udf_subr.c revision 1.142 1 /* $NetBSD: udf_subr.c,v 1.142 2018/07/25 11:09:22 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.142 2018/07/25 11:09:22 reinoud Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342
343 /* --------------------------------------------------------------------- */
344
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 int *first_tracknr, int *last_tracknr)
349 {
350 struct mmc_trackinfo trackinfo;
351 uint32_t tracknr, start_track, num_tracks;
352 int error;
353
354 /* if negative, sessionnr is relative to last session */
355 if (args->sessionnr < 0) {
356 args->sessionnr += ump->discinfo.num_sessions;
357 }
358
359 /* sanity */
360 if (args->sessionnr < 0)
361 args->sessionnr = 0;
362 if (args->sessionnr > ump->discinfo.num_sessions)
363 args->sessionnr = ump->discinfo.num_sessions;
364
365 /* search the tracks for this session, zero session nr indicates last */
366 if (args->sessionnr == 0)
367 args->sessionnr = ump->discinfo.num_sessions;
368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 args->sessionnr--;
370
371 /* sanity again */
372 if (args->sessionnr < 0)
373 args->sessionnr = 0;
374
375 /* search the first and last track of the specified session */
376 num_tracks = ump->discinfo.num_tracks;
377 start_track = ump->discinfo.first_track;
378
379 /* search for first track of this session */
380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 /* get track info */
382 trackinfo.tracknr = tracknr;
383 error = udf_update_trackinfo(ump, &trackinfo);
384 if (error)
385 return error;
386
387 if (trackinfo.sessionnr == args->sessionnr)
388 break;
389 }
390 *first_tracknr = tracknr;
391
392 /* search for last track of this session */
393 for (;tracknr <= num_tracks; tracknr++) {
394 /* get track info */
395 trackinfo.tracknr = tracknr;
396 error = udf_update_trackinfo(ump, &trackinfo);
397 if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 tracknr--;
399 break;
400 }
401 }
402 if (tracknr > num_tracks)
403 tracknr--;
404
405 *last_tracknr = tracknr;
406
407 if (*last_tracknr < *first_tracknr) {
408 printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 "drive returned garbage\n");
410 return EINVAL;
411 }
412
413 assert(*last_tracknr >= *first_tracknr);
414 return 0;
415 }
416
417
418 /*
419 * NOTE: this is the only routine in this file that directly peeks into the
420 * metadata file but since its at a larval state of the mount it can't hurt.
421 *
422 * XXX candidate for udf_allocation.c
423 * XXX clean me up!, change to new node reading code.
424 */
425
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 struct mmc_trackinfo *trackinfo)
429 {
430 struct part_desc *part;
431 struct file_entry *fe;
432 struct extfile_entry *efe;
433 struct short_ad *s_ad;
434 struct long_ad *l_ad;
435 uint32_t track_start, track_end;
436 uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 uint32_t sector_size, len, alloclen, plb_num;
438 uint8_t *pos;
439 int addr_type, icblen, icbflags;
440
441 /* get our track extents */
442 track_start = trackinfo->track_start;
443 track_end = track_start + trackinfo->track_size;
444
445 /* get our base partition extent */
446 KASSERT(ump->node_part == ump->fids_part);
447 part = ump->partitions[ump->vtop[ump->node_part]];
448 phys_part_start = udf_rw32(part->start_loc);
449 phys_part_end = phys_part_start + udf_rw32(part->part_len);
450
451 /* no use if its outside the physical partition */
452 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 return;
454
455 /*
456 * now follow all extents in the fe/efe to see if they refer to this
457 * track
458 */
459
460 sector_size = ump->discinfo.sector_size;
461
462 /* XXX should we claim exclusive access to the metafile ? */
463 /* TODO: move to new node read code */
464 fe = ump->metadata_node->fe;
465 efe = ump->metadata_node->efe;
466 if (fe) {
467 alloclen = udf_rw32(fe->l_ad);
468 pos = &fe->data[0] + udf_rw32(fe->l_ea);
469 icbflags = udf_rw16(fe->icbtag.flags);
470 } else {
471 assert(efe);
472 alloclen = udf_rw32(efe->l_ad);
473 pos = &efe->data[0] + udf_rw32(efe->l_ea);
474 icbflags = udf_rw16(efe->icbtag.flags);
475 }
476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477
478 while (alloclen) {
479 if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 icblen = sizeof(struct short_ad);
481 s_ad = (struct short_ad *) pos;
482 len = udf_rw32(s_ad->len);
483 plb_num = udf_rw32(s_ad->lb_num);
484 } else {
485 /* should not be present, but why not */
486 icblen = sizeof(struct long_ad);
487 l_ad = (struct long_ad *) pos;
488 len = udf_rw32(l_ad->len);
489 plb_num = udf_rw32(l_ad->loc.lb_num);
490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 }
492 /* process extent */
493 len = UDF_EXT_LEN(len);
494
495 part_start = phys_part_start + plb_num;
496 part_end = part_start + (len / sector_size);
497
498 if ((part_start >= track_start) && (part_end <= track_end)) {
499 /* extent is enclosed within this track */
500 ump->metadata_track = *trackinfo;
501 return;
502 }
503
504 pos += icblen;
505 alloclen -= icblen;
506 }
507 }
508
509
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_trackinfo trackinfo;
515 struct mmc_op mmc_op;
516 struct part_desc *part;
517 uint32_t tracknr, start_track, num_tracks;
518 uint32_t track_start, track_end, part_start, part_end;
519 int node_alloc, error;
520
521 /*
522 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 * the last session might be open but in the UDF device model at most
524 * three tracks can be open: a reserved track for delayed ISO VRS
525 * writing, a data track and a metadata track. We search here for the
526 * data track and the metadata track. Note that the reserved track is
527 * troublesome but can be detected by its small size of < 512 sectors.
528 */
529
530 /* update discinfo since it might have changed */
531 error = udf_update_discinfo(ump);
532 if (error)
533 return error;
534
535 num_tracks = ump->discinfo.num_tracks;
536 start_track = ump->discinfo.first_track;
537
538 /* fetch info on first and possibly only track */
539 trackinfo.tracknr = start_track;
540 error = udf_update_trackinfo(ump, &trackinfo);
541 if (error)
542 return error;
543
544 /* copy results to our mount point */
545 ump->data_track = trackinfo;
546 ump->metadata_track = trackinfo;
547
548 /* if not sequential, we're done */
549 if (num_tracks == 1)
550 return 0;
551
552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 /* get track info */
554 trackinfo.tracknr = tracknr;
555 error = udf_update_trackinfo(ump, &trackinfo);
556 if (error)
557 return error;
558
559 /*
560 * If this track is marked damaged, ask for repair. This is an
561 * optional command, so ignore its error but report warning.
562 */
563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 memset(&mmc_op, 0, sizeof(mmc_op));
565 mmc_op.operation = MMC_OP_REPAIRTRACK;
566 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 mmc_op.tracknr = tracknr;
568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 if (error)
570 (void)printf("Drive can't explicitly repair "
571 "damaged track %d, but it might "
572 "autorepair\n", tracknr);
573
574 /* reget track info */
575 error = udf_update_trackinfo(ump, &trackinfo);
576 if (error)
577 return error;
578 }
579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 continue;
581
582 track_start = trackinfo.track_start;
583 track_end = track_start + trackinfo.track_size;
584
585 /* check for overlap on data partition */
586 part = ump->partitions[ump->data_part];
587 part_start = udf_rw32(part->start_loc);
588 part_end = part_start + udf_rw32(part->part_len);
589 if ((part_start < track_end) && (part_end > track_start)) {
590 ump->data_track = trackinfo;
591 /* TODO check if UDF partition data_part is writable */
592 }
593
594 /* check for overlap on metadata partition */
595 node_alloc = ump->vtop_alloc[ump->node_part];
596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 (node_alloc == UDF_ALLOC_METABITMAP)) {
598 udf_check_track_metadata_overlap(ump, &trackinfo);
599 } else {
600 ump->metadata_track = trackinfo;
601 }
602 }
603
604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 return EROFS;
606
607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 return EROFS;
609
610 return 0;
611 }
612
613 /* --------------------------------------------------------------------- */
614
615 /*
616 * Check if the blob starts with a good UDF tag. Tags are protected by a
617 * checksum over the reader except one byte at position 4 that is the checksum
618 * itself.
619 */
620
621 int
622 udf_check_tag(void *blob)
623 {
624 struct desc_tag *tag = blob;
625 uint8_t *pos, sum, cnt;
626
627 /* check TAG header checksum */
628 pos = (uint8_t *) tag;
629 sum = 0;
630
631 for(cnt = 0; cnt < 16; cnt++) {
632 if (cnt != 4)
633 sum += *pos;
634 pos++;
635 }
636 if (sum != tag->cksum) {
637 /* bad tag header checksum; this is not a valid tag */
638 return EINVAL;
639 }
640
641 return 0;
642 }
643
644
645 /*
646 * check tag payload will check descriptor CRC as specified.
647 * If the descriptor is too long, it will return EIO otherwise EINVAL.
648 */
649
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 struct desc_tag *tag = blob;
654 uint16_t crc, crc_len;
655
656 crc_len = udf_rw16(tag->desc_crc_len);
657
658 /* check payload CRC if applicable */
659 if (crc_len == 0)
660 return 0;
661
662 if (crc_len > max_length)
663 return EIO;
664
665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 if (crc != udf_rw16(tag->desc_crc)) {
667 /* bad payload CRC; this is a broken tag */
668 return EINVAL;
669 }
670
671 return 0;
672 }
673
674
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 struct desc_tag *tag = blob;
679 uint8_t *pos, sum, cnt;
680
681 /* calculate TAG header checksum */
682 pos = (uint8_t *) tag;
683 sum = 0;
684
685 for(cnt = 0; cnt < 16; cnt++) {
686 if (cnt != 4) sum += *pos;
687 pos++;
688 }
689 tag->cksum = sum; /* 8 bit */
690 }
691
692
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 struct desc_tag *tag = blob;
698 uint8_t *btag = (uint8_t *) tag;
699 uint16_t crc, crc_len;
700
701 crc_len = udf_rw16(tag->desc_crc_len);
702
703 /* check payload CRC if applicable */
704 if (crc_len > 0) {
705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 tag->desc_crc = udf_rw16(crc);
707 }
708
709 /* calculate TAG header checksum */
710 udf_validate_tag_sum(blob);
711 }
712
713 /* --------------------------------------------------------------------- */
714
715 /*
716 * XXX note the different semantics from udfclient: for FIDs it still rounds
717 * up to sectors. Use udf_fidsize() for a correct length.
718 */
719
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 uint32_t size, tag_id, num_lb, elmsz;
724
725 tag_id = udf_rw16(dscr->tag.id);
726
727 switch (tag_id) {
728 case TAGID_LOGVOL :
729 size = sizeof(struct logvol_desc) - 1;
730 size += udf_rw32(dscr->lvd.mt_l);
731 break;
732 case TAGID_UNALLOC_SPACE :
733 elmsz = sizeof(struct extent_ad);
734 size = sizeof(struct unalloc_sp_desc) - elmsz;
735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 break;
737 case TAGID_FID :
738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 size = (size + 3) & ~3;
740 break;
741 case TAGID_LOGVOL_INTEGRITY :
742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 size += udf_rw32(dscr->lvid.l_iu);
744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 break;
746 case TAGID_SPACE_BITMAP :
747 size = sizeof(struct space_bitmap_desc) - 1;
748 size += udf_rw32(dscr->sbd.num_bytes);
749 break;
750 case TAGID_SPARING_TABLE :
751 elmsz = sizeof(struct spare_map_entry);
752 size = sizeof(struct udf_sparing_table) - elmsz;
753 size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 break;
755 case TAGID_FENTRY :
756 size = sizeof(struct file_entry);
757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 break;
759 case TAGID_EXTFENTRY :
760 size = sizeof(struct extfile_entry);
761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 break;
763 case TAGID_FSD :
764 size = sizeof(struct fileset_desc);
765 break;
766 default :
767 size = sizeof(union dscrptr);
768 break;
769 }
770
771 if ((size == 0) || (lb_size == 0))
772 return 0;
773
774 if (lb_size == 1)
775 return size;
776
777 /* round up in sectors */
778 num_lb = (size + lb_size -1) / lb_size;
779 return num_lb * lb_size;
780 }
781
782
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 uint32_t size;
787
788 if (udf_rw16(fid->tag.id) != TAGID_FID)
789 panic("got udf_fidsize on non FID\n");
790
791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 size = (size + 3) & ~3;
793
794 return size;
795 }
796
797 /* --------------------------------------------------------------------- */
798
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 int ret;
803
804 mutex_enter(&udf_node->node_mutex);
805 /* wait until free */
806 while (udf_node->i_flags & IN_LOCKED) {
807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 /* TODO check if we should return error; abort */
809 if (ret == EWOULDBLOCK) {
810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 "wanted at %s:%d, previously locked at %s:%d\n",
812 udf_node, fname, lineno,
813 udf_node->lock_fname, udf_node->lock_lineno));
814 }
815 }
816 /* grab */
817 udf_node->i_flags |= IN_LOCKED | flag;
818 /* debug */
819 udf_node->lock_fname = fname;
820 udf_node->lock_lineno = lineno;
821
822 mutex_exit(&udf_node->node_mutex);
823 }
824
825
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 mutex_enter(&udf_node->node_mutex);
830 udf_node->i_flags &= ~(IN_LOCKED | flag);
831 cv_broadcast(&udf_node->node_lock);
832 mutex_exit(&udf_node->node_mutex);
833 }
834
835
836 /* --------------------------------------------------------------------- */
837
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 int error;
842
843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 (union dscrptr **) dst);
845 if (!error) {
846 /* blank terminator blocks are not allowed here */
847 if (*dst == NULL)
848 return ENOENT;
849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 error = ENOENT;
851 free(*dst, M_UDFVOLD);
852 *dst = NULL;
853 DPRINTF(VOLUMES, ("Not an anchor\n"));
854 }
855 }
856
857 return error;
858 }
859
860
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 struct udf_args *args = &ump->mount_args;
865 struct mmc_trackinfo first_track;
866 struct mmc_trackinfo second_track;
867 struct mmc_trackinfo last_track;
868 struct anchor_vdp **anchorsp;
869 uint32_t track_start;
870 uint32_t track_end;
871 uint32_t positions[4];
872 int first_tracknr, last_tracknr;
873 int error, anch, ok, first_anchor;
874
875 /* search the first and last track of the specified session */
876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 if (!error) {
878 first_track.tracknr = first_tracknr;
879 error = udf_update_trackinfo(ump, &first_track);
880 }
881 if (!error) {
882 last_track.tracknr = last_tracknr;
883 error = udf_update_trackinfo(ump, &last_track);
884 }
885 if ((!error) && (first_tracknr != last_tracknr)) {
886 second_track.tracknr = first_tracknr+1;
887 error = udf_update_trackinfo(ump, &second_track);
888 }
889 if (error) {
890 printf("UDF mount: reading disc geometry failed\n");
891 return 0;
892 }
893
894 track_start = first_track.track_start;
895
896 /* `end' is not as straitforward as start. */
897 track_end = last_track.track_start
898 + last_track.track_size - last_track.free_blocks - 1;
899
900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 /* end of track is not straitforward here */
902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 track_end = last_track.last_recorded;
904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 track_end = last_track.next_writable
906 - ump->discinfo.link_block_penalty;
907 }
908
909 /* its no use reading a blank track */
910 first_anchor = 0;
911 if (first_track.flags & MMC_TRACKINFO_BLANK)
912 first_anchor = 1;
913
914 /* get our packet size */
915 ump->packet_size = first_track.packet_size;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 ump->packet_size = second_track.packet_size;
918
919 if (ump->packet_size <= 1) {
920 /* take max, but not bigger than 64 */
921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 ump->packet_size = MIN(ump->packet_size, 64);
923 }
924 KASSERT(ump->packet_size >= 1);
925
926 /* read anchors start+256, start+512, end-256, end */
927 positions[0] = track_start+256;
928 positions[1] = track_end-256;
929 positions[2] = track_end;
930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
932
933 ok = 0;
934 anchorsp = ump->anchors;
935 for (anch = first_anchor; anch < 4; anch++) {
936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 positions[anch]));
938 error = udf_read_anchor(ump, positions[anch], anchorsp);
939 if (!error) {
940 anchorsp++;
941 ok++;
942 }
943 }
944
945 /* VATs are only recorded on sequential media, but initialise */
946 ump->first_possible_vat_location = track_start + 2;
947 ump->last_possible_vat_location = track_end;
948
949 return ok;
950 }
951
952 /* --------------------------------------------------------------------- */
953
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 int isdir, what;
958
959 isdir = (udf_node->vnode->v_type == VDIR);
960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961
962 if (udf_node->ump)
963 if (udf_node == udf_node->ump->metadatabitmap_node)
964 what = UDF_C_METADATA_SBM;
965
966 return what;
967 }
968
969
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 int vpart_num;
974
975 vpart_num = ump->data_part;
976 if (udf_c_type == UDF_C_NODE)
977 vpart_num = ump->node_part;
978 if (udf_c_type == UDF_C_FIDS)
979 vpart_num = ump->fids_part;
980
981 return vpart_num;
982 }
983
984
985 /*
986 * BUGALERT: some rogue implementations use random physical partition
987 * numbers to break other implementations so lookup the number.
988 */
989
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 struct part_desc *part;
994 uint16_t phys_part;
995
996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 part = ump->partitions[phys_part];
998 if (part == NULL)
999 break;
1000 if (udf_rw16(part->part_num) == raw_phys_part)
1001 break;
1002 }
1003 return phys_part;
1004 }
1005
1006 /* --------------------------------------------------------------------- */
1007
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 if (name) \
1011 free(name, M_UDFVOLD); \
1012 name = dscr;
1013
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 uint16_t phys_part, raw_phys_part;
1018
1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 switch (udf_rw16(dscr->tag.id)) {
1022 case TAGID_PRI_VOL : /* primary partition */
1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 break;
1025 case TAGID_LOGVOL : /* logical volume */
1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 break;
1028 case TAGID_UNALLOC_SPACE : /* unallocated space */
1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 break;
1031 case TAGID_IMP_VOL : /* implementation */
1032 /* XXX do we care about multiple impl. descr ? */
1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 break;
1035 case TAGID_PARTITION : /* physical partition */
1036 /* not much use if its not allocated */
1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 free(dscr, M_UDFVOLD);
1039 break;
1040 }
1041
1042 /*
1043 * BUGALERT: some rogue implementations use random physical
1044 * partition numbers to break other implementations so lookup
1045 * the number.
1046 */
1047 raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049
1050 if (phys_part == UDF_PARTITIONS) {
1051 free(dscr, M_UDFVOLD);
1052 return EINVAL;
1053 }
1054
1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 break;
1057 case TAGID_VOL : /* volume space extender; rare */
1058 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 default :
1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 udf_rw16(dscr->tag.id)));
1064 free(dscr, M_UDFVOLD);
1065 }
1066
1067 return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070
1071 /* --------------------------------------------------------------------- */
1072
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 union dscrptr *dscr;
1077 uint32_t sector_size, dscr_size;
1078 int error;
1079
1080 sector_size = ump->discinfo.sector_size;
1081
1082 /* loc is sectornr, len is in bytes */
1083 error = EIO;
1084 while (len) {
1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 if (error)
1087 return error;
1088
1089 /* blank block is a terminator */
1090 if (dscr == NULL)
1091 return 0;
1092
1093 /* TERM descriptor is a terminator */
1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 free(dscr, M_UDFVOLD);
1096 return 0;
1097 }
1098
1099 /* process all others */
1100 dscr_size = udf_tagsize(dscr, sector_size);
1101 error = udf_process_vds_descriptor(ump, dscr);
1102 if (error) {
1103 free(dscr, M_UDFVOLD);
1104 break;
1105 }
1106 assert((dscr_size % sector_size) == 0);
1107
1108 len -= dscr_size;
1109 loc += dscr_size / sector_size;
1110 }
1111
1112 return error;
1113 }
1114
1115
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 /* struct udf_args *args = &ump->mount_args; */
1120 struct anchor_vdp *anchor, *anchor2;
1121 size_t size;
1122 uint32_t main_loc, main_len;
1123 uint32_t reserve_loc, reserve_len;
1124 int error;
1125
1126 /*
1127 * read in VDS space provided by the anchors; if one descriptor read
1128 * fails, try the mirror sector.
1129 *
1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 * avoids the `compatibility features' of DirectCD that may confuse
1132 * stuff completely.
1133 */
1134
1135 anchor = ump->anchors[0];
1136 anchor2 = ump->anchors[1];
1137 assert(anchor);
1138
1139 if (anchor2) {
1140 size = sizeof(struct extent_ad);
1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 anchor = anchor2;
1143 /* reserve is specified to be a literal copy of main */
1144 }
1145
1146 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1147 main_len = udf_rw32(anchor->main_vds_ex.len);
1148
1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151
1152 error = udf_read_vds_extent(ump, main_loc, main_len);
1153 if (error) {
1154 printf("UDF mount: reading in reserve VDS extent\n");
1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 }
1157
1158 return error;
1159 }
1160
1161 /* --------------------------------------------------------------------- */
1162
1163 /*
1164 * Read in the logical volume integrity sequence pointed to by our logical
1165 * volume descriptor. Its a sequence that can be extended using fields in the
1166 * integrity descriptor itself. On sequential media only one is found, on
1167 * rewritable media a sequence of descriptors can be found as a form of
1168 * history keeping and on non sequential write-once media the chain is vital
1169 * to allow more and more descriptors to be written. The last descriptor
1170 * written in an extent needs to claim space for a new extent.
