udf_subr.c revision 1.146.2.2 1 /* $NetBSD: udf_subr.c,v 1.146.2.2 2022/03/13 09:48:32 martin Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.146.2.2 2022/03/13 09:48:32 martin Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the nessisary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342
343 /* --------------------------------------------------------------------- */
344
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 int *first_tracknr, int *last_tracknr)
349 {
350 struct mmc_trackinfo trackinfo;
351 uint32_t tracknr, start_track, num_tracks;
352 int error;
353
354 /* if negative, sessionnr is relative to last session */
355 if (args->sessionnr < 0) {
356 args->sessionnr += ump->discinfo.num_sessions;
357 }
358
359 /* sanity */
360 if (args->sessionnr < 0)
361 args->sessionnr = 0;
362 if (args->sessionnr > ump->discinfo.num_sessions)
363 args->sessionnr = ump->discinfo.num_sessions;
364
365 /* search the tracks for this session, zero session nr indicates last */
366 if (args->sessionnr == 0)
367 args->sessionnr = ump->discinfo.num_sessions;
368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 args->sessionnr--;
370
371 /* sanity again */
372 if (args->sessionnr < 0)
373 args->sessionnr = 0;
374
375 /* search the first and last track of the specified session */
376 num_tracks = ump->discinfo.num_tracks;
377 start_track = ump->discinfo.first_track;
378
379 /* search for first track of this session */
380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 /* get track info */
382 trackinfo.tracknr = tracknr;
383 error = udf_update_trackinfo(ump, &trackinfo);
384 if (error)
385 return error;
386
387 if (trackinfo.sessionnr == args->sessionnr)
388 break;
389 }
390 *first_tracknr = tracknr;
391
392 /* search for last track of this session */
393 for (;tracknr <= num_tracks; tracknr++) {
394 /* get track info */
395 trackinfo.tracknr = tracknr;
396 error = udf_update_trackinfo(ump, &trackinfo);
397 if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 tracknr--;
399 break;
400 }
401 }
402 if (tracknr > num_tracks)
403 tracknr--;
404
405 *last_tracknr = tracknr;
406
407 if (*last_tracknr < *first_tracknr) {
408 printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 "drive returned garbage\n");
410 return EINVAL;
411 }
412
413 assert(*last_tracknr >= *first_tracknr);
414 return 0;
415 }
416
417
418 /*
419 * NOTE: this is the only routine in this file that directly peeks into the
420 * metadata file but since its at a larval state of the mount it can't hurt.
421 *
422 * XXX candidate for udf_allocation.c
423 * XXX clean me up!, change to new node reading code.
424 */
425
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 struct mmc_trackinfo *trackinfo)
429 {
430 struct part_desc *part;
431 struct file_entry *fe;
432 struct extfile_entry *efe;
433 struct short_ad *s_ad;
434 struct long_ad *l_ad;
435 uint32_t track_start, track_end;
436 uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 uint32_t sector_size, len, alloclen, plb_num;
438 uint8_t *pos;
439 int addr_type, icblen, icbflags;
440
441 /* get our track extents */
442 track_start = trackinfo->track_start;
443 track_end = track_start + trackinfo->track_size;
444
445 /* get our base partition extent */
446 KASSERT(ump->node_part == ump->fids_part);
447 part = ump->partitions[ump->vtop[ump->node_part]];
448 phys_part_start = udf_rw32(part->start_loc);
449 phys_part_end = phys_part_start + udf_rw32(part->part_len);
450
451 /* no use if its outside the physical partition */
452 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 return;
454
455 /*
456 * now follow all extents in the fe/efe to see if they refer to this
457 * track
458 */
459
460 sector_size = ump->discinfo.sector_size;
461
462 /* XXX should we claim exclusive access to the metafile ? */
463 /* TODO: move to new node read code */
464 fe = ump->metadata_node->fe;
465 efe = ump->metadata_node->efe;
466 if (fe) {
467 alloclen = udf_rw32(fe->l_ad);
468 pos = &fe->data[0] + udf_rw32(fe->l_ea);
469 icbflags = udf_rw16(fe->icbtag.flags);
470 } else {
471 assert(efe);
472 alloclen = udf_rw32(efe->l_ad);
473 pos = &efe->data[0] + udf_rw32(efe->l_ea);
474 icbflags = udf_rw16(efe->icbtag.flags);
475 }
476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477
478 while (alloclen) {
479 if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 icblen = sizeof(struct short_ad);
481 s_ad = (struct short_ad *) pos;
482 len = udf_rw32(s_ad->len);
483 plb_num = udf_rw32(s_ad->lb_num);
484 } else {
485 /* should not be present, but why not */
486 icblen = sizeof(struct long_ad);
487 l_ad = (struct long_ad *) pos;
488 len = udf_rw32(l_ad->len);
489 plb_num = udf_rw32(l_ad->loc.lb_num);
490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 }
492 /* process extent */
493 len = UDF_EXT_LEN(len);
494
495 part_start = phys_part_start + plb_num;
496 part_end = part_start + (len / sector_size);
497
498 if ((part_start >= track_start) && (part_end <= track_end)) {
499 /* extent is enclosed within this track */
500 ump->metadata_track = *trackinfo;
501 return;
502 }
503
504 pos += icblen;
505 alloclen -= icblen;
506 }
507 }
508
509
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_trackinfo trackinfo;
515 struct mmc_op mmc_op;
516 struct part_desc *part;
517 uint32_t tracknr, start_track, num_tracks;
518 uint32_t track_start, track_end, part_start, part_end;
519 int node_alloc, error;
520
521 /*
522 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 * the last session might be open but in the UDF device model at most
524 * three tracks can be open: a reserved track for delayed ISO VRS
525 * writing, a data track and a metadata track. We search here for the
526 * data track and the metadata track. Note that the reserved track is
527 * troublesome but can be detected by its small size of < 512 sectors.
528 */
529
530 /* update discinfo since it might have changed */
531 error = udf_update_discinfo(ump);
532 if (error)
533 return error;
534
535 num_tracks = ump->discinfo.num_tracks;
536 start_track = ump->discinfo.first_track;
537
538 /* fetch info on first and possibly only track */
539 trackinfo.tracknr = start_track;
540 error = udf_update_trackinfo(ump, &trackinfo);
541 if (error)
542 return error;
543
544 /* copy results to our mount point */
545 ump->data_track = trackinfo;
546 ump->metadata_track = trackinfo;
547
548 /* if not sequential, we're done */
549 if (num_tracks == 1)
550 return 0;
551
552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 /* get track info */
554 trackinfo.tracknr = tracknr;
555 error = udf_update_trackinfo(ump, &trackinfo);
556 if (error)
557 return error;
558
559 /*
560 * If this track is marked damaged, ask for repair. This is an
561 * optional command, so ignore its error but report warning.
562 */
563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 memset(&mmc_op, 0, sizeof(mmc_op));
565 mmc_op.operation = MMC_OP_REPAIRTRACK;
566 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 mmc_op.tracknr = tracknr;
568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 if (error)
570 (void)printf("Drive can't explicitly repair "
571 "damaged track %d, but it might "
572 "autorepair\n", tracknr);
573
574 /* reget track info */
575 error = udf_update_trackinfo(ump, &trackinfo);
576 if (error)
577 return error;
578 }
579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 continue;
581
582 track_start = trackinfo.track_start;
583 track_end = track_start + trackinfo.track_size;
584
585 /* check for overlap on data partition */
586 part = ump->partitions[ump->data_part];
587 part_start = udf_rw32(part->start_loc);
588 part_end = part_start + udf_rw32(part->part_len);
589 if ((part_start < track_end) && (part_end > track_start)) {
590 ump->data_track = trackinfo;
591 /* TODO check if UDF partition data_part is writable */
592 }
593
594 /* check for overlap on metadata partition */
595 node_alloc = ump->vtop_alloc[ump->node_part];
596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 (node_alloc == UDF_ALLOC_METABITMAP)) {
598 udf_check_track_metadata_overlap(ump, &trackinfo);
599 } else {
600 ump->metadata_track = trackinfo;
601 }
602 }
603
604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 return EROFS;
606
607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 return EROFS;
609
610 return 0;
611 }
612
613 /* --------------------------------------------------------------------- */
614
615 /*
616 * Check if the blob starts with a good UDF tag. Tags are protected by a
617 * checksum over the reader except one byte at position 4 that is the checksum
618 * itself.
619 */
620
621 int
622 udf_check_tag(void *blob)
623 {
624 struct desc_tag *tag = blob;
625 uint8_t *pos, sum, cnt;
626
627 /* check TAG header checksum */
628 pos = (uint8_t *) tag;
629 sum = 0;
630
631 for(cnt = 0; cnt < 16; cnt++) {
632 if (cnt != 4)
633 sum += *pos;
634 pos++;
635 }
636 if (sum != tag->cksum) {
637 /* bad tag header checksum; this is not a valid tag */
638 return EINVAL;
639 }
640
641 return 0;
642 }
643
644
645 /*
646 * check tag payload will check descriptor CRC as specified.
647 * If the descriptor is too long, it will return EIO otherwise EINVAL.
648 */
649
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 struct desc_tag *tag = blob;
654 uint16_t crc, crc_len;
655
656 crc_len = udf_rw16(tag->desc_crc_len);
657
658 /* check payload CRC if applicable */
659 if (crc_len == 0)
660 return 0;
661
662 if (crc_len > max_length)
663 return EIO;
664
665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 if (crc != udf_rw16(tag->desc_crc)) {
667 /* bad payload CRC; this is a broken tag */
668 return EINVAL;
669 }
670
671 return 0;
672 }
673
674
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 struct desc_tag *tag = blob;
679 uint8_t *pos, sum, cnt;
680
681 /* calculate TAG header checksum */
682 pos = (uint8_t *) tag;
683 sum = 0;
684
685 for(cnt = 0; cnt < 16; cnt++) {
686 if (cnt != 4) sum += *pos;
687 pos++;
688 }
689 tag->cksum = sum; /* 8 bit */
690 }
691
692
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 struct desc_tag *tag = blob;
698 uint8_t *btag = (uint8_t *) tag;
699 uint16_t crc, crc_len;
700
701 crc_len = udf_rw16(tag->desc_crc_len);
702
703 /* check payload CRC if applicable */
704 if (crc_len > 0) {
705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 tag->desc_crc = udf_rw16(crc);
707 }
708
709 /* calculate TAG header checksum */
710 udf_validate_tag_sum(blob);
711 }
712
713 /* --------------------------------------------------------------------- */
714
715 /*
716 * XXX note the different semantics from udfclient: for FIDs it still rounds
717 * up to sectors. Use udf_fidsize() for a correct length.
