udf_subr.c revision 1.146.2.1 1 /* $NetBSD: udf_subr.c,v 1.146.2.1 2022/03/13 09:44:33 martin Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.146.2.1 2022/03/13 09:44:33 martin Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342
343 /* --------------------------------------------------------------------- */
344
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 int *first_tracknr, int *last_tracknr)
349 {
350 struct mmc_trackinfo trackinfo;
351 uint32_t tracknr, start_track, num_tracks;
352 int error;
353
354 /* if negative, sessionnr is relative to last session */
355 if (args->sessionnr < 0) {
356 args->sessionnr += ump->discinfo.num_sessions;
357 }
358
359 /* sanity */
360 if (args->sessionnr < 0)
361 args->sessionnr = 0;
362 if (args->sessionnr > ump->discinfo.num_sessions)
363 args->sessionnr = ump->discinfo.num_sessions;
364
365 /* search the tracks for this session, zero session nr indicates last */
366 if (args->sessionnr == 0)
367 args->sessionnr = ump->discinfo.num_sessions;
368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 args->sessionnr--;
370
371 /* sanity again */
372 if (args->sessionnr < 0)
373 args->sessionnr = 0;
374
375 /* search the first and last track of the specified session */
376 num_tracks = ump->discinfo.num_tracks;
377 start_track = ump->discinfo.first_track;
378
379 /* search for first track of this session */
380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 /* get track info */
382 trackinfo.tracknr = tracknr;
383 error = udf_update_trackinfo(ump, &trackinfo);
384 if (error)
385 return error;
386
387 if (trackinfo.sessionnr == args->sessionnr)
388 break;
389 }
390 *first_tracknr = tracknr;
391
392 /* search for last track of this session */
393 for (;tracknr <= num_tracks; tracknr++) {
394 /* get track info */
395 trackinfo.tracknr = tracknr;
396 error = udf_update_trackinfo(ump, &trackinfo);
397 if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 tracknr--;
399 break;
400 }
401 }
402 if (tracknr > num_tracks)
403 tracknr--;
404
405 *last_tracknr = tracknr;
406
407 if (*last_tracknr < *first_tracknr) {
408 printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 "drive returned garbage\n");
410 return EINVAL;
411 }
412
413 assert(*last_tracknr >= *first_tracknr);
414 return 0;
415 }
416
417
418 /*
419 * NOTE: this is the only routine in this file that directly peeks into the
420 * metadata file but since its at a larval state of the mount it can't hurt.
421 *
422 * XXX candidate for udf_allocation.c
423 * XXX clean me up!, change to new node reading code.
424 */
425
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 struct mmc_trackinfo *trackinfo)
429 {
430 struct part_desc *part;
431 struct file_entry *fe;
432 struct extfile_entry *efe;
433 struct short_ad *s_ad;
434 struct long_ad *l_ad;
435 uint32_t track_start, track_end;
436 uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 uint32_t sector_size, len, alloclen, plb_num;
438 uint8_t *pos;
439 int addr_type, icblen, icbflags;
440
441 /* get our track extents */
442 track_start = trackinfo->track_start;
443 track_end = track_start + trackinfo->track_size;
444
445 /* get our base partition extent */
446 KASSERT(ump->node_part == ump->fids_part);
447 part = ump->partitions[ump->vtop[ump->node_part]];
448 phys_part_start = udf_rw32(part->start_loc);
449 phys_part_end = phys_part_start + udf_rw32(part->part_len);
450
451 /* no use if its outside the physical partition */
452 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 return;
454
455 /*
456 * now follow all extents in the fe/efe to see if they refer to this
457 * track
458 */
459
460 sector_size = ump->discinfo.sector_size;
461
462 /* XXX should we claim exclusive access to the metafile ? */
463 /* TODO: move to new node read code */
464 fe = ump->metadata_node->fe;
465 efe = ump->metadata_node->efe;
466 if (fe) {
467 alloclen = udf_rw32(fe->l_ad);
468 pos = &fe->data[0] + udf_rw32(fe->l_ea);
469 icbflags = udf_rw16(fe->icbtag.flags);
470 } else {
471 assert(efe);
472 alloclen = udf_rw32(efe->l_ad);
473 pos = &efe->data[0] + udf_rw32(efe->l_ea);
474 icbflags = udf_rw16(efe->icbtag.flags);
475 }
476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477
478 while (alloclen) {
479 if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 icblen = sizeof(struct short_ad);
481 s_ad = (struct short_ad *) pos;
482 len = udf_rw32(s_ad->len);
483 plb_num = udf_rw32(s_ad->lb_num);
484 } else {
485 /* should not be present, but why not */
486 icblen = sizeof(struct long_ad);
487 l_ad = (struct long_ad *) pos;
488 len = udf_rw32(l_ad->len);
489 plb_num = udf_rw32(l_ad->loc.lb_num);
490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 }
492 /* process extent */
493 len = UDF_EXT_LEN(len);
494
495 part_start = phys_part_start + plb_num;
496 part_end = part_start + (len / sector_size);
497
498 if ((part_start >= track_start) && (part_end <= track_end)) {
499 /* extent is enclosed within this track */
500 ump->metadata_track = *trackinfo;
501 return;
502 }
503
504 pos += icblen;
505 alloclen -= icblen;
506 }
507 }
508
509
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_trackinfo trackinfo;
515 struct mmc_op mmc_op;
516 struct part_desc *part;
517 uint32_t tracknr, start_track, num_tracks;
518 uint32_t track_start, track_end, part_start, part_end;
519 int node_alloc, error;
520
521 /*
522 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 * the last session might be open but in the UDF device model at most
524 * three tracks can be open: a reserved track for delayed ISO VRS
525 * writing, a data track and a metadata track. We search here for the
526 * data track and the metadata track. Note that the reserved track is
527 * troublesome but can be detected by its small size of < 512 sectors.
528 */
529
530 /* update discinfo since it might have changed */
531 error = udf_update_discinfo(ump);
532 if (error)
533 return error;
534
535 num_tracks = ump->discinfo.num_tracks;
536 start_track = ump->discinfo.first_track;
537
538 /* fetch info on first and possibly only track */
539 trackinfo.tracknr = start_track;
540 error = udf_update_trackinfo(ump, &trackinfo);
541 if (error)
542 return error;
543
544 /* copy results to our mount point */
545 ump->data_track = trackinfo;
546 ump->metadata_track = trackinfo;
547
548 /* if not sequential, we're done */
549 if (num_tracks == 1)
550 return 0;
551
552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 /* get track info */
554 trackinfo.tracknr = tracknr;
555 error = udf_update_trackinfo(ump, &trackinfo);
556 if (error)
557 return error;
558
559 /*
560 * If this track is marked damaged, ask for repair. This is an
561 * optional command, so ignore its error but report warning.
562 */
563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 memset(&mmc_op, 0, sizeof(mmc_op));
565 mmc_op.operation = MMC_OP_REPAIRTRACK;
566 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 mmc_op.tracknr = tracknr;
568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 if (error)
570 (void)printf("Drive can't explicitly repair "
571 "damaged track %d, but it might "
572 "autorepair\n", tracknr);
573
574 /* reget track info */
575 error = udf_update_trackinfo(ump, &trackinfo);
576 if (error)
577 return error;
578 }
579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 continue;
581
582 track_start = trackinfo.track_start;
583 track_end = track_start + trackinfo.track_size;
584
585 /* check for overlap on data partition */
586 part = ump->partitions[ump->data_part];
587 part_start = udf_rw32(part->start_loc);
588 part_end = part_start + udf_rw32(part->part_len);
589 if ((part_start < track_end) && (part_end > track_start)) {
590 ump->data_track = trackinfo;
591 /* TODO check if UDF partition data_part is writable */
592 }
593
594 /* check for overlap on metadata partition */
595 node_alloc = ump->vtop_alloc[ump->node_part];
596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 (node_alloc == UDF_ALLOC_METABITMAP)) {
598 udf_check_track_metadata_overlap(ump, &trackinfo);
599 } else {
600 ump->metadata_track = trackinfo;
601 }
602 }
603
604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 return EROFS;
606
607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 return EROFS;
609
610 return 0;
611 }
612
613 /* --------------------------------------------------------------------- */
614
615 /*
616 * Check if the blob starts with a good UDF tag. Tags are protected by a
617 * checksum over the reader except one byte at position 4 that is the checksum
618 * itself.
619 */
620
621 int
622 udf_check_tag(void *blob)
623 {
624 struct desc_tag *tag = blob;
625 uint8_t *pos, sum, cnt;
626
627 /* check TAG header checksum */
628 pos = (uint8_t *) tag;
629 sum = 0;
630
631 for(cnt = 0; cnt < 16; cnt++) {
632 if (cnt != 4)
633 sum += *pos;
634 pos++;
635 }
636 if (sum != tag->cksum) {
637 /* bad tag header checksum; this is not a valid tag */
638 return EINVAL;
639 }
640
641 return 0;
642 }
643
644
645 /*
646 * check tag payload will check descriptor CRC as specified.
647 * If the descriptor is too long, it will return EIO otherwise EINVAL.
648 */
649
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 struct desc_tag *tag = blob;
654 uint16_t crc, crc_len;
655
656 crc_len = udf_rw16(tag->desc_crc_len);
657
658 /* check payload CRC if applicable */
659 if (crc_len == 0)
660 return 0;
661
662 if (crc_len > max_length)
663 return EIO;
664
665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 if (crc != udf_rw16(tag->desc_crc)) {
667 /* bad payload CRC; this is a broken tag */
668 return EINVAL;
669 }
670
671 return 0;
672 }
673
674
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 struct desc_tag *tag = blob;
679 uint8_t *pos, sum, cnt;
680
681 /* calculate TAG header checksum */
682 pos = (uint8_t *) tag;
683 sum = 0;
684
685 for(cnt = 0; cnt < 16; cnt++) {
686 if (cnt != 4) sum += *pos;
687 pos++;
688 }
689 tag->cksum = sum; /* 8 bit */
690 }
691
692
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 struct desc_tag *tag = blob;
698 uint8_t *btag = (uint8_t *) tag;
699 uint16_t crc, crc_len;
700
701 crc_len = udf_rw16(tag->desc_crc_len);
702
703 /* check payload CRC if applicable */
704 if (crc_len > 0) {
705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 tag->desc_crc = udf_rw16(crc);
707 }
708
709 /* calculate TAG header checksum */
710 udf_validate_tag_sum(blob);
711 }
712
713 /* --------------------------------------------------------------------- */
714
715 /*
716 * XXX note the different semantics from udfclient: for FIDs it still rounds
717 * up to sectors. Use udf_fidsize() for a correct length.
718 */
719
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 uint32_t size, tag_id, num_lb, elmsz;
724
725 tag_id = udf_rw16(dscr->tag.id);
726
727 switch (tag_id) {
728 case TAGID_LOGVOL :
729 size = sizeof(struct logvol_desc) - 1;
730 size += udf_rw32(dscr->lvd.mt_l);
731 break;
732 case TAGID_UNALLOC_SPACE :
733 elmsz = sizeof(struct extent_ad);
734 size = sizeof(struct unalloc_sp_desc) - elmsz;
735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 break;
737 case TAGID_FID :
738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 size = (size + 3) & ~3;
740 break;
741 case TAGID_LOGVOL_INTEGRITY :
742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 size += udf_rw32(dscr->lvid.l_iu);
744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 break;
746 case TAGID_SPACE_BITMAP :
747 size = sizeof(struct space_bitmap_desc) - 1;
748 size += udf_rw32(dscr->sbd.num_bytes);
749 break;
750 case TAGID_SPARING_TABLE :
751 elmsz = sizeof(struct spare_map_entry);
752 size = sizeof(struct udf_sparing_table) - elmsz;
753 size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 break;
755 case TAGID_FENTRY :
756 size = sizeof(struct file_entry);
757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 break;
759 case TAGID_EXTFENTRY :
760 size = sizeof(struct extfile_entry);
761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 break;
763 case TAGID_FSD :
764 size = sizeof(struct fileset_desc);
765 break;
766 default :
767 size = sizeof(union dscrptr);
768 break;
769 }
770
771 if ((size == 0) || (lb_size == 0))
772 return 0;
773
774 if (lb_size == 1)
775 return size;
776
777 /* round up in sectors */
778 num_lb = (size + lb_size -1) / lb_size;
779 return num_lb * lb_size;
780 }
781
782
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 uint32_t size;
787
788 if (udf_rw16(fid->tag.id) != TAGID_FID)
789 panic("got udf_fidsize on non FID\n");
790
791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 size = (size + 3) & ~3;
793
794 return size;
795 }
796
797 /* --------------------------------------------------------------------- */
798
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 int ret;
803
804 mutex_enter(&udf_node->node_mutex);
805 /* wait until free */
806 while (udf_node->i_flags & IN_LOCKED) {
807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 /* TODO check if we should return error; abort */
809 if (ret == EWOULDBLOCK) {
810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 "wanted at %s:%d, previously locked at %s:%d\n",
812 udf_node, fname, lineno,
813 udf_node->lock_fname, udf_node->lock_lineno));
814 }
815 }
816 /* grab */
817 udf_node->i_flags |= IN_LOCKED | flag;
818 /* debug */
819 udf_node->lock_fname = fname;
820 udf_node->lock_lineno = lineno;
821
822 mutex_exit(&udf_node->node_mutex);
823 }
824
825
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 mutex_enter(&udf_node->node_mutex);
830 udf_node->i_flags &= ~(IN_LOCKED | flag);
831 cv_broadcast(&udf_node->node_lock);
832 mutex_exit(&udf_node->node_mutex);
833 }
834
835
836 /* --------------------------------------------------------------------- */
837
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 int error;
842
843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 (union dscrptr **) dst);
845 if (!error) {
846 /* blank terminator blocks are not allowed here */
847 if (*dst == NULL)
848 return ENOENT;
849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 error = ENOENT;
851 free(*dst, M_UDFVOLD);
852 *dst = NULL;
853 DPRINTF(VOLUMES, ("Not an anchor\n"));
854 }
855 }
856
857 return error;
858 }
859
860
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 struct udf_args *args = &ump->mount_args;
865 struct mmc_trackinfo first_track;
866 struct mmc_trackinfo second_track;
867 struct mmc_trackinfo last_track;
868 struct anchor_vdp **anchorsp;
869 uint32_t track_start;
870 uint32_t track_end;
871 uint32_t positions[4];
872 int first_tracknr, last_tracknr;
873 int error, anch, ok, first_anchor;
874
875 /* search the first and last track of the specified session */
876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 if (!error) {
878 first_track.tracknr = first_tracknr;
879 error = udf_update_trackinfo(ump, &first_track);
880 }
881 if (!error) {
882 last_track.tracknr = last_tracknr;
883 error = udf_update_trackinfo(ump, &last_track);
884 }
885 if ((!error) && (first_tracknr != last_tracknr)) {
886 second_track.tracknr = first_tracknr+1;
887 error = udf_update_trackinfo(ump, &second_track);
888 }
889 if (error) {
890 printf("UDF mount: reading disc geometry failed\n");
891 return 0;
892 }
893
894 track_start = first_track.track_start;
895
896 /* `end' is not as straitforward as start. */
897 track_end = last_track.track_start
898 + last_track.track_size - last_track.free_blocks - 1;
899
900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 /* end of track is not straitforward here */
902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 track_end = last_track.last_recorded;
904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 track_end = last_track.next_writable
906 - ump->discinfo.link_block_penalty;
907 }
908
909 /* its no use reading a blank track */
910 first_anchor = 0;
911 if (first_track.flags & MMC_TRACKINFO_BLANK)
912 first_anchor = 1;
913
914 /* get our packet size */
915 ump->packet_size = first_track.packet_size;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 ump->packet_size = second_track.packet_size;
918
919 if (ump->packet_size <= 1) {
920 /* take max, but not bigger than 64 */
921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 ump->packet_size = MIN(ump->packet_size, 64);
923 }
924 KASSERT(ump->packet_size >= 1);
925
926 /* read anchors start+256, start+512, end-256, end */
927 positions[0] = track_start+256;
928 positions[1] = track_end-256;
929 positions[2] = track_end;
930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
932
933 ok = 0;
934 anchorsp = ump->anchors;
935 for (anch = first_anchor; anch < 4; anch++) {
936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 positions[anch]));
938 error = udf_read_anchor(ump, positions[anch], anchorsp);
939 if (!error) {
940 anchorsp++;
941 ok++;
942 }
943 }
944
945 /* VATs are only recorded on sequential media, but initialise */
946 ump->first_possible_vat_location = track_start + 2;
947 ump->last_possible_vat_location = track_end;
948
949 return ok;
950 }
951
952 /* --------------------------------------------------------------------- */
953
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 int isdir, what;
958
959 isdir = (udf_node->vnode->v_type == VDIR);
960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961
962 if (udf_node->ump)
963 if (udf_node == udf_node->ump->metadatabitmap_node)
964 what = UDF_C_METADATA_SBM;
965
966 return what;
967 }
968
969
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 int vpart_num;
974
975 vpart_num = ump->data_part;
976 if (udf_c_type == UDF_C_NODE)
977 vpart_num = ump->node_part;
978 if (udf_c_type == UDF_C_FIDS)
979 vpart_num = ump->fids_part;
980
981 return vpart_num;
982 }
983
984
985 /*
986 * BUGALERT: some rogue implementations use random physical partition
987 * numbers to break other implementations so lookup the number.
988 */
989
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 struct part_desc *part;
994 uint16_t phys_part;
995
996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 part = ump->partitions[phys_part];
998 if (part == NULL)
999 break;
1000 if (udf_rw16(part->part_num) == raw_phys_part)
1001 break;
1002 }
1003 return phys_part;
1004 }
1005
1006 /* --------------------------------------------------------------------- */
1007
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 if (name) \
1011 free(name, M_UDFVOLD); \
1012 name = dscr;
1013
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 uint16_t phys_part, raw_phys_part;
1018
1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 switch (udf_rw16(dscr->tag.id)) {
1022 case TAGID_PRI_VOL : /* primary partition */
1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 break;
1025 case TAGID_LOGVOL : /* logical volume */
1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 break;
1028 case TAGID_UNALLOC_SPACE : /* unallocated space */
1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 break;
1031 case TAGID_IMP_VOL : /* implementation */
1032 /* XXX do we care about multiple impl. descr ? */
1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 break;
1035 case TAGID_PARTITION : /* physical partition */
1036 /* not much use if its not allocated */
1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 free(dscr, M_UDFVOLD);
1039 break;
1040 }
1041
1042 /*
1043 * BUGALERT: some rogue implementations use random physical
1044 * partition numbers to break other implementations so lookup
1045 * the number.
1046 */
1047 raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049
1050 if (phys_part == UDF_PARTITIONS) {
1051 free(dscr, M_UDFVOLD);
1052 return EINVAL;
1053 }
1054
1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 break;
1057 case TAGID_VOL : /* volume space extender; rare */
1058 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 default :
1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 udf_rw16(dscr->tag.id)));
1064 free(dscr, M_UDFVOLD);
1065 }
1066
1067 return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070
1071 /* --------------------------------------------------------------------- */
1072
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 union dscrptr *dscr;
1077 uint32_t sector_size, dscr_size;
1078 int error;
1079
1080 sector_size = ump->discinfo.sector_size;
1081
1082 /* loc is sectornr, len is in bytes */
1083 error = EIO;
1084 while (len) {
1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 if (error)
1087 return error;
1088
1089 /* blank block is a terminator */
1090 if (dscr == NULL)
1091 return 0;
1092
1093 /* TERM descriptor is a terminator */
1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 free(dscr, M_UDFVOLD);
1096 return 0;
1097 }
1098
1099 /* process all others */
1100 dscr_size = udf_tagsize(dscr, sector_size);
1101 error = udf_process_vds_descriptor(ump, dscr);
1102 if (error) {
1103 free(dscr, M_UDFVOLD);
1104 break;
1105 }
1106 assert((dscr_size % sector_size) == 0);
1107
1108 len -= dscr_size;
1109 loc += dscr_size / sector_size;
1110 }
1111
1112 return error;
1113 }
1114
1115
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 /* struct udf_args *args = &ump->mount_args; */
1120 struct anchor_vdp *anchor, *anchor2;
1121 size_t size;
1122 uint32_t main_loc, main_len;
1123 uint32_t reserve_loc, reserve_len;
1124 int error;
1125
1126 /*
1127 * read in VDS space provided by the anchors; if one descriptor read
1128 * fails, try the mirror sector.
1129 *
1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 * avoids the `compatibility features' of DirectCD that may confuse
1132 * stuff completely.
1133 */
1134
1135 anchor = ump->anchors[0];
1136 anchor2 = ump->anchors[1];
1137 assert(anchor);
1138
1139 if (anchor2) {
1140 size = sizeof(struct extent_ad);
1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 anchor = anchor2;
1143 /* reserve is specified to be a literal copy of main */
1144 }
1145
1146 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1147 main_len = udf_rw32(anchor->main_vds_ex.len);
1148
1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151
1152 error = udf_read_vds_extent(ump, main_loc, main_len);
1153 if (error) {
1154 printf("UDF mount: reading in reserve VDS extent\n");
1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 }
1157
1158 return error;
1159 }
1160
1161 /* --------------------------------------------------------------------- */
1162
1163 /*
1164 * Read in the logical volume integrity sequence pointed to by our logical
1165 * volume descriptor. Its a sequence that can be extended using fields in the
1166 * integrity descriptor itself. On sequential media only one is found, on
1167 * rewritable media a sequence of descriptors can be found as a form of
1168 * history keeping and on non sequential write-once media the chain is vital
1169 * to allow more and more descriptors to be written. The last descriptor
1170 * written in an extent needs to claim space for a new extent.