1171 */
1172
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 union dscrptr *dscr;
1177 struct logvol_int_desc *lvint;
1178 struct udf_lvintq *trace;
1179 uint32_t lb_size, lbnum, len;
1180 int dscr_type, error, trace_len;
1181
1182 lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185
1186 /* clean trace */
1187 memset(ump->lvint_trace, 0,
1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189
1190 trace_len = 0;
1191 trace = ump->lvint_trace;
1192 trace->start = lbnum;
1193 trace->end = lbnum + len/lb_size;
1194 trace->pos = 0;
1195 trace->wpos = 0;
1196
1197 lvint = NULL;
1198 dscr = NULL;
1199 error = 0;
1200 while (len) {
1201 trace->pos = lbnum - trace->start;
1202 trace->wpos = trace->pos + 1;
1203
1204 /* read in our integrity descriptor */
1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 if (!error) {
1207 if (dscr == NULL) {
1208 trace->wpos = trace->pos;
1209 break; /* empty terminates */
1210 }
1211 dscr_type = udf_rw16(dscr->tag.id);
1212 if (dscr_type == TAGID_TERM) {
1213 trace->wpos = trace->pos;
1214 break; /* clean terminator */
1215 }
1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 /* fatal... corrupt disc */
1218 error = ENOENT;
1219 break;
1220 }
1221 if (lvint)
1222 free(lvint, M_UDFVOLD);
1223 lvint = &dscr->lvid;
1224 dscr = NULL;
1225 } /* else hope for the best... maybe the next is ok */
1226
1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229
1230 /* proceed sequential */
1231 lbnum += 1;
1232 len -= lb_size;
1233
1234 /* are we linking to a new piece? */
1235 if (dscr && lvint->next_extent.len) {
1236 len = udf_rw32(lvint->next_extent.len);
1237 lbnum = udf_rw32(lvint->next_extent.loc);
1238
1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 /* IEK! segment link full... */
1241 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 error = EINVAL;
1243 } else {
1244 trace++;
1245 trace_len++;
1246
1247 trace->start = lbnum;
1248 trace->end = lbnum + len/lb_size;
1249 trace->pos = 0;
1250 trace->wpos = 0;
1251 }
1252 }
1253 }
1254
1255 /* clean up the mess, esp. when there is an error */
1256 if (dscr)
1257 free(dscr, M_UDFVOLD);
1258
1259 if (error && lvint) {
1260 free(lvint, M_UDFVOLD);
1261 lvint = NULL;
1262 }
1263
1264 if (!lvint)
1265 error = ENOENT;
1266
1267 ump->logvol_integrity = lvint;
1268 return error;
1269 }
1270
1271
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 union dscrptr **bufs, *dscr, *last_dscr;
1276 struct udf_lvintq *trace, *in_trace, *out_trace;
1277 struct logvol_int_desc *lvint;
1278 uint32_t in_ext, in_pos, in_len;
1279 uint32_t out_ext, out_wpos, out_len;
1280 uint32_t lb_num;
1281 uint32_t len, start;
1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type;
1283 int losing;
1284 int error;
1285
1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287
1288 /* search smallest extent */
1289 trace = &ump->lvint_trace[0];
1290 sumext = trace->end - trace->start;
1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 trace = &ump->lvint_trace[ext];
1293 extlen = trace->end - trace->start;
1294 if (extlen == 0)
1295 break;
1296 sumext += extlen;
1297 }
1298
1299 /* just one element? its not legal but be bug compatible */
1300 if (sumext == 1) {
1301 /* overwrite the only entry */
1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n"));
1303 trace = &ump->lvint_trace[0];
1304 trace->wpos = 0;
1305 return 0;
1306 }
1307
1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE);
1309
1310 /* no sense wiping too much */
1311 if (sumext == UDF_LVINT_LOSSAGE)
1312 losing = UDF_LVINT_LOSSAGE/2;
1313
1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1315
1316 /* get buffer for pieces */
1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1318
1319 in_ext = 0;
1320 in_pos = losing;
1321 in_trace = &ump->lvint_trace[in_ext];
1322 in_len = in_trace->end - in_trace->start;
1323 out_ext = 0;
1324 out_wpos = 0;
1325 out_trace = &ump->lvint_trace[out_ext];
1326 out_len = out_trace->end - out_trace->start;
1327
1328 last_dscr = NULL;
1329 for(;;) {
1330 out_trace->pos = out_wpos;
1331 out_trace->wpos = out_trace->pos;
1332 if (in_pos >= in_len) {
1333 in_ext++;
1334 in_pos = 0;
1335 in_trace = &ump->lvint_trace[in_ext];
1336 in_len = in_trace->end - in_trace->start;
1337 }
1338 if (out_wpos >= out_len) {
1339 out_ext++;
1340 out_wpos = 0;
1341 out_trace = &ump->lvint_trace[out_ext];
1342 out_len = out_trace->end - out_trace->start;
1343 }
1344 /* copy overlap contents */
1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1347 if (cpy_len == 0)
1348 break;
1349
1350 /* copy */
1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1352 for (cnt = 0; cnt < cpy_len; cnt++) {
1353 /* read in our integrity descriptor */
1354 lb_num = in_trace->start + in_pos + cnt;
1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1356 &dscr);
1357 if (error) {
1358 /* copy last one */
1359 dscr = last_dscr;
1360 }
1361 bufs[cnt] = dscr;
1362 if (!error) {
1363 if (dscr == NULL) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* empty terminates */
1367 }
1368 dscr_type = udf_rw16(dscr->tag.id);
1369 if (dscr_type == TAGID_TERM) {
1370 out_trace->pos = out_wpos + cnt;
1371 out_trace->wpos = out_trace->pos;
1372 break; /* clean terminator */
1373 }
1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1375 panic( "UDF integrity sequence "
1376 "corrupted while mounted!\n");
1377 }
1378 last_dscr = dscr;
1379 }
1380 }
1381
1382 /* patch up if first entry was on error */
1383 if (bufs[0] == NULL) {
1384 for (cnt = 0; cnt < cpy_len; cnt++)
1385 if (bufs[cnt] != NULL)
1386 break;
1387 last_dscr = bufs[cnt];
1388 for (; cnt > 0; cnt--) {
1389 bufs[cnt] = last_dscr;
1390 }
1391 }
1392
1393 /* glue + write out */
1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1395 for (cnt = 0; cnt < cpy_len; cnt++) {
1396 lb_num = out_trace->start + out_wpos + cnt;
1397 lvint = &bufs[cnt]->lvid;
1398
1399 /* set continuation */
1400 len = 0;
1401 start = 0;
1402 if (out_wpos + cnt == out_len) {
1403 /* get continuation */
1404 trace = &ump->lvint_trace[out_ext+1];
1405 len = trace->end - trace->start;
1406 start = trace->start;
1407 }
1408 lvint->next_extent.len = udf_rw32(len);
1409 lvint->next_extent.loc = udf_rw32(start);
1410
1411 lb_num = trace->start + trace->wpos;
1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1413 bufs[cnt], lb_num, lb_num);
1414 DPRINTFIF(VOLUMES, error,
1415 ("error writing lvint lb_num\n"));
1416 }
1417
1418 /* free non repeating descriptors */
1419 last_dscr = NULL;
1420 for (cnt = 0; cnt < cpy_len; cnt++) {
1421 if (bufs[cnt] != last_dscr)
1422 free(bufs[cnt], M_UDFVOLD);
1423 last_dscr = bufs[cnt];
1424 }
1425
1426 /* advance */
1427 in_pos += cpy_len;
1428 out_wpos += cpy_len;
1429 }
1430
1431 free(bufs, M_TEMP);
1432
1433 return 0;
1434 }
1435
1436
1437 static int
1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1439 {
1440 struct udf_lvintq *trace;
1441 struct timeval now_v;
1442 struct timespec now_s;
1443 uint32_t sector;
1444 int logvol_integrity;
1445 int space, error;
1446
1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1448
1449 /* get free space in last chunk */
1450 trace = ump->lvint_trace;
1451 while (trace->wpos > (trace->end - trace->start)) {
1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1453 "wpos = %d\n", trace->start, trace->end,
1454 trace->pos, trace->wpos));
1455 trace++;
1456 }
1457
1458 /* check if there is space to append */
1459 space = (trace->end - trace->start) - trace->wpos;
1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1461 "space = %d\n", trace->start, trace->end, trace->pos,
1462 trace->wpos, space));
1463
1464 /* get state */
1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1468 /* TODO extent LVINT space if possible */
1469 return EROFS;
1470 }
1471 }
1472
1473 if (space < 1) {
1474 if (lvflag & UDF_APPENDONLY_LVINT)
1475 return EROFS;
1476
1477 /* loose history by re-writing extents */
1478 error = udf_loose_lvint_history(ump);
1479 if (error)
1480 return error;
1481
1482 trace = ump->lvint_trace;
1483 while (trace->wpos > (trace->end - trace->start))
1484 trace++;
1485 space = (trace->end - trace->start) - trace->wpos;
1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, "
1487 "pos = %d, wpos = %d, "
1488 "space = %d\n", trace->start, trace->end,
1489 trace->pos, trace->wpos, space));
1490 }
1491
1492 /* update our integrity descriptor to identify us and timestamp it */
1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1494 microtime(&now_v);
1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1499
1500 /* writeout integrity descriptor */
1501 sector = trace->start + trace->wpos;
1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1503 (union dscrptr *) ump->logvol_integrity,
1504 sector, sector);
1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1506 if (error)
1507 return error;
1508
1509 /* advance write position */
1510 trace->wpos++; space--;
1511 if (space >= 1) {
1512 /* append terminator */
1513 sector = trace->start + trace->wpos;
1514 error = udf_write_terminator(ump, sector);
1515
1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1517 }
1518
1519 space = (trace->end - trace->start) - trace->wpos;
1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1521 "space = %d\n", trace->start, trace->end, trace->pos,
1522 trace->wpos, space));
1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1524 "successfull\n"));
1525
1526 return error;
1527 }
1528
1529 /* --------------------------------------------------------------------- */
1530
1531 static int
1532 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1533 {
1534 union dscrptr *dscr;
1535 /* struct udf_args *args = &ump->mount_args; */
1536 struct part_desc *partd;
1537 struct part_hdr_desc *parthdr;
1538 struct udf_bitmap *bitmap;
1539 uint32_t phys_part;
1540 uint32_t lb_num, len;
1541 int error, dscr_type;
1542
1543 /* unallocated space map */
1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1545 partd = ump->partitions[phys_part];
1546 if (partd == NULL)
1547 continue;
1548 parthdr = &partd->_impl_use.part_hdr;
1549
1550 lb_num = udf_rw32(partd->start_loc);
1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1553 if (len == 0)
1554 continue;
1555
1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1558 if (!error && dscr) {
1559 /* analyse */
1560 dscr_type = udf_rw16(dscr->tag.id);
1561 if (dscr_type == TAGID_SPACE_BITMAP) {
1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1564
1565 /* fill in ump->part_unalloc_bits */
1566 bitmap = &ump->part_unalloc_bits[phys_part];
1567 bitmap->blob = (uint8_t *) dscr;
1568 bitmap->bits = dscr->sbd.data;
1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1570 bitmap->pages = NULL; /* TODO */
1571 bitmap->data_pos = 0;
1572 bitmap->metadata_pos = 0;
1573 } else {
1574 free(dscr, M_UDFVOLD);
1575
1576 printf( "UDF mount: error reading unallocated "
1577 "space bitmap\n");
1578 return EROFS;
1579 }
1580 } else {
1581 /* blank not allowed */
1582 printf("UDF mount: blank unallocated space bitmap\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* unallocated space table (not supported) */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 len = udf_rw32(parthdr->unalloc_space_table.len);
1595 if (len) {
1596 printf("UDF mount: space tables not supported\n");
1597 return EROFS;
1598 }
1599 }
1600
1601 /* freed space map */
1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1603 partd = ump->partitions[phys_part];
1604 if (partd == NULL)
1605 continue;
1606 parthdr = &partd->_impl_use.part_hdr;
1607
1608 /* freed space map */
1609 lb_num = udf_rw32(partd->start_loc);
1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1611 len = udf_rw32(parthdr->freed_space_bitmap.len);
1612 if (len == 0)
1613 continue;
1614
1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1617 if (!error && dscr) {
1618 /* analyse */
1619 dscr_type = udf_rw16(dscr->tag.id);
1620 if (dscr_type == TAGID_SPACE_BITMAP) {
1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1622 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1623
1624 /* fill in ump->part_freed_bits */
1625 bitmap = &ump->part_unalloc_bits[phys_part];
1626 bitmap->blob = (uint8_t *) dscr;
1627 bitmap->bits = dscr->sbd.data;
1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1629 bitmap->pages = NULL; /* TODO */
1630 bitmap->data_pos = 0;
1631 bitmap->metadata_pos = 0;
1632 } else {
1633 free(dscr, M_UDFVOLD);
1634
1635 printf( "UDF mount: error reading freed "
1636 "space bitmap\n");
1637 return EROFS;
1638 }
1639 } else {
1640 /* blank not allowed */
1641 printf("UDF mount: blank freed space bitmap\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 /* freed space table (not supported) */
1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1648 partd = ump->partitions[phys_part];
1649 if (partd == NULL)
1650 continue;
1651 parthdr = &partd->_impl_use.part_hdr;
1652
1653 len = udf_rw32(parthdr->freed_space_table.len);
1654 if (len) {
1655 printf("UDF mount: space tables not supported\n");
1656 return EROFS;
1657 }
1658 }
1659
1660 return 0;
1661 }
1662
1663
1664 /* TODO implement async writeout */
1665 int
1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1667 {
1668 union dscrptr *dscr;
1669 /* struct udf_args *args = &ump->mount_args; */
1670 struct part_desc *partd;
1671 struct part_hdr_desc *parthdr;
1672 uint32_t phys_part;
1673 uint32_t lb_num, len, ptov;
1674 int error_all, error;
1675
1676 error_all = 0;
1677 /* unallocated space map */
1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1679 partd = ump->partitions[phys_part];
1680 if (partd == NULL)
1681 continue;
1682 parthdr = &partd->_impl_use.part_hdr;
1683
1684 ptov = udf_rw32(partd->start_loc);
1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1687 if (len == 0)
1688 continue;
1689
1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1691 lb_num + ptov));
1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1693
1694 /* force a sane minimum for descriptors CRC length */
1695 /* see UDF 2.3.1.2 and 2.3.8.1 */
1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1699
1700 /* write out space bitmap */
1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1702 (union dscrptr *) dscr,
1703 ptov + lb_num, lb_num);
1704 if (error) {
1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1706 error_all = error;
1707 }
1708 }
1709
1710 /* freed space map */
1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1712 partd = ump->partitions[phys_part];
1713 if (partd == NULL)
1714 continue;
1715 parthdr = &partd->_impl_use.part_hdr;
1716
1717 /* freed space map */
1718 ptov = udf_rw32(partd->start_loc);
1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1720 len = udf_rw32(parthdr->freed_space_bitmap.len);
1721 if (len == 0)
1722 continue;
1723
1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1725 lb_num + ptov));
1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1727
1728 /* force a sane minimum for descriptors CRC length */
1729 /* see UDF 2.3.1.2 and 2.3.8.1 */
1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1733
1734 /* write out space bitmap */
1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1736 (union dscrptr *) dscr,
1737 ptov + lb_num, lb_num);
1738 if (error) {
1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1740 error_all = error;
1741 }
1742 }
1743
1744 return error_all;
1745 }
1746
1747
1748 static int
1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1750 {
1751 struct udf_node *bitmap_node;
1752 union dscrptr *dscr;
1753 struct udf_bitmap *bitmap;
1754 uint64_t inflen;
1755 int error, dscr_type;
1756
1757 bitmap_node = ump->metadatabitmap_node;
1758
1759 /* only read in when metadata bitmap node is read in */
1760 if (bitmap_node == NULL)
1761 return 0;
1762
1763 if (bitmap_node->fe) {
1764 inflen = udf_rw64(bitmap_node->fe->inf_len);
1765 } else {
1766 KASSERT(bitmap_node->efe);
1767 inflen = udf_rw64(bitmap_node->efe->inf_len);
1768 }
1769
1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1771 "%"PRIu64" bytes\n", inflen));
1772
1773 /* allocate space for bitmap */
1774 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1775 if (!dscr)
1776 return ENOMEM;
1777
1778 /* set vnode type to regular file or we can't read from it! */
1779 bitmap_node->vnode->v_type = VREG;
1780
1781 /* read in complete metadata bitmap file */
1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1783 dscr,
1784 inflen, 0,
1785 UIO_SYSSPACE,
1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1787 NULL, NULL);
1788 if (error) {
1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1790 goto errorout;
1791 }
1792
1793 /* analyse */
1794 dscr_type = udf_rw16(dscr->tag.id);
1795 if (dscr_type == TAGID_SPACE_BITMAP) {
1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1797 ump->metadata_unalloc_dscr = &dscr->sbd;
1798
1799 /* fill in bitmap bits */
1800 bitmap = &ump->metadata_unalloc_bits;
1801 bitmap->blob = (uint8_t *) dscr;
1802 bitmap->bits = dscr->sbd.data;
1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1804 bitmap->pages = NULL; /* TODO */
1805 bitmap->data_pos = 0;
1806 bitmap->metadata_pos = 0;
1807 } else {
1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1809 goto errorout;
1810 }
1811
1812 return 0;
1813
1814 errorout:
1815 free(dscr, M_UDFVOLD);
1816 printf( "UDF mount: error reading unallocated "
1817 "space bitmap for metadata partition\n");
1818 return EROFS;
1819 }
1820
1821
1822 int
1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1824 {
1825 struct udf_node *bitmap_node;
1826 union dscrptr *dscr;
1827 uint64_t new_inflen;
1828 int dummy, error;
1829
1830 bitmap_node = ump->metadatabitmap_node;
1831
1832 /* only write out when metadata bitmap node is known */
1833 if (bitmap_node == NULL)
1834 return 0;
1835
1836 if (!bitmap_node->fe) {
1837 KASSERT(bitmap_node->efe);
1838 }
1839
1840 /* reduce length to zero */
1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1842 new_inflen = udf_tagsize(dscr, 1);
1843
1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1845 " for %"PRIu64" bytes\n", new_inflen));
1846
1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1848 if (error)
1849 printf("Error resizing metadata space bitmap\n");
1850
1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1852 dscr,
1853 new_inflen, 0,
1854 UIO_SYSSPACE,
1855 IO_ALTSEMANTICS, FSCRED,
1856 NULL, NULL);
1857
1858 bitmap_node->i_flags |= IN_MODIFIED;
1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1860 if (error == 0)
1861 error = VOP_FSYNC(bitmap_node->vnode,
1862 FSCRED, FSYNC_WAIT, 0, 0);
1863
1864 if (error)
1865 printf( "Error writing out metadata partition unalloced "
1866 "space bitmap!\n");
1867
1868 return error;
1869 }
1870
1871
1872 /* --------------------------------------------------------------------- */
1873
1874 /*
1875 * Checks if ump's vds information is correct and complete
1876 */
1877
1878 int
1879 udf_process_vds(struct udf_mount *ump) {
1880 union udf_pmap *mapping;
1881 /* struct udf_args *args = &ump->mount_args; */
1882 struct logvol_int_desc *lvint;
1883 struct udf_logvol_info *lvinfo;
1884 uint32_t n_pm;
1885 uint8_t *pmap_pos;
1886 char *domain_name, *map_name;
1887 const char *check_name;
1888 char bits[128];
1889 int pmap_stype, pmap_size;
1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1891 int n_phys, n_virt, n_spar, n_meta;
1892 int len;
1893
1894 if (ump == NULL)
1895 return ENOENT;
1896
1897 /* we need at least an anchor (trivial, but for safety) */
1898 if (ump->anchors[0] == NULL)
1899 return EINVAL;
1900
1901 /* we need at least one primary and one logical volume descriptor */
1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1903 return EINVAL;
1904
1905 /* we need at least one partition descriptor */
1906 if (ump->partitions[0] == NULL)
1907 return EINVAL;
1908
1909 /* check logical volume sector size verses device sector size */
1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1911 printf("UDF mount: format violation, lb_size != sector size\n");
1912 return EINVAL;
1913 }
1914
1915 /* check domain name */
1916 domain_name = ump->logical_vol->domain_id.id;
1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1919 return EINVAL;
1920 }
1921
1922 /* retrieve logical volume integrity sequence */
1923 (void)udf_retrieve_lvint(ump);
1924
1925 /*
1926 * We need at least one logvol integrity descriptor recorded. Note
1927 * that its OK to have an open logical volume integrity here. The VAT
1928 * will close/update the integrity.
1929 */
1930 if (ump->logvol_integrity == NULL)
1931 return EINVAL;
1932
1933 /* process derived structures */
1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1935 lvint = ump->logvol_integrity;
1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1937 ump->logvol_info = lvinfo;
1938
1939 /* TODO check udf versions? */
1940
1941 /*
1942 * check logvol mappings: effective virt->log partmap translation
1943 * check and recording of the mapping results. Saves expensive
1944 * strncmp() in tight places.
1945 */
1946 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1948 pmap_pos = ump->logical_vol->maps;
1949
1950 if (n_pm > UDF_PMAPS) {
1951 printf("UDF mount: too many mappings\n");
1952 return EINVAL;
1953 }
1954
1955 /* count types and set partition numbers */
1956 ump->data_part = ump->node_part = ump->fids_part = 0;
1957 n_phys = n_virt = n_spar = n_meta = 0;
1958 for (log_part = 0; log_part < n_pm; log_part++) {
1959 mapping = (union udf_pmap *) pmap_pos;
1960 pmap_stype = pmap_pos[0];
1961 pmap_size = pmap_pos[1];
1962 switch (pmap_stype) {
1963 case 1: /* physical mapping */
1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1965 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1966 pmap_type = UDF_VTOP_TYPE_PHYS;
1967 n_phys++;
1968 ump->data_part = log_part;
1969 ump->node_part = log_part;
1970 ump->fids_part = log_part;
1971 break;
1972 case 2: /* virtual/sparable/meta mapping */
1973 map_name = mapping->pm2.part_id.id;
1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1975 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1977 len = UDF_REGID_ID_SIZE;
1978
1979 check_name = "*UDF Virtual Partition";
1980 if (strncmp(map_name, check_name, len) == 0) {
1981 pmap_type = UDF_VTOP_TYPE_VIRT;
1982 n_virt++;
1983 ump->node_part = log_part;
1984 break;
1985 }
1986 check_name = "*UDF Sparable Partition";
1987 if (strncmp(map_name, check_name, len) == 0) {
1988 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1989 n_spar++;
1990 ump->data_part = log_part;
1991 ump->node_part = log_part;
1992 ump->fids_part = log_part;
1993 break;
1994 }
1995 check_name = "*UDF Metadata Partition";
1996 if (strncmp(map_name, check_name, len) == 0) {
1997 pmap_type = UDF_VTOP_TYPE_META;
1998 n_meta++;
1999 ump->node_part = log_part;
2000 ump->fids_part = log_part;
2001 break;
2002 }
2003 break;
2004 default:
2005 return EINVAL;
2006 }
2007
2008 /*
2009 * BUGALERT: some rogue implementations use random physical
2010 * partition numbers to break other implementations so lookup
2011 * the number.
2012 */
2013 phys_part = udf_find_raw_phys(ump, raw_phys_part);
2014
2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
2016 raw_phys_part, phys_part, pmap_type));
2017
2018 if (phys_part == UDF_PARTITIONS)
2019 return EINVAL;
2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
2021 return EINVAL;
2022
2023 ump->vtop [log_part] = phys_part;
2024 ump->vtop_tp[log_part] = pmap_type;
2025
2026 pmap_pos += pmap_size;
2027 }
2028 /* not winning the beauty contest */
2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2030
2031 /* test some basic UDF assertions/requirements */
2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2033 return EINVAL;
2034
2035 if (n_virt) {
2036 if ((n_phys == 0) || n_spar || n_meta)
2037 return EINVAL;
2038 }
2039 if (n_spar + n_phys == 0)
2040 return EINVAL;
2041
2042 /* select allocation type for each logical partition */
2043 for (log_part = 0; log_part < n_pm; log_part++) {
2044 maps_on = ump->vtop[log_part];
2045 switch (ump->vtop_tp[log_part]) {
2046 case UDF_VTOP_TYPE_PHYS :
2047 assert(maps_on == log_part);
2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2049 break;
2050 case UDF_VTOP_TYPE_VIRT :
2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2053 break;
2054 case UDF_VTOP_TYPE_SPARABLE :
2055 assert(maps_on == log_part);
2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2057 break;
2058 case UDF_VTOP_TYPE_META :
2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2061 /* special case for UDF 2.60 */
2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2064 }
2065 break;
2066 default:
2067 panic("bad alloction type in udf's ump->vtop\n");
2068 }
2069 }
2070
2071 /* determine logical volume open/closure actions */
2072 if (n_virt) {
2073 ump->lvopen = 0;
2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2075 ump->lvopen |= UDF_OPEN_SESSION ;
2076 ump->lvclose = UDF_WRITE_VAT;
2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2078 ump->lvclose |= UDF_CLOSE_SESSION;
2079 } else {
2080 /* `normal' rewritable or non sequential media */
2081 ump->lvopen = UDF_WRITE_LVINT;
2082 ump->lvclose = UDF_WRITE_LVINT;
2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2084 ump->lvopen |= UDF_APPENDONLY_LVINT;
2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2087 }
2088
2089 /*
2090 * Determine sheduler error behaviour. For virtual partitions, update
2091 * the trackinfo; for sparable partitions replace a whole block on the
2092 * sparable table. Allways requeue.