718 */
719
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 uint32_t size, tag_id, num_lb, elmsz;
724
725 tag_id = udf_rw16(dscr->tag.id);
726
727 switch (tag_id) {
728 case TAGID_LOGVOL :
729 size = sizeof(struct logvol_desc) - 1;
730 size += udf_rw32(dscr->lvd.mt_l);
731 break;
732 case TAGID_UNALLOC_SPACE :
733 elmsz = sizeof(struct extent_ad);
734 size = sizeof(struct unalloc_sp_desc) - elmsz;
735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 break;
737 case TAGID_FID :
738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 size = (size + 3) & ~3;
740 break;
741 case TAGID_LOGVOL_INTEGRITY :
742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 size += udf_rw32(dscr->lvid.l_iu);
744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 break;
746 case TAGID_SPACE_BITMAP :
747 size = sizeof(struct space_bitmap_desc) - 1;
748 size += udf_rw32(dscr->sbd.num_bytes);
749 break;
750 case TAGID_SPARING_TABLE :
751 elmsz = sizeof(struct spare_map_entry);
752 size = sizeof(struct udf_sparing_table) - elmsz;
753 size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 break;
755 case TAGID_FENTRY :
756 size = sizeof(struct file_entry);
757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 break;
759 case TAGID_EXTFENTRY :
760 size = sizeof(struct extfile_entry);
761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 break;
763 case TAGID_FSD :
764 size = sizeof(struct fileset_desc);
765 break;
766 default :
767 size = sizeof(union dscrptr);
768 break;
769 }
770
771 if ((size == 0) || (lb_size == 0))
772 return 0;
773
774 if (lb_size == 1)
775 return size;
776
777 /* round up in sectors */
778 num_lb = (size + lb_size -1) / lb_size;
779 return num_lb * lb_size;
780 }
781
782
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 uint32_t size;
787
788 if (udf_rw16(fid->tag.id) != TAGID_FID)
789 panic("got udf_fidsize on non FID\n");
790
791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 size = (size + 3) & ~3;
793
794 return size;
795 }
796
797 /* --------------------------------------------------------------------- */
798
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 int ret;
803
804 mutex_enter(&udf_node->node_mutex);
805 /* wait until free */
806 while (udf_node->i_flags & IN_LOCKED) {
807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 /* TODO check if we should return error; abort */
809 if (ret == EWOULDBLOCK) {
810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 "wanted at %s:%d, previously locked at %s:%d\n",
812 udf_node, fname, lineno,
813 udf_node->lock_fname, udf_node->lock_lineno));
814 }
815 }
816 /* grab */
817 udf_node->i_flags |= IN_LOCKED | flag;
818 /* debug */
819 udf_node->lock_fname = fname;
820 udf_node->lock_lineno = lineno;
821
822 mutex_exit(&udf_node->node_mutex);
823 }
824
825
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 mutex_enter(&udf_node->node_mutex);
830 udf_node->i_flags &= ~(IN_LOCKED | flag);
831 cv_broadcast(&udf_node->node_lock);
832 mutex_exit(&udf_node->node_mutex);
833 }
834
835
836 /* --------------------------------------------------------------------- */
837
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 int error;
842
843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 (union dscrptr **) dst);
845 if (!error) {
846 /* blank terminator blocks are not allowed here */
847 if (*dst == NULL)
848 return ENOENT;
849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 error = ENOENT;
851 free(*dst, M_UDFVOLD);
852 *dst = NULL;
853 DPRINTF(VOLUMES, ("Not an anchor\n"));
854 }
855 }
856
857 return error;
858 }
859
860
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 struct udf_args *args = &ump->mount_args;
865 struct mmc_trackinfo first_track;
866 struct mmc_trackinfo second_track;
867 struct mmc_trackinfo last_track;
868 struct anchor_vdp **anchorsp;
869 uint32_t track_start;
870 uint32_t track_end;
871 uint32_t positions[4];
872 int first_tracknr, last_tracknr;
873 int error, anch, ok, first_anchor;
874
875 /* search the first and last track of the specified session */
876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 if (!error) {
878 first_track.tracknr = first_tracknr;
879 error = udf_update_trackinfo(ump, &first_track);
880 }
881 if (!error) {
882 last_track.tracknr = last_tracknr;
883 error = udf_update_trackinfo(ump, &last_track);
884 }
885 if ((!error) && (first_tracknr != last_tracknr)) {
886 second_track.tracknr = first_tracknr+1;
887 error = udf_update_trackinfo(ump, &second_track);
888 }
889 if (error) {
890 printf("UDF mount: reading disc geometry failed\n");
891 return 0;
892 }
893
894 track_start = first_track.track_start;
895
896 /* `end' is not as straitforward as start. */
897 track_end = last_track.track_start
898 + last_track.track_size - last_track.free_blocks - 1;
899
900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 /* end of track is not straitforward here */
902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 track_end = last_track.last_recorded;
904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 track_end = last_track.next_writable
906 - ump->discinfo.link_block_penalty;
907 }
908
909 /* its no use reading a blank track */
910 first_anchor = 0;
911 if (first_track.flags & MMC_TRACKINFO_BLANK)
912 first_anchor = 1;
913
914 /* get our packet size */
915 ump->packet_size = first_track.packet_size;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 ump->packet_size = second_track.packet_size;
918
919 if (ump->packet_size <= 1) {
920 /* take max, but not bigger than 64 */
921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 ump->packet_size = MIN(ump->packet_size, 64);
923 }
924 KASSERT(ump->packet_size >= 1);
925
926 /* read anchors start+256, start+512, end-256, end */
927 positions[0] = track_start+256;
928 positions[1] = track_end-256;
929 positions[2] = track_end;
930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
931 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
932
933 ok = 0;
934 anchorsp = ump->anchors;
935 for (anch = first_anchor; anch < 4; anch++) {
936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 positions[anch]));
938 error = udf_read_anchor(ump, positions[anch], anchorsp);
939 if (!error) {
940 anchorsp++;
941 ok++;
942 }
943 }
944
945 /* VATs are only recorded on sequential media, but initialise */
946 ump->first_possible_vat_location = track_start + 2;
947 ump->last_possible_vat_location = track_end;
948
949 return ok;
950 }
951
952 /* --------------------------------------------------------------------- */
953
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 int isdir, what;
958
959 isdir = (udf_node->vnode->v_type == VDIR);
960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961
962 if (udf_node->ump)
963 if (udf_node == udf_node->ump->metadatabitmap_node)
964 what = UDF_C_METADATA_SBM;
965
966 return what;
967 }
968
969
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 int vpart_num;
974
975 vpart_num = ump->data_part;
976 if (udf_c_type == UDF_C_NODE)
977 vpart_num = ump->node_part;
978 if (udf_c_type == UDF_C_FIDS)
979 vpart_num = ump->fids_part;
980
981 return vpart_num;
982 }
983
984
985 /*
986 * BUGALERT: some rogue implementations use random physical partition
987 * numbers to break other implementations so lookup the number.
988 */
989
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 struct part_desc *part;
994 uint16_t phys_part;
995
996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 part = ump->partitions[phys_part];
998 if (part == NULL)
999 break;
1000 if (udf_rw16(part->part_num) == raw_phys_part)
1001 break;
1002 }
1003 return phys_part;
1004 }
1005
1006 /* --------------------------------------------------------------------- */
1007
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 if (name) \
1011 free(name, M_UDFVOLD); \
1012 name = dscr;
1013
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 uint16_t phys_part, raw_phys_part;
1018
1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 switch (udf_rw16(dscr->tag.id)) {
1022 case TAGID_PRI_VOL : /* primary partition */
1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 break;
1025 case TAGID_LOGVOL : /* logical volume */
1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 break;
1028 case TAGID_UNALLOC_SPACE : /* unallocated space */
1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 break;
1031 case TAGID_IMP_VOL : /* implementation */
1032 /* XXX do we care about multiple impl. descr ? */
1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 break;
1035 case TAGID_PARTITION : /* physical partition */
1036 /* not much use if its not allocated */
1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 free(dscr, M_UDFVOLD);
1039 break;
1040 }
1041
1042 /*
1043 * BUGALERT: some rogue implementations use random physical
1044 * partition numbers to break other implementations so lookup
1045 * the number.
1046 */
1047 raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049
1050 if (phys_part == UDF_PARTITIONS) {
1051 free(dscr, M_UDFVOLD);
1052 return EINVAL;
1053 }
1054
1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 break;
1057 case TAGID_VOL : /* volume space extender; rare */
1058 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 default :
1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 udf_rw16(dscr->tag.id)));
1064 free(dscr, M_UDFVOLD);
1065 }
1066
1067 return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070
1071 /* --------------------------------------------------------------------- */
1072
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 union dscrptr *dscr;
1077 uint32_t sector_size, dscr_size;
1078 int error;
1079
1080 sector_size = ump->discinfo.sector_size;
1081
1082 /* loc is sectornr, len is in bytes */
1083 error = EIO;
1084 while (len) {
1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 if (error)
1087 return error;
1088
1089 /* blank block is a terminator */
1090 if (dscr == NULL)
1091 return 0;
1092
1093 /* TERM descriptor is a terminator */
1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 free(dscr, M_UDFVOLD);
1096 return 0;
1097 }
1098
1099 /* process all others */
1100 dscr_size = udf_tagsize(dscr, sector_size);
1101 error = udf_process_vds_descriptor(ump, dscr);
1102 if (error) {
1103 free(dscr, M_UDFVOLD);
1104 break;
1105 }
1106 assert((dscr_size % sector_size) == 0);
1107
1108 len -= dscr_size;
1109 loc += dscr_size / sector_size;
1110 }
1111
1112 return error;
1113 }
1114
1115
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 /* struct udf_args *args = &ump->mount_args; */
1120 struct anchor_vdp *anchor, *anchor2;
1121 size_t size;
1122 uint32_t main_loc, main_len;
1123 uint32_t reserve_loc, reserve_len;
1124 int error;
1125
1126 /*
1127 * read in VDS space provided by the anchors; if one descriptor read
1128 * fails, try the mirror sector.
1129 *
1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 * avoids the `compatibility features' of DirectCD that may confuse
1132 * stuff completely.
1133 */
1134
1135 anchor = ump->anchors[0];
1136 anchor2 = ump->anchors[1];
1137 assert(anchor);
1138
1139 if (anchor2) {
1140 size = sizeof(struct extent_ad);
1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 anchor = anchor2;
1143 /* reserve is specified to be a literal copy of main */
1144 }
1145
1146 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1147 main_len = udf_rw32(anchor->main_vds_ex.len);
1148
1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151
1152 error = udf_read_vds_extent(ump, main_loc, main_len);
1153 if (error) {
1154 printf("UDF mount: reading in reserve VDS extent\n");
1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 }
1157
1158 return error;
1159 }
1160
1161 /* --------------------------------------------------------------------- */
1162
1163 /*
1164 * Read in the logical volume integrity sequence pointed to by our logical
1165 * volume descriptor. Its a sequence that can be extended using fields in the
1166 * integrity descriptor itself. On sequential media only one is found, on
1167 * rewritable media a sequence of descriptors can be found as a form of
1168 * history keeping and on non sequential write-once media the chain is vital
1169 * to allow more and more descriptors to be written. The last descriptor
1170 * written in an extent needs to claim space for a new extent.