1171 */
1172
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 union dscrptr *dscr;
1177 struct logvol_int_desc *lvint;
1178 struct udf_lvintq *trace;
1179 uint32_t lb_size, lbnum, len;
1180 int dscr_type, error, trace_len;
1181
1182 lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185
1186 /* clean trace */
1187 memset(ump->lvint_trace, 0,
1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189
1190 trace_len = 0;
1191 trace = ump->lvint_trace;
1192 trace->start = lbnum;
1193 trace->end = lbnum + len/lb_size;
1194 trace->pos = 0;
1195 trace->wpos = 0;
1196
1197 lvint = NULL;
1198 dscr = NULL;
1199 error = 0;
1200 while (len) {
1201 trace->pos = lbnum - trace->start;
1202 trace->wpos = trace->pos + 1;
1203
1204 /* read in our integrity descriptor */
1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 if (!error) {
1207 if (dscr == NULL) {
1208 trace->wpos = trace->pos;
1209 break; /* empty terminates */
1210 }
1211 dscr_type = udf_rw16(dscr->tag.id);
1212 if (dscr_type == TAGID_TERM) {
1213 trace->wpos = trace->pos;
1214 break; /* clean terminator */
1215 }
1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 /* fatal... corrupt disc */
1218 error = ENOENT;
1219 break;
1220 }
1221 if (lvint)
1222 free(lvint, M_UDFVOLD);
1223 lvint = &dscr->lvid;
1224 dscr = NULL;
1225 } /* else hope for the best... maybe the next is ok */
1226
1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229
1230 /* proceed sequential */
1231 lbnum += 1;
1232 len -= lb_size;
1233
1234 /* are we linking to a new piece? */
1235 if (dscr && lvint->next_extent.len) {
1236 len = udf_rw32(lvint->next_extent.len);
1237 lbnum = udf_rw32(lvint->next_extent.loc);
1238
1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 /* IEK! segment link full... */
1241 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 error = EINVAL;
1243 } else {
1244 trace++;
1245 trace_len++;
1246
1247 trace->start = lbnum;
1248 trace->end = lbnum + len/lb_size;
1249 trace->pos = 0;
1250 trace->wpos = 0;
1251 }
1252 }
1253 }
1254
1255 /* clean up the mess, esp. when there is an error */
1256 if (dscr)
1257 free(dscr, M_UDFVOLD);
1258
1259 if (error && lvint) {
1260 free(lvint, M_UDFVOLD);
1261 lvint = NULL;
1262 }
1263
1264 if (!lvint)
1265 error = ENOENT;
1266
1267 ump->logvol_integrity = lvint;
1268 return error;
1269 }
1270
1271
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 union dscrptr **bufs, *dscr, *last_dscr;
1276 struct udf_lvintq *trace, *in_trace, *out_trace;
1277 struct logvol_int_desc *lvint;
1278 uint32_t in_ext, in_pos, in_len;
1279 uint32_t out_ext, out_wpos, out_len;
1280 uint32_t lb_num;
1281 uint32_t len, start;
1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type;
1283 int losing;
1284 int error;
1285
1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287
1288 /* search smallest extent */
1289 trace = &ump->lvint_trace[0];
1290 sumext = trace->end - trace->start;
1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 trace = &ump->lvint_trace[ext];
1293 extlen = trace->end - trace->start;
1294 if (extlen == 0)
1295 break;
1296 sumext += extlen;
1297 }
1298
1299 /* just one element? its not legal but be bug compatible */
1300 if (sumext == 1) {
1301 /* overwrite the only entry */
1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n"));
1303 trace = &ump->lvint_trace[0];
1304 trace->wpos = 0;
1305 return 0;
1306 }
1307
1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE);
1309
1310 /* no sense wiping too much */
1311 if (sumext == UDF_LVINT_LOSSAGE)
1312 losing = UDF_LVINT_LOSSAGE/2;
1313
1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1315
1316 /* get buffer for pieces */
1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1318
1319 in_ext = 0;
1320 in_pos = losing;
1321 in_trace = &ump->lvint_trace[in_ext];
1322 in_len = in_trace->end - in_trace->start;
1323 out_ext = 0;
1324 out_wpos = 0;
1325 out_trace = &ump->lvint_trace[out_ext];
1326 out_len = out_trace->end - out_trace->start;
1327
1328 last_dscr = NULL;
1329 for(;;) {
1330 out_trace->pos = out_wpos;
1331 out_trace->wpos = out_trace->pos;
1332 if (in_pos >= in_len) {
1333 in_ext++;
1334 in_pos = 0;
1335 in_trace = &ump->lvint_trace[in_ext];
1336 in_len = in_trace->end - in_trace->start;
1337 }
1338 if (out_wpos >= out_len) {
1339 out_ext++;
1340 out_wpos = 0;
1341 out_trace = &ump->lvint_trace[out_ext];
1342 out_len = out_trace->end - out_trace->start;
1343 }
1344 /* copy overlap contents */
1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1347 if (cpy_len == 0)
1348 break;
1349
1350 /* copy */
1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1352 for (cnt = 0; cnt < cpy_len; cnt++) {
1353 /* read in our integrity descriptor */
1354 lb_num = in_trace->start + in_pos + cnt;
1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1356 &dscr);
1357 if (error) {
1358 /* copy last one */
1359 dscr = last_dscr;
1360 }
1361 bufs[cnt] = dscr;
1362 if (!error) {
1363 if (dscr == NULL) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* empty terminates */
1367 }
1368 dscr_type = udf_rw16(dscr->tag.id);
1369 if (dscr_type == TAGID_TERM) {
1370 out_trace->pos = out_wpos + cnt;
1371 out_trace->wpos = out_trace->pos;
1372 break; /* clean terminator */
1373 }
1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1375 panic( "UDF integrity sequence "
1376 "corrupted while mounted!\n");
1377 }
1378 last_dscr = dscr;
1379 }
1380 }
1381
1382 /* patch up if first entry was on error */
1383 if (bufs[0] == NULL) {
1384 for (cnt = 0; cnt < cpy_len; cnt++)
1385 if (bufs[cnt] != NULL)
1386 break;
1387 last_dscr = bufs[cnt];
1388 for (; cnt > 0; cnt--) {
1389 bufs[cnt] = last_dscr;
1390 }
1391 }
1392
1393 /* glue + write out */
1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1395 for (cnt = 0; cnt < cpy_len; cnt++) {
1396 lb_num = out_trace->start + out_wpos + cnt;
1397 lvint = &bufs[cnt]->lvid;
1398
1399 /* set continuation */
1400 len = 0;
1401 start = 0;
1402 if (out_wpos + cnt == out_len) {
1403 /* get continuation */
1404 trace = &ump->lvint_trace[out_ext+1];
1405 len = trace->end - trace->start;
1406 start = trace->start;
1407 }
1408 lvint->next_extent.len = udf_rw32(len);
1409 lvint->next_extent.loc = udf_rw32(start);
1410
1411 lb_num = trace->start + trace->wpos;
1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1413 bufs[cnt], lb_num, lb_num);
1414 DPRINTFIF(VOLUMES, error,
1415 ("error writing lvint lb_num\n"));
1416 }
1417
1418 /* free non repeating descriptors */
1419 last_dscr = NULL;
1420 for (cnt = 0; cnt < cpy_len; cnt++) {
1421 if (bufs[cnt] != last_dscr)
1422 free(bufs[cnt], M_UDFVOLD);
1423 last_dscr = bufs[cnt];
1424 }
1425
1426 /* advance */
1427 in_pos += cpy_len;
1428 out_wpos += cpy_len;
1429 }
1430
1431 free(bufs, M_TEMP);
1432
1433 return 0;
1434 }
1435
1436
1437 static int
1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1439 {
1440 struct udf_lvintq *trace;
1441 struct timeval now_v;
1442 struct timespec now_s;
1443 uint32_t sector;
1444 int logvol_integrity;
1445 int space, error;
1446
1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1448
1449 /* get free space in last chunk */
1450 trace = ump->lvint_trace;
1451 while (trace->wpos > (trace->end - trace->start)) {
1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1453 "wpos = %d\n", trace->start, trace->end,
1454 trace->pos, trace->wpos));
1455 trace++;
1456 }
1457
1458 /* check if there is space to append */
1459 space = (trace->end - trace->start) - trace->wpos;
1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1461 "space = %d\n", trace->start, trace->end, trace->pos,
1462 trace->wpos, space));
1463
1464 /* get state */
1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1468 /* TODO extent LVINT space if possible */
1469 return EROFS;
1470 }
1471 }
1472
1473 if (space < 1) {
1474 if (lvflag & UDF_APPENDONLY_LVINT)
1475 return EROFS;
1476
1477 /* loose history by re-writing extents */
1478 error = udf_loose_lvint_history(ump);
1479 if (error)
1480 return error;
1481
1482 trace = ump->lvint_trace;
1483 while (trace->wpos > (trace->end - trace->start))
1484 trace++;
1485 space = (trace->end - trace->start) - trace->wpos;
1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, "
1487 "pos = %d, wpos = %d, "
1488 "space = %d\n", trace->start, trace->end,
1489 trace->pos, trace->wpos, space));
1490 }
1491
1492 /* update our integrity descriptor to identify us and timestamp it */
1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1494 microtime(&now_v);
1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1499
1500 /* writeout integrity descriptor */
1501 sector = trace->start + trace->wpos;
1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1503 (union dscrptr *) ump->logvol_integrity,
1504 sector, sector);
1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1506 if (error)
1507 return error;
1508
1509 /* advance write position */
1510 trace->wpos++; space--;
1511 if (space >= 1) {
1512 /* append terminator */
1513 sector = trace->start + trace->wpos;
1514 error = udf_write_terminator(ump, sector);
1515
1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1517 }
1518
1519 space = (trace->end - trace->start) - trace->wpos;
1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1521 "space = %d\n", trace->start, trace->end, trace->pos,
1522 trace->wpos, space));
1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1524 "successfull\n"));
1525
1526 return error;
1527 }
1528
1529 /* --------------------------------------------------------------------- */
1530
1531 static int
1532 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1533 {
1534 union dscrptr *dscr;
1535 /* struct udf_args *args = &ump->mount_args; */
1536 struct part_desc *partd;
1537 struct part_hdr_desc *parthdr;
1538 struct udf_bitmap *bitmap;
1539 uint32_t phys_part;
1540 uint32_t lb_num, len;
1541 int error, dscr_type;
1542
1543 /* unallocated space map */
1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1545 partd = ump->partitions[phys_part];
1546 if (partd == NULL)
1547 continue;
1548 parthdr = &partd->_impl_use.part_hdr;
1549
1550 lb_num = udf_rw32(partd->start_loc);
1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1553 if (len == 0)
1554 continue;
1555
1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1558 if (!error && dscr) {
1559 /* analyse */
1560 dscr_type = udf_rw16(dscr->tag.id);
1561 if (dscr_type == TAGID_SPACE_BITMAP) {
1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1564
1565 /* fill in ump->part_unalloc_bits */
1566 bitmap = &ump->part_unalloc_bits[phys_part];
1567 bitmap->blob = (uint8_t *) dscr;
1568 bitmap->bits = dscr->sbd.data;
1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1570 bitmap->pages = NULL; /* TODO */
1571 bitmap->data_pos = 0;
1572 bitmap->metadata_pos = 0;
1573 } else {
1574 free(dscr, M_UDFVOLD);
1575
1576 printf( "UDF mount: error reading unallocated "
1577 "space bitmap\n");
1578 return EROFS;
1579 }
1580 } else {
1581 /* blank not allowed */
1582 printf("UDF mount: blank unallocated space bitmap\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* unallocated space table (not supported) */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 len = udf_rw32(parthdr->unalloc_space_table.len);
1595 if (len) {
1596 printf("UDF mount: space tables not supported\n");
1597 return EROFS;
1598 }
1599 }
1600
1601 /* freed space map */
1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1603 partd = ump->partitions[phys_part];
1604 if (partd == NULL)
1605 continue;
1606 parthdr = &partd->_impl_use.part_hdr;
1607
1608 /* freed space map */
1609 lb_num = udf_rw32(partd->start_loc);
1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1611 len = udf_rw32(parthdr->freed_space_bitmap.len);
1612 if (len == 0)
1613 continue;
1614
1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1617 if (!error && dscr) {
1618 /* analyse */
1619 dscr_type = udf_rw16(dscr->tag.id);
1620 if (dscr_type == TAGID_SPACE_BITMAP) {
1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1622 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1623
1624 /* fill in ump->part_freed_bits */
1625 bitmap = &ump->part_unalloc_bits[phys_part];
1626 bitmap->blob = (uint8_t *) dscr;
1627 bitmap->bits = dscr->sbd.data;
1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1629 bitmap->pages = NULL; /* TODO */
1630 bitmap->data_pos = 0;
1631 bitmap->metadata_pos = 0;
1632 } else {
1633 free(dscr, M_UDFVOLD);
1634
1635 printf( "UDF mount: error reading freed "
1636 "space bitmap\n");
1637 return EROFS;
1638 }
1639 } else {
1640 /* blank not allowed */
1641 printf("UDF mount: blank freed space bitmap\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 /* freed space table (not supported) */
1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1648 partd = ump->partitions[phys_part];
1649 if (partd == NULL)
1650 continue;
1651 parthdr = &partd->_impl_use.part_hdr;
1652
1653 len = udf_rw32(parthdr->freed_space_table.len);
1654 if (len) {
1655 printf("UDF mount: space tables not supported\n");
1656 return EROFS;
1657 }
1658 }
1659
1660 return 0;
1661 }
1662
1663
1664 /* TODO implement async writeout */
1665 int
1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1667 {
1668 union dscrptr *dscr;
1669 /* struct udf_args *args = &ump->mount_args; */
1670 struct part_desc *partd;
1671 struct part_hdr_desc *parthdr;
1672 uint32_t phys_part;
1673 uint32_t lb_num, len, ptov;
1674 int error_all, error;
1675
1676 error_all = 0;
1677 /* unallocated space map */
1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1679 partd = ump->partitions[phys_part];
1680 if (partd == NULL)
1681 continue;
1682 parthdr = &partd->_impl_use.part_hdr;
1683
1684 ptov = udf_rw32(partd->start_loc);
1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1687 if (len == 0)
1688 continue;
1689
1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1691 lb_num + ptov));
1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1693
1694 /* force a sane minimum for descriptors CRC length */
1695 /* see UDF 2.3.1.2 and 2.3.8.1 */
1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1699
1700 /* write out space bitmap */
1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1702 (union dscrptr *) dscr,
1703 ptov + lb_num, lb_num);
1704 if (error) {
1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1706 error_all = error;
1707 }
1708 }
1709
1710 /* freed space map */
1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1712 partd = ump->partitions[phys_part];
1713 if (partd == NULL)
1714 continue;
1715 parthdr = &partd->_impl_use.part_hdr;
1716
1717 /* freed space map */
1718 ptov = udf_rw32(partd->start_loc);
1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1720 len = udf_rw32(parthdr->freed_space_bitmap.len);
1721 if (len == 0)
1722 continue;
1723
1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1725 lb_num + ptov));
1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1727
1728 /* force a sane minimum for descriptors CRC length */
1729 /* see UDF 2.3.1.2 and 2.3.8.1 */
1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1733
1734 /* write out space bitmap */
1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1736 (union dscrptr *) dscr,
1737 ptov + lb_num, lb_num);
1738 if (error) {
1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1740 error_all = error;
1741 }
1742 }
1743
1744 return error_all;
1745 }
1746
1747
1748 static int
1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1750 {
1751 struct udf_node *bitmap_node;
1752 union dscrptr *dscr;
1753 struct udf_bitmap *bitmap;
1754 uint64_t inflen;
1755 int error, dscr_type;
1756
1757 bitmap_node = ump->metadatabitmap_node;
1758
1759 /* only read in when metadata bitmap node is read in */
1760 if (bitmap_node == NULL)
1761 return 0;
1762
1763 if (bitmap_node->fe) {
1764 inflen = udf_rw64(bitmap_node->fe->inf_len);
1765 } else {
1766 KASSERT(bitmap_node->efe);
1767 inflen = udf_rw64(bitmap_node->efe->inf_len);
1768 }
1769
1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1771 "%"PRIu64" bytes\n", inflen));
1772
1773 /* allocate space for bitmap */
1774 dscr = malloc(inflen, M_UDFVOLD, M_WAITOK);
1775 if (!dscr)
1776 return ENOMEM;
1777
1778 /* set vnode type to regular file or we can't read from it! */
1779 bitmap_node->vnode->v_type = VREG;
1780
1781 /* read in complete metadata bitmap file */
1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1783 dscr,
1784 inflen, 0,
1785 UIO_SYSSPACE,
1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1787 NULL, NULL);
1788 if (error) {
1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1790 goto errorout;
1791 }
1792
1793 /* analyse */
1794 dscr_type = udf_rw16(dscr->tag.id);
1795 if (dscr_type == TAGID_SPACE_BITMAP) {
1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1797 ump->metadata_unalloc_dscr = &dscr->sbd;
1798
1799 /* fill in bitmap bits */
1800 bitmap = &ump->metadata_unalloc_bits;
1801 bitmap->blob = (uint8_t *) dscr;
1802 bitmap->bits = dscr->sbd.data;
1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1804 bitmap->pages = NULL; /* TODO */
1805 bitmap->data_pos = 0;
1806 bitmap->metadata_pos = 0;
1807 } else {
1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1809 goto errorout;
1810 }
1811
1812 return 0;
1813
1814 errorout:
1815 free(dscr, M_UDFVOLD);
1816 printf( "UDF mount: error reading unallocated "
1817 "space bitmap for metadata partition\n");
1818 return EROFS;
1819 }
1820
1821
1822 int
1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1824 {
1825 struct udf_node *bitmap_node;
1826 union dscrptr *dscr;
1827 uint64_t new_inflen;
1828 int dummy, error;
1829
1830 bitmap_node = ump->metadatabitmap_node;
1831
1832 /* only write out when metadata bitmap node is known */
1833 if (bitmap_node == NULL)
1834 return 0;
1835
1836 if (!bitmap_node->fe) {
1837 KASSERT(bitmap_node->efe);
1838 }
1839
1840 /* reduce length to zero */
1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1842 new_inflen = udf_tagsize(dscr, 1);
1843
1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1845 " for %"PRIu64" bytes\n", new_inflen));
1846
1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1848 if (error)
1849 printf("Error resizing metadata space bitmap\n");
1850
1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1852 dscr,
1853 new_inflen, 0,
1854 UIO_SYSSPACE,
1855 IO_ALTSEMANTICS, FSCRED,
1856 NULL, NULL);
1857
1858 bitmap_node->i_flags |= IN_MODIFIED;
1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1860 if (error == 0)
1861 error = VOP_FSYNC(bitmap_node->vnode,
1862 FSCRED, FSYNC_WAIT, 0, 0);
1863
1864 if (error)
1865 printf( "Error writing out metadata partition unalloced "
1866 "space bitmap!\n");
1867
1868 return error;
1869 }
1870
1871
1872 /* --------------------------------------------------------------------- */
1873
1874 /*
1875 * Checks if ump's vds information is correct and complete
1876 */
1877
1878 int
1879 udf_process_vds(struct udf_mount *ump) {
1880 union udf_pmap *mapping;
1881 /* struct udf_args *args = &ump->mount_args; */
1882 struct logvol_int_desc *lvint;
1883 struct udf_logvol_info *lvinfo;
1884 uint32_t n_pm;
1885 uint8_t *pmap_pos;
1886 char *domain_name, *map_name;
1887 const char *check_name;
1888 char bits[128];
1889 int pmap_stype, pmap_size;
1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1891 int n_phys, n_virt, n_spar, n_meta;
1892 int len;
1893
1894 if (ump == NULL)
1895 return ENOENT;
1896
1897 /* we need at least an anchor (trivial, but for safety) */
1898 if (ump->anchors[0] == NULL)
1899 return EINVAL;
1900
1901 /* we need at least one primary and one logical volume descriptor */
1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1903 return EINVAL;
1904
1905 /* we need at least one partition descriptor */
1906 if (ump->partitions[0] == NULL)
1907 return EINVAL;
1908
1909 /* check logical volume sector size verses device sector size */
1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1911 printf("UDF mount: format violation, lb_size != sector size\n");
1912 return EINVAL;
1913 }
1914
1915 /* check domain name */
1916 domain_name = ump->logical_vol->domain_id.id;
1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1919 return EINVAL;
1920 }
1921
1922 /* retrieve logical volume integrity sequence */
1923 (void)udf_retrieve_lvint(ump);
1924
1925 /*
1926 * We need at least one logvol integrity descriptor recorded. Note
1927 * that its OK to have an open logical volume integrity here. The VAT
1928 * will close/update the integrity.
1929 */
1930 if (ump->logvol_integrity == NULL)
1931 return EINVAL;
1932
1933 /* process derived structures */
1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1935 lvint = ump->logvol_integrity;
1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1937 ump->logvol_info = lvinfo;
1938
1939 /* TODO check udf versions? */
1940
1941 /*
1942 * check logvol mappings: effective virt->log partmap translation
1943 * check and recording of the mapping results. Saves expensive
1944 * strncmp() in tight places.
1945 */
1946 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1948 pmap_pos = ump->logical_vol->maps;
1949
1950 if (n_pm > UDF_PMAPS) {
1951 printf("UDF mount: too many mappings\n");
1952 return EINVAL;
1953 }
1954
1955 /* count types and set partition numbers */
1956 ump->data_part = ump->node_part = ump->fids_part = 0;
1957 n_phys = n_virt = n_spar = n_meta = 0;
1958 for (log_part = 0; log_part < n_pm; log_part++) {
1959 mapping = (union udf_pmap *) pmap_pos;
1960 pmap_stype = pmap_pos[0];
1961 pmap_size = pmap_pos[1];
1962 switch (pmap_stype) {
1963 case 1: /* physical mapping */
1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1965 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1966 pmap_type = UDF_VTOP_TYPE_PHYS;
1967 n_phys++;
1968 ump->data_part = log_part;
1969 ump->node_part = log_part;
1970 ump->fids_part = log_part;
1971 break;
1972 case 2: /* virtual/sparable/meta mapping */
1973 map_name = mapping->pm2.part_id.id;
1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1975 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1977 len = UDF_REGID_ID_SIZE;
1978
1979 check_name = "*UDF Virtual Partition";
1980 if (strncmp(map_name, check_name, len) == 0) {
1981 pmap_type = UDF_VTOP_TYPE_VIRT;
1982 n_virt++;
1983 ump->node_part = log_part;
1984 break;
1985 }
1986 check_name = "*UDF Sparable Partition";
1987 if (strncmp(map_name, check_name, len) == 0) {
1988 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1989 n_spar++;
1990 ump->data_part = log_part;
1991 ump->node_part = log_part;
1992 ump->fids_part = log_part;
1993 break;
1994 }
1995 check_name = "*UDF Metadata Partition";
1996 if (strncmp(map_name, check_name, len) == 0) {
1997 pmap_type = UDF_VTOP_TYPE_META;
1998 n_meta++;
1999 ump->node_part = log_part;
2000 ump->fids_part = log_part;
2001 break;
2002 }
2003 break;
2004 default:
2005 return EINVAL;
2006 }
2007
2008 /*
2009 * BUGALERT: some rogue implementations use random physical
2010 * partition numbers to break other implementations so lookup
2011 * the number.
2012 */
2013 phys_part = udf_find_raw_phys(ump, raw_phys_part);
2014
2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
2016 raw_phys_part, phys_part, pmap_type));
2017
2018 if (phys_part == UDF_PARTITIONS)
2019 return EINVAL;
2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
2021 return EINVAL;
2022
2023 ump->vtop [log_part] = phys_part;
2024 ump->vtop_tp[log_part] = pmap_type;
2025
2026 pmap_pos += pmap_size;
2027 }
2028 /* not winning the beauty contest */
2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2030
2031 /* test some basic UDF assertions/requirements */
2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2033 return EINVAL;
2034
2035 if (n_virt) {
2036 if ((n_phys == 0) || n_spar || n_meta)
2037 return EINVAL;
2038 }
2039 if (n_spar + n_phys == 0)
2040 return EINVAL;
2041
2042 /* select allocation type for each logical partition */
2043 for (log_part = 0; log_part < n_pm; log_part++) {
2044 maps_on = ump->vtop[log_part];
2045 switch (ump->vtop_tp[log_part]) {
2046 case UDF_VTOP_TYPE_PHYS :
2047 assert(maps_on == log_part);
2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2049 break;
2050 case UDF_VTOP_TYPE_VIRT :
2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2053 break;
2054 case UDF_VTOP_TYPE_SPARABLE :
2055 assert(maps_on == log_part);
2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2057 break;
2058 case UDF_VTOP_TYPE_META :
2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2061 /* special case for UDF 2.60 */
2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2064 }
2065 break;
2066 default:
2067 panic("bad alloction type in udf's ump->vtop\n");
2068 }
2069 }
2070
2071 /* determine logical volume open/closure actions */
2072 if (n_virt) {
2073 ump->lvopen = 0;
2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2075 ump->lvopen |= UDF_OPEN_SESSION ;
2076 ump->lvclose = UDF_WRITE_VAT;
2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2078 ump->lvclose |= UDF_CLOSE_SESSION;
2079 } else {
2080 /* `normal' rewritable or non sequential media */
2081 ump->lvopen = UDF_WRITE_LVINT;
2082 ump->lvclose = UDF_WRITE_LVINT;
2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2084 ump->lvopen |= UDF_APPENDONLY_LVINT;
2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2087 }
2088
2089 /*
2090 * Determine sheduler error behaviour. For virtual partitions, update
2091 * the trackinfo; for sparable partitions replace a whole block on the
2092 * sparable table. Allways requeue.
