_pos = losing;
1310 in_trace = &ump->lvint_trace[in_ext];
1311 in_len = in_trace->end - in_trace->start;
1312 out_ext = 0;
1313 out_wpos = 0;
1314 out_trace = &ump->lvint_trace[out_ext];
1315 out_len = out_trace->end - out_trace->start;
1316
1317 last_dscr = NULL;
1318 for(;;) {
1319 out_trace->pos = out_wpos;
1320 out_trace->wpos = out_trace->pos;
1321 if (in_pos >= in_len) {
1322 in_ext++;
1323 in_pos = 0;
1324 in_trace = &ump->lvint_trace[in_ext];
1325 in_len = in_trace->end - in_trace->start;
1326 }
1327 if (out_wpos >= out_len) {
1328 out_ext++;
1329 out_wpos = 0;
1330 out_trace = &ump->lvint_trace[out_ext];
1331 out_len = out_trace->end - out_trace->start;
1332 }
1333 /* copy overlap contents */
1334 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1335 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1336 if (cpy_len == 0)
1337 break;
1338
1339 /* copy */
1340 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1341 for (cnt = 0; cnt < cpy_len; cnt++) {
1342 /* read in our integrity descriptor */
1343 lb_num = in_trace->start + in_pos + cnt;
1344 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1345 &dscr);
1346 if (error) {
1347 /* copy last one */
1348 dscr = last_dscr;
1349 }
1350 bufs[cnt] = dscr;
1351 if (!error) {
1352 if (dscr == NULL) {
1353 out_trace->pos = out_wpos + cnt;
1354 out_trace->wpos = out_trace->pos;
1355 break; /* empty terminates */
1356 }
1357 dscr_type = udf_rw16(dscr->tag.id);
1358 if (dscr_type == TAGID_TERM) {
1359 out_trace->pos = out_wpos + cnt;
1360 out_trace->wpos = out_trace->pos;
1361 break; /* clean terminator */
1362 }
1363 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1364 panic( "UDF integrity sequence "
1365 "corrupted while mounted!\n");
1366 }
1367 last_dscr = dscr;
1368 }
1369 }
1370
1371 /* patch up if first entry was on error */
1372 if (bufs[0] == NULL) {
1373 for (cnt = 0; cnt < cpy_len; cnt++)
1374 if (bufs[cnt] != NULL)
1375 break;
1376 last_dscr = bufs[cnt];
1377 for (; cnt > 0; cnt--) {
1378 bufs[cnt] = last_dscr;
1379 }
1380 }
1381
1382 /* glue + write out */
1383 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1384 for (cnt = 0; cnt < cpy_len; cnt++) {
1385 lb_num = out_trace->start + out_wpos + cnt;
1386 lvint = &bufs[cnt]->lvid;
1387
1388 /* set continuation */
1389 len = 0;
1390 start = 0;
1391 if (out_wpos + cnt == out_len) {
1392 /* get continuation */
1393 trace = &ump->lvint_trace[out_ext+1];
1394 len = trace->end - trace->start;
1395 start = trace->start;
1396 }
1397 lvint->next_extent.len = udf_rw32(len);
1398 lvint->next_extent.loc = udf_rw32(start);
1399
1400 lb_num = trace->start + trace->wpos;
1401 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1402 bufs[cnt], lb_num, lb_num);
1403 DPRINTFIF(VOLUMES, error,
1404 ("error writing lvint lb_num\n"));
1405 }
1406
1407 /* free non repeating descriptors */
1408 last_dscr = NULL;
1409 for (cnt = 0; cnt < cpy_len; cnt++) {
1410 if (bufs[cnt] != last_dscr)
1411 free(bufs[cnt], M_UDFVOLD);
1412 last_dscr = bufs[cnt];
1413 }
1414
1415 /* advance */
1416 in_pos += cpy_len;
1417 out_wpos += cpy_len;
1418 }
1419
1420 free(bufs, M_TEMP);
1421
1422 return 0;
1423 }
1424
1425
1426 static int
1427 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1428 {
1429 struct udf_lvintq *trace;
1430 struct timeval now_v;
1431 struct timespec now_s;
1432 uint32_t sector;
1433 int logvol_integrity;
1434 int space, error;
1435
1436 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1437
1438 again:
1439 /* get free space in last chunk */
1440 trace = ump->lvint_trace;
1441 while (trace->wpos > (trace->end - trace->start)) {
1442 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1443 "wpos = %d\n", trace->start, trace->end,
1444 trace->pos, trace->wpos));
1445 trace++;
1446 }
1447
1448 /* check if there is space to append */
1449 space = (trace->end - trace->start) - trace->wpos;
1450 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1451 "space = %d\n", trace->start, trace->end, trace->pos,
1452 trace->wpos, space));
1453
1454 /* get state */
1455 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1456 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1457 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1458 /* TODO extent LVINT space if possible */
1459 return EROFS;
1460 }
1461 }
1462
1463 if (space < 1) {
1464 if (lvflag & UDF_APPENDONLY_LVINT)
1465 return EROFS;
1466 /* loose history by re-writing extents */
1467 error = udf_loose_lvint_history(ump);
1468 if (error)
1469 return error;
1470 goto again;
1471 }
1472
1473 /* update our integrity descriptor to identify us and timestamp it */
1474 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1475 microtime(&now_v);
1476 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1477 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1478 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1479 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1480
1481 /* writeout integrity descriptor */
1482 sector = trace->start + trace->wpos;
1483 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1484 (union dscrptr *) ump->logvol_integrity,
1485 sector, sector);
1486 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1487 if (error)
1488 return error;
1489
1490 /* advance write position */
1491 trace->wpos++; space--;
1492 if (space >= 1) {
1493 /* append terminator */
1494 sector = trace->start + trace->wpos;
1495 error = udf_write_terminator(ump, sector);
1496
1497 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1498 }
1499
1500 space = (trace->end - trace->start) - trace->wpos;
1501 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1502 "space = %d\n", trace->start, trace->end, trace->pos,
1503 trace->wpos, space));
1504 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1505 "successfull\n"));
1506
1507 return error;
1508 }
1509
1510 /* --------------------------------------------------------------------- */
1511
1512 static int
1513 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1514 {
1515 union dscrptr *dscr;
1516 /* struct udf_args *args = &ump->mount_args; */
1517 struct part_desc *partd;
1518 struct part_hdr_desc *parthdr;
1519 struct udf_bitmap *bitmap;
1520 uint32_t phys_part;
1521 uint32_t lb_num, len;
1522 int error, dscr_type;
1523
1524 /* unallocated space map */
1525 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1526 partd = ump->partitions[phys_part];
1527 if (partd == NULL)
1528 continue;
1529 parthdr = &partd->_impl_use.part_hdr;
1530
1531 lb_num = udf_rw32(partd->start_loc);
1532 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1533 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1534 if (len == 0)
1535 continue;
1536
1537 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1538 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1539 if (!error && dscr) {
1540 /* analyse */
1541 dscr_type = udf_rw16(dscr->tag.id);
1542 if (dscr_type == TAGID_SPACE_BITMAP) {
1543 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1544 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1545
1546 /* fill in ump->part_unalloc_bits */
1547 bitmap = &ump->part_unalloc_bits[phys_part];
1548 bitmap->blob = (uint8_t *) dscr;
1549 bitmap->bits = dscr->sbd.data;
1550 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1551 bitmap->pages = NULL; /* TODO */
1552 bitmap->data_pos = 0;
1553 bitmap->metadata_pos = 0;
1554 } else {
1555 free(dscr, M_UDFVOLD);
1556
1557 printf( "UDF mount: error reading unallocated "
1558 "space bitmap\n");
1559 return EROFS;
1560 }
1561 } else {
1562 /* blank not allowed */
1563 printf("UDF mount: blank unallocated space bitmap\n");
1564 return EROFS;
1565 }
1566 }
1567
1568 /* unallocated space table (not supported) */
1569 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1570 partd = ump->partitions[phys_part];
1571 if (partd == NULL)
1572 continue;
1573 parthdr = &partd->_impl_use.part_hdr;
1574
1575 len = udf_rw32(parthdr->unalloc_space_table.len);
1576 if (len) {
1577 printf("UDF mount: space tables not supported\n");
1578 return EROFS;
1579 }
1580 }
1581
1582 /* freed space map */
1583 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1584 partd = ump->partitions[phys_part];
1585 if (partd == NULL)
1586 continue;
1587 parthdr = &partd->_impl_use.part_hdr;
1588
1589 /* freed space map */
1590 lb_num = udf_rw32(partd->start_loc);
1591 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1592 len = udf_rw32(parthdr->freed_space_bitmap.len);
1593 if (len == 0)
1594 continue;
1595
1596 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1597 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1598 if (!error && dscr) {
1599 /* analyse */
1600 dscr_type = udf_rw16(dscr->tag.id);
1601 if (dscr_type == TAGID_SPACE_BITMAP) {
1602 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1603 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1604
1605 /* fill in ump->part_freed_bits */
1606 bitmap = &ump->part_unalloc_bits[phys_part];
1607 bitmap->blob = (uint8_t *) dscr;
1608 bitmap->bits = dscr->sbd.data;
1609 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1610 bitmap->pages = NULL; /* TODO */
1611 bitmap->data_pos = 0;
1612 bitmap->metadata_pos = 0;
1613 } else {
1614 free(dscr, M_UDFVOLD);
1615
1616 printf( "UDF mount: error reading freed "
1617 "space bitmap\n");
1618 return EROFS;
1619 }
1620 } else {
1621 /* blank not allowed */
1622 printf("UDF mount: blank freed space bitmap\n");
1623 return EROFS;
1624 }
1625 }
1626
1627 /* freed space table (not supported) */
1628 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1629 partd = ump->partitions[phys_part];
1630 if (partd == NULL)
1631 continue;
1632 parthdr = &partd->_impl_use.part_hdr;
1633
1634 len = udf_rw32(parthdr->freed_space_table.len);
1635 if (len) {
1636 printf("UDF mount: space tables not supported\n");
1637 return EROFS;
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644
1645 /* TODO implement async writeout */
1646 int
1647 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1648 {
1649 union dscrptr *dscr;
1650 /* struct udf_args *args = &ump->mount_args; */
1651 struct part_desc *partd;
1652 struct part_hdr_desc *parthdr;
1653 uint32_t phys_part;
1654 uint32_t lb_num, len, ptov;
1655 int error_all, error;
1656
1657 error_all = 0;
1658 /* unallocated space map */
1659 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1660 partd = ump->partitions[phys_part];
1661 if (partd == NULL)
1662 continue;
1663 parthdr = &partd->_impl_use.part_hdr;
1664
1665 ptov = udf_rw32(partd->start_loc);
1666 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1667 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1668 if (len == 0)
1669 continue;
1670
1671 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1672 lb_num + ptov));
1673 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1674 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1675 (union dscrptr *) dscr,
1676 ptov + lb_num, lb_num);
1677 if (error) {
1678 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1679 error_all = error;
1680 }
1681 }
1682
1683 /* freed space map */
1684 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1685 partd = ump->partitions[phys_part];
1686 if (partd == NULL)
1687 continue;
1688 parthdr = &partd->_impl_use.part_hdr;
1689
1690 /* freed space map */
1691 ptov = udf_rw32(partd->start_loc);
1692 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1693 len = udf_rw32(parthdr->freed_space_bitmap.len);
1694 if (len == 0)
1695 continue;
1696
1697 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1698 lb_num + ptov));
1699 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1700 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1701 (union dscrptr *) dscr,
1702 ptov + lb_num, lb_num);
1703 if (error) {
1704 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1705 error_all = error;
1706 }
1707 }
1708
1709 return error_all;
1710 }
1711
1712
1713 static int
1714 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1715 {
1716 struct udf_node *bitmap_node;
1717 union dscrptr *dscr;
1718 struct udf_bitmap *bitmap;
1719 uint64_t inflen;
1720 int error, dscr_type;
1721
1722 bitmap_node = ump->metadatabitmap_node;
1723
1724 /* only read in when metadata bitmap node is read in */
1725 if (bitmap_node == NULL)
1726 return 0;
1727
1728 if (bitmap_node->fe) {
1729 inflen = udf_rw64(bitmap_node->fe->inf_len);
1730 } else {
1731 KASSERT(bitmap_node->efe);
1732 inflen = udf_rw64(bitmap_node->efe->inf_len);
1733 }
1734
1735 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1736 "%"PRIu64" bytes\n", inflen));
1737
1738 /* allocate space for bitmap */
1739 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1740 if (!dscr)
1741 return ENOMEM;
1742
1743 /* set vnode type to regular file or we can't read from it! */
1744 bitmap_node->vnode->v_type = VREG;
1745
1746 /* read in complete metadata bitmap file */
1747 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1748 dscr,
1749 inflen, 0,
1750 UIO_SYSSPACE,
1751 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1752 NULL, NULL);
1753 if (error) {
1754 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1755 goto errorout;
1756 }
1757
1758 /* analyse */
1759 dscr_type = udf_rw16(dscr->tag.id);
1760 if (dscr_type == TAGID_SPACE_BITMAP) {
1761 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1762 ump->metadata_unalloc_dscr = &dscr->sbd;
1763
1764 /* fill in bitmap bits */
1765 bitmap = &ump->metadata_unalloc_bits;
1766 bitmap->blob = (uint8_t *) dscr;
1767 bitmap->bits = dscr->sbd.data;
1768 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1769 bitmap->pages = NULL; /* TODO */
1770 bitmap->data_pos = 0;
1771 bitmap->metadata_pos = 0;
1772 } else {
1773 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1774 goto errorout;
1775 }
1776
1777 return 0;
1778
1779 errorout:
1780 free(dscr, M_UDFVOLD);
1781 printf( "UDF mount: error reading unallocated "
1782 "space bitmap for metadata partition\n");
1783 return EROFS;
1784 }
1785
1786
1787 int
1788 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1789 {
1790 struct udf_node *bitmap_node;
1791 union dscrptr *dscr;
1792 uint64_t new_inflen;
1793 int dummy, error;
1794
1795 bitmap_node = ump->metadatabitmap_node;
1796
1797 /* only write out when metadata bitmap node is known */
1798 if (bitmap_node == NULL)
1799 return 0;
1800
1801 if (!bitmap_node->fe) {
1802 KASSERT(bitmap_node->efe);
1803 }
1804
1805 /* reduce length to zero */
1806 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1807 new_inflen = udf_tagsize(dscr, 1);
1808
1809 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1810 " for %"PRIu64" bytes\n", new_inflen));
1811
1812 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1813 if (error)
1814 printf("Error resizing metadata space bitmap\n");
1815
1816 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1817 dscr,
1818 new_inflen, 0,
1819 UIO_SYSSPACE,
1820 IO_ALTSEMANTICS, FSCRED,
1821 NULL, NULL);
1822
1823 bitmap_node->i_flags |= IN_MODIFIED;
1824 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1825 if (error == 0)
1826 error = VOP_FSYNC(bitmap_node->vnode,
1827 FSCRED, FSYNC_WAIT, 0, 0);
1828
1829 if (error)
1830 printf( "Error writing out metadata partition unalloced "
1831 "space bitmap!\n");
1832
1833 return error;
1834 }
1835
1836
1837 /* --------------------------------------------------------------------- */
1838
1839 /*
1840 * Checks if ump's vds information is correct and complete
1841 */
1842
1843 int
1844 udf_process_vds(struct udf_mount *ump) {
1845 union udf_pmap *mapping;
1846 /* struct udf_args *args = &ump->mount_args; */
1847 struct logvol_int_desc *lvint;
1848 struct udf_logvol_info *lvinfo;
1849 uint32_t n_pm;
1850 uint8_t *pmap_pos;
1851 char *domain_name, *map_name;
1852 const char *check_name;
1853 char bits[128];
1854 int pmap_stype, pmap_size;
1855 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1856 int n_phys, n_virt, n_spar, n_meta;
1857 int len;
1858
1859 if (ump == NULL)
1860 return ENOENT;
1861
1862 /* we need at least an anchor (trivial, but for safety) */
1863 if (ump->anchors[0] == NULL)
1864 return EINVAL;
1865
1866 /* we need at least one primary and one logical volume descriptor */
1867 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1868 return EINVAL;
1869
1870 /* we need at least one partition descriptor */
1871 if (ump->partitions[0] == NULL)
1872 return EINVAL;
1873
1874 /* check logical volume sector size verses device sector size */
1875 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1876 printf("UDF mount: format violation, lb_size != sector size\n");
1877 return EINVAL;
1878 }
1879
1880 /* check domain name */
1881 domain_name = ump->logical_vol->domain_id.id;
1882 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1883 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1884 return EINVAL;
1885 }
1886
1887 /* retrieve logical volume integrity sequence */
1888 (void)udf_retrieve_lvint(ump);
1889
1890 /*
1891 * We need at least one logvol integrity descriptor recorded. Note
1892 * that its OK to have an open logical volume integrity here. The VAT
1893 * will close/update the integrity.
1894 */
1895 if (ump->logvol_integrity == NULL)
1896 return EINVAL;
1897
1898 /* process derived structures */
1899 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1900 lvint = ump->logvol_integrity;
1901 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1902 ump->logvol_info = lvinfo;
1903
1904 /* TODO check udf versions? */
1905
1906 /*
1907 * check logvol mappings: effective virt->log partmap translation
1908 * check and recording of the mapping results. Saves expensive
1909 * strncmp() in tight places.
1910 */
1911 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1912 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1913 pmap_pos = ump->logical_vol->maps;
1914
1915 if (n_pm > UDF_PMAPS) {
1916 printf("UDF mount: too many mappings\n");
1917 return EINVAL;
1918 }
1919
1920 /* count types and set partition numbers */
1921 ump->data_part = ump->node_part = ump->fids_part = 0;
1922 n_phys = n_virt = n_spar = n_meta = 0;
1923 for (log_part = 0; log_part < n_pm; log_part++) {
1924 mapping = (union udf_pmap *) pmap_pos;
1925 pmap_stype = pmap_pos[0];
1926 pmap_size = pmap_pos[1];
1927 switch (pmap_stype) {
1928 case 1: /* physical mapping */
1929 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1930 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1931 pmap_type = UDF_VTOP_TYPE_PHYS;
1932 n_phys++;
1933 ump->data_part = log_part;
1934 ump->node_part = log_part;
1935 ump->fids_part = log_part;
1936 break;
1937 case 2: /* virtual/sparable/meta mapping */
1938 map_name = mapping->pm2.part_id.id;
1939 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1940 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1941 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1942 len = UDF_REGID_ID_SIZE;
1943
1944 check_name = "*UDF Virtual Partition";
1945 if (strncmp(map_name, check_name, len) == 0) {
1946 pmap_type = UDF_VTOP_TYPE_VIRT;
1947 n_virt++;
1948 ump->node_part = log_part;
1949 break;
1950 }
1951 check_name = "*UDF Sparable Partition";
1952 if (strncmp(map_name, check_name, len) == 0) {
1953 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1954 n_spar++;
1955 ump->data_part = log_part;
1956 ump->node_part = log_part;
1957 ump->fids_part = log_part;
1958 break;
1959 }
1960 check_name = "*UDF Metadata Partition";
1961 if (strncmp(map_name, check_name, len) == 0) {
1962 pmap_type = UDF_VTOP_TYPE_META;
1963 n_meta++;
1964 ump->node_part = log_part;
1965 ump->fids_part = log_part;
1966 break;
1967 }
1968 break;
1969 default:
1970 return EINVAL;
1971 }
1972
1973 /*
1974 * BUGALERT: some rogue implementations use random physical
1975 * partition numbers to break other implementations so lookup
1976 * the number.