1171 */
1172
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 union dscrptr *dscr;
1177 struct logvol_int_desc *lvint;
1178 struct udf_lvintq *trace;
1179 uint32_t lb_size, lbnum, len;
1180 int dscr_type, error, trace_len;
1181
1182 lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185
1186 /* clean trace */
1187 memset(ump->lvint_trace, 0,
1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189
1190 trace_len = 0;
1191 trace = ump->lvint_trace;
1192 trace->start = lbnum;
1193 trace->end = lbnum + len/lb_size;
1194 trace->pos = 0;
1195 trace->wpos = 0;
1196
1197 lvint = NULL;
1198 dscr = NULL;
1199 error = 0;
1200 while (len) {
1201 trace->pos = lbnum - trace->start;
1202 trace->wpos = trace->pos + 1;
1203
1204 /* read in our integrity descriptor */
1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 if (!error) {
1207 if (dscr == NULL) {
1208 trace->wpos = trace->pos;
1209 break; /* empty terminates */
1210 }
1211 dscr_type = udf_rw16(dscr->tag.id);
1212 if (dscr_type == TAGID_TERM) {
1213 trace->wpos = trace->pos;
1214 break; /* clean terminator */
1215 }
1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 /* fatal... corrupt disc */
1218 error = ENOENT;
1219 break;
1220 }
1221 if (lvint)
1222 free(lvint, M_UDFVOLD);
1223 lvint = &dscr->lvid;
1224 dscr = NULL;
1225 } /* else hope for the best... maybe the next is ok */
1226
1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229
1230 /* proceed sequential */
1231 lbnum += 1;
1232 len -= lb_size;
1233
1234 /* are we linking to a new piece? */
1235 if (dscr && lvint->next_extent.len) {
1236 len = udf_rw32(lvint->next_extent.len);
1237 lbnum = udf_rw32(lvint->next_extent.loc);
1238
1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 /* IEK! segment link full... */
1241 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 error = EINVAL;
1243 } else {
1244 trace++;
1245 trace_len++;
1246
1247 trace->start = lbnum;
1248 trace->end = lbnum + len/lb_size;
1249 trace->pos = 0;
1250 trace->wpos = 0;
1251 }
1252 }
1253 }
1254
1255 /* clean up the mess, esp. when there is an error */
1256 if (dscr)
1257 free(dscr, M_UDFVOLD);
1258
1259 if (error && lvint) {
1260 free(lvint, M_UDFVOLD);
1261 lvint = NULL;
1262 }
1263
1264 if (!lvint)
1265 error = ENOENT;
1266
1267 ump->logvol_integrity = lvint;
1268 return error;
1269 }
1270
1271
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 union dscrptr **bufs, *dscr, *last_dscr;
1276 struct udf_lvintq *trace, *in_trace, *out_trace;
1277 struct logvol_int_desc *lvint;
1278 uint32_t in_ext, in_pos, in_len;
1279 uint32_t out_ext, out_wpos, out_len;
1280 uint32_t lb_num;
1281 uint32_t len, start;
1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type;
1283 int losing;
1284 int error;
1285
1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287
1288 /* search smallest extent */
1289 trace = &ump->lvint_trace[0];
1290 sumext = trace->end - trace->start;
1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 trace = &ump->lvint_trace[ext];
1293 extlen = trace->end - trace->start;
1294 if (extlen == 0)
1295 break;
1296 sumext += extlen;
1297 }
1298
1299 /* just one element? its not legal but be bug compatible */
1300 if (sumext == 1) {
1301 /* overwrite the only entry */
1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n"));
1303 trace = &ump->lvint_trace[0];
1304 trace->wpos = 0;
1305 return 0;
1306 }
1307
1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE);
1309
1310 /* no sense wiping too much */
1311 if (sumext == UDF_LVINT_LOSSAGE)
1312 losing = UDF_LVINT_LOSSAGE/2;
1313
1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1315
1316 /* get buffer for pieces */
1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1318
1319 in_ext = 0;
1320 in_pos = losing;
1321 in_trace = &ump->lvint_trace[in_ext];
1322 in_len = in_trace->end - in_trace->start;
1323 out_ext = 0;
1324 out_wpos = 0;
1325 out_trace = &ump->lvint_trace[out_ext];
1326 out_len = out_trace->end - out_trace->start;
1327
1328 last_dscr = NULL;
1329 for(;;) {
1330 out_trace->pos = out_wpos;
1331 out_trace->wpos = out_trace->pos;
1332 if (in_pos >= in_len) {
1333 in_ext++;
1334 in_pos = 0;
1335 in_trace = &ump->lvint_trace[in_ext];
1336 in_len = in_trace->end - in_trace->start;
1337 }
1338 if (out_wpos >= out_len) {
1339 out_ext++;
1340 out_wpos = 0;
1341 out_trace = &ump->lvint_trace[out_ext];
1342 out_len = out_trace->end - out_trace->start;
1343 }
1344 /* copy overlap contents */
1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1347 if (cpy_len == 0)
1348 break;
1349
1350 /* copy */
1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1352 for (cnt = 0; cnt < cpy_len; cnt++) {
1353 /* read in our integrity descriptor */
1354 lb_num = in_trace->start + in_pos + cnt;
1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1356 &dscr);
1357 if (error) {
1358 /* copy last one */
1359 dscr = last_dscr;
1360 }
1361 bufs[cnt] = dscr;
1362 if (!error) {
1363 if (dscr == NULL) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* empty terminates */
1367 }
1368 dscr_type = udf_rw16(dscr->tag.id);
1369 if (dscr_type == TAGID_TERM) {
1370 out_trace->pos = out_wpos + cnt;
1371 out_trace->wpos = out_trace->pos;
1372 break; /* clean terminator */
1373 }
1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1375 panic( "UDF integrity sequence "
1376 "corrupted while mounted!\n");
1377 }
1378 last_dscr = dscr;
1379 }
1380 }
1381
1382 /* patch up if first entry was on error */
1383 if (bufs[0] == NULL) {
1384 for (cnt = 0; cnt < cpy_len; cnt++)
1385 if (bufs[cnt] != NULL)
1386 break;
1387 last_dscr = bufs[cnt];
1388 for (; cnt > 0; cnt--) {
1389 bufs[cnt] = last_dscr;
1390 }
1391 }
1392
1393 /* glue + write out */
1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1395 for (cnt = 0; cnt < cpy_len; cnt++) {
1396 lb_num = out_trace->start + out_wpos + cnt;
1397 lvint = &bufs[cnt]->lvid;
1398
1399 /* set continuation */
1400 len = 0;
1401 start = 0;
1402 if (out_wpos + cnt == out_len) {
1403 /* get continuation */
1404 trace = &ump->lvint_trace[out_ext+1];
1405 len = trace->end - trace->start;
1406 start = trace->start;
1407 }
1408 lvint->next_extent.len = udf_rw32(len);
1409 lvint->next_extent.loc = udf_rw32(start);
1410
1411 lb_num = trace->start + trace->wpos;
1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1413 bufs[cnt], lb_num, lb_num);
1414 DPRINTFIF(VOLUMES, error,
1415 ("error writing lvint lb_num\n"));
1416 }
1417
1418 /* free non repeating descriptors */
1419 last_dscr = NULL;
1420 for (cnt = 0; cnt < cpy_len; cnt++) {
1421 if (bufs[cnt] != last_dscr)
1422 free(bufs[cnt], M_UDFVOLD);
1423 last_dscr = bufs[cnt];
1424 }
1425
1426 /* advance */
1427 in_pos += cpy_len;
1428 out_wpos += cpy_len;
1429 }
1430
1431 free(bufs, M_TEMP);
1432
1433 return 0;
1434 }
1435
1436
1437 static int
1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1439 {
1440 struct udf_lvintq *trace;
1441 struct timeval now_v;
1442 struct timespec now_s;
1443 uint32_t sector;
1444 int logvol_integrity;
1445 int space, error;
1446
1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1448
1449 /* get free space in last chunk */
1450 trace = ump->lvint_trace;
1451 while (trace->wpos > (trace->end - trace->start)) {
1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1453 "wpos = %d\n", trace->start, trace->end,
1454 trace->pos, trace->wpos));
1455 trace++;
1456 }
1457
1458 /* check if there is space to append */
1459 space = (trace->end - trace->start) - trace->wpos;
1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1461 "space = %d\n", trace->start, trace->end, trace->pos,
1462 trace->wpos, space));
1463
1464 /* get state */
1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1468 /* TODO extent LVINT space if possible */
1469 return EROFS;
1470 }
1471 }
1472
1473 if (space < 1) {
1474 if (lvflag & UDF_APPENDONLY_LVINT)
1475 return EROFS;
1476
1477 /* loose history by re-writing extents */
1478 error = udf_loose_lvint_history(ump);
1479 if (error)
1480 return error;
1481
1482 trace = ump->lvint_trace;
1483 while (trace->wpos > (trace->end - trace->start))
1484 trace++;
1485 space = (trace->end - trace->start) - trace->wpos;
1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, "
1487 "pos = %d, wpos = %d, "
1488 "space = %d\n", trace->start, trace->end,
1489 trace->pos, trace->wpos, space));
1490 }
1491
1492 /* update our integrity descriptor to identify us and timestamp it */
1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1494 microtime(&now_v);
1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1499
1500 /* writeout integrity descriptor */
1501 sector = trace->start + trace->wpos;
1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1503 (union dscrptr *) ump->logvol_integrity,
1504 sector, sector);
1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1506 if (error)
1507 return error;
1508
1509 /* advance write position */
1510 trace->wpos++; space--;
1511 if (space >= 1) {
1512 /* append terminator */
1513 sector = trace->start + trace->wpos;
1514 error = udf_write_terminator(ump, sector);
1515
1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1517 }
1518
1519 space = (trace->end - trace->start) - trace->wpos;
1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1521 "space = %d\n", trace->start, trace->end, trace->pos,
1522 trace->wpos, space));
1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1524 "successfull\n"));
1525
1526 return error;
1527 }
1528
1529 /* --------------------------------------------------------------------- */
1530
1531 static int
1532 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1533 {
1534 union dscrptr *dscr;
1535 /* struct udf_args *args = &ump->mount_args; */
1536 struct part_desc *partd;
1537 struct part_hdr_desc *parthdr;
1538 struct udf_bitmap *bitmap;
1539 uint32_t phys_part;
1540 uint32_t lb_num, len;
1541 int error, dscr_type;
1542
1543 /* unallocated space map */
1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1545 partd = ump->partitions[phys_part];
1546 if (partd == NULL)
1547 continue;
1548 parthdr = &partd->_impl_use.part_hdr;
1549
1550 lb_num = udf_rw32(partd->start_loc);
1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1553 if (len == 0)
1554 continue;
1555
1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1558 if (!error && dscr) {
1559 /* analyse */
1560 dscr_type = udf_rw16(dscr->tag.id);
1561 if (dscr_type == TAGID_SPACE_BITMAP) {
1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1564
1565 /* fill in ump->part_unalloc_bits */
1566 bitmap = &ump->part_unalloc_bits[phys_part];
1567 bitmap->blob = (uint8_t *) dscr;
1568 bitmap->bits = dscr->sbd.data;
1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1570 bitmap->pages = NULL; /* TODO */
1571 bitmap->data_pos = 0;
1572 bitmap->metadata_pos = 0;
1573 } else {
1574 free(dscr, M_UDFVOLD);
1575
1576 printf( "UDF mount: error reading unallocated "
1577 "space bitmap\n");
1578 return EROFS;
1579 }
1580 } else {
1581 /* blank not allowed */
1582 printf("UDF mount: blank unallocated space bitmap\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* unallocated space table (not supported) */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 len = udf_rw32(parthdr->unalloc_space_table.len);
1595 if (len) {
1596 printf("UDF mount: space tables not supported\n");
1597 return EROFS;
1598 }
1599 }
1600
1601 /* freed space map */
1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1603 partd = ump->partitions[phys_part];
1604 if (partd == NULL)
1605 continue;
1606 parthdr = &partd->_impl_use.part_hdr;
1607
1608 /* freed space map */
1609 lb_num = udf_rw32(partd->start_loc);
1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1611 len = udf_rw32(parthdr->freed_space_bitmap.len);
1612 if (len == 0)
1613 continue;
1614
1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1617 if (!error && dscr) {
1618 /* analyse */
1619 dscr_type = udf_rw16(dscr->tag.id);
1620 if (dscr_type == TAGID_SPACE_BITMAP) {
1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1622 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1623
1624 /* fill in ump->part_freed_bits */
1625 bitmap = &ump->part_unalloc_bits[phys_part];
1626 bitmap->blob = (uint8_t *) dscr;
1627 bitmap->bits = dscr->sbd.data;
1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1629 bitmap->pages = NULL; /* TODO */
1630 bitmap->data_pos = 0;
1631 bitmap->metadata_pos = 0;
1632 } else {
1633 free(dscr, M_UDFVOLD);
1634
1635 printf( "UDF mount: error reading freed "
1636 "space bitmap\n");
1637 return EROFS;
1638 }
1639 } else {
1640 /* blank not allowed */
1641 printf("UDF mount: blank freed space bitmap\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 /* freed space table (not supported) */