2093 */
2094 ump->lvreadwrite = 0;
2095 if (n_virt)
2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2097 if (n_spar)
2098 ump->lvreadwrite = UDF_REMAP_BLOCK;
2099
2100 /*
2101 * Select our sheduler
2102 */
2103 ump->strategy = &udf_strat_rmw;
2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2105 ump->strategy = &udf_strat_sequential;
2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2108 ump->strategy = &udf_strat_direct;
2109 if (n_spar)
2110 ump->strategy = &udf_strat_rmw;
2111
2112 #if 0
2113 /* read-only access won't benefit from the other shedulers */
2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2115 ump->strategy = &udf_strat_direct;
2116 #endif
2117
2118 /* print results */
2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2125
2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2132
2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2134 (ump->strategy == &udf_strat_direct) ? "Direct" :
2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2137
2138 /* signal its OK for now */
2139 return 0;
2140 }
2141
2142 /* --------------------------------------------------------------------- */
2143
2144 /*
2145 * Update logical volume name in all structures that keep a record of it. We
2146 * use memmove since each of them might be specified as a source.
2147 *
2148 * Note that it doesn't update the VAT structure!
2149 */
2150
2151 static void
2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2153 {
2154 struct logvol_desc *lvd = NULL;
2155 struct fileset_desc *fsd = NULL;
2156 struct udf_lv_info *lvi = NULL;
2157
2158 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2159 lvd = ump->logical_vol;
2160 fsd = ump->fileset_desc;
2161 if (ump->implementation)
2162 lvi = &ump->implementation->_impl_use.lv_info;
2163
2164 /* logvol's id might be specified as origional so use memmove here */
2165 memmove(lvd->logvol_id, logvol_id, 128);
2166 if (fsd)
2167 memmove(fsd->logvol_id, logvol_id, 128);
2168 if (lvi)
2169 memmove(lvi->logvol_id, logvol_id, 128);
2170 }
2171
2172 /* --------------------------------------------------------------------- */
2173
2174 void
2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2176 uint32_t sector)
2177 {
2178 assert(ump->logical_vol);
2179
2180 tag->id = udf_rw16(tagid);
2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2182 tag->cksum = 0;
2183 tag->reserved = 0;
2184 tag->serial_num = ump->logical_vol->tag.serial_num;
2185 tag->tag_loc = udf_rw32(sector);
2186 }
2187
2188
2189 uint64_t
2190 udf_advance_uniqueid(struct udf_mount *ump)
2191 {
2192 uint64_t unique_id;
2193
2194 mutex_enter(&ump->logvol_mutex);
2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2196 if (unique_id < 0x10)
2197 unique_id = 0x10;
2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2199 mutex_exit(&ump->logvol_mutex);
2200
2201 return unique_id;
2202 }
2203
2204
2205 static void
2206 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2207 {
2208 struct udf_mount *ump = udf_node->ump;
2209 uint32_t num_dirs, num_files;
2210 int udf_file_type;
2211
2212 /* get file type */
2213 if (udf_node->fe) {
2214 udf_file_type = udf_node->fe->icbtag.file_type;
2215 } else {
2216 udf_file_type = udf_node->efe->icbtag.file_type;
2217 }
2218
2219 /* adjust file count */
2220 mutex_enter(&ump->allocate_mutex);
2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2222 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2223 ump->logvol_info->num_directories =
2224 udf_rw32((num_dirs + sign));
2225 } else {
2226 num_files = udf_rw32(ump->logvol_info->num_files);
2227 ump->logvol_info->num_files =
2228 udf_rw32((num_files + sign));
2229 }
2230 mutex_exit(&ump->allocate_mutex);
2231 }
2232
2233
2234 void
2235 udf_osta_charset(struct charspec *charspec)
2236 {
2237 memset(charspec, 0, sizeof(struct charspec));
2238 charspec->type = 0;
2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2240 }
2241
2242
2243 /* first call udf_set_regid and then the suffix */
2244 void
2245 udf_set_regid(struct regid *regid, char const *name)
2246 {
2247 memset(regid, 0, sizeof(struct regid));
2248 regid->flags = 0; /* not dirty and not protected */
2249 strcpy((char *) regid->id, name);
2250 }
2251
2252
2253 void
2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2255 {
2256 uint16_t *ver;
2257
2258 ver = (uint16_t *) regid->id_suffix;
2259 *ver = ump->logvol_info->min_udf_readver;
2260 }
2261
2262
2263 void
2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2265 {
2266 uint16_t *ver;
2267
2268 ver = (uint16_t *) regid->id_suffix;
2269 *ver = ump->logvol_info->min_udf_readver;
2270
2271 regid->id_suffix[2] = 4; /* unix */
2272 regid->id_suffix[3] = 8; /* NetBSD */
2273 }
2274
2275
2276 void
2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2278 {
2279 regid->id_suffix[0] = 4; /* unix */
2280 regid->id_suffix[1] = 8; /* NetBSD */
2281 }
2282
2283
2284 void
2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2286 {
2287 regid->id_suffix[0] = APP_VERSION_MAIN;
2288 regid->id_suffix[1] = APP_VERSION_SUB;
2289 }
2290
2291 static int
2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2293 struct long_ad *parent, uint64_t unique_id)
2294 {
2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2296 int fidsize = 40;
2297
2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2301 fid->icb = *parent;
2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2305
2306 return fidsize;
2307 }
2308
2309 /* --------------------------------------------------------------------- */
2310
2311 /*
2312 * Extended attribute support. UDF knows of 3 places for extended attributes:
2313 *
2314 * (a) inside the file's (e)fe in the length of the extended attribute area
2315 * before the allocation descriptors/filedata
2316 *
2317 * (b) in a file referenced by (e)fe->ext_attr_icb and
2318 *
2319 * (c) in the e(fe)'s associated stream directory that can hold various
2320 * sub-files. In the stream directory a few fixed named subfiles are reserved
2321 * for NT/Unix ACL's and OS/2 attributes.
2322 *
2323 * NOTE: Extended attributes are read randomly but allways written
2324 * *atomicaly*. For ACL's this interface is propably different but not known
2325 * to me yet.
2326 *
2327 * Order of extended attributes in a space :
2328 * ECMA 167 EAs
2329 * Non block aligned Implementation Use EAs
2330 * Block aligned Implementation Use EAs
2331 * Application Use EAs
2332 */
2333
2334 static int
2335 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2336 {
2337 uint16_t *spos;
2338
2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2340 /* checksum valid? */
2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2342 spos = (uint16_t *) implext->data;
2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2344 return EINVAL;
2345 }
2346 return 0;
2347 }
2348
2349 static void
2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2351 {
2352 uint16_t *spos;
2353
2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2355 /* set checksum */
2356 spos = (uint16_t *) implext->data;
2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2358 }
2359 }
2360
2361
2362 int
2363 udf_extattr_search_intern(struct udf_node *node,
2364 uint32_t sattr, char const *sattrname,
2365 uint32_t *offsetp, uint32_t *lengthp)
2366 {
2367 struct extattrhdr_desc *eahdr;
2368 struct extattr_entry *attrhdr;
2369 struct impl_extattr_entry *implext;
2370 uint32_t offset, a_l, sector_size;
2371 int32_t l_ea;
2372 uint8_t *pos;
2373 int error;
2374
2375 /* get mountpoint */
2376 sector_size = node->ump->discinfo.sector_size;
2377
2378 /* get information from fe/efe */
2379 if (node->fe) {
2380 l_ea = udf_rw32(node->fe->l_ea);
2381 eahdr = (struct extattrhdr_desc *) node->fe->data;
2382 } else {
2383 assert(node->efe);
2384 l_ea = udf_rw32(node->efe->l_ea);
2385 eahdr = (struct extattrhdr_desc *) node->efe->data;
2386 }
2387
2388 /* something recorded here? */
2389 if (l_ea == 0)
2390 return ENOENT;
2391
2392 /* check extended attribute tag; what to do if it fails? */
2393 error = udf_check_tag(eahdr);
2394 if (error)
2395 return EINVAL;
2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2397 return EINVAL;
2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2399 if (error)
2400 return EINVAL;
2401
2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2403
2404 /* looking for Ecma-167 attributes? */
2405 offset = sizeof(struct extattrhdr_desc);
2406
2407 /* looking for either implemenation use or application use */
2408 if (sattr == 2048) { /* [4/48.10.8] */
2409 offset = udf_rw32(eahdr->impl_attr_loc);
2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2411 return ENOENT;
2412 }
2413 if (sattr == 65536) { /* [4/48.10.9] */
2414 offset = udf_rw32(eahdr->appl_attr_loc);
2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2416 return ENOENT;
2417 }
2418
2419 /* paranoia check offset and l_ea */
2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2421 return EINVAL;
2422
2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2424
2425 /* find our extended attribute */
2426 l_ea -= offset;
2427 pos = (uint8_t *) eahdr + offset;
2428
2429 while (l_ea >= sizeof(struct extattr_entry)) {
2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2431 attrhdr = (struct extattr_entry *) pos;
2432 implext = (struct impl_extattr_entry *) pos;
2433
2434 /* get complete attribute length and check for roque values */
2435 a_l = udf_rw32(attrhdr->a_l);
2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2437 udf_rw32(attrhdr->type),
2438 attrhdr->subtype, a_l, l_ea));
2439 if ((a_l == 0) || (a_l > l_ea))
2440 return EINVAL;
2441
2442 if (attrhdr->type != sattr)
2443 goto next_attribute;
2444
2445 /* we might have found it! */
2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2447 *offsetp = offset;
2448 *lengthp = a_l;
2449 return 0; /* success */
2450 }
2451
2452 /*
2453 * Implementation use and application use extended attributes
2454 * have a name to identify. They share the same structure only
2455 * UDF implementation use extended attributes have a checksum
2456 * we need to check
2457 */
2458
2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2460 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2461 /* we have found our appl/implementation attribute */
2462 *offsetp = offset;
2463 *lengthp = a_l;
2464 return 0; /* success */
2465 }
2466
2467 next_attribute:
2468 /* next attribute */
2469 pos += a_l;
2470 l_ea -= a_l;
2471 offset += a_l;
2472 }
2473 /* not found */
2474 return ENOENT;
2475 }
2476
2477
2478 static void
2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2480 struct extattr_entry *extattr)
2481 {
2482 struct file_entry *fe;
2483 struct extfile_entry *efe;
2484 struct extattrhdr_desc *extattrhdr;
2485 struct impl_extattr_entry *implext;
2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2487 uint32_t *l_eap, l_ad;
2488 uint16_t *spos;
2489 uint8_t *bpos, *data;
2490
2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2492 fe = &dscr->fe;
2493 data = fe->data;
2494 l_eap = &fe->l_ea;
2495 l_ad = udf_rw32(fe->l_ad);
2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2497 efe = &dscr->efe;
2498 data = efe->data;
2499 l_eap = &efe->l_ea;
2500 l_ad = udf_rw32(efe->l_ad);
2501 } else {
2502 panic("Bad tag passed to udf_extattr_insert_internal");
2503 }
2504
2505 /* can't append already written to file descriptors yet */
2506 assert(l_ad == 0);
2507 __USE(l_ad);
2508
2509 /* should have a header! */
2510 extattrhdr = (struct extattrhdr_desc *) data;
2511 l_ea = udf_rw32(*l_eap);
2512 if (l_ea == 0) {
2513 /* create empty extended attribute header */
2514 exthdr_len = sizeof(struct extattrhdr_desc);
2515
2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2517 /* loc */ 0);
2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2520 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2521
2522 /* record extended attribute header length */
2523 l_ea = exthdr_len;
2524 *l_eap = udf_rw32(l_ea);
2525 }
2526
2527 /* extract locations */
2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2531 impl_attr_loc = l_ea;
2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2533 appl_attr_loc = l_ea;
2534
2535 /* Ecma 167 EAs */
2536 if (udf_rw32(extattr->type) < 2048) {
2537 assert(impl_attr_loc == l_ea);
2538 assert(appl_attr_loc == l_ea);
2539 }
2540
2541 /* implementation use extended attributes */
2542 if (udf_rw32(extattr->type) == 2048) {
2543 assert(appl_attr_loc == l_ea);
2544
2545 /* calculate and write extended attribute header checksum */
2546 implext = (struct impl_extattr_entry *) extattr;
2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2548 spos = (uint16_t *) implext->data;
2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2550 }
2551
2552 /* application use extended attributes */
2553 assert(udf_rw32(extattr->type) != 65536);
2554 assert(appl_attr_loc == l_ea);
2555
2556 /* append the attribute at the end of the current space */
2557 bpos = data + udf_rw32(*l_eap);
2558 a_l = udf_rw32(extattr->a_l);
2559
2560 /* update impl. attribute locations */
2561 if (udf_rw32(extattr->type) < 2048) {
2562 impl_attr_loc = l_ea + a_l;
2563 appl_attr_loc = l_ea + a_l;
2564 }
2565 if (udf_rw32(extattr->type) == 2048) {
2566 appl_attr_loc = l_ea + a_l;
2567 }
2568
2569 /* copy and advance */
2570 memcpy(bpos, extattr, a_l);
2571 l_ea += a_l;
2572 *l_eap = udf_rw32(l_ea);
2573
2574 /* do the `dance` again backwards */
2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2576 if (impl_attr_loc == l_ea)
2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2578 if (appl_attr_loc == l_ea)
2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2580 }
2581
2582 /* store offsets */
2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2585 }
2586
2587
2588 /* --------------------------------------------------------------------- */
2589
2590 static int
2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2592 {
2593 struct udf_mount *ump;
2594 struct udf_logvol_info *lvinfo;
2595 struct impl_extattr_entry *implext;
2596 struct vatlvext_extattr_entry lvext;
2597 const char *extstr = "*UDF VAT LVExtension";
2598 uint64_t vat_uniqueid;
2599 uint32_t offset, a_l;
2600 uint8_t *ea_start, *lvextpos;
2601 int error;
2602
2603 /* get mountpoint and lvinfo */
2604 ump = vat_node->ump;
2605 lvinfo = ump->logvol_info;
2606
2607 /* get information from fe/efe */
2608 if (vat_node->fe) {
2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2610 ea_start = vat_node->fe->data;
2611 } else {
2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2613 ea_start = vat_node->efe->data;
2614 }
2615
2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2617 if (error)
2618 return error;
2619
2620 implext = (struct impl_extattr_entry *) (ea_start + offset);
2621 error = udf_impl_extattr_check(implext);
2622 if (error)
2623 return error;
2624
2625 /* paranoia */
2626 if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2628 return EINVAL;
2629 }
2630
2631 /*
2632 * we have found our "VAT LVExtension attribute. BUT due to a
2633 * bug in the specification it might not be word aligned so
2634 * copy first to avoid panics on some machines (!!)
2635 */
2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2637 lvextpos = implext->data + udf_rw32(implext->iu_l);
2638 memcpy(&lvext, lvextpos, sizeof(lvext));
2639
2640 /* check if it was updated the last time */
2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2642 lvinfo->num_files = lvext.num_files;
2643 lvinfo->num_directories = lvext.num_directories;
2644 udf_update_logvolname(ump, lvext.logvol_id);
2645 } else {
2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2647 /* replace VAT LVExt by free space EA */
2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2650 udf_calc_impl_extattr_checksum(implext);
2651 }
2652
2653 return 0;
2654 }
2655
2656
2657 static int
2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2659 {
2660 struct udf_mount *ump;
2661 struct udf_logvol_info *lvinfo;
2662 struct impl_extattr_entry *implext;
2663 struct vatlvext_extattr_entry lvext;
2664 const char *extstr = "*UDF VAT LVExtension";
2665 uint64_t vat_uniqueid;
2666 uint32_t offset, a_l;
2667 uint8_t *ea_start, *lvextpos;
2668 int error;
2669
2670 /* get mountpoint and lvinfo */
2671 ump = vat_node->ump;
2672 lvinfo = ump->logvol_info;
2673
2674 /* get information from fe/efe */
2675 if (vat_node->fe) {
2676 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2677 ea_start = vat_node->fe->data;
2678 } else {
2679 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2680 ea_start = vat_node->efe->data;
2681 }
2682
2683 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2684 if (error)
2685 return error;
2686 /* found, it existed */
2687
2688 /* paranoia */
2689 implext = (struct impl_extattr_entry *) (ea_start + offset);
2690 error = udf_impl_extattr_check(implext);
2691 if (error) {
2692 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2693 return error;
2694 }
2695 /* it is correct */
2696
2697 /*
2698 * we have found our "VAT LVExtension attribute. BUT due to a
2699 * bug in the specification it might not be word aligned so
2700 * copy first to avoid panics on some machines (!!)
2701 */
2702 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2703 lvextpos = implext->data + udf_rw32(implext->iu_l);
2704
2705 lvext.unique_id_chk = vat_uniqueid;
2706 lvext.num_files = lvinfo->num_files;
2707 lvext.num_directories = lvinfo->num_directories;
2708 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2709
2710 memcpy(lvextpos, &lvext, sizeof(lvext));
2711
2712 return 0;
2713 }
2714
2715 /* --------------------------------------------------------------------- */
2716
2717 int
2718 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2719 {
2720 struct udf_mount *ump = vat_node->ump;
2721
2722 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2723 return EINVAL;
2724
2725 memcpy(blob, ump->vat_table + offset, size);
2726 return 0;
2727 }
2728
2729 int
2730 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2731 {
2732 struct udf_mount *ump = vat_node->ump;
2733 uint32_t offset_high;
2734 uint8_t *new_vat_table;
2735
2736 /* extent VAT allocation if needed */
2737 offset_high = offset + size;
2738 if (offset_high >= ump->vat_table_alloc_len) {
2739 /* realloc */
2740 new_vat_table = realloc(ump->vat_table,
2741 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2742 M_UDFVOLD, M_WAITOK);
2743 if (!new_vat_table) {
2744 printf("udf_vat_write: can't extent VAT, out of mem\n");
2745 return ENOMEM;
2746 }
2747 ump->vat_table = new_vat_table;
2748 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2749 }
2750 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2751
2752 memcpy(ump->vat_table + offset, blob, size);
2753 return 0;
2754 }
2755
2756 /* --------------------------------------------------------------------- */
2757
2758 /* TODO support previous VAT location writeout */
2759 static int
2760 udf_update_vat_descriptor(struct udf_mount *ump)
2761 {
2762 struct udf_node *vat_node = ump->vat_node;
2763 struct udf_logvol_info *lvinfo = ump->logvol_info;
2764 struct icb_tag *icbtag;
2765 struct udf_oldvat_tail *oldvat_tl;
2766 struct udf_vat *vat;
2767 uint64_t unique_id;
2768 uint32_t lb_size;
2769 uint8_t *raw_vat;
2770 int filetype, error;
2771
2772 KASSERT(vat_node);
2773 KASSERT(lvinfo);
2774 lb_size = udf_rw32(ump->logical_vol->lb_size);
2775
2776 /* get our new unique_id */
2777 unique_id = udf_advance_uniqueid(ump);
2778
2779 /* get information from fe/efe */
2780 if (vat_node->fe) {
2781 icbtag = &vat_node->fe->icbtag;
2782 vat_node->fe->unique_id = udf_rw64(unique_id);
2783 } else {
2784 icbtag = &vat_node->efe->icbtag;
2785 vat_node->efe->unique_id = udf_rw64(unique_id);
2786 }
2787
2788 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2789 filetype = icbtag->file_type;
2790 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2791
2792 /* allocate piece to process head or tail of VAT file */
2793 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2794
2795 if (filetype == 0) {
2796 /*
2797 * Update "*UDF VAT LVExtension" extended attribute from the
2798 * lvint if present.
2799 */
2800 udf_update_vat_extattr_from_lvid(vat_node);
2801
2802 /* setup identifying regid */
2803 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2804 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2805
2806 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2807 udf_add_udf_regid(ump, &oldvat_tl->id);
2808 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2809
2810 /* write out new tail of virtual allocation table file */
2811 error = udf_vat_write(vat_node, raw_vat,
2812 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2813 } else {
2814 /* compose the VAT2 header */
2815 vat = (struct udf_vat *) raw_vat;
2816 memset(vat, 0, sizeof(struct udf_vat));
2817
2818 vat->header_len = udf_rw16(152); /* as per spec */
2819 vat->impl_use_len = udf_rw16(0);
2820 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2821 vat->prev_vat = udf_rw32(0xffffffff);
2822 vat->num_files = lvinfo->num_files;
2823 vat->num_directories = lvinfo->num_directories;
2824 vat->min_udf_readver = lvinfo->min_udf_readver;
2825 vat->min_udf_writever = lvinfo->min_udf_writever;
2826 vat->max_udf_writever = lvinfo->max_udf_writever;
2827
2828 error = udf_vat_write(vat_node, raw_vat,
2829 sizeof(struct udf_vat), 0);
2830 }
2831 free(raw_vat, M_TEMP);
2832
2833 return error; /* success! */
2834 }
2835
2836
2837 int
2838 udf_writeout_vat(struct udf_mount *ump)
2839 {
2840 struct udf_node *vat_node = ump->vat_node;
2841 int error;
2842
2843 KASSERT(vat_node);
2844
2845 DPRINTF(CALL, ("udf_writeout_vat\n"));
2846
2847 // mutex_enter(&ump->allocate_mutex);
2848 udf_update_vat_descriptor(ump);
2849
2850 /* write out the VAT contents ; TODO intelligent writing */
2851 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2852 ump->vat_table, ump->vat_table_len, 0,
2853 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2854 if (error) {
2855 printf("udf_writeout_vat: failed to write out VAT contents\n");
2856 goto out;
2857 }
2858
2859 // mutex_exit(&ump->allocate_mutex);
2860
2861 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2862 if (error)
2863 goto out;
2864 error = VOP_FSYNC(ump->vat_node->vnode,
2865 FSCRED, FSYNC_WAIT, 0, 0);
2866 if (error)
2867 printf("udf_writeout_vat: error writing VAT node!\n");
2868 out:
2869 return error;
2870 }
2871
2872 /* --------------------------------------------------------------------- */
2873
2874 /*
2875 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2876 * descriptor. If OK, read in complete VAT file.
2877 */
2878
2879 static int
2880 udf_check_for_vat(struct udf_node *vat_node)
2881 {
2882 struct udf_mount *ump;
2883 struct icb_tag *icbtag;
2884 struct timestamp *mtime;
2885 struct udf_vat *vat;
2886 struct udf_oldvat_tail *oldvat_tl;
2887 struct udf_logvol_info *lvinfo;
2888 uint64_t unique_id;
2889 uint32_t vat_length;
2890 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2891 uint32_t sector_size;
2892 uint32_t *raw_vat;
2893 uint8_t *vat_table;
2894 char *regid_name;
2895 int filetype;
2896 int error;
2897
2898 /* vat_length is really 64 bits though impossible */
2899
2900 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2901 if (!vat_node)
2902 return ENOENT;
2903
2904 /* get mount info */
2905 ump = vat_node->ump;
2906 sector_size = udf_rw32(ump->logical_vol->lb_size);
2907
2908 /* check assertions */
2909 assert(vat_node->fe || vat_node->efe);
2910 assert(ump->logvol_integrity);
2911
2912 /* set vnode type to regular file or we can't read from it! */
2913 vat_node->vnode->v_type = VREG;
2914
2915 /* get information from fe/efe */
2916 if (vat_node->fe) {
2917 vat_length = udf_rw64(vat_node->fe->inf_len);
2918 icbtag = &vat_node->fe->icbtag;
2919 mtime = &vat_node->fe->mtime;
2920 unique_id = udf_rw64(vat_node->fe->unique_id);
2921 } else {
2922 vat_length = udf_rw64(vat_node->efe->inf_len);
2923 icbtag = &vat_node->efe->icbtag;
2924 mtime = &vat_node->efe->mtime;
2925 unique_id = udf_rw64(vat_node->efe->unique_id);
2926 }
2927
2928 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2929 filetype = icbtag->file_type;
2930 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2931 return ENOENT;
2932
2933 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2934
2935 vat_table_alloc_len =
2936 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2937 * UDF_VAT_CHUNKSIZE;
2938
2939 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK);
2940 if (vat_table == NULL) {
2941 printf("allocation of %d bytes failed for VAT\n",
2942 vat_table_alloc_len);
2943 return ENOMEM;
2944 }
2945
2946 /* allocate piece to read in head or tail of VAT file */
2947 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2948
2949 /*
2950 * check contents of the file if its the old 1.50 VAT table format.