1977 */
1978 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1979
1980 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1981 raw_phys_part, phys_part, pmap_type));
1982
1983 if (phys_part == UDF_PARTITIONS)
1984 return EINVAL;
1985 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1986 return EINVAL;
1987
1988 ump->vtop [log_part] = phys_part;
1989 ump->vtop_tp[log_part] = pmap_type;
1990
1991 pmap_pos += pmap_size;
1992 }
1993 /* not winning the beauty contest */
1994 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1995
1996 /* test some basic UDF assertions/requirements */
1997 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1998 return EINVAL;
1999
2000 if (n_virt) {
2001 if ((n_phys == 0) || n_spar || n_meta)
2002 return EINVAL;
2003 }
2004 if (n_spar + n_phys == 0)
2005 return EINVAL;
2006
2007 /* select allocation type for each logical partition */
2008 for (log_part = 0; log_part < n_pm; log_part++) {
2009 maps_on = ump->vtop[log_part];
2010 switch (ump->vtop_tp[log_part]) {
2011 case UDF_VTOP_TYPE_PHYS :
2012 assert(maps_on == log_part);
2013 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2014 break;
2015 case UDF_VTOP_TYPE_VIRT :
2016 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2017 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2018 break;
2019 case UDF_VTOP_TYPE_SPARABLE :
2020 assert(maps_on == log_part);
2021 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2022 break;
2023 case UDF_VTOP_TYPE_META :
2024 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2025 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2026 /* special case for UDF 2.60 */
2027 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2028 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2029 }
2030 break;
2031 default:
2032 panic("bad alloction type in udf's ump->vtop\n");
2033 }
2034 }
2035
2036 /* determine logical volume open/closure actions */
2037 if (n_virt) {
2038 ump->lvopen = 0;
2039 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2040 ump->lvopen |= UDF_OPEN_SESSION ;
2041 ump->lvclose = UDF_WRITE_VAT;
2042 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2043 ump->lvclose |= UDF_CLOSE_SESSION;
2044 } else {
2045 /* `normal' rewritable or non sequential media */
2046 ump->lvopen = UDF_WRITE_LVINT;
2047 ump->lvclose = UDF_WRITE_LVINT;
2048 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2049 ump->lvopen |= UDF_APPENDONLY_LVINT;
2050 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2051 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2052 }
2053
2054 /*
2055 * Determine sheduler error behaviour. For virtual partitions, update
2056 * the trackinfo; for sparable partitions replace a whole block on the
2057 * sparable table. Allways requeue.
2058 */
2059 ump->lvreadwrite = 0;
2060 if (n_virt)
2061 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2062 if (n_spar)
2063 ump->lvreadwrite = UDF_REMAP_BLOCK;
2064
2065 /*
2066 * Select our sheduler
2067 */
2068 ump->strategy = &udf_strat_rmw;
2069 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2070 ump->strategy = &udf_strat_sequential;
2071 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2072 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2073 ump->strategy = &udf_strat_direct;
2074 if (n_spar)
2075 ump->strategy = &udf_strat_rmw;
2076
2077 #if 0
2078 /* read-only access won't benefit from the other shedulers */
2079 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2080 ump->strategy = &udf_strat_direct;
2081 #endif
2082
2083 /* print results */
2084 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2085 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2086 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2088 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2090
2091 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2092 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2094 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2095 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2096 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2097
2098 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2099 (ump->strategy == &udf_strat_direct) ? "Direct" :
2100 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2101 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2102
2103 /* signal its OK for now */
2104 return 0;
2105 }
2106
2107 /* --------------------------------------------------------------------- */
2108
2109 /*
2110 * Update logical volume name in all structures that keep a record of it. We
2111 * use memmove since each of them might be specified as a source.
2112 *
2113 * Note that it doesn't update the VAT structure!
2114 */
2115
2116 static void
2117 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2118 {
2119 struct logvol_desc *lvd = NULL;
2120 struct fileset_desc *fsd = NULL;
2121 struct udf_lv_info *lvi = NULL;
2122
2123 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2124 lvd = ump->logical_vol;
2125 fsd = ump->fileset_desc;
2126 if (ump->implementation)
2127 lvi = &ump->implementation->_impl_use.lv_info;
2128
2129 /* logvol's id might be specified as origional so use memmove here */
2130 memmove(lvd->logvol_id, logvol_id, 128);
2131 if (fsd)
2132 memmove(fsd->logvol_id, logvol_id, 128);
2133 if (lvi)
2134 memmove(lvi->logvol_id, logvol_id, 128);
2135 }
2136
2137 /* --------------------------------------------------------------------- */
2138
2139 void
2140 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2141 uint32_t sector)
2142 {
2143 assert(ump->logical_vol);
2144
2145 tag->id = udf_rw16(tagid);
2146 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2147 tag->cksum = 0;
2148 tag->reserved = 0;
2149 tag->serial_num = ump->logical_vol->tag.serial_num;
2150 tag->tag_loc = udf_rw32(sector);
2151 }
2152
2153
2154 uint64_t
2155 udf_advance_uniqueid(struct udf_mount *ump)
2156 {
2157 uint64_t unique_id;
2158
2159 mutex_enter(&ump->logvol_mutex);
2160 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2161 if (unique_id < 0x10)
2162 unique_id = 0x10;
2163 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2164 mutex_exit(&ump->logvol_mutex);
2165
2166 return unique_id;
2167 }
2168
2169
2170 static void
2171 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2172 {
2173 struct udf_mount *ump = udf_node->ump;
2174 uint32_t num_dirs, num_files;
2175 int udf_file_type;
2176
2177 /* get file type */
2178 if (udf_node->fe) {
2179 udf_file_type = udf_node->fe->icbtag.file_type;
2180 } else {
2181 udf_file_type = udf_node->efe->icbtag.file_type;
2182 }
2183
2184 /* adjust file count */
2185 mutex_enter(&ump->allocate_mutex);
2186 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2187 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2188 ump->logvol_info->num_directories =
2189 udf_rw32((num_dirs + sign));
2190 } else {
2191 num_files = udf_rw32(ump->logvol_info->num_files);
2192 ump->logvol_info->num_files =
2193 udf_rw32((num_files + sign));
2194 }
2195 mutex_exit(&ump->allocate_mutex);
2196 }
2197
2198
2199 void
2200 udf_osta_charset(struct charspec *charspec)
2201 {
2202 memset(charspec, 0, sizeof(struct charspec));
2203 charspec->type = 0;
2204 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2205 }
2206
2207
2208 /* first call udf_set_regid and then the suffix */
2209 void
2210 udf_set_regid(struct regid *regid, char const *name)
2211 {
2212 memset(regid, 0, sizeof(struct regid));
2213 regid->flags = 0; /* not dirty and not protected */
2214 strcpy((char *) regid->id, name);
2215 }
2216
2217
2218 void
2219 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2220 {
2221 uint16_t *ver;
2222
2223 ver = (uint16_t *) regid->id_suffix;
2224 *ver = ump->logvol_info->min_udf_readver;
2225 }
2226
2227
2228 void
2229 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2230 {
2231 uint16_t *ver;
2232
2233 ver = (uint16_t *) regid->id_suffix;
2234 *ver = ump->logvol_info->min_udf_readver;
2235
2236 regid->id_suffix[2] = 4; /* unix */
2237 regid->id_suffix[3] = 8; /* NetBSD */
2238 }
2239
2240
2241 void
2242 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2243 {
2244 regid->id_suffix[0] = 4; /* unix */
2245 regid->id_suffix[1] = 8; /* NetBSD */
2246 }
2247
2248
2249 void
2250 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2251 {
2252 regid->id_suffix[0] = APP_VERSION_MAIN;
2253 regid->id_suffix[1] = APP_VERSION_SUB;
2254 }
2255
2256 static int
2257 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2258 struct long_ad *parent, uint64_t unique_id)
2259 {
2260 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2261 int fidsize = 40;
2262
2263 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2264 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2265 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2266 fid->icb = *parent;
2267 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2268 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2269 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2270
2271 return fidsize;
2272 }
2273
2274 /* --------------------------------------------------------------------- */
2275
2276 /*
2277 * Extended attribute support. UDF knows of 3 places for extended attributes:
2278 *
2279 * (a) inside the file's (e)fe in the length of the extended attribute area
2280 * before the allocation descriptors/filedata
2281 *
2282 * (b) in a file referenced by (e)fe->ext_attr_icb and
2283 *
2284 * (c) in the e(fe)'s associated stream directory that can hold various
2285 * sub-files. In the stream directory a few fixed named subfiles are reserved
2286 * for NT/Unix ACL's and OS/2 attributes.
2287 *
2288 * NOTE: Extended attributes are read randomly but allways written
2289 * *atomicaly*. For ACL's this interface is propably different but not known
2290 * to me yet.
2291 *
2292 * Order of extended attributes in a space :
2293 * ECMA 167 EAs
2294 * Non block aligned Implementation Use EAs
2295 * Block aligned Implementation Use EAs
2296 * Application Use EAs
2297 */
2298
2299 static int
2300 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2301 {
2302 uint16_t *spos;
2303
2304 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2305 /* checksum valid? */
2306 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2307 spos = (uint16_t *) implext->data;
2308 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2309 return EINVAL;
2310 }
2311 return 0;
2312 }
2313
2314 static void
2315 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2316 {
2317 uint16_t *spos;
2318
2319 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2320 /* set checksum */
2321 spos = (uint16_t *) implext->data;
2322 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2323 }
2324 }
2325
2326
2327 int
2328 udf_extattr_search_intern(struct udf_node *node,
2329 uint32_t sattr, char const *sattrname,
2330 uint32_t *offsetp, uint32_t *lengthp)
2331 {
2332 struct extattrhdr_desc *eahdr;
2333 struct extattr_entry *attrhdr;
2334 struct impl_extattr_entry *implext;
2335 uint32_t offset, a_l, sector_size;
2336 int32_t l_ea;
2337 uint8_t *pos;
2338 int error;
2339
2340 /* get mountpoint */
2341 sector_size = node->ump->discinfo.sector_size;
2342
2343 /* get information from fe/efe */
2344 if (node->fe) {
2345 l_ea = udf_rw32(node->fe->l_ea);
2346 eahdr = (struct extattrhdr_desc *) node->fe->data;
2347 } else {
2348 assert(node->efe);
2349 l_ea = udf_rw32(node->efe->l_ea);
2350 eahdr = (struct extattrhdr_desc *) node->efe->data;
2351 }
2352
2353 /* something recorded here? */
2354 if (l_ea == 0)
2355 return ENOENT;
2356
2357 /* check extended attribute tag; what to do if it fails? */
2358 error = udf_check_tag(eahdr);
2359 if (error)
2360 return EINVAL;
2361 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2362 return EINVAL;
2363 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2364 if (error)
2365 return EINVAL;
2366
2367 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2368
2369 /* looking for Ecma-167 attributes? */
2370 offset = sizeof(struct extattrhdr_desc);
2371
2372 /* looking for either implemenation use or application use */
2373 if (sattr == 2048) { /* [4/48.10.8] */
2374 offset = udf_rw32(eahdr->impl_attr_loc);
2375 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2376 return ENOENT;
2377 }
2378 if (sattr == 65536) { /* [4/48.10.9] */
2379 offset = udf_rw32(eahdr->appl_attr_loc);
2380 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2381 return ENOENT;
2382 }
2383
2384 /* paranoia check offset and l_ea */
2385 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2386 return EINVAL;
2387
2388 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2389
2390 /* find our extended attribute */
2391 l_ea -= offset;
2392 pos = (uint8_t *) eahdr + offset;
2393
2394 while (l_ea >= sizeof(struct extattr_entry)) {
2395 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2396 attrhdr = (struct extattr_entry *) pos;
2397 implext = (struct impl_extattr_entry *) pos;
2398
2399 /* get complete attribute length and check for roque values */
2400 a_l = udf_rw32(attrhdr->a_l);
2401 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2402 udf_rw32(attrhdr->type),
2403 attrhdr->subtype, a_l, l_ea));
2404 if ((a_l == 0) || (a_l > l_ea))
2405 return EINVAL;
2406
2407 if (attrhdr->type != sattr)
2408 goto next_attribute;
2409
2410 /* we might have found it! */
2411 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2412 *offsetp = offset;
2413 *lengthp = a_l;
2414 return 0; /* success */
2415 }
2416
2417 /*
2418 * Implementation use and application use extended attributes
2419 * have a name to identify. They share the same structure only
2420 * UDF implementation use extended attributes have a checksum
2421 * we need to check
2422 */
2423
2424 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2425 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2426 /* we have found our appl/implementation attribute */
2427 *offsetp = offset;
2428 *lengthp = a_l;
2429 return 0; /* success */
2430 }
2431
2432 next_attribute:
2433 /* next attribute */
2434 pos += a_l;
2435 l_ea -= a_l;
2436 offset += a_l;
2437 }
2438 /* not found */
2439 return ENOENT;
2440 }
2441
2442
2443 static void
2444 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2445 struct extattr_entry *extattr)
2446 {
2447 struct file_entry *fe;
2448 struct extfile_entry *efe;
2449 struct extattrhdr_desc *extattrhdr;
2450 struct impl_extattr_entry *implext;
2451 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2452 uint32_t *l_eap, l_ad;
2453 uint16_t *spos;
2454 uint8_t *bpos, *data;
2455
2456 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2457 fe = &dscr->fe;
2458 data = fe->data;
2459 l_eap = &fe->l_ea;
2460 l_ad = udf_rw32(fe->l_ad);
2461 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2462 efe = &dscr->efe;
2463 data = efe->data;
2464 l_eap = &efe->l_ea;
2465 l_ad = udf_rw32(efe->l_ad);
2466 } else {
2467 panic("Bad tag passed to udf_extattr_insert_internal");
2468 }
2469
2470 /* can't append already written to file descriptors yet */
2471 assert(l_ad == 0);
2472 __USE(l_ad);
2473
2474 /* should have a header! */
2475 extattrhdr = (struct extattrhdr_desc *) data;
2476 l_ea = udf_rw32(*l_eap);
2477 if (l_ea == 0) {
2478 /* create empty extended attribute header */
2479 exthdr_len = sizeof(struct extattrhdr_desc);
2480
2481 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2482 /* loc */ 0);
2483 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2484 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2485 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2486
2487 /* record extended attribute header length */
2488 l_ea = exthdr_len;
2489 *l_eap = udf_rw32(l_ea);
2490 }
2491
2492 /* extract locations */
2493 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2494 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2495 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2496 impl_attr_loc = l_ea;
2497 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2498 appl_attr_loc = l_ea;
2499
2500 /* Ecma 167 EAs */
2501 if (udf_rw32(extattr->type) < 2048) {
2502 assert(impl_attr_loc == l_ea);
2503 assert(appl_attr_loc == l_ea);
2504 }
2505
2506 /* implementation use extended attributes */
2507 if (udf_rw32(extattr->type) == 2048) {
2508 assert(appl_attr_loc == l_ea);
2509
2510 /* calculate and write extended attribute header checksum */
2511 implext = (struct impl_extattr_entry *) extattr;
2512 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2513 spos = (uint16_t *) implext->data;
2514 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2515 }
2516
2517 /* application use extended attributes */
2518 assert(udf_rw32(extattr->type) != 65536);
2519 assert(appl_attr_loc == l_ea);
2520
2521 /* append the attribute at the end of the current space */
2522 bpos = data + udf_rw32(*l_eap);
2523 a_l = udf_rw32(extattr->a_l);
2524
2525 /* update impl. attribute locations */
2526 if (udf_rw32(extattr->type) < 2048) {
2527 impl_attr_loc = l_ea + a_l;
2528 appl_attr_loc = l_ea + a_l;
2529 }
2530 if (udf_rw32(extattr->type) == 2048) {
2531 appl_attr_loc = l_ea + a_l;
2532 }
2533
2534 /* copy and advance */
2535 memcpy(bpos, extattr, a_l);
2536 l_ea += a_l;
2537 *l_eap = udf_rw32(l_ea);
2538
2539 /* do the `dance` again backwards */
2540 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2541 if (impl_attr_loc == l_ea)
2542 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2543 if (appl_attr_loc == l_ea)
2544 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2545 }
2546
2547 /* store offsets */
2548 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2549 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2550 }
2551
2552
2553 /* --------------------------------------------------------------------- */
2554
2555 static int
2556 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2557 {
2558 struct udf_mount *ump;
2559 struct udf_logvol_info *lvinfo;
2560 struct impl_extattr_entry *implext;
2561 struct vatlvext_extattr_entry lvext;
2562 const char *extstr = "*UDF VAT LVExtension";
2563 uint64_t vat_uniqueid;
2564 uint32_t offset, a_l;
2565 uint8_t *ea_start, *lvextpos;
2566 int error;
2567
2568 /* get mountpoint and lvinfo */
2569 ump = vat_node->ump;
2570 lvinfo = ump->logvol_info;
2571
2572 /* get information from fe/efe */
2573 if (vat_node->fe) {
2574 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2575 ea_start = vat_node->fe->data;
2576 } else {
2577 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2578 ea_start = vat_node->efe->data;
2579 }
2580
2581 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2582 if (error)
2583 return error;
2584
2585 implext = (struct impl_extattr_entry *) (ea_start + offset);
2586 error = udf_impl_extattr_check(implext);
2587 if (error)
2588 return error;
2589
2590 /* paranoia */
2591 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2592 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2593 return EINVAL;
2594 }
2595
2596 /*
2597 * we have found our "VAT LVExtension attribute. BUT due to a
2598 * bug in the specification it might not be word aligned so
2599 * copy first to avoid panics on some machines (!!)
2600 */
2601 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2602 lvextpos = implext->data + udf_rw32(implext->iu_l);
2603 memcpy(&lvext, lvextpos, sizeof(lvext));
2604
2605 /* check if it was updated the last time */
2606 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2607 lvinfo->num_files = lvext.num_files;
2608 lvinfo->num_directories = lvext.num_directories;
2609 udf_update_logvolname(ump, lvext.logvol_id);
2610 } else {
2611 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2612 /* replace VAT LVExt by free space EA */
2613 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2614 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2615 udf_calc_impl_extattr_checksum(implext);
2616 }
2617
2618 return 0;
2619 }
2620
2621
2622 static int
2623 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2624 {
2625 struct udf_mount *ump;
2626 struct udf_logvol_info *lvinfo;
2627 struct impl_extattr_entry *implext;
2628 struct vatlvext_extattr_entry lvext;
2629 const char *extstr = "*UDF VAT LVExtension";
2630 uint64_t vat_uniqueid;
2631 uint32_t offset, a_l;
2632 uint8_t *ea_start, *lvextpos;
2633 int error;
2634
2635 /* get mountpoint and lvinfo */
2636 ump = vat_node->ump;
2637 lvinfo = ump->logvol_info;
2638
2639 /* get information from fe/efe */
2640 if (vat_node->fe) {
2641 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2642 ea_start = vat_node->fe->data;
2643 } else {
2644 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2645 ea_start = vat_node->efe->data;
2646 }
2647
2648 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2649 if (error)
2650 return error;
2651 /* found, it existed */
2652
2653 /* paranoia */
2654 implext = (struct impl_extattr_entry *) (ea_start + offset);
2655 error = udf_impl_extattr_check(implext);
2656 if (error) {
2657 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2658 return error;
2659 }
2660 /* it is correct */
2661
2662 /*
2663 * we have found our "VAT LVExtension attribute. BUT due to a
2664 * bug in the specification it might not be word aligned so
2665 * copy first to avoid panics on some machines (!!)
2666 */
2667 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2668 lvextpos = implext->data + udf_rw32(implext->iu_l);
2669
2670 lvext.unique_id_chk = vat_uniqueid;
2671 lvext.num_files = lvinfo->num_files;
2672 lvext.num_directories = lvinfo->num_directories;
2673 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2674
2675 memcpy(lvextpos, &lvext, sizeof(lvext));
2676
2677 return 0;
2678 }
2679
2680 /* --------------------------------------------------------------------- */
2681
2682 int
2683 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2684 {
2685 struct udf_mount *ump = vat_node->ump;
2686
2687 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2688 return EINVAL;
2689
2690 memcpy(blob, ump->vat_table + offset, size);
2691 return 0;
2692 }
2693
2694 int
2695 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2696 {
2697 struct udf_mount *ump = vat_node->ump;
2698 uint32_t offset_high;
2699 uint8_t *new_vat_table;
2700
2701 /* extent VAT allocation if needed */
2702 offset_high = offset + size;
2703 if (offset_high >= ump->vat_table_alloc_len) {
2704 /* realloc */
2705 new_vat_table = realloc(ump->vat_table,
2706 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2707 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2708 if (!new_vat_table) {
2709 printf("udf_vat_write: can't extent VAT, out of mem\n");
2710 return ENOMEM;
2711 }
2712 ump->vat_table = new_vat_table;
2713 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2714 }
2715 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2716
2717 memcpy(ump->vat_table + offset, blob, size);
2718 return 0;
2719 }
2720
2721 /* --------------------------------------------------------------------- */
2722
2723 /* TODO support previous VAT location writeout */
2724 static int
2725 udf_update_vat_descriptor(struct udf_mount *ump)
2726 {
2727 struct udf_node *vat_node = ump->vat_node;
2728 struct udf_logvol_info *lvinfo = ump->logvol_info;
2729 struct icb_tag *icbtag;
2730 struct udf_oldvat_tail *oldvat_tl;
2731 struct udf_vat *vat;
2732 uint64_t unique_id;
2733 uint32_t lb_size;
2734 uint8_t *raw_vat;
2735 int filetype, error;
2736
2737 KASSERT(vat_node);
2738 KASSERT(lvinfo);
2739 lb_size = udf_rw32(ump->logical_vol->lb_size);
2740
2741 /* get our new unique_id */
2742 unique_id = udf_advance_uniqueid(ump);
2743
2744 /* get information from fe/efe */
2745 if (vat_node->fe) {
2746 icbtag = &vat_node->fe->icbtag;
2747 vat_node->fe->unique_id = udf_rw64(unique_id);
2748 } else {
2749 icbtag = &vat_node->efe->icbtag;
2750 vat_node->efe->unique_id = udf_rw64(unique_id);
2751 }
2752
2753 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2754 filetype = icbtag->file_type;
2755 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2756
2757 /* allocate piece to process head or tail of VAT file */
2758 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2759
2760 if (filetype == 0) {
2761 /*
2762 * Update "*UDF VAT LVExtension" extended attribute from the
2763 * lvint if present.