1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1648 partd = ump->partitions[phys_part];
1649 if (partd == NULL)
1650 continue;
1651 parthdr = &partd->_impl_use.part_hdr;
1652
1653 len = udf_rw32(parthdr->freed_space_table.len);
1654 if (len) {
1655 printf("UDF mount: space tables not supported\n");
1656 return EROFS;
1657 }
1658 }
1659
1660 return 0;
1661 }
1662
1663
1664 /* TODO implement async writeout */
1665 int
1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1667 {
1668 union dscrptr *dscr;
1669 /* struct udf_args *args = &ump->mount_args; */
1670 struct part_desc *partd;
1671 struct part_hdr_desc *parthdr;
1672 uint32_t phys_part;
1673 uint32_t lb_num, len, ptov;
1674 int error_all, error;
1675
1676 error_all = 0;
1677 /* unallocated space map */
1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1679 partd = ump->partitions[phys_part];
1680 if (partd == NULL)
1681 continue;
1682 parthdr = &partd->_impl_use.part_hdr;
1683
1684 ptov = udf_rw32(partd->start_loc);
1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1687 if (len == 0)
1688 continue;
1689
1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1691 lb_num + ptov));
1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1693
1694 /* force a sane minimum for descriptors CRC length */
1695 /* see UDF 2.3.1.2 and 2.3.8.1 */
1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1699
1700 /* write out space bitmap */
1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1702 (union dscrptr *) dscr,
1703 ptov + lb_num, lb_num);
1704 if (error) {
1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1706 error_all = error;
1707 }
1708 }
1709
1710 /* freed space map */
1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1712 partd = ump->partitions[phys_part];
1713 if (partd == NULL)
1714 continue;
1715 parthdr = &partd->_impl_use.part_hdr;
1716
1717 /* freed space map */
1718 ptov = udf_rw32(partd->start_loc);
1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1720 len = udf_rw32(parthdr->freed_space_bitmap.len);
1721 if (len == 0)
1722 continue;
1723
1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1725 lb_num + ptov));
1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1727
1728 /* force a sane minimum for descriptors CRC length */
1729 /* see UDF 2.3.1.2 and 2.3.8.1 */
1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1733
1734 /* write out space bitmap */
1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1736 (union dscrptr *) dscr,
1737 ptov + lb_num, lb_num);
1738 if (error) {
1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1740 error_all = error;
1741 }
1742 }
1743
1744 return error_all;
1745 }
1746
1747
1748 static int
1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1750 {
1751 struct udf_node *bitmap_node;
1752 union dscrptr *dscr;
1753 struct udf_bitmap *bitmap;
1754 uint64_t inflen;
1755 int error, dscr_type;
1756
1757 bitmap_node = ump->metadatabitmap_node;
1758
1759 /* only read in when metadata bitmap node is read in */
1760 if (bitmap_node == NULL)
1761 return 0;
1762
1763 if (bitmap_node->fe) {
1764 inflen = udf_rw64(bitmap_node->fe->inf_len);
1765 } else {
1766 KASSERT(bitmap_node->efe);
1767 inflen = udf_rw64(bitmap_node->efe->inf_len);
1768 }
1769
1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1771 "%"PRIu64" bytes\n", inflen));
1772
1773 /* allocate space for bitmap */
1774 dscr = malloc(inflen, M_UDFVOLD, M_WAITOK);
1775 if (!dscr)
1776 return ENOMEM;
1777
1778 /* set vnode type to regular file or we can't read from it! */
1779 bitmap_node->vnode->v_type = VREG;
1780
1781 /* read in complete metadata bitmap file */
1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1783 dscr,
1784 inflen, 0,
1785 UIO_SYSSPACE,
1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1787 NULL, NULL);
1788 if (error) {
1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1790 goto errorout;
1791 }
1792
1793 /* analyse */
1794 dscr_type = udf_rw16(dscr->tag.id);
1795 if (dscr_type == TAGID_SPACE_BITMAP) {
1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1797 ump->metadata_unalloc_dscr = &dscr->sbd;
1798
1799 /* fill in bitmap bits */
1800 bitmap = &ump->metadata_unalloc_bits;
1801 bitmap->blob = (uint8_t *) dscr;
1802 bitmap->bits = dscr->sbd.data;
1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1804 bitmap->pages = NULL; /* TODO */
1805 bitmap->data_pos = 0;
1806 bitmap->metadata_pos = 0;
1807 } else {
1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1809 goto errorout;
1810 }
1811
1812 return 0;
1813
1814 errorout:
1815 free(dscr, M_UDFVOLD);
1816 printf( "UDF mount: error reading unallocated "
1817 "space bitmap for metadata partition\n");
1818 return EROFS;
1819 }
1820
1821
1822 int
1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1824 {
1825 struct udf_node *bitmap_node;
1826 union dscrptr *dscr;
1827 uint64_t new_inflen;
1828 int dummy, error;
1829
1830 bitmap_node = ump->metadatabitmap_node;
1831
1832 /* only write out when metadata bitmap node is known */
1833 if (bitmap_node == NULL)
1834 return 0;
1835
1836 if (!bitmap_node->fe) {
1837 KASSERT(bitmap_node->efe);
1838 }
1839
1840 /* reduce length to zero */
1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1842 new_inflen = udf_tagsize(dscr, 1);
1843
1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1845 " for %"PRIu64" bytes\n", new_inflen));
1846
1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1848 if (error)
1849 printf("Error resizing metadata space bitmap\n");
1850
1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1852 dscr,
1853 new_inflen, 0,
1854 UIO_SYSSPACE,
1855 IO_ALTSEMANTICS, FSCRED,
1856 NULL, NULL);
1857
1858 bitmap_node->i_flags |= IN_MODIFIED;
1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1860 if (error == 0)
1861 error = VOP_FSYNC(bitmap_node->vnode,
1862 FSCRED, FSYNC_WAIT, 0, 0);
1863
1864 if (error)
1865 printf( "Error writing out metadata partition unalloced "
1866 "space bitmap!\n");
1867
1868 return error;
1869 }
1870
1871
1872 /* --------------------------------------------------------------------- */
1873
1874 /*
1875 * Checks if ump's vds information is correct and complete
1876 */
1877
1878 int
1879 udf_process_vds(struct udf_mount *ump) {
1880 union udf_pmap *mapping;
1881 /* struct udf_args *args = &ump->mount_args; */
1882 struct logvol_int_desc *lvint;
1883 struct udf_logvol_info *lvinfo;
1884 uint32_t n_pm;
1885 uint8_t *pmap_pos;
1886 char *domain_name, *map_name;
1887 const char *check_name;
1888 char bits[128];
1889 int pmap_stype, pmap_size;
1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1891 int n_phys, n_virt, n_spar, n_meta;
1892 int len;
1893
1894 if (ump == NULL)
1895 return ENOENT;
1896
1897 /* we need at least an anchor (trivial, but for safety) */
1898 if (ump->anchors[0] == NULL)
1899 return EINVAL;
1900
1901 /* we need at least one primary and one logical volume descriptor */
1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1903 return EINVAL;
1904
1905 /* we need at least one partition descriptor */
1906 if (ump->partitions[0] == NULL)
1907 return EINVAL;
1908
1909 /* check logical volume sector size verses device sector size */
1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1911 printf("UDF mount: format violation, lb_size != sector size\n");
1912 return EINVAL;
1913 }
1914
1915 /* check domain name */
1916 domain_name = ump->logical_vol->domain_id.id;
1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1919 return EINVAL;
1920 }
1921
1922 /* retrieve logical volume integrity sequence */
1923 (void)udf_retrieve_lvint(ump);
1924
1925 /*
1926 * We need at least one logvol integrity descriptor recorded. Note
1927 * that its OK to have an open logical volume integrity here. The VAT
1928 * will close/update the integrity.
1929 */
1930 if (ump->logvol_integrity == NULL)
1931 return EINVAL;
1932
1933 /* process derived structures */
1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1935 lvint = ump->logvol_integrity;
1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1937 ump->logvol_info = lvinfo;
1938
1939 /* TODO check udf versions? */
1940
1941 /*
1942 * check logvol mappings: effective virt->log partmap translation
1943 * check and recording of the mapping results. Saves expensive
1944 * strncmp() in tight places.
1945 */
1946 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1948 pmap_pos = ump->logical_vol->maps;
1949
1950 if (n_pm > UDF_PMAPS) {
1951 printf("UDF mount: too many mappings\n");
1952 return EINVAL;
1953 }
1954
1955 /* count types and set partition numbers */
1956 ump->data_part = ump->node_part = ump->fids_part = 0;
1957 n_phys = n_virt = n_spar = n_meta = 0;
1958 for (log_part = 0; log_part < n_pm; log_part++) {
1959 mapping = (union udf_pmap *) pmap_pos;
1960 pmap_stype = pmap_pos[0];
1961 pmap_size = pmap_pos[1];
1962 switch (pmap_stype) {
1963 case 1: /* physical mapping */
1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1965 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1966 pmap_type = UDF_VTOP_TYPE_PHYS;
1967 n_phys++;
1968 ump->data_part = log_part;
1969 ump->node_part = log_part;
1970 ump->fids_part = log_part;
1971 break;
1972 case 2: /* virtual/sparable/meta mapping */
1973 map_name = mapping->pm2.part_id.id;
1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1975 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1977 len = UDF_REGID_ID_SIZE;
1978
1979 check_name = "*UDF Virtual Partition";
1980 if (strncmp(map_name, check_name, len) == 0) {
1981 pmap_type = UDF_VTOP_TYPE_VIRT;
1982 n_virt++;
1983 ump->node_part = log_part;
1984 break;
1985 }
1986 check_name = "*UDF Sparable Partition";
1987 if (strncmp(map_name, check_name, len) == 0) {
1988 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1989 n_spar++;
1990 ump->data_part = log_part;
1991 ump->node_part = log_part;
1992 ump->fids_part = log_part;
1993 break;
1994 }
1995 check_name = "*UDF Metadata Partition";
1996 if (strncmp(map_name, check_name, len) == 0) {
1997 pmap_type = UDF_VTOP_TYPE_META;
1998 n_meta++;
1999 ump->node_part = log_part;
2000 ump->fids_part = log_part;
2001 break;
2002 }
2003 break;
2004 default:
2005 return EINVAL;
2006 }
2007
2008 /*
2009 * BUGALERT: some rogue implementations use random physical
2010 * partition numbers to break other implementations so lookup
2011 * the number.
2012 */
2013 phys_part = udf_find_raw_phys(ump, raw_phys_part);
2014
2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
2016 raw_phys_part, phys_part, pmap_type));
2017
2018 if (phys_part == UDF_PARTITIONS)
2019 return EINVAL;
2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
2021 return EINVAL;
2022
2023 ump->vtop [log_part] = phys_part;
2024 ump->vtop_tp[log_part] = pmap_type;
2025
2026 pmap_pos += pmap_size;
2027 }
2028 /* not winning the beauty contest */
2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2030
2031 /* test some basic UDF assertions/requirements */
2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2033 return EINVAL;
2034
2035 if (n_virt) {
2036 if ((n_phys == 0) || n_spar || n_meta)
2037 return EINVAL;
2038 }
2039 if (n_spar + n_phys == 0)
2040 return EINVAL;
2041
2042 /* select allocation type for each logical partition */
2043 for (log_part = 0; log_part < n_pm; log_part++) {
2044 maps_on = ump->vtop[log_part];
2045 switch (ump->vtop_tp[log_part]) {
2046 case UDF_VTOP_TYPE_PHYS :
2047 assert(maps_on == log_part);
2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2049 break;
2050 case UDF_VTOP_TYPE_VIRT :
2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2053 break;
2054 case UDF_VTOP_TYPE_SPARABLE :
2055 assert(maps_on == log_part);
2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2057 break;
2058 case UDF_VTOP_TYPE_META :
2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2061 /* special case for UDF 2.60 */
2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2064 }
2065 break;
2066 default:
2067 panic("bad alloction type in udf's ump->vtop\n");
2068 }
2069 }
2070
2071 /* determine logical volume open/closure actions */
2072 if (n_virt) {
2073 ump->lvopen = 0;
2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2075 ump->lvopen |= UDF_OPEN_SESSION ;
2076 ump->lvclose = UDF_WRITE_VAT;
2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2078 ump->lvclose |= UDF_CLOSE_SESSION;
2079 } else {
2080 /* `normal' rewritable or non sequential media */
2081 ump->lvopen = UDF_WRITE_LVINT;
2082 ump->lvclose = UDF_WRITE_LVINT;
2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2084 ump->lvopen |= UDF_APPENDONLY_LVINT;
2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2087 }
2088
2089 /*
2090 * Determine sheduler error behaviour. For virtual partitions, update
2091 * the trackinfo; for sparable partitions replace a whole block on the
2092 * sparable table. Allways requeue.