2951 * Its notoriously broken and allthough some implementations support an
2952 * extention as defined in the UDF 1.50 errata document, its doubtfull
2953 * to be useable since a lot of implementations don't maintain it.
2954 */
2955 lvinfo = ump->logvol_info;
2956
2957 if (filetype == 0) {
2958 /* definition */
2959 vat_offset = 0;
2960 vat_entries = (vat_length-36)/4;
2961
2962 /* read in tail of virtual allocation table file */
2963 error = vn_rdwr(UIO_READ, vat_node->vnode,
2964 (uint8_t *) raw_vat,
2965 sizeof(struct udf_oldvat_tail),
2966 vat_entries * 4,
2967 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2968 NULL, NULL);
2969 if (error)
2970 goto out;
2971
2972 /* check 1.50 VAT */
2973 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2974 regid_name = (char *) oldvat_tl->id.id;
2975 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2976 if (error) {
2977 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2978 error = ENOENT;
2979 goto out;
2980 }
2981
2982 /*
2983 * update LVID from "*UDF VAT LVExtension" extended attribute
2984 * if present.
2985 */
2986 udf_update_lvid_from_vat_extattr(vat_node);
2987 } else {
2988 /* read in head of virtual allocation table file */
2989 error = vn_rdwr(UIO_READ, vat_node->vnode,
2990 (uint8_t *) raw_vat,
2991 sizeof(struct udf_vat), 0,
2992 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2993 NULL, NULL);
2994 if (error)
2995 goto out;
2996
2997 /* definition */
2998 vat = (struct udf_vat *) raw_vat;
2999 vat_offset = vat->header_len;
3000 vat_entries = (vat_length - vat_offset)/4;
3001
3002 assert(lvinfo);
3003 lvinfo->num_files = vat->num_files;
3004 lvinfo->num_directories = vat->num_directories;
3005 lvinfo->min_udf_readver = vat->min_udf_readver;
3006 lvinfo->min_udf_writever = vat->min_udf_writever;
3007 lvinfo->max_udf_writever = vat->max_udf_writever;
3008
3009 udf_update_logvolname(ump, vat->logvol_id);
3010 }
3011
3012 /* read in complete VAT file */
3013 error = vn_rdwr(UIO_READ, vat_node->vnode,
3014 vat_table,
3015 vat_length, 0,
3016 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
3017 NULL, NULL);
3018 if (error)
3019 printf("read in of complete VAT file failed (error %d)\n",
3020 error);
3021 if (error)
3022 goto out;
3023
3024 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3025 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3026 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3027 ump->logvol_integrity->time = *mtime;
3028
3029 /* if we're updating, free old allocated space */
3030 if (ump->vat_table)
3031 free(ump->vat_table, M_UDFVOLD);
3032
3033 ump->vat_table_len = vat_length;
3034 ump->vat_table_alloc_len = vat_table_alloc_len;
3035 ump->vat_table = vat_table;
3036 ump->vat_offset = vat_offset;
3037 ump->vat_entries = vat_entries;
3038 ump->vat_last_free_lb = 0; /* start at beginning */
3039
3040 out:
3041 if (error) {
3042 if (vat_table)
3043 free(vat_table, M_UDFVOLD);
3044 }
3045 free(raw_vat, M_TEMP);
3046
3047 return error;
3048 }
3049
3050 /* --------------------------------------------------------------------- */
3051
3052 static int
3053 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3054 {
3055 struct udf_node *vat_node, *accepted_vat_node;
3056 struct long_ad icb_loc;
3057 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3058 int error;
3059
3060 /* mapping info not needed */
3061 mapping = mapping;
3062
3063 DPRINTF(VOLUMES, ("Searching VAT\n"));
3064
3065 /*
3066 * Start reading forward in blocks from the first possible vat
3067 * location. If not found in this block, start again a bit before
3068 * until we get a hit.
3069 */
3070 late_vat_loc = ump->last_possible_vat_location;
3071 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3072
3073 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3074 accepted_vat_node = NULL;
3075 do {
3076 vat_loc = early_vat_loc;
3077 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3078 early_vat_loc, late_vat_loc));
3079 do {
3080 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3081 vat_loc));
3082 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3083 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3084
3085 error = udf_get_node(ump, &icb_loc, &vat_node);
3086 if (!error) {
3087 error = udf_check_for_vat(vat_node);
3088 vat_node->i_flags = 0; /* reset access */
3089 }
3090 if (!error) {
3091 DPRINTFIF(VOLUMES, !error,
3092 ("VAT candidate accepted at %d\n",
3093 vat_loc));
3094 if (accepted_vat_node)
3095 vput(accepted_vat_node->vnode);
3096 accepted_vat_node = vat_node;
3097 accepted_vat_node->i_flags |= IN_NO_DELETE;
3098 vat_node = NULL;
3099 }
3100 if (vat_node)
3101 vput(vat_node->vnode);
3102 vat_loc++; /* walk forward */
3103 } while (vat_loc < late_vat_loc);
3104 if (accepted_vat_node)
3105 break;
3106
3107 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3108 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3109 } while (late_vat_loc > ump->first_possible_vat_location);
3110
3111 /* keep our last accepted VAT node around */
3112 if (accepted_vat_node) {
3113 /* revert no delete flag again to avoid potential side effects */
3114 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3115
3116 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3117 ump->vat_node = accepted_vat_node;
3118 return 0;
3119 }
3120
3121 return error;
3122 }
3123
3124 /* --------------------------------------------------------------------- */
3125
3126 static int
3127 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3128 {
3129 union dscrptr *dscr;
3130 struct part_map_spare *pms = &mapping->pms;
3131 uint32_t lb_num;
3132 int spar, error;
3133
3134 /*
3135 * The partition mapping passed on to us specifies the information we
3136 * need to locate and initialise the sparable partition mapping
3137 * information we need.
3138 */
3139
3140 DPRINTF(VOLUMES, ("Read sparable table\n"));
3141 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3142 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3143
3144 for (spar = 0; spar < pms->n_st; spar++) {
3145 lb_num = pms->st_loc[spar];
3146 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3147 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3148 if (!error && dscr) {
3149 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3150 if (ump->sparing_table)
3151 free(ump->sparing_table, M_UDFVOLD);
3152 ump->sparing_table = &dscr->spt;
3153 dscr = NULL;
3154 DPRINTF(VOLUMES,
3155 ("Sparing table accepted (%d entries)\n",
3156 udf_rw16(ump->sparing_table->rt_l)));
3157 break; /* we're done */
3158 }
3159 }
3160 if (dscr)
3161 free(dscr, M_UDFVOLD);
3162 }
3163
3164 if (ump->sparing_table)
3165 return 0;
3166
3167 return ENOENT;
3168 }
3169
3170 /* --------------------------------------------------------------------- */
3171
3172 static int
3173 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3174 {
3175 struct part_map_meta *pmm = &mapping->pmm;
3176 struct long_ad icb_loc;
3177 struct vnode *vp;
3178 uint16_t raw_phys_part, phys_part;
3179 int error;
3180
3181 /*
3182 * BUGALERT: some rogue implementations use random physical
3183 * partition numbers to break other implementations so lookup
3184 * the number.
3185 */
3186
3187 /* extract our allocation parameters set up on format */
3188 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3189 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3190 ump->metadata_flags = mapping->pmm.flags;
3191
3192 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3193 raw_phys_part = udf_rw16(pmm->part_num);
3194 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3195
3196 icb_loc.loc.part_num = udf_rw16(phys_part);
3197
3198 DPRINTF(VOLUMES, ("Metadata file\n"));
3199 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3200 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3201 if (ump->metadata_node) {
3202 vp = ump->metadata_node->vnode;
3203 UDF_SET_SYSTEMFILE(vp);
3204 }
3205
3206 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3207 if (icb_loc.loc.lb_num != -1) {
3208 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3209 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3210 if (ump->metadatamirror_node) {
3211 vp = ump->metadatamirror_node->vnode;
3212 UDF_SET_SYSTEMFILE(vp);
3213 }
3214 }
3215
3216 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3217 if (icb_loc.loc.lb_num != -1) {
3218 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3219 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3220 if (ump->metadatabitmap_node) {
3221 vp = ump->metadatabitmap_node->vnode;
3222 UDF_SET_SYSTEMFILE(vp);
3223 }
3224 }
3225
3226 /* if we're mounting read-only we relax the requirements */
3227 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3228 error = EFAULT;
3229 if (ump->metadata_node)
3230 error = 0;
3231 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3232 printf( "udf mount: Metadata file not readable, "
3233 "substituting Metadata copy file\n");
3234 ump->metadata_node = ump->metadatamirror_node;
3235 ump->metadatamirror_node = NULL;
3236 error = 0;
3237 }
3238 } else {
3239 /* mounting read/write */
3240 /* XXX DISABLED! metadata writing is not working yet XXX */
3241 if (error)
3242 error = EROFS;
3243 }
3244 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3245 "metadata files\n"));
3246 return error;
3247 }
3248
3249 /* --------------------------------------------------------------------- */
3250
3251 int
3252 udf_read_vds_tables(struct udf_mount *ump)
3253 {
3254 union udf_pmap *mapping;
3255 /* struct udf_args *args = &ump->mount_args; */
3256 uint32_t n_pm;
3257 uint32_t log_part;
3258 uint8_t *pmap_pos;
3259 int pmap_size;
3260 int error;
3261
3262 /* Iterate (again) over the part mappings for locations */
3263 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3264 pmap_pos = ump->logical_vol->maps;
3265
3266 for (log_part = 0; log_part < n_pm; log_part++) {
3267 mapping = (union udf_pmap *) pmap_pos;
3268 switch (ump->vtop_tp[log_part]) {
3269 case UDF_VTOP_TYPE_PHYS :
3270 /* nothing */
3271 break;
3272 case UDF_VTOP_TYPE_VIRT :
3273 /* search and load VAT */
3274 error = udf_search_vat(ump, mapping);
3275 if (error)
3276 return ENOENT;
3277 break;
3278 case UDF_VTOP_TYPE_SPARABLE :
3279 /* load one of the sparable tables */
3280 error = udf_read_sparables(ump, mapping);
3281 if (error)
3282 return ENOENT;
3283 break;
3284 case UDF_VTOP_TYPE_META :
3285 /* load the associated file descriptors */
3286 error = udf_read_metadata_nodes(ump, mapping);
3287 if (error)
3288 return ENOENT;
3289 break;
3290 default:
3291 break;
3292 }
3293 pmap_size = pmap_pos[1];
3294 pmap_pos += pmap_size;
3295 }
3296
3297 /* read in and check unallocated and free space info if writing */
3298 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3299 error = udf_read_physical_partition_spacetables(ump);
3300 if (error)
3301 return error;
3302
3303 /* also read in metadata partition spacebitmap if defined */
3304 error = udf_read_metadata_partition_spacetable(ump);
3305 return error;
3306 }
3307
3308 return 0;
3309 }
3310
3311 /* --------------------------------------------------------------------- */
3312
3313 int
3314 udf_read_rootdirs(struct udf_mount *ump)
3315 {
3316 union dscrptr *dscr;
3317 /* struct udf_args *args = &ump->mount_args; */
3318 struct udf_node *rootdir_node, *streamdir_node;
3319 struct long_ad fsd_loc, *dir_loc;
3320 uint32_t lb_num, dummy;
3321 uint32_t fsd_len;
3322 int dscr_type;
3323 int error;
3324
3325 /* TODO implement FSD reading in separate function like integrity? */
3326 /* get fileset descriptor sequence */
3327 fsd_loc = ump->logical_vol->lv_fsd_loc;
3328 fsd_len = udf_rw32(fsd_loc.len);
3329
3330 dscr = NULL;
3331 error = 0;
3332 while (fsd_len || error) {
3333 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3334 /* translate fsd_loc to lb_num */
3335 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3336 if (error)
3337 break;
3338 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3339 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3340 /* end markers */
3341 if (error || (dscr == NULL))
3342 break;
3343
3344 /* analyse */
3345 dscr_type = udf_rw16(dscr->tag.id);
3346 if (dscr_type == TAGID_TERM)
3347 break;
3348 if (dscr_type != TAGID_FSD) {
3349 free(dscr, M_UDFVOLD);
3350 return ENOENT;
3351 }
3352
3353 /*
3354 * TODO check for multiple fileset descriptors; its only
3355 * picking the last now. Also check for FSD
3356 * correctness/interpretability
3357 */
3358
3359 /* update */
3360 if (ump->fileset_desc) {
3361 free(ump->fileset_desc, M_UDFVOLD);
3362 }
3363 ump->fileset_desc = &dscr->fsd;
3364 dscr = NULL;
3365
3366 /* continue to the next fsd */
3367 fsd_len -= ump->discinfo.sector_size;
3368 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3369
3370 /* follow up to fsd->next_ex (long_ad) if its not null */
3371 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3372 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3373 fsd_loc = ump->fileset_desc->next_ex;
3374 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3375 }
3376 }
3377 if (dscr)
3378 free(dscr, M_UDFVOLD);
3379
3380 /* there has to be one */
3381 if (ump->fileset_desc == NULL)
3382 return ENOENT;
3383
3384 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3385 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3386 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3387
3388 /*
3389 * Now the FSD is known, read in the rootdirectory and if one exists,
3390 * the system stream dir. Some files in the system streamdir are not
3391 * wanted in this implementation since they are not maintained. If
3392 * writing is enabled we'll delete these files if they exist.
3393 */
3394
3395 rootdir_node = streamdir_node = NULL;
3396 dir_loc = NULL;
3397
3398 /* try to read in the rootdir */
3399 dir_loc = &ump->fileset_desc->rootdir_icb;
3400 error = udf_get_node(ump, dir_loc, &rootdir_node);
3401 if (error)
3402 return ENOENT;
3403
3404 /* aparently it read in fine */
3405
3406 /*
3407 * Try the system stream directory; not very likely in the ones we
3408 * test, but for completeness.
3409 */
3410 dir_loc = &ump->fileset_desc->streamdir_icb;
3411 if (udf_rw32(dir_loc->len)) {
3412 printf("udf_read_rootdirs: streamdir defined ");
3413 error = udf_get_node(ump, dir_loc, &streamdir_node);
3414 if (error) {
3415 printf("but error in streamdir reading\n");
3416 } else {
3417 printf("but ignored\n");
3418 /*
3419 * TODO process streamdir `baddies' i.e. files we dont
3420 * want if R/W
3421 */
3422 }
3423 }
3424
3425 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3426
3427 /* release the vnodes again; they'll be auto-recycled later */
3428 if (streamdir_node) {
3429 vput(streamdir_node->vnode);
3430 }
3431 if (rootdir_node) {
3432 vput(rootdir_node->vnode);
3433 }
3434
3435 return 0;
3436 }
3437
3438 /* --------------------------------------------------------------------- */
3439
3440 /* To make absolutely sure we are NOT returning zero, add one :) */
3441
3442 long
3443 udf_get_node_id(const struct long_ad *icbptr)
3444 {
3445 /* ought to be enough since each mountpoint has its own chain */
3446 return udf_rw32(icbptr->loc.lb_num) + 1;
3447 }
3448
3449
3450 int
3451 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3452 {
3453 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3454 return -1;
3455 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3456 return 1;
3457
3458 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3459 return -1;
3460 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3461 return 1;
3462
3463 return 0;
3464 }
3465
3466
3467 static int
3468 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3469 {
3470 const struct udf_node *a_node = a;
3471 const struct udf_node *b_node = b;
3472
3473 return udf_compare_icb(&a_node->loc, &b_node->loc);
3474 }
3475
3476
3477 static int
3478 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3479 {
3480 const struct udf_node *a_node = a;
3481 const struct long_ad * const icb = key;
3482
3483 return udf_compare_icb(&a_node->loc, icb);
3484 }
3485
3486
3487 static const rb_tree_ops_t udf_node_rbtree_ops = {
3488 .rbto_compare_nodes = udf_compare_rbnodes,
3489 .rbto_compare_key = udf_compare_rbnode_icb,
3490 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3491 .rbto_context = NULL
3492 };
3493
3494
3495 void
3496 udf_init_nodes_tree(struct udf_mount *ump)
3497 {
3498
3499 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3500 }
3501
3502
3503 /* --------------------------------------------------------------------- */
3504
3505 static int
3506 udf_validate_session_start(struct udf_mount *ump)
3507 {
3508 struct mmc_trackinfo trackinfo;
3509 struct vrs_desc *vrs;
3510 uint32_t tracknr, sessionnr, sector, sector_size;
3511 uint32_t iso9660_vrs, write_track_start;
3512 uint8_t *buffer, *blank, *pos;
3513 int blks, max_sectors, vrs_len;
3514 int error;
3515
3516 /* disc appendable? */
3517 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3518 return EROFS;
3519
3520 /* already written here? if so, there should be an ISO VDS */
3521 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3522 return 0;
3523
3524 /*
3525 * Check if the first track of the session is blank and if so, copy or
3526 * create a dummy ISO descriptor so the disc is valid again.
3527 */
3528
3529 tracknr = ump->discinfo.first_track_last_session;
3530 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3531 trackinfo.tracknr = tracknr;
3532 error = udf_update_trackinfo(ump, &trackinfo);
3533 if (error)
3534 return error;
3535
3536 udf_dump_trackinfo(&trackinfo);
3537 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3538 KASSERT(trackinfo.sessionnr > 1);
3539
3540 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3541 write_track_start = trackinfo.next_writable;
3542
3543 /* we have to copy the ISO VRS from a former session */
3544 DPRINTF(VOLUMES, ("validate_session_start: "
3545 "blank or reserved track, copying VRS\n"));
3546
3547 /* sessionnr should be the session we're mounting */
3548 sessionnr = ump->mount_args.sessionnr;
3549
3550 /* start at the first track */
3551 tracknr = ump->discinfo.first_track;
3552 while (tracknr <= ump->discinfo.num_tracks) {
3553 trackinfo.tracknr = tracknr;
3554 error = udf_update_trackinfo(ump, &trackinfo);
3555 if (error) {
3556 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3557 return error;
3558 }
3559 if (trackinfo.sessionnr == sessionnr)
3560 break;
3561 tracknr++;
3562 }
3563 if (trackinfo.sessionnr != sessionnr) {
3564 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3565 return ENOENT;
3566 }
3567
3568 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3569 udf_dump_trackinfo(&trackinfo);
3570
3571 /*
3572 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3573 * minimum ISO `sector size' 2048
3574 */
3575 sector_size = ump->discinfo.sector_size;
3576 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3577 + trackinfo.track_start;
3578
3579 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3580 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3581 blks = MAX(1, 2048 / sector_size);
3582
3583 error = 0;
3584 for (sector = 0; sector < max_sectors; sector += blks) {
3585 pos = buffer + sector * sector_size;
3586 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3587 iso9660_vrs + sector, blks);
3588 if (error)
3589 break;
3590 /* check this ISO descriptor */
3591 vrs = (struct vrs_desc *) pos;
3592 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3593 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3594 continue;
3595 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3596 continue;
3597 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3598 continue;
3599 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3600 continue;
3601 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3602 continue;
3603 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3604 break;
3605 /* now what? for now, end of sequence */
3606 break;
3607 }
3608 vrs_len = sector + blks;
3609 if (error) {
3610 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3611 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3612
3613 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3614
3615 vrs = (struct vrs_desc *) (buffer);
3616 vrs->struct_type = 0;
3617 vrs->version = 1;
3618 memcpy(vrs->identifier,VRS_BEA01, 5);
3619
3620 vrs = (struct vrs_desc *) (buffer + 2048);
3621 vrs->struct_type = 0;
3622 vrs->version = 1;
3623 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3624 memcpy(vrs->identifier,VRS_NSR02, 5);
3625 } else {
3626 memcpy(vrs->identifier,VRS_NSR03, 5);
3627 }
3628
3629 vrs = (struct vrs_desc *) (buffer + 4096);
3630 vrs->struct_type = 0;
3631 vrs->version = 1;
3632 memcpy(vrs->identifier, VRS_TEA01, 5);
3633
3634 vrs_len = 3*blks;
3635 }
3636
3637 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3638
3639 /*
3640 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3641 * minimum ISO `sector size' 2048
3642 */
3643 sector_size = ump->discinfo.sector_size;
3644 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3645 + write_track_start;
3646
3647 /* write out 32 kb */
3648 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3649 memset(blank, 0, sector_size);
3650 error = 0;
3651 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3652 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3653 blank, sector, 1);
3654 if (error)
3655 break;
3656 }
3657 if (!error) {
3658 /* write out our ISO VRS */
3659 KASSERT(sector == iso9660_vrs);
3660 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3661 sector, vrs_len);
3662 sector += vrs_len;
3663 }
3664 if (!error) {
3665 /* fill upto the first anchor at S+256 */
3666 for (; sector < write_track_start+256; sector++) {
3667 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3668 blank, sector, 1);
3669 if (error)
3670 break;
3671 }
3672 }
3673 if (!error) {
3674 /* write out anchor; write at ABSOLUTE place! */
3675 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3676 (union dscrptr *) ump->anchors[0], sector, sector);
3677 if (error)
3678 printf("writeout of anchor failed!\n");
3679 }
3680
3681 free(blank, M_TEMP);
3682 free(buffer, M_TEMP);
3683
3684 if (error)
3685 printf("udf_open_session: error writing iso vrs! : "
3686 "leaving disc in compromised state!\n");
3687
3688 /* synchronise device caches */
3689 (void) udf_synchronise_caches(ump);
3690
3691 return error;
3692 }
3693
3694
3695 int
3696 udf_open_logvol(struct udf_mount *ump)
3697 {
3698 int logvol_integrity;
3699 int error;
3700
3701 /* already/still open? */
3702 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3703 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3704 return 0;
3705
3706 /* can we open it ? */
3707 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3708 return EROFS;
3709
3710 /* setup write parameters */
3711 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3712 if ((error = udf_setup_writeparams(ump)) != 0)
3713 return error;
3714
3715 /* determine data and metadata tracks (most likely same) */
3716 error = udf_search_writing_tracks(ump);
3717 if (error) {
3718 /* most likely lack of space */
3719 printf("udf_open_logvol: error searching writing tracks\n");
3720 return EROFS;
3721 }
3722
3723 /* writeout/update lvint on disc or only in memory */
3724 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3725 if (ump->lvopen & UDF_OPEN_SESSION) {
3726 /* TODO optional track reservation opening */
3727 error = udf_validate_session_start(ump);
3728 if (error)
3729 return error;
3730
3731 /* determine data and metadata tracks again */
3732 error = udf_search_writing_tracks(ump);
3733
3734 if (ump->lvclose & UDF_WRITE_VAT) {
3735 /*
3736 * we writeout the VAT to get a self-sustained session
3737 * for fsck
3738 */
3739 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3740
3741 /* write out the VAT data and all its descriptors */
3742 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3743 udf_writeout_vat(ump);
3744
3745 /* force everything to be synchronized on the device */
3746 (void) udf_synchronise_caches(ump);
3747 }
3748 }
3749
3750 /* mark it open */
3751 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3752
3753 /* do we need to write it out? */
3754 if (ump->lvopen & UDF_WRITE_LVINT) {
3755 error = udf_writeout_lvint(ump, ump->lvopen);
3756 /* if we couldn't write it mark it closed again */
3757 if (error) {
3758 ump->logvol_integrity->integrity_type =
3759 udf_rw32(UDF_INTEGRITY_CLOSED);
3760 return error;
3761 }
3762 }
3763
3764 return 0;
3765 }
3766
3767
3768 int
3769 udf_close_logvol(struct udf_mount *ump, int mntflags)
3770 {
3771 struct vnode *devvp = ump->devvp;
3772 struct mmc_op mmc_op;
3773 uint32_t phys;
3774 int logvol_integrity;
3775 int error = 0, error1 = 0, error2 = 0;
3776 int tracknr;
3777 int nvats, n, relblk, wrtrack_skew, nok;
3778
3779 /* already/still closed? */
3780 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3781 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3782 return 0;
3783
3784 /* writeout/update lvint or write out VAT */
3785 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3786 #ifdef DIAGNOSTIC
3787 if (ump->lvclose & UDF_CLOSE_SESSION)
3788 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3789 #endif
3790
3791 if (ump->lvclose & UDF_WRITE_VAT) {
3792 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3793
3794 /* write out the VAT data and all its descriptors */
3795 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3796 udf_writeout_vat(ump);
3797
3798 /*
3799 * For bug-compatibility with Windows, the last VAT sector
3800 * must be a multiple of 16/32 from the start of the track.