2764 */
2765 udf_update_vat_extattr_from_lvid(vat_node);
2766
2767 /* setup identifying regid */
2768 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2769 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2770
2771 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2772 udf_add_udf_regid(ump, &oldvat_tl->id);
2773 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2774
2775 /* write out new tail of virtual allocation table file */
2776 error = udf_vat_write(vat_node, raw_vat,
2777 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2778 } else {
2779 /* compose the VAT2 header */
2780 vat = (struct udf_vat *) raw_vat;
2781 memset(vat, 0, sizeof(struct udf_vat));
2782
2783 vat->header_len = udf_rw16(152); /* as per spec */
2784 vat->impl_use_len = udf_rw16(0);
2785 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2786 vat->prev_vat = udf_rw32(0xffffffff);
2787 vat->num_files = lvinfo->num_files;
2788 vat->num_directories = lvinfo->num_directories;
2789 vat->min_udf_readver = lvinfo->min_udf_readver;
2790 vat->min_udf_writever = lvinfo->min_udf_writever;
2791 vat->max_udf_writever = lvinfo->max_udf_writever;
2792
2793 error = udf_vat_write(vat_node, raw_vat,
2794 sizeof(struct udf_vat), 0);
2795 }
2796 free(raw_vat, M_TEMP);
2797
2798 return error; /* success! */
2799 }
2800
2801
2802 int
2803 udf_writeout_vat(struct udf_mount *ump)
2804 {
2805 struct udf_node *vat_node = ump->vat_node;
2806 int error;
2807
2808 KASSERT(vat_node);
2809
2810 DPRINTF(CALL, ("udf_writeout_vat\n"));
2811
2812 // mutex_enter(&ump->allocate_mutex);
2813 udf_update_vat_descriptor(ump);
2814
2815 /* write out the VAT contents ; TODO intelligent writing */
2816 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2817 ump->vat_table, ump->vat_table_len, 0,
2818 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2819 if (error) {
2820 printf("udf_writeout_vat: failed to write out VAT contents\n");
2821 goto out;
2822 }
2823
2824 // mutex_exit(&ump->allocate_mutex);
2825
2826 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2827 if (error)
2828 goto out;
2829 error = VOP_FSYNC(ump->vat_node->vnode,
2830 FSCRED, FSYNC_WAIT, 0, 0);
2831 if (error)
2832 printf("udf_writeout_vat: error writing VAT node!\n");
2833 out:
2834 return error;
2835 }
2836
2837 /* --------------------------------------------------------------------- */
2838
2839 /*
2840 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2841 * descriptor. If OK, read in complete VAT file.
2842 */
2843
2844 static int
2845 udf_check_for_vat(struct udf_node *vat_node)
2846 {
2847 struct udf_mount *ump;
2848 struct icb_tag *icbtag;
2849 struct timestamp *mtime;
2850 struct udf_vat *vat;
2851 struct udf_oldvat_tail *oldvat_tl;
2852 struct udf_logvol_info *lvinfo;
2853 uint64_t unique_id;
2854 uint32_t vat_length;
2855 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2856 uint32_t sector_size;
2857 uint32_t *raw_vat;
2858 uint8_t *vat_table;
2859 char *regid_name;
2860 int filetype;
2861 int error;
2862
2863 /* vat_length is really 64 bits though impossible */
2864
2865 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2866 if (!vat_node)
2867 return ENOENT;
2868
2869 /* get mount info */
2870 ump = vat_node->ump;
2871 sector_size = udf_rw32(ump->logical_vol->lb_size);
2872
2873 /* check assertions */
2874 assert(vat_node->fe || vat_node->efe);
2875 assert(ump->logvol_integrity);
2876
2877 /* set vnode type to regular file or we can't read from it! */
2878 vat_node->vnode->v_type = VREG;
2879
2880 /* get information from fe/efe */
2881 if (vat_node->fe) {
2882 vat_length = udf_rw64(vat_node->fe->inf_len);
2883 icbtag = &vat_node->fe->icbtag;
2884 mtime = &vat_node->fe->mtime;
2885 unique_id = udf_rw64(vat_node->fe->unique_id);
2886 } else {
2887 vat_length = udf_rw64(vat_node->efe->inf_len);
2888 icbtag = &vat_node->efe->icbtag;
2889 mtime = &vat_node->efe->mtime;
2890 unique_id = udf_rw64(vat_node->efe->unique_id);
2891 }
2892
2893 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2894 filetype = icbtag->file_type;
2895 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2896 return ENOENT;
2897
2898 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2899
2900 vat_table_alloc_len =
2901 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2902 * UDF_VAT_CHUNKSIZE;
2903
2904 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2905 M_CANFAIL | M_WAITOK);
2906 if (vat_table == NULL) {
2907 printf("allocation of %d bytes failed for VAT\n",
2908 vat_table_alloc_len);
2909 return ENOMEM;
2910 }
2911
2912 /* allocate piece to read in head or tail of VAT file */
2913 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2914
2915 /*
2916 * check contents of the file if its the old 1.50 VAT table format.
2917 * Its notoriously broken and allthough some implementations support an
2918 * extention as defined in the UDF 1.50 errata document, its doubtfull
2919 * to be useable since a lot of implementations don't maintain it.
2920 */
2921 lvinfo = ump->logvol_info;
2922
2923 if (filetype == 0) {
2924 /* definition */
2925 vat_offset = 0;
2926 vat_entries = (vat_length-36)/4;
2927
2928 /* read in tail of virtual allocation table file */
2929 error = vn_rdwr(UIO_READ, vat_node->vnode,
2930 (uint8_t *) raw_vat,
2931 sizeof(struct udf_oldvat_tail),
2932 vat_entries * 4,
2933 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2934 NULL, NULL);
2935 if (error)
2936 goto out;
2937
2938 /* check 1.50 VAT */
2939 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2940 regid_name = (char *) oldvat_tl->id.id;
2941 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2942 if (error) {
2943 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2944 error = ENOENT;
2945 goto out;
2946 }
2947
2948 /*
2949 * update LVID from "*UDF VAT LVExtension" extended attribute
2950 * if present.
2951 */
2952 udf_update_lvid_from_vat_extattr(vat_node);
2953 } else {
2954 /* read in head of virtual allocation table file */
2955 error = vn_rdwr(UIO_READ, vat_node->vnode,
2956 (uint8_t *) raw_vat,
2957 sizeof(struct udf_vat), 0,
2958 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2959 NULL, NULL);
2960 if (error)
2961 goto out;
2962
2963 /* definition */
2964 vat = (struct udf_vat *) raw_vat;
2965 vat_offset = vat->header_len;
2966 vat_entries = (vat_length - vat_offset)/4;
2967
2968 assert(lvinfo);
2969 lvinfo->num_files = vat->num_files;
2970 lvinfo->num_directories = vat->num_directories;
2971 lvinfo->min_udf_readver = vat->min_udf_readver;
2972 lvinfo->min_udf_writever = vat->min_udf_writever;
2973 lvinfo->max_udf_writever = vat->max_udf_writever;
2974
2975 udf_update_logvolname(ump, vat->logvol_id);
2976 }
2977
2978 /* read in complete VAT file */
2979 error = vn_rdwr(UIO_READ, vat_node->vnode,
2980 vat_table,
2981 vat_length, 0,
2982 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2983 NULL, NULL);
2984 if (error)
2985 printf("read in of complete VAT file failed (error %d)\n",
2986 error);
2987 if (error)
2988 goto out;
2989
2990 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2991 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2992 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2993 ump->logvol_integrity->time = *mtime;
2994
2995 /* if we're updating, free old allocated space */
2996 if (ump->vat_table)
2997 free(ump->vat_table, M_UDFVOLD);
2998
2999 ump->vat_table_len = vat_length;
3000 ump->vat_table_alloc_len = vat_table_alloc_len;
3001 ump->vat_table = vat_table;
3002 ump->vat_offset = vat_offset;
3003 ump->vat_entries = vat_entries;
3004 ump->vat_last_free_lb = 0; /* start at beginning */
3005
3006 out:
3007 if (error) {
3008 if (vat_table)
3009 free(vat_table, M_UDFVOLD);
3010 }
3011 free(raw_vat, M_TEMP);
3012
3013 return error;
3014 }
3015
3016 /* --------------------------------------------------------------------- */
3017
3018 static int
3019 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3020 {
3021 struct udf_node *vat_node, *accepted_vat_node;
3022 struct long_ad icb_loc;
3023 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3024 int error;
3025
3026 /* mapping info not needed */
3027 mapping = mapping;
3028
3029 DPRINTF(VOLUMES, ("Searching VAT\n"));
3030
3031 /*
3032 * Start reading forward in blocks from the first possible vat
3033 * location. If not found in this block, start again a bit before
3034 * until we get a hit.
3035 */
3036 late_vat_loc = ump->last_possible_vat_location;
3037 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3038
3039 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3040 accepted_vat_node = NULL;
3041 do {
3042 vat_loc = early_vat_loc;
3043 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3044 early_vat_loc, late_vat_loc));
3045 do {
3046 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3047 vat_loc));
3048 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3049 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3050
3051 error = udf_get_node(ump, &icb_loc, &vat_node);
3052 if (!error) {
3053 error = udf_check_for_vat(vat_node);
3054 vat_node->i_flags = 0; /* reset access */
3055 }
3056 if (!error) {
3057 DPRINTFIF(VOLUMES, !error,
3058 ("VAT candidate accepted at %d\n",
3059 vat_loc));
3060 if (accepted_vat_node)
3061 vput(accepted_vat_node->vnode);
3062 accepted_vat_node = vat_node;
3063 accepted_vat_node->i_flags |= IN_NO_DELETE;
3064 vat_node = NULL;
3065 }
3066 if (vat_node)
3067 vput(vat_node->vnode);
3068 vat_loc++; /* walk forward */
3069 } while (vat_loc < late_vat_loc);
3070 if (accepted_vat_node)
3071 break;
3072
3073 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3074 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3075 } while (late_vat_loc > ump->first_possible_vat_location);
3076
3077 /* keep our last accepted VAT node around */
3078 if (accepted_vat_node) {
3079 /* revert no delete flag again to avoid potential side effects */
3080 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3081
3082 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3083 ump->vat_node = accepted_vat_node;
3084 return 0;
3085 }
3086
3087 return error;
3088 }
3089
3090 /* --------------------------------------------------------------------- */
3091
3092 static int
3093 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3094 {
3095 union dscrptr *dscr;
3096 struct part_map_spare *pms = &mapping->pms;
3097 uint32_t lb_num;
3098 int spar, error;
3099
3100 /*
3101 * The partition mapping passed on to us specifies the information we
3102 * need to locate and initialise the sparable partition mapping
3103 * information we need.
3104 */
3105
3106 DPRINTF(VOLUMES, ("Read sparable table\n"));
3107 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3108 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3109
3110 for (spar = 0; spar < pms->n_st; spar++) {
3111 lb_num = pms->st_loc[spar];
3112 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3113 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3114 if (!error && dscr) {
3115 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3116 if (ump->sparing_table)
3117 free(ump->sparing_table, M_UDFVOLD);
3118 ump->sparing_table = &dscr->spt;
3119 dscr = NULL;
3120 DPRINTF(VOLUMES,
3121 ("Sparing table accepted (%d entries)\n",
3122 udf_rw16(ump->sparing_table->rt_l)));
3123 break; /* we're done */
3124 }
3125 }
3126 if (dscr)
3127 free(dscr, M_UDFVOLD);
3128 }
3129
3130 if (ump->sparing_table)
3131 return 0;
3132
3133 return ENOENT;
3134 }
3135
3136 /* --------------------------------------------------------------------- */
3137
3138 static int
3139 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3140 {
3141 struct part_map_meta *pmm = &mapping->pmm;
3142 struct long_ad icb_loc;
3143 struct vnode *vp;
3144 uint16_t raw_phys_part, phys_part;
3145 int error;
3146
3147 /*
3148 * BUGALERT: some rogue implementations use random physical
3149 * partition numbers to break other implementations so lookup
3150 * the number.
3151 */
3152
3153 /* extract our allocation parameters set up on format */
3154 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3155 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3156 ump->metadata_flags = mapping->pmm.flags;
3157
3158 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3159 raw_phys_part = udf_rw16(pmm->part_num);
3160 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3161
3162 icb_loc.loc.part_num = udf_rw16(phys_part);
3163
3164 DPRINTF(VOLUMES, ("Metadata file\n"));
3165 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3166 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3167 if (ump->metadata_node) {
3168 vp = ump->metadata_node->vnode;
3169 UDF_SET_SYSTEMFILE(vp);
3170 }
3171
3172 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3173 if (icb_loc.loc.lb_num != -1) {
3174 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3175 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3176 if (ump->metadatamirror_node) {
3177 vp = ump->metadatamirror_node->vnode;
3178 UDF_SET_SYSTEMFILE(vp);
3179 }
3180 }
3181
3182 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3183 if (icb_loc.loc.lb_num != -1) {
3184 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3185 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3186 if (ump->metadatabitmap_node) {
3187 vp = ump->metadatabitmap_node->vnode;
3188 UDF_SET_SYSTEMFILE(vp);
3189 }
3190 }
3191
3192 /* if we're mounting read-only we relax the requirements */
3193 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3194 error = EFAULT;
3195 if (ump->metadata_node)
3196 error = 0;
3197 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3198 printf( "udf mount: Metadata file not readable, "
3199 "substituting Metadata copy file\n");
3200 ump->metadata_node = ump->metadatamirror_node;
3201 ump->metadatamirror_node = NULL;
3202 error = 0;
3203 }
3204 } else {
3205 /* mounting read/write */
3206 /* XXX DISABLED! metadata writing is not working yet XXX */
3207 if (error)
3208 error = EROFS;
3209 }
3210 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3211 "metadata files\n"));
3212 return error;
3213 }
3214
3215 /* --------------------------------------------------------------------- */
3216
3217 int
3218 udf_read_vds_tables(struct udf_mount *ump)
3219 {
3220 union udf_pmap *mapping;
3221 /* struct udf_args *args = &ump->mount_args; */
3222 uint32_t n_pm;
3223 uint32_t log_part;
3224 uint8_t *pmap_pos;
3225 int pmap_size;
3226 int error;
3227
3228 /* Iterate (again) over the part mappings for locations */
3229 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3230 pmap_pos = ump->logical_vol->maps;
3231
3232 for (log_part = 0; log_part < n_pm; log_part++) {
3233 mapping = (union udf_pmap *) pmap_pos;
3234 switch (ump->vtop_tp[log_part]) {
3235 case UDF_VTOP_TYPE_PHYS :
3236 /* nothing */
3237 break;
3238 case UDF_VTOP_TYPE_VIRT :
3239 /* search and load VAT */
3240 error = udf_search_vat(ump, mapping);
3241 if (error)
3242 return ENOENT;
3243 break;
3244 case UDF_VTOP_TYPE_SPARABLE :
3245 /* load one of the sparable tables */
3246 error = udf_read_sparables(ump, mapping);
3247 if (error)
3248 return ENOENT;
3249 break;
3250 case UDF_VTOP_TYPE_META :
3251 /* load the associated file descriptors */
3252 error = udf_read_metadata_nodes(ump, mapping);
3253 if (error)
3254 return ENOENT;
3255 break;
3256 default:
3257 break;
3258 }
3259 pmap_size = pmap_pos[1];
3260 pmap_pos += pmap_size;
3261 }
3262
3263 /* read in and check unallocated and free space info if writing */
3264 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3265 error = udf_read_physical_partition_spacetables(ump);
3266 if (error)
3267 return error;
3268
3269 /* also read in metadata partition spacebitmap if defined */
3270 error = udf_read_metadata_partition_spacetable(ump);
3271 return error;
3272 }
3273
3274 return 0;
3275 }
3276
3277 /* --------------------------------------------------------------------- */
3278
3279 int
3280 udf_read_rootdirs(struct udf_mount *ump)
3281 {
3282 union dscrptr *dscr;
3283 /* struct udf_args *args = &ump->mount_args; */
3284 struct udf_node *rootdir_node, *streamdir_node;
3285 struct long_ad fsd_loc, *dir_loc;
3286 uint32_t lb_num, dummy;
3287 uint32_t fsd_len;
3288 int dscr_type;
3289 int error;
3290
3291 /* TODO implement FSD reading in separate function like integrity? */
3292 /* get fileset descriptor sequence */
3293 fsd_loc = ump->logical_vol->lv_fsd_loc;
3294 fsd_len = udf_rw32(fsd_loc.len);
3295
3296 dscr = NULL;
3297 error = 0;
3298 while (fsd_len || error) {
3299 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3300 /* translate fsd_loc to lb_num */
3301 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3302 if (error)
3303 break;
3304 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3305 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3306 /* end markers */
3307 if (error || (dscr == NULL))
3308 break;
3309
3310 /* analyse */
3311 dscr_type = udf_rw16(dscr->tag.id);
3312 if (dscr_type == TAGID_TERM)
3313 break;
3314 if (dscr_type != TAGID_FSD) {
3315 free(dscr, M_UDFVOLD);
3316 return ENOENT;
3317 }
3318
3319 /*
3320 * TODO check for multiple fileset descriptors; its only
3321 * picking the last now. Also check for FSD
3322 * correctness/interpretability
3323 */
3324
3325 /* update */
3326 if (ump->fileset_desc) {
3327 free(ump->fileset_desc, M_UDFVOLD);
3328 }
3329 ump->fileset_desc = &dscr->fsd;
3330 dscr = NULL;
3331
3332 /* continue to the next fsd */
3333 fsd_len -= ump->discinfo.sector_size;
3334 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3335
3336 /* follow up to fsd->next_ex (long_ad) if its not null */
3337 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3338 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3339 fsd_loc = ump->fileset_desc->next_ex;
3340 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3341 }
3342 }
3343 if (dscr)
3344 free(dscr, M_UDFVOLD);
3345
3346 /* there has to be one */
3347 if (ump->fileset_desc == NULL)
3348 return ENOENT;
3349
3350 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3351 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3352 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3353
3354 /*
3355 * Now the FSD is known, read in the rootdirectory and if one exists,
3356 * the system stream dir. Some files in the system streamdir are not
3357 * wanted in this implementation since they are not maintained. If
3358 * writing is enabled we'll delete these files if they exist.
3359 */
3360
3361 rootdir_node = streamdir_node = NULL;
3362 dir_loc = NULL;
3363
3364 /* try to read in the rootdir */
3365 dir_loc = &ump->fileset_desc->rootdir_icb;
3366 error = udf_get_node(ump, dir_loc, &rootdir_node);
3367 if (error)
3368 return ENOENT;
3369
3370 /* aparently it read in fine */
3371
3372 /*
3373 * Try the system stream directory; not very likely in the ones we
3374 * test, but for completeness.