2093 */
2094 ump->lvreadwrite = 0;
2095 if (n_virt)
2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2097 if (n_spar)
2098 ump->lvreadwrite = UDF_REMAP_BLOCK;
2099
2100 /*
2101 * Select our sheduler
2102 */
2103 ump->strategy = &udf_strat_rmw;
2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2105 ump->strategy = &udf_strat_sequential;
2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2108 ump->strategy = &udf_strat_direct;
2109 if (n_spar)
2110 ump->strategy = &udf_strat_rmw;
2111
2112 #if 0
2113 /* read-only access won't benefit from the other shedulers */
2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2115 ump->strategy = &udf_strat_direct;
2116 #endif
2117
2118 /* print results */
2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2125
2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2132
2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2134 (ump->strategy == &udf_strat_direct) ? "Direct" :
2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2137
2138 /* signal its OK for now */
2139 return 0;
2140 }
2141
2142 /* --------------------------------------------------------------------- */
2143
2144 /*
2145 * Update logical volume name in all structures that keep a record of it. We
2146 * use memmove since each of them might be specified as a source.
2147 *
2148 * Note that it doesn't update the VAT structure!
2149 */
2150
2151 static void
2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2153 {
2154 struct logvol_desc *lvd = NULL;
2155 struct fileset_desc *fsd = NULL;
2156 struct udf_lv_info *lvi = NULL;
2157
2158 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2159 lvd = ump->logical_vol;
2160 fsd = ump->fileset_desc;
2161 if (ump->implementation)
2162 lvi = &ump->implementation->_impl_use.lv_info;
2163
2164 /* logvol's id might be specified as origional so use memmove here */
2165 memmove(lvd->logvol_id, logvol_id, 128);
2166 if (fsd)
2167 memmove(fsd->logvol_id, logvol_id, 128);
2168 if (lvi)
2169 memmove(lvi->logvol_id, logvol_id, 128);
2170 }
2171
2172 /* --------------------------------------------------------------------- */
2173
2174 void
2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2176 uint32_t sector)
2177 {
2178 assert(ump->logical_vol);
2179
2180 tag->id = udf_rw16(tagid);
2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2182 tag->cksum = 0;
2183 tag->reserved = 0;
2184 tag->serial_num = ump->logical_vol->tag.serial_num;
2185 tag->tag_loc = udf_rw32(sector);
2186 }
2187
2188
2189 uint64_t
2190 udf_advance_uniqueid(struct udf_mount *ump)
2191 {
2192 uint64_t unique_id;
2193
2194 mutex_enter(&ump->logvol_mutex);
2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2196 if (unique_id < 0x10)
2197 unique_id = 0x10;
2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2199 mutex_exit(&ump->logvol_mutex);
2200
2201 return unique_id;
2202 }
2203
2204
2205 static void
2206 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2207 {
2208 struct udf_mount *ump = udf_node->ump;
2209 uint32_t num_dirs, num_files;
2210 int udf_file_type;
2211
2212 /* get file type */
2213 if (udf_node->fe) {
2214 udf_file_type = udf_node->fe->icbtag.file_type;
2215 } else {
2216 udf_file_type = udf_node->efe->icbtag.file_type;
2217 }
2218
2219 /* adjust file count */
2220 mutex_enter(&ump->allocate_mutex);
2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2222 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2223 ump->logvol_info->num_directories =
2224 udf_rw32((num_dirs + sign));
2225 } else {
2226 num_files = udf_rw32(ump->logvol_info->num_files);
2227 ump->logvol_info->num_files =
2228 udf_rw32((num_files + sign));
2229 }
2230 mutex_exit(&ump->allocate_mutex);
2231 }
2232
2233
2234 void
2235 udf_osta_charset(struct charspec *charspec)
2236 {
2237 memset(charspec, 0, sizeof(struct charspec));
2238 charspec->type = 0;
2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2240 }
2241
2242
2243 /* first call udf_set_regid and then the suffix */
2244 void
2245 udf_set_regid(struct regid *regid, char const *name)
2246 {
2247 memset(regid, 0, sizeof(struct regid));
2248 regid->flags = 0; /* not dirty and not protected */
2249 strcpy((char *) regid->id, name);
2250 }
2251
2252
2253 void
2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2255 {
2256 uint16_t *ver;
2257
2258 ver = (uint16_t *) regid->id_suffix;
2259 *ver = ump->logvol_info->min_udf_readver;
2260 }
2261
2262
2263 void
2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2265 {
2266 uint16_t *ver;
2267
2268 ver = (uint16_t *) regid->id_suffix;
2269 *ver = ump->logvol_info->min_udf_readver;
2270
2271 regid->id_suffix[2] = 4; /* unix */
2272 regid->id_suffix[3] = 8; /* NetBSD */
2273 }
2274
2275
2276 void
2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2278 {
2279 regid->id_suffix[0] = 4; /* unix */
2280 regid->id_suffix[1] = 8; /* NetBSD */
2281 }
2282
2283
2284 void
2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2286 {
2287 regid->id_suffix[0] = APP_VERSION_MAIN;
2288 regid->id_suffix[1] = APP_VERSION_SUB;
2289 }
2290
2291 static int
2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2293 struct long_ad *parent, uint64_t unique_id)
2294 {
2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2296 int fidsize = 40;
2297
2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2301 fid->icb = *parent;
2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2305
2306 return fidsize;
2307 }
2308
2309 /* --------------------------------------------------------------------- */
2310
2311 /*
2312 * Extended attribute support. UDF knows of 3 places for extended attributes:
2313 *
2314 * (a) inside the file's (e)fe in the length of the extended attribute area
2315 * before the allocation descriptors/filedata
2316 *
2317 * (b) in a file referenced by (e)fe->ext_attr_icb and
2318 *
2319 * (c) in the e(fe)'s associated stream directory that can hold various
2320 * sub-files. In the stream directory a few fixed named subfiles are reserved
2321 * for NT/Unix ACL's and OS/2 attributes.
2322 *
2323 * NOTE: Extended attributes are read randomly but allways written
2324 * *atomicaly*. For ACL's this interface is propably different but not known
2325 * to me yet.
2326 *
2327 * Order of extended attributes in a space :
2328 * ECMA 167 EAs
2329 * Non block aligned Implementation Use EAs
2330 * Block aligned Implementation Use EAs
2331 * Application Use EAs
2332 */
2333
2334 static int
2335 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2336 {
2337 uint16_t *spos;
2338
2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2340 /* checksum valid? */
2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2342 spos = (uint16_t *) implext->data;
2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2344 return EINVAL;
2345 }
2346 return 0;
2347 }
2348
2349 static void
2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2351 {
2352 uint16_t *spos;
2353
2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2355 /* set checksum */
2356 spos = (uint16_t *) implext->data;
2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2358 }
2359 }
2360
2361
2362 int
2363 udf_extattr_search_intern(struct udf_node *node,
2364 uint32_t sattr, char const *sattrname,
2365 uint32_t *offsetp, uint32_t *lengthp)
2366 {
2367 struct extattrhdr_desc *eahdr;
2368 struct extattr_entry *attrhdr;
2369 struct impl_extattr_entry *implext;
2370 uint32_t offset, a_l, sector_size;
2371 int32_t l_ea;
2372 uint8_t *pos;
2373 int error;
2374
2375 /* get mountpoint */
2376 sector_size = node->ump->discinfo.sector_size;
2377
2378 /* get information from fe/efe */
2379 if (node->fe) {
2380 l_ea = udf_rw32(node->fe->l_ea);
2381 eahdr = (struct extattrhdr_desc *) node->fe->data;
2382 } else {
2383 assert(node->efe);
2384 l_ea = udf_rw32(node->efe->l_ea);
2385 eahdr = (struct extattrhdr_desc *) node->efe->data;
2386 }
2387
2388 /* something recorded here? */
2389 if (l_ea == 0)
2390 return ENOENT;
2391
2392 /* check extended attribute tag; what to do if it fails? */
2393 error = udf_check_tag(eahdr);
2394 if (error)
2395 return EINVAL;
2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2397 return EINVAL;
2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2399 if (error)
2400 return EINVAL;
2401
2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2403
2404 /* looking for Ecma-167 attributes? */
2405 offset = sizeof(struct extattrhdr_desc);
2406
2407 /* looking for either implemenation use or application use */
2408 if (sattr == 2048) { /* [4/48.10.8] */
2409 offset = udf_rw32(eahdr->impl_attr_loc);
2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2411 return ENOENT;
2412 }
2413 if (sattr == 65536) { /* [4/48.10.9] */
2414 offset = udf_rw32(eahdr->appl_attr_loc);
2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2416 return ENOENT;
2417 }
2418
2419 /* paranoia check offset and l_ea */
2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2421 return EINVAL;
2422
2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2424
2425 /* find our extended attribute */
2426 l_ea -= offset;
2427 pos = (uint8_t *) eahdr + offset;
2428
2429 while (l_ea >= sizeof(struct extattr_entry)) {
2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2431 attrhdr = (struct extattr_entry *) pos;
2432 implext = (struct impl_extattr_entry *) pos;
2433
2434 /* get complete attribute length and check for roque values */
2435 a_l = udf_rw32(attrhdr->a_l);
2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2437 udf_rw32(attrhdr->type),
2438 attrhdr->subtype, a_l, l_ea));
2439 if ((a_l == 0) || (a_l > l_ea))
2440 return EINVAL;
2441
2442 if (attrhdr->type != sattr)
2443 goto next_attribute;
2444
2445 /* we might have found it! */
2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2447 *offsetp = offset;
2448 *lengthp = a_l;
2449 return 0; /* success */
2450 }
2451
2452 /*
2453 * Implementation use and application use extended attributes
2454 * have a name to identify. They share the same structure only
2455 * UDF implementation use extended attributes have a checksum
2456 * we need to check
2457 */
2458
2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2460 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2461 /* we have found our appl/implementation attribute */
2462 *offsetp = offset;
2463 *lengthp = a_l;
2464 return 0; /* success */
2465 }
2466
2467 next_attribute:
2468 /* next attribute */
2469 pos += a_l;
2470 l_ea -= a_l;
2471 offset += a_l;
2472 }
2473 /* not found */
2474 return ENOENT;
2475 }
2476
2477
2478 static void
2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2480 struct extattr_entry *extattr)
2481 {
2482 struct file_entry *fe;
2483 struct extfile_entry *efe;
2484 struct extattrhdr_desc *extattrhdr;
2485 struct impl_extattr_entry *implext;
2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2487 uint32_t *l_eap, l_ad;
2488 uint16_t *spos;
2489 uint8_t *bpos, *data;
2490
2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2492 fe = &dscr->fe;
2493 data = fe->data;
2494 l_eap = &fe->l_ea;
2495 l_ad = udf_rw32(fe->l_ad);
2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2497 efe = &dscr->efe;
2498 data = efe->data;
2499 l_eap = &efe->l_ea;
2500 l_ad = udf_rw32(efe->l_ad);
2501 } else {
2502 panic("Bad tag passed to udf_extattr_insert_internal");
2503 }
2504
2505 /* can't append already written to file descriptors yet */
2506 assert(l_ad == 0);
2507 __USE(l_ad);
2508
2509 /* should have a header! */
2510 extattrhdr = (struct extattrhdr_desc *) data;
2511 l_ea = udf_rw32(*l_eap);
2512 if (l_ea == 0) {
2513 /* create empty extended attribute header */
2514 exthdr_len = sizeof(struct extattrhdr_desc);
2515
2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2517 /* loc */ 0);
2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2520 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2521
2522 /* record extended attribute header length */
2523 l_ea = exthdr_len;
2524 *l_eap = udf_rw32(l_ea);
2525 }
2526
2527 /* extract locations */
2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2531 impl_attr_loc = l_ea;
2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2533 appl_attr_loc = l_ea;
2534
2535 /* Ecma 167 EAs */
2536 if (udf_rw32(extattr->type) < 2048) {
2537 assert(impl_attr_loc == l_ea);
2538 assert(appl_attr_loc == l_ea);
2539 }
2540
2541 /* implementation use extended attributes */
2542 if (udf_rw32(extattr->type) == 2048) {
2543 assert(appl_attr_loc == l_ea);
2544
2545 /* calculate and write extended attribute header checksum */
2546 implext = (struct impl_extattr_entry *) extattr;
2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2548 spos = (uint16_t *) implext->data;
2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2550 }
2551
2552 /* application use extended attributes */
2553 assert(udf_rw32(extattr->type) != 65536);
2554 assert(appl_attr_loc == l_ea);
2555
2556 /* append the attribute at the end of the current space */
2557 bpos = data + udf_rw32(*l_eap);
2558 a_l = udf_rw32(extattr->a_l);
2559
2560 /* update impl. attribute locations */
2561 if (udf_rw32(extattr->type) < 2048) {
2562 impl_attr_loc = l_ea + a_l;
2563 appl_attr_loc = l_ea + a_l;
2564 }
2565 if (udf_rw32(extattr->type) == 2048) {
2566 appl_attr_loc = l_ea + a_l;
2567 }
2568
2569 /* copy and advance */
2570 memcpy(bpos, extattr, a_l);
2571 l_ea += a_l;
2572 *l_eap = udf_rw32(l_ea);
2573
2574 /* do the `dance` again backwards */
2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2576 if (impl_attr_loc == l_ea)
2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2578 if (appl_attr_loc == l_ea)
2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2580 }
2581
2582 /* store offsets */
2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2585 }
2586
2587
2588 /* --------------------------------------------------------------------- */
2589
2590 static int
2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2592 {
2593 struct udf_mount *ump;
2594 struct udf_logvol_info *lvinfo;
2595 struct impl_extattr_entry *implext;
2596 struct vatlvext_extattr_entry lvext;
2597 const char *extstr = "*UDF VAT LVExtension";
2598 uint64_t vat_uniqueid;
2599 uint32_t offset, a_l;
2600 uint8_t *ea_start, *lvextpos;
2601 int error;
2602
2603 /* get mountpoint and lvinfo */
2604 ump = vat_node->ump;
2605 lvinfo = ump->logvol_info;
2606
2607 /* get information from fe/efe */
2608 if (vat_node->fe) {
2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2610 ea_start = vat_node->fe->data;
2611 } else {
2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2613 ea_start = vat_node->efe->data;
2614 }
2615
2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2617 if (error)
2618 return error;
2619
2620 implext = (struct impl_extattr_entry *) (ea_start + offset);
2621 error = udf_impl_extattr_check(implext);
2622 if (error)
2623 return error;
2624
2625 /* paranoia */
2626 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2628 return EINVAL;
2629 }
2630
2631 /*
2632 * we have found our "VAT LVExtension attribute. BUT due to a
2633 * bug in the specification it might not be word aligned so
2634 * copy first to avoid panics on some machines (!!)
2635 */
2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2637 lvextpos = implext->data + udf_rw32(implext->iu_l);
2638 memcpy(&lvext, lvextpos, sizeof(lvext));
2639
2640 /* check if it was updated the last time */
2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2642 lvinfo->num_files = lvext.num_files;
2643 lvinfo->num_directories = lvext.num_directories;
2644 udf_update_logvolname(ump, lvext.logvol_id);
2645 } else {
2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2647 /* replace VAT LVExt by free space EA */
2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2650 udf_calc_impl_extattr_checksum(implext);
2651 }
2652
2653 return 0;
2654 }
2655
2656
2657 static int
2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2659 {
2660 struct udf_mount *ump;
2661 struct udf_logvol_info *lvinfo;
2662 struct impl_extattr_entry *implext;
2663 struct vatlvext_extattr_entry lvext;
2664 const char *extstr = "*UDF VAT LVExtension";
2665 uint64_t vat_uniqueid;
2666 uint32_t offset, a_l;
2667 uint8_t *ea_start, *lvextpos;
2668 int error;
2669
2670 /* get mountpoint and lvinfo */
2671 ump = vat_node->ump;
2672 lvinfo = ump->logvol_info;
2673
2674 /* get information from fe/efe */
2675 if (vat_node->fe) {
2676 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2677 ea_start = vat_node->fe->data;
2678 } else {
2679 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2680 ea_start = vat_node->efe->data;
2681 }
2682
2683 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2684 if (error)
2685 return error;
2686 /* found, it existed */
2687
2688 /* paranoia */
2689 implext = (struct impl_extattr_entry *) (ea_start + offset);
2690 error = udf_impl_extattr_check(implext);
2691 if (error) {
2692 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2693 return error;
2694 }
2695 /* it is correct */
2696
2697 /*
2698 * we have found our "VAT LVExtension attribute. BUT due to a
2699 * bug in the specification it might not be word aligned so
2700 * copy first to avoid panics on some machines (!!)
2701 */
2702 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2703 lvextpos = implext->data + udf_rw32(implext->iu_l);
2704
2705 lvext.unique_id_chk = vat_uniqueid;
2706 lvext.num_files = lvinfo->num_files;
2707 lvext.num_directories = lvinfo->num_directories;
2708 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2709
2710 memcpy(lvextpos, &lvext, sizeof(lvext));
2711
2712 return 0;
2713 }
2714
2715 /* --------------------------------------------------------------------- */
2716
2717 int
2718 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2719 {
2720 struct udf_mount *ump = vat_node->ump;
2721
2722 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2723 return EINVAL;
2724
2725 memcpy(blob, ump->vat_table + offset, size);
2726 return 0;
2727 }
2728
2729 int
2730 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2731 {
2732 struct udf_mount *ump = vat_node->ump;
2733 uint32_t offset_high;
2734 uint8_t *new_vat_table;
2735
2736 /* extent VAT allocation if needed */
2737 offset_high = offset + size;
2738 if (offset_high >= ump->vat_table_alloc_len) {
2739 /* realloc */
2740 new_vat_table = realloc(ump->vat_table,
2741 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2742 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2743 if (!new_vat_table) {
2744 printf("udf_vat_write: can't extent VAT, out of mem\n");
2745 return ENOMEM;
2746 }
2747 ump->vat_table = new_vat_table;
2748 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2749 }
2750 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2751
2752 memcpy(ump->vat_table + offset, blob, size);
2753 return 0;
2754 }
2755
2756 /* --------------------------------------------------------------------- */
2757
2758 /* TODO support previous VAT location writeout */
2759 static int
2760 udf_update_vat_descriptor(struct udf_mount *ump)
2761 {
2762 struct udf_node *vat_node = ump->vat_node;
2763 struct udf_logvol_info *lvinfo = ump->logvol_info;
2764 struct icb_tag *icbtag;
2765 struct udf_oldvat_tail *oldvat_tl;
2766 struct udf_vat *vat;
2767 uint64_t unique_id;
2768 uint32_t lb_size;
2769 uint8_t *raw_vat;
2770 int filetype, error;
2771
2772 KASSERT(vat_node);
2773 KASSERT(lvinfo);
2774 lb_size = udf_rw32(ump->logical_vol->lb_size);
2775
2776 /* get our new unique_id */
2777 unique_id = udf_advance_uniqueid(ump);
2778
2779 /* get information from fe/efe */
2780 if (vat_node->fe) {
2781 icbtag = &vat_node->fe->icbtag;
2782 vat_node->fe->unique_id = udf_rw64(unique_id);
2783 } else {
2784 icbtag = &vat_node->efe->icbtag;
2785 vat_node->efe->unique_id = udf_rw64(unique_id);
2786 }
2787
2788 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2789 filetype = icbtag->file_type;
2790 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2791
2792 /* allocate piece to process head or tail of VAT file */
2793 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2794
2795 if (filetype == 0) {
2796 /*
2797 * Update "*UDF VAT LVExtension" extended attribute from the
2798 * lvint if present.
2799 */
2800 udf_update_vat_extattr_from_lvid(vat_node);
2801
2802 /* setup identifying regid */
2803 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2804 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2805
2806 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2807 udf_add_udf_regid(ump, &oldvat_tl->id);
2808 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2809
2810 /* write out new tail of virtual allocation table file */
2811 error = udf_vat_write(vat_node, raw_vat,
2812 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2813 } else {
2814 /* compose the VAT2 header */
2815 vat = (struct udf_vat *) raw_vat;
2816 memset(vat, 0, sizeof(struct udf_vat));
2817
2818 vat->header_len = udf_rw16(152); /* as per spec */
2819 vat->impl_use_len = udf_rw16(0);
2820 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2821 vat->prev_vat = udf_rw32(0xffffffff);
2822 vat->num_files = lvinfo->num_files;
2823 vat->num_directories = lvinfo->num_directories;
2824 vat->min_udf_readver = lvinfo->min_udf_readver;
2825 vat->min_udf_writever = lvinfo->min_udf_writever;
2826 vat->max_udf_writever = lvinfo->max_udf_writever;
2827
2828 error = udf_vat_write(vat_node, raw_vat,
2829 sizeof(struct udf_vat), 0);
2830 }
2831 free(raw_vat, M_TEMP);
2832
2833 return error; /* success! */
2834 }
2835
2836
2837 int
2838 udf_writeout_vat(struct udf_mount *ump)
2839 {
2840 struct udf_node *vat_node = ump->vat_node;
2841 int error;
2842
2843 KASSERT(vat_node);
2844
2845 DPRINTF(CALL, ("udf_writeout_vat\n"));
2846
2847 // mutex_enter(&ump->allocate_mutex);
2848 udf_update_vat_descriptor(ump);
2849
2850 /* write out the VAT contents ; TODO intelligent writing */
2851 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2852 ump->vat_table, ump->vat_table_len, 0,
2853 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2854 if (error) {
2855 printf("udf_writeout_vat: failed to write out VAT contents\n");
2856 goto out;
2857 }
2858
2859 // mutex_exit(&ump->allocate_mutex);
2860
2861 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2862 if (error)
2863 goto out;
2864 error = VOP_FSYNC(ump->vat_node->vnode,
2865 FSCRED, FSYNC_WAIT, 0, 0);
2866 if (error)
2867 printf("udf_writeout_vat: error writing VAT node!\n");
2868 out:
2869 return error;
2870 }
2871
2872 /* --------------------------------------------------------------------- */
2873
2874 /*
2875 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2876 * descriptor. If OK, read in complete VAT file.
2877 */
2878
2879 static int
2880 udf_check_for_vat(struct udf_node *vat_node)
2881 {
2882 struct udf_mount *ump;
2883 struct icb_tag *icbtag;
2884 struct timestamp *mtime;
2885 struct udf_vat *vat;
2886 struct udf_oldvat_tail *oldvat_tl;
2887 struct udf_logvol_info *lvinfo;
2888 uint64_t unique_id;
2889 uint32_t vat_length;
2890 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2891 uint32_t sector_size;
2892 uint32_t *raw_vat;
2893 uint8_t *vat_table;
2894 char *regid_name;
2895 int filetype;
2896 int error;
2897
2898 /* vat_length is really 64 bits though impossible */
2899
2900 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2901 if (!vat_node)
2902 return ENOENT;
2903
2904 /* get mount info */
2905 ump = vat_node->ump;
2906 sector_size = udf_rw32(ump->logical_vol->lb_size);
2907
2908 /* check assertions */
2909 assert(vat_node->fe || vat_node->efe);
2910 assert(ump->logvol_integrity);
2911
2912 /* set vnode type to regular file or we can't read from it! */
2913 vat_node->vnode->v_type = VREG;
2914
2915 /* get information from fe/efe */
2916 if (vat_node->fe) {
2917 vat_length = udf_rw64(vat_node->fe->inf_len);
2918 icbtag = &vat_node->fe->icbtag;
2919 mtime = &vat_node->fe->mtime;
2920 unique_id = udf_rw64(vat_node->fe->unique_id);
2921 } else {
2922 vat_length = udf_rw64(vat_node->efe->inf_len);
2923 icbtag = &vat_node->efe->icbtag;
2924 mtime = &vat_node->efe->mtime;
2925 unique_id = udf_rw64(vat_node->efe->unique_id);
2926 }
2927
2928 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2929 filetype = icbtag->file_type;
2930 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2931 return ENOENT;
2932
2933 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2934
2935 vat_table_alloc_len =
2936 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2937 * UDF_VAT_CHUNKSIZE;
2938
2939 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2940 M_CANFAIL | M_WAITOK);
2941 if (vat_table == NULL) {
2942 printf("allocation of %d bytes failed for VAT\n",
2943 vat_table_alloc_len);
2944 return ENOMEM;
2945 }
2946
2947 /* allocate piece to read in head or tail of VAT file */
2948 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2949
2950 /*
2951 * check contents of the file if its the old 1.50 VAT table format.