3801 * To allow for scratches, write out at least a 32 pieces.
3802 */
3803 phys = ump->data_track.track_start;
3804 wrtrack_skew = phys % 32;
3805
3806 phys = ump->data_track.next_writable;
3807 relblk = phys % 32;
3808 nvats = 32 + 32 - (relblk - wrtrack_skew);
3809
3810 #if notyet
3811 /*
3812 * TODO calculate the available space and if the disc is
3813 * allmost full, write out till end-256-1 with banks, write
3814 * AVDP and fill up with VATs, then close session and close
3815 * disc.
3816 */
3817 if (ump->lvclose & UDF_FINALISE_DISC) {
3818 error = udf_write_phys_dscr_sync(ump, NULL,
3819 UDF_C_FLOAT_DSCR,
3820 (union dscrptr *) ump->anchors[0],
3821 0, 0);
3822 if (error)
3823 printf("writeout of anchor failed!\n");
3824
3825 /* pad space with VAT ICBs */
3826 nvats = 256;
3827 }
3828 #endif
3829
3830 /* write out a number of VAT nodes */
3831 nok = 0;
3832 for (n = 0; n < nvats; n++) {
3833 /* will now only write last FE/EFE */
3834 ump->vat_node->i_flags |= IN_MODIFIED;
3835 error = VOP_FSYNC(ump->vat_node->vnode,
3836 FSCRED, FSYNC_WAIT, 0, 0);
3837 if (!error)
3838 nok++;
3839 }
3840 /* force everything to be synchronized on the device */
3841 (void) udf_synchronise_caches(ump);
3842
3843 if (nok < 14) {
3844 /* arbitrary; but at least one or two CD frames */
3845 printf("writeout of at least 14 VATs failed\n");
3846 return error;
3847 }
3848 }
3849
3850 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3851
3852 /* finish closing of session */
3853 if (ump->lvclose & UDF_CLOSE_SESSION) {
3854 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3855 "as requested\n"));
3856 error = udf_validate_session_start(ump);
3857 if (error)
3858 return error;
3859
3860 (void) udf_synchronise_caches(ump);
3861
3862 /* close all associated tracks */
3863 tracknr = ump->discinfo.first_track_last_session;
3864 error = 0;
3865 while (tracknr <= ump->discinfo.last_track_last_session) {
3866 DPRINTF(VOLUMES, ("\tclosing possible open "
3867 "track %d\n", tracknr));
3868 memset(&mmc_op, 0, sizeof(mmc_op));
3869 mmc_op.operation = MMC_OP_CLOSETRACK;
3870 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3871 mmc_op.tracknr = tracknr;
3872 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3873 FKIOCTL, NOCRED);
3874 if (error)
3875 printf("udf_close_logvol: closing of "
3876 "track %d failed\n", tracknr);
3877 tracknr ++;
3878 }
3879 if (!error) {
3880 DPRINTF(VOLUMES, ("closing session\n"));
3881 memset(&mmc_op, 0, sizeof(mmc_op));
3882 mmc_op.operation = MMC_OP_CLOSESESSION;
3883 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3884 mmc_op.sessionnr = ump->discinfo.num_sessions;
3885 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3886 FKIOCTL, NOCRED);
3887 if (error)
3888 printf("udf_close_logvol: closing of session"
3889 "failed\n");
3890 }
3891 if (!error)
3892 ump->lvopen |= UDF_OPEN_SESSION;
3893 if (error) {
3894 printf("udf_close_logvol: leaving disc as it is\n");
3895 ump->lvclose &= ~UDF_FINALISE_DISC;
3896 }
3897 }
3898
3899 if (ump->lvclose & UDF_FINALISE_DISC) {
3900 memset(&mmc_op, 0, sizeof(mmc_op));
3901 mmc_op.operation = MMC_OP_FINALISEDISC;
3902 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3903 mmc_op.sessionnr = ump->discinfo.num_sessions;
3904 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3905 FKIOCTL, NOCRED);
3906 if (error)
3907 printf("udf_close_logvol: finalising disc"
3908 "failed\n");
3909 }
3910
3911 /* write out partition bitmaps if requested */
3912 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3913 /* sync writeout metadata spacetable if existing */
3914 error1 = udf_write_metadata_partition_spacetable(ump, true);
3915 if (error1)
3916 printf( "udf_close_logvol: writeout of metadata space "
3917 "bitmap failed\n");
3918
3919 /* sync writeout partition spacetables */
3920 error2 = udf_write_physical_partition_spacetables(ump, true);
3921 if (error2)
3922 printf( "udf_close_logvol: writeout of space tables "
3923 "failed\n");
3924
3925 if (error1 || error2)
3926 return (error1 | error2);
3927
3928 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3929 }
3930
3931 /* write out metadata partition nodes if requested */
3932 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3933 /* sync writeout metadata descriptor node */
3934 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3935 if (error1)
3936 printf( "udf_close_logvol: writeout of metadata partition "
3937 "node failed\n");
3938
3939 /* duplicate metadata partition descriptor if needed */
3940 udf_synchronise_metadatamirror_node(ump);
3941
3942 /* sync writeout metadatamirror descriptor node */
3943 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3944 if (error2)
3945 printf( "udf_close_logvol: writeout of metadata partition "
3946 "mirror node failed\n");
3947
3948 if (error1 || error2)
3949 return (error1 | error2);
3950
3951 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3952 }
3953
3954 /* mark it closed */
3955 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3956
3957 /* do we need to write out the logical volume integrity? */
3958 if (ump->lvclose & UDF_WRITE_LVINT)
3959 error = udf_writeout_lvint(ump, ump->lvopen);
3960 if (error) {
3961 /* HELP now what? mark it open again for now */
3962 ump->logvol_integrity->integrity_type =
3963 udf_rw32(UDF_INTEGRITY_OPEN);
3964 return error;
3965 }
3966
3967 (void) udf_synchronise_caches(ump);
3968
3969 return 0;
3970 }
3971
3972 /* --------------------------------------------------------------------- */
3973
3974 /*
3975 * Genfs interfacing
3976 *
3977 * static const struct genfs_ops udf_genfsops = {
3978 * .gop_size = genfs_size,
3979 * size of transfers
3980 * .gop_alloc = udf_gop_alloc,
3981 * allocate len bytes at offset
3982 * .gop_write = genfs_gop_write,
3983 * putpages interface code
3984 * .gop_markupdate = udf_gop_markupdate,
3985 * set update/modify flags etc.
3986 * }
3987 */
3988
3989 /*
3990 * Genfs interface. These four functions are the only ones defined though not
3991 * documented... great....
3992 */
3993
3994 /*
3995 * Called for allocating an extent of the file either by VOP_WRITE() or by
3996 * genfs filling up gaps.
3997 */
3998 static int
3999 udf_gop_alloc(struct vnode *vp, off_t off,
4000 off_t len, int flags, kauth_cred_t cred)
4001 {
4002 struct udf_node *udf_node = VTOI(vp);
4003 struct udf_mount *ump = udf_node->ump;
4004 uint64_t lb_start, lb_end;
4005 uint32_t lb_size, num_lb;
4006 int udf_c_type, vpart_num, can_fail;
4007 int error;
4008
4009 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
4010 off, len, flags? "SYNC":"NONE"));
4011
4012 /*
4013 * request the pages of our vnode and see how many pages will need to
4014 * be allocated and reserve that space
4015 */
4016 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
4017 lb_start = off / lb_size;
4018 lb_end = (off + len + lb_size -1) / lb_size;
4019 num_lb = lb_end - lb_start;
4020
4021 udf_c_type = udf_get_c_type(udf_node);
4022 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4023
4024 /* all requests can fail */
4025 can_fail = true;
4026
4027 /* fid's (directories) can't fail */
4028 if (udf_c_type == UDF_C_FIDS)
4029 can_fail = false;
4030
4031 /* system files can't fail */
4032 if (vp->v_vflag & VV_SYSTEM)
4033 can_fail = false;
4034
4035 error = udf_reserve_space(ump, udf_node, udf_c_type,
4036 vpart_num, num_lb, can_fail);
4037
4038 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4039 lb_start, lb_end, num_lb));
4040
4041 return error;
4042 }
4043
4044
4045 /*
4046 * callback from genfs to update our flags
4047 */
4048 static void
4049 udf_gop_markupdate(struct vnode *vp, int flags)
4050 {
4051 struct udf_node *udf_node = VTOI(vp);
4052 u_long mask = 0;
4053
4054 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4055 mask = IN_ACCESS;
4056 }
4057 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4058 if (vp->v_type == VREG) {
4059 mask |= IN_CHANGE | IN_UPDATE;
4060 } else {
4061 mask |= IN_MODIFY;
4062 }
4063 }
4064 if (mask) {
4065 udf_node->i_flags |= mask;
4066 }
4067 }
4068
4069
4070 static const struct genfs_ops udf_genfsops = {
4071 .gop_size = genfs_size,
4072 .gop_alloc = udf_gop_alloc,
4073 .gop_write = genfs_gop_write_rwmap,
4074 .gop_markupdate = udf_gop_markupdate,
4075 .gop_putrange = genfs_gop_putrange,
4076 };
4077
4078
4079 /* --------------------------------------------------------------------- */
4080
4081 int
4082 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4083 {
4084 union dscrptr *dscr;
4085 int error;
4086
4087 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4088 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4089
4090 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4091 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4092 (void) udf_validate_tag_and_crc_sums(dscr);
4093
4094 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4095 dscr, sector, sector);
4096
4097 free(dscr, M_TEMP);
4098
4099 return error;
4100 }
4101
4102
4103 /* --------------------------------------------------------------------- */
4104
4105 /* UDF<->unix converters */
4106
4107 /* --------------------------------------------------------------------- */
4108
4109 static mode_t
4110 udf_perm_to_unix_mode(uint32_t perm)
4111 {
4112 mode_t mode;
4113
4114 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4115 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4116 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4117
4118 return mode;
4119 }
4120
4121 /* --------------------------------------------------------------------- */
4122
4123 static uint32_t
4124 unix_mode_to_udf_perm(mode_t mode)
4125 {
4126 uint32_t perm;
4127
4128 perm = ((mode & S_IRWXO) );
4129 perm |= ((mode & S_IRWXG) << 2);
4130 perm |= ((mode & S_IRWXU) << 4);
4131 perm |= ((mode & S_IWOTH) << 3);
4132 perm |= ((mode & S_IWGRP) << 5);
4133 perm |= ((mode & S_IWUSR) << 7);
4134
4135 return perm;
4136 }
4137
4138 /* --------------------------------------------------------------------- */
4139
4140 static uint32_t
4141 udf_icb_to_unix_filetype(uint32_t icbftype)
4142 {
4143 switch (icbftype) {
4144 case UDF_ICB_FILETYPE_DIRECTORY :
4145 case UDF_ICB_FILETYPE_STREAMDIR :
4146 return S_IFDIR;
4147 case UDF_ICB_FILETYPE_FIFO :
4148 return S_IFIFO;
4149 case UDF_ICB_FILETYPE_CHARDEVICE :
4150 return S_IFCHR;
4151 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4152 return S_IFBLK;
4153 case UDF_ICB_FILETYPE_RANDOMACCESS :
4154 case UDF_ICB_FILETYPE_REALTIME :
4155 return S_IFREG;
4156 case UDF_ICB_FILETYPE_SYMLINK :
4157 return S_IFLNK;
4158 case UDF_ICB_FILETYPE_SOCKET :
4159 return S_IFSOCK;
4160 }
4161 /* no idea what this is */
4162 return 0;
4163 }
4164
4165 /* --------------------------------------------------------------------- */
4166
4167 void
4168 udf_to_unix_name(char *result, int result_len, char *id, int len,
4169 struct charspec *chsp)
4170 {
4171 uint16_t *raw_name, *unix_name;
4172 uint16_t *inchp, ch;
4173 uint8_t *outchp;
4174 const char *osta_id = "OSTA Compressed Unicode";
4175 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4176
4177 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4178 unix_name = raw_name + 1024; /* split space in half */
4179 assert(sizeof(char) == sizeof(uint8_t));
4180 outchp = (uint8_t *) result;
4181
4182 is_osta_typ0 = (chsp->type == 0);
4183 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4184 if (is_osta_typ0) {
4185 /* TODO clean up */
4186 *raw_name = *unix_name = 0;
4187 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4188 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4189 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4190 /* output UTF8 */
4191 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4192 ch = *inchp;
4193 nout = wput_utf8(outchp, result_len, ch);
4194 outchp += nout; result_len -= nout;
4195 if (!ch) break;
4196 }
4197 *outchp++ = 0;
4198 } else {
4199 /* assume 8bit char length byte latin-1 */
4200 assert(*id == 8);
4201 assert(strlen((char *) (id+1)) <= NAME_MAX);
4202 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4203 }
4204 free(raw_name, M_UDFTEMP);
4205 }
4206
4207 /* --------------------------------------------------------------------- */
4208
4209 void
4210 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4211 struct charspec *chsp)
4212 {
4213 uint16_t *raw_name;
4214 uint16_t *outchp;
4215 const char *inchp;
4216 const char *osta_id = "OSTA Compressed Unicode";
4217 int udf_chars, is_osta_typ0, bits;
4218 size_t cnt;
4219
4220 /* allocate temporary unicode-16 buffer */
4221 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4222
4223 /* convert utf8 to unicode-16 */
4224 *raw_name = 0;
4225 inchp = name;
4226 outchp = raw_name;
4227 bits = 8;
4228 for (cnt = name_len, udf_chars = 0; cnt;) {
4229 *outchp = wget_utf8(&inchp, &cnt);
4230 if (*outchp > 0xff)
4231 bits=16;
4232 outchp++;
4233 udf_chars++;
4234 }
4235 /* null terminate just in case */
4236 *outchp++ = 0;
4237
4238 is_osta_typ0 = (chsp->type == 0);
4239 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4240 if (is_osta_typ0) {
4241 udf_chars = udf_CompressUnicode(udf_chars, bits,
4242 (unicode_t *) raw_name,
4243 (byte *) result);
4244 } else {
4245 printf("unix to udf name: no CHSP0 ?\n");
4246 /* XXX assume 8bit char length byte latin-1 */
4247 *result++ = 8; udf_chars = 1;
4248 strncpy(result, name + 1, name_len);
4249 udf_chars += name_len;
4250 }
4251 *result_len = udf_chars;
4252 free(raw_name, M_UDFTEMP);
4253 }
4254
4255 /* --------------------------------------------------------------------- */
4256
4257 void
4258 udf_timestamp_to_timespec(struct udf_mount *ump,
4259 struct timestamp *timestamp,
4260 struct timespec *timespec)
4261 {
4262 struct clock_ymdhms ymdhms;
4263 uint32_t usecs, secs, nsecs;
4264 uint16_t tz;
4265
4266 /* fill in ymdhms structure from timestamp */
4267 memset(&ymdhms, 0, sizeof(ymdhms));
4268 ymdhms.dt_year = udf_rw16(timestamp->year);
4269 ymdhms.dt_mon = timestamp->month;
4270 ymdhms.dt_day = timestamp->day;
4271 ymdhms.dt_wday = 0; /* ? */
4272 ymdhms.dt_hour = timestamp->hour;
4273 ymdhms.dt_min = timestamp->minute;
4274 ymdhms.dt_sec = timestamp->second;
4275
4276 secs = clock_ymdhms_to_secs(&ymdhms);
4277 usecs = timestamp->usec +
4278 100*timestamp->hund_usec + 10000*timestamp->centisec;
4279 nsecs = usecs * 1000;
4280
4281 /*
4282 * Calculate the time zone. The timezone is 12 bit signed 2's
4283 * compliment, so we gotta do some extra magic to handle it right.
4284 */
4285 tz = udf_rw16(timestamp->type_tz);
4286 tz &= 0x0fff; /* only lower 12 bits are significant */
4287 if (tz & 0x0800) /* sign extention */
4288 tz |= 0xf000;
4289
4290 /* TODO check timezone conversion */
4291 /* check if we are specified a timezone to convert */
4292 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4293 if ((int16_t) tz != -2047)
4294 secs -= (int16_t) tz * 60;
4295 } else {
4296 secs -= ump->mount_args.gmtoff;
4297 }
4298
4299 timespec->tv_sec = secs;
4300 timespec->tv_nsec = nsecs;
4301 }
4302
4303
4304 void
4305 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4306 {
4307 struct clock_ymdhms ymdhms;
4308 uint32_t husec, usec, csec;
4309
4310 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4311
4312 usec = timespec->tv_nsec / 1000;
4313 husec = usec / 100;
4314 usec -= husec * 100; /* only 0-99 in usec */
4315 csec = husec / 100; /* only 0-99 in csec */
4316 husec -= csec * 100; /* only 0-99 in husec */
4317
4318 /* set method 1 for CUT/GMT */
4319 timestamp->type_tz = udf_rw16((1<<12) + 0);
4320 timestamp->year = udf_rw16(ymdhms.dt_year);
4321 timestamp->month = ymdhms.dt_mon;
4322 timestamp->day = ymdhms.dt_day;
4323 timestamp->hour = ymdhms.dt_hour;
4324 timestamp->minute = ymdhms.dt_min;
4325 timestamp->second = ymdhms.dt_sec;
4326 timestamp->centisec = csec;
4327 timestamp->hund_usec = husec;
4328 timestamp->usec = usec;
4329 }
4330
4331 /* --------------------------------------------------------------------- */
4332
4333 /*
4334 * Attribute and filetypes converters with get/set pairs
4335 */
4336
4337 uint32_t
4338 udf_getaccessmode(struct udf_node *udf_node)
4339 {
4340 struct file_entry *fe = udf_node->fe;
4341 struct extfile_entry *efe = udf_node->efe;
4342 uint32_t udf_perm, icbftype;
4343 uint32_t mode, ftype;
4344 uint16_t icbflags;
4345
4346 UDF_LOCK_NODE(udf_node, 0);
4347 if (fe) {
4348 udf_perm = udf_rw32(fe->perm);
4349 icbftype = fe->icbtag.file_type;
4350 icbflags = udf_rw16(fe->icbtag.flags);
4351 } else {
4352 assert(udf_node->efe);
4353 udf_perm = udf_rw32(efe->perm);
4354 icbftype = efe->icbtag.file_type;
4355 icbflags = udf_rw16(efe->icbtag.flags);
4356 }
4357
4358 mode = udf_perm_to_unix_mode(udf_perm);
4359 ftype = udf_icb_to_unix_filetype(icbftype);
4360
4361 /* set suid, sgid, sticky from flags in fe/efe */
4362 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4363 mode |= S_ISUID;
4364 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4365 mode |= S_ISGID;
4366 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4367 mode |= S_ISVTX;
4368
4369 UDF_UNLOCK_NODE(udf_node, 0);
4370
4371 return mode | ftype;
4372 }
4373
4374
4375 void
4376 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4377 {
4378 struct file_entry *fe = udf_node->fe;
4379 struct extfile_entry *efe = udf_node->efe;
4380 uint32_t udf_perm;
4381 uint16_t icbflags;
4382
4383 UDF_LOCK_NODE(udf_node, 0);
4384 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4385 if (fe) {
4386 icbflags = udf_rw16(fe->icbtag.flags);
4387 } else {
4388 icbflags = udf_rw16(efe->icbtag.flags);
4389 }
4390
4391 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4392 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4393 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4394 if (mode & S_ISUID)
4395 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4396 if (mode & S_ISGID)
4397 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4398 if (mode & S_ISVTX)
4399 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4400
4401 if (fe) {
4402 fe->perm = udf_rw32(udf_perm);
4403 fe->icbtag.flags = udf_rw16(icbflags);
4404 } else {
4405 efe->perm = udf_rw32(udf_perm);
4406 efe->icbtag.flags = udf_rw16(icbflags);
4407 }
4408
4409 UDF_UNLOCK_NODE(udf_node, 0);
4410 }
4411
4412
4413 void
4414 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4415 {
4416 struct udf_mount *ump = udf_node->ump;
4417 struct file_entry *fe = udf_node->fe;
4418 struct extfile_entry *efe = udf_node->efe;
4419 uid_t uid;
4420 gid_t gid;
4421
4422 UDF_LOCK_NODE(udf_node, 0);
4423 if (fe) {
4424 uid = (uid_t)udf_rw32(fe->uid);
4425 gid = (gid_t)udf_rw32(fe->gid);
4426 } else {
4427 assert(udf_node->efe);
4428 uid = (uid_t)udf_rw32(efe->uid);
4429 gid = (gid_t)udf_rw32(efe->gid);
4430 }
4431
4432 /* do the uid/gid translation game */
4433 if (uid == (uid_t) -1)
4434 uid = ump->mount_args.anon_uid;
4435 if (gid == (gid_t) -1)
4436 gid = ump->mount_args.anon_gid;
4437
4438 *uidp = uid;
4439 *gidp = gid;
4440
4441 UDF_UNLOCK_NODE(udf_node, 0);
4442 }
4443
4444
4445 void
4446 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4447 {
4448 struct udf_mount *ump = udf_node->ump;
4449 struct file_entry *fe = udf_node->fe;
4450 struct extfile_entry *efe = udf_node->efe;
4451 uid_t nobody_uid;
4452 gid_t nobody_gid;
4453
4454 UDF_LOCK_NODE(udf_node, 0);
4455
4456 /* do the uid/gid translation game */
4457 nobody_uid = ump->mount_args.nobody_uid;
4458 nobody_gid = ump->mount_args.nobody_gid;
4459 if (uid == nobody_uid)
4460 uid = (uid_t) -1;
4461 if (gid == nobody_gid)
4462 gid = (gid_t) -1;
4463
4464 if (fe) {
4465 fe->uid = udf_rw32((uint32_t) uid);
4466 fe->gid = udf_rw32((uint32_t) gid);
4467 } else {
4468 efe->uid = udf_rw32((uint32_t) uid);
4469 efe->gid = udf_rw32((uint32_t) gid);
4470 }
4471
4472 UDF_UNLOCK_NODE(udf_node, 0);
4473 }
4474
4475
4476 /* --------------------------------------------------------------------- */
4477
4478
4479 int
4480 udf_dirhash_fill(struct udf_node *dir_node)
4481 {
4482 struct vnode *dvp = dir_node->vnode;
4483 struct dirhash *dirh;
4484 struct file_entry *fe = dir_node->fe;
4485 struct extfile_entry *efe = dir_node->efe;
4486 struct fileid_desc *fid;
4487 struct dirent *dirent;
4488 uint64_t file_size, pre_diroffset, diroffset;
4489 uint32_t lb_size;
4490 int error;
4491
4492 /* make sure we have a dirhash to work on */
4493 dirh = dir_node->dir_hash;
4494 KASSERT(dirh);
4495 KASSERT(dirh->refcnt > 0);
4496
4497 if (dirh->flags & DIRH_BROKEN)
4498 return EIO;
4499 if (dirh->flags & DIRH_COMPLETE)
4500 return 0;
4501
4502 /* make sure we have a clean dirhash to add to */
4503 dirhash_purge_entries(dirh);
4504
4505 /* get directory filesize */
4506 if (fe) {
4507 file_size = udf_rw64(fe->inf_len);
4508 } else {
4509 assert(efe);
4510 file_size = udf_rw64(efe->inf_len);
4511 }
4512
4513 /* allocate temporary space for fid */
4514 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4515 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4516
4517 /* allocate temporary space for dirent */
4518 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4519
4520 error = 0;
4521 diroffset = 0;
4522 while (diroffset < file_size) {
4523 /* transfer a new fid/dirent */
4524 pre_diroffset = diroffset;
4525 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4526 if (error) {
4527 /* TODO what to do? continue but not add? */
4528 dirh->flags |= DIRH_BROKEN;
4529 dirhash_purge_entries(dirh);
4530 break;
4531 }
4532
4533 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4534 /* register deleted extent for reuse */
4535 dirhash_enter_freed(dirh, pre_diroffset,
4536 udf_fidsize(fid));
4537 } else {
4538 /* append to the dirhash */
4539 dirhash_enter(dirh, dirent, pre_diroffset,
4540 udf_fidsize(fid), 0);
4541 }
4542 }
4543 dirh->flags |= DIRH_COMPLETE;
4544
4545 free(fid, M_UDFTEMP);
4546 free(dirent, M_UDFTEMP);
4547
4548 return error;
4549 }
4550
4551
4552 /* --------------------------------------------------------------------- */
4553
4554 /*
4555 * Directory read and manipulation functions.