3375 */
3376 dir_loc = &ump->fileset_desc->streamdir_icb;
3377 if (udf_rw32(dir_loc->len)) {
3378 printf("udf_read_rootdirs: streamdir defined ");
3379 error = udf_get_node(ump, dir_loc, &streamdir_node);
3380 if (error) {
3381 printf("but error in streamdir reading\n");
3382 } else {
3383 printf("but ignored\n");
3384 /*
3385 * TODO process streamdir `baddies' i.e. files we dont
3386 * want if R/W
3387 */
3388 }
3389 }
3390
3391 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3392
3393 /* release the vnodes again; they'll be auto-recycled later */
3394 if (streamdir_node) {
3395 vput(streamdir_node->vnode);
3396 }
3397 if (rootdir_node) {
3398 vput(rootdir_node->vnode);
3399 }
3400
3401 return 0;
3402 }
3403
3404 /* --------------------------------------------------------------------- */
3405
3406 /* To make absolutely sure we are NOT returning zero, add one :) */
3407
3408 long
3409 udf_get_node_id(const struct long_ad *icbptr)
3410 {
3411 /* ought to be enough since each mountpoint has its own chain */
3412 return udf_rw32(icbptr->loc.lb_num) + 1;
3413 }
3414
3415
3416 int
3417 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3418 {
3419 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3420 return -1;
3421 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3422 return 1;
3423
3424 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3425 return -1;
3426 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3427 return 1;
3428
3429 return 0;
3430 }
3431
3432
3433 static int
3434 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3435 {
3436 const struct udf_node *a_node = a;
3437 const struct udf_node *b_node = b;
3438
3439 return udf_compare_icb(&a_node->loc, &b_node->loc);
3440 }
3441
3442
3443 static int
3444 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3445 {
3446 const struct udf_node *a_node = a;
3447 const struct long_ad * const icb = key;
3448
3449 return udf_compare_icb(&a_node->loc, icb);
3450 }
3451
3452
3453 static const rb_tree_ops_t udf_node_rbtree_ops = {
3454 .rbto_compare_nodes = udf_compare_rbnodes,
3455 .rbto_compare_key = udf_compare_rbnode_icb,
3456 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3457 .rbto_context = NULL
3458 };
3459
3460
3461 void
3462 udf_init_nodes_tree(struct udf_mount *ump)
3463 {
3464
3465 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3466 }
3467
3468
3469 /* --------------------------------------------------------------------- */
3470
3471 static int
3472 udf_validate_session_start(struct udf_mount *ump)
3473 {
3474 struct mmc_trackinfo trackinfo;
3475 struct vrs_desc *vrs;
3476 uint32_t tracknr, sessionnr, sector, sector_size;
3477 uint32_t iso9660_vrs, write_track_start;
3478 uint8_t *buffer, *blank, *pos;
3479 int blks, max_sectors, vrs_len;
3480 int error;
3481
3482 /* disc appendable? */
3483 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3484 return EROFS;
3485
3486 /* already written here? if so, there should be an ISO VDS */
3487 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3488 return 0;
3489
3490 /*
3491 * Check if the first track of the session is blank and if so, copy or
3492 * create a dummy ISO descriptor so the disc is valid again.
3493 */
3494
3495 tracknr = ump->discinfo.first_track_last_session;
3496 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3497 trackinfo.tracknr = tracknr;
3498 error = udf_update_trackinfo(ump, &trackinfo);
3499 if (error)
3500 return error;
3501
3502 udf_dump_trackinfo(&trackinfo);
3503 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3504 KASSERT(trackinfo.sessionnr > 1);
3505
3506 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3507 write_track_start = trackinfo.next_writable;
3508
3509 /* we have to copy the ISO VRS from a former session */
3510 DPRINTF(VOLUMES, ("validate_session_start: "
3511 "blank or reserved track, copying VRS\n"));
3512
3513 /* sessionnr should be the session we're mounting */
3514 sessionnr = ump->mount_args.sessionnr;
3515
3516 /* start at the first track */
3517 tracknr = ump->discinfo.first_track;
3518 while (tracknr <= ump->discinfo.num_tracks) {
3519 trackinfo.tracknr = tracknr;
3520 error = udf_update_trackinfo(ump, &trackinfo);
3521 if (error) {
3522 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3523 return error;
3524 }
3525 if (trackinfo.sessionnr == sessionnr)
3526 break;
3527 tracknr++;
3528 }
3529 if (trackinfo.sessionnr != sessionnr) {
3530 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3531 return ENOENT;
3532 }
3533
3534 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3535 udf_dump_trackinfo(&trackinfo);
3536
3537 /*
3538 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3539 * minimum ISO `sector size' 2048
3540 */
3541 sector_size = ump->discinfo.sector_size;
3542 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3543 + trackinfo.track_start;
3544
3545 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3546 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3547 blks = MAX(1, 2048 / sector_size);
3548
3549 error = 0;
3550 for (sector = 0; sector < max_sectors; sector += blks) {
3551 pos = buffer + sector * sector_size;
3552 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3553 iso9660_vrs + sector, blks);
3554 if (error)
3555 break;
3556 /* check this ISO descriptor */
3557 vrs = (struct vrs_desc *) pos;
3558 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3559 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3560 continue;
3561 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3562 continue;
3563 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3564 continue;
3565 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3566 continue;
3567 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3568 continue;
3569 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3570 break;
3571 /* now what? for now, end of sequence */
3572 break;
3573 }
3574 vrs_len = sector + blks;
3575 if (error) {
3576 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3577 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3578
3579 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3580
3581 vrs = (struct vrs_desc *) (buffer);
3582 vrs->struct_type = 0;
3583 vrs->version = 1;
3584 memcpy(vrs->identifier,VRS_BEA01, 5);
3585
3586 vrs = (struct vrs_desc *) (buffer + 2048);
3587 vrs->struct_type = 0;
3588 vrs->version = 1;
3589 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3590 memcpy(vrs->identifier,VRS_NSR02, 5);
3591 } else {
3592 memcpy(vrs->identifier,VRS_NSR03, 5);
3593 }
3594
3595 vrs = (struct vrs_desc *) (buffer + 4096);
3596 vrs->struct_type = 0;
3597 vrs->version = 1;
3598 memcpy(vrs->identifier, VRS_TEA01, 5);
3599
3600 vrs_len = 3*blks;
3601 }
3602
3603 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3604
3605 /*
3606 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3607 * minimum ISO `sector size' 2048
3608 */
3609 sector_size = ump->discinfo.sector_size;
3610 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3611 + write_track_start;
3612
3613 /* write out 32 kb */
3614 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3615 memset(blank, 0, sector_size);
3616 error = 0;
3617 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3618 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3619 blank, sector, 1);
3620 if (error)
3621 break;
3622 }
3623 if (!error) {
3624 /* write out our ISO VRS */
3625 KASSERT(sector == iso9660_vrs);
3626 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3627 sector, vrs_len);
3628 sector += vrs_len;
3629 }
3630 if (!error) {
3631 /* fill upto the first anchor at S+256 */
3632 for (; sector < write_track_start+256; sector++) {
3633 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3634 blank, sector, 1);
3635 if (error)
3636 break;
3637 }
3638 }
3639 if (!error) {
3640 /* write out anchor; write at ABSOLUTE place! */
3641 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3642 (union dscrptr *) ump->anchors[0], sector, sector);
3643 if (error)
3644 printf("writeout of anchor failed!\n");
3645 }
3646
3647 free(blank, M_TEMP);
3648 free(buffer, M_TEMP);
3649
3650 if (error)
3651 printf("udf_open_session: error writing iso vrs! : "
3652 "leaving disc in compromised state!\n");
3653
3654 /* synchronise device caches */
3655 (void) udf_synchronise_caches(ump);
3656
3657 return error;
3658 }
3659
3660
3661 int
3662 udf_open_logvol(struct udf_mount *ump)
3663 {
3664 int logvol_integrity;
3665 int error;
3666
3667 /* already/still open? */
3668 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3669 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3670 return 0;
3671
3672 /* can we open it ? */
3673 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3674 return EROFS;
3675
3676 /* setup write parameters */
3677 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3678 if ((error = udf_setup_writeparams(ump)) != 0)
3679 return error;
3680
3681 /* determine data and metadata tracks (most likely same) */
3682 error = udf_search_writing_tracks(ump);
3683 if (error) {
3684 /* most likely lack of space */
3685 printf("udf_open_logvol: error searching writing tracks\n");
3686 return EROFS;
3687 }
3688
3689 /* writeout/update lvint on disc or only in memory */
3690 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3691 if (ump->lvopen & UDF_OPEN_SESSION) {
3692 /* TODO optional track reservation opening */
3693 error = udf_validate_session_start(ump);
3694 if (error)
3695 return error;
3696
3697 /* determine data and metadata tracks again */
3698 error = udf_search_writing_tracks(ump);
3699
3700 if (ump->lvclose & UDF_WRITE_VAT) {
3701 /*
3702 * we writeout the VAT to get a self-sustained session
3703 * for fsck
3704 */
3705 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3706
3707 /* write out the VAT data and all its descriptors */
3708 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3709 udf_writeout_vat(ump);
3710
3711 /* force everything to be synchronized on the device */
3712 (void) udf_synchronise_caches(ump);
3713 }
3714 }
3715
3716 /* mark it open */
3717 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3718
3719 /* do we need to write it out? */
3720 if (ump->lvopen & UDF_WRITE_LVINT) {
3721 error = udf_writeout_lvint(ump, ump->lvopen);
3722 /* if we couldn't write it mark it closed again */
3723 if (error) {
3724 ump->logvol_integrity->integrity_type =
3725 udf_rw32(UDF_INTEGRITY_CLOSED);
3726 return error;
3727 }
3728 }
3729
3730 return 0;
3731 }
3732
3733
3734 int
3735 udf_close_logvol(struct udf_mount *ump, int mntflags)
3736 {
3737 struct vnode *devvp = ump->devvp;
3738 struct mmc_op mmc_op;
3739 int logvol_integrity;
3740 int error = 0, error1 = 0, error2 = 0;
3741 int tracknr;
3742 int nvats, n, nok;
3743
3744 /* already/still closed? */
3745 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3746 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3747 return 0;
3748
3749 /* writeout/update lvint or write out VAT */
3750 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3751 #ifdef DIAGNOSTIC
3752 if (ump->lvclose & UDF_CLOSE_SESSION)
3753 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3754 #endif
3755
3756 if (ump->lvclose & UDF_WRITE_VAT) {
3757 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3758
3759 /* write out the VAT data and all its descriptors */
3760 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3761 udf_writeout_vat(ump);
3762
3763 /* at least two DVD packets and 3 CD-R packets */
3764 nvats = 32;
3765
3766 #if notyet
3767 /*
3768 * TODO calculate the available space and if the disc is
3769 * allmost full, write out till end-256-1 with banks, write
3770 * AVDP and fill up with VATs, then close session and close
3771 * disc.
3772 */
3773 if (ump->lvclose & UDF_FINALISE_DISC) {
3774 error = udf_write_phys_dscr_sync(ump, NULL,
3775 UDF_C_FLOAT_DSCR,
3776 (union dscrptr *) ump->anchors[0],
3777 0, 0);
3778 if (error)
3779 printf("writeout of anchor failed!\n");
3780
3781 /* pad space with VAT ICBs */
3782 nvats = 256;
3783 }
3784 #endif
3785
3786 /* write out a number of VAT nodes */
3787 nok = 0;
3788 for (n = 0; n < nvats; n++) {
3789 /* will now only write last FE/EFE */
3790 ump->vat_node->i_flags |= IN_MODIFIED;
3791 error = VOP_FSYNC(ump->vat_node->vnode,
3792 FSCRED, FSYNC_WAIT, 0, 0);
3793 if (!error)
3794 nok++;
3795 }
3796 /* force everything to be synchronized on the device */
3797 (void) udf_synchronise_caches(ump);
3798
3799 if (nok < 14) {
3800 /* arbitrary; but at least one or two CD frames */
3801 printf("writeout of at least 14 VATs failed\n");
3802 return error;
3803 }
3804 }
3805
3806 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3807
3808 /* finish closing of session */
3809 if (ump->lvclose & UDF_CLOSE_SESSION) {
3810 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3811 "as requested\n"));
3812 error = udf_validate_session_start(ump);
3813 if (error)
3814 return error;
3815
3816 (void) udf_synchronise_caches(ump);
3817
3818 /* close all associated tracks */
3819 tracknr = ump->discinfo.first_track_last_session;
3820 error = 0;
3821 while (tracknr <= ump->discinfo.last_track_last_session) {
3822 DPRINTF(VOLUMES, ("\tclosing possible open "
3823 "track %d\n", tracknr));
3824 memset(&mmc_op, 0, sizeof(mmc_op));
3825 mmc_op.operation = MMC_OP_CLOSETRACK;
3826 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3827 mmc_op.tracknr = tracknr;
3828 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3829 FKIOCTL, NOCRED);
3830 if (error)
3831 printf("udf_close_logvol: closing of "
3832 "track %d failed\n", tracknr);
3833 tracknr ++;
3834 }
3835 if (!error) {
3836 DPRINTF(VOLUMES, ("closing session\n"));
3837 memset(&mmc_op, 0, sizeof(mmc_op));
3838 mmc_op.operation = MMC_OP_CLOSESESSION;
3839 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3840 mmc_op.sessionnr = ump->discinfo.num_sessions;
3841 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3842 FKIOCTL, NOCRED);
3843 if (error)
3844 printf("udf_close_logvol: closing of session"
3845 "failed\n");
3846 }
3847 if (!error)
3848 ump->lvopen |= UDF_OPEN_SESSION;
3849 if (error) {
3850 printf("udf_close_logvol: leaving disc as it is\n");
3851 ump->lvclose &= ~UDF_FINALISE_DISC;
3852 }
3853 }
3854
3855 if (ump->lvclose & UDF_FINALISE_DISC) {
3856 memset(&mmc_op, 0, sizeof(mmc_op));
3857 mmc_op.operation = MMC_OP_FINALISEDISC;
3858 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3859 mmc_op.sessionnr = ump->discinfo.num_sessions;
3860 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3861 FKIOCTL, NOCRED);
3862 if (error)
3863 printf("udf_close_logvol: finalising disc"
3864 "failed\n");
3865 }
3866
3867 /* write out partition bitmaps if requested */
3868 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3869 /* sync writeout metadata spacetable if existing */
3870 error1 = udf_write_metadata_partition_spacetable(ump, true);
3871 if (error1)
3872 printf( "udf_close_logvol: writeout of metadata space "
3873 "bitmap failed\n");
3874
3875 /* sync writeout partition spacetables */
3876 error2 = udf_write_physical_partition_spacetables(ump, true);
3877 if (error2)
3878 printf( "udf_close_logvol: writeout of space tables "
3879 "failed\n");
3880
3881 if (error1 || error2)
3882 return (error1 | error2);
3883
3884 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3885 }
3886
3887 /* write out metadata partition nodes if requested */
3888 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3889 /* sync writeout metadata descriptor node */
3890 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3891 if (error1)
3892 printf( "udf_close_logvol: writeout of metadata partition "
3893 "node failed\n");
3894
3895 /* duplicate metadata partition descriptor if needed */
3896 udf_synchronise_metadatamirror_node(ump);
3897
3898 /* sync writeout metadatamirror descriptor node */
3899 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3900 if (error2)
3901 printf( "udf_close_logvol: writeout of metadata partition "
3902 "mirror node failed\n");
3903
3904 if (error1 || error2)
3905 return (error1 | error2);
3906
3907 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3908 }
3909
3910 /* mark it closed */
3911 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3912
3913 /* do we need to write out the logical volume integrity? */
3914 if (ump->lvclose & UDF_WRITE_LVINT)
3915 error = udf_writeout_lvint(ump, ump->lvopen);
3916 if (error) {
3917 /* HELP now what? mark it open again for now */
3918 ump->logvol_integrity->integrity_type =
3919 udf_rw32(UDF_INTEGRITY_OPEN);
3920 return error;
3921 }
3922
3923 (void) udf_synchronise_caches(ump);
3924
3925 return 0;
3926 }
3927
3928 /* --------------------------------------------------------------------- */
3929
3930 /*
3931 * Genfs interfacing
3932 *
3933 * static const struct genfs_ops udf_genfsops = {
3934 * .gop_size = genfs_size,
3935 * size of transfers
3936 * .gop_alloc = udf_gop_alloc,
3937 * allocate len bytes at offset
3938 * .gop_write = genfs_gop_write,
3939 * putpages interface code
3940 * .gop_markupdate = udf_gop_markupdate,
3941 * set update/modify flags etc.
3942 * }
3943 */
3944
3945 /*
3946 * Genfs interface. These four functions are the only ones defined though not
3947 * documented... great....
3948 */
3949
3950 /*
3951 * Called for allocating an extent of the file either by VOP_WRITE() or by
3952 * genfs filling up gaps.
3953 */
3954 static int
3955 udf_gop_alloc(struct vnode *vp, off_t off,
3956 off_t len, int flags, kauth_cred_t cred)
3957 {
3958 struct udf_node *udf_node = VTOI(vp);
3959 struct udf_mount *ump = udf_node->ump;
3960 uint64_t lb_start, lb_end;
3961 uint32_t lb_size, num_lb;
3962 int udf_c_type, vpart_num, can_fail;
3963 int error;
3964
3965 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
3966 off, len, flags? "SYNC":"NONE"));
3967
3968 /*
3969 * request the pages of our vnode and see how many pages will need to
3970 * be allocated and reserve that space
3971 */
3972 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
3973 lb_start = off / lb_size;
3974 lb_end = (off + len + lb_size -1) / lb_size;
3975 num_lb = lb_end - lb_start;
3976
3977 udf_c_type = udf_get_c_type(udf_node);
3978 vpart_num = udf_get_record_vpart(ump, udf_c_type);
3979
3980 /* all requests can fail */
3981 can_fail = true;
3982
3983 /* fid's (directories) can't fail */
3984 if (udf_c_type == UDF_C_FIDS)
3985 can_fail = false;
3986
3987 /* system files can't fail */
3988 if (vp->v_vflag & VV_SYSTEM)
3989 can_fail = false;
3990
3991 error = udf_reserve_space(ump, udf_node, udf_c_type,
3992 vpart_num, num_lb, can_fail);
3993
3994 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
3995 lb_start, lb_end, num_lb));
3996
3997 return error;
3998 }
3999
4000
4001 /*
4002 * callback from genfs to update our flags
4003 */
4004 static void
4005 udf_gop_markupdate(struct vnode *vp, int flags)
4006 {
4007 struct udf_node *udf_node = VTOI(vp);
4008 u_long mask = 0;
4009
4010 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4011 mask = IN_ACCESS;
4012 }
4013 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4014 if (vp->v_type == VREG) {
4015 mask |= IN_CHANGE | IN_UPDATE;
4016 } else {
4017 mask |= IN_MODIFY;
4018 }
4019 }
4020 if (mask) {
4021 udf_node->i_flags |= mask;
4022 }
4023 }
4024
4025
4026 static const struct genfs_ops udf_genfsops = {
4027 .gop_size = genfs_size,
4028 .gop_alloc = udf_gop_alloc,
4029 .gop_write = genfs_gop_write_rwmap,
4030 .gop_markupdate = udf_gop_markupdate,
4031 .gop_putrange = genfs_gop_putrange,
4032 };
4033
4034
4035 /* --------------------------------------------------------------------- */
4036
4037 int
4038 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4039 {
4040 union dscrptr *dscr;
4041 int error;
4042
4043 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4044 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4045
4046 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4047 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4048 (void) udf_validate_tag_and_crc_sums(dscr);
4049
4050 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4051 dscr, sector, sector);
4052
4053 free(dscr, M_TEMP);
4054
4055 return error;
4056 }
4057
4058
4059 /* --------------------------------------------------------------------- */
4060
4061 /* UDF<->unix converters */
4062
4063 /* --------------------------------------------------------------------- */
4064
4065 static mode_t
4066 udf_perm_to_unix_mode(uint32_t perm)
4067 {
4068 mode_t mode;
4069
4070 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4071 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4072 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4073
4074 return mode;
4075 }
4076
4077 /* --------------------------------------------------------------------- */
4078
4079 static uint32_t
4080 unix_mode_to_udf_perm(mode_t mode)
4081 {
4082 uint32_t perm;
4083
4084 perm = ((mode & S_IRWXO) );
4085 perm |= ((mode & S_IRWXG) << 2);
4086 perm |= ((mode & S_IRWXU) << 4);
4087 perm |= ((mode & S_IWOTH) << 3);
4088 perm |= ((mode & S_IWGRP) << 5);
4089 perm |= ((mode & S_IWUSR) << 7);
4090
4091 return perm;
4092 }
4093
4094 /* --------------------------------------------------------------------- */
4095
4096 static uint32_t
4097 udf_icb_to_unix_filetype(uint32_t icbftype)
4098 {
4099 switch (icbftype) {
4100 case UDF_ICB_FILETYPE_DIRECTORY :
4101 case UDF_ICB_FILETYPE_STREAMDIR :
4102 return S_IFDIR;
4103 case UDF_ICB_FILETYPE_FIFO :
4104 return S_IFIFO;
4105 case UDF_ICB_FILETYPE_CHARDEVICE :
4106 return S_IFCHR;
4107 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4108 return S_IFBLK;
4109 case UDF_ICB_FILETYPE_RANDOMACCESS :
4110 case UDF_ICB_FILETYPE_REALTIME :
4111 return S_IFREG;
4112 case UDF_ICB_FILETYPE_SYMLINK :
4113 return S_IFLNK;
4114 case UDF_ICB_FILETYPE_SOCKET :
4115 return S_IFSOCK;
4116 }
4117 /* no idea what this is */
4118 return 0;
4119 }
4120
4121 /* --------------------------------------------------------------------- */
4122
4123 void
4124 udf_to_unix_name(char *result, int result_len, char *id, int len,
4125 struct charspec *chsp)
4126 {
4127 uint16_t *raw_name, *unix_name;
4128 uint16_t *inchp, ch;
4129 uint8_t *outchp;
4130 const char *osta_id = "OSTA Compressed Unicode";
4131 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4132
4133 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4134 unix_name = raw_name + 1024; /* split space in half */
4135 assert(sizeof(char) == sizeof(uint8_t));
4136 outchp = (uint8_t *) result;
4137
4138 is_osta_typ0 = (chsp->type == 0);
4139 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4140 if (is_osta_typ0) {
4141 /* TODO clean up */
4142 *raw_name = *unix_name = 0;
4143 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4144 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4145 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4146 /* output UTF8 */
4147 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4148 ch = *inchp;
4149 nout = wput_utf8(outchp, result_len, ch);
4150 outchp += nout; result_len -= nout;
4151 if (!ch) break;
4152 }
4153 *outchp++ = 0;
4154 } else {
4155 /* assume 8bit char length byte latin-1 */
4156 assert(*id == 8);
4157 assert(strlen((char *) (id+1)) <= NAME_MAX);
4158 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4159 }
4160 free(raw_name, M_UDFTEMP);
4161 }
4162
4163 /* --------------------------------------------------------------------- */
4164
4165 void
4166 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4167 struct charspec *chsp)
4168 {
4169 uint16_t *raw_name;
4170 uint16_t *outchp;
4171 const char *inchp;
4172 const char *osta_id = "OSTA Compressed Unicode";
4173 int udf_chars, is_osta_typ0, bits;
4174 size_t cnt;
4175
4176 /* allocate temporary unicode-16 buffer */
4177 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4178
4179 /* convert utf8 to unicode-16 */
4180 *raw_name = 0;
4181 inchp = name;
4182 outchp = raw_name;
4183 bits = 8;
4184 for (cnt = name_len, udf_chars = 0; cnt;) {
4185 *outchp = wget_utf8(&inchp, &cnt);
4186 if (*outchp > 0xff)
4187 bits=16;
4188 outchp++;
4189 udf_chars++;
4190 }
4191 /* null terminate just in case */
4192 *outchp++ = 0;
4193
4194 is_osta_typ0 = (chsp->type == 0);
4195 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4196 if (is_osta_typ0) {
4197 udf_chars = udf_CompressUnicode(udf_chars, bits,
4198 (unicode_t *) raw_name,
4199 (byte *) result);
4200 } else {
4201 printf("unix to udf name: no CHSP0 ?\n");
4202 /* XXX assume 8bit char length byte latin-1 */
4203 *result++ = 8; udf_chars = 1;
4204 strncpy(result, name + 1, name_len);
4205 udf_chars += name_len;
4206 }
4207 *result_len = udf_chars;
4208 free(raw_name, M_UDFTEMP);
4209 }
4210
4211 /* --------------------------------------------------------------------- */
4212
4213 void
4214 udf_timestamp_to_timespec(struct udf_mount *ump,
4215 struct timestamp *timestamp,
4216 struct timespec *timespec)
4217 {
4218 struct clock_ymdhms ymdhms;
4219 uint32_t usecs, secs, nsecs;
4220 uint16_t tz;
4221
4222 /* fill in ymdhms structure from timestamp */
4223 memset(&ymdhms, 0, sizeof(ymdhms));
4224 ymdhms.dt_year = udf_rw16(timestamp->year);
4225 ymdhms.dt_mon = timestamp->month;
4226 ymdhms.dt_day = timestamp->day;
4227 ymdhms.dt_wday = 0; /* ? */
4228 ymdhms.dt_hour = timestamp->hour;
4229 ymdhms.dt_min = timestamp->minute;
4230 ymdhms.dt_sec = timestamp->second;
4231
4232 secs = clock_ymdhms_to_secs(&ymdhms);
4233 usecs = timestamp->usec +
4234 100*timestamp->hund_usec + 10000*timestamp->centisec;
4235 nsecs = usecs * 1000;
4236
4237 /*
4238 * Calculate the time zone. The timezone is 12 bit signed 2's
4239 * compliment, so we gotta do some extra magic to handle it right.