2952 * Its notoriously broken and allthough some implementations support an
2953 * extention as defined in the UDF 1.50 errata document, its doubtfull
2954 * to be useable since a lot of implementations don't maintain it.
2955 */
2956 lvinfo = ump->logvol_info;
2957
2958 if (filetype == 0) {
2959 /* definition */
2960 vat_offset = 0;
2961 vat_entries = (vat_length-36)/4;
2962
2963 /* read in tail of virtual allocation table file */
2964 error = vn_rdwr(UIO_READ, vat_node->vnode,
2965 (uint8_t *) raw_vat,
2966 sizeof(struct udf_oldvat_tail),
2967 vat_entries * 4,
2968 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2969 NULL, NULL);
2970 if (error)
2971 goto out;
2972
2973 /* check 1.50 VAT */
2974 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2975 regid_name = (char *) oldvat_tl->id.id;
2976 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2977 if (error) {
2978 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2979 error = ENOENT;
2980 goto out;
2981 }
2982
2983 /*
2984 * update LVID from "*UDF VAT LVExtension" extended attribute
2985 * if present.
2986 */
2987 udf_update_lvid_from_vat_extattr(vat_node);
2988 } else {
2989 /* read in head of virtual allocation table file */
2990 error = vn_rdwr(UIO_READ, vat_node->vnode,
2991 (uint8_t *) raw_vat,
2992 sizeof(struct udf_vat), 0,
2993 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2994 NULL, NULL);
2995 if (error)
2996 goto out;
2997
2998 /* definition */
2999 vat = (struct udf_vat *) raw_vat;
3000 vat_offset = vat->header_len;
3001 vat_entries = (vat_length - vat_offset)/4;
3002
3003 assert(lvinfo);
3004 lvinfo->num_files = vat->num_files;
3005 lvinfo->num_directories = vat->num_directories;
3006 lvinfo->min_udf_readver = vat->min_udf_readver;
3007 lvinfo->min_udf_writever = vat->min_udf_writever;
3008 lvinfo->max_udf_writever = vat->max_udf_writever;
3009
3010 udf_update_logvolname(ump, vat->logvol_id);
3011 }
3012
3013 /* read in complete VAT file */
3014 error = vn_rdwr(UIO_READ, vat_node->vnode,
3015 vat_table,
3016 vat_length, 0,
3017 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
3018 NULL, NULL);
3019 if (error)
3020 printf("read in of complete VAT file failed (error %d)\n",
3021 error);
3022 if (error)
3023 goto out;
3024
3025 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3026 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3027 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3028 ump->logvol_integrity->time = *mtime;
3029
3030 /* if we're updating, free old allocated space */
3031 if (ump->vat_table)
3032 free(ump->vat_table, M_UDFVOLD);
3033
3034 ump->vat_table_len = vat_length;
3035 ump->vat_table_alloc_len = vat_table_alloc_len;
3036 ump->vat_table = vat_table;
3037 ump->vat_offset = vat_offset;
3038 ump->vat_entries = vat_entries;
3039 ump->vat_last_free_lb = 0; /* start at beginning */
3040
3041 out:
3042 if (error) {
3043 if (vat_table)
3044 free(vat_table, M_UDFVOLD);
3045 }
3046 free(raw_vat, M_TEMP);
3047
3048 return error;
3049 }
3050
3051 /* --------------------------------------------------------------------- */
3052
3053 static int
3054 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3055 {
3056 struct udf_node *vat_node, *accepted_vat_node;
3057 struct long_ad icb_loc;
3058 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3059 int error;
3060
3061 /* mapping info not needed */
3062 mapping = mapping;
3063
3064 DPRINTF(VOLUMES, ("Searching VAT\n"));
3065
3066 /*
3067 * Start reading forward in blocks from the first possible vat
3068 * location. If not found in this block, start again a bit before
3069 * until we get a hit.
3070 */
3071 late_vat_loc = ump->last_possible_vat_location;
3072 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3073
3074 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3075 accepted_vat_node = NULL;
3076 do {
3077 vat_loc = early_vat_loc;
3078 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3079 early_vat_loc, late_vat_loc));
3080 do {
3081 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3082 vat_loc));
3083 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3084 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3085
3086 error = udf_get_node(ump, &icb_loc, &vat_node);
3087 if (!error) {
3088 error = udf_check_for_vat(vat_node);
3089 vat_node->i_flags = 0; /* reset access */
3090 }
3091 if (!error) {
3092 DPRINTFIF(VOLUMES, !error,
3093 ("VAT candidate accepted at %d\n",
3094 vat_loc));
3095 if (accepted_vat_node)
3096 vput(accepted_vat_node->vnode);
3097 accepted_vat_node = vat_node;
3098 accepted_vat_node->i_flags |= IN_NO_DELETE;
3099 vat_node = NULL;
3100 }
3101 if (vat_node)
3102 vput(vat_node->vnode);
3103 vat_loc++; /* walk forward */
3104 } while (vat_loc < late_vat_loc);
3105 if (accepted_vat_node)
3106 break;
3107
3108 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3109 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3110 } while (late_vat_loc > ump->first_possible_vat_location);
3111
3112 /* keep our last accepted VAT node around */
3113 if (accepted_vat_node) {
3114 /* revert no delete flag again to avoid potential side effects */
3115 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3116
3117 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3118 ump->vat_node = accepted_vat_node;
3119 return 0;
3120 }
3121
3122 return error;
3123 }
3124
3125 /* --------------------------------------------------------------------- */
3126
3127 static int
3128 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3129 {
3130 union dscrptr *dscr;
3131 struct part_map_spare *pms = &mapping->pms;
3132 uint32_t lb_num;
3133 int spar, error;
3134
3135 /*
3136 * The partition mapping passed on to us specifies the information we
3137 * need to locate and initialise the sparable partition mapping
3138 * information we need.
3139 */
3140
3141 DPRINTF(VOLUMES, ("Read sparable table\n"));
3142 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3143 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3144
3145 for (spar = 0; spar < pms->n_st; spar++) {
3146 lb_num = pms->st_loc[spar];
3147 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3148 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3149 if (!error && dscr) {
3150 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3151 if (ump->sparing_table)
3152 free(ump->sparing_table, M_UDFVOLD);
3153 ump->sparing_table = &dscr->spt;
3154 dscr = NULL;
3155 DPRINTF(VOLUMES,
3156 ("Sparing table accepted (%d entries)\n",
3157 udf_rw16(ump->sparing_table->rt_l)));
3158 break; /* we're done */
3159 }
3160 }
3161 if (dscr)
3162 free(dscr, M_UDFVOLD);
3163 }
3164
3165 if (ump->sparing_table)
3166 return 0;
3167
3168 return ENOENT;
3169 }
3170
3171 /* --------------------------------------------------------------------- */
3172
3173 static int
3174 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3175 {
3176 struct part_map_meta *pmm = &mapping->pmm;
3177 struct long_ad icb_loc;
3178 struct vnode *vp;
3179 uint16_t raw_phys_part, phys_part;
3180 int error;
3181
3182 /*
3183 * BUGALERT: some rogue implementations use random physical
3184 * partition numbers to break other implementations so lookup
3185 * the number.
3186 */
3187
3188 /* extract our allocation parameters set up on format */
3189 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3190 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3191 ump->metadata_flags = mapping->pmm.flags;
3192
3193 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3194 raw_phys_part = udf_rw16(pmm->part_num);
3195 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3196
3197 icb_loc.loc.part_num = udf_rw16(phys_part);
3198
3199 DPRINTF(VOLUMES, ("Metadata file\n"));
3200 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3201 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3202 if (ump->metadata_node) {
3203 vp = ump->metadata_node->vnode;
3204 UDF_SET_SYSTEMFILE(vp);
3205 }
3206
3207 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3208 if (icb_loc.loc.lb_num != -1) {
3209 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3210 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3211 if (ump->metadatamirror_node) {
3212 vp = ump->metadatamirror_node->vnode;
3213 UDF_SET_SYSTEMFILE(vp);
3214 }
3215 }
3216
3217 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3218 if (icb_loc.loc.lb_num != -1) {
3219 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3220 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3221 if (ump->metadatabitmap_node) {
3222 vp = ump->metadatabitmap_node->vnode;
3223 UDF_SET_SYSTEMFILE(vp);
3224 }
3225 }
3226
3227 /* if we're mounting read-only we relax the requirements */
3228 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3229 error = EFAULT;
3230 if (ump->metadata_node)
3231 error = 0;
3232 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3233 printf( "udf mount: Metadata file not readable, "
3234 "substituting Metadata copy file\n");
3235 ump->metadata_node = ump->metadatamirror_node;
3236 ump->metadatamirror_node = NULL;
3237 error = 0;
3238 }
3239 } else {
3240 /* mounting read/write */
3241 /* XXX DISABLED! metadata writing is not working yet XXX */
3242 if (error)
3243 error = EROFS;
3244 }
3245 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3246 "metadata files\n"));
3247 return error;
3248 }
3249
3250 /* --------------------------------------------------------------------- */
3251
3252 int
3253 udf_read_vds_tables(struct udf_mount *ump)
3254 {
3255 union udf_pmap *mapping;
3256 /* struct udf_args *args = &ump->mount_args; */
3257 uint32_t n_pm;
3258 uint32_t log_part;
3259 uint8_t *pmap_pos;
3260 int pmap_size;
3261 int error;
3262
3263 /* Iterate (again) over the part mappings for locations */
3264 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3265 pmap_pos = ump->logical_vol->maps;
3266
3267 for (log_part = 0; log_part < n_pm; log_part++) {
3268 mapping = (union udf_pmap *) pmap_pos;
3269 switch (ump->vtop_tp[log_part]) {
3270 case UDF_VTOP_TYPE_PHYS :
3271 /* nothing */
3272 break;
3273 case UDF_VTOP_TYPE_VIRT :
3274 /* search and load VAT */
3275 error = udf_search_vat(ump, mapping);
3276 if (error)
3277 return ENOENT;
3278 break;
3279 case UDF_VTOP_TYPE_SPARABLE :
3280 /* load one of the sparable tables */
3281 error = udf_read_sparables(ump, mapping);
3282 if (error)
3283 return ENOENT;
3284 break;
3285 case UDF_VTOP_TYPE_META :
3286 /* load the associated file descriptors */
3287 error = udf_read_metadata_nodes(ump, mapping);
3288 if (error)
3289 return ENOENT;
3290 break;
3291 default:
3292 break;
3293 }
3294 pmap_size = pmap_pos[1];
3295 pmap_pos += pmap_size;
3296 }
3297
3298 /* read in and check unallocated and free space info if writing */
3299 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3300 error = udf_read_physical_partition_spacetables(ump);
3301 if (error)
3302 return error;
3303
3304 /* also read in metadata partition spacebitmap if defined */
3305 error = udf_read_metadata_partition_spacetable(ump);
3306 return error;
3307 }
3308
3309 return 0;
3310 }
3311
3312 /* --------------------------------------------------------------------- */
3313
3314 int
3315 udf_read_rootdirs(struct udf_mount *ump)
3316 {
3317 union dscrptr *dscr;
3318 /* struct udf_args *args = &ump->mount_args; */
3319 struct udf_node *rootdir_node, *streamdir_node;
3320 struct long_ad fsd_loc, *dir_loc;
3321 uint32_t lb_num, dummy;
3322 uint32_t fsd_len;
3323 int dscr_type;
3324 int error;
3325
3326 /* TODO implement FSD reading in separate function like integrity? */
3327 /* get fileset descriptor sequence */
3328 fsd_loc = ump->logical_vol->lv_fsd_loc;
3329 fsd_len = udf_rw32(fsd_loc.len);
3330
3331 dscr = NULL;
3332 error = 0;
3333 while (fsd_len || error) {
3334 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3335 /* translate fsd_loc to lb_num */
3336 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3337 if (error)
3338 break;
3339 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3340 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3341 /* end markers */
3342 if (error || (dscr == NULL))
3343 break;
3344
3345 /* analyse */
3346 dscr_type = udf_rw16(dscr->tag.id);
3347 if (dscr_type == TAGID_TERM)
3348 break;
3349 if (dscr_type != TAGID_FSD) {
3350 free(dscr, M_UDFVOLD);
3351 return ENOENT;
3352 }
3353
3354 /*
3355 * TODO check for multiple fileset descriptors; its only
3356 * picking the last now. Also check for FSD
3357 * correctness/interpretability
3358 */
3359
3360 /* update */
3361 if (ump->fileset_desc) {
3362 free(ump->fileset_desc, M_UDFVOLD);
3363 }
3364 ump->fileset_desc = &dscr->fsd;
3365 dscr = NULL;
3366
3367 /* continue to the next fsd */
3368 fsd_len -= ump->discinfo.sector_size;
3369 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3370
3371 /* follow up to fsd->next_ex (long_ad) if its not null */
3372 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3373 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3374 fsd_loc = ump->fileset_desc->next_ex;
3375 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3376 }
3377 }
3378 if (dscr)
3379 free(dscr, M_UDFVOLD);
3380
3381 /* there has to be one */
3382 if (ump->fileset_desc == NULL)
3383 return ENOENT;
3384
3385 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3386 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3387 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3388
3389 /*
3390 * Now the FSD is known, read in the rootdirectory and if one exists,
3391 * the system stream dir. Some files in the system streamdir are not
3392 * wanted in this implementation since they are not maintained. If
3393 * writing is enabled we'll delete these files if they exist.
3394 */
3395
3396 rootdir_node = streamdir_node = NULL;
3397 dir_loc = NULL;
3398
3399 /* try to read in the rootdir */
3400 dir_loc = &ump->fileset_desc->rootdir_icb;
3401 error = udf_get_node(ump, dir_loc, &rootdir_node);
3402 if (error)
3403 return ENOENT;
3404
3405 /* aparently it read in fine */
3406
3407 /*
3408 * Try the system stream directory; not very likely in the ones we
3409 * test, but for completeness.
3410 */
3411 dir_loc = &ump->fileset_desc->streamdir_icb;
3412 if (udf_rw32(dir_loc->len)) {
3413 printf("udf_read_rootdirs: streamdir defined ");
3414 error = udf_get_node(ump, dir_loc, &streamdir_node);
3415 if (error) {
3416 printf("but error in streamdir reading\n");
3417 } else {
3418 printf("but ignored\n");
3419 /*
3420 * TODO process streamdir `baddies' i.e. files we dont
3421 * want if R/W
3422 */
3423 }
3424 }
3425
3426 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3427
3428 /* release the vnodes again; they'll be auto-recycled later */
3429 if (streamdir_node) {
3430 vput(streamdir_node->vnode);
3431 }
3432 if (rootdir_node) {
3433 vput(rootdir_node->vnode);
3434 }
3435
3436 return 0;
3437 }
3438
3439 /* --------------------------------------------------------------------- */
3440
3441 /* To make absolutely sure we are NOT returning zero, add one :) */
3442
3443 long
3444 udf_get_node_id(const struct long_ad *icbptr)
3445 {
3446 /* ought to be enough since each mountpoint has its own chain */
3447 return udf_rw32(icbptr->loc.lb_num) + 1;
3448 }
3449
3450
3451 int
3452 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3453 {
3454 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3455 return -1;
3456 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3457 return 1;
3458
3459 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3460 return -1;
3461 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3462 return 1;
3463
3464 return 0;
3465 }
3466
3467
3468 static int
3469 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3470 {
3471 const struct udf_node *a_node = a;
3472 const struct udf_node *b_node = b;
3473
3474 return udf_compare_icb(&a_node->loc, &b_node->loc);
3475 }
3476
3477
3478 static int
3479 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3480 {
3481 const struct udf_node *a_node = a;
3482 const struct long_ad * const icb = key;
3483
3484 return udf_compare_icb(&a_node->loc, icb);
3485 }
3486
3487
3488 static const rb_tree_ops_t udf_node_rbtree_ops = {
3489 .rbto_compare_nodes = udf_compare_rbnodes,
3490 .rbto_compare_key = udf_compare_rbnode_icb,
3491 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3492 .rbto_context = NULL
3493 };
3494
3495
3496 void
3497 udf_init_nodes_tree(struct udf_mount *ump)
3498 {
3499
3500 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3501 }
3502
3503
3504 /* --------------------------------------------------------------------- */
3505
3506 static int
3507 udf_validate_session_start(struct udf_mount *ump)
3508 {
3509 struct mmc_trackinfo trackinfo;
3510 struct vrs_desc *vrs;
3511 uint32_t tracknr, sessionnr, sector, sector_size;
3512 uint32_t iso9660_vrs, write_track_start;
3513 uint8_t *buffer, *blank, *pos;
3514 int blks, max_sectors, vrs_len;
3515 int error;
3516
3517 /* disc appendable? */
3518 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3519 return EROFS;
3520
3521 /* already written here? if so, there should be an ISO VDS */
3522 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3523 return 0;
3524
3525 /*
3526 * Check if the first track of the session is blank and if so, copy or
3527 * create a dummy ISO descriptor so the disc is valid again.
3528 */
3529
3530 tracknr = ump->discinfo.first_track_last_session;
3531 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3532 trackinfo.tracknr = tracknr;
3533 error = udf_update_trackinfo(ump, &trackinfo);
3534 if (error)
3535 return error;
3536
3537 udf_dump_trackinfo(&trackinfo);
3538 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3539 KASSERT(trackinfo.sessionnr > 1);
3540
3541 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3542 write_track_start = trackinfo.next_writable;
3543
3544 /* we have to copy the ISO VRS from a former session */
3545 DPRINTF(VOLUMES, ("validate_session_start: "
3546 "blank or reserved track, copying VRS\n"));
3547
3548 /* sessionnr should be the session we're mounting */
3549 sessionnr = ump->mount_args.sessionnr;
3550
3551 /* start at the first track */
3552 tracknr = ump->discinfo.first_track;
3553 while (tracknr <= ump->discinfo.num_tracks) {
3554 trackinfo.tracknr = tracknr;
3555 error = udf_update_trackinfo(ump, &trackinfo);
3556 if (error) {
3557 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3558 return error;
3559 }
3560 if (trackinfo.sessionnr == sessionnr)
3561 break;
3562 tracknr++;
3563 }
3564 if (trackinfo.sessionnr != sessionnr) {
3565 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3566 return ENOENT;
3567 }
3568
3569 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3570 udf_dump_trackinfo(&trackinfo);
3571
3572 /*
3573 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3574 * minimum ISO `sector size' 2048
3575 */
3576 sector_size = ump->discinfo.sector_size;
3577 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3578 + trackinfo.track_start;
3579
3580 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3581 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3582 blks = MAX(1, 2048 / sector_size);
3583
3584 error = 0;
3585 for (sector = 0; sector < max_sectors; sector += blks) {
3586 pos = buffer + sector * sector_size;
3587 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3588 iso9660_vrs + sector, blks);
3589 if (error)
3590 break;
3591 /* check this ISO descriptor */
3592 vrs = (struct vrs_desc *) pos;
3593 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3594 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3595 continue;
3596 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3597 continue;
3598 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3599 continue;
3600 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3601 continue;
3602 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3603 continue;
3604 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3605 break;
3606 /* now what? for now, end of sequence */
3607 break;
3608 }
3609 vrs_len = sector + blks;
3610 if (error) {
3611 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3612 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3613
3614 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3615
3616 vrs = (struct vrs_desc *) (buffer);
3617 vrs->struct_type = 0;
3618 vrs->version = 1;
3619 memcpy(vrs->identifier,VRS_BEA01, 5);
3620
3621 vrs = (struct vrs_desc *) (buffer + 2048);
3622 vrs->struct_type = 0;
3623 vrs->version = 1;
3624 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3625 memcpy(vrs->identifier,VRS_NSR02, 5);
3626 } else {
3627 memcpy(vrs->identifier,VRS_NSR03, 5);
3628 }
3629
3630 vrs = (struct vrs_desc *) (buffer + 4096);
3631 vrs->struct_type = 0;
3632 vrs->version = 1;
3633 memcpy(vrs->identifier, VRS_TEA01, 5);
3634
3635 vrs_len = 3*blks;
3636 }
3637
3638 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3639
3640 /*
3641 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3642 * minimum ISO `sector size' 2048
3643 */
3644 sector_size = ump->discinfo.sector_size;
3645 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3646 + write_track_start;
3647
3648 /* write out 32 kb */
3649 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3650 memset(blank, 0, sector_size);
3651 error = 0;
3652 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3653 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3654 blank, sector, 1);
3655 if (error)
3656 break;
3657 }
3658 if (!error) {
3659 /* write out our ISO VRS */
3660 KASSERT(sector == iso9660_vrs);
3661 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3662 sector, vrs_len);
3663 sector += vrs_len;
3664 }
3665 if (!error) {
3666 /* fill upto the first anchor at S+256 */
3667 for (; sector < write_track_start+256; sector++) {
3668 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3669 blank, sector, 1);
3670 if (error)
3671 break;
3672 }
3673 }
3674 if (!error) {
3675 /* write out anchor; write at ABSOLUTE place! */
3676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3677 (union dscrptr *) ump->anchors[0], sector, sector);
3678 if (error)
3679 printf("writeout of anchor failed!\n");
3680 }
3681
3682 free(blank, M_TEMP);
3683 free(buffer, M_TEMP);
3684
3685 if (error)
3686 printf("udf_open_session: error writing iso vrs! : "
3687 "leaving disc in compromised state!\n");
3688
3689 /* synchronise device caches */
3690 (void) udf_synchronise_caches(ump);
3691
3692 return error;
3693 }
3694
3695
3696 int
3697 udf_open_logvol(struct udf_mount *ump)
3698 {
3699 int logvol_integrity;
3700 int error;
3701
3702 /* already/still open? */
3703 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3704 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3705 return 0;
3706
3707 /* can we open it ? */
3708 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3709 return EROFS;
3710
3711 /* setup write parameters */
3712 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3713 if ((error = udf_setup_writeparams(ump)) != 0)
3714 return error;
3715
3716 /* determine data and metadata tracks (most likely same) */
3717 error = udf_search_writing_tracks(ump);
3718 if (error) {
3719 /* most likely lack of space */
3720 printf("udf_open_logvol: error searching writing tracks\n");
3721 return EROFS;
3722 }
3723
3724 /* writeout/update lvint on disc or only in memory */
3725 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3726 if (ump->lvopen & UDF_OPEN_SESSION) {
3727 /* TODO optional track reservation opening */
3728 error = udf_validate_session_start(ump);
3729 if (error)
3730 return error;
3731
3732 /* determine data and metadata tracks again */
3733 error = udf_search_writing_tracks(ump);
3734
3735 if (ump->lvclose & UDF_WRITE_VAT) {
3736 /*
3737 * we writeout the VAT to get a self-sustained session
3738 * for fsck
3739 */
3740 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3741
3742 /* write out the VAT data and all its descriptors */
3743 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3744 udf_writeout_vat(ump);
3745
3746 /* force everything to be synchronized on the device */
3747 (void) udf_synchronise_caches(ump);
3748 }
3749 }
3750
3751 /* mark it open */
3752 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3753
3754 /* do we need to write it out? */
3755 if (ump->lvopen & UDF_WRITE_LVINT) {
3756 error = udf_writeout_lvint(ump, ump->lvopen);
3757 /* if we couldn't write it mark it closed again */
3758 if (error) {
3759 ump->logvol_integrity->integrity_type =
3760 udf_rw32(UDF_INTEGRITY_CLOSED);
3761 return error;
3762 }
3763 }
3764
3765 return 0;
3766 }
3767
3768
3769 int
3770 udf_close_logvol(struct udf_mount *ump, int mntflags)
3771 {
3772 struct vnode *devvp = ump->devvp;
3773 struct mmc_op mmc_op;
3774 int logvol_integrity;
3775 int error = 0, error1 = 0, error2 = 0;
3776 int tracknr;
3777 int nvats, n, nok;
3778
3779 /* already/still closed? */
3780 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3781 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3782 return 0;
3783
3784 /* writeout/update lvint or write out VAT */
3785 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3786 #ifdef DIAGNOSTIC
3787 if (ump->lvclose & UDF_CLOSE_SESSION)
3788 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3789 #endif
3790
3791 if (ump->lvclose & UDF_WRITE_VAT) {
3792 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3793
3794 /* write out the VAT data and all its descriptors */
3795 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3796 udf_writeout_vat(ump);
3797
3798 /* at least two DVD packets and 3 CD-R packets */
3799 nvats = 32;
3800
3801 #if notyet
3802 /*
3803 * TODO calculate the available space and if the disc is
3804 * allmost full, write out till end-256-1 with banks, write
3805 * AVDP and fill up with VATs, then close session and close
3806 * disc.