4556 *
4557 */
4558
4559 int
4560 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4561 struct long_ad *icb_loc, int *found)
4562 {
4563 struct udf_node *dir_node = VTOI(vp);
4564 struct dirhash *dirh;
4565 struct dirhash_entry *dirh_ep;
4566 struct fileid_desc *fid;
4567 struct dirent *dirent, *s_dirent;
4568 struct charspec osta_charspec;
4569 uint64_t diroffset;
4570 uint32_t lb_size;
4571 int hit, error;
4572
4573 /* set default return */
4574 *found = 0;
4575
4576 /* get our dirhash and make sure its read in */
4577 dirhash_get(&dir_node->dir_hash);
4578 error = udf_dirhash_fill(dir_node);
4579 if (error) {
4580 dirhash_put(dir_node->dir_hash);
4581 return error;
4582 }
4583 dirh = dir_node->dir_hash;
4584
4585 /* allocate temporary space for fid */
4586 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4587 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4588 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4589 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4590
4591 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4592 namelen, namelen, name));
4593
4594 /* convert given unix name to canonical unix name */
4595 udf_osta_charset(&osta_charspec);
4596 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4597 name, namelen, &osta_charspec);
4598 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4599 (char *) fid->data, fid->l_fi,
4600 &osta_charspec);
4601 s_dirent->d_namlen = strlen(s_dirent->d_name);
4602
4603 /* search our dirhash hits */
4604 memset(icb_loc, 0, sizeof(*icb_loc));
4605 dirh_ep = NULL;
4606 for (;;) {
4607 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4608 /* if no hit, abort the search */
4609 if (!hit)
4610 break;
4611
4612 /* check this hit */
4613 diroffset = dirh_ep->offset;
4614
4615 /* transfer a new fid/dirent */
4616 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4617 if (error)
4618 break;
4619
4620 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4621 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4622
4623 /* see if its our entry */
4624 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4625 *found = 1;
4626 *icb_loc = fid->icb;
4627 break;
4628 }
4629 }
4630 free(fid, M_UDFTEMP);
4631 free(dirent, M_UDFTEMP);
4632 free(s_dirent, M_UDFTEMP);
4633
4634 dirhash_put(dir_node->dir_hash);
4635
4636 return error;
4637 }
4638
4639 /* --------------------------------------------------------------------- */
4640
4641 static int
4642 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4643 struct long_ad *node_icb, struct long_ad *parent_icb,
4644 uint64_t parent_unique_id)
4645 {
4646 struct timespec now;
4647 struct icb_tag *icb;
4648 struct filetimes_extattr_entry *ft_extattr;
4649 uint64_t unique_id;
4650 uint32_t fidsize, lb_num;
4651 uint8_t *bpos;
4652 int crclen, attrlen;
4653
4654 lb_num = udf_rw32(node_icb->loc.lb_num);
4655 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4656 icb = &fe->icbtag;
4657
4658 /*
4659 * Always use strategy type 4 unless on WORM wich we don't support
4660 * (yet). Fill in defaults and set for internal allocation of data.
4661 */
4662 icb->strat_type = udf_rw16(4);
4663 icb->max_num_entries = udf_rw16(1);
4664 icb->file_type = file_type; /* 8 bit */
4665 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4666
4667 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4668 fe->link_cnt = udf_rw16(0); /* explicit setting */
4669
4670 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4671
4672 vfs_timestamp(&now);
4673 udf_timespec_to_timestamp(&now, &fe->atime);
4674 udf_timespec_to_timestamp(&now, &fe->attrtime);
4675 udf_timespec_to_timestamp(&now, &fe->mtime);
4676
4677 udf_set_regid(&fe->imp_id, IMPL_NAME);
4678 udf_add_impl_regid(ump, &fe->imp_id);
4679
4680 unique_id = udf_advance_uniqueid(ump);
4681 fe->unique_id = udf_rw64(unique_id);
4682 fe->l_ea = udf_rw32(0);
4683
4684 /* create extended attribute to record our creation time */
4685 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4686 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4687 memset(ft_extattr, 0, attrlen);
4688 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4689 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4690 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4691 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4692 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4693 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4694
4695 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4696 (struct extattr_entry *) ft_extattr);
4697 free(ft_extattr, M_UDFTEMP);
4698
4699 /* if its a directory, create '..' */
4700 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4701 fidsize = 0;
4702 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4703 fidsize = udf_create_parentfid(ump,
4704 (struct fileid_desc *) bpos, parent_icb,
4705 parent_unique_id);
4706 }
4707
4708 /* record fidlength information */
4709 fe->inf_len = udf_rw64(fidsize);
4710 fe->l_ad = udf_rw32(fidsize);
4711 fe->logblks_rec = udf_rw64(0); /* intern */
4712
4713 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4714 crclen += udf_rw32(fe->l_ea) + fidsize;
4715 fe->tag.desc_crc_len = udf_rw16(crclen);
4716
4717 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4718
4719 return fidsize;
4720 }
4721
4722 /* --------------------------------------------------------------------- */
4723
4724 static int
4725 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4726 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4727 uint64_t parent_unique_id)
4728 {
4729 struct timespec now;
4730 struct icb_tag *icb;
4731 uint64_t unique_id;
4732 uint32_t fidsize, lb_num;
4733 uint8_t *bpos;
4734 int crclen;
4735
4736 lb_num = udf_rw32(node_icb->loc.lb_num);
4737 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4738 icb = &efe->icbtag;
4739
4740 /*
4741 * Always use strategy type 4 unless on WORM wich we don't support
4742 * (yet). Fill in defaults and set for internal allocation of data.
4743 */
4744 icb->strat_type = udf_rw16(4);
4745 icb->max_num_entries = udf_rw16(1);
4746 icb->file_type = file_type; /* 8 bit */
4747 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4748
4749 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4750 efe->link_cnt = udf_rw16(0); /* explicit setting */
4751
4752 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4753
4754 vfs_timestamp(&now);
4755 udf_timespec_to_timestamp(&now, &efe->ctime);
4756 udf_timespec_to_timestamp(&now, &efe->atime);
4757 udf_timespec_to_timestamp(&now, &efe->attrtime);
4758 udf_timespec_to_timestamp(&now, &efe->mtime);
4759
4760 udf_set_regid(&efe->imp_id, IMPL_NAME);
4761 udf_add_impl_regid(ump, &efe->imp_id);
4762
4763 unique_id = udf_advance_uniqueid(ump);
4764 efe->unique_id = udf_rw64(unique_id);
4765 efe->l_ea = udf_rw32(0);
4766
4767 /* if its a directory, create '..' */
4768 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4769 fidsize = 0;
4770 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4771 fidsize = udf_create_parentfid(ump,
4772 (struct fileid_desc *) bpos, parent_icb,
4773 parent_unique_id);
4774 }
4775
4776 /* record fidlength information */
4777 efe->obj_size = udf_rw64(fidsize);
4778 efe->inf_len = udf_rw64(fidsize);
4779 efe->l_ad = udf_rw32(fidsize);
4780 efe->logblks_rec = udf_rw64(0); /* intern */
4781
4782 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4783 crclen += udf_rw32(efe->l_ea) + fidsize;
4784 efe->tag.desc_crc_len = udf_rw16(crclen);
4785
4786 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4787
4788 return fidsize;
4789 }
4790
4791 /* --------------------------------------------------------------------- */
4792
4793 int
4794 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4795 struct udf_node *udf_node, struct componentname *cnp)
4796 {
4797 struct vnode *dvp = dir_node->vnode;
4798 struct dirhash *dirh;
4799 struct dirhash_entry *dirh_ep;
4800 struct file_entry *fe = dir_node->fe;
4801 struct fileid_desc *fid;
4802 struct dirent *dirent, *s_dirent;
4803 struct charspec osta_charspec;
4804 uint64_t diroffset;
4805 uint32_t lb_size, fidsize;
4806 int found, error;
4807 int hit, refcnt;
4808
4809 /* get our dirhash and make sure its read in */
4810 dirhash_get(&dir_node->dir_hash);
4811 error = udf_dirhash_fill(dir_node);
4812 if (error) {
4813 dirhash_put(dir_node->dir_hash);
4814 return error;
4815 }
4816 dirh = dir_node->dir_hash;
4817
4818 /* get directory filesize */
4819 if (!fe) {
4820 assert(dir_node->efe);
4821 }
4822
4823 /* allocate temporary space for fid and dirents */
4824 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4825 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4826 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4827 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4828
4829 /* convert given unix name to canonical unix name */
4830 udf_osta_charset(&osta_charspec);
4831 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4832 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4833 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4834 (char *) fid->data, fid->l_fi,
4835 &osta_charspec);
4836 s_dirent->d_namlen = strlen(s_dirent->d_name);
4837
4838 /* search our dirhash hits */
4839 found = 0;
4840 dirh_ep = NULL;
4841 for (;;) {
4842 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4843 /* if no hit, abort the search */
4844 if (!hit)
4845 break;
4846
4847 /* check this hit */
4848 diroffset = dirh_ep->offset;
4849
4850 /* transfer a new fid/dirent */
4851 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4852 if (error)
4853 break;
4854
4855 /* see if its our entry */
4856 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4857 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4858 found = 1;
4859 break;
4860 }
4861 }
4862
4863 if (!found)
4864 error = ENOENT;
4865 if (error)
4866 goto error_out;
4867
4868 /* mark deleted */
4869 fid->file_char |= UDF_FILE_CHAR_DEL;
4870 #ifdef UDF_COMPLETE_DELETE
4871 memset(&fid->icb, 0, sizeof(fid->icb));
4872 #endif
4873 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4874
4875 /* get size of fid and compensate for the read_fid_stream advance */
4876 fidsize = udf_fidsize(fid);
4877 diroffset -= fidsize;
4878
4879 /* write out */
4880 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4881 fid, fidsize, diroffset,
4882 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4883 FSCRED, NULL, NULL);
4884 if (error)
4885 goto error_out;
4886
4887 /* get reference count of attached node */
4888 if (udf_node->fe) {
4889 refcnt = udf_rw16(udf_node->fe->link_cnt);
4890 } else {
4891 KASSERT(udf_node->efe);
4892 refcnt = udf_rw16(udf_node->efe->link_cnt);
4893 }
4894 #ifdef UDF_COMPLETE_DELETE
4895 /* substract reference counter in attached node */
4896 refcnt -= 1;
4897 if (udf_node->fe) {
4898 udf_node->fe->link_cnt = udf_rw16(refcnt);
4899 } else {
4900 udf_node->efe->link_cnt = udf_rw16(refcnt);
4901 }
4902
4903 /* prevent writeout when refcnt == 0 */
4904 if (refcnt == 0)
4905 udf_node->i_flags |= IN_DELETED;
4906
4907 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4908 int drefcnt;
4909
4910 /* substract reference counter in directory node */
4911 /* note subtract 2 (?) for its was also backreferenced */
4912 if (dir_node->fe) {
4913 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4914 drefcnt -= 1;
4915 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4916 } else {
4917 KASSERT(dir_node->efe);
4918 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4919 drefcnt -= 1;
4920 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4921 }
4922 }
4923
4924 udf_node->i_flags |= IN_MODIFIED;
4925 dir_node->i_flags |= IN_MODIFIED;
4926 #endif
4927 /* if it is/was a hardlink adjust the file count */
4928 if (refcnt > 0)
4929 udf_adjust_filecount(udf_node, -1);
4930
4931 /* remove from the dirhash */
4932 dirhash_remove(dirh, dirent, diroffset,
4933 udf_fidsize(fid));
4934
4935 error_out:
4936 free(fid, M_UDFTEMP);
4937 free(dirent, M_UDFTEMP);
4938 free(s_dirent, M_UDFTEMP);
4939
4940 dirhash_put(dir_node->dir_hash);
4941
4942 return error;
4943 }
4944
4945 /* --------------------------------------------------------------------- */
4946
4947 int
4948 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4949 struct udf_node *new_parent_node)
4950 {
4951 struct vnode *dvp = dir_node->vnode;
4952 struct dirhash *dirh;
4953 struct dirhash_entry *dirh_ep;
4954 struct file_entry *fe;
4955 struct extfile_entry *efe;
4956 struct fileid_desc *fid;
4957 struct dirent *dirent;
4958 uint64_t diroffset;
4959 uint64_t new_parent_unique_id;
4960 uint32_t lb_size, fidsize;
4961 int found, error;
4962 char const *name = "..";
4963 int namelen = 2;
4964 int hit;
4965
4966 /* get our dirhash and make sure its read in */
4967 dirhash_get(&dir_node->dir_hash);
4968 error = udf_dirhash_fill(dir_node);
4969 if (error) {
4970 dirhash_put(dir_node->dir_hash);
4971 return error;
4972 }
4973 dirh = dir_node->dir_hash;
4974
4975 /* get new parent's unique ID */
4976 fe = new_parent_node->fe;
4977 efe = new_parent_node->efe;
4978 if (fe) {
4979 new_parent_unique_id = udf_rw64(fe->unique_id);
4980 } else {
4981 assert(efe);
4982 new_parent_unique_id = udf_rw64(efe->unique_id);
4983 }
4984
4985 /* get directory filesize */
4986 fe = dir_node->fe;
4987 efe = dir_node->efe;
4988 if (!fe) {
4989 assert(efe);
4990 }
4991
4992 /* allocate temporary space for fid */
4993 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4994 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4995 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4996
4997 /*
4998 * NOTE the standard does not dictate the FID entry '..' should be
4999 * first, though in practice it will most likely be.
5000 */
5001
5002 /* search our dirhash hits */
5003 found = 0;
5004 dirh_ep = NULL;
5005 for (;;) {
5006 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
5007 /* if no hit, abort the search */
5008 if (!hit)
5009 break;
5010
5011 /* check this hit */
5012 diroffset = dirh_ep->offset;
5013
5014 /* transfer a new fid/dirent */
5015 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
5016 if (error)
5017 break;
5018
5019 /* see if its our entry */
5020 KASSERT(dirent->d_namlen == namelen);
5021 if (strncmp(dirent->d_name, name, namelen) == 0) {
5022 found = 1;
5023 break;
5024 }
5025 }
5026
5027 if (!found)
5028 error = ENOENT;
5029 if (error)
5030 goto error_out;
5031
5032 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5033 fid->icb = new_parent_node->write_loc;
5034 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5035
5036 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5037
5038 /* get size of fid and compensate for the read_fid_stream advance */
5039 fidsize = udf_fidsize(fid);
5040 diroffset -= fidsize;
5041
5042 /* write out */
5043 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5044 fid, fidsize, diroffset,
5045 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5046 FSCRED, NULL, NULL);
5047
5048 /* nothing to be done in the dirhash */
5049
5050 error_out:
5051 free(fid, M_UDFTEMP);
5052 free(dirent, M_UDFTEMP);
5053
5054 dirhash_put(dir_node->dir_hash);
5055
5056 return error;
5057 }
5058
5059 /* --------------------------------------------------------------------- */
5060
5061 /*
5062 * We are not allowed to split the fid tag itself over an logical block so
5063 * check the space remaining in the logical block.
5064 *
5065 * We try to select the smallest candidate for recycling or when none is
5066 * found, append a new one at the end of the directory.
5067 */
5068
5069 int
5070 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5071 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5072 {
5073 struct vnode *dvp = dir_node->vnode;
5074 struct dirhash *dirh;
5075 struct dirhash_entry *dirh_ep;
5076 struct fileid_desc *fid;
5077 struct icb_tag *icbtag;
5078 struct charspec osta_charspec;
5079 struct dirent dirent;
5080 uint64_t unique_id, dir_size;
5081 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5082 uint32_t chosen_size, chosen_size_diff;
5083 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5084 int file_char, refcnt, icbflags, addr_type, hit, error;
5085
5086 /* get our dirhash and make sure its read in */
5087 dirhash_get(&dir_node->dir_hash);
5088 error = udf_dirhash_fill(dir_node);
5089 if (error) {
5090 dirhash_put(dir_node->dir_hash);
5091 return error;
5092 }
5093 dirh = dir_node->dir_hash;
5094
5095 /* get info */
5096 lb_size = udf_rw32(ump->logical_vol->lb_size);
5097 udf_osta_charset(&osta_charspec);
5098
5099 if (dir_node->fe) {
5100 dir_size = udf_rw64(dir_node->fe->inf_len);
5101 icbtag = &dir_node->fe->icbtag;
5102 } else {
5103 dir_size = udf_rw64(dir_node->efe->inf_len);
5104 icbtag = &dir_node->efe->icbtag;
5105 }
5106
5107 icbflags = udf_rw16(icbtag->flags);
5108 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5109
5110 if (udf_node->fe) {
5111 unique_id = udf_rw64(udf_node->fe->unique_id);
5112 refcnt = udf_rw16(udf_node->fe->link_cnt);
5113 } else {
5114 unique_id = udf_rw64(udf_node->efe->unique_id);
5115 refcnt = udf_rw16(udf_node->efe->link_cnt);
5116 }
5117
5118 if (refcnt > 0) {
5119 unique_id = udf_advance_uniqueid(ump);
5120 udf_adjust_filecount(udf_node, 1);
5121 }
5122
5123 /* determine file characteristics */
5124 file_char = 0; /* visible non deleted file and not stream metadata */
5125 if (vap->va_type == VDIR)
5126 file_char = UDF_FILE_CHAR_DIR;
5127
5128 /* malloc scrap buffer */
5129 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5130
5131 /* calculate _minimum_ fid size */
5132 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5133 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5134 fidsize = UDF_FID_SIZE + fid->l_fi;
5135 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5136
5137 /* find position that will fit the FID */
5138 chosen_fid_pos = dir_size;
5139 chosen_size = 0;
5140 chosen_size_diff = UINT_MAX;
5141
5142 /* shut up gcc */
5143 dirent.d_namlen = 0;
5144
5145 /* search our dirhash hits */
5146 error = 0;
5147 dirh_ep = NULL;
5148 for (;;) {
5149 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5150 /* if no hit, abort the search */
5151 if (!hit)
5152 break;
5153
5154 /* check this hit for size */
5155 this_fidsize = dirh_ep->entry_size;
5156
5157 /* check this hit */
5158 fid_pos = dirh_ep->offset;
5159 end_fid_pos = fid_pos + this_fidsize;
5160 size_diff = this_fidsize - fidsize;
5161 lb_rest = lb_size - (end_fid_pos % lb_size);
5162
5163 #ifndef UDF_COMPLETE_DELETE
5164 /* transfer a new fid/dirent */
5165 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5166 if (error)
5167 goto error_out;
5168
5169 /* only reuse entries that are wiped */
5170 /* check if the len + loc are marked zero */
5171 if (udf_rw32(fid->icb.len) != 0)
5172 continue;
5173 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5174 continue;
5175 if (udf_rw16(fid->icb.loc.part_num) != 0)
5176 continue;
5177 #endif /* UDF_COMPLETE_DELETE */
5178
5179 /* select if not splitting the tag and its smaller */
5180 if ((size_diff >= 0) &&
5181 (size_diff < chosen_size_diff) &&
5182 (lb_rest >= sizeof(struct desc_tag)))
5183 {
5184 /* UDF 2.3.4.2+3 specifies rules for iu size */
5185 if ((size_diff == 0) || (size_diff >= 32)) {
5186 chosen_fid_pos = fid_pos;
5187 chosen_size = this_fidsize;
5188 chosen_size_diff = size_diff;
5189 }
5190 }
5191 }
5192
5193
5194 /* extend directory if no other candidate found */
5195 if (chosen_size == 0) {
5196 chosen_fid_pos = dir_size;
5197 chosen_size = fidsize;
5198 chosen_size_diff = 0;
5199
5200 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5201 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5202 /* pre-grow directory to see if we're to switch */
5203 udf_grow_node(dir_node, dir_size + chosen_size);
5204
5205 icbflags = udf_rw16(icbtag->flags);
5206 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5207 }
5208
5209 /* make sure the next fid desc_tag won't be splitted */
5210 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5211 end_fid_pos = chosen_fid_pos + chosen_size;
5212 lb_rest = lb_size - (end_fid_pos % lb_size);
5213
5214 /* pad with implementation use regid if needed */
5215 if (lb_rest < sizeof(struct desc_tag))
5216 chosen_size += 32;
5217 }
5218 }
5219 chosen_size_diff = chosen_size - fidsize;
5220
5221 /* populate the FID */
5222 memset(fid, 0, lb_size);
5223 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5224 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5225 fid->file_char = file_char;
5226 fid->icb = udf_node->loc;
5227 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5228 fid->l_iu = udf_rw16(0);
5229
5230 if (chosen_size > fidsize) {
5231 /* insert implementation-use regid to space it correctly */
5232 fid->l_iu = udf_rw16(chosen_size_diff);
5233
5234 /* set implementation use */
5235 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5236 udf_add_impl_regid(ump, (struct regid *) fid->data);
5237 }
5238
5239 /* fill in name */
5240 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5241 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5242
5243 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5244 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5245
5246 /* writeout FID/update parent directory */
5247 error = vn_rdwr(UIO_WRITE, dvp,
5248 fid, chosen_size, chosen_fid_pos,
5249 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5250 FSCRED, NULL, NULL);
5251
5252 if (error)
5253 goto error_out;
5254
5255 /* add reference counter in attached node */
5256 if (udf_node->fe) {
5257 refcnt = udf_rw16(udf_node->fe->link_cnt);
5258 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5259 } else {
5260 KASSERT(udf_node->efe);
5261 refcnt = udf_rw16(udf_node->efe->link_cnt);
5262 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5263 }
5264
5265 /* mark not deleted if it was... just in case, but do warn */
5266 if (udf_node->i_flags & IN_DELETED) {
5267 printf("udf: warning, marking a file undeleted\n");
5268 udf_node->i_flags &= ~IN_DELETED;
5269 }
5270
5271 if (file_char & UDF_FILE_CHAR_DIR) {
5272 /* add reference counter in directory node for '..' */
5273 if (dir_node->fe) {
5274 refcnt = udf_rw16(dir_node->fe->link_cnt);
5275 refcnt++;
5276 dir_node->fe->link_cnt = udf_rw16(refcnt);
5277 } else {
5278 KASSERT(dir_node->efe);
5279 refcnt = udf_rw16(dir_node->efe->link_cnt);
5280 refcnt++;
5281 dir_node->efe->link_cnt = udf_rw16(refcnt);
5282 }
5283 }
5284
5285 /* append to the dirhash */
5286 /* NOTE do not use dirent anymore or it won't match later! */
5287 udf_to_unix_name(dirent.d_name, NAME_MAX,
5288 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5289 dirent.d_namlen = strlen(dirent.d_name);
5290 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5291 udf_fidsize(fid), 1);
5292
5293 /* note updates */
5294 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5295 /* VN_KNOTE(udf_node, ...) */
5296 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5297
5298 error_out:
5299 free(fid, M_TEMP);
5300
5301 dirhash_put(dir_node->dir_hash);
5302
5303 return error;
5304 }
5305
5306 /* --------------------------------------------------------------------- */
5307
5308 /*
5309 * Each node can have an attached streamdir node though not recursively. These
5310 * are otherwise known as named substreams/named extended attributes that have
5311 * no size limitations.