2093 */
2094 ump->lvreadwrite = 0;
2095 if (n_virt)
2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2097 if (n_spar)
2098 ump->lvreadwrite = UDF_REMAP_BLOCK;
2099
2100 /*
2101 * Select our sheduler
2102 */
2103 ump->strategy = &udf_strat_rmw;
2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2105 ump->strategy = &udf_strat_sequential;
2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2108 ump->strategy = &udf_strat_direct;
2109 if (n_spar)
2110 ump->strategy = &udf_strat_rmw;
2111
2112 #if 0
2113 /* read-only access won't benefit from the other shedulers */
2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2115 ump->strategy = &udf_strat_direct;
2116 #endif
2117
2118 /* print results */
2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2125
2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2132
2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2134 (ump->strategy == &udf_strat_direct) ? "Direct" :
2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2137
2138 /* signal its OK for now */
2139 return 0;
2140 }
2141
2142 /* --------------------------------------------------------------------- */
2143
2144 /*
2145 * Update logical volume name in all structures that keep a record of it. We
2146 * use memmove since each of them might be specified as a source.
2147 *
2148 * Note that it doesn't update the VAT structure!
2149 */
2150
2151 static void
2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2153 {
2154 struct logvol_desc *lvd = NULL;
2155 struct fileset_desc *fsd = NULL;
2156 struct udf_lv_info *lvi = NULL;
2157
2158 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2159 lvd = ump->logical_vol;
2160 fsd = ump->fileset_desc;
2161 if (ump->implementation)
2162 lvi = &ump->implementation->_impl_use.lv_info;
2163
2164 /* logvol's id might be specified as origional so use memmove here */
2165 memmove(lvd->logvol_id, logvol_id, 128);
2166 if (fsd)
2167 memmove(fsd->logvol_id, logvol_id, 128);
2168 if (lvi)
2169 memmove(lvi->logvol_id, logvol_id, 128);
2170 }
2171
2172 /* --------------------------------------------------------------------- */
2173
2174 void
2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2176 uint32_t sector)
2177 {
2178 assert(ump->logical_vol);
2179
2180 tag->id = udf_rw16(tagid);
2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2182 tag->cksum = 0;
2183 tag->reserved = 0;
2184 tag->serial_num = ump->logical_vol->tag.serial_num;
2185 tag->tag_loc = udf_rw32(sector);
2186 }
2187
2188
2189 uint64_t
2190 udf_advance_uniqueid(struct udf_mount *ump)
2191 {
2192 uint64_t unique_id;
2193
2194 mutex_enter(&ump->logvol_mutex);
2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2196 if (unique_id < 0x10)
2197 unique_id = 0x10;
2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2199 mutex_exit(&ump->logvol_mutex);
2200
2201 return unique_id;
2202 }
2203
2204
2205 static void
2206 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2207 {
2208 struct udf_mount *ump = udf_node->ump;
2209 uint32_t num_dirs, num_files;
2210 int udf_file_type;
2211
2212 /* get file type */
2213 if (udf_node->fe) {
2214 udf_file_type = udf_node->fe->icbtag.file_type;
2215 } else {
2216 udf_file_type = udf_node->efe->icbtag.file_type;
2217 }
2218
2219 /* adjust file count */
2220 mutex_enter(&ump->allocate_mutex);
2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2222 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2223 ump->logvol_info->num_directories =
2224 udf_rw32((num_dirs + sign));
2225 } else {
2226 num_files = udf_rw32(ump->logvol_info->num_files);
2227 ump->logvol_info->num_files =
2228 udf_rw32((num_files + sign));
2229 }
2230 mutex_exit(&ump->allocate_mutex);
2231 }
2232
2233
2234 void
2235 udf_osta_charset(struct charspec *charspec)
2236 {
2237 memset(charspec, 0, sizeof(struct charspec));
2238 charspec->type = 0;
2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2240 }
2241
2242
2243 /* first call udf_set_regid and then the suffix */
2244 void
2245 udf_set_regid(struct regid *regid, char const *name)
2246 {
2247 memset(regid, 0, sizeof(struct regid));
2248 regid->flags = 0; /* not dirty and not protected */
2249 strcpy((char *) regid->id, name);
2250 }
2251
2252
2253 void
2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2255 {
2256 uint16_t *ver;
2257
2258 ver = (uint16_t *) regid->id_suffix;
2259 *ver = ump->logvol_info->min_udf_readver;
2260 }
2261
2262
2263 void
2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2265 {
2266 uint16_t *ver;
2267
2268 ver = (uint16_t *) regid->id_suffix;
2269 *ver = ump->logvol_info->min_udf_readver;
2270
2271 regid->id_suffix[2] = 4; /* unix */
2272 regid->id_suffix[3] = 8; /* NetBSD */
2273 }
2274
2275
2276 void
2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2278 {
2279 regid->id_suffix[0] = 4; /* unix */
2280 regid->id_suffix[1] = 8; /* NetBSD */
2281 }
2282
2283
2284 void
2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2286 {
2287 regid->id_suffix[0] = APP_VERSION_MAIN;
2288 regid->id_suffix[1] = APP_VERSION_SUB;
2289 }
2290
2291 static int
2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2293 struct long_ad *parent, uint64_t unique_id)
2294 {
2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2296 int fidsize = 40;
2297
2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2301 fid->icb = *parent;
2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2305
2306 return fidsize;
2307 }
2308
2309 /* --------------------------------------------------------------------- */
2310
2311 /*
2312 * Extended attribute support. UDF knows of 3 places for extended attributes:
2313 *
2314 * (a) inside the file's (e)fe in the length of the extended attribute area
2315 * before the allocation descriptors/filedata
2316 *
2317 * (b) in a file referenced by (e)fe->ext_attr_icb and
2318 *
2319 * (c) in the e(fe)'s associated stream directory that can hold various
2320 * sub-files. In the stream directory a few fixed named subfiles are reserved
2321 * for NT/Unix ACL's and OS/2 attributes.
2322 *
2323 * NOTE: Extended attributes are read randomly but allways written
2324 * *atomicaly*. For ACL's this interface is propably different but not known
2325 * to me yet.
2326 *
2327 * Order of extended attributes in a space :
2328 * ECMA 167 EAs
2329 * Non block aligned Implementation Use EAs
2330 * Block aligned Implementation Use EAs
2331 * Application Use EAs
2332 */
2333
2334 static int
2335 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2336 {
2337 uint16_t *spos;
2338
2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2340 /* checksum valid? */
2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2342 spos = (uint16_t *) implext->data;
2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2344 return EINVAL;
2345 }
2346 return 0;
2347 }
2348
2349 static void
2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2351 {
2352 uint16_t *spos;
2353
2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2355 /* set checksum */
2356 spos = (uint16_t *) implext->data;
2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2358 }
2359 }
2360
2361
2362 int
2363 udf_extattr_search_intern(struct udf_node *node,
2364 uint32_t sattr, char const *sattrname,
2365 uint32_t *offsetp, uint32_t *lengthp)
2366 {
2367 struct extattrhdr_desc *eahdr;
2368 struct extattr_entry *attrhdr;
2369 struct impl_extattr_entry *implext;
2370 uint32_t offset, a_l, sector_size;
2371 int32_t l_ea;
2372 uint8_t *pos;
2373 int error;
2374
2375 /* get mountpoint */
2376 sector_size = node->ump->discinfo.sector_size;
2377
2378 /* get information from fe/efe */
2379 if (node->fe) {
2380 l_ea = udf_rw32(node->fe->l_ea);
2381 eahdr = (struct extattrhdr_desc *) node->fe->data;
2382 } else {
2383 assert(node->efe);
2384 l_ea = udf_rw32(node->efe->l_ea);
2385 eahdr = (struct extattrhdr_desc *) node->efe->data;
2386 }
2387
2388 /* something recorded here? */
2389 if (l_ea == 0)
2390 return ENOENT;
2391
2392 /* check extended attribute tag; what to do if it fails? */
2393 error = udf_check_tag(eahdr);
2394 if (error)
2395 return EINVAL;
2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2397 return EINVAL;
2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2399 if (error)
2400 return EINVAL;
2401
2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2403
2404 /* looking for Ecma-167 attributes? */
2405 offset = sizeof(struct extattrhdr_desc);
2406
2407 /* looking for either implemenation use or application use */
2408 if (sattr == 2048) { /* [4/48.10.8] */
2409 offset = udf_rw32(eahdr->impl_attr_loc);
2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2411 return ENOENT;
2412 }
2413 if (sattr == 65536) { /* [4/48.10.9] */
2414 offset = udf_rw32(eahdr->appl_attr_loc);
2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2416 return ENOENT;
2417 }
2418
2419 /* paranoia check offset and l_ea */
2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2421 return EINVAL;
2422
2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2424
2425 /* find our extended attribute */
2426 l_ea -= offset;
2427 pos = (uint8_t *) eahdr + offset;
2428
2429 while (l_ea >= sizeof(struct extattr_entry)) {
2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2431 attrhdr = (struct extattr_entry *) pos;
2432 implext = (struct impl_extattr_entry *) pos;
2433
2434 /* get complete attribute length and check for roque values */
2435 a_l = udf_rw32(attrhdr->a_l);
2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2437 udf_rw32(attrhdr->type),
2438 attrhdr->subtype, a_l, l_ea));
2439 if ((a_l == 0) || (a_l > l_ea))
2440 return EINVAL;
2441
2442 if (attrhdr->type != sattr)
2443 goto next_attribute;
2444
2445 /* we might have found it! */
2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2447 *offsetp = offset;
2448 *lengthp = a_l;
2449 return 0; /* success */
2450 }
2451
2452 /*
2453 * Implementation use and application use extended attributes
2454 * have a name to identify. They share the same structure only
2455 * UDF implementation use extended attributes have a checksum
2456 * we need to check
2457 */
2458
2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2460 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2461 /* we have found our appl/implementation attribute */
2462 *offsetp = offset;
2463 *lengthp = a_l;
2464 return 0; /* success */
2465 }
2466
2467 next_attribute:
2468 /* next attribute */
2469 pos += a_l;
2470 l_ea -= a_l;
2471 offset += a_l;
2472 }
2473 /* not found */
2474 return ENOENT;
2475 }
2476
2477
2478 static void
2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2480 struct extattr_entry *extattr)
2481 {
2482 struct file_entry *fe;
2483 struct extfile_entry *efe;
2484 struct extattrhdr_desc *extattrhdr;
2485 struct impl_extattr_entry *implext;
2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2487 uint32_t *l_eap, l_ad;
2488 uint16_t *spos;
2489 uint8_t *bpos, *data;
2490
2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2492 fe = &dscr->fe;
2493 data = fe->data;
2494 l_eap = &fe->l_ea;
2495 l_ad = udf_rw32(fe->l_ad);
2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2497 efe = &dscr->efe;
2498 data = efe->data;
2499 l_eap = &efe->l_ea;
2500 l_ad = udf_rw32(efe->l_ad);
2501 } else {
2502 panic("Bad tag passed to udf_extattr_insert_internal");
2503 }
2504
2505 /* can't append already written to file descriptors yet */
2506 assert(l_ad == 0);
2507 __USE(l_ad);
2508
2509 /* should have a header! */
2510 extattrhdr = (struct extattrhdr_desc *) data;
2511 l_ea = udf_rw32(*l_eap);
2512 if (l_ea == 0) {
2513 /* create empty extended attribute header */
2514 exthdr_len = sizeof(struct extattrhdr_desc);
2515
2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2517 /* loc */ 0);
2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2520 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2521
2522 /* record extended attribute header length */
2523 l_ea = exthdr_len;
2524 *l_eap = udf_rw32(l_ea);
2525 }
2526
2527 /* extract locations */
2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2531 impl_attr_loc = l_ea;
2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2533 appl_attr_loc = l_ea;
2534
2535 /* Ecma 167 EAs */
2536 if (udf_rw32(extattr->type) < 2048) {
2537 assert(impl_attr_loc == l_ea);
2538 assert(appl_attr_loc == l_ea);
2539 }
2540
2541 /* implementation use extended attributes */
2542 if (udf_rw32(extattr->type) == 2048) {
2543 assert(appl_attr_loc == l_ea);
2544
2545 /* calculate and write extended attribute header checksum */
2546 implext = (struct impl_extattr_entry *) extattr;
2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2548 spos = (uint16_t *) implext->data;
2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2550 }
2551
2552 /* application use extended attributes */
2553 assert(udf_rw32(extattr->type) != 65536);
2554 assert(appl_attr_loc == l_ea);
2555
2556 /* append the attribute at the end of the current space */
2557 bpos = data + udf_rw32(*l_eap);
2558 a_l = udf_rw32(extattr->a_l);
2559
2560 /* update impl. attribute locations */
2561 if (udf_rw32(extattr->type) < 2048) {
2562 impl_attr_loc = l_ea + a_l;
2563 appl_attr_loc = l_ea + a_l;
2564 }
2565 if (udf_rw32(extattr->type) == 2048) {
2566 appl_attr_loc = l_ea + a_l;
2567 }
2568
2569 /* copy and advance */
2570 memcpy(bpos, extattr, a_l);
2571 l_ea += a_l;
2572 *l_eap = udf_rw32(l_ea);
2573
2574 /* do the `dance` again backwards */
2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2576 if (impl_attr_loc == l_ea)
2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2578 if (appl_attr_loc == l_ea)
2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2580 }
2581
2582 /* store offsets */
2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2585 }
2586
2587
2588 /* --------------------------------------------------------------------- */
2589
2590 static int
2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2592 {
2593 struct udf_mount *ump;
2594 struct udf_logvol_info *lvinfo;
2595 struct impl_extattr_entry *implext;
2596 struct vatlvext_extattr_entry lvext;
2597 const char *extstr = "*UDF VAT LVExtension";
2598 uint64_t vat_uniqueid;
2599 uint32_t offset, a_l;
2600 uint8_t *ea_start, *lvextpos;
2601 int error;
2602
2603 /* get mountpoint and lvinfo */
2604 ump = vat_node->ump;
2605 lvinfo = ump->logvol_info;
2606
2607 /* get information from fe/efe */
2608 if (vat_node->fe) {
2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2610 ea_start = vat_node->fe->data;
2611 } else {
2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2613 ea_start = vat_node->efe->data;
2614 }
2615
2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2617 if (error)
2618 return error;
2619
2620 implext = (struct impl_extattr_entry *) (ea_start + offset);
2621 error = udf_impl_extattr_check(implext);
2622 if (error)
2623 return error;
2624
2625 /* paranoia */
2626 if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2628 return EINVAL;
2629 }
2630
2631 /*
2632 * we have found our "VAT LVExtension attribute. BUT due to a
2633 * bug in the specification it might not be word aligned so
2634 * copy first to avoid panics on some machines (!!)