4240 */
4241 tz = udf_rw16(timestamp->type_tz);
4242 tz &= 0x0fff; /* only lower 12 bits are significant */
4243 if (tz & 0x0800) /* sign extention */
4244 tz |= 0xf000;
4245
4246 /* TODO check timezone conversion */
4247 /* check if we are specified a timezone to convert */
4248 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4249 if ((int16_t) tz != -2047)
4250 secs -= (int16_t) tz * 60;
4251 } else {
4252 secs -= ump->mount_args.gmtoff;
4253 }
4254
4255 timespec->tv_sec = secs;
4256 timespec->tv_nsec = nsecs;
4257 }
4258
4259
4260 void
4261 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4262 {
4263 struct clock_ymdhms ymdhms;
4264 uint32_t husec, usec, csec;
4265
4266 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4267
4268 usec = timespec->tv_nsec / 1000;
4269 husec = usec / 100;
4270 usec -= husec * 100; /* only 0-99 in usec */
4271 csec = husec / 100; /* only 0-99 in csec */
4272 husec -= csec * 100; /* only 0-99 in husec */
4273
4274 /* set method 1 for CUT/GMT */
4275 timestamp->type_tz = udf_rw16((1<<12) + 0);
4276 timestamp->year = udf_rw16(ymdhms.dt_year);
4277 timestamp->month = ymdhms.dt_mon;
4278 timestamp->day = ymdhms.dt_day;
4279 timestamp->hour = ymdhms.dt_hour;
4280 timestamp->minute = ymdhms.dt_min;
4281 timestamp->second = ymdhms.dt_sec;
4282 timestamp->centisec = csec;
4283 timestamp->hund_usec = husec;
4284 timestamp->usec = usec;
4285 }
4286
4287 /* --------------------------------------------------------------------- */
4288
4289 /*
4290 * Attribute and filetypes converters with get/set pairs
4291 */
4292
4293 uint32_t
4294 udf_getaccessmode(struct udf_node *udf_node)
4295 {
4296 struct file_entry *fe = udf_node->fe;
4297 struct extfile_entry *efe = udf_node->efe;
4298 uint32_t udf_perm, icbftype;
4299 uint32_t mode, ftype;
4300 uint16_t icbflags;
4301
4302 UDF_LOCK_NODE(udf_node, 0);
4303 if (fe) {
4304 udf_perm = udf_rw32(fe->perm);
4305 icbftype = fe->icbtag.file_type;
4306 icbflags = udf_rw16(fe->icbtag.flags);
4307 } else {
4308 assert(udf_node->efe);
4309 udf_perm = udf_rw32(efe->perm);
4310 icbftype = efe->icbtag.file_type;
4311 icbflags = udf_rw16(efe->icbtag.flags);
4312 }
4313
4314 mode = udf_perm_to_unix_mode(udf_perm);
4315 ftype = udf_icb_to_unix_filetype(icbftype);
4316
4317 /* set suid, sgid, sticky from flags in fe/efe */
4318 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4319 mode |= S_ISUID;
4320 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4321 mode |= S_ISGID;
4322 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4323 mode |= S_ISVTX;
4324
4325 UDF_UNLOCK_NODE(udf_node, 0);
4326
4327 return mode | ftype;
4328 }
4329
4330
4331 void
4332 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4333 {
4334 struct file_entry *fe = udf_node->fe;
4335 struct extfile_entry *efe = udf_node->efe;
4336 uint32_t udf_perm;
4337 uint16_t icbflags;
4338
4339 UDF_LOCK_NODE(udf_node, 0);
4340 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4341 if (fe) {
4342 icbflags = udf_rw16(fe->icbtag.flags);
4343 } else {
4344 icbflags = udf_rw16(efe->icbtag.flags);
4345 }
4346
4347 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4348 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4349 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4350 if (mode & S_ISUID)
4351 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4352 if (mode & S_ISGID)
4353 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4354 if (mode & S_ISVTX)
4355 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4356
4357 if (fe) {
4358 fe->perm = udf_rw32(udf_perm);
4359 fe->icbtag.flags = udf_rw16(icbflags);
4360 } else {
4361 efe->perm = udf_rw32(udf_perm);
4362 efe->icbtag.flags = udf_rw16(icbflags);
4363 }
4364
4365 UDF_UNLOCK_NODE(udf_node, 0);
4366 }
4367
4368
4369 void
4370 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4371 {
4372 struct udf_mount *ump = udf_node->ump;
4373 struct file_entry *fe = udf_node->fe;
4374 struct extfile_entry *efe = udf_node->efe;
4375 uid_t uid;
4376 gid_t gid;
4377
4378 UDF_LOCK_NODE(udf_node, 0);
4379 if (fe) {
4380 uid = (uid_t)udf_rw32(fe->uid);
4381 gid = (gid_t)udf_rw32(fe->gid);
4382 } else {
4383 assert(udf_node->efe);
4384 uid = (uid_t)udf_rw32(efe->uid);
4385 gid = (gid_t)udf_rw32(efe->gid);
4386 }
4387
4388 /* do the uid/gid translation game */
4389 if (uid == (uid_t) -1)
4390 uid = ump->mount_args.anon_uid;
4391 if (gid == (gid_t) -1)
4392 gid = ump->mount_args.anon_gid;
4393
4394 *uidp = uid;
4395 *gidp = gid;
4396
4397 UDF_UNLOCK_NODE(udf_node, 0);
4398 }
4399
4400
4401 void
4402 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4403 {
4404 struct udf_mount *ump = udf_node->ump;
4405 struct file_entry *fe = udf_node->fe;
4406 struct extfile_entry *efe = udf_node->efe;
4407 uid_t nobody_uid;
4408 gid_t nobody_gid;
4409
4410 UDF_LOCK_NODE(udf_node, 0);
4411
4412 /* do the uid/gid translation game */
4413 nobody_uid = ump->mount_args.nobody_uid;
4414 nobody_gid = ump->mount_args.nobody_gid;
4415 if (uid == nobody_uid)
4416 uid = (uid_t) -1;
4417 if (gid == nobody_gid)
4418 gid = (gid_t) -1;
4419
4420 if (fe) {
4421 fe->uid = udf_rw32((uint32_t) uid);
4422 fe->gid = udf_rw32((uint32_t) gid);
4423 } else {
4424 efe->uid = udf_rw32((uint32_t) uid);
4425 efe->gid = udf_rw32((uint32_t) gid);
4426 }
4427
4428 UDF_UNLOCK_NODE(udf_node, 0);
4429 }
4430
4431
4432 /* --------------------------------------------------------------------- */
4433
4434
4435 int
4436 udf_dirhash_fill(struct udf_node *dir_node)
4437 {
4438 struct vnode *dvp = dir_node->vnode;
4439 struct dirhash *dirh;
4440 struct file_entry *fe = dir_node->fe;
4441 struct extfile_entry *efe = dir_node->efe;
4442 struct fileid_desc *fid;
4443 struct dirent *dirent;
4444 uint64_t file_size, pre_diroffset, diroffset;
4445 uint32_t lb_size;
4446 int error;
4447
4448 /* make sure we have a dirhash to work on */
4449 dirh = dir_node->dir_hash;
4450 KASSERT(dirh);
4451 KASSERT(dirh->refcnt > 0);
4452
4453 if (dirh->flags & DIRH_BROKEN)
4454 return EIO;
4455 if (dirh->flags & DIRH_COMPLETE)
4456 return 0;
4457
4458 /* make sure we have a clean dirhash to add to */
4459 dirhash_purge_entries(dirh);
4460
4461 /* get directory filesize */
4462 if (fe) {
4463 file_size = udf_rw64(fe->inf_len);
4464 } else {
4465 assert(efe);
4466 file_size = udf_rw64(efe->inf_len);
4467 }
4468
4469 /* allocate temporary space for fid */
4470 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4471 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4472
4473 /* allocate temporary space for dirent */
4474 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4475
4476 error = 0;
4477 diroffset = 0;
4478 while (diroffset < file_size) {
4479 /* transfer a new fid/dirent */
4480 pre_diroffset = diroffset;
4481 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4482 if (error) {
4483 /* TODO what to do? continue but not add? */
4484 dirh->flags |= DIRH_BROKEN;
4485 dirhash_purge_entries(dirh);
4486 break;
4487 }
4488
4489 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4490 /* register deleted extent for reuse */
4491 dirhash_enter_freed(dirh, pre_diroffset,
4492 udf_fidsize(fid));
4493 } else {
4494 /* append to the dirhash */
4495 dirhash_enter(dirh, dirent, pre_diroffset,
4496 udf_fidsize(fid), 0);
4497 }
4498 }
4499 dirh->flags |= DIRH_COMPLETE;
4500
4501 free(fid, M_UDFTEMP);
4502 free(dirent, M_UDFTEMP);
4503
4504 return error;
4505 }
4506
4507
4508 /* --------------------------------------------------------------------- */
4509
4510 /*
4511 * Directory read and manipulation functions.
4512 *
4513 */
4514
4515 int
4516 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4517 struct long_ad *icb_loc, int *found)
4518 {
4519 struct udf_node *dir_node = VTOI(vp);
4520 struct dirhash *dirh;
4521 struct dirhash_entry *dirh_ep;
4522 struct fileid_desc *fid;
4523 struct dirent *dirent, *s_dirent;
4524 struct charspec osta_charspec;
4525 uint64_t diroffset;
4526 uint32_t lb_size;
4527 int hit, error;
4528
4529 /* set default return */
4530 *found = 0;
4531
4532 /* get our dirhash and make sure its read in */
4533 dirhash_get(&dir_node->dir_hash);
4534 error = udf_dirhash_fill(dir_node);
4535 if (error) {
4536 dirhash_put(dir_node->dir_hash);
4537 return error;
4538 }
4539 dirh = dir_node->dir_hash;
4540
4541 /* allocate temporary space for fid */
4542 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4543 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4544 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4545 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4546
4547 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4548 namelen, namelen, name));
4549
4550 /* convert given unix name to canonical unix name */
4551 udf_osta_charset(&osta_charspec);
4552 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4553 name, namelen, &osta_charspec);
4554 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4555 (char *) fid->data, fid->l_fi,
4556 &osta_charspec);
4557 s_dirent->d_namlen = strlen(s_dirent->d_name);
4558
4559 /* search our dirhash hits */
4560 memset(icb_loc, 0, sizeof(*icb_loc));
4561 dirh_ep = NULL;
4562 for (;;) {
4563 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4564 /* if no hit, abort the search */
4565 if (!hit)
4566 break;
4567
4568 /* check this hit */
4569 diroffset = dirh_ep->offset;
4570
4571 /* transfer a new fid/dirent */
4572 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4573 if (error)
4574 break;
4575
4576 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4577 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4578
4579 /* see if its our entry */
4580 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4581 *found = 1;
4582 *icb_loc = fid->icb;
4583 break;
4584 }
4585 }
4586 free(fid, M_UDFTEMP);
4587 free(dirent, M_UDFTEMP);
4588 free(s_dirent, M_UDFTEMP);
4589
4590 dirhash_put(dir_node->dir_hash);
4591
4592 return error;
4593 }
4594
4595 /* --------------------------------------------------------------------- */
4596
4597 static int
4598 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4599 struct long_ad *node_icb, struct long_ad *parent_icb,
4600 uint64_t parent_unique_id)
4601 {
4602 struct timespec now;
4603 struct icb_tag *icb;
4604 struct filetimes_extattr_entry *ft_extattr;
4605 uint64_t unique_id;
4606 uint32_t fidsize, lb_num;
4607 uint8_t *bpos;
4608 int crclen, attrlen;
4609
4610 lb_num = udf_rw32(node_icb->loc.lb_num);
4611 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4612 icb = &fe->icbtag;
4613
4614 /*
4615 * Always use strategy type 4 unless on WORM wich we don't support
4616 * (yet). Fill in defaults and set for internal allocation of data.
4617 */
4618 icb->strat_type = udf_rw16(4);
4619 icb->max_num_entries = udf_rw16(1);
4620 icb->file_type = file_type; /* 8 bit */
4621 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4622
4623 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4624 fe->link_cnt = udf_rw16(0); /* explicit setting */
4625
4626 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4627
4628 vfs_timestamp(&now);
4629 udf_timespec_to_timestamp(&now, &fe->atime);
4630 udf_timespec_to_timestamp(&now, &fe->attrtime);
4631 udf_timespec_to_timestamp(&now, &fe->mtime);
4632
4633 udf_set_regid(&fe->imp_id, IMPL_NAME);
4634 udf_add_impl_regid(ump, &fe->imp_id);
4635
4636 unique_id = udf_advance_uniqueid(ump);
4637 fe->unique_id = udf_rw64(unique_id);
4638 fe->l_ea = udf_rw32(0);
4639
4640 /* create extended attribute to record our creation time */
4641 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4642 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4643 memset(ft_extattr, 0, attrlen);
4644 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4645 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4646 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4647 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4648 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4649 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4650
4651 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4652 (struct extattr_entry *) ft_extattr);
4653 free(ft_extattr, M_UDFTEMP);
4654
4655 /* if its a directory, create '..' */
4656 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4657 fidsize = 0;
4658 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4659 fidsize = udf_create_parentfid(ump,
4660 (struct fileid_desc *) bpos, parent_icb,
4661 parent_unique_id);
4662 }
4663
4664 /* record fidlength information */
4665 fe->inf_len = udf_rw64(fidsize);
4666 fe->l_ad = udf_rw32(fidsize);
4667 fe->logblks_rec = udf_rw64(0); /* intern */
4668
4669 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4670 crclen += udf_rw32(fe->l_ea) + fidsize;
4671 fe->tag.desc_crc_len = udf_rw16(crclen);
4672
4673 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4674
4675 return fidsize;
4676 }
4677
4678 /* --------------------------------------------------------------------- */
4679
4680 static int
4681 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4682 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4683 uint64_t parent_unique_id)
4684 {
4685 struct timespec now;
4686 struct icb_tag *icb;
4687 uint64_t unique_id;
4688 uint32_t fidsize, lb_num;
4689 uint8_t *bpos;
4690 int crclen;
4691
4692 lb_num = udf_rw32(node_icb->loc.lb_num);
4693 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4694 icb = &efe->icbtag;
4695
4696 /*
4697 * Always use strategy type 4 unless on WORM wich we don't support
4698 * (yet). Fill in defaults and set for internal allocation of data.