3807 */
3808 if (ump->lvclose & UDF_FINALISE_DISC) {
3809 error = udf_write_phys_dscr_sync(ump, NULL,
3810 UDF_C_FLOAT_DSCR,
3811 (union dscrptr *) ump->anchors[0],
3812 0, 0);
3813 if (error)
3814 printf("writeout of anchor failed!\n");
3815
3816 /* pad space with VAT ICBs */
3817 nvats = 256;
3818 }
3819 #endif
3820
3821 /* write out a number of VAT nodes */
3822 nok = 0;
3823 for (n = 0; n < nvats; n++) {
3824 /* will now only write last FE/EFE */
3825 ump->vat_node->i_flags |= IN_MODIFIED;
3826 error = VOP_FSYNC(ump->vat_node->vnode,
3827 FSCRED, FSYNC_WAIT, 0, 0);
3828 if (!error)
3829 nok++;
3830 }
3831 /* force everything to be synchronized on the device */
3832 (void) udf_synchronise_caches(ump);
3833
3834 if (nok < 14) {
3835 /* arbitrary; but at least one or two CD frames */
3836 printf("writeout of at least 14 VATs failed\n");
3837 return error;
3838 }
3839 }
3840
3841 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3842
3843 /* finish closing of session */
3844 if (ump->lvclose & UDF_CLOSE_SESSION) {
3845 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3846 "as requested\n"));
3847 error = udf_validate_session_start(ump);
3848 if (error)
3849 return error;
3850
3851 (void) udf_synchronise_caches(ump);
3852
3853 /* close all associated tracks */
3854 tracknr = ump->discinfo.first_track_last_session;
3855 error = 0;
3856 while (tracknr <= ump->discinfo.last_track_last_session) {
3857 DPRINTF(VOLUMES, ("\tclosing possible open "
3858 "track %d\n", tracknr));
3859 memset(&mmc_op, 0, sizeof(mmc_op));
3860 mmc_op.operation = MMC_OP_CLOSETRACK;
3861 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3862 mmc_op.tracknr = tracknr;
3863 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3864 FKIOCTL, NOCRED);
3865 if (error)
3866 printf("udf_close_logvol: closing of "
3867 "track %d failed\n", tracknr);
3868 tracknr ++;
3869 }
3870 if (!error) {
3871 DPRINTF(VOLUMES, ("closing session\n"));
3872 memset(&mmc_op, 0, sizeof(mmc_op));
3873 mmc_op.operation = MMC_OP_CLOSESESSION;
3874 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3875 mmc_op.sessionnr = ump->discinfo.num_sessions;
3876 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3877 FKIOCTL, NOCRED);
3878 if (error)
3879 printf("udf_close_logvol: closing of session"
3880 "failed\n");
3881 }
3882 if (!error)
3883 ump->lvopen |= UDF_OPEN_SESSION;
3884 if (error) {
3885 printf("udf_close_logvol: leaving disc as it is\n");
3886 ump->lvclose &= ~UDF_FINALISE_DISC;
3887 }
3888 }
3889
3890 if (ump->lvclose & UDF_FINALISE_DISC) {
3891 memset(&mmc_op, 0, sizeof(mmc_op));
3892 mmc_op.operation = MMC_OP_FINALISEDISC;
3893 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3894 mmc_op.sessionnr = ump->discinfo.num_sessions;
3895 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3896 FKIOCTL, NOCRED);
3897 if (error)
3898 printf("udf_close_logvol: finalising disc"
3899 "failed\n");
3900 }
3901
3902 /* write out partition bitmaps if requested */
3903 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3904 /* sync writeout metadata spacetable if existing */
3905 error1 = udf_write_metadata_partition_spacetable(ump, true);
3906 if (error1)
3907 printf( "udf_close_logvol: writeout of metadata space "
3908 "bitmap failed\n");
3909
3910 /* sync writeout partition spacetables */
3911 error2 = udf_write_physical_partition_spacetables(ump, true);
3912 if (error2)
3913 printf( "udf_close_logvol: writeout of space tables "
3914 "failed\n");
3915
3916 if (error1 || error2)
3917 return (error1 | error2);
3918
3919 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3920 }
3921
3922 /* write out metadata partition nodes if requested */
3923 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3924 /* sync writeout metadata descriptor node */
3925 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3926 if (error1)
3927 printf( "udf_close_logvol: writeout of metadata partition "
3928 "node failed\n");
3929
3930 /* duplicate metadata partition descriptor if needed */
3931 udf_synchronise_metadatamirror_node(ump);
3932
3933 /* sync writeout metadatamirror descriptor node */
3934 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3935 if (error2)
3936 printf( "udf_close_logvol: writeout of metadata partition "
3937 "mirror node failed\n");
3938
3939 if (error1 || error2)
3940 return (error1 | error2);
3941
3942 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3943 }
3944
3945 /* mark it closed */
3946 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3947
3948 /* do we need to write out the logical volume integrity? */
3949 if (ump->lvclose & UDF_WRITE_LVINT)
3950 error = udf_writeout_lvint(ump, ump->lvopen);
3951 if (error) {
3952 /* HELP now what? mark it open again for now */
3953 ump->logvol_integrity->integrity_type =
3954 udf_rw32(UDF_INTEGRITY_OPEN);
3955 return error;
3956 }
3957
3958 (void) udf_synchronise_caches(ump);
3959
3960 return 0;
3961 }
3962
3963 /* --------------------------------------------------------------------- */
3964
3965 /*
3966 * Genfs interfacing
3967 *
3968 * static const struct genfs_ops udf_genfsops = {
3969 * .gop_size = genfs_size,
3970 * size of transfers
3971 * .gop_alloc = udf_gop_alloc,
3972 * allocate len bytes at offset
3973 * .gop_write = genfs_gop_write,
3974 * putpages interface code
3975 * .gop_markupdate = udf_gop_markupdate,
3976 * set update/modify flags etc.
3977 * }
3978 */
3979
3980 /*
3981 * Genfs interface. These four functions are the only ones defined though not
3982 * documented... great....
3983 */
3984
3985 /*
3986 * Called for allocating an extent of the file either by VOP_WRITE() or by
3987 * genfs filling up gaps.
3988 */
3989 static int
3990 udf_gop_alloc(struct vnode *vp, off_t off,
3991 off_t len, int flags, kauth_cred_t cred)
3992 {
3993 struct udf_node *udf_node = VTOI(vp);
3994 struct udf_mount *ump = udf_node->ump;
3995 uint64_t lb_start, lb_end;
3996 uint32_t lb_size, num_lb;
3997 int udf_c_type, vpart_num, can_fail;
3998 int error;
3999
4000 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
4001 off, len, flags? "SYNC":"NONE"));
4002
4003 /*
4004 * request the pages of our vnode and see how many pages will need to
4005 * be allocated and reserve that space
4006 */
4007 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
4008 lb_start = off / lb_size;
4009 lb_end = (off + len + lb_size -1) / lb_size;
4010 num_lb = lb_end - lb_start;
4011
4012 udf_c_type = udf_get_c_type(udf_node);
4013 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4014
4015 /* all requests can fail */
4016 can_fail = true;
4017
4018 /* fid's (directories) can't fail */
4019 if (udf_c_type == UDF_C_FIDS)
4020 can_fail = false;
4021
4022 /* system files can't fail */
4023 if (vp->v_vflag & VV_SYSTEM)
4024 can_fail = false;
4025
4026 error = udf_reserve_space(ump, udf_node, udf_c_type,
4027 vpart_num, num_lb, can_fail);
4028
4029 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4030 lb_start, lb_end, num_lb));
4031
4032 return error;
4033 }
4034
4035
4036 /*
4037 * callback from genfs to update our flags
4038 */
4039 static void
4040 udf_gop_markupdate(struct vnode *vp, int flags)
4041 {
4042 struct udf_node *udf_node = VTOI(vp);
4043 u_long mask = 0;
4044
4045 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4046 mask = IN_ACCESS;
4047 }
4048 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4049 if (vp->v_type == VREG) {
4050 mask |= IN_CHANGE | IN_UPDATE;
4051 } else {
4052 mask |= IN_MODIFY;
4053 }
4054 }
4055 if (mask) {
4056 udf_node->i_flags |= mask;
4057 }
4058 }
4059
4060
4061 static const struct genfs_ops udf_genfsops = {
4062 .gop_size = genfs_size,
4063 .gop_alloc = udf_gop_alloc,
4064 .gop_write = genfs_gop_write_rwmap,
4065 .gop_markupdate = udf_gop_markupdate,
4066 .gop_putrange = genfs_gop_putrange,
4067 };
4068
4069
4070 /* --------------------------------------------------------------------- */
4071
4072 int
4073 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4074 {
4075 union dscrptr *dscr;
4076 int error;
4077
4078 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4079 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4080
4081 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4082 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4083 (void) udf_validate_tag_and_crc_sums(dscr);
4084
4085 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4086 dscr, sector, sector);
4087
4088 free(dscr, M_TEMP);
4089
4090 return error;
4091 }
4092
4093
4094 /* --------------------------------------------------------------------- */
4095
4096 /* UDF<->unix converters */
4097
4098 /* --------------------------------------------------------------------- */
4099
4100 static mode_t
4101 udf_perm_to_unix_mode(uint32_t perm)
4102 {
4103 mode_t mode;
4104
4105 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4106 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4107 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4108
4109 return mode;
4110 }
4111
4112 /* --------------------------------------------------------------------- */
4113
4114 static uint32_t
4115 unix_mode_to_udf_perm(mode_t mode)
4116 {
4117 uint32_t perm;
4118
4119 perm = ((mode & S_IRWXO) );
4120 perm |= ((mode & S_IRWXG) << 2);
4121 perm |= ((mode & S_IRWXU) << 4);
4122 perm |= ((mode & S_IWOTH) << 3);
4123 perm |= ((mode & S_IWGRP) << 5);
4124 perm |= ((mode & S_IWUSR) << 7);
4125
4126 return perm;
4127 }
4128
4129 /* --------------------------------------------------------------------- */
4130
4131 static uint32_t
4132 udf_icb_to_unix_filetype(uint32_t icbftype)
4133 {
4134 switch (icbftype) {
4135 case UDF_ICB_FILETYPE_DIRECTORY :
4136 case UDF_ICB_FILETYPE_STREAMDIR :
4137 return S_IFDIR;
4138 case UDF_ICB_FILETYPE_FIFO :
4139 return S_IFIFO;
4140 case UDF_ICB_FILETYPE_CHARDEVICE :
4141 return S_IFCHR;
4142 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4143 return S_IFBLK;
4144 case UDF_ICB_FILETYPE_RANDOMACCESS :
4145 case UDF_ICB_FILETYPE_REALTIME :
4146 return S_IFREG;
4147 case UDF_ICB_FILETYPE_SYMLINK :
4148 return S_IFLNK;
4149 case UDF_ICB_FILETYPE_SOCKET :
4150 return S_IFSOCK;
4151 }
4152 /* no idea what this is */
4153 return 0;
4154 }
4155
4156 /* --------------------------------------------------------------------- */
4157
4158 void
4159 udf_to_unix_name(char *result, int result_len, char *id, int len,
4160 struct charspec *chsp)
4161 {
4162 uint16_t *raw_name, *unix_name;
4163 uint16_t *inchp, ch;
4164 uint8_t *outchp;
4165 const char *osta_id = "OSTA Compressed Unicode";
4166 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4167
4168 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4169 unix_name = raw_name + 1024; /* split space in half */
4170 assert(sizeof(char) == sizeof(uint8_t));
4171 outchp = (uint8_t *) result;
4172
4173 is_osta_typ0 = (chsp->type == 0);
4174 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4175 if (is_osta_typ0) {
4176 /* TODO clean up */
4177 *raw_name = *unix_name = 0;
4178 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4179 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4180 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4181 /* output UTF8 */
4182 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4183 ch = *inchp;
4184 nout = wput_utf8(outchp, result_len, ch);
4185 outchp += nout; result_len -= nout;
4186 if (!ch) break;
4187 }
4188 *outchp++ = 0;
4189 } else {
4190 /* assume 8bit char length byte latin-1 */
4191 assert(*id == 8);
4192 assert(strlen((char *) (id+1)) <= NAME_MAX);
4193 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4194 }
4195 free(raw_name, M_UDFTEMP);
4196 }
4197
4198 /* --------------------------------------------------------------------- */
4199
4200 void
4201 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4202 struct charspec *chsp)
4203 {
4204 uint16_t *raw_name;
4205 uint16_t *outchp;
4206 const char *inchp;
4207 const char *osta_id = "OSTA Compressed Unicode";
4208 int udf_chars, is_osta_typ0, bits;
4209 size_t cnt;
4210
4211 /* allocate temporary unicode-16 buffer */
4212 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4213
4214 /* convert utf8 to unicode-16 */
4215 *raw_name = 0;
4216 inchp = name;
4217 outchp = raw_name;
4218 bits = 8;
4219 for (cnt = name_len, udf_chars = 0; cnt;) {
4220 *outchp = wget_utf8(&inchp, &cnt);
4221 if (*outchp > 0xff)
4222 bits=16;
4223 outchp++;
4224 udf_chars++;
4225 }
4226 /* null terminate just in case */
4227 *outchp++ = 0;
4228
4229 is_osta_typ0 = (chsp->type == 0);
4230 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4231 if (is_osta_typ0) {
4232 udf_chars = udf_CompressUnicode(udf_chars, bits,
4233 (unicode_t *) raw_name,
4234 (byte *) result);
4235 } else {
4236 printf("unix to udf name: no CHSP0 ?\n");
4237 /* XXX assume 8bit char length byte latin-1 */
4238 *result++ = 8; udf_chars = 1;
4239 strncpy(result, name + 1, name_len);
4240 udf_chars += name_len;
4241 }
4242 *result_len = udf_chars;
4243 free(raw_name, M_UDFTEMP);
4244 }
4245
4246 /* --------------------------------------------------------------------- */
4247
4248 void
4249 udf_timestamp_to_timespec(struct udf_mount *ump,
4250 struct timestamp *timestamp,
4251 struct timespec *timespec)
4252 {
4253 struct clock_ymdhms ymdhms;
4254 uint32_t usecs, secs, nsecs;
4255 uint16_t tz;
4256
4257 /* fill in ymdhms structure from timestamp */
4258 memset(&ymdhms, 0, sizeof(ymdhms));
4259 ymdhms.dt_year = udf_rw16(timestamp->year);
4260 ymdhms.dt_mon = timestamp->month;
4261 ymdhms.dt_day = timestamp->day;
4262 ymdhms.dt_wday = 0; /* ? */
4263 ymdhms.dt_hour = timestamp->hour;
4264 ymdhms.dt_min = timestamp->minute;
4265 ymdhms.dt_sec = timestamp->second;
4266
4267 secs = clock_ymdhms_to_secs(&ymdhms);
4268 usecs = timestamp->usec +
4269 100*timestamp->hund_usec + 10000*timestamp->centisec;
4270 nsecs = usecs * 1000;
4271
4272 /*
4273 * Calculate the time zone. The timezone is 12 bit signed 2's
4274 * compliment, so we gotta do some extra magic to handle it right.
4275 */
4276 tz = udf_rw16(timestamp->type_tz);
4277 tz &= 0x0fff; /* only lower 12 bits are significant */
4278 if (tz & 0x0800) /* sign extention */
4279 tz |= 0xf000;
4280
4281 /* TODO check timezone conversion */
4282 /* check if we are specified a timezone to convert */
4283 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4284 if ((int16_t) tz != -2047)
4285 secs -= (int16_t) tz * 60;
4286 } else {
4287 secs -= ump->mount_args.gmtoff;
4288 }
4289
4290 timespec->tv_sec = secs;
4291 timespec->tv_nsec = nsecs;
4292 }
4293
4294
4295 void
4296 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4297 {
4298 struct clock_ymdhms ymdhms;
4299 uint32_t husec, usec, csec;
4300
4301 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4302
4303 usec = timespec->tv_nsec / 1000;
4304 husec = usec / 100;
4305 usec -= husec * 100; /* only 0-99 in usec */
4306 csec = husec / 100; /* only 0-99 in csec */
4307 husec -= csec * 100; /* only 0-99 in husec */
4308
4309 /* set method 1 for CUT/GMT */
4310 timestamp->type_tz = udf_rw16((1<<12) + 0);
4311 timestamp->year = udf_rw16(ymdhms.dt_year);
4312 timestamp->month = ymdhms.dt_mon;
4313 timestamp->day = ymdhms.dt_day;
4314 timestamp->hour = ymdhms.dt_hour;
4315 timestamp->minute = ymdhms.dt_min;
4316 timestamp->second = ymdhms.dt_sec;
4317 timestamp->centisec = csec;
4318 timestamp->hund_usec = husec;
4319 timestamp->usec = usec;
4320 }
4321
4322 /* --------------------------------------------------------------------- */
4323
4324 /*
4325 * Attribute and filetypes converters with get/set pairs
4326 */
4327
4328 uint32_t
4329 udf_getaccessmode(struct udf_node *udf_node)
4330 {
4331 struct file_entry *fe = udf_node->fe;
4332 struct extfile_entry *efe = udf_node->efe;
4333 uint32_t udf_perm, icbftype;
4334 uint32_t mode, ftype;
4335 uint16_t icbflags;
4336
4337 UDF_LOCK_NODE(udf_node, 0);
4338 if (fe) {
4339 udf_perm = udf_rw32(fe->perm);
4340 icbftype = fe->icbtag.file_type;
4341 icbflags = udf_rw16(fe->icbtag.flags);
4342 } else {
4343 assert(udf_node->efe);
4344 udf_perm = udf_rw32(efe->perm);
4345 icbftype = efe->icbtag.file_type;
4346 icbflags = udf_rw16(efe->icbtag.flags);
4347 }
4348
4349 mode = udf_perm_to_unix_mode(udf_perm);
4350 ftype = udf_icb_to_unix_filetype(icbftype);
4351
4352 /* set suid, sgid, sticky from flags in fe/efe */
4353 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4354 mode |= S_ISUID;
4355 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4356 mode |= S_ISGID;
4357 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4358 mode |= S_ISVTX;
4359
4360 UDF_UNLOCK_NODE(udf_node, 0);
4361
4362 return mode | ftype;
4363 }
4364
4365
4366 void
4367 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4368 {
4369 struct file_entry *fe = udf_node->fe;
4370 struct extfile_entry *efe = udf_node->efe;
4371 uint32_t udf_perm;
4372 uint16_t icbflags;
4373
4374 UDF_LOCK_NODE(udf_node, 0);
4375 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4376 if (fe) {
4377 icbflags = udf_rw16(fe->icbtag.flags);
4378 } else {
4379 icbflags = udf_rw16(efe->icbtag.flags);
4380 }
4381
4382 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4383 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4384 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4385 if (mode & S_ISUID)
4386 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4387 if (mode & S_ISGID)
4388 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4389 if (mode & S_ISVTX)
4390 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4391
4392 if (fe) {
4393 fe->perm = udf_rw32(udf_perm);
4394 fe->icbtag.flags = udf_rw16(icbflags);
4395 } else {
4396 efe->perm = udf_rw32(udf_perm);
4397 efe->icbtag.flags = udf_rw16(icbflags);
4398 }
4399
4400 UDF_UNLOCK_NODE(udf_node, 0);
4401 }
4402
4403
4404 void
4405 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4406 {
4407 struct udf_mount *ump = udf_node->ump;
4408 struct file_entry *fe = udf_node->fe;
4409 struct extfile_entry *efe = udf_node->efe;
4410 uid_t uid;
4411 gid_t gid;
4412
4413 UDF_LOCK_NODE(udf_node, 0);
4414 if (fe) {
4415 uid = (uid_t)udf_rw32(fe->uid);
4416 gid = (gid_t)udf_rw32(fe->gid);
4417 } else {
4418 assert(udf_node->efe);
4419 uid = (uid_t)udf_rw32(efe->uid);
4420 gid = (gid_t)udf_rw32(efe->gid);
4421 }
4422
4423 /* do the uid/gid translation game */
4424 if (uid == (uid_t) -1)
4425 uid = ump->mount_args.anon_uid;
4426 if (gid == (gid_t) -1)
4427 gid = ump->mount_args.anon_gid;
4428
4429 *uidp = uid;
4430 *gidp = gid;
4431
4432 UDF_UNLOCK_NODE(udf_node, 0);
4433 }
4434
4435
4436 void
4437 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4438 {
4439 struct udf_mount *ump = udf_node->ump;
4440 struct file_entry *fe = udf_node->fe;
4441 struct extfile_entry *efe = udf_node->efe;
4442 uid_t nobody_uid;
4443 gid_t nobody_gid;
4444
4445 UDF_LOCK_NODE(udf_node, 0);
4446
4447 /* do the uid/gid translation game */
4448 nobody_uid = ump->mount_args.nobody_uid;
4449 nobody_gid = ump->mount_args.nobody_gid;
4450 if (uid == nobody_uid)
4451 uid = (uid_t) -1;
4452 if (gid == nobody_gid)
4453 gid = (gid_t) -1;
4454
4455 if (fe) {
4456 fe->uid = udf_rw32((uint32_t) uid);
4457 fe->gid = udf_rw32((uint32_t) gid);
4458 } else {
4459 efe->uid = udf_rw32((uint32_t) uid);
4460 efe->gid = udf_rw32((uint32_t) gid);
4461 }
4462
4463 UDF_UNLOCK_NODE(udf_node, 0);
4464 }
4465
4466
4467 /* --------------------------------------------------------------------- */
4468
4469
4470 int
4471 udf_dirhash_fill(struct udf_node *dir_node)
4472 {
4473 struct vnode *dvp = dir_node->vnode;
4474 struct dirhash *dirh;
4475 struct file_entry *fe = dir_node->fe;
4476 struct extfile_entry *efe = dir_node->efe;
4477 struct fileid_desc *fid;
4478 struct dirent *dirent;
4479 uint64_t file_size, pre_diroffset, diroffset;
4480 uint32_t lb_size;
4481 int error;
4482
4483 /* make sure we have a dirhash to work on */
4484 dirh = dir_node->dir_hash;
4485 KASSERT(dirh);
4486 KASSERT(dirh->refcnt > 0);
4487
4488 if (dirh->flags & DIRH_BROKEN)
4489 return EIO;
4490 if (dirh->flags & DIRH_COMPLETE)
4491 return 0;
4492
4493 /* make sure we have a clean dirhash to add to */
4494 dirhash_purge_entries(dirh);
4495
4496 /* get directory filesize */
4497 if (fe) {
4498 file_size = udf_rw64(fe->inf_len);
4499 } else {
4500 assert(efe);
4501 file_size = udf_rw64(efe->inf_len);
4502 }
4503
4504 /* allocate temporary space for fid */
4505 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4506 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4507
4508 /* allocate temporary space for dirent */
4509 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4510
4511 error = 0;
4512 diroffset = 0;
4513 while (diroffset < file_size) {
4514 /* transfer a new fid/dirent */
4515 pre_diroffset = diroffset;
4516 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4517 if (error) {
4518 /* TODO what to do? continue but not add? */
4519 dirh->flags |= DIRH_BROKEN;
4520 dirhash_purge_entries(dirh);
4521 break;
4522 }
4523
4524 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4525 /* register deleted extent for reuse */
4526 dirhash_enter_freed(dirh, pre_diroffset,
4527 udf_fidsize(fid));
4528 } else {
4529 /* append to the dirhash */
4530 dirhash_enter(dirh, dirent, pre_diroffset,
4531 udf_fidsize(fid), 0);
4532 }
4533 }
4534 dirh->flags |= DIRH_COMPLETE;
4535
4536 free(fid, M_UDFTEMP);
4537 free(dirent, M_UDFTEMP);
4538
4539 return error;
4540 }
4541
4542
4543 /* --------------------------------------------------------------------- */
4544
4545 /*
4546 * Directory read and manipulation functions.