2635 */
2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2637 lvextpos = implext->data + udf_rw32(implext->iu_l);
2638 memcpy(&lvext, lvextpos, sizeof(lvext));
2639
2640 /* check if it was updated the last time */
2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2642 lvinfo->num_files = lvext.num_files;
2643 lvinfo->num_directories = lvext.num_directories;
2644 udf_update_logvolname(ump, lvext.logvol_id);
2645 } else {
2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2647 /* replace VAT LVExt by free space EA */
2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2650 udf_calc_impl_extattr_checksum(implext);
2651 }
2652
2653 return 0;
2654 }
2655
2656
2657 static int
2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2659 {
2660 struct udf_mount *ump;
2661 struct udf_logvol_info *lvinfo;
2662 struct impl_extattr_entry *implext;
2663 struct vatlvext_extattr_entry lvext;
2664 const char *extstr = "*UDF VAT LVExtension";
2665 uint64_t vat_uniqueid;
2666 uint32_t offset, a_l;
2667 uint8_t *ea_start, *lvextpos;
2668 int error;
2669
2670 /* get mountpoint and lvinfo */
2671 ump = vat_node->ump;
2672 lvinfo = ump->logvol_info;
2673
2674 /* get information from fe/efe */
2675 if (vat_node->fe) {
2676 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2677 ea_start = vat_node->fe->data;
2678 } else {
2679 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2680 ea_start = vat_node->efe->data;
2681 }
2682
2683 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2684 if (error)
2685 return error;
2686 /* found, it existed */
2687
2688 /* paranoia */
2689 implext = (struct impl_extattr_entry *) (ea_start + offset);
2690 error = udf_impl_extattr_check(implext);
2691 if (error) {
2692 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2693 return error;
2694 }
2695 /* it is correct */
2696
2697 /*
2698 * we have found our "VAT LVExtension attribute. BUT due to a
2699 * bug in the specification it might not be word aligned so
2700 * copy first to avoid panics on some machines (!!)
2701 */
2702 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2703 lvextpos = implext->data + udf_rw32(implext->iu_l);
2704
2705 lvext.unique_id_chk = vat_uniqueid;
2706 lvext.num_files = lvinfo->num_files;
2707 lvext.num_directories = lvinfo->num_directories;
2708 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2709
2710 memcpy(lvextpos, &lvext, sizeof(lvext));
2711
2712 return 0;
2713 }
2714
2715 /* --------------------------------------------------------------------- */
2716
2717 int
2718 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2719 {
2720 struct udf_mount *ump = vat_node->ump;
2721
2722 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2723 return EINVAL;
2724
2725 memcpy(blob, ump->vat_table + offset, size);
2726 return 0;
2727 }
2728
2729 int
2730 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2731 {
2732 struct udf_mount *ump = vat_node->ump;
2733 uint32_t offset_high;
2734 uint8_t *new_vat_table;
2735
2736 /* extent VAT allocation if needed */
2737 offset_high = offset + size;
2738 if (offset_high >= ump->vat_table_alloc_len) {
2739 /* realloc */
2740 new_vat_table = realloc(ump->vat_table,
2741 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2742 M_UDFVOLD, M_WAITOK);
2743 if (!new_vat_table) {
2744 printf("udf_vat_write: can't extent VAT, out of mem\n");
2745 return ENOMEM;
2746 }
2747 ump->vat_table = new_vat_table;
2748 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2749 }
2750 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2751
2752 memcpy(ump->vat_table + offset, blob, size);
2753 return 0;
2754 }
2755
2756 /* --------------------------------------------------------------------- */
2757
2758 /* TODO support previous VAT location writeout */
2759 static int
2760 udf_update_vat_descriptor(struct udf_mount *ump)
2761 {
2762 struct udf_node *vat_node = ump->vat_node;
2763 struct udf_logvol_info *lvinfo = ump->logvol_info;
2764 struct icb_tag *icbtag;
2765 struct udf_oldvat_tail *oldvat_tl;
2766 struct udf_vat *vat;
2767 struct regid *regid;
2768 uint64_t unique_id;
2769 uint32_t lb_size;
2770 uint8_t *raw_vat;
2771 int vat_length, impl_use_len, filetype, error;
2772
2773 KASSERT(vat_node);
2774 KASSERT(lvinfo);
2775 lb_size = udf_rw32(ump->logical_vol->lb_size);
2776
2777 /* get our new unique_id */
2778 unique_id = udf_advance_uniqueid(ump);
2779
2780 /* get information from fe/efe */
2781 if (vat_node->fe) {
2782 icbtag = &vat_node->fe->icbtag;
2783 vat_node->fe->unique_id = udf_rw64(unique_id);
2784 } else {
2785 icbtag = &vat_node->efe->icbtag;
2786 vat_node->efe->unique_id = udf_rw64(unique_id);
2787 }
2788
2789 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2790 filetype = icbtag->file_type;
2791 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2792
2793 /* allocate piece to process head or tail of VAT file */
2794 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2795
2796 if (filetype == 0) {
2797 /*
2798 * Update "*UDF VAT LVExtension" extended attribute from the
2799 * lvint if present.
2800 */
2801 udf_update_vat_extattr_from_lvid(vat_node);
2802
2803 /* setup identifying regid */
2804 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2805 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2806
2807 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2808 udf_add_udf_regid(ump, &oldvat_tl->id);
2809 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2810
2811 /* write out new tail of virtual allocation table file */
2812 error = udf_vat_write(vat_node, raw_vat,
2813 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2814 } else {
2815 /* compose the VAT2 header */
2816 vat_length = sizeof(struct udf_vat);
2817 vat = (struct udf_vat *) raw_vat;
2818
2819 error = udf_vat_read(vat_node, raw_vat, vat_length, 0);
2820 if (error)
2821 goto errout;
2822
2823 impl_use_len = udf_rw16(vat->impl_use_len);
2824 vat_length += impl_use_len;
2825
2826 error = udf_vat_read(vat_node, raw_vat, vat_length, 0);
2827 if (error)
2828 goto errout;
2829
2830 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2831 vat->prev_vat = udf_rw32(0xffffffff);
2832 vat->num_files = lvinfo->num_files;
2833 vat->num_directories = lvinfo->num_directories;
2834 vat->min_udf_readver = lvinfo->min_udf_readver;
2835 vat->min_udf_writever = lvinfo->min_udf_writever;
2836 vat->max_udf_writever = lvinfo->max_udf_writever;
2837
2838 if (impl_use_len >= sizeof(struct regid)) {
2839 /* insert our implementation identification */
2840 memset(vat->data, 0, impl_use_len);
2841 regid = (struct regid *) vat->data;
2842 udf_set_regid(regid, IMPL_NAME);
2843 udf_add_app_regid(ump, regid);
2844 } else {
2845 if (impl_use_len)
2846 memset(vat->data, 0, impl_use_len);
2847 vat->impl_use_len = 0;
2848 }
2849 error = udf_vat_write(vat_node, raw_vat, vat_length, 0);
2850 }
2851 errout:
2852 free(raw_vat, M_TEMP);
2853
2854 return error; /* success! */
2855 }
2856
2857
2858 int
2859 udf_writeout_vat(struct udf_mount *ump)
2860 {
2861 struct udf_node *vat_node = ump->vat_node;
2862 int error;
2863
2864 KASSERT(vat_node);
2865
2866 DPRINTF(CALL, ("udf_writeout_vat\n"));
2867
2868 // mutex_enter(&ump->allocate_mutex);
2869 udf_update_vat_descriptor(ump);
2870
2871 /* write out the VAT contents ; TODO intelligent writing */
2872 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2873 ump->vat_table, ump->vat_table_len, 0,
2874 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2875 if (error) {
2876 printf("udf_writeout_vat: failed to write out VAT contents\n");
2877 goto out;
2878 }
2879
2880 // mutex_exit(&ump->allocate_mutex);
2881
2882 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2883 if (error)
2884 goto out;
2885 error = VOP_FSYNC(ump->vat_node->vnode,
2886 FSCRED, FSYNC_WAIT, 0, 0);
2887 if (error)
2888 printf("udf_writeout_vat: error writing VAT node!\n");
2889 out:
2890 return error;
2891 }
2892
2893 /* --------------------------------------------------------------------- */
2894
2895 /*
2896 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2897 * descriptor. If OK, read in complete VAT file.