4699 */
4700 icb->strat_type = udf_rw16(4);
4701 icb->max_num_entries = udf_rw16(1);
4702 icb->file_type = file_type; /* 8 bit */
4703 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4704
4705 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4706 efe->link_cnt = udf_rw16(0); /* explicit setting */
4707
4708 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4709
4710 vfs_timestamp(&now);
4711 udf_timespec_to_timestamp(&now, &efe->ctime);
4712 udf_timespec_to_timestamp(&now, &efe->atime);
4713 udf_timespec_to_timestamp(&now, &efe->attrtime);
4714 udf_timespec_to_timestamp(&now, &efe->mtime);
4715
4716 udf_set_regid(&efe->imp_id, IMPL_NAME);
4717 udf_add_impl_regid(ump, &efe->imp_id);
4718
4719 unique_id = udf_advance_uniqueid(ump);
4720 efe->unique_id = udf_rw64(unique_id);
4721 efe->l_ea = udf_rw32(0);
4722
4723 /* if its a directory, create '..' */
4724 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4725 fidsize = 0;
4726 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4727 fidsize = udf_create_parentfid(ump,
4728 (struct fileid_desc *) bpos, parent_icb,
4729 parent_unique_id);
4730 }
4731
4732 /* record fidlength information */
4733 efe->obj_size = udf_rw64(fidsize);
4734 efe->inf_len = udf_rw64(fidsize);
4735 efe->l_ad = udf_rw32(fidsize);
4736 efe->logblks_rec = udf_rw64(0); /* intern */
4737
4738 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4739 crclen += udf_rw32(efe->l_ea) + fidsize;
4740 efe->tag.desc_crc_len = udf_rw16(crclen);
4741
4742 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4743
4744 return fidsize;
4745 }
4746
4747 /* --------------------------------------------------------------------- */
4748
4749 int
4750 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4751 struct udf_node *udf_node, struct componentname *cnp)
4752 {
4753 struct vnode *dvp = dir_node->vnode;
4754 struct dirhash *dirh;
4755 struct dirhash_entry *dirh_ep;
4756 struct file_entry *fe = dir_node->fe;
4757 struct fileid_desc *fid;
4758 struct dirent *dirent, *s_dirent;
4759 struct charspec osta_charspec;
4760 uint64_t diroffset;
4761 uint32_t lb_size, fidsize;
4762 int found, error;
4763 int hit, refcnt;
4764
4765 /* get our dirhash and make sure its read in */
4766 dirhash_get(&dir_node->dir_hash);
4767 error = udf_dirhash_fill(dir_node);
4768 if (error) {
4769 dirhash_put(dir_node->dir_hash);
4770 return error;
4771 }
4772 dirh = dir_node->dir_hash;
4773
4774 /* get directory filesize */
4775 if (!fe) {
4776 assert(dir_node->efe);
4777 }
4778
4779 /* allocate temporary space for fid and dirents */
4780 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4781 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4782 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4783 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4784
4785 /* convert given unix name to canonical unix name */
4786 udf_osta_charset(&osta_charspec);
4787 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4788 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4789 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4790 (char *) fid->data, fid->l_fi,
4791 &osta_charspec);
4792 s_dirent->d_namlen = strlen(s_dirent->d_name);
4793
4794 /* search our dirhash hits */
4795 found = 0;
4796 dirh_ep = NULL;
4797 for (;;) {
4798 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4799 /* if no hit, abort the search */
4800 if (!hit)
4801 break;
4802
4803 /* check this hit */
4804 diroffset = dirh_ep->offset;
4805
4806 /* transfer a new fid/dirent */
4807 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4808 if (error)
4809 break;
4810
4811 /* see if its our entry */
4812 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4813 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4814 found = 1;
4815 break;
4816 }
4817 }
4818
4819 if (!found)
4820 error = ENOENT;
4821 if (error)
4822 goto error_out;
4823
4824 /* mark deleted */
4825 fid->file_char |= UDF_FILE_CHAR_DEL;
4826 #ifdef UDF_COMPLETE_DELETE
4827 memset(&fid->icb, 0, sizeof(fid->icb));
4828 #endif
4829 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4830
4831 /* get size of fid and compensate for the read_fid_stream advance */
4832 fidsize = udf_fidsize(fid);
4833 diroffset -= fidsize;
4834
4835 /* write out */
4836 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4837 fid, fidsize, diroffset,
4838 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4839 FSCRED, NULL, NULL);
4840 if (error)
4841 goto error_out;
4842
4843 /* get reference count of attached node */
4844 if (udf_node->fe) {
4845 refcnt = udf_rw16(udf_node->fe->link_cnt);
4846 } else {
4847 KASSERT(udf_node->efe);
4848 refcnt = udf_rw16(udf_node->efe->link_cnt);
4849 }
4850 #ifdef UDF_COMPLETE_DELETE
4851 /* substract reference counter in attached node */
4852 refcnt -= 1;
4853 if (udf_node->fe) {
4854 udf_node->fe->link_cnt = udf_rw16(refcnt);
4855 } else {
4856 udf_node->efe->link_cnt = udf_rw16(refcnt);
4857 }
4858
4859 /* prevent writeout when refcnt == 0 */
4860 if (refcnt == 0)
4861 udf_node->i_flags |= IN_DELETED;
4862
4863 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4864 int drefcnt;
4865
4866 /* substract reference counter in directory node */
4867 /* note subtract 2 (?) for its was also backreferenced */
4868 if (dir_node->fe) {
4869 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4870 drefcnt -= 1;
4871 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4872 } else {
4873 KASSERT(dir_node->efe);
4874 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4875 drefcnt -= 1;
4876 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4877 }
4878 }
4879
4880 udf_node->i_flags |= IN_MODIFIED;
4881 dir_node->i_flags |= IN_MODIFIED;
4882 #endif
4883 /* if it is/was a hardlink adjust the file count */
4884 if (refcnt > 0)
4885 udf_adjust_filecount(udf_node, -1);
4886
4887 /* remove from the dirhash */
4888 dirhash_remove(dirh, dirent, diroffset,
4889 udf_fidsize(fid));
4890
4891 error_out:
4892 free(fid, M_UDFTEMP);
4893 free(dirent, M_UDFTEMP);
4894 free(s_dirent, M_UDFTEMP);
4895
4896 dirhash_put(dir_node->dir_hash);
4897
4898 return error;
4899 }
4900
4901 /* --------------------------------------------------------------------- */
4902
4903 int
4904 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4905 struct udf_node *new_parent_node)
4906 {
4907 struct vnode *dvp = dir_node->vnode;
4908 struct dirhash *dirh;
4909 struct dirhash_entry *dirh_ep;
4910 struct file_entry *fe;
4911 struct extfile_entry *efe;
4912 struct fileid_desc *fid;
4913 struct dirent *dirent;
4914 uint64_t diroffset;
4915 uint64_t new_parent_unique_id;
4916 uint32_t lb_size, fidsize;
4917 int found, error;
4918 char const *name = "..";
4919 int namelen = 2;
4920 int hit;
4921
4922 /* get our dirhash and make sure its read in */
4923 dirhash_get(&dir_node->dir_hash);
4924 error = udf_dirhash_fill(dir_node);
4925 if (error) {
4926 dirhash_put(dir_node->dir_hash);
4927 return error;
4928 }
4929 dirh = dir_node->dir_hash;
4930
4931 /* get new parent's unique ID */
4932 fe = new_parent_node->fe;
4933 efe = new_parent_node->efe;
4934 if (fe) {
4935 new_parent_unique_id = udf_rw64(fe->unique_id);
4936 } else {
4937 assert(efe);
4938 new_parent_unique_id = udf_rw64(efe->unique_id);
4939 }
4940
4941 /* get directory filesize */
4942 fe = dir_node->fe;
4943 efe = dir_node->efe;
4944 if (!fe) {
4945 assert(efe);
4946 }
4947
4948 /* allocate temporary space for fid */
4949 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4950 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4951 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4952
4953 /*
4954 * NOTE the standard does not dictate the FID entry '..' should be
4955 * first, though in practice it will most likely be.
4956 */
4957
4958 /* search our dirhash hits */
4959 found = 0;
4960 dirh_ep = NULL;
4961 for (;;) {
4962 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4963 /* if no hit, abort the search */
4964 if (!hit)
4965 break;
4966
4967 /* check this hit */
4968 diroffset = dirh_ep->offset;
4969
4970 /* transfer a new fid/dirent */
4971 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4972 if (error)
4973 break;
4974
4975 /* see if its our entry */
4976 KASSERT(dirent->d_namlen == namelen);
4977 if (strncmp(dirent->d_name, name, namelen) == 0) {
4978 found = 1;
4979 break;
4980 }
4981 }
4982
4983 if (!found)
4984 error = ENOENT;
4985 if (error)
4986 goto error_out;
4987
4988 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
4989 fid->icb = new_parent_node->write_loc;
4990 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
4991
4992 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4993
4994 /* get size of fid and compensate for the read_fid_stream advance */
4995 fidsize = udf_fidsize(fid);
4996 diroffset -= fidsize;
4997
4998 /* write out */
4999 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5000 fid, fidsize, diroffset,
5001 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5002 FSCRED, NULL, NULL);
5003
5004 /* nothing to be done in the dirhash */
5005
5006 error_out:
5007 free(fid, M_UDFTEMP);
5008 free(dirent, M_UDFTEMP);
5009
5010 dirhash_put(dir_node->dir_hash);
5011
5012 return error;
5013 }
5014
5015 /* --------------------------------------------------------------------- */
5016
5017 /*
5018 * We are not allowed to split the fid tag itself over an logical block so
5019 * check the space remaining in the logical block.
5020 *
5021 * We try to select the smallest candidate for recycling or when none is
5022 * found, append a new one at the end of the directory.
5023 */
5024
5025 int
5026 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5027 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5028 {
5029 struct vnode *dvp = dir_node->vnode;
5030 struct dirhash *dirh;
5031 struct dirhash_entry *dirh_ep;
5032 struct fileid_desc *fid;
5033 struct icb_tag *icbtag;
5034 struct charspec osta_charspec;
5035 struct dirent dirent;
5036 uint64_t unique_id, dir_size;
5037 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5038 uint32_t chosen_size, chosen_size_diff;
5039 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5040 int file_char, refcnt, icbflags, addr_type, hit, error;
5041
5042 /* get our dirhash and make sure its read in */
5043 dirhash_get(&dir_node->dir_hash);
5044 error = udf_dirhash_fill(dir_node);
5045 if (error) {
5046 dirhash_put(dir_node->dir_hash);
5047 return error;
5048 }
5049 dirh = dir_node->dir_hash;
5050
5051 /* get info */
5052 lb_size = udf_rw32(ump->logical_vol->lb_size);
5053 udf_osta_charset(&osta_charspec);
5054
5055 if (dir_node->fe) {
5056 dir_size = udf_rw64(dir_node->fe->inf_len);
5057 icbtag = &dir_node->fe->icbtag;
5058 } else {
5059 dir_size = udf_rw64(dir_node->efe->inf_len);
5060 icbtag = &dir_node->efe->icbtag;
5061 }
5062
5063 icbflags = udf_rw16(icbtag->flags);
5064 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5065
5066 if (udf_node->fe) {
5067 unique_id = udf_rw64(udf_node->fe->unique_id);
5068 refcnt = udf_rw16(udf_node->fe->link_cnt);
5069 } else {
5070 unique_id = udf_rw64(udf_node->efe->unique_id);
5071 refcnt = udf_rw16(udf_node->efe->link_cnt);
5072 }
5073
5074 if (refcnt > 0) {
5075 unique_id = udf_advance_uniqueid(ump);
5076 udf_adjust_filecount(udf_node, 1);
5077 }
5078
5079 /* determine file characteristics */
5080 file_char = 0; /* visible non deleted file and not stream metadata */
5081 if (vap->va_type == VDIR)
5082 file_char = UDF_FILE_CHAR_DIR;
5083
5084 /* malloc scrap buffer */
5085 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5086
5087 /* calculate _minimum_ fid size */
5088 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5089 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5090 fidsize = UDF_FID_SIZE + fid->l_fi;
5091 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5092
5093 /* find position that will fit the FID */
5094 chosen_fid_pos = dir_size;
5095 chosen_size = 0;
5096 chosen_size_diff = UINT_MAX;
5097
5098 /* shut up gcc */
5099 dirent.d_namlen = 0;
5100
5101 /* search our dirhash hits */
5102 error = 0;
5103 dirh_ep = NULL;
5104 for (;;) {
5105 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5106 /* if no hit, abort the search */
5107 if (!hit)
5108 break;
5109
5110 /* check this hit for size */
5111 this_fidsize = dirh_ep->entry_size;
5112
5113 /* check this hit */
5114 fid_pos = dirh_ep->offset;
5115 end_fid_pos = fid_pos + this_fidsize;
5116 size_diff = this_fidsize - fidsize;
5117 lb_rest = lb_size - (end_fid_pos % lb_size);
5118
5119 #ifndef UDF_COMPLETE_DELETE
5120 /* transfer a new fid/dirent */
5121 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5122 if (error)
5123 goto error_out;
5124
5125 /* only reuse entries that are wiped */
5126 /* check if the len + loc are marked zero */
5127 if (udf_rw32(fid->icb.len) != 0)
5128 continue;
5129 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5130 continue;
5131 if (udf_rw16(fid->icb.loc.part_num) != 0)
5132 continue;
5133 #endif /* UDF_COMPLETE_DELETE */
5134
5135 /* select if not splitting the tag and its smaller */
5136 if ((size_diff >= 0) &&
5137 (size_diff < chosen_size_diff) &&
5138 (lb_rest >= sizeof(struct desc_tag)))
5139 {
5140 /* UDF 2.3.4.2+3 specifies rules for iu size */
5141 if ((size_diff == 0) || (size_diff >= 32)) {
5142 chosen_fid_pos = fid_pos;
5143 chosen_size = this_fidsize;
5144 chosen_size_diff = size_diff;
5145 }
5146 }
5147 }
5148
5149
5150 /* extend directory if no other candidate found */
5151 if (chosen_size == 0) {
5152 chosen_fid_pos = dir_size;
5153 chosen_size = fidsize;
5154 chosen_size_diff = 0;
5155
5156 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5157 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5158 /* pre-grow directory to see if we're to switch */
5159 udf_grow_node(dir_node, dir_size + chosen_size);
5160
5161 icbflags = udf_rw16(icbtag->flags);
5162 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5163 }
5164
5165 /* make sure the next fid desc_tag won't be splitted */
5166 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5167 end_fid_pos = chosen_fid_pos + chosen_size;
5168 lb_rest = lb_size - (end_fid_pos % lb_size);
5169
5170 /* pad with implementation use regid if needed */
5171 if (lb_rest < sizeof(struct desc_tag))
5172 chosen_size += 32;
5173 }
5174 }
5175 chosen_size_diff = chosen_size - fidsize;
5176
5177 /* populate the FID */
5178 memset(fid, 0, lb_size);
5179 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5180 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5181 fid->file_char = file_char;
5182 fid->icb = udf_node->loc;
5183 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5184 fid->l_iu = udf_rw16(0);
5185
5186 if (chosen_size > fidsize) {
5187 /* insert implementation-use regid to space it correctly */
5188 fid->l_iu = udf_rw16(chosen_size_diff);
5189
5190 /* set implementation use */
5191 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5192 udf_add_impl_regid(ump, (struct regid *) fid->data);
5193 }
5194
5195 /* fill in name */
5196 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5197 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5198
5199 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5200 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5201
5202 /* writeout FID/update parent directory */
5203 error = vn_rdwr(UIO_WRITE, dvp,
5204 fid, chosen_size, chosen_fid_pos,
5205 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5206 FSCRED, NULL, NULL);
5207
5208 if (error)
5209 goto error_out;
5210
5211 /* add reference counter in attached node */
5212 if (udf_node->fe) {
5213 refcnt = udf_rw16(udf_node->fe->link_cnt);
5214 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5215 } else {
5216 KASSERT(udf_node->efe);
5217 refcnt = udf_rw16(udf_node->efe->link_cnt);
5218 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5219 }
5220
5221 /* mark not deleted if it was... just in case, but do warn */
5222 if (udf_node->i_flags & IN_DELETED) {
5223 printf("udf: warning, marking a file undeleted\n");
5224 udf_node->i_flags &= ~IN_DELETED;
5225 }
5226
5227 if (file_char & UDF_FILE_CHAR_DIR) {
5228 /* add reference counter in directory node for '..' */
5229 if (dir_node->fe) {
5230 refcnt = udf_rw16(dir_node->fe->link_cnt);
5231 refcnt++;
5232 dir_node->fe->link_cnt = udf_rw16(refcnt);
5233 } else {
5234 KASSERT(dir_node->efe);
5235 refcnt = udf_rw16(dir_node->efe->link_cnt);
5236 refcnt++;
5237 dir_node->efe->link_cnt = udf_rw16(refcnt);
5238 }
5239 }
5240
5241 /* append to the dirhash */
5242 /* NOTE do not use dirent anymore or it won't match later! */
5243 udf_to_unix_name(dirent.d_name, NAME_MAX,
5244 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5245 dirent.d_namlen = strlen(dirent.d_name);
5246 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5247 udf_fidsize(fid), 1);
5248
5249 /* note updates */
5250 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5251 /* VN_KNOTE(udf_node, ...) */
5252 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5253
5254 error_out:
5255 free(fid, M_TEMP);
5256
5257 dirhash_put(dir_node->dir_hash);
5258
5259 return error;
5260 }
5261
5262 /* --------------------------------------------------------------------- */
5263
5264 /*
5265 * Each node can have an attached streamdir node though not recursively. These
5266 * are otherwise known as named substreams/named extended attributes that have
5267 * no size limitations.
5268 *
5269 * `Normal' extended attributes are indicated with a number and are recorded
5270 * in either the fe/efe descriptor itself for small descriptors or recorded in
5271 * the attached extended attribute file. Since these spaces can get
5272 * fragmented, care ought to be taken.
5273 *
5274 * Since the size of the space reserved for allocation descriptors is limited,
5275 * there is a mechanim provided for extending this space; this is done by a
5276 * special extent to allow schrinking of the allocations without breaking the
5277 * linkage to the allocation extent descriptor.
5278 */
5279
5280 int
5281 udf_loadvnode(struct mount *mp, struct vnode *vp,
5282 const void *key, size_t key_len, const void **new_key)
5283 {
5284 union dscrptr *dscr;
5285 struct udf_mount *ump;
5286 struct udf_node *udf_node;
5287 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5288 uint64_t file_size;
5289 uint32_t lb_size, sector, dummy;
5290 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5291 int slot, eof, error;
5292 int num_indir_followed = 0;
5293
5294 DPRINTF(NODE, ("udf_loadvnode called\n"));
5295 udf_node = NULL;
5296 ump = VFSTOUDF(mp);
5297
5298 KASSERT(key_len == sizeof(node_icb_loc.loc));
5299 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5300 node_icb_loc.len = ump->logical_vol->lb_size;
5301 memcpy(&node_icb_loc.loc, key, key_len);
5302
5303 /* garbage check: translate udf_node_icb_loc to sectornr */
5304 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5305 if (error) {
5306 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5307 /* no use, this will fail anyway */
5308 return EINVAL;
5309 }
5310
5311 /* build udf_node (do initialise!) */
5312 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5313 memset(udf_node, 0, sizeof(struct udf_node));
5314
5315 vp->v_tag = VT_UDF;
5316 vp->v_op = udf_vnodeop_p;
5317 vp->v_data = udf_node;
5318
5319 /* initialise crosslinks, note location of fe/efe for hashing */
5320 udf_node->ump = ump;
5321 udf_node->vnode = vp;
5322 udf_node->loc = node_icb_loc;
5323 udf_node->lockf = 0;
5324 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5325 cv_init(&udf_node->node_lock, "udf_nlk");
5326 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5327 udf_node->outstanding_bufs = 0;
5328 udf_node->outstanding_nodedscr = 0;
5329 udf_node->uncommitted_lbs = 0;
5330
5331 /* check if we're fetching the root */
5332 if (ump->fileset_desc)
5333 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5334 sizeof(struct long_ad)) == 0)
5335 vp->v_vflag |= VV_ROOT;
5336
5337 icb_loc = node_icb_loc;
5338 needs_indirect = 0;
5339 strat4096 = 0;
5340 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5341 file_size = 0;
5342 lb_size = udf_rw32(ump->logical_vol->lb_size);
5343
5344 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5345 do {
5346 /* try to read in fe/efe */
5347 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5348
5349 /* blank sector marks end of sequence, check this */
5350 if ((dscr == NULL) && (!strat4096))
5351 error = ENOENT;
5352
5353 /* break if read error or blank sector */
5354 if (error || (dscr == NULL))
5355 break;
5356
5357 /* process descriptor based on the descriptor type */
5358 dscr_type = udf_rw16(dscr->tag.id);
5359 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5360
5361 /* if dealing with an indirect entry, follow the link */
5362 if (dscr_type == TAGID_INDIRECTENTRY) {
5363 needs_indirect = 0;
5364 next_icb_loc = dscr->inde.indirect_icb;
5365 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5366 icb_loc = next_icb_loc;
5367 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5368 error = EMLINK;
5369 break;
5370 }
5371 continue;
5372 }
5373
5374 /* only file entries and extended file entries allowed here */
5375 if ((dscr_type != TAGID_FENTRY) &&
5376 (dscr_type != TAGID_EXTFENTRY)) {
5377 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5378 error = ENOENT;
5379 break;
5380 }
5381
5382 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5383
5384 /* choose this one */
5385 last_fe_icb_loc = icb_loc;
5386
5387 /* record and process/update (ext)fentry */
5388 if (dscr_type == TAGID_FENTRY) {
5389 if (udf_node->fe)
5390 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5391 udf_node->fe);
5392 udf_node->fe = &dscr->fe;
5393 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5394 udf_file_type = udf_node->fe->icbtag.file_type;
5395 file_size = udf_rw64(udf_node->fe->inf_len);
5396 } else {
5397 if (udf_node->efe)
5398 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5399 udf_node->efe);
5400 udf_node->efe = &dscr->efe;
5401 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5402 udf_file_type = udf_node->efe->icbtag.file_type;
5403 file_size = udf_rw64(udf_node->efe->inf_len);
5404 }
5405
5406 /* check recording strategy (structure) */
5407
5408 /*
5409 * Strategy 4096 is a daisy linked chain terminating with an
5410 * unrecorded sector or a TERM descriptor. The next
5411 * descriptor is to be found in the sector that follows the
5412 * current sector.