4547 *
4548 */
4549
4550 int
4551 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4552 struct long_ad *icb_loc, int *found)
4553 {
4554 struct udf_node *dir_node = VTOI(vp);
4555 struct dirhash *dirh;
4556 struct dirhash_entry *dirh_ep;
4557 struct fileid_desc *fid;
4558 struct dirent *dirent, *s_dirent;
4559 struct charspec osta_charspec;
4560 uint64_t diroffset;
4561 uint32_t lb_size;
4562 int hit, error;
4563
4564 /* set default return */
4565 *found = 0;
4566
4567 /* get our dirhash and make sure its read in */
4568 dirhash_get(&dir_node->dir_hash);
4569 error = udf_dirhash_fill(dir_node);
4570 if (error) {
4571 dirhash_put(dir_node->dir_hash);
4572 return error;
4573 }
4574 dirh = dir_node->dir_hash;
4575
4576 /* allocate temporary space for fid */
4577 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4578 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4579 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4580 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4581
4582 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4583 namelen, namelen, name));
4584
4585 /* convert given unix name to canonical unix name */
4586 udf_osta_charset(&osta_charspec);
4587 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4588 name, namelen, &osta_charspec);
4589 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4590 (char *) fid->data, fid->l_fi,
4591 &osta_charspec);
4592 s_dirent->d_namlen = strlen(s_dirent->d_name);
4593
4594 /* search our dirhash hits */
4595 memset(icb_loc, 0, sizeof(*icb_loc));
4596 dirh_ep = NULL;
4597 for (;;) {
4598 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4599 /* if no hit, abort the search */
4600 if (!hit)
4601 break;
4602
4603 /* check this hit */
4604 diroffset = dirh_ep->offset;
4605
4606 /* transfer a new fid/dirent */
4607 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4608 if (error)
4609 break;
4610
4611 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4612 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4613
4614 /* see if its our entry */
4615 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4616 *found = 1;
4617 *icb_loc = fid->icb;
4618 break;
4619 }
4620 }
4621 free(fid, M_UDFTEMP);
4622 free(dirent, M_UDFTEMP);
4623 free(s_dirent, M_UDFTEMP);
4624
4625 dirhash_put(dir_node->dir_hash);
4626
4627 return error;
4628 }
4629
4630 /* --------------------------------------------------------------------- */
4631
4632 static int
4633 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4634 struct long_ad *node_icb, struct long_ad *parent_icb,
4635 uint64_t parent_unique_id)
4636 {
4637 struct timespec now;
4638 struct icb_tag *icb;
4639 struct filetimes_extattr_entry *ft_extattr;
4640 uint64_t unique_id;
4641 uint32_t fidsize, lb_num;
4642 uint8_t *bpos;
4643 int crclen, attrlen;
4644
4645 lb_num = udf_rw32(node_icb->loc.lb_num);
4646 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4647 icb = &fe->icbtag;
4648
4649 /*
4650 * Always use strategy type 4 unless on WORM wich we don't support
4651 * (yet). Fill in defaults and set for internal allocation of data.
4652 */
4653 icb->strat_type = udf_rw16(4);
4654 icb->max_num_entries = udf_rw16(1);
4655 icb->file_type = file_type; /* 8 bit */
4656 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4657
4658 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4659 fe->link_cnt = udf_rw16(0); /* explicit setting */
4660
4661 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4662
4663 vfs_timestamp(&now);
4664 udf_timespec_to_timestamp(&now, &fe->atime);
4665 udf_timespec_to_timestamp(&now, &fe->attrtime);
4666 udf_timespec_to_timestamp(&now, &fe->mtime);
4667
4668 udf_set_regid(&fe->imp_id, IMPL_NAME);
4669 udf_add_impl_regid(ump, &fe->imp_id);
4670
4671 unique_id = udf_advance_uniqueid(ump);
4672 fe->unique_id = udf_rw64(unique_id);
4673 fe->l_ea = udf_rw32(0);
4674
4675 /* create extended attribute to record our creation time */
4676 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4677 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4678 memset(ft_extattr, 0, attrlen);
4679 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4680 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4681 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4682 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4683 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4684 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4685
4686 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4687 (struct extattr_entry *) ft_extattr);
4688 free(ft_extattr, M_UDFTEMP);
4689
4690 /* if its a directory, create '..' */
4691 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4692 fidsize = 0;
4693 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4694 fidsize = udf_create_parentfid(ump,
4695 (struct fileid_desc *) bpos, parent_icb,
4696 parent_unique_id);
4697 }
4698
4699 /* record fidlength information */
4700 fe->inf_len = udf_rw64(fidsize);
4701 fe->l_ad = udf_rw32(fidsize);
4702 fe->logblks_rec = udf_rw64(0); /* intern */
4703
4704 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4705 crclen += udf_rw32(fe->l_ea) + fidsize;
4706 fe->tag.desc_crc_len = udf_rw16(crclen);
4707
4708 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4709
4710 return fidsize;
4711 }
4712
4713 /* --------------------------------------------------------------------- */
4714
4715 static int
4716 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4717 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4718 uint64_t parent_unique_id)
4719 {
4720 struct timespec now;
4721 struct icb_tag *icb;
4722 uint64_t unique_id;
4723 uint32_t fidsize, lb_num;
4724 uint8_t *bpos;
4725 int crclen;
4726
4727 lb_num = udf_rw32(node_icb->loc.lb_num);
4728 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4729 icb = &efe->icbtag;
4730
4731 /*
4732 * Always use strategy type 4 unless on WORM wich we don't support
4733 * (yet). Fill in defaults and set for internal allocation of data.
4734 */
4735 icb->strat_type = udf_rw16(4);
4736 icb->max_num_entries = udf_rw16(1);
4737 icb->file_type = file_type; /* 8 bit */
4738 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4739
4740 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4741 efe->link_cnt = udf_rw16(0); /* explicit setting */
4742
4743 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4744
4745 vfs_timestamp(&now);
4746 udf_timespec_to_timestamp(&now, &efe->ctime);
4747 udf_timespec_to_timestamp(&now, &efe->atime);
4748 udf_timespec_to_timestamp(&now, &efe->attrtime);
4749 udf_timespec_to_timestamp(&now, &efe->mtime);
4750
4751 udf_set_regid(&efe->imp_id, IMPL_NAME);
4752 udf_add_impl_regid(ump, &efe->imp_id);
4753
4754 unique_id = udf_advance_uniqueid(ump);
4755 efe->unique_id = udf_rw64(unique_id);
4756 efe->l_ea = udf_rw32(0);
4757
4758 /* if its a directory, create '..' */
4759 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4760 fidsize = 0;
4761 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4762 fidsize = udf_create_parentfid(ump,
4763 (struct fileid_desc *) bpos, parent_icb,
4764 parent_unique_id);
4765 }
4766
4767 /* record fidlength information */
4768 efe->obj_size = udf_rw64(fidsize);
4769 efe->inf_len = udf_rw64(fidsize);
4770 efe->l_ad = udf_rw32(fidsize);
4771 efe->logblks_rec = udf_rw64(0); /* intern */
4772
4773 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4774 crclen += udf_rw32(efe->l_ea) + fidsize;
4775 efe->tag.desc_crc_len = udf_rw16(crclen);
4776
4777 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4778
4779 return fidsize;
4780 }
4781
4782 /* --------------------------------------------------------------------- */
4783
4784 int
4785 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4786 struct udf_node *udf_node, struct componentname *cnp)
4787 {
4788 struct vnode *dvp = dir_node->vnode;
4789 struct dirhash *dirh;
4790 struct dirhash_entry *dirh_ep;
4791 struct file_entry *fe = dir_node->fe;
4792 struct fileid_desc *fid;
4793 struct dirent *dirent, *s_dirent;
4794 struct charspec osta_charspec;
4795 uint64_t diroffset;
4796 uint32_t lb_size, fidsize;
4797 int found, error;
4798 int hit, refcnt;
4799
4800 /* get our dirhash and make sure its read in */
4801 dirhash_get(&dir_node->dir_hash);
4802 error = udf_dirhash_fill(dir_node);
4803 if (error) {
4804 dirhash_put(dir_node->dir_hash);
4805 return error;
4806 }
4807 dirh = dir_node->dir_hash;
4808
4809 /* get directory filesize */
4810 if (!fe) {
4811 assert(dir_node->efe);
4812 }
4813
4814 /* allocate temporary space for fid and dirents */
4815 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4816 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4817 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4818 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4819
4820 /* convert given unix name to canonical unix name */
4821 udf_osta_charset(&osta_charspec);
4822 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4823 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4824 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4825 (char *) fid->data, fid->l_fi,
4826 &osta_charspec);
4827 s_dirent->d_namlen = strlen(s_dirent->d_name);
4828
4829 /* search our dirhash hits */
4830 found = 0;
4831 dirh_ep = NULL;
4832 for (;;) {
4833 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4834 /* if no hit, abort the search */
4835 if (!hit)
4836 break;
4837
4838 /* check this hit */
4839 diroffset = dirh_ep->offset;
4840
4841 /* transfer a new fid/dirent */
4842 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4843 if (error)
4844 break;
4845
4846 /* see if its our entry */
4847 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4848 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4849 found = 1;
4850 break;
4851 }
4852 }
4853
4854 if (!found)
4855 error = ENOENT;
4856 if (error)
4857 goto error_out;
4858
4859 /* mark deleted */
4860 fid->file_char |= UDF_FILE_CHAR_DEL;
4861 #ifdef UDF_COMPLETE_DELETE
4862 memset(&fid->icb, 0, sizeof(fid->icb));
4863 #endif
4864 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4865
4866 /* get size of fid and compensate for the read_fid_stream advance */
4867 fidsize = udf_fidsize(fid);
4868 diroffset -= fidsize;
4869
4870 /* write out */
4871 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4872 fid, fidsize, diroffset,
4873 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4874 FSCRED, NULL, NULL);
4875 if (error)
4876 goto error_out;
4877
4878 /* get reference count of attached node */
4879 if (udf_node->fe) {
4880 refcnt = udf_rw16(udf_node->fe->link_cnt);
4881 } else {
4882 KASSERT(udf_node->efe);
4883 refcnt = udf_rw16(udf_node->efe->link_cnt);
4884 }
4885 #ifdef UDF_COMPLETE_DELETE
4886 /* substract reference counter in attached node */
4887 refcnt -= 1;
4888 if (udf_node->fe) {
4889 udf_node->fe->link_cnt = udf_rw16(refcnt);
4890 } else {
4891 udf_node->efe->link_cnt = udf_rw16(refcnt);
4892 }
4893
4894 /* prevent writeout when refcnt == 0 */
4895 if (refcnt == 0)
4896 udf_node->i_flags |= IN_DELETED;
4897
4898 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4899 int drefcnt;
4900
4901 /* substract reference counter in directory node */
4902 /* note subtract 2 (?) for its was also backreferenced */
4903 if (dir_node->fe) {
4904 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4905 drefcnt -= 1;
4906 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4907 } else {
4908 KASSERT(dir_node->efe);
4909 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4910 drefcnt -= 1;
4911 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4912 }
4913 }
4914
4915 udf_node->i_flags |= IN_MODIFIED;
4916 dir_node->i_flags |= IN_MODIFIED;
4917 #endif
4918 /* if it is/was a hardlink adjust the file count */
4919 if (refcnt > 0)
4920 udf_adjust_filecount(udf_node, -1);
4921
4922 /* remove from the dirhash */
4923 dirhash_remove(dirh, dirent, diroffset,
4924 udf_fidsize(fid));
4925
4926 error_out:
4927 free(fid, M_UDFTEMP);
4928 free(dirent, M_UDFTEMP);
4929 free(s_dirent, M_UDFTEMP);
4930
4931 dirhash_put(dir_node->dir_hash);
4932
4933 return error;
4934 }
4935
4936 /* --------------------------------------------------------------------- */
4937
4938 int
4939 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4940 struct udf_node *new_parent_node)
4941 {
4942 struct vnode *dvp = dir_node->vnode;
4943 struct dirhash *dirh;
4944 struct dirhash_entry *dirh_ep;
4945 struct file_entry *fe;
4946 struct extfile_entry *efe;
4947 struct fileid_desc *fid;
4948 struct dirent *dirent;
4949 uint64_t diroffset;
4950 uint64_t new_parent_unique_id;
4951 uint32_t lb_size, fidsize;
4952 int found, error;
4953 char const *name = "..";
4954 int namelen = 2;
4955 int hit;
4956
4957 /* get our dirhash and make sure its read in */
4958 dirhash_get(&dir_node->dir_hash);
4959 error = udf_dirhash_fill(dir_node);
4960 if (error) {
4961 dirhash_put(dir_node->dir_hash);
4962 return error;
4963 }
4964 dirh = dir_node->dir_hash;
4965
4966 /* get new parent's unique ID */
4967 fe = new_parent_node->fe;
4968 efe = new_parent_node->efe;
4969 if (fe) {
4970 new_parent_unique_id = udf_rw64(fe->unique_id);
4971 } else {
4972 assert(efe);
4973 new_parent_unique_id = udf_rw64(efe->unique_id);
4974 }
4975
4976 /* get directory filesize */
4977 fe = dir_node->fe;
4978 efe = dir_node->efe;
4979 if (!fe) {
4980 assert(efe);
4981 }
4982
4983 /* allocate temporary space for fid */
4984 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4985 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4986 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4987
4988 /*
4989 * NOTE the standard does not dictate the FID entry '..' should be
4990 * first, though in practice it will most likely be.
4991 */
4992
4993 /* search our dirhash hits */
4994 found = 0;
4995 dirh_ep = NULL;
4996 for (;;) {
4997 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4998 /* if no hit, abort the search */
4999 if (!hit)
5000 break;
5001
5002 /* check this hit */
5003 diroffset = dirh_ep->offset;
5004
5005 /* transfer a new fid/dirent */
5006 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
5007 if (error)
5008 break;
5009
5010 /* see if its our entry */
5011 KASSERT(dirent->d_namlen == namelen);
5012 if (strncmp(dirent->d_name, name, namelen) == 0) {
5013 found = 1;
5014 break;
5015 }
5016 }
5017
5018 if (!found)
5019 error = ENOENT;
5020 if (error)
5021 goto error_out;
5022
5023 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5024 fid->icb = new_parent_node->write_loc;
5025 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5026
5027 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5028
5029 /* get size of fid and compensate for the read_fid_stream advance */
5030 fidsize = udf_fidsize(fid);
5031 diroffset -= fidsize;
5032
5033 /* write out */
5034 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5035 fid, fidsize, diroffset,
5036 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5037 FSCRED, NULL, NULL);
5038
5039 /* nothing to be done in the dirhash */
5040
5041 error_out:
5042 free(fid, M_UDFTEMP);
5043 free(dirent, M_UDFTEMP);
5044
5045 dirhash_put(dir_node->dir_hash);
5046
5047 return error;
5048 }
5049
5050 /* --------------------------------------------------------------------- */
5051
5052 /*
5053 * We are not allowed to split the fid tag itself over an logical block so
5054 * check the space remaining in the logical block.
5055 *
5056 * We try to select the smallest candidate for recycling or when none is
5057 * found, append a new one at the end of the directory.
5058 */
5059
5060 int
5061 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5062 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5063 {
5064 struct vnode *dvp = dir_node->vnode;
5065 struct dirhash *dirh;
5066 struct dirhash_entry *dirh_ep;
5067 struct fileid_desc *fid;
5068 struct icb_tag *icbtag;
5069 struct charspec osta_charspec;
5070 struct dirent dirent;
5071 uint64_t unique_id, dir_size;
5072 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5073 uint32_t chosen_size, chosen_size_diff;
5074 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5075 int file_char, refcnt, icbflags, addr_type, hit, error;
5076
5077 /* get our dirhash and make sure its read in */
5078 dirhash_get(&dir_node->dir_hash);
5079 error = udf_dirhash_fill(dir_node);
5080 if (error) {
5081 dirhash_put(dir_node->dir_hash);
5082 return error;
5083 }
5084 dirh = dir_node->dir_hash;
5085
5086 /* get info */
5087 lb_size = udf_rw32(ump->logical_vol->lb_size);
5088 udf_osta_charset(&osta_charspec);
5089
5090 if (dir_node->fe) {
5091 dir_size = udf_rw64(dir_node->fe->inf_len);
5092 icbtag = &dir_node->fe->icbtag;
5093 } else {
5094 dir_size = udf_rw64(dir_node->efe->inf_len);
5095 icbtag = &dir_node->efe->icbtag;
5096 }
5097
5098 icbflags = udf_rw16(icbtag->flags);
5099 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5100
5101 if (udf_node->fe) {
5102 unique_id = udf_rw64(udf_node->fe->unique_id);
5103 refcnt = udf_rw16(udf_node->fe->link_cnt);
5104 } else {
5105 unique_id = udf_rw64(udf_node->efe->unique_id);
5106 refcnt = udf_rw16(udf_node->efe->link_cnt);
5107 }
5108
5109 if (refcnt > 0) {
5110 unique_id = udf_advance_uniqueid(ump);
5111 udf_adjust_filecount(udf_node, 1);
5112 }
5113
5114 /* determine file characteristics */
5115 file_char = 0; /* visible non deleted file and not stream metadata */
5116 if (vap->va_type == VDIR)
5117 file_char = UDF_FILE_CHAR_DIR;
5118
5119 /* malloc scrap buffer */
5120 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5121
5122 /* calculate _minimum_ fid size */
5123 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5124 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5125 fidsize = UDF_FID_SIZE + fid->l_fi;
5126 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5127
5128 /* find position that will fit the FID */
5129 chosen_fid_pos = dir_size;
5130 chosen_size = 0;
5131 chosen_size_diff = UINT_MAX;
5132
5133 /* shut up gcc */
5134 dirent.d_namlen = 0;
5135
5136 /* search our dirhash hits */
5137 error = 0;
5138 dirh_ep = NULL;
5139 for (;;) {
5140 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5141 /* if no hit, abort the search */
5142 if (!hit)
5143 break;
5144
5145 /* check this hit for size */
5146 this_fidsize = dirh_ep->entry_size;
5147
5148 /* check this hit */
5149 fid_pos = dirh_ep->offset;
5150 end_fid_pos = fid_pos + this_fidsize;
5151 size_diff = this_fidsize - fidsize;
5152 lb_rest = lb_size - (end_fid_pos % lb_size);
5153
5154 #ifndef UDF_COMPLETE_DELETE
5155 /* transfer a new fid/dirent */
5156 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5157 if (error)
5158 goto error_out;
5159
5160 /* only reuse entries that are wiped */
5161 /* check if the len + loc are marked zero */
5162 if (udf_rw32(fid->icb.len) != 0)
5163 continue;
5164 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5165 continue;
5166 if (udf_rw16(fid->icb.loc.part_num) != 0)
5167 continue;
5168 #endif /* UDF_COMPLETE_DELETE */
5169
5170 /* select if not splitting the tag and its smaller */
5171 if ((size_diff >= 0) &&
5172 (size_diff < chosen_size_diff) &&
5173 (lb_rest >= sizeof(struct desc_tag)))
5174 {
5175 /* UDF 2.3.4.2+3 specifies rules for iu size */
5176 if ((size_diff == 0) || (size_diff >= 32)) {
5177 chosen_fid_pos = fid_pos;
5178 chosen_size = this_fidsize;
5179 chosen_size_diff = size_diff;
5180 }
5181 }
5182 }
5183
5184
5185 /* extend directory if no other candidate found */
5186 if (chosen_size == 0) {
5187 chosen_fid_pos = dir_size;
5188 chosen_size = fidsize;
5189 chosen_size_diff = 0;
5190
5191 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5192 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5193 /* pre-grow directory to see if we're to switch */
5194 udf_grow_node(dir_node, dir_size + chosen_size);
5195
5196 icbflags = udf_rw16(icbtag->flags);
5197 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5198 }
5199
5200 /* make sure the next fid desc_tag won't be splitted */
5201 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5202 end_fid_pos = chosen_fid_pos + chosen_size;
5203 lb_rest = lb_size - (end_fid_pos % lb_size);
5204
5205 /* pad with implementation use regid if needed */
5206 if (lb_rest < sizeof(struct desc_tag))
5207 chosen_size += 32;
5208 }
5209 }
5210 chosen_size_diff = chosen_size - fidsize;
5211
5212 /* populate the FID */
5213 memset(fid, 0, lb_size);
5214 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5215 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5216 fid->file_char = file_char;
5217 fid->icb = udf_node->loc;
5218 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5219 fid->l_iu = udf_rw16(0);
5220
5221 if (chosen_size > fidsize) {
5222 /* insert implementation-use regid to space it correctly */
5223 fid->l_iu = udf_rw16(chosen_size_diff);
5224
5225 /* set implementation use */
5226 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5227 udf_add_impl_regid(ump, (struct regid *) fid->data);
5228 }
5229
5230 /* fill in name */
5231 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5232 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5233
5234 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5235 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5236
5237 /* writeout FID/update parent directory */
5238 error = vn_rdwr(UIO_WRITE, dvp,
5239 fid, chosen_size, chosen_fid_pos,
5240 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5241 FSCRED, NULL, NULL);
5242
5243 if (error)
5244 goto error_out;
5245
5246 /* add reference counter in attached node */
5247 if (udf_node->fe) {
5248 refcnt = udf_rw16(udf_node->fe->link_cnt);
5249 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5250 } else {
5251 KASSERT(udf_node->efe);
5252 refcnt = udf_rw16(udf_node->efe->link_cnt);
5253 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5254 }
5255
5256 /* mark not deleted if it was... just in case, but do warn */
5257 if (udf_node->i_flags & IN_DELETED) {
5258 printf("udf: warning, marking a file undeleted\n");
5259 udf_node->i_flags &= ~IN_DELETED;
5260 }
5261
5262 if (file_char & UDF_FILE_CHAR_DIR) {
5263 /* add reference counter in directory node for '..' */
5264 if (dir_node->fe) {
5265 refcnt = udf_rw16(dir_node->fe->link_cnt);
5266 refcnt++;
5267 dir_node->fe->link_cnt = udf_rw16(refcnt);
5268 } else {
5269 KASSERT(dir_node->efe);
5270 refcnt = udf_rw16(dir_node->efe->link_cnt);
5271 refcnt++;
5272 dir_node->efe->link_cnt = udf_rw16(refcnt);
5273 }
5274 }
5275
5276 /* append to the dirhash */
5277 /* NOTE do not use dirent anymore or it won't match later! */
5278 udf_to_unix_name(dirent.d_name, NAME_MAX,
5279 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5280 dirent.d_namlen = strlen(dirent.d_name);
5281 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5282 udf_fidsize(fid), 1);
5283
5284 /* note updates */
5285 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5286 /* VN_KNOTE(udf_node, ...) */
5287 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5288
5289 error_out:
5290 free(fid, M_TEMP);
5291
5292 dirhash_put(dir_node->dir_hash);
5293
5294 return error;
5295 }
5296
5297 /* --------------------------------------------------------------------- */
5298
5299 /*
5300 * Each node can have an attached streamdir node though not recursively. These
5301 * are otherwise known as named substreams/named extended attributes that have
5302 * no size limitations.