5312 *
5313 * `Normal' extended attributes are indicated with a number and are recorded
5314 * in either the fe/efe descriptor itself for small descriptors or recorded in
5315 * the attached extended attribute file. Since these spaces can get
5316 * fragmented, care ought to be taken.
5317 *
5318 * Since the size of the space reserved for allocation descriptors is limited,
5319 * there is a mechanim provided for extending this space; this is done by a
5320 * special extent to allow schrinking of the allocations without breaking the
5321 * linkage to the allocation extent descriptor.
5322 */
5323
5324 int
5325 udf_loadvnode(struct mount *mp, struct vnode *vp,
5326 const void *key, size_t key_len, const void **new_key)
5327 {
5328 union dscrptr *dscr;
5329 struct udf_mount *ump;
5330 struct udf_node *udf_node;
5331 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5332 uint64_t file_size;
5333 uint32_t lb_size, sector, dummy;
5334 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5335 int slot, eof, error;
5336 int num_indir_followed = 0;
5337
5338 DPRINTF(NODE, ("udf_loadvnode called\n"));
5339 udf_node = NULL;
5340 ump = VFSTOUDF(mp);
5341
5342 KASSERT(key_len == sizeof(node_icb_loc.loc));
5343 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5344 node_icb_loc.len = ump->logical_vol->lb_size;
5345 memcpy(&node_icb_loc.loc, key, key_len);
5346
5347 /* garbage check: translate udf_node_icb_loc to sectornr */
5348 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5349 if (error) {
5350 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5351 /* no use, this will fail anyway */
5352 return EINVAL;
5353 }
5354
5355 /* build udf_node (do initialise!) */
5356 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5357 memset(udf_node, 0, sizeof(struct udf_node));
5358
5359 vp->v_tag = VT_UDF;
5360 vp->v_op = udf_vnodeop_p;
5361 vp->v_data = udf_node;
5362
5363 /* initialise crosslinks, note location of fe/efe for hashing */
5364 udf_node->ump = ump;
5365 udf_node->vnode = vp;
5366 udf_node->loc = node_icb_loc;
5367 udf_node->lockf = 0;
5368 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5369 cv_init(&udf_node->node_lock, "udf_nlk");
5370 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5371 udf_node->outstanding_bufs = 0;
5372 udf_node->outstanding_nodedscr = 0;
5373 udf_node->uncommitted_lbs = 0;
5374
5375 /* check if we're fetching the root */
5376 if (ump->fileset_desc)
5377 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5378 sizeof(struct long_ad)) == 0)
5379 vp->v_vflag |= VV_ROOT;
5380
5381 icb_loc = node_icb_loc;
5382 needs_indirect = 0;
5383 strat4096 = 0;
5384 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5385 file_size = 0;
5386 lb_size = udf_rw32(ump->logical_vol->lb_size);
5387
5388 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5389 do {
5390 /* try to read in fe/efe */
5391 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5392
5393 /* blank sector marks end of sequence, check this */
5394 if ((dscr == NULL) && (!strat4096))
5395 error = ENOENT;
5396
5397 /* break if read error or blank sector */
5398 if (error || (dscr == NULL))
5399 break;
5400
5401 /* process descriptor based on the descriptor type */
5402 dscr_type = udf_rw16(dscr->tag.id);
5403 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5404
5405 /* if dealing with an indirect entry, follow the link */
5406 if (dscr_type == TAGID_INDIRECTENTRY) {
5407 needs_indirect = 0;
5408 next_icb_loc = dscr->inde.indirect_icb;
5409 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5410 icb_loc = next_icb_loc;
5411 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5412 error = EMLINK;
5413 break;
5414 }
5415 continue;
5416 }
5417
5418 /* only file entries and extended file entries allowed here */
5419 if ((dscr_type != TAGID_FENTRY) &&
5420 (dscr_type != TAGID_EXTFENTRY)) {
5421 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5422 error = ENOENT;
5423 break;
5424 }
5425
5426 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5427
5428 /* choose this one */
5429 last_fe_icb_loc = icb_loc;
5430
5431 /* record and process/update (ext)fentry */
5432 if (dscr_type == TAGID_FENTRY) {
5433 if (udf_node->fe)
5434 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5435 udf_node->fe);
5436 udf_node->fe = &dscr->fe;
5437 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5438 udf_file_type = udf_node->fe->icbtag.file_type;
5439 file_size = udf_rw64(udf_node->fe->inf_len);
5440 } else {
5441 if (udf_node->efe)
5442 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5443 udf_node->efe);
5444 udf_node->efe = &dscr->efe;
5445 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5446 udf_file_type = udf_node->efe->icbtag.file_type;
5447 file_size = udf_rw64(udf_node->efe->inf_len);
5448 }
5449
5450 /* check recording strategy (structure) */
5451
5452 /*
5453 * Strategy 4096 is a daisy linked chain terminating with an
5454 * unrecorded sector or a TERM descriptor. The next
5455 * descriptor is to be found in the sector that follows the
5456 * current sector.
5457 */
5458 if (strat == 4096) {
5459 strat4096 = 1;
5460 needs_indirect = 1;
5461
5462 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5463 }
5464
5465 /*
5466 * Strategy 4 is the normal strategy and terminates, but if
5467 * we're in strategy 4096, we can't have strategy 4 mixed in
5468 */
5469
5470 if (strat == 4) {
5471 if (strat4096) {
5472 error = EINVAL;
5473 break;
5474 }
5475 break; /* done */
5476 }
5477 } while (!error);
5478
5479 /* first round of cleanup code */
5480 if (error) {
5481 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5482 /* recycle udf_node */
5483 udf_dispose_node(udf_node);
5484
5485 return EINVAL; /* error code ok? */
5486 }
5487 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5488
5489 /* assert no references to dscr anymore beyong this point */
5490 assert((udf_node->fe) || (udf_node->efe));
5491 dscr = NULL;
5492
5493 /*
5494 * Remember where to record an updated version of the descriptor. If
5495 * there is a sequence of indirect entries, icb_loc will have been
5496 * updated. Its the write disipline to allocate new space and to make
5497 * sure the chain is maintained.
5498 *
5499 * `needs_indirect' flags if the next location is to be filled with
5500 * with an indirect entry.
5501 */
5502 udf_node->write_loc = icb_loc;
5503 udf_node->needs_indirect = needs_indirect;
5504
5505 /*
5506 * Go trough all allocations extents of this descriptor and when
5507 * encountering a redirect read in the allocation extension. These are
5508 * daisy-chained.
5509 */
5510 UDF_LOCK_NODE(udf_node, 0);
5511 udf_node->num_extensions = 0;
5512
5513 error = 0;
5514 slot = 0;
5515 for (;;) {
5516 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5517 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5518 "lb_num = %d, part = %d\n", slot, eof,
5519 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5520 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5521 udf_rw32(icb_loc.loc.lb_num),
5522 udf_rw16(icb_loc.loc.part_num)));
5523 if (eof)
5524 break;
5525 slot++;
5526
5527 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5528 continue;
5529
5530 DPRINTF(NODE, ("\tgot redirect extent\n"));
5531 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5532 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5533 "too many allocation extensions on "
5534 "udf_node\n"));
5535 error = EINVAL;
5536 break;
5537 }
5538
5539 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5540 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5541 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5542 "extension size in udf_node\n"));
5543 error = EINVAL;
5544 break;
5545 }
5546
5547 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5548 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5549 /* load in allocation extent */
5550 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5551 if (error || (dscr == NULL))
5552 break;
5553
5554 /* process read-in descriptor */
5555 dscr_type = udf_rw16(dscr->tag.id);
5556
5557 if (dscr_type != TAGID_ALLOCEXTENT) {
5558 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5559 error = ENOENT;
5560 break;
5561 }
5562
5563 DPRINTF(NODE, ("\trecording redirect extent\n"));
5564 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5565 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5566
5567 udf_node->num_extensions++;
5568
5569 } /* while */
5570 UDF_UNLOCK_NODE(udf_node, 0);
5571
5572 /* second round of cleanup code */
5573 if (error) {
5574 /* recycle udf_node */
5575 udf_dispose_node(udf_node);
5576
5577 return EINVAL; /* error code ok? */
5578 }
5579
5580 DPRINTF(NODE, ("\tnode read in fine\n"));
5581
5582 /*
5583 * Translate UDF filetypes into vnode types.
5584 *
5585 * Systemfiles like the meta main and mirror files are not treated as
5586 * normal files, so we type them as having no type. UDF dictates that
5587 * they are not allowed to be visible.
5588 */
5589
5590 switch (udf_file_type) {
5591 case UDF_ICB_FILETYPE_DIRECTORY :
5592 case UDF_ICB_FILETYPE_STREAMDIR :
5593 vp->v_type = VDIR;
5594 break;
5595 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5596 vp->v_type = VBLK;
5597 break;
5598 case UDF_ICB_FILETYPE_CHARDEVICE :
5599 vp->v_type = VCHR;
5600 break;
5601 case UDF_ICB_FILETYPE_SOCKET :
5602 vp->v_type = VSOCK;
5603 break;
5604 case UDF_ICB_FILETYPE_FIFO :
5605 vp->v_type = VFIFO;
5606 break;
5607 case UDF_ICB_FILETYPE_SYMLINK :
5608 vp->v_type = VLNK;
5609 break;
5610 case UDF_ICB_FILETYPE_VAT :
5611 case UDF_ICB_FILETYPE_META_MAIN :
5612 case UDF_ICB_FILETYPE_META_MIRROR :
5613 vp->v_type = VNON;
5614 break;
5615 case UDF_ICB_FILETYPE_RANDOMACCESS :
5616 case UDF_ICB_FILETYPE_REALTIME :
5617 vp->v_type = VREG;
5618 break;
5619 default:
5620 /* YIKES, something else */
5621 vp->v_type = VNON;
5622 }
5623
5624 /* TODO specfs, fifofs etc etc. vnops setting */
5625
5626 /* don't forget to set vnode's v_size */
5627 uvm_vnp_setsize(vp, file_size);
5628
5629 /* TODO ext attr and streamdir udf_nodes */
5630
5631 *new_key = &udf_node->loc.loc;
5632
5633 return 0;
5634 }
5635
5636 int
5637 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5638 struct udf_node **udf_noderes)
5639 {
5640 int error;
5641 struct vnode *vp;
5642
5643 *udf_noderes = NULL;
5644
5645 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5646 sizeof(node_icb_loc->loc), &vp);
5647 if (error)
5648 return error;
5649 error = vn_lock(vp, LK_EXCLUSIVE);
5650 if (error) {
5651 vrele(vp);
5652 return error;
5653 }
5654 *udf_noderes = VTOI(vp);
5655 return 0;
5656 }
5657
5658 /* --------------------------------------------------------------------- */
5659
5660 int
5661 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5662 {
5663 union dscrptr *dscr;
5664 struct long_ad *loc;
5665 int extnr, error;
5666
5667 DPRINTF(NODE, ("udf_writeout_node called\n"));
5668
5669 KASSERT(udf_node->outstanding_bufs == 0);
5670 KASSERT(udf_node->outstanding_nodedscr == 0);
5671
5672 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5673
5674 if (udf_node->i_flags & IN_DELETED) {
5675 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5676 udf_cleanup_reservation(udf_node);
5677 return 0;
5678 }
5679
5680 /* lock node; unlocked in callback */
5681 UDF_LOCK_NODE(udf_node, 0);
5682
5683 /* remove pending reservations, we're written out */
5684 udf_cleanup_reservation(udf_node);
5685
5686 /* at least one descriptor writeout */
5687 udf_node->outstanding_nodedscr = 1;
5688
5689 /* we're going to write out the descriptor so clear the flags */
5690 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5691
5692 /* if we were rebuild, write out the allocation extents */
5693 if (udf_node->i_flags & IN_NODE_REBUILD) {
5694 /* mark outstanding node descriptors and issue them */
5695 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5696 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5697 loc = &udf_node->ext_loc[extnr];
5698 dscr = (union dscrptr *) udf_node->ext[extnr];
5699 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5700 if (error)
5701 return error;
5702 }
5703 /* mark allocation extents written out */
5704 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5705 }
5706
5707 if (udf_node->fe) {
5708 KASSERT(udf_node->efe == NULL);
5709 dscr = (union dscrptr *) udf_node->fe;
5710 } else {
5711 KASSERT(udf_node->efe);
5712 KASSERT(udf_node->fe == NULL);
5713 dscr = (union dscrptr *) udf_node->efe;
5714 }
5715 KASSERT(dscr);
5716
5717 loc = &udf_node->write_loc;
5718 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5719
5720 return error;
5721 }
5722
5723 /* --------------------------------------------------------------------- */
5724
5725 int
5726 udf_dispose_node(struct udf_node *udf_node)
5727 {
5728 struct vnode *vp;
5729 int extnr;
5730
5731 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5732 if (!udf_node) {
5733 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5734 return 0;
5735 }
5736
5737 vp = udf_node->vnode;
5738 #ifdef DIAGNOSTIC
5739 if (vp->v_numoutput)
5740 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5741 "v_numoutput = %d", udf_node, vp->v_numoutput);
5742 #endif
5743
5744 udf_cleanup_reservation(udf_node);
5745
5746 /* TODO extended attributes and streamdir */
5747
5748 /* remove dirhash if present */
5749 dirhash_purge(&udf_node->dir_hash);
5750
5751 /* destroy our lock */
5752 mutex_destroy(&udf_node->node_mutex);
5753 cv_destroy(&udf_node->node_lock);
5754
5755 /* dissociate our udf_node from the vnode */
5756 genfs_node_destroy(udf_node->vnode);
5757 mutex_enter(vp->v_interlock);
5758 vp->v_data = NULL;
5759 mutex_exit(vp->v_interlock);
5760
5761 /* free associated memory and the node itself */
5762 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5763 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5764 udf_node->ext[extnr]);
5765 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5766 }
5767
5768 if (udf_node->fe)
5769 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5770 udf_node->fe);
5771 if (udf_node->efe)
5772 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5773 udf_node->efe);
5774
5775 udf_node->fe = (void *) 0xdeadaaaa;
5776 udf_node->efe = (void *) 0xdeadbbbb;
5777 udf_node->ump = (void *) 0xdeadbeef;
5778 pool_put(&udf_node_pool, udf_node);
5779
5780 return 0;
5781 }
5782
5783
5784
5785 /*
5786 * create a new node using the specified dvp, vap and cnp.
5787 * This allows special files to be created. Use with care.
5788 */
5789
5790 int
5791 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5792 struct vattr *vap, kauth_cred_t cred, void *extra,
5793 size_t *key_len, const void **new_key)
5794 {
5795 union dscrptr *dscr;
5796 struct udf_node *dir_node = VTOI(dvp);
5797 struct udf_node *udf_node;
5798 struct udf_mount *ump = dir_node->ump;
5799 struct long_ad node_icb_loc;
5800 uint64_t parent_unique_id;
5801 uint64_t lmapping;
5802 uint32_t lb_size, lb_num;
5803 uint16_t vpart_num;
5804 uid_t uid;
5805 gid_t gid, parent_gid;
5806 int (**vnodeops)(void *);
5807 int udf_file_type, fid_size, error;
5808
5809 vnodeops = udf_vnodeop_p;
5810 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5811
5812 switch (vap->va_type) {
5813 case VREG :
5814 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5815 break;
5816 case VDIR :
5817 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5818 break;
5819 case VLNK :
5820 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5821 break;
5822 case VBLK :
5823 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5824 /* specfs */
5825 return ENOTSUP;
5826 break;
5827 case VCHR :
5828 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5829 /* specfs */
5830 return ENOTSUP;
5831 break;
5832 case VFIFO :
5833 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5834 /* fifofs */
5835 return ENOTSUP;
5836 break;
5837 case VSOCK :
5838 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5839 return ENOTSUP;
5840 break;
5841 case VNON :
5842 case VBAD :
5843 default :
5844 /* nothing; can we even create these? */
5845 return EINVAL;
5846 }
5847
5848 lb_size = udf_rw32(ump->logical_vol->lb_size);
5849
5850 /* reserve space for one logical block */
5851 vpart_num = ump->node_part;
5852 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5853 vpart_num, 1, /* can_fail */ true);
5854 if (error)
5855 return error;
5856
5857 /* allocate node */
5858 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5859 vpart_num, 1, &lmapping);
5860 if (error) {
5861 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5862 return error;
5863 }
5864
5865 lb_num = lmapping;
5866
5867 /* initialise pointer to location */
5868 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5869 node_icb_loc.len = udf_rw32(lb_size);
5870 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5871 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5872
5873 /* build udf_node (do initialise!) */
5874 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5875 memset(udf_node, 0, sizeof(struct udf_node));
5876
5877 /* initialise crosslinks, note location of fe/efe for hashing */
5878 /* bugalert: synchronise with udf_get_node() */
5879 udf_node->ump = ump;
5880 udf_node->vnode = vp;
5881 vp->v_data = udf_node;
5882 udf_node->loc = node_icb_loc;
5883 udf_node->write_loc = node_icb_loc;
5884 udf_node->lockf = 0;
5885 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5886 cv_init(&udf_node->node_lock, "udf_nlk");
5887 udf_node->outstanding_bufs = 0;
5888 udf_node->outstanding_nodedscr = 0;
5889 udf_node->uncommitted_lbs = 0;
5890
5891 vp->v_tag = VT_UDF;
5892 vp->v_op = vnodeops;
5893
5894 /* initialise genfs */
5895 genfs_node_init(vp, &udf_genfsops);
5896
5897 /* get parent's unique ID for refering '..' if its a directory */
5898 if (dir_node->fe) {
5899 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5900 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5901 } else {
5902 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5903 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5904 }
5905
5906 /* get descriptor */
5907 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5908
5909 /* choose a fe or an efe for it */
5910 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5911 udf_node->fe = &dscr->fe;
5912 fid_size = udf_create_new_fe(ump, udf_node->fe,
5913 udf_file_type, &udf_node->loc,
5914 &dir_node->loc, parent_unique_id);
5915 /* TODO add extended attribute for creation time */
5916 } else {
5917 udf_node->efe = &dscr->efe;
5918 fid_size = udf_create_new_efe(ump, udf_node->efe,
5919 udf_file_type, &udf_node->loc,
5920 &dir_node->loc, parent_unique_id);
5921 }
5922 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5923
5924 /* update vnode's size and type */
5925 vp->v_type = vap->va_type;
5926 uvm_vnp_setsize(vp, fid_size);
5927
5928 /* set access mode */
5929 udf_setaccessmode(udf_node, vap->va_mode);
5930
5931 /* set ownership */
5932 uid = kauth_cred_geteuid(cred);
5933 gid = parent_gid;
5934 udf_setownership(udf_node, uid, gid);
5935
5936 *key_len = sizeof(udf_node->loc.loc);
5937 *new_key = &udf_node->loc.loc;
5938
5939 return 0;
5940 }
5941
5942
5943 int
5944 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5945 struct componentname *cnp)
5946 {
5947 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5948 struct udf_mount *ump = dir_node->ump;
5949 int error;
5950
5951 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp);
5952 if (error)
5953 return error;
5954
5955 udf_node = VTOI(*vpp);
5956 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5957 if (error) {
5958 struct long_ad *node_icb_loc = &udf_node->loc;
5959 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5960 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5961
5962 /* free disc allocation for node */
5963 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5964
5965 /* recycle udf_node */
5966 udf_dispose_node(udf_node);
5967 vrele(*vpp);
5968
5969 *vpp = NULL;
5970 return error;
5971 }
5972
5973 /* adjust file count */
5974 udf_adjust_filecount(udf_node, 1);
5975
5976 return 0;
5977 }
5978
5979 /* --------------------------------------------------------------------- */
5980
5981 static void
5982 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5983 {
5984 struct udf_mount *ump = udf_node->ump;
5985 uint32_t lb_size, lb_num, len, num_lb;
5986 uint16_t vpart_num;
5987
5988 /* is there really one? */
5989 if (mem == NULL)
5990 return;
5991
5992 /* got a descriptor here */
5993 len = UDF_EXT_LEN(udf_rw32(loc->len));
5994 lb_num = udf_rw32(loc->loc.lb_num);
5995 vpart_num = udf_rw16(loc->loc.part_num);
5996
5997 lb_size = udf_rw32(ump->logical_vol->lb_size);
5998 num_lb = (len + lb_size -1) / lb_size;
5999
6000 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
6001 }
6002
6003 void
6004 udf_delete_node(struct udf_node *udf_node)
6005 {
6006 void *dscr;
6007 struct long_ad *loc;
6008 int extnr, lvint, dummy;
6009
6010 if (udf_node->i_flags & IN_NO_DELETE)
6011 return;
6012
6013 /* paranoia check on integrity; should be open!; we could panic */
6014 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6015 if (lvint == UDF_INTEGRITY_CLOSED)
6016 printf("\tIntegrity was CLOSED!\n");
6017
6018 /* whatever the node type, change its size to zero */
6019 (void) udf_resize_node(udf_node, 0, &dummy);
6020
6021 /* force it to be `clean'; no use writing it out */
6022 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6023 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6024
6025 /* adjust file count */
6026 udf_adjust_filecount(udf_node, -1);
6027
6028 /*
6029 * Free its allocated descriptors; memory will be released when
6030 * vop_reclaim() is called.