5413 */
5414 if (strat == 4096) {
5415 strat4096 = 1;
5416 needs_indirect = 1;
5417
5418 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5419 }
5420
5421 /*
5422 * Strategy 4 is the normal strategy and terminates, but if
5423 * we're in strategy 4096, we can't have strategy 4 mixed in
5424 */
5425
5426 if (strat == 4) {
5427 if (strat4096) {
5428 error = EINVAL;
5429 break;
5430 }
5431 break; /* done */
5432 }
5433 } while (!error);
5434
5435 /* first round of cleanup code */
5436 if (error) {
5437 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5438 /* recycle udf_node */
5439 udf_dispose_node(udf_node);
5440
5441 return EINVAL; /* error code ok? */
5442 }
5443 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5444
5445 /* assert no references to dscr anymore beyong this point */
5446 assert((udf_node->fe) || (udf_node->efe));
5447 dscr = NULL;
5448
5449 /*
5450 * Remember where to record an updated version of the descriptor. If
5451 * there is a sequence of indirect entries, icb_loc will have been
5452 * updated. Its the write disipline to allocate new space and to make
5453 * sure the chain is maintained.
5454 *
5455 * `needs_indirect' flags if the next location is to be filled with
5456 * with an indirect entry.
5457 */
5458 udf_node->write_loc = icb_loc;
5459 udf_node->needs_indirect = needs_indirect;
5460
5461 /*
5462 * Go trough all allocations extents of this descriptor and when
5463 * encountering a redirect read in the allocation extension. These are
5464 * daisy-chained.
5465 */
5466 UDF_LOCK_NODE(udf_node, 0);
5467 udf_node->num_extensions = 0;
5468
5469 error = 0;
5470 slot = 0;
5471 for (;;) {
5472 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5473 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5474 "lb_num = %d, part = %d\n", slot, eof,
5475 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5476 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5477 udf_rw32(icb_loc.loc.lb_num),
5478 udf_rw16(icb_loc.loc.part_num)));
5479 if (eof)
5480 break;
5481 slot++;
5482
5483 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5484 continue;
5485
5486 DPRINTF(NODE, ("\tgot redirect extent\n"));
5487 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5488 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5489 "too many allocation extensions on "
5490 "udf_node\n"));
5491 error = EINVAL;
5492 break;
5493 }
5494
5495 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5496 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5497 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5498 "extension size in udf_node\n"));
5499 error = EINVAL;
5500 break;
5501 }
5502
5503 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5504 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5505 /* load in allocation extent */
5506 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5507 if (error || (dscr == NULL))
5508 break;
5509
5510 /* process read-in descriptor */
5511 dscr_type = udf_rw16(dscr->tag.id);
5512
5513 if (dscr_type != TAGID_ALLOCEXTENT) {
5514 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5515 error = ENOENT;
5516 break;
5517 }
5518
5519 DPRINTF(NODE, ("\trecording redirect extent\n"));
5520 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5521 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5522
5523 udf_node->num_extensions++;
5524
5525 } /* while */
5526 UDF_UNLOCK_NODE(udf_node, 0);
5527
5528 /* second round of cleanup code */
5529 if (error) {
5530 /* recycle udf_node */
5531 udf_dispose_node(udf_node);
5532
5533 return EINVAL; /* error code ok? */
5534 }
5535
5536 DPRINTF(NODE, ("\tnode read in fine\n"));
5537
5538 /*
5539 * Translate UDF filetypes into vnode types.
5540 *
5541 * Systemfiles like the meta main and mirror files are not treated as
5542 * normal files, so we type them as having no type. UDF dictates that
5543 * they are not allowed to be visible.
5544 */
5545
5546 switch (udf_file_type) {
5547 case UDF_ICB_FILETYPE_DIRECTORY :
5548 case UDF_ICB_FILETYPE_STREAMDIR :
5549 vp->v_type = VDIR;
5550 break;
5551 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5552 vp->v_type = VBLK;
5553 break;
5554 case UDF_ICB_FILETYPE_CHARDEVICE :
5555 vp->v_type = VCHR;
5556 break;
5557 case UDF_ICB_FILETYPE_SOCKET :
5558 vp->v_type = VSOCK;
5559 break;
5560 case UDF_ICB_FILETYPE_FIFO :
5561 vp->v_type = VFIFO;
5562 break;
5563 case UDF_ICB_FILETYPE_SYMLINK :
5564 vp->v_type = VLNK;
5565 break;
5566 case UDF_ICB_FILETYPE_VAT :
5567 case UDF_ICB_FILETYPE_META_MAIN :
5568 case UDF_ICB_FILETYPE_META_MIRROR :
5569 vp->v_type = VNON;
5570 break;
5571 case UDF_ICB_FILETYPE_RANDOMACCESS :
5572 case UDF_ICB_FILETYPE_REALTIME :
5573 vp->v_type = VREG;
5574 break;
5575 default:
5576 /* YIKES, something else */
5577 vp->v_type = VNON;
5578 }
5579
5580 /* TODO specfs, fifofs etc etc. vnops setting */
5581
5582 /* don't forget to set vnode's v_size */
5583 uvm_vnp_setsize(vp, file_size);
5584
5585 /* TODO ext attr and streamdir udf_nodes */
5586
5587 *new_key = &udf_node->loc.loc;
5588
5589 return 0;
5590 }
5591
5592 int
5593 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5594 struct udf_node **udf_noderes)
5595 {
5596 int error;
5597 struct vnode *vp;
5598
5599 *udf_noderes = NULL;
5600
5601 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5602 sizeof(node_icb_loc->loc), &vp);
5603 if (error)
5604 return error;
5605 error = vn_lock(vp, LK_EXCLUSIVE);
5606 if (error) {
5607 vrele(vp);
5608 return error;
5609 }
5610 *udf_noderes = VTOI(vp);
5611 return 0;
5612 }
5613
5614 /* --------------------------------------------------------------------- */
5615
5616 int
5617 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5618 {
5619 union dscrptr *dscr;
5620 struct long_ad *loc;
5621 int extnr, error;
5622
5623 DPRINTF(NODE, ("udf_writeout_node called\n"));
5624
5625 KASSERT(udf_node->outstanding_bufs == 0);
5626 KASSERT(udf_node->outstanding_nodedscr == 0);
5627
5628 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5629
5630 if (udf_node->i_flags & IN_DELETED) {
5631 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5632 udf_cleanup_reservation(udf_node);
5633 return 0;
5634 }
5635
5636 /* lock node; unlocked in callback */
5637 UDF_LOCK_NODE(udf_node, 0);
5638
5639 /* remove pending reservations, we're written out */
5640 udf_cleanup_reservation(udf_node);
5641
5642 /* at least one descriptor writeout */
5643 udf_node->outstanding_nodedscr = 1;
5644
5645 /* we're going to write out the descriptor so clear the flags */
5646 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5647
5648 /* if we were rebuild, write out the allocation extents */
5649 if (udf_node->i_flags & IN_NODE_REBUILD) {
5650 /* mark outstanding node descriptors and issue them */
5651 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5652 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5653 loc = &udf_node->ext_loc[extnr];
5654 dscr = (union dscrptr *) udf_node->ext[extnr];
5655 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5656 if (error)
5657 return error;
5658 }
5659 /* mark allocation extents written out */
5660 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5661 }
5662
5663 if (udf_node->fe) {
5664 KASSERT(udf_node->efe == NULL);
5665 dscr = (union dscrptr *) udf_node->fe;
5666 } else {
5667 KASSERT(udf_node->efe);
5668 KASSERT(udf_node->fe == NULL);
5669 dscr = (union dscrptr *) udf_node->efe;
5670 }
5671 KASSERT(dscr);
5672
5673 loc = &udf_node->write_loc;
5674 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5675
5676 return error;
5677 }
5678
5679 /* --------------------------------------------------------------------- */
5680
5681 int
5682 udf_dispose_node(struct udf_node *udf_node)
5683 {
5684 struct vnode *vp;
5685 int extnr;
5686
5687 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5688 if (!udf_node) {
5689 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5690 return 0;
5691 }
5692
5693 vp = udf_node->vnode;
5694 #ifdef DIAGNOSTIC
5695 if (vp->v_numoutput)
5696 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5697 "v_numoutput = %d", udf_node, vp->v_numoutput);
5698 #endif
5699
5700 udf_cleanup_reservation(udf_node);
5701
5702 /* TODO extended attributes and streamdir */
5703
5704 /* remove dirhash if present */
5705 dirhash_purge(&udf_node->dir_hash);
5706
5707 /* destroy our lock */
5708 mutex_destroy(&udf_node->node_mutex);
5709 cv_destroy(&udf_node->node_lock);
5710
5711 /* dissociate our udf_node from the vnode */
5712 genfs_node_destroy(udf_node->vnode);
5713 mutex_enter(vp->v_interlock);
5714 vp->v_data = NULL;
5715 mutex_exit(vp->v_interlock);
5716
5717 /* free associated memory and the node itself */
5718 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5719 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5720 udf_node->ext[extnr]);
5721 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5722 }
5723
5724 if (udf_node->fe)
5725 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5726 udf_node->fe);
5727 if (udf_node->efe)
5728 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5729 udf_node->efe);
5730
5731 udf_node->fe = (void *) 0xdeadaaaa;
5732 udf_node->efe = (void *) 0xdeadbbbb;
5733 udf_node->ump = (void *) 0xdeadbeef;
5734 pool_put(&udf_node_pool, udf_node);
5735
5736 return 0;
5737 }
5738
5739
5740
5741 /*
5742 * create a new node using the specified dvp, vap and cnp.
5743 * This allows special files to be created. Use with care.
5744 */
5745
5746 int
5747 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5748 struct vattr *vap, kauth_cred_t cred,
5749 size_t *key_len, const void **new_key)
5750 {
5751 union dscrptr *dscr;
5752 struct udf_node *dir_node = VTOI(dvp);
5753 struct udf_node *udf_node;
5754 struct udf_mount *ump = dir_node->ump;
5755 struct long_ad node_icb_loc;
5756 uint64_t parent_unique_id;
5757 uint64_t lmapping;
5758 uint32_t lb_size, lb_num;
5759 uint16_t vpart_num;
5760 uid_t uid;
5761 gid_t gid, parent_gid;
5762 int (**vnodeops)(void *);
5763 int udf_file_type, fid_size, error;
5764
5765 vnodeops = udf_vnodeop_p;
5766 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5767
5768 switch (vap->va_type) {
5769 case VREG :
5770 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5771 break;
5772 case VDIR :
5773 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5774 break;
5775 case VLNK :
5776 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5777 break;
5778 case VBLK :
5779 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5780 /* specfs */
5781 return ENOTSUP;
5782 break;
5783 case VCHR :
5784 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5785 /* specfs */
5786 return ENOTSUP;
5787 break;
5788 case VFIFO :
5789 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5790 /* fifofs */
5791 return ENOTSUP;
5792 break;
5793 case VSOCK :
5794 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5795 return ENOTSUP;
5796 break;
5797 case VNON :
5798 case VBAD :
5799 default :
5800 /* nothing; can we even create these? */
5801 return EINVAL;
5802 }
5803
5804 lb_size = udf_rw32(ump->logical_vol->lb_size);
5805
5806 /* reserve space for one logical block */
5807 vpart_num = ump->node_part;
5808 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5809 vpart_num, 1, /* can_fail */ true);
5810 if (error)
5811 return error;
5812
5813 /* allocate node */
5814 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5815 vpart_num, 1, &lmapping);
5816 if (error) {
5817 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5818 return error;
5819 }
5820
5821 lb_num = lmapping;
5822
5823 /* initialise pointer to location */
5824 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5825 node_icb_loc.len = udf_rw32(lb_size);
5826 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5827 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5828
5829 /* build udf_node (do initialise!) */
5830 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5831 memset(udf_node, 0, sizeof(struct udf_node));
5832
5833 /* initialise crosslinks, note location of fe/efe for hashing */
5834 /* bugalert: synchronise with udf_get_node() */
5835 udf_node->ump = ump;
5836 udf_node->vnode = vp;
5837 vp->v_data = udf_node;
5838 udf_node->loc = node_icb_loc;
5839 udf_node->write_loc = node_icb_loc;
5840 udf_node->lockf = 0;
5841 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5842 cv_init(&udf_node->node_lock, "udf_nlk");
5843 udf_node->outstanding_bufs = 0;
5844 udf_node->outstanding_nodedscr = 0;
5845 udf_node->uncommitted_lbs = 0;
5846
5847 vp->v_tag = VT_UDF;
5848 vp->v_op = vnodeops;
5849
5850 /* initialise genfs */
5851 genfs_node_init(vp, &udf_genfsops);
5852
5853 /* get parent's unique ID for refering '..' if its a directory */
5854 if (dir_node->fe) {
5855 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5856 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5857 } else {
5858 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5859 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5860 }
5861
5862 /* get descriptor */
5863 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5864
5865 /* choose a fe or an efe for it */
5866 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5867 udf_node->fe = &dscr->fe;
5868 fid_size = udf_create_new_fe(ump, udf_node->fe,
5869 udf_file_type, &udf_node->loc,
5870 &dir_node->loc, parent_unique_id);
5871 /* TODO add extended attribute for creation time */
5872 } else {
5873 udf_node->efe = &dscr->efe;
5874 fid_size = udf_create_new_efe(ump, udf_node->efe,
5875 udf_file_type, &udf_node->loc,
5876 &dir_node->loc, parent_unique_id);
5877 }
5878 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5879
5880 /* update vnode's size and type */
5881 vp->v_type = vap->va_type;
5882 uvm_vnp_setsize(vp, fid_size);
5883
5884 /* set access mode */
5885 udf_setaccessmode(udf_node, vap->va_mode);
5886
5887 /* set ownership */
5888 uid = kauth_cred_geteuid(cred);
5889 gid = parent_gid;
5890 udf_setownership(udf_node, uid, gid);
5891
5892 *key_len = sizeof(udf_node->loc.loc);
5893 *new_key = &udf_node->loc.loc;
5894
5895 return 0;
5896 }
5897
5898
5899 int
5900 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5901 struct componentname *cnp)
5902 {
5903 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5904 struct udf_mount *ump = dir_node->ump;
5905 int error;
5906
5907 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5908 if (error)
5909 return error;
5910
5911 udf_node = VTOI(*vpp);
5912 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5913 if (error) {
5914 struct long_ad *node_icb_loc = &udf_node->loc;
5915 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5916 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5917
5918 /* free disc allocation for node */
5919 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5920
5921 /* recycle udf_node */
5922 udf_dispose_node(udf_node);
5923 vrele(*vpp);
5924
5925 *vpp = NULL;
5926 return error;
5927 }
5928
5929 /* adjust file count */
5930 udf_adjust_filecount(udf_node, 1);
5931
5932 return 0;
5933 }
5934
5935 /* --------------------------------------------------------------------- */
5936
5937 static void
5938 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5939 {
5940 struct udf_mount *ump = udf_node->ump;
5941 uint32_t lb_size, lb_num, len, num_lb;
5942 uint16_t vpart_num;
5943
5944 /* is there really one? */
5945 if (mem == NULL)
5946 return;
5947
5948 /* got a descriptor here */
5949 len = UDF_EXT_LEN(udf_rw32(loc->len));
5950 lb_num = udf_rw32(loc->loc.lb_num);
5951 vpart_num = udf_rw16(loc->loc.part_num);
5952
5953 lb_size = udf_rw32(ump->logical_vol->lb_size);
5954 num_lb = (len + lb_size -1) / lb_size;
5955
5956 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5957 }
5958
5959 void
5960 udf_delete_node(struct udf_node *udf_node)
5961 {
5962 void *dscr;
5963 struct long_ad *loc;
5964 int extnr, lvint, dummy;
5965
5966 if (udf_node->i_flags & IN_NO_DELETE)
5967 return;
5968
5969 /* paranoia check on integrity; should be open!; we could panic */
5970 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5971 if (lvint == UDF_INTEGRITY_CLOSED)
5972 printf("\tIntegrity was CLOSED!\n");
5973
5974 /* whatever the node type, change its size to zero */
5975 (void) udf_resize_node(udf_node, 0, &dummy);
5976
5977 /* force it to be `clean'; no use writing it out */
5978 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5979 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5980
5981 /* adjust file count */
5982 udf_adjust_filecount(udf_node, -1);
5983
5984 /*
5985 * Free its allocated descriptors; memory will be released when
5986 * vop_reclaim() is called.