5303 *
5304 * `Normal' extended attributes are indicated with a number and are recorded
5305 * in either the fe/efe descriptor itself for small descriptors or recorded in
5306 * the attached extended attribute file. Since these spaces can get
5307 * fragmented, care ought to be taken.
5308 *
5309 * Since the size of the space reserved for allocation descriptors is limited,
5310 * there is a mechanim provided for extending this space; this is done by a
5311 * special extent to allow schrinking of the allocations without breaking the
5312 * linkage to the allocation extent descriptor.
5313 */
5314
5315 int
5316 udf_loadvnode(struct mount *mp, struct vnode *vp,
5317 const void *key, size_t key_len, const void **new_key)
5318 {
5319 union dscrptr *dscr;
5320 struct udf_mount *ump;
5321 struct udf_node *udf_node;
5322 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5323 uint64_t file_size;
5324 uint32_t lb_size, sector, dummy;
5325 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5326 int slot, eof, error;
5327 int num_indir_followed = 0;
5328
5329 DPRINTF(NODE, ("udf_loadvnode called\n"));
5330 udf_node = NULL;
5331 ump = VFSTOUDF(mp);
5332
5333 KASSERT(key_len == sizeof(node_icb_loc.loc));
5334 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5335 node_icb_loc.len = ump->logical_vol->lb_size;
5336 memcpy(&node_icb_loc.loc, key, key_len);
5337
5338 /* garbage check: translate udf_node_icb_loc to sectornr */
5339 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5340 if (error) {
5341 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5342 /* no use, this will fail anyway */
5343 return EINVAL;
5344 }
5345
5346 /* build udf_node (do initialise!) */
5347 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5348 memset(udf_node, 0, sizeof(struct udf_node));
5349
5350 vp->v_tag = VT_UDF;
5351 vp->v_op = udf_vnodeop_p;
5352 vp->v_data = udf_node;
5353
5354 /* initialise crosslinks, note location of fe/efe for hashing */
5355 udf_node->ump = ump;
5356 udf_node->vnode = vp;
5357 udf_node->loc = node_icb_loc;
5358 udf_node->lockf = 0;
5359 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5360 cv_init(&udf_node->node_lock, "udf_nlk");
5361 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5362 udf_node->outstanding_bufs = 0;
5363 udf_node->outstanding_nodedscr = 0;
5364 udf_node->uncommitted_lbs = 0;
5365
5366 /* check if we're fetching the root */
5367 if (ump->fileset_desc)
5368 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5369 sizeof(struct long_ad)) == 0)
5370 vp->v_vflag |= VV_ROOT;
5371
5372 icb_loc = node_icb_loc;
5373 needs_indirect = 0;
5374 strat4096 = 0;
5375 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5376 file_size = 0;
5377 lb_size = udf_rw32(ump->logical_vol->lb_size);
5378
5379 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5380 do {
5381 /* try to read in fe/efe */
5382 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5383
5384 /* blank sector marks end of sequence, check this */
5385 if ((dscr == NULL) && (!strat4096))
5386 error = ENOENT;
5387
5388 /* break if read error or blank sector */
5389 if (error || (dscr == NULL))
5390 break;
5391
5392 /* process descriptor based on the descriptor type */
5393 dscr_type = udf_rw16(dscr->tag.id);
5394 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5395
5396 /* if dealing with an indirect entry, follow the link */
5397 if (dscr_type == TAGID_INDIRECTENTRY) {
5398 needs_indirect = 0;
5399 next_icb_loc = dscr->inde.indirect_icb;
5400 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5401 icb_loc = next_icb_loc;
5402 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5403 error = EMLINK;
5404 break;
5405 }
5406 continue;
5407 }
5408
5409 /* only file entries and extended file entries allowed here */
5410 if ((dscr_type != TAGID_FENTRY) &&
5411 (dscr_type != TAGID_EXTFENTRY)) {
5412 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5413 error = ENOENT;
5414 break;
5415 }
5416
5417 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5418
5419 /* choose this one */
5420 last_fe_icb_loc = icb_loc;
5421
5422 /* record and process/update (ext)fentry */
5423 if (dscr_type == TAGID_FENTRY) {
5424 if (udf_node->fe)
5425 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5426 udf_node->fe);
5427 udf_node->fe = &dscr->fe;
5428 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5429 udf_file_type = udf_node->fe->icbtag.file_type;
5430 file_size = udf_rw64(udf_node->fe->inf_len);
5431 } else {
5432 if (udf_node->efe)
5433 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5434 udf_node->efe);
5435 udf_node->efe = &dscr->efe;
5436 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5437 udf_file_type = udf_node->efe->icbtag.file_type;
5438 file_size = udf_rw64(udf_node->efe->inf_len);
5439 }
5440
5441 /* check recording strategy (structure) */
5442
5443 /*
5444 * Strategy 4096 is a daisy linked chain terminating with an
5445 * unrecorded sector or a TERM descriptor. The next
5446 * descriptor is to be found in the sector that follows the
5447 * current sector.
5448 */
5449 if (strat == 4096) {
5450 strat4096 = 1;
5451 needs_indirect = 1;
5452
5453 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5454 }
5455
5456 /*
5457 * Strategy 4 is the normal strategy and terminates, but if
5458 * we're in strategy 4096, we can't have strategy 4 mixed in
5459 */
5460
5461 if (strat == 4) {
5462 if (strat4096) {
5463 error = EINVAL;
5464 break;
5465 }
5466 break; /* done */
5467 }
5468 } while (!error);
5469
5470 /* first round of cleanup code */
5471 if (error) {
5472 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5473 /* recycle udf_node */
5474 udf_dispose_node(udf_node);
5475
5476 return EINVAL; /* error code ok? */
5477 }
5478 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5479
5480 /* assert no references to dscr anymore beyong this point */
5481 assert((udf_node->fe) || (udf_node->efe));
5482 dscr = NULL;
5483
5484 /*
5485 * Remember where to record an updated version of the descriptor. If
5486 * there is a sequence of indirect entries, icb_loc will have been
5487 * updated. Its the write disipline to allocate new space and to make
5488 * sure the chain is maintained.
5489 *
5490 * `needs_indirect' flags if the next location is to be filled with
5491 * with an indirect entry.
5492 */
5493 udf_node->write_loc = icb_loc;
5494 udf_node->needs_indirect = needs_indirect;
5495
5496 /*
5497 * Go trough all allocations extents of this descriptor and when
5498 * encountering a redirect read in the allocation extension. These are
5499 * daisy-chained.
5500 */
5501 UDF_LOCK_NODE(udf_node, 0);
5502 udf_node->num_extensions = 0;
5503
5504 error = 0;
5505 slot = 0;
5506 for (;;) {
5507 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5508 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5509 "lb_num = %d, part = %d\n", slot, eof,
5510 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5511 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5512 udf_rw32(icb_loc.loc.lb_num),
5513 udf_rw16(icb_loc.loc.part_num)));
5514 if (eof)
5515 break;
5516 slot++;
5517
5518 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5519 continue;
5520
5521 DPRINTF(NODE, ("\tgot redirect extent\n"));
5522 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5523 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5524 "too many allocation extensions on "
5525 "udf_node\n"));
5526 error = EINVAL;
5527 break;
5528 }
5529
5530 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5531 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5532 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5533 "extension size in udf_node\n"));
5534 error = EINVAL;
5535 break;
5536 }
5537
5538 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5539 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5540 /* load in allocation extent */
5541 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5542 if (error || (dscr == NULL))
5543 break;
5544
5545 /* process read-in descriptor */
5546 dscr_type = udf_rw16(dscr->tag.id);
5547
5548 if (dscr_type != TAGID_ALLOCEXTENT) {
5549 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5550 error = ENOENT;
5551 break;
5552 }
5553
5554 DPRINTF(NODE, ("\trecording redirect extent\n"));
5555 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5556 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5557
5558 udf_node->num_extensions++;
5559
5560 } /* while */
5561 UDF_UNLOCK_NODE(udf_node, 0);
5562
5563 /* second round of cleanup code */
5564 if (error) {
5565 /* recycle udf_node */
5566 udf_dispose_node(udf_node);
5567
5568 return EINVAL; /* error code ok? */
5569 }
5570
5571 DPRINTF(NODE, ("\tnode read in fine\n"));
5572
5573 /*
5574 * Translate UDF filetypes into vnode types.
5575 *
5576 * Systemfiles like the meta main and mirror files are not treated as
5577 * normal files, so we type them as having no type. UDF dictates that
5578 * they are not allowed to be visible.
5579 */
5580
5581 switch (udf_file_type) {
5582 case UDF_ICB_FILETYPE_DIRECTORY :
5583 case UDF_ICB_FILETYPE_STREAMDIR :
5584 vp->v_type = VDIR;
5585 break;
5586 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5587 vp->v_type = VBLK;
5588 break;
5589 case UDF_ICB_FILETYPE_CHARDEVICE :
5590 vp->v_type = VCHR;
5591 break;
5592 case UDF_ICB_FILETYPE_SOCKET :
5593 vp->v_type = VSOCK;
5594 break;
5595 case UDF_ICB_FILETYPE_FIFO :
5596 vp->v_type = VFIFO;
5597 break;
5598 case UDF_ICB_FILETYPE_SYMLINK :
5599 vp->v_type = VLNK;
5600 break;
5601 case UDF_ICB_FILETYPE_VAT :
5602 case UDF_ICB_FILETYPE_META_MAIN :
5603 case UDF_ICB_FILETYPE_META_MIRROR :
5604 vp->v_type = VNON;
5605 break;
5606 case UDF_ICB_FILETYPE_RANDOMACCESS :
5607 case UDF_ICB_FILETYPE_REALTIME :
5608 vp->v_type = VREG;
5609 break;
5610 default:
5611 /* YIKES, something else */
5612 vp->v_type = VNON;
5613 }
5614
5615 /* TODO specfs, fifofs etc etc. vnops setting */
5616
5617 /* don't forget to set vnode's v_size */
5618 uvm_vnp_setsize(vp, file_size);
5619
5620 /* TODO ext attr and streamdir udf_nodes */
5621
5622 *new_key = &udf_node->loc.loc;
5623
5624 return 0;
5625 }
5626
5627 int
5628 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5629 struct udf_node **udf_noderes)
5630 {
5631 int error;
5632 struct vnode *vp;
5633
5634 *udf_noderes = NULL;
5635
5636 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5637 sizeof(node_icb_loc->loc), &vp);
5638 if (error)
5639 return error;
5640 error = vn_lock(vp, LK_EXCLUSIVE);
5641 if (error) {
5642 vrele(vp);
5643 return error;
5644 }
5645 *udf_noderes = VTOI(vp);
5646 return 0;
5647 }
5648
5649 /* --------------------------------------------------------------------- */
5650
5651 int
5652 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5653 {
5654 union dscrptr *dscr;
5655 struct long_ad *loc;
5656 int extnr, error;
5657
5658 DPRINTF(NODE, ("udf_writeout_node called\n"));
5659
5660 KASSERT(udf_node->outstanding_bufs == 0);
5661 KASSERT(udf_node->outstanding_nodedscr == 0);
5662
5663 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5664
5665 if (udf_node->i_flags & IN_DELETED) {
5666 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5667 udf_cleanup_reservation(udf_node);
5668 return 0;
5669 }
5670
5671 /* lock node; unlocked in callback */
5672 UDF_LOCK_NODE(udf_node, 0);
5673
5674 /* remove pending reservations, we're written out */
5675 udf_cleanup_reservation(udf_node);
5676
5677 /* at least one descriptor writeout */
5678 udf_node->outstanding_nodedscr = 1;
5679
5680 /* we're going to write out the descriptor so clear the flags */
5681 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5682
5683 /* if we were rebuild, write out the allocation extents */
5684 if (udf_node->i_flags & IN_NODE_REBUILD) {
5685 /* mark outstanding node descriptors and issue them */
5686 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5687 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5688 loc = &udf_node->ext_loc[extnr];
5689 dscr = (union dscrptr *) udf_node->ext[extnr];
5690 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5691 if (error)
5692 return error;
5693 }
5694 /* mark allocation extents written out */
5695 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5696 }
5697
5698 if (udf_node->fe) {
5699 KASSERT(udf_node->efe == NULL);
5700 dscr = (union dscrptr *) udf_node->fe;
5701 } else {
5702 KASSERT(udf_node->efe);
5703 KASSERT(udf_node->fe == NULL);
5704 dscr = (union dscrptr *) udf_node->efe;
5705 }
5706 KASSERT(dscr);
5707
5708 loc = &udf_node->write_loc;
5709 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5710
5711 return error;
5712 }
5713
5714 /* --------------------------------------------------------------------- */
5715
5716 int
5717 udf_dispose_node(struct udf_node *udf_node)
5718 {
5719 struct vnode *vp;
5720 int extnr;
5721
5722 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5723 if (!udf_node) {
5724 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5725 return 0;
5726 }
5727
5728 vp = udf_node->vnode;
5729 #ifdef DIAGNOSTIC
5730 if (vp->v_numoutput)
5731 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5732 "v_numoutput = %d", udf_node, vp->v_numoutput);
5733 #endif
5734
5735 udf_cleanup_reservation(udf_node);
5736
5737 /* TODO extended attributes and streamdir */
5738
5739 /* remove dirhash if present */
5740 dirhash_purge(&udf_node->dir_hash);
5741
5742 /* destroy our lock */
5743 mutex_destroy(&udf_node->node_mutex);
5744 cv_destroy(&udf_node->node_lock);
5745
5746 /* dissociate our udf_node from the vnode */
5747 genfs_node_destroy(udf_node->vnode);
5748 mutex_enter(vp->v_interlock);
5749 vp->v_data = NULL;
5750 mutex_exit(vp->v_interlock);
5751
5752 /* free associated memory and the node itself */
5753 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5754 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5755 udf_node->ext[extnr]);
5756 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5757 }
5758
5759 if (udf_node->fe)
5760 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5761 udf_node->fe);
5762 if (udf_node->efe)
5763 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5764 udf_node->efe);
5765
5766 udf_node->fe = (void *) 0xdeadaaaa;
5767 udf_node->efe = (void *) 0xdeadbbbb;
5768 udf_node->ump = (void *) 0xdeadbeef;
5769 pool_put(&udf_node_pool, udf_node);
5770
5771 return 0;
5772 }
5773
5774
5775
5776 /*
5777 * create a new node using the specified dvp, vap and cnp.
5778 * This allows special files to be created. Use with care.
5779 */
5780
5781 int
5782 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5783 struct vattr *vap, kauth_cred_t cred,
5784 size_t *key_len, const void **new_key)
5785 {
5786 union dscrptr *dscr;
5787 struct udf_node *dir_node = VTOI(dvp);
5788 struct udf_node *udf_node;
5789 struct udf_mount *ump = dir_node->ump;
5790 struct long_ad node_icb_loc;
5791 uint64_t parent_unique_id;
5792 uint64_t lmapping;
5793 uint32_t lb_size, lb_num;
5794 uint16_t vpart_num;
5795 uid_t uid;
5796 gid_t gid, parent_gid;
5797 int (**vnodeops)(void *);
5798 int udf_file_type, fid_size, error;
5799
5800 vnodeops = udf_vnodeop_p;
5801 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5802
5803 switch (vap->va_type) {
5804 case VREG :
5805 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5806 break;
5807 case VDIR :
5808 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5809 break;
5810 case VLNK :
5811 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5812 break;
5813 case VBLK :
5814 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5815 /* specfs */
5816 return ENOTSUP;
5817 break;
5818 case VCHR :
5819 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5820 /* specfs */
5821 return ENOTSUP;
5822 break;
5823 case VFIFO :
5824 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5825 /* fifofs */
5826 return ENOTSUP;
5827 break;
5828 case VSOCK :
5829 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5830 return ENOTSUP;
5831 break;
5832 case VNON :
5833 case VBAD :
5834 default :
5835 /* nothing; can we even create these? */
5836 return EINVAL;
5837 }
5838
5839 lb_size = udf_rw32(ump->logical_vol->lb_size);
5840
5841 /* reserve space for one logical block */
5842 vpart_num = ump->node_part;
5843 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5844 vpart_num, 1, /* can_fail */ true);
5845 if (error)
5846 return error;
5847
5848 /* allocate node */
5849 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5850 vpart_num, 1, &lmapping);
5851 if (error) {
5852 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5853 return error;
5854 }
5855
5856 lb_num = lmapping;
5857
5858 /* initialise pointer to location */
5859 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5860 node_icb_loc.len = udf_rw32(lb_size);
5861 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5862 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5863
5864 /* build udf_node (do initialise!) */
5865 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5866 memset(udf_node, 0, sizeof(struct udf_node));
5867
5868 /* initialise crosslinks, note location of fe/efe for hashing */
5869 /* bugalert: synchronise with udf_get_node() */
5870 udf_node->ump = ump;
5871 udf_node->vnode = vp;
5872 vp->v_data = udf_node;
5873 udf_node->loc = node_icb_loc;
5874 udf_node->write_loc = node_icb_loc;
5875 udf_node->lockf = 0;
5876 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5877 cv_init(&udf_node->node_lock, "udf_nlk");
5878 udf_node->outstanding_bufs = 0;
5879 udf_node->outstanding_nodedscr = 0;
5880 udf_node->uncommitted_lbs = 0;
5881
5882 vp->v_tag = VT_UDF;
5883 vp->v_op = vnodeops;
5884
5885 /* initialise genfs */
5886 genfs_node_init(vp, &udf_genfsops);
5887
5888 /* get parent's unique ID for refering '..' if its a directory */
5889 if (dir_node->fe) {
5890 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5891 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5892 } else {
5893 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5894 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5895 }
5896
5897 /* get descriptor */
5898 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5899
5900 /* choose a fe or an efe for it */
5901 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5902 udf_node->fe = &dscr->fe;
5903 fid_size = udf_create_new_fe(ump, udf_node->fe,
5904 udf_file_type, &udf_node->loc,
5905 &dir_node->loc, parent_unique_id);
5906 /* TODO add extended attribute for creation time */
5907 } else {
5908 udf_node->efe = &dscr->efe;
5909 fid_size = udf_create_new_efe(ump, udf_node->efe,
5910 udf_file_type, &udf_node->loc,
5911 &dir_node->loc, parent_unique_id);
5912 }
5913 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5914
5915 /* update vnode's size and type */
5916 vp->v_type = vap->va_type;
5917 uvm_vnp_setsize(vp, fid_size);
5918
5919 /* set access mode */
5920 udf_setaccessmode(udf_node, vap->va_mode);
5921
5922 /* set ownership */
5923 uid = kauth_cred_geteuid(cred);
5924 gid = parent_gid;
5925 udf_setownership(udf_node, uid, gid);
5926
5927 *key_len = sizeof(udf_node->loc.loc);
5928 *new_key = &udf_node->loc.loc;
5929
5930 return 0;
5931 }
5932
5933
5934 int
5935 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5936 struct componentname *cnp)
5937 {
5938 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5939 struct udf_mount *ump = dir_node->ump;
5940 int error;
5941
5942 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp);
5943 if (error)
5944 return error;
5945
5946 udf_node = VTOI(*vpp);
5947 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5948 if (error) {
5949 struct long_ad *node_icb_loc = &udf_node->loc;
5950 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5951 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5952
5953 /* free disc allocation for node */
5954 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5955
5956 /* recycle udf_node */
5957 udf_dispose_node(udf_node);
5958 vrele(*vpp);
5959
5960 *vpp = NULL;
5961 return error;
5962 }
5963
5964 /* adjust file count */
5965 udf_adjust_filecount(udf_node, 1);
5966
5967 return 0;
5968 }
5969
5970 /* --------------------------------------------------------------------- */
5971
5972 static void
5973 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5974 {
5975 struct udf_mount *ump = udf_node->ump;
5976 uint32_t lb_size, lb_num, len, num_lb;
5977 uint16_t vpart_num;
5978
5979 /* is there really one? */
5980 if (mem == NULL)
5981 return;
5982
5983 /* got a descriptor here */
5984 len = UDF_EXT_LEN(udf_rw32(loc->len));
5985 lb_num = udf_rw32(loc->loc.lb_num);
5986 vpart_num = udf_rw16(loc->loc.part_num);
5987
5988 lb_size = udf_rw32(ump->logical_vol->lb_size);
5989 num_lb = (len + lb_size -1) / lb_size;
5990
5991 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5992 }
5993
5994 void
5995 udf_delete_node(struct udf_node *udf_node)
5996 {
5997 void *dscr;
5998 struct long_ad *loc;
5999 int extnr, lvint, dummy;
6000
6001 if (udf_node->i_flags & IN_NO_DELETE)
6002 return;
6003
6004 /* paranoia check on integrity; should be open!; we could panic */
6005 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6006 if (lvint == UDF_INTEGRITY_CLOSED)
6007 printf("\tIntegrity was CLOSED!\n");
6008
6009 /* whatever the node type, change its size to zero */
6010 (void) udf_resize_node(udf_node, 0, &dummy);
6011
6012 /* force it to be `clean'; no use writing it out */
6013 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6014 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6015
6016 /* adjust file count */
6017 udf_adjust_filecount(udf_node, -1);
6018
6019 /*
6020 * Free its allocated descriptors; memory will be released when
6021 * vop_reclaim() is called.