2898 */
2899
2900 static int
2901 udf_check_for_vat(struct udf_node *vat_node)
2902 {
2903 struct udf_mount *ump;
2904 struct icb_tag *icbtag;
2905 struct timestamp *mtime;
2906 struct udf_vat *vat;
2907 struct udf_oldvat_tail *oldvat_tl;
2908 struct udf_logvol_info *lvinfo;
2909 uint64_t unique_id;
2910 uint32_t vat_length;
2911 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2912 uint32_t sector_size;
2913 uint32_t *raw_vat;
2914 uint8_t *vat_table;
2915 char *regid_name;
2916 int filetype;
2917 int error;
2918
2919 /* vat_length is really 64 bits though impossible */
2920
2921 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2922 if (!vat_node)
2923 return ENOENT;
2924
2925 /* get mount info */
2926 ump = vat_node->ump;
2927 sector_size = udf_rw32(ump->logical_vol->lb_size);
2928
2929 /* check assertions */
2930 assert(vat_node->fe || vat_node->efe);
2931 assert(ump->logvol_integrity);
2932
2933 /* set vnode type to regular file or we can't read from it! */
2934 vat_node->vnode->v_type = VREG;
2935
2936 /* get information from fe/efe */
2937 if (vat_node->fe) {
2938 vat_length = udf_rw64(vat_node->fe->inf_len);
2939 icbtag = &vat_node->fe->icbtag;
2940 mtime = &vat_node->fe->mtime;
2941 unique_id = udf_rw64(vat_node->fe->unique_id);
2942 } else {
2943 vat_length = udf_rw64(vat_node->efe->inf_len);
2944 icbtag = &vat_node->efe->icbtag;
2945 mtime = &vat_node->efe->mtime;
2946 unique_id = udf_rw64(vat_node->efe->unique_id);
2947 }
2948
2949 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2950 filetype = icbtag->file_type;
2951 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2952 return ENOENT;
2953
2954 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2955
2956 vat_table_alloc_len =
2957 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2958 * UDF_VAT_CHUNKSIZE;
2959
2960 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK);
2961 if (vat_table == NULL) {
2962 printf("allocation of %d bytes failed for VAT\n",
2963 vat_table_alloc_len);
2964 return ENOMEM;
2965 }
2966
2967 /* allocate piece to read in head or tail of VAT file */
2968 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2969
2970 /*
2971 * check contents of the file if its the old 1.50 VAT table format.
2972 * Its notoriously broken and allthough some implementations support an
2973 * extention as defined in the UDF 1.50 errata document, its doubtfull
2974 * to be useable since a lot of implementations don't maintain it.
2975 */
2976 lvinfo = ump->logvol_info;
2977
2978 if (filetype == 0) {
2979 /* definition */
2980 vat_offset = 0;
2981 vat_entries = (vat_length-36)/4;
2982
2983 /* read in tail of virtual allocation table file */
2984 error = vn_rdwr(UIO_READ, vat_node->vnode,
2985 (uint8_t *) raw_vat,
2986 sizeof(struct udf_oldvat_tail),
2987 vat_entries * 4,
2988 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2989 NULL, NULL);
2990 if (error)
2991 goto out;
2992
2993 /* check 1.50 VAT */
2994 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2995 regid_name = (char *) oldvat_tl->id.id;
2996 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2997 if (error) {
2998 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2999 error = ENOENT;
3000 goto out;
3001 }
3002
3003 /*
3004 * update LVID from "*UDF VAT LVExtension" extended attribute
3005 * if present.
3006 */
3007 udf_update_lvid_from_vat_extattr(vat_node);
3008 } else {
3009 /* read in head of virtual allocation table file */
3010 error = vn_rdwr(UIO_READ, vat_node->vnode,
3011 (uint8_t *) raw_vat,
3012 sizeof(struct udf_vat), 0,
3013 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
3014 NULL, NULL);
3015 if (error)
3016 goto out;
3017
3018 /* definition */
3019 vat = (struct udf_vat *) raw_vat;
3020 vat_offset = udf_rw16(vat->header_len);
3021 vat_entries = (vat_length - vat_offset)/4;
3022
3023 assert(lvinfo);
3024 lvinfo->num_files = vat->num_files;
3025 lvinfo->num_directories = vat->num_directories;
3026 lvinfo->min_udf_readver = vat->min_udf_readver;
3027 lvinfo->min_udf_writever = vat->min_udf_writever;
3028 lvinfo->max_udf_writever = vat->max_udf_writever;
3029
3030 udf_update_logvolname(ump, vat->logvol_id);
3031 }
3032
3033 /* read in complete VAT file */
3034 error = vn_rdwr(UIO_READ, vat_node->vnode,
3035 vat_table,
3036 vat_length, 0,
3037 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
3038 NULL, NULL);
3039 if (error)
3040 printf("read in of complete VAT file failed (error %d)\n",
3041 error);
3042 if (error)
3043 goto out;
3044
3045 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3046 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3047 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3048 ump->logvol_integrity->time = *mtime;
3049
3050 /* if we're updating, free old allocated space */
3051 if (ump->vat_table)
3052 free(ump->vat_table, M_UDFVOLD);
3053
3054 ump->vat_table_len = vat_length;
3055 ump->vat_table_alloc_len = vat_table_alloc_len;
3056 ump->vat_table = vat_table;
3057 ump->vat_offset = vat_offset;
3058 ump->vat_entries = vat_entries;
3059 ump->vat_last_free_lb = 0; /* start at beginning */
3060
3061 out:
3062 if (error) {
3063 if (vat_table)
3064 free(vat_table, M_UDFVOLD);
3065 }
3066 free(raw_vat, M_TEMP);
3067
3068 return error;
3069 }
3070
3071 /* --------------------------------------------------------------------- */
3072
3073 static int
3074 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3075 {
3076 struct udf_node *vat_node, *accepted_vat_node;
3077 struct long_ad icb_loc;
3078 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3079 int error;
3080
3081 /* mapping info not needed */
3082 mapping = mapping;
3083
3084 DPRINTF(VOLUMES, ("Searching VAT\n"));
3085
3086 /*
3087 * Start reading forward in blocks from the first possible vat
3088 * location. If not found in this block, start again a bit before
3089 * until we get a hit.
3090 */
3091 late_vat_loc = ump->last_possible_vat_location;
3092 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3093
3094 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3095 accepted_vat_node = NULL;
3096 do {
3097 vat_loc = early_vat_loc;
3098 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3099 early_vat_loc, late_vat_loc));
3100 do {
3101 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3102 vat_loc));
3103 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3104 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3105
3106 error = udf_get_node(ump, &icb_loc, &vat_node);
3107 if (!error) {
3108 error = udf_check_for_vat(vat_node);
3109 vat_node->i_flags = 0; /* reset access */
3110 }
3111 if (!error) {
3112 DPRINTFIF(VOLUMES, !error,
3113 ("VAT candidate accepted at %d\n",
3114 vat_loc));
3115 if (accepted_vat_node)
3116 vput(accepted_vat_node->vnode);
3117 accepted_vat_node = vat_node;
3118 accepted_vat_node->i_flags |= IN_NO_DELETE;
3119 vat_node = NULL;
3120 }
3121 if (vat_node)
3122 vput(vat_node->vnode);
3123 vat_loc++; /* walk forward */
3124 } while (vat_loc <= late_vat_loc);
3125 if (accepted_vat_node)
3126 break;
3127
3128 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3129 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3130 } while (late_vat_loc > ump->first_possible_vat_location);
3131
3132 /* keep our last accepted VAT node around */
3133 if (accepted_vat_node) {
3134 /* revert no delete flag again to avoid potential side effects */
3135 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3136
3137 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3138 ump->vat_node = accepted_vat_node;
3139 return 0;
3140 }
3141
3142 return error;
3143 }
3144
3145 /* --------------------------------------------------------------------- */
3146
3147 static int
3148 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3149 {
3150 union dscrptr *dscr;
3151 struct part_map_spare *pms = &mapping->pms;
3152 uint32_t lb_num;
3153 int spar, error;
3154
3155 /*
3156 * The partition mapping passed on to us specifies the information we
3157 * need to locate and initialise the sparable partition mapping
3158 * information we need.
3159 */
3160
3161 DPRINTF(VOLUMES, ("Read sparable table\n"));
3162 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3163 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3164
3165 for (spar = 0; spar < pms->n_st; spar++) {
3166 lb_num = pms->st_loc[spar];
3167 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3168 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3169 if (!error && dscr) {
3170 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3171 if (ump->sparing_table)
3172 free(ump->sparing_table, M_UDFVOLD);
3173 ump->sparing_table = &dscr->spt;
3174 dscr = NULL;
3175 DPRINTF(VOLUMES,
3176 ("Sparing table accepted (%d entries)\n",
3177 udf_rw16(ump->sparing_table->rt_l)));
3178 break; /* we're done */
3179 }
3180 }
3181 if (dscr)
3182 free(dscr, M_UDFVOLD);
3183 }
3184
3185 if (ump->sparing_table)
3186 return 0;
3187
3188 return ENOENT;
3189 }
3190
3191 /* --------------------------------------------------------------------- */
3192
3193 static int
3194 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3195 {
3196 struct part_map_meta *pmm = &mapping->pmm;
3197 struct long_ad icb_loc;
3198 struct vnode *vp;
3199 uint16_t raw_phys_part, phys_part;
3200 int error;
3201
3202 /*
3203 * BUGALERT: some rogue implementations use random physical
3204 * partition numbers to break other implementations so lookup
3205 * the number.
3206 */
3207
3208 /* extract our allocation parameters set up on format */
3209 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3210 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3211 ump->metadata_flags = mapping->pmm.flags;
3212
3213 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3214 raw_phys_part = udf_rw16(pmm->part_num);
3215 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3216
3217 icb_loc.loc.part_num = udf_rw16(phys_part);
3218
3219 DPRINTF(VOLUMES, ("Metadata file\n"));
3220 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3221 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3222 if (ump->metadata_node) {
3223 vp = ump->metadata_node->vnode;
3224 UDF_SET_SYSTEMFILE(vp);
3225 }
3226
3227 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3228 if (icb_loc.loc.lb_num != -1) {
3229 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3230 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3231 if (ump->metadatamirror_node) {
3232 vp = ump->metadatamirror_node->vnode;
3233 UDF_SET_SYSTEMFILE(vp);
3234 }
3235 }
3236
3237 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3238 if (icb_loc.loc.lb_num != -1) {
3239 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3240 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3241 if (ump->metadatabitmap_node) {
3242 vp = ump->metadatabitmap_node->vnode;
3243 UDF_SET_SYSTEMFILE(vp);
3244 }
3245 }
3246
3247 /* if we're mounting read-only we relax the requirements */
3248 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3249 error = EFAULT;
3250 if (ump->metadata_node)
3251 error = 0;
3252 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3253 printf( "udf mount: Metadata file not readable, "
3254 "substituting Metadata copy file\n");
3255 ump->metadata_node = ump->metadatamirror_node;
3256 ump->metadatamirror_node = NULL;
3257 error = 0;
3258 }
3259 } else {
3260 /* mounting read/write */
3261 /* XXX DISABLED! metadata writing is not working yet XXX */
3262 if (error)
3263 error = EROFS;
3264 }
3265 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3266 "metadata files\n"));
3267 return error;
3268 }
3269
3270 /* --------------------------------------------------------------------- */
3271
3272 int
3273 udf_read_vds_tables(struct udf_mount *ump)
3274 {
3275 union udf_pmap *mapping;
3276 /* struct udf_args *args = &ump->mount_args; */
3277 uint32_t n_pm;
3278 uint32_t log_part;
3279 uint8_t *pmap_pos;
3280 int pmap_size;
3281 int error;
3282
3283 /* Iterate (again) over the part mappings for locations */
3284 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3285 pmap_pos = ump->logical_vol->maps;
3286
3287 for (log_part = 0; log_part < n_pm; log_part++) {
3288 mapping = (union udf_pmap *) pmap_pos;
3289 switch (ump->vtop_tp[log_part]) {
3290 case UDF_VTOP_TYPE_PHYS :
3291 /* nothing */
3292 break;
3293 case UDF_VTOP_TYPE_VIRT :
3294 /* search and load VAT */
3295 error = udf_search_vat(ump, mapping);
3296 if (error)
3297 return ENOENT;
3298 break;
3299 case UDF_VTOP_TYPE_SPARABLE :
3300 /* load one of the sparable tables */
3301 error = udf_read_sparables(ump, mapping);
3302 if (error)
3303 return ENOENT;
3304 break;
3305 case UDF_VTOP_TYPE_META :
3306 /* load the associated file descriptors */
3307 error = udf_read_metadata_nodes(ump, mapping);
3308 if (error)
3309 return ENOENT;
3310 break;
3311 default:
3312 break;
3313 }
3314 pmap_size = pmap_pos[1];
3315 pmap_pos += pmap_size;
3316 }
3317
3318 /* read in and check unallocated and free space info if writing */
3319 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3320 error = udf_read_physical_partition_spacetables(ump);
3321 if (error)
3322 return error;
3323
3324 /* also read in metadata partition spacebitmap if defined */
3325 error = udf_read_metadata_partition_spacetable(ump);
3326 return error;
3327 }
3328
3329 return 0;
3330 }
3331
3332 /* --------------------------------------------------------------------- */
3333
3334 int
3335 udf_read_rootdirs(struct udf_mount *ump)
3336 {
3337 union dscrptr *dscr;
3338 /* struct udf_args *args = &ump->mount_args; */
3339 struct udf_node *rootdir_node, *streamdir_node;
3340 struct long_ad fsd_loc, *dir_loc;
3341 uint32_t lb_num, dummy;
3342 uint32_t fsd_len;
3343 int dscr_type;
3344 int error;
3345
3346 /* TODO implement FSD reading in separate function like integrity? */
3347 /* get fileset descriptor sequence */
3348 fsd_loc = ump->logical_vol->lv_fsd_loc;
3349 fsd_len = udf_rw32(fsd_loc.len);
3350
3351 dscr = NULL;
3352 error = 0;
3353 while (fsd_len || error) {
3354 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3355 /* translate fsd_loc to lb_num */
3356 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3357 if (error)
3358 break;
3359 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3360 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3361 /* end markers */
3362 if (error || (dscr == NULL))
3363 break;
3364
3365 /* analyse */
3366 dscr_type = udf_rw16(dscr->tag.id);
3367 if (dscr_type == TAGID_TERM)
3368 break;
3369 if (dscr_type != TAGID_FSD) {
3370 free(dscr, M_UDFVOLD);
3371 return ENOENT;
3372 }
3373
3374 /*
3375 * TODO check for multiple fileset descriptors; its only
3376 * picking the last now. Also check for FSD
3377 * correctness/interpretability
3378 */
3379
3380 /* update */
3381 if (ump->fileset_desc) {
3382 free(ump->fileset_desc, M_UDFVOLD);
3383 }
3384 ump->fileset_desc = &dscr->fsd;
3385 dscr = NULL;
3386
3387 /* continue to the next fsd */
3388 fsd_len -= ump->discinfo.sector_size;
3389 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3390
3391 /* follow up to fsd->next_ex (long_ad) if its not null */
3392 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3393 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3394 fsd_loc = ump->fileset_desc->next_ex;
3395 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3396 }
3397 }
3398 if (dscr)
3399 free(dscr, M_UDFVOLD);
3400
3401 /* there has to be one */
3402 if (ump->fileset_desc == NULL)
3403 return ENOENT;
3404
3405 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3406 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3407 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3408
3409 /*
3410 * Now the FSD is known, read in the rootdirectory and if one exists,
3411 * the system stream dir. Some files in the system streamdir are not
3412 * wanted in this implementation since they are not maintained. If
3413 * writing is enabled we'll delete these files if they exist.