5987 */
5988 loc = &udf_node->loc;
5989
5990 dscr = udf_node->fe;
5991 udf_free_descriptor_space(udf_node, loc, dscr);
5992 dscr = udf_node->efe;
5993 udf_free_descriptor_space(udf_node, loc, dscr);
5994
5995 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5996 dscr = udf_node->ext[extnr];
5997 loc = &udf_node->ext_loc[extnr];
5998 udf_free_descriptor_space(udf_node, loc, dscr);
5999 }
6000 }
6001
6002 /* --------------------------------------------------------------------- */
6003
6004 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6005 int
6006 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6007 {
6008 struct file_entry *fe = udf_node->fe;
6009 struct extfile_entry *efe = udf_node->efe;
6010 uint64_t file_size;
6011 int error;
6012
6013 if (fe) {
6014 file_size = udf_rw64(fe->inf_len);
6015 } else {
6016 assert(udf_node->efe);
6017 file_size = udf_rw64(efe->inf_len);
6018 }
6019
6020 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6021 file_size, new_size));
6022
6023 /* if not changing, we're done */
6024 if (file_size == new_size)
6025 return 0;
6026
6027 *extended = (new_size > file_size);
6028 if (*extended) {
6029 error = udf_grow_node(udf_node, new_size);
6030 } else {
6031 error = udf_shrink_node(udf_node, new_size);
6032 }
6033
6034 return error;
6035 }
6036
6037
6038 /* --------------------------------------------------------------------- */
6039
6040 void
6041 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6042 struct timespec *mod, struct timespec *birth)
6043 {
6044 struct timespec now;
6045 struct file_entry *fe;
6046 struct extfile_entry *efe;
6047 struct filetimes_extattr_entry *ft_extattr;
6048 struct timestamp *atime, *mtime, *attrtime, *ctime;
6049 struct timestamp fe_ctime;
6050 struct timespec cur_birth;
6051 uint32_t offset, a_l;
6052 uint8_t *filedata;
6053 int error;
6054
6055 /* protect against rogue values */
6056 if (!udf_node)
6057 return;
6058
6059 fe = udf_node->fe;
6060 efe = udf_node->efe;
6061
6062 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6063 return;
6064
6065 /* get descriptor information */
6066 if (fe) {
6067 atime = &fe->atime;
6068 mtime = &fe->mtime;
6069 attrtime = &fe->attrtime;
6070 filedata = fe->data;
6071
6072 /* initial save dummy setting */
6073 ctime = &fe_ctime;
6074
6075 /* check our extended attribute if present */
6076 error = udf_extattr_search_intern(udf_node,
6077 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6078 if (!error) {
6079 ft_extattr = (struct filetimes_extattr_entry *)
6080 (filedata + offset);
6081 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6082 ctime = &ft_extattr->times[0];
6083 }
6084 /* TODO create the extended attribute if not found ? */
6085 } else {
6086 assert(udf_node->efe);
6087 atime = &efe->atime;
6088 mtime = &efe->mtime;
6089 attrtime = &efe->attrtime;
6090 ctime = &efe->ctime;
6091 }
6092
6093 vfs_timestamp(&now);
6094
6095 /* set access time */
6096 if (udf_node->i_flags & IN_ACCESS) {
6097 if (acc == NULL)
6098 acc = &now;
6099 udf_timespec_to_timestamp(acc, atime);
6100 }
6101
6102 /* set modification time */
6103 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6104 if (mod == NULL)
6105 mod = &now;
6106 udf_timespec_to_timestamp(mod, mtime);
6107
6108 /* ensure birthtime is older than set modification! */
6109 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6110 if ((cur_birth.tv_sec > mod->tv_sec) ||
6111 ((cur_birth.tv_sec == mod->tv_sec) &&
6112 (cur_birth.tv_nsec > mod->tv_nsec))) {
6113 udf_timespec_to_timestamp(mod, ctime);
6114 }
6115 }
6116
6117 /* update birthtime if specified */
6118 /* XXX we assume here that given birthtime is older than mod */
6119 if (birth && (birth->tv_sec != VNOVAL)) {
6120 udf_timespec_to_timestamp(birth, ctime);
6121 }
6122
6123 /* set change time */
6124 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6125 udf_timespec_to_timestamp(&now, attrtime);
6126
6127 /* notify updates to the node itself */
6128 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6129 udf_node->i_flags |= IN_ACCESSED;
6130 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6131 udf_node->i_flags |= IN_MODIFIED;
6132
6133 /* clear modification flags */
6134 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6135 }
6136
6137 /* --------------------------------------------------------------------- */
6138
6139 int
6140 udf_update(struct vnode *vp, struct timespec *acc,
6141 struct timespec *mod, struct timespec *birth, int updflags)
6142 {
6143 union dscrptr *dscrptr;
6144 struct udf_node *udf_node = VTOI(vp);
6145 struct udf_mount *ump = udf_node->ump;
6146 struct regid *impl_id;
6147 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6148 int waitfor, flags;
6149
6150 #ifdef DEBUG
6151 char bits[128];
6152 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6153 updflags));
6154 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6155 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6156 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6157 #endif
6158
6159 /* set our times */
6160 udf_itimes(udf_node, acc, mod, birth);
6161
6162 /* set our implementation id */
6163 if (udf_node->fe) {
6164 dscrptr = (union dscrptr *) udf_node->fe;
6165 impl_id = &udf_node->fe->imp_id;
6166 } else {
6167 dscrptr = (union dscrptr *) udf_node->efe;
6168 impl_id = &udf_node->efe->imp_id;
6169 }
6170
6171 /* set our ID */
6172 udf_set_regid(impl_id, IMPL_NAME);
6173 udf_add_impl_regid(ump, impl_id);
6174
6175 /* update our crc! on RMW we are not allowed to change a thing */
6176 udf_validate_tag_and_crc_sums(dscrptr);
6177
6178 /* if called when mounted readonly, never write back */
6179 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6180 return 0;
6181
6182 /* check if the node is dirty 'enough'*/
6183 if (updflags & UPDATE_CLOSE) {
6184 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6185 } else {
6186 flags = udf_node->i_flags & IN_MODIFIED;
6187 }
6188 if (flags == 0)
6189 return 0;
6190
6191 /* determine if we need to write sync or async */
6192 waitfor = 0;
6193 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6194 /* sync mounted */
6195 waitfor = updflags & UPDATE_WAIT;
6196 if (updflags & UPDATE_DIROP)
6197 waitfor |= UPDATE_WAIT;
6198 }
6199 if (waitfor)
6200 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6201
6202 return 0;
6203 }
6204
6205
6206 /* --------------------------------------------------------------------- */
6207
6208
6209 /*
6210 * Read one fid and process it into a dirent and advance to the next (*fid)
6211 * has to be allocated a logical block in size, (*dirent) struct dirent length
6212 */
6213
6214 int
6215 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6216 struct fileid_desc *fid, struct dirent *dirent)
6217 {
6218 struct udf_node *dir_node = VTOI(vp);
6219 struct udf_mount *ump = dir_node->ump;
6220 struct file_entry *fe = dir_node->fe;
6221 struct extfile_entry *efe = dir_node->efe;
6222 uint32_t fid_size, lb_size;
6223 uint64_t file_size;
6224 char *fid_name;
6225 int enough, error;
6226
6227 assert(fid);
6228 assert(dirent);
6229 assert(dir_node);
6230 assert(offset);
6231 assert(*offset != 1);
6232
6233 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6234 /* check if we're past the end of the directory */
6235 if (fe) {
6236 file_size = udf_rw64(fe->inf_len);
6237 } else {
6238 assert(dir_node->efe);
6239 file_size = udf_rw64(efe->inf_len);
6240 }
6241 if (*offset >= file_size)
6242 return EINVAL;
6243
6244 /* get maximum length of FID descriptor */
6245 lb_size = udf_rw32(ump->logical_vol->lb_size);
6246
6247 /* initialise return values */
6248 fid_size = 0;
6249 memset(dirent, 0, sizeof(struct dirent));
6250 memset(fid, 0, lb_size);
6251
6252 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6253 if (!enough) {
6254 /* short dir ... */
6255 return EIO;
6256 }
6257
6258 error = vn_rdwr(UIO_READ, vp,
6259 fid, MIN(file_size - (*offset), lb_size), *offset,
6260 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6261 NULL, NULL);
6262 if (error)
6263 return error;
6264
6265 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6266 /*
6267 * Check if we got a whole descriptor.
6268 * TODO Try to `resync' directory stream when something is very wrong.
6269 */
6270
6271 /* check if our FID header is OK */
6272 error = udf_check_tag(fid);
6273 if (error) {
6274 goto brokendir;
6275 }
6276 DPRINTF(FIDS, ("\ttag check ok\n"));
6277
6278 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6279 error = EIO;
6280 goto brokendir;
6281 }
6282 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6283
6284 /* check for length */
6285 fid_size = udf_fidsize(fid);
6286 enough = (file_size - (*offset) >= fid_size);
6287 if (!enough) {
6288 error = EIO;
6289 goto brokendir;
6290 }
6291 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6292
6293 /* check FID contents */
6294 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6295 brokendir:
6296 if (error) {
6297 /* note that is sometimes a bit quick to report */
6298 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6299 /* RESYNC? */
6300 /* TODO: use udf_resync_fid_stream */
6301 return EIO;
6302 }
6303 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6304
6305 /* we got a whole and valid descriptor! */
6306 DPRINTF(FIDS, ("\tinterpret FID\n"));
6307
6308 /* create resulting dirent structure */
6309 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6310 udf_to_unix_name(dirent->d_name, NAME_MAX,
6311 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6312
6313 /* '..' has no name, so provide one */
6314 if (fid->file_char & UDF_FILE_CHAR_PAR)
6315 strcpy(dirent->d_name, "..");
6316
6317 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6318 dirent->d_namlen = strlen(dirent->d_name);
6319 dirent->d_reclen = _DIRENT_SIZE(dirent);
6320
6321 /*
6322 * Note that its not worth trying to go for the filetypes now... its
6323 * too expensive too
6324 */
6325 dirent->d_type = DT_UNKNOWN;
6326
6327 /* initial guess for filetype we can make */
6328 if (fid->file_char & UDF_FILE_CHAR_DIR)
6329 dirent->d_type = DT_DIR;
6330
6331 /* advance */
6332 *offset += fid_size;
6333
6334 return error;
6335 }
6336
6337
6338 /* --------------------------------------------------------------------- */
6339
6340 static void
6341 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6342 {
6343 struct udf_node *udf_node, *n_udf_node;
6344 struct vnode *vp;
6345 int vdirty, error;
6346
6347 KASSERT(mutex_owned(&ump->sync_lock));
6348
6349 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6350 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6351 for (;udf_node; udf_node = n_udf_node) {
6352 DPRINTF(SYNC, ("."));
6353
6354 vp = udf_node->vnode;
6355
6356 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6357 udf_node, RB_DIR_RIGHT);
6358
6359 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6360 if (error) {
6361 KASSERT(error == EBUSY);
6362 *ndirty += 1;
6363 continue;
6364 }
6365
6366 switch (pass) {
6367 case 1:
6368 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6369 break;
6370 case 2:
6371 vdirty = vp->v_numoutput;
6372 if (vp->v_tag == VT_UDF)
6373 vdirty += udf_node->outstanding_bufs +
6374 udf_node->outstanding_nodedscr;
6375 if (vdirty == 0)
6376 VOP_FSYNC(vp, cred, 0,0,0);
6377 *ndirty += vdirty;
6378 break;
6379 case 3:
6380 vdirty = vp->v_numoutput;
6381 if (vp->v_tag == VT_UDF)
6382 vdirty += udf_node->outstanding_bufs +
6383 udf_node->outstanding_nodedscr;
6384 *ndirty += vdirty;
6385 break;
6386 }
6387
6388 VOP_UNLOCK(vp);
6389 }
6390 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6391 }
6392
6393
6394 static bool
6395 udf_sync_selector(void *cl, struct vnode *vp)
6396 {
6397 struct udf_node *udf_node;
6398
6399 KASSERT(mutex_owned(vp->v_interlock));
6400
6401 udf_node = VTOI(vp);
6402
6403 if (vp->v_vflag & VV_SYSTEM)
6404 return false;
6405 if (vp->v_type == VNON)
6406 return false;
6407 if (udf_node == NULL)
6408 return false;
6409 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6410 return false;
6411 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6412 return false;
6413
6414 return true;
6415 }
6416
6417 void
6418 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6419 {
6420 struct vnode_iterator *marker;
6421 struct vnode *vp;
6422 struct udf_node *udf_node, *udf_next_node;
6423 int dummy, ndirty;
6424
6425 if (waitfor == MNT_LAZY)
6426 return;
6427
6428 mutex_enter(&ump->sync_lock);
6429
6430 /* Fill the rbtree with nodes to sync. */
6431 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6432 while ((vp = vfs_vnode_iterator_next(marker,
6433 udf_sync_selector, NULL)) != NULL) {
6434 udf_node = VTOI(vp);
6435 udf_node->i_flags |= IN_SYNCED;
6436 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6437 }
6438 vfs_vnode_iterator_destroy(marker);
6439
6440 dummy = 0;
6441 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6442 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6443 udf_sync_pass(ump, cred, 1, &dummy);
6444
6445 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6446 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6447 udf_sync_pass(ump, cred, 2, &dummy);
6448
6449 if (waitfor == MNT_WAIT) {
6450 recount:
6451 ndirty = ump->devvp->v_numoutput;
6452 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6453 ndirty));
6454 udf_sync_pass(ump, cred, 3, &ndirty);
6455 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6456 ndirty));
6457
6458 if (ndirty) {
6459 /* 1/4 second wait */
6460 kpause("udfsync2", false, hz/4, NULL);
6461 goto recount;
6462 }
6463 }
6464
6465 /* Clean the rbtree. */
6466 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6467 udf_node; udf_node = udf_next_node) {
6468 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6469 udf_node, RB_DIR_RIGHT);
6470 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6471 udf_node->i_flags &= ~IN_SYNCED;
6472 vrele(udf_node->vnode);
6473 }
6474
6475 mutex_exit(&ump->sync_lock);
6476 }
6477
6478 /* --------------------------------------------------------------------- */
6479
6480 /*
6481 * Read and write file extent in/from the buffer.
6482 *
6483 * The splitup of the extent into seperate request-buffers is to minimise
6484 * copying around as much as possible.
6485 *
6486 * block based file reading and writing
6487 */
6488
6489 static int
6490 udf_read_internal(struct udf_node *node, uint8_t *blob)
6491 {
6492 struct udf_mount *ump;
6493 struct file_entry *fe = node->fe;
6494 struct extfile_entry *efe = node->efe;
6495 uint64_t inflen;
6496 uint32_t sector_size;
6497 uint8_t *srcpos;
6498 int icbflags, addr_type;
6499
6500 /* get extent and do some paranoia checks */
6501 ump = node->ump;
6502 sector_size = ump->discinfo.sector_size;
6503
6504 /*
6505 * XXX there should be real bounds-checking logic here,
6506 * in case ->l_ea or ->inf_len contains nonsense.
6507 */
6508
6509 if (fe) {
6510 inflen = udf_rw64(fe->inf_len);
6511 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6512 icbflags = udf_rw16(fe->icbtag.flags);
6513 } else {
6514 assert(node->efe);
6515 inflen = udf_rw64(efe->inf_len);
6516 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6517 icbflags = udf_rw16(efe->icbtag.flags);
6518 }
6519 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6520
6521 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6522 __USE(addr_type);
6523 assert(inflen < sector_size);
6524
6525 /* copy out info */
6526 memcpy(blob, srcpos, inflen);
6527 memset(&blob[inflen], 0, sector_size - inflen);
6528
6529 return 0;
6530 }
6531
6532
6533 static int
6534 udf_write_internal(struct udf_node *node, uint8_t *blob)
6535 {
6536 struct udf_mount *ump;
6537 struct file_entry *fe = node->fe;
6538 struct extfile_entry *efe = node->efe;
6539 uint64_t inflen;
6540 uint32_t sector_size;
6541 uint8_t *pos;
6542 int icbflags, addr_type;
6543
6544 /* get extent and do some paranoia checks */
6545 ump = node->ump;
6546 sector_size = ump->discinfo.sector_size;
6547
6548 if (fe) {
6549 inflen = udf_rw64(fe->inf_len);
6550 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6551 icbflags = udf_rw16(fe->icbtag.flags);
6552 } else {
6553 assert(node->efe);
6554 inflen = udf_rw64(efe->inf_len);
6555 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6556 icbflags = udf_rw16(efe->icbtag.flags);
6557 }
6558 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6559
6560 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6561 __USE(addr_type);
6562 assert(inflen < sector_size);
6563 __USE(sector_size);
6564
6565 /* copy in blob */
6566 /* memset(pos, 0, inflen); */
6567 memcpy(pos, blob, inflen);
6568
6569 return 0;
6570 }
6571
6572
6573 void
6574 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6575 {
6576 struct buf *nestbuf;
6577 struct udf_mount *ump = udf_node->ump;
6578 uint64_t *mapping;
6579 uint64_t run_start;
6580 uint32_t sector_size;
6581 uint32_t buf_offset, sector, rbuflen, rblk;
6582 uint32_t from, lblkno;
6583 uint32_t sectors;
6584 uint8_t *buf_pos;
6585 int error, run_length, what;
6586
6587 sector_size = udf_node->ump->discinfo.sector_size;
6588
6589 from = buf->b_blkno;
6590 sectors = buf->b_bcount / sector_size;
6591
6592 what = udf_get_c_type(udf_node);
6593
6594 /* assure we have enough translation slots */
6595 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6596 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6597
6598 if (sectors > UDF_MAX_MAPPINGS) {
6599 printf("udf_read_filebuf: implementation limit on bufsize\n");
6600 buf->b_error = EIO;
6601 biodone(buf);
6602 return;
6603 }
6604
6605 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6606
6607 error = 0;
6608 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6609 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6610 if (error) {
6611 buf->b_error = error;
6612 biodone(buf);
6613 goto out;
6614 }
6615 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6616
6617 /* pre-check if its an internal */
6618 if (*mapping == UDF_TRANS_INTERN) {
6619 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6620 if (error)
6621 buf->b_error = error;
6622 biodone(buf);
6623 goto out;
6624 }
6625 DPRINTF(READ, ("\tnot intern\n"));
6626
6627 #ifdef DEBUG
6628 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6629 printf("Returned translation table:\n");
6630 for (sector = 0; sector < sectors; sector++) {
6631 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6632 }
6633 }
6634 #endif
6635
6636 /* request read-in of data from disc sheduler */
6637 buf->b_resid = buf->b_bcount;
6638 for (sector = 0; sector < sectors; sector++) {
6639 buf_offset = sector * sector_size;
6640 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6641 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6642
6643 /* check if its zero or unmapped to stop reading */
6644 switch (mapping[sector]) {
6645 case UDF_TRANS_UNMAPPED:
6646 case UDF_TRANS_ZERO:
6647 /* copy zero sector TODO runlength like below */
6648 memset(buf_pos, 0, sector_size);
6649 DPRINTF(READ, ("\treturning zero sector\n"));
6650 nestiobuf_done(buf, sector_size, 0);
6651 break;
6652 default :
6653 DPRINTF(READ, ("\tread sector "
6654 "%"PRIu64"\n", mapping[sector]));
6655
6656 lblkno = from + sector;
6657 run_start = mapping[sector];
6658 run_length = 1;
6659 while (sector < sectors-1) {
6660 if (mapping[sector+1] != mapping[sector]+1)
6661 break;
6662 run_length++;
6663 sector++;
6664 }
6665
6666 /*
6667 * nest an iobuf and mark it for async reading. Since
6668 * we're using nested buffers, they can't be cached by
6669 * design.
6670 */
6671 rbuflen = run_length * sector_size;
6672 rblk = run_start * (sector_size/DEV_BSIZE);
6673
6674 nestbuf = getiobuf(NULL, true);
6675 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6676 /* nestbuf is B_ASYNC */
6677
6678 /* identify this nestbuf */
6679 nestbuf->b_lblkno = lblkno;
6680 assert(nestbuf->b_vp == udf_node->vnode);
6681
6682 /* CD shedules on raw blkno */
6683 nestbuf->b_blkno = rblk;
6684 nestbuf->b_proc = NULL;
6685 nestbuf->b_rawblkno = rblk;
6686 nestbuf->b_udf_c_type = what;
6687
6688 udf_discstrat_queuebuf(ump, nestbuf);
6689 }
6690 }
6691 out:
6692 /* if we're synchronously reading, wait for the completion */
6693 if ((buf->b_flags & B_ASYNC) == 0)
6694 biowait(buf);
6695
6696 DPRINTF(READ, ("\tend of read_filebuf\n"));
6697 free(mapping, M_TEMP);
6698 return;
6699 }
6700
6701
6702 void
6703 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6704 {
6705 struct buf *nestbuf;
6706 struct udf_mount *ump = udf_node->ump;
6707 uint64_t *mapping;
6708 uint64_t run_start;
6709 uint32_t lb_size;
6710 uint32_t buf_offset, lb_num, rbuflen, rblk;
6711 uint32_t from, lblkno;
6712 uint32_t num_lb;
6713 int error, run_length, what, s;
6714
6715 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6716
6717 from = buf->b_blkno;
6718 num_lb = buf->b_bcount / lb_size;
6719
6720 what = udf_get_c_type(udf_node);
6721
6722 /* assure we have enough translation slots */
6723 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6724 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6725
6726 if (num_lb > UDF_MAX_MAPPINGS) {
6727 printf("udf_write_filebuf: implementation limit on bufsize\n");
6728 buf->b_error = EIO;
6729 biodone(buf);
6730 return;
6731 }
6732
6733 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6734
6735 error = 0;
6736 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6737 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6738 if (error) {
6739 buf->b_error = error;
6740 biodone(buf);
6741 goto out;
6742 }
6743 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6744
6745 /* if its internally mapped, we can write it in the descriptor itself */
6746 if (*mapping == UDF_TRANS_INTERN) {
6747 /* TODO paranoia check if we ARE going to have enough space */
6748 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6749 if (error)
6750 buf->b_error = error;
6751 biodone(buf);
6752 goto out;
6753 }
6754 DPRINTF(WRITE, ("\tnot intern\n"));
6755
6756 /* request write out of data to disc sheduler */
6757 buf->b_resid = buf->b_bcount;
6758 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6759 buf_offset = lb_num * lb_size;
6760 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6761
6762 /*
6763 * Mappings are not that important here. Just before we write
6764 * the lb_num we late-allocate them when needed and update the
6765 * mapping in the udf_node.
6766 */
6767
6768 /* XXX why not ignore the mapping altogether ? */
6769 DPRINTF(WRITE, ("\twrite lb_num "
6770 "%"PRIu64, mapping[lb_num]));
6771
6772 lblkno = from + lb_num;
6773 run_start = mapping[lb_num];
6774 run_length = 1;
6775 while (lb_num < num_lb-1) {
6776 if (mapping[lb_num+1] != mapping[lb_num]+1)
6777 if (mapping[lb_num+1] != mapping[lb_num])
6778 break;
6779 run_length++;
6780 lb_num++;
6781 }
6782 DPRINTF(WRITE, ("+ %d\n", run_length));
6783
6784 /* nest an iobuf on the master buffer for the extent */
6785 rbuflen = run_length * lb_size;
6786 rblk = run_start * (lb_size/DEV_BSIZE);
6787
6788 nestbuf = getiobuf(NULL, true);
6789 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6790 /* nestbuf is B_ASYNC */
6791
6792 /* identify this nestbuf */
6793 nestbuf->b_lblkno = lblkno;
6794 KASSERT(nestbuf->b_vp == udf_node->vnode);
6795
6796 /* CD shedules on raw blkno */
6797 nestbuf->b_blkno = rblk;
6798 nestbuf->b_proc = NULL;
6799 nestbuf->b_rawblkno = rblk;
6800 nestbuf->b_udf_c_type = what;
6801
6802 /* increment our outstanding bufs counter */
6803 s = splbio();
6804 udf_node->outstanding_bufs++;
6805 splx(s);
6806
6807 udf_discstrat_queuebuf(ump, nestbuf);
6808 }
6809 out:
6810 /* if we're synchronously writing, wait for the completion */
6811 if ((buf->b_flags & B_ASYNC) == 0)
6812 biowait(buf);
6813
6814 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6815 free(mapping, M_TEMP);
6816 return;
6817 }
6818
6819 /* --------------------------------------------------------------------- */
6820