6022 */
6023 loc = &udf_node->loc;
6024
6025 dscr = udf_node->fe;
6026 udf_free_descriptor_space(udf_node, loc, dscr);
6027 dscr = udf_node->efe;
6028 udf_free_descriptor_space(udf_node, loc, dscr);
6029
6030 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6031 dscr = udf_node->ext[extnr];
6032 loc = &udf_node->ext_loc[extnr];
6033 udf_free_descriptor_space(udf_node, loc, dscr);
6034 }
6035 }
6036
6037 /* --------------------------------------------------------------------- */
6038
6039 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6040 int
6041 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6042 {
6043 struct file_entry *fe = udf_node->fe;
6044 struct extfile_entry *efe = udf_node->efe;
6045 uint64_t file_size;
6046 int error;
6047
6048 if (fe) {
6049 file_size = udf_rw64(fe->inf_len);
6050 } else {
6051 assert(udf_node->efe);
6052 file_size = udf_rw64(efe->inf_len);
6053 }
6054
6055 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6056 file_size, new_size));
6057
6058 /* if not changing, we're done */
6059 if (file_size == new_size)
6060 return 0;
6061
6062 *extended = (new_size > file_size);
6063 if (*extended) {
6064 error = udf_grow_node(udf_node, new_size);
6065 } else {
6066 error = udf_shrink_node(udf_node, new_size);
6067 }
6068
6069 return error;
6070 }
6071
6072
6073 /* --------------------------------------------------------------------- */
6074
6075 void
6076 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6077 struct timespec *mod, struct timespec *birth)
6078 {
6079 struct timespec now;
6080 struct file_entry *fe;
6081 struct extfile_entry *efe;
6082 struct filetimes_extattr_entry *ft_extattr;
6083 struct timestamp *atime, *mtime, *attrtime, *ctime;
6084 struct timestamp fe_ctime;
6085 struct timespec cur_birth;
6086 uint32_t offset, a_l;
6087 uint8_t *filedata;
6088 int error;
6089
6090 /* protect against rogue values */
6091 if (!udf_node)
6092 return;
6093
6094 fe = udf_node->fe;
6095 efe = udf_node->efe;
6096
6097 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6098 return;
6099
6100 /* get descriptor information */
6101 if (fe) {
6102 atime = &fe->atime;
6103 mtime = &fe->mtime;
6104 attrtime = &fe->attrtime;
6105 filedata = fe->data;
6106
6107 /* initial save dummy setting */
6108 ctime = &fe_ctime;
6109
6110 /* check our extended attribute if present */
6111 error = udf_extattr_search_intern(udf_node,
6112 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6113 if (!error) {
6114 ft_extattr = (struct filetimes_extattr_entry *)
6115 (filedata + offset);
6116 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6117 ctime = &ft_extattr->times[0];
6118 }
6119 /* TODO create the extended attribute if not found ? */
6120 } else {
6121 assert(udf_node->efe);
6122 atime = &efe->atime;
6123 mtime = &efe->mtime;
6124 attrtime = &efe->attrtime;
6125 ctime = &efe->ctime;
6126 }
6127
6128 vfs_timestamp(&now);
6129
6130 /* set access time */
6131 if (udf_node->i_flags & IN_ACCESS) {
6132 if (acc == NULL)
6133 acc = &now;
6134 udf_timespec_to_timestamp(acc, atime);
6135 }
6136
6137 /* set modification time */
6138 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6139 if (mod == NULL)
6140 mod = &now;
6141 udf_timespec_to_timestamp(mod, mtime);
6142
6143 /* ensure birthtime is older than set modification! */
6144 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6145 if ((cur_birth.tv_sec > mod->tv_sec) ||
6146 ((cur_birth.tv_sec == mod->tv_sec) &&
6147 (cur_birth.tv_nsec > mod->tv_nsec))) {
6148 udf_timespec_to_timestamp(mod, ctime);
6149 }
6150 }
6151
6152 /* update birthtime if specified */
6153 /* XXX we assume here that given birthtime is older than mod */
6154 if (birth && (birth->tv_sec != VNOVAL)) {
6155 udf_timespec_to_timestamp(birth, ctime);
6156 }
6157
6158 /* set change time */
6159 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6160 udf_timespec_to_timestamp(&now, attrtime);
6161
6162 /* notify updates to the node itself */
6163 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6164 udf_node->i_flags |= IN_ACCESSED;
6165 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6166 udf_node->i_flags |= IN_MODIFIED;
6167
6168 /* clear modification flags */
6169 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6170 }
6171
6172 /* --------------------------------------------------------------------- */
6173
6174 int
6175 udf_update(struct vnode *vp, struct timespec *acc,
6176 struct timespec *mod, struct timespec *birth, int updflags)
6177 {
6178 union dscrptr *dscrptr;
6179 struct udf_node *udf_node = VTOI(vp);
6180 struct udf_mount *ump = udf_node->ump;
6181 struct regid *impl_id;
6182 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6183 int waitfor, flags;
6184
6185 #ifdef DEBUG
6186 char bits[128];
6187 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6188 updflags));
6189 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6190 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6191 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6192 #endif
6193
6194 /* set our times */
6195 udf_itimes(udf_node, acc, mod, birth);
6196
6197 /* set our implementation id */
6198 if (udf_node->fe) {
6199 dscrptr = (union dscrptr *) udf_node->fe;
6200 impl_id = &udf_node->fe->imp_id;
6201 } else {
6202 dscrptr = (union dscrptr *) udf_node->efe;
6203 impl_id = &udf_node->efe->imp_id;
6204 }
6205
6206 /* set our ID */
6207 udf_set_regid(impl_id, IMPL_NAME);
6208 udf_add_impl_regid(ump, impl_id);
6209
6210 /* update our crc! on RMW we are not allowed to change a thing */
6211 udf_validate_tag_and_crc_sums(dscrptr);
6212
6213 /* if called when mounted readonly, never write back */
6214 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6215 return 0;
6216
6217 /* check if the node is dirty 'enough'*/
6218 if (updflags & UPDATE_CLOSE) {
6219 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6220 } else {
6221 flags = udf_node->i_flags & IN_MODIFIED;
6222 }
6223 if (flags == 0)
6224 return 0;
6225
6226 /* determine if we need to write sync or async */
6227 waitfor = 0;
6228 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6229 /* sync mounted */
6230 waitfor = updflags & UPDATE_WAIT;
6231 if (updflags & UPDATE_DIROP)
6232 waitfor |= UPDATE_WAIT;
6233 }
6234 if (waitfor)
6235 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6236
6237 return 0;
6238 }
6239
6240
6241 /* --------------------------------------------------------------------- */
6242
6243
6244 /*
6245 * Read one fid and process it into a dirent and advance to the next (*fid)
6246 * has to be allocated a logical block in size, (*dirent) struct dirent length
6247 */
6248
6249 int
6250 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6251 struct fileid_desc *fid, struct dirent *dirent)
6252 {
6253 struct udf_node *dir_node = VTOI(vp);
6254 struct udf_mount *ump = dir_node->ump;
6255 struct file_entry *fe = dir_node->fe;
6256 struct extfile_entry *efe = dir_node->efe;
6257 uint32_t fid_size, lb_size;
6258 uint64_t file_size;
6259 char *fid_name;
6260 int enough, error;
6261
6262 assert(fid);
6263 assert(dirent);
6264 assert(dir_node);
6265 assert(offset);
6266 assert(*offset != 1);
6267
6268 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6269 /* check if we're past the end of the directory */
6270 if (fe) {
6271 file_size = udf_rw64(fe->inf_len);
6272 } else {
6273 assert(dir_node->efe);
6274 file_size = udf_rw64(efe->inf_len);
6275 }
6276 if (*offset >= file_size)
6277 return EINVAL;
6278
6279 /* get maximum length of FID descriptor */
6280 lb_size = udf_rw32(ump->logical_vol->lb_size);
6281
6282 /* initialise return values */
6283 fid_size = 0;
6284 memset(dirent, 0, sizeof(struct dirent));
6285 memset(fid, 0, lb_size);
6286
6287 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6288 if (!enough) {
6289 /* short dir ... */
6290 return EIO;
6291 }
6292
6293 error = vn_rdwr(UIO_READ, vp,
6294 fid, MIN(file_size - (*offset), lb_size), *offset,
6295 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6296 NULL, NULL);
6297 if (error)
6298 return error;
6299
6300 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6301 /*
6302 * Check if we got a whole descriptor.
6303 * TODO Try to `resync' directory stream when something is very wrong.
6304 */
6305
6306 /* check if our FID header is OK */
6307 error = udf_check_tag(fid);
6308 if (error) {
6309 goto brokendir;
6310 }
6311 DPRINTF(FIDS, ("\ttag check ok\n"));
6312
6313 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6314 error = EIO;
6315 goto brokendir;
6316 }
6317 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6318
6319 /* check for length */
6320 fid_size = udf_fidsize(fid);
6321 enough = (file_size - (*offset) >= fid_size);
6322 if (!enough) {
6323 error = EIO;
6324 goto brokendir;
6325 }
6326 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6327
6328 /* check FID contents */
6329 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6330 brokendir:
6331 if (error) {
6332 /* note that is sometimes a bit quick to report */
6333 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6334 /* RESYNC? */
6335 /* TODO: use udf_resync_fid_stream */
6336 return EIO;
6337 }
6338 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6339
6340 /* we got a whole and valid descriptor! */
6341 DPRINTF(FIDS, ("\tinterpret FID\n"));
6342
6343 /* create resulting dirent structure */
6344 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6345 udf_to_unix_name(dirent->d_name, NAME_MAX,
6346 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6347
6348 /* '..' has no name, so provide one */
6349 if (fid->file_char & UDF_FILE_CHAR_PAR)
6350 strcpy(dirent->d_name, "..");
6351
6352 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6353 dirent->d_namlen = strlen(dirent->d_name);
6354 dirent->d_reclen = _DIRENT_SIZE(dirent);
6355
6356 /*
6357 * Note that its not worth trying to go for the filetypes now... its
6358 * too expensive too
6359 */
6360 dirent->d_type = DT_UNKNOWN;
6361
6362 /* initial guess for filetype we can make */
6363 if (fid->file_char & UDF_FILE_CHAR_DIR)
6364 dirent->d_type = DT_DIR;
6365
6366 /* advance */
6367 *offset += fid_size;
6368
6369 return error;
6370 }
6371
6372
6373 /* --------------------------------------------------------------------- */
6374
6375 static void
6376 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6377 {
6378 struct udf_node *udf_node, *n_udf_node;
6379 struct vnode *vp;
6380 int vdirty, error;
6381
6382 KASSERT(mutex_owned(&ump->sync_lock));
6383
6384 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6385 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6386 for (;udf_node; udf_node = n_udf_node) {
6387 DPRINTF(SYNC, ("."));
6388
6389 vp = udf_node->vnode;
6390
6391 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6392 udf_node, RB_DIR_RIGHT);
6393
6394 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6395 if (error) {
6396 KASSERT(error == EBUSY);
6397 *ndirty += 1;
6398 continue;
6399 }
6400
6401 switch (pass) {
6402 case 1:
6403 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6404 break;
6405 case 2:
6406 vdirty = vp->v_numoutput;
6407 if (vp->v_tag == VT_UDF)
6408 vdirty += udf_node->outstanding_bufs +
6409 udf_node->outstanding_nodedscr;
6410 if (vdirty == 0)
6411 VOP_FSYNC(vp, cred, 0,0,0);
6412 *ndirty += vdirty;
6413 break;
6414 case 3:
6415 vdirty = vp->v_numoutput;
6416 if (vp->v_tag == VT_UDF)
6417 vdirty += udf_node->outstanding_bufs +
6418 udf_node->outstanding_nodedscr;
6419 *ndirty += vdirty;
6420 break;
6421 }
6422
6423 VOP_UNLOCK(vp);
6424 }
6425 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6426 }
6427
6428
6429 static bool
6430 udf_sync_selector(void *cl, struct vnode *vp)
6431 {
6432 struct udf_node *udf_node;
6433
6434 KASSERT(mutex_owned(vp->v_interlock));
6435
6436 udf_node = VTOI(vp);
6437
6438 if (vp->v_vflag & VV_SYSTEM)
6439 return false;
6440 if (vp->v_type == VNON)
6441 return false;
6442 if (udf_node == NULL)
6443 return false;
6444 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6445 return false;
6446 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6447 return false;
6448
6449 return true;
6450 }
6451
6452 void
6453 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6454 {
6455 struct vnode_iterator *marker;
6456 struct vnode *vp;
6457 struct udf_node *udf_node, *udf_next_node;
6458 int dummy, ndirty;
6459
6460 if (waitfor == MNT_LAZY)
6461 return;
6462
6463 mutex_enter(&ump->sync_lock);
6464
6465 /* Fill the rbtree with nodes to sync. */
6466 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6467 while ((vp = vfs_vnode_iterator_next(marker,
6468 udf_sync_selector, NULL)) != NULL) {
6469 udf_node = VTOI(vp);
6470 udf_node->i_flags |= IN_SYNCED;
6471 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6472 }
6473 vfs_vnode_iterator_destroy(marker);
6474
6475 dummy = 0;
6476 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6477 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6478 udf_sync_pass(ump, cred, 1, &dummy);
6479
6480 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6481 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6482 udf_sync_pass(ump, cred, 2, &dummy);
6483
6484 if (waitfor == MNT_WAIT) {
6485 recount:
6486 ndirty = ump->devvp->v_numoutput;
6487 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6488 ndirty));
6489 udf_sync_pass(ump, cred, 3, &ndirty);
6490 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6491 ndirty));
6492
6493 if (ndirty) {
6494 /* 1/4 second wait */
6495 kpause("udfsync2", false, hz/4, NULL);
6496 goto recount;
6497 }
6498 }
6499
6500 /* Clean the rbtree. */
6501 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6502 udf_node; udf_node = udf_next_node) {
6503 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6504 udf_node, RB_DIR_RIGHT);
6505 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6506 udf_node->i_flags &= ~IN_SYNCED;
6507 vrele(udf_node->vnode);
6508 }
6509
6510 mutex_exit(&ump->sync_lock);
6511 }
6512
6513 /* --------------------------------------------------------------------- */
6514
6515 /*
6516 * Read and write file extent in/from the buffer.
6517 *
6518 * The splitup of the extent into seperate request-buffers is to minimise
6519 * copying around as much as possible.
6520 *
6521 * block based file reading and writing
6522 */
6523
6524 static int
6525 udf_read_internal(struct udf_node *node, uint8_t *blob)
6526 {
6527 struct udf_mount *ump;
6528 struct file_entry *fe = node->fe;
6529 struct extfile_entry *efe = node->efe;
6530 uint64_t inflen;
6531 uint32_t sector_size;
6532 uint8_t *srcpos;
6533 int icbflags, addr_type;
6534
6535 /* get extent and do some paranoia checks */
6536 ump = node->ump;
6537 sector_size = ump->discinfo.sector_size;
6538
6539 /*
6540 * XXX there should be real bounds-checking logic here,
6541 * in case ->l_ea or ->inf_len contains nonsense.
6542 */
6543
6544 if (fe) {
6545 inflen = udf_rw64(fe->inf_len);
6546 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6547 icbflags = udf_rw16(fe->icbtag.flags);
6548 } else {
6549 assert(node->efe);
6550 inflen = udf_rw64(efe->inf_len);
6551 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6552 icbflags = udf_rw16(efe->icbtag.flags);
6553 }
6554 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6555
6556 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6557 __USE(addr_type);
6558 assert(inflen < sector_size);
6559
6560 /* copy out info */
6561 memcpy(blob, srcpos, inflen);
6562 memset(&blob[inflen], 0, sector_size - inflen);
6563
6564 return 0;
6565 }
6566
6567
6568 static int
6569 udf_write_internal(struct udf_node *node, uint8_t *blob)
6570 {
6571 struct udf_mount *ump;
6572 struct file_entry *fe = node->fe;
6573 struct extfile_entry *efe = node->efe;
6574 uint64_t inflen;
6575 uint32_t sector_size;
6576 uint8_t *pos;
6577 int icbflags, addr_type;
6578
6579 /* get extent and do some paranoia checks */
6580 ump = node->ump;
6581 sector_size = ump->discinfo.sector_size;
6582
6583 if (fe) {
6584 inflen = udf_rw64(fe->inf_len);
6585 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6586 icbflags = udf_rw16(fe->icbtag.flags);
6587 } else {
6588 assert(node->efe);
6589 inflen = udf_rw64(efe->inf_len);
6590 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6591 icbflags = udf_rw16(efe->icbtag.flags);
6592 }
6593 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6594
6595 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6596 __USE(addr_type);
6597 assert(inflen < sector_size);
6598 __USE(sector_size);
6599
6600 /* copy in blob */
6601 /* memset(pos, 0, inflen); */
6602 memcpy(pos, blob, inflen);
6603
6604 return 0;
6605 }
6606
6607
6608 void
6609 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6610 {
6611 struct buf *nestbuf;
6612 struct udf_mount *ump = udf_node->ump;
6613 uint64_t *mapping;
6614 uint64_t run_start;
6615 uint32_t sector_size;
6616 uint32_t buf_offset, sector, rbuflen, rblk;
6617 uint32_t from, lblkno;
6618 uint32_t sectors;
6619 uint8_t *buf_pos;
6620 int error, run_length, what;
6621
6622 sector_size = udf_node->ump->discinfo.sector_size;
6623
6624 from = buf->b_blkno;
6625 sectors = buf->b_bcount / sector_size;
6626
6627 what = udf_get_c_type(udf_node);
6628
6629 /* assure we have enough translation slots */
6630 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6631 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6632
6633 if (sectors > UDF_MAX_MAPPINGS) {
6634 printf("udf_read_filebuf: implementation limit on bufsize\n");
6635 buf->b_error = EIO;
6636 biodone(buf);
6637 return;
6638 }
6639
6640 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6641
6642 error = 0;
6643 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6644 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6645 if (error) {
6646 buf->b_error = error;
6647 biodone(buf);
6648 goto out;
6649 }
6650 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6651
6652 /* pre-check if its an internal */
6653 if (*mapping == UDF_TRANS_INTERN) {
6654 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6655 if (error)
6656 buf->b_error = error;
6657 biodone(buf);
6658 goto out;
6659 }
6660 DPRINTF(READ, ("\tnot intern\n"));
6661
6662 #ifdef DEBUG
6663 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6664 printf("Returned translation table:\n");
6665 for (sector = 0; sector < sectors; sector++) {
6666 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6667 }
6668 }
6669 #endif
6670
6671 /* request read-in of data from disc sheduler */
6672 buf->b_resid = buf->b_bcount;
6673 for (sector = 0; sector < sectors; sector++) {
6674 buf_offset = sector * sector_size;
6675 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6676 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6677
6678 /* check if its zero or unmapped to stop reading */
6679 switch (mapping[sector]) {
6680 case UDF_TRANS_UNMAPPED:
6681 case UDF_TRANS_ZERO:
6682 /* copy zero sector TODO runlength like below */
6683 memset(buf_pos, 0, sector_size);
6684 DPRINTF(READ, ("\treturning zero sector\n"));
6685 nestiobuf_done(buf, sector_size, 0);
6686 break;
6687 default :
6688 DPRINTF(READ, ("\tread sector "
6689 "%"PRIu64"\n", mapping[sector]));
6690
6691 lblkno = from + sector;
6692 run_start = mapping[sector];
6693 run_length = 1;
6694 while (sector < sectors-1) {
6695 if (mapping[sector+1] != mapping[sector]+1)
6696 break;
6697 run_length++;
6698 sector++;
6699 }
6700
6701 /*
6702 * nest an iobuf and mark it for async reading. Since
6703 * we're using nested buffers, they can't be cached by
6704 * design.
6705 */
6706 rbuflen = run_length * sector_size;
6707 rblk = run_start * (sector_size/DEV_BSIZE);
6708
6709 nestbuf = getiobuf(NULL, true);
6710 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6711 /* nestbuf is B_ASYNC */
6712
6713 /* identify this nestbuf */
6714 nestbuf->b_lblkno = lblkno;
6715 assert(nestbuf->b_vp == udf_node->vnode);
6716
6717 /* CD shedules on raw blkno */
6718 nestbuf->b_blkno = rblk;
6719 nestbuf->b_proc = NULL;
6720 nestbuf->b_rawblkno = rblk;
6721 nestbuf->b_udf_c_type = what;
6722
6723 udf_discstrat_queuebuf(ump, nestbuf);
6724 }
6725 }
6726 out:
6727 /* if we're synchronously reading, wait for the completion */
6728 if ((buf->b_flags & B_ASYNC) == 0)
6729 biowait(buf);
6730
6731 DPRINTF(READ, ("\tend of read_filebuf\n"));
6732 free(mapping, M_TEMP);
6733 return;
6734 }
6735
6736
6737 void
6738 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6739 {
6740 struct buf *nestbuf;
6741 struct udf_mount *ump = udf_node->ump;
6742 uint64_t *mapping;
6743 uint64_t run_start;
6744 uint32_t lb_size;
6745 uint32_t buf_offset, lb_num, rbuflen, rblk;
6746 uint32_t from, lblkno;
6747 uint32_t num_lb;
6748 int error, run_length, what, s;
6749
6750 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6751
6752 from = buf->b_blkno;
6753 num_lb = buf->b_bcount / lb_size;
6754
6755 what = udf_get_c_type(udf_node);
6756
6757 /* assure we have enough translation slots */
6758 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6759 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6760
6761 if (num_lb > UDF_MAX_MAPPINGS) {
6762 printf("udf_write_filebuf: implementation limit on bufsize\n");
6763 buf->b_error = EIO;
6764 biodone(buf);
6765 return;
6766 }
6767
6768 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6769
6770 error = 0;
6771 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6772 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6773 if (error) {
6774 buf->b_error = error;
6775 biodone(buf);
6776 goto out;
6777 }
6778 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6779
6780 /* if its internally mapped, we can write it in the descriptor itself */
6781 if (*mapping == UDF_TRANS_INTERN) {
6782 /* TODO paranoia check if we ARE going to have enough space */
6783 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6784 if (error)
6785 buf->b_error = error;
6786 biodone(buf);
6787 goto out;
6788 }
6789 DPRINTF(WRITE, ("\tnot intern\n"));
6790
6791 /* request write out of data to disc sheduler */
6792 buf->b_resid = buf->b_bcount;
6793 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6794 buf_offset = lb_num * lb_size;
6795 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6796
6797 /*
6798 * Mappings are not that important here. Just before we write
6799 * the lb_num we late-allocate them when needed and update the
6800 * mapping in the udf_node.
6801 */
6802
6803 /* XXX why not ignore the mapping altogether ? */
6804 DPRINTF(WRITE, ("\twrite lb_num "
6805 "%"PRIu64, mapping[lb_num]));
6806
6807 lblkno = from + lb_num;
6808 run_start = mapping[lb_num];
6809 run_length = 1;
6810 while (lb_num < num_lb-1) {
6811 if (mapping[lb_num+1] != mapping[lb_num]+1)
6812 if (mapping[lb_num+1] != mapping[lb_num])
6813 break;
6814 run_length++;
6815 lb_num++;
6816 }
6817 DPRINTF(WRITE, ("+ %d\n", run_length));
6818
6819 /* nest an iobuf on the master buffer for the extent */
6820 rbuflen = run_length * lb_size;
6821 rblk = run_start * (lb_size/DEV_BSIZE);
6822
6823 nestbuf = getiobuf(NULL, true);
6824 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6825 /* nestbuf is B_ASYNC */
6826
6827 /* identify this nestbuf */
6828 nestbuf->b_lblkno = lblkno;
6829 KASSERT(nestbuf->b_vp == udf_node->vnode);
6830
6831 /* CD shedules on raw blkno */
6832 nestbuf->b_blkno = rblk;
6833 nestbuf->b_proc = NULL;
6834 nestbuf->b_rawblkno = rblk;
6835 nestbuf->b_udf_c_type = what;
6836
6837 /* increment our outstanding bufs counter */
6838 s = splbio();
6839 udf_node->outstanding_bufs++;
6840 splx(s);
6841
6842 udf_discstrat_queuebuf(ump, nestbuf);
6843 }
6844 out:
6845 /* if we're synchronously writing, wait for the completion */
6846 if ((buf->b_flags & B_ASYNC) == 0)
6847 biowait(buf);
6848
6849 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6850 free(mapping, M_TEMP);
6851 return;
6852 }
6853
6854 /* --------------------------------------------------------------------- */
6855