6031 */
6032 loc = &udf_node->loc;
6033
6034 dscr = udf_node->fe;
6035 udf_free_descriptor_space(udf_node, loc, dscr);
6036 dscr = udf_node->efe;
6037 udf_free_descriptor_space(udf_node, loc, dscr);
6038
6039 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6040 dscr = udf_node->ext[extnr];
6041 loc = &udf_node->ext_loc[extnr];
6042 udf_free_descriptor_space(udf_node, loc, dscr);
6043 }
6044 }
6045
6046 /* --------------------------------------------------------------------- */
6047
6048 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6049 int
6050 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6051 {
6052 struct file_entry *fe = udf_node->fe;
6053 struct extfile_entry *efe = udf_node->efe;
6054 uint64_t file_size;
6055 int error;
6056
6057 if (fe) {
6058 file_size = udf_rw64(fe->inf_len);
6059 } else {
6060 assert(udf_node->efe);
6061 file_size = udf_rw64(efe->inf_len);
6062 }
6063
6064 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6065 file_size, new_size));
6066
6067 /* if not changing, we're done */
6068 if (file_size == new_size)
6069 return 0;
6070
6071 *extended = (new_size > file_size);
6072 if (*extended) {
6073 error = udf_grow_node(udf_node, new_size);
6074 } else {
6075 error = udf_shrink_node(udf_node, new_size);
6076 }
6077
6078 return error;
6079 }
6080
6081
6082 /* --------------------------------------------------------------------- */
6083
6084 void
6085 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6086 struct timespec *mod, struct timespec *birth)
6087 {
6088 struct timespec now;
6089 struct file_entry *fe;
6090 struct extfile_entry *efe;
6091 struct filetimes_extattr_entry *ft_extattr;
6092 struct timestamp *atime, *mtime, *attrtime, *ctime;
6093 struct timestamp fe_ctime;
6094 struct timespec cur_birth;
6095 uint32_t offset, a_l;
6096 uint8_t *filedata;
6097 int error;
6098
6099 /* protect against rogue values */
6100 if (!udf_node)
6101 return;
6102
6103 fe = udf_node->fe;
6104 efe = udf_node->efe;
6105
6106 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6107 return;
6108
6109 /* get descriptor information */
6110 if (fe) {
6111 atime = &fe->atime;
6112 mtime = &fe->mtime;
6113 attrtime = &fe->attrtime;
6114 filedata = fe->data;
6115
6116 /* initial save dummy setting */
6117 ctime = &fe_ctime;
6118
6119 /* check our extended attribute if present */
6120 error = udf_extattr_search_intern(udf_node,
6121 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6122 if (!error) {
6123 ft_extattr = (struct filetimes_extattr_entry *)
6124 (filedata + offset);
6125 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6126 ctime = &ft_extattr->times[0];
6127 }
6128 /* TODO create the extended attribute if not found ? */
6129 } else {
6130 assert(udf_node->efe);
6131 atime = &efe->atime;
6132 mtime = &efe->mtime;
6133 attrtime = &efe->attrtime;
6134 ctime = &efe->ctime;
6135 }
6136
6137 vfs_timestamp(&now);
6138
6139 /* set access time */
6140 if (udf_node->i_flags & IN_ACCESS) {
6141 if (acc == NULL)
6142 acc = &now;
6143 udf_timespec_to_timestamp(acc, atime);
6144 }
6145
6146 /* set modification time */
6147 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6148 if (mod == NULL)
6149 mod = &now;
6150 udf_timespec_to_timestamp(mod, mtime);
6151
6152 /* ensure birthtime is older than set modification! */
6153 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6154 if ((cur_birth.tv_sec > mod->tv_sec) ||
6155 ((cur_birth.tv_sec == mod->tv_sec) &&
6156 (cur_birth.tv_nsec > mod->tv_nsec))) {
6157 udf_timespec_to_timestamp(mod, ctime);
6158 }
6159 }
6160
6161 /* update birthtime if specified */
6162 /* XXX we assume here that given birthtime is older than mod */
6163 if (birth && (birth->tv_sec != VNOVAL)) {
6164 udf_timespec_to_timestamp(birth, ctime);
6165 }
6166
6167 /* set change time */
6168 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6169 udf_timespec_to_timestamp(&now, attrtime);
6170
6171 /* notify updates to the node itself */
6172 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6173 udf_node->i_flags |= IN_ACCESSED;
6174 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6175 udf_node->i_flags |= IN_MODIFIED;
6176
6177 /* clear modification flags */
6178 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6179 }
6180
6181 /* --------------------------------------------------------------------- */
6182
6183 int
6184 udf_update(struct vnode *vp, struct timespec *acc,
6185 struct timespec *mod, struct timespec *birth, int updflags)
6186 {
6187 union dscrptr *dscrptr;
6188 struct udf_node *udf_node = VTOI(vp);
6189 struct udf_mount *ump = udf_node->ump;
6190 struct regid *impl_id;
6191 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6192 int waitfor, flags;
6193
6194 #ifdef DEBUG
6195 char bits[128];
6196 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6197 updflags));
6198 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6199 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6200 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6201 #endif
6202
6203 /* set our times */
6204 udf_itimes(udf_node, acc, mod, birth);
6205
6206 /* set our implementation id */
6207 if (udf_node->fe) {
6208 dscrptr = (union dscrptr *) udf_node->fe;
6209 impl_id = &udf_node->fe->imp_id;
6210 } else {
6211 dscrptr = (union dscrptr *) udf_node->efe;
6212 impl_id = &udf_node->efe->imp_id;
6213 }
6214
6215 /* set our ID */
6216 udf_set_regid(impl_id, IMPL_NAME);
6217 udf_add_impl_regid(ump, impl_id);
6218
6219 /* update our crc! on RMW we are not allowed to change a thing */
6220 udf_validate_tag_and_crc_sums(dscrptr);
6221
6222 /* if called when mounted readonly, never write back */
6223 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6224 return 0;
6225
6226 /* check if the node is dirty 'enough'*/
6227 if (updflags & UPDATE_CLOSE) {
6228 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6229 } else {
6230 flags = udf_node->i_flags & IN_MODIFIED;
6231 }
6232 if (flags == 0)
6233 return 0;
6234
6235 /* determine if we need to write sync or async */
6236 waitfor = 0;
6237 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6238 /* sync mounted */
6239 waitfor = updflags & UPDATE_WAIT;
6240 if (updflags & UPDATE_DIROP)
6241 waitfor |= UPDATE_WAIT;
6242 }
6243 if (waitfor)
6244 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6245
6246 return 0;
6247 }
6248
6249
6250 /* --------------------------------------------------------------------- */
6251
6252
6253 /*
6254 * Read one fid and process it into a dirent and advance to the next (*fid)
6255 * has to be allocated a logical block in size, (*dirent) struct dirent length
6256 */
6257
6258 int
6259 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6260 struct fileid_desc *fid, struct dirent *dirent)
6261 {
6262 struct udf_node *dir_node = VTOI(vp);
6263 struct udf_mount *ump = dir_node->ump;
6264 struct file_entry *fe = dir_node->fe;
6265 struct extfile_entry *efe = dir_node->efe;
6266 uint32_t fid_size, lb_size;
6267 uint64_t file_size;
6268 char *fid_name;
6269 int enough, error;
6270
6271 assert(fid);
6272 assert(dirent);
6273 assert(dir_node);
6274 assert(offset);
6275 assert(*offset != 1);
6276
6277 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6278 /* check if we're past the end of the directory */
6279 if (fe) {
6280 file_size = udf_rw64(fe->inf_len);
6281 } else {
6282 assert(dir_node->efe);
6283 file_size = udf_rw64(efe->inf_len);
6284 }
6285 if (*offset >= file_size)
6286 return EINVAL;
6287
6288 /* get maximum length of FID descriptor */
6289 lb_size = udf_rw32(ump->logical_vol->lb_size);
6290
6291 /* initialise return values */
6292 fid_size = 0;
6293 memset(dirent, 0, sizeof(struct dirent));
6294 memset(fid, 0, lb_size);
6295
6296 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6297 if (!enough) {
6298 /* short dir ... */
6299 return EIO;
6300 }
6301
6302 error = vn_rdwr(UIO_READ, vp,
6303 fid, MIN(file_size - (*offset), lb_size), *offset,
6304 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6305 NULL, NULL);
6306 if (error)
6307 return error;
6308
6309 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6310 /*
6311 * Check if we got a whole descriptor.
6312 * TODO Try to `resync' directory stream when something is very wrong.
6313 */
6314
6315 /* check if our FID header is OK */
6316 error = udf_check_tag(fid);
6317 if (error) {
6318 goto brokendir;
6319 }
6320 DPRINTF(FIDS, ("\ttag check ok\n"));
6321
6322 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6323 error = EIO;
6324 goto brokendir;
6325 }
6326 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6327
6328 /* check for length */
6329 fid_size = udf_fidsize(fid);
6330 enough = (file_size - (*offset) >= fid_size);
6331 if (!enough) {
6332 error = EIO;
6333 goto brokendir;
6334 }
6335 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6336
6337 /* check FID contents */
6338 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6339 brokendir:
6340 if (error) {
6341 /* note that is sometimes a bit quick to report */
6342 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6343 /* RESYNC? */
6344 /* TODO: use udf_resync_fid_stream */
6345 return EIO;
6346 }
6347 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6348
6349 /* we got a whole and valid descriptor! */
6350 DPRINTF(FIDS, ("\tinterpret FID\n"));
6351
6352 /* create resulting dirent structure */
6353 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6354 udf_to_unix_name(dirent->d_name, NAME_MAX,
6355 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6356
6357 /* '..' has no name, so provide one */
6358 if (fid->file_char & UDF_FILE_CHAR_PAR)
6359 strcpy(dirent->d_name, "..");
6360
6361 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6362 dirent->d_namlen = strlen(dirent->d_name);
6363 dirent->d_reclen = _DIRENT_SIZE(dirent);
6364
6365 /*
6366 * Note that its not worth trying to go for the filetypes now... its
6367 * too expensive too
6368 */
6369 dirent->d_type = DT_UNKNOWN;
6370
6371 /* initial guess for filetype we can make */
6372 if (fid->file_char & UDF_FILE_CHAR_DIR)
6373 dirent->d_type = DT_DIR;
6374
6375 /* advance */
6376 *offset += fid_size;
6377
6378 return error;
6379 }
6380
6381
6382 /* --------------------------------------------------------------------- */
6383
6384 static void
6385 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6386 {
6387 struct udf_node *udf_node, *n_udf_node;
6388 struct vnode *vp;
6389 int vdirty, error;
6390
6391 KASSERT(mutex_owned(&ump->sync_lock));
6392
6393 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6394 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6395 for (;udf_node; udf_node = n_udf_node) {
6396 DPRINTF(SYNC, ("."));
6397
6398 vp = udf_node->vnode;
6399
6400 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6401 udf_node, RB_DIR_RIGHT);
6402
6403 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6404 if (error) {
6405 KASSERT(error == EBUSY);
6406 *ndirty += 1;
6407 continue;
6408 }
6409
6410 switch (pass) {
6411 case 1:
6412 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6413 break;
6414 case 2:
6415 vdirty = vp->v_numoutput;
6416 if (vp->v_tag == VT_UDF)
6417 vdirty += udf_node->outstanding_bufs +
6418 udf_node->outstanding_nodedscr;
6419 if (vdirty == 0)
6420 VOP_FSYNC(vp, cred, 0,0,0);
6421 *ndirty += vdirty;
6422 break;
6423 case 3:
6424 vdirty = vp->v_numoutput;
6425 if (vp->v_tag == VT_UDF)
6426 vdirty += udf_node->outstanding_bufs +
6427 udf_node->outstanding_nodedscr;
6428 *ndirty += vdirty;
6429 break;
6430 }
6431
6432 VOP_UNLOCK(vp);
6433 }
6434 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6435 }
6436
6437
6438 static bool
6439 udf_sync_selector(void *cl, struct vnode *vp)
6440 {
6441 struct udf_node *udf_node;
6442
6443 KASSERT(mutex_owned(vp->v_interlock));
6444
6445 udf_node = VTOI(vp);
6446
6447 if (vp->v_vflag & VV_SYSTEM)
6448 return false;
6449 if (vp->v_type == VNON)
6450 return false;
6451 if (udf_node == NULL)
6452 return false;
6453 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6454 return false;
6455 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6456 return false;
6457
6458 return true;
6459 }
6460
6461 void
6462 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6463 {
6464 struct vnode_iterator *marker;
6465 struct vnode *vp;
6466 struct udf_node *udf_node, *udf_next_node;
6467 int dummy, ndirty;
6468
6469 if (waitfor == MNT_LAZY)
6470 return;
6471
6472 mutex_enter(&ump->sync_lock);
6473
6474 /* Fill the rbtree with nodes to sync. */
6475 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6476 while ((vp = vfs_vnode_iterator_next(marker,
6477 udf_sync_selector, NULL)) != NULL) {
6478 udf_node = VTOI(vp);
6479 udf_node->i_flags |= IN_SYNCED;
6480 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6481 }
6482 vfs_vnode_iterator_destroy(marker);
6483
6484 dummy = 0;
6485 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6486 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6487 udf_sync_pass(ump, cred, 1, &dummy);
6488
6489 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6490 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6491 udf_sync_pass(ump, cred, 2, &dummy);
6492
6493 if (waitfor == MNT_WAIT) {
6494 recount:
6495 ndirty = ump->devvp->v_numoutput;
6496 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6497 ndirty));
6498 udf_sync_pass(ump, cred, 3, &ndirty);
6499 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6500 ndirty));
6501
6502 if (ndirty) {
6503 /* 1/4 second wait */
6504 kpause("udfsync2", false, hz/4, NULL);
6505 goto recount;
6506 }
6507 }
6508
6509 /* Clean the rbtree. */
6510 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6511 udf_node; udf_node = udf_next_node) {
6512 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6513 udf_node, RB_DIR_RIGHT);
6514 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6515 udf_node->i_flags &= ~IN_SYNCED;
6516 vrele(udf_node->vnode);
6517 }
6518
6519 mutex_exit(&ump->sync_lock);
6520 }
6521
6522 /* --------------------------------------------------------------------- */
6523
6524 /*
6525 * Read and write file extent in/from the buffer.
6526 *
6527 * The splitup of the extent into separate request-buffers is to minimise
6528 * copying around as much as possible.
6529 *
6530 * block based file reading and writing
6531 */
6532
6533 static int
6534 udf_read_internal(struct udf_node *node, uint8_t *blob)
6535 {
6536 struct udf_mount *ump;
6537 struct file_entry *fe = node->fe;
6538 struct extfile_entry *efe = node->efe;
6539 uint64_t inflen;
6540 uint32_t sector_size;
6541 uint8_t *srcpos;
6542 int icbflags, addr_type;
6543
6544 /* get extent and do some paranoia checks */
6545 ump = node->ump;
6546 sector_size = ump->discinfo.sector_size;
6547
6548 /*
6549 * XXX there should be real bounds-checking logic here,
6550 * in case ->l_ea or ->inf_len contains nonsense.
6551 */
6552
6553 if (fe) {
6554 inflen = udf_rw64(fe->inf_len);
6555 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6556 icbflags = udf_rw16(fe->icbtag.flags);
6557 } else {
6558 assert(node->efe);
6559 inflen = udf_rw64(efe->inf_len);
6560 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6561 icbflags = udf_rw16(efe->icbtag.flags);
6562 }
6563 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6564
6565 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6566 __USE(addr_type);
6567 assert(inflen < sector_size);
6568
6569 /* copy out info */
6570 memcpy(blob, srcpos, inflen);
6571 memset(&blob[inflen], 0, sector_size - inflen);
6572
6573 return 0;
6574 }
6575
6576
6577 static int
6578 udf_write_internal(struct udf_node *node, uint8_t *blob)
6579 {
6580 struct udf_mount *ump;
6581 struct file_entry *fe = node->fe;
6582 struct extfile_entry *efe = node->efe;
6583 uint64_t inflen;
6584 uint32_t sector_size;
6585 uint8_t *pos;
6586 int icbflags, addr_type;
6587
6588 /* get extent and do some paranoia checks */
6589 ump = node->ump;
6590 sector_size = ump->discinfo.sector_size;
6591
6592 if (fe) {
6593 inflen = udf_rw64(fe->inf_len);
6594 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6595 icbflags = udf_rw16(fe->icbtag.flags);
6596 } else {
6597 assert(node->efe);
6598 inflen = udf_rw64(efe->inf_len);
6599 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6600 icbflags = udf_rw16(efe->icbtag.flags);
6601 }
6602 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6603
6604 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6605 __USE(addr_type);
6606 assert(inflen < sector_size);
6607 __USE(sector_size);
6608
6609 /* copy in blob */
6610 /* memset(pos, 0, inflen); */
6611 memcpy(pos, blob, inflen);
6612
6613 return 0;
6614 }
6615
6616
6617 void
6618 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6619 {
6620 struct buf *nestbuf;
6621 struct udf_mount *ump = udf_node->ump;
6622 uint64_t *mapping;
6623 uint64_t run_start;
6624 uint32_t sector_size;
6625 uint32_t buf_offset, sector, rbuflen, rblk;
6626 uint32_t from, lblkno;
6627 uint32_t sectors;
6628 uint8_t *buf_pos;
6629 int error, run_length, what;
6630
6631 sector_size = udf_node->ump->discinfo.sector_size;
6632
6633 from = buf->b_blkno;
6634 sectors = buf->b_bcount / sector_size;
6635
6636 what = udf_get_c_type(udf_node);
6637
6638 /* assure we have enough translation slots */
6639 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6640 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6641
6642 if (sectors > UDF_MAX_MAPPINGS) {
6643 printf("udf_read_filebuf: implementation limit on bufsize\n");
6644 buf->b_error = EIO;
6645 biodone(buf);
6646 return;
6647 }
6648
6649 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6650
6651 error = 0;
6652 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6653 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6654 if (error) {
6655 buf->b_error = error;
6656 biodone(buf);
6657 goto out;
6658 }
6659 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6660
6661 /* pre-check if its an internal */
6662 if (*mapping == UDF_TRANS_INTERN) {
6663 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6664 if (error)
6665 buf->b_error = error;
6666 biodone(buf);
6667 goto out;
6668 }
6669 DPRINTF(READ, ("\tnot intern\n"));
6670
6671 #ifdef DEBUG
6672 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6673 printf("Returned translation table:\n");
6674 for (sector = 0; sector < sectors; sector++) {
6675 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6676 }
6677 }
6678 #endif
6679
6680 /* request read-in of data from disc sheduler */
6681 buf->b_resid = buf->b_bcount;
6682 for (sector = 0; sector < sectors; sector++) {
6683 buf_offset = sector * sector_size;
6684 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6685 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6686
6687 /* check if its zero or unmapped to stop reading */
6688 switch (mapping[sector]) {
6689 case UDF_TRANS_UNMAPPED:
6690 case UDF_TRANS_ZERO:
6691 /* copy zero sector TODO runlength like below */
6692 memset(buf_pos, 0, sector_size);
6693 DPRINTF(READ, ("\treturning zero sector\n"));
6694 nestiobuf_done(buf, sector_size, 0);
6695 break;
6696 default :
6697 DPRINTF(READ, ("\tread sector "
6698 "%"PRIu64"\n", mapping[sector]));
6699
6700 lblkno = from + sector;
6701 run_start = mapping[sector];
6702 run_length = 1;
6703 while (sector < sectors-1) {
6704 if (mapping[sector+1] != mapping[sector]+1)
6705 break;
6706 run_length++;
6707 sector++;
6708 }
6709
6710 /*
6711 * nest an iobuf and mark it for async reading. Since
6712 * we're using nested buffers, they can't be cached by
6713 * design.
6714 */
6715 rbuflen = run_length * sector_size;
6716 rblk = run_start * (sector_size/DEV_BSIZE);
6717
6718 nestbuf = getiobuf(NULL, true);
6719 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6720 /* nestbuf is B_ASYNC */
6721
6722 /* identify this nestbuf */
6723 nestbuf->b_lblkno = lblkno;
6724 assert(nestbuf->b_vp == udf_node->vnode);
6725
6726 /* CD shedules on raw blkno */
6727 nestbuf->b_blkno = rblk;
6728 nestbuf->b_proc = NULL;
6729 nestbuf->b_rawblkno = rblk;
6730 nestbuf->b_udf_c_type = what;
6731
6732 udf_discstrat_queuebuf(ump, nestbuf);
6733 }
6734 }
6735 out:
6736 /* if we're synchronously reading, wait for the completion */
6737 if ((buf->b_flags & B_ASYNC) == 0)
6738 biowait(buf);
6739
6740 DPRINTF(READ, ("\tend of read_filebuf\n"));
6741 free(mapping, M_TEMP);
6742 return;
6743 }
6744
6745
6746 void
6747 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6748 {
6749 struct buf *nestbuf;
6750 struct udf_mount *ump = udf_node->ump;
6751 uint64_t *mapping;
6752 uint64_t run_start;
6753 uint32_t lb_size;
6754 uint32_t buf_offset, lb_num, rbuflen, rblk;
6755 uint32_t from, lblkno;
6756 uint32_t num_lb;
6757 int error, run_length, what, s;
6758
6759 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6760
6761 from = buf->b_blkno;
6762 num_lb = buf->b_bcount / lb_size;
6763
6764 what = udf_get_c_type(udf_node);
6765
6766 /* assure we have enough translation slots */
6767 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6768 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6769
6770 if (num_lb > UDF_MAX_MAPPINGS) {
6771 printf("udf_write_filebuf: implementation limit on bufsize\n");
6772 buf->b_error = EIO;
6773 biodone(buf);
6774 return;
6775 }
6776
6777 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6778
6779 error = 0;
6780 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6781 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6782 if (error) {
6783 buf->b_error = error;
6784 biodone(buf);
6785 goto out;
6786 }
6787 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6788
6789 /* if its internally mapped, we can write it in the descriptor itself */
6790 if (*mapping == UDF_TRANS_INTERN) {
6791 /* TODO paranoia check if we ARE going to have enough space */
6792 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6793 if (error)
6794 buf->b_error = error;
6795 biodone(buf);
6796 goto out;
6797 }
6798 DPRINTF(WRITE, ("\tnot intern\n"));
6799
6800 /* request write out of data to disc sheduler */
6801 buf->b_resid = buf->b_bcount;
6802 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6803 buf_offset = lb_num * lb_size;
6804 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6805
6806 /*
6807 * Mappings are not that important here. Just before we write
6808 * the lb_num we late-allocate them when needed and update the
6809 * mapping in the udf_node.
6810 */
6811
6812 /* XXX why not ignore the mapping altogether ? */
6813 DPRINTF(WRITE, ("\twrite lb_num "
6814 "%"PRIu64, mapping[lb_num]));
6815
6816 lblkno = from + lb_num;
6817 run_start = mapping[lb_num];
6818 run_length = 1;
6819 while (lb_num < num_lb-1) {
6820 if (mapping[lb_num+1] != mapping[lb_num]+1)
6821 if (mapping[lb_num+1] != mapping[lb_num])
6822 break;
6823 run_length++;
6824 lb_num++;
6825 }
6826 DPRINTF(WRITE, ("+ %d\n", run_length));
6827
6828 /* nest an iobuf on the master buffer for the extent */
6829 rbuflen = run_length * lb_size;
6830 rblk = run_start * (lb_size/DEV_BSIZE);
6831
6832 nestbuf = getiobuf(NULL, true);
6833 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6834 /* nestbuf is B_ASYNC */
6835
6836 /* identify this nestbuf */
6837 nestbuf->b_lblkno = lblkno;
6838 KASSERT(nestbuf->b_vp == udf_node->vnode);
6839
6840 /* CD shedules on raw blkno */
6841 nestbuf->b_blkno = rblk;
6842 nestbuf->b_proc = NULL;
6843 nestbuf->b_rawblkno = rblk;
6844 nestbuf->b_udf_c_type = what;
6845
6846 /* increment our outstanding bufs counter */
6847 s = splbio();
6848 udf_node->outstanding_bufs++;
6849 splx(s);
6850
6851 udf_discstrat_queuebuf(ump, nestbuf);
6852 }
6853 out:
6854 /* if we're synchronously writing, wait for the completion */
6855 if ((buf->b_flags & B_ASYNC) == 0)
6856 biowait(buf);
6857
6858 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6859 free(mapping, M_TEMP);
6860 return;
6861 }
6862
6863 /* --------------------------------------------------------------------- */
6864