3414 */
3415
3416 rootdir_node = streamdir_node = NULL;
3417 dir_loc = NULL;
3418
3419 /* try to read in the rootdir */
3420 dir_loc = &ump->fileset_desc->rootdir_icb;
3421 error = udf_get_node(ump, dir_loc, &rootdir_node);
3422 if (error)
3423 return ENOENT;
3424
3425 /* aparently it read in fine */
3426
3427 /*
3428 * Try the system stream directory; not very likely in the ones we
3429 * test, but for completeness.
3430 */
3431 dir_loc = &ump->fileset_desc->streamdir_icb;
3432 if (udf_rw32(dir_loc->len)) {
3433 printf("udf_read_rootdirs: streamdir defined ");
3434 error = udf_get_node(ump, dir_loc, &streamdir_node);
3435 if (error) {
3436 printf("but error in streamdir reading\n");
3437 } else {
3438 printf("but ignored\n");
3439 /*
3440 * TODO process streamdir `baddies' i.e. files we dont
3441 * want if R/W
3442 */
3443 }
3444 }
3445
3446 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3447
3448 /* release the vnodes again; they'll be auto-recycled later */
3449 if (streamdir_node) {
3450 vput(streamdir_node->vnode);
3451 }
3452 if (rootdir_node) {
3453 vput(rootdir_node->vnode);
3454 }
3455
3456 return 0;
3457 }
3458
3459 /* --------------------------------------------------------------------- */
3460
3461 /* To make absolutely sure we are NOT returning zero, add one :) */
3462
3463 long
3464 udf_get_node_id(const struct long_ad *icbptr)
3465 {
3466 /* ought to be enough since each mountpoint has its own chain */
3467 return udf_rw32(icbptr->loc.lb_num) + 1;
3468 }
3469
3470
3471 int
3472 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3473 {
3474 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3475 return -1;
3476 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3477 return 1;
3478
3479 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3480 return -1;
3481 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3482 return 1;
3483
3484 return 0;
3485 }
3486
3487
3488 static int
3489 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3490 {
3491 const struct udf_node *a_node = a;
3492 const struct udf_node *b_node = b;
3493
3494 return udf_compare_icb(&a_node->loc, &b_node->loc);
3495 }
3496
3497
3498 static int
3499 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3500 {
3501 const struct udf_node *a_node = a;
3502 const struct long_ad * const icb = key;
3503
3504 return udf_compare_icb(&a_node->loc, icb);
3505 }
3506
3507
3508 static const rb_tree_ops_t udf_node_rbtree_ops = {
3509 .rbto_compare_nodes = udf_compare_rbnodes,
3510 .rbto_compare_key = udf_compare_rbnode_icb,
3511 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3512 .rbto_context = NULL
3513 };
3514
3515
3516 void
3517 udf_init_nodes_tree(struct udf_mount *ump)
3518 {
3519
3520 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3521 }
3522
3523
3524 /* --------------------------------------------------------------------- */
3525
3526 static int
3527 udf_validate_session_start(struct udf_mount *ump)
3528 {
3529 struct mmc_trackinfo trackinfo;
3530 struct vrs_desc *vrs;
3531 uint32_t tracknr, sessionnr, sector, sector_size;
3532 uint32_t iso9660_vrs, write_track_start;
3533 uint8_t *buffer, *blank, *pos;
3534 int blks, max_sectors, vrs_len;
3535 int error;
3536
3537 /* disc appendable? */
3538 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3539 return EROFS;
3540
3541 /* already written here? if so, there should be an ISO VDS */
3542 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3543 return 0;
3544
3545 /*
3546 * Check if the first track of the session is blank and if so, copy or
3547 * create a dummy ISO descriptor so the disc is valid again.
3548 */
3549
3550 tracknr = ump->discinfo.first_track_last_session;
3551 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3552 trackinfo.tracknr = tracknr;
3553 error = udf_update_trackinfo(ump, &trackinfo);
3554 if (error)
3555 return error;
3556
3557 udf_dump_trackinfo(&trackinfo);
3558 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3559 KASSERT(trackinfo.sessionnr > 1);
3560
3561 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3562 write_track_start = trackinfo.next_writable;
3563
3564 /* we have to copy the ISO VRS from a former session */
3565 DPRINTF(VOLUMES, ("validate_session_start: "
3566 "blank or reserved track, copying VRS\n"));
3567
3568 /* sessionnr should be the session we're mounting */
3569 sessionnr = ump->mount_args.sessionnr;
3570
3571 /* start at the first track */
3572 tracknr = ump->discinfo.first_track;
3573 while (tracknr <= ump->discinfo.num_tracks) {
3574 trackinfo.tracknr = tracknr;
3575 error = udf_update_trackinfo(ump, &trackinfo);
3576 if (error) {
3577 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3578 return error;
3579 }
3580 if (trackinfo.sessionnr == sessionnr)
3581 break;
3582 tracknr++;
3583 }
3584 if (trackinfo.sessionnr != sessionnr) {
3585 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3586 return ENOENT;
3587 }
3588
3589 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3590 udf_dump_trackinfo(&trackinfo);
3591
3592 /*
3593 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3594 * minimum ISO `sector size' 2048
3595 */
3596 sector_size = ump->discinfo.sector_size;
3597 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3598 + trackinfo.track_start;
3599
3600 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3601 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3602 blks = MAX(1, 2048 / sector_size);
3603
3604 error = 0;
3605 for (sector = 0; sector < max_sectors; sector += blks) {
3606 pos = buffer + sector * sector_size;
3607 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3608 iso9660_vrs + sector, blks);
3609 if (error)
3610 break;
3611 /* check this ISO descriptor */
3612 vrs = (struct vrs_desc *) pos;
3613 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3614 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3615 continue;
3616 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3617 continue;
3618 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3619 continue;
3620 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3621 continue;
3622 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3623 continue;
3624 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3625 break;
3626 /* now what? for now, end of sequence */
3627 break;
3628 }
3629 vrs_len = sector + blks;
3630 if (error) {
3631 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3632 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3633
3634 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3635
3636 vrs = (struct vrs_desc *) (buffer);
3637 vrs->struct_type = 0;
3638 vrs->version = 1;
3639 memcpy(vrs->identifier,VRS_BEA01, 5);
3640
3641 vrs = (struct vrs_desc *) (buffer + 2048);
3642 vrs->struct_type = 0;
3643 vrs->version = 1;
3644 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3645 memcpy(vrs->identifier,VRS_NSR02, 5);
3646 } else {
3647 memcpy(vrs->identifier,VRS_NSR03, 5);
3648 }
3649
3650 vrs = (struct vrs_desc *) (buffer + 4096);
3651 vrs->struct_type = 0;
3652 vrs->version = 1;
3653 memcpy(vrs->identifier, VRS_TEA01, 5);
3654
3655 vrs_len = 3*blks;
3656 }
3657
3658 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3659
3660 /*
3661 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3662 * minimum ISO `sector size' 2048
3663 */
3664 sector_size = ump->discinfo.sector_size;
3665 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3666 + write_track_start;
3667
3668 /* write out 32 kb */
3669 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3670 memset(blank, 0, sector_size);
3671 error = 0;
3672 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3673 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3674 blank, sector, 1);
3675 if (error)
3676 break;
3677 }
3678 if (!error) {
3679 /* write out our ISO VRS */
3680 KASSERT(sector == iso9660_vrs);
3681 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3682 sector, vrs_len);
3683 sector += vrs_len;
3684 }
3685 if (!error) {
3686 /* fill upto the first anchor at S+256 */
3687 for (; sector < write_track_start+256; sector++) {
3688 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3689 blank, sector, 1);
3690 if (error)
3691 break;
3692 }
3693 }
3694 if (!error) {
3695 /* write out anchor; write at ABSOLUTE place! */
3696 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3697 (union dscrptr *) ump->anchors[0], sector, sector);
3698 if (error)
3699 printf("writeout of anchor failed!\n");
3700 }
3701
3702 free(blank, M_TEMP);
3703 free(buffer, M_TEMP);
3704
3705 if (error)
3706 printf("udf_open_session: error writing iso vrs! : "
3707 "leaving disc in compromised state!\n");
3708
3709 /* synchronise device caches */
3710 (void) udf_synchronise_caches(ump);
3711
3712 return error;
3713 }
3714
3715
3716 int
3717 udf_open_logvol(struct udf_mount *ump)
3718 {
3719 int logvol_integrity;
3720 int error;
3721
3722 /* already/still open? */
3723 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3724 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3725 return 0;
3726
3727 /* can we open it ? */
3728 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3729 return EROFS;
3730
3731 /* setup write parameters */
3732 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3733 if ((error = udf_setup_writeparams(ump)) != 0)
3734 return error;
3735
3736 /* determine data and metadata tracks (most likely same) */
3737 error = udf_search_writing_tracks(ump);
3738 if (error) {
3739 /* most likely lack of space */
3740 printf("udf_open_logvol: error searching writing tracks\n");
3741 return EROFS;
3742 }
3743
3744 /* writeout/update lvint on disc or only in memory */
3745 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3746 if (ump->lvopen & UDF_OPEN_SESSION) {
3747 /* TODO optional track reservation opening */
3748 error = udf_validate_session_start(ump);
3749 if (error)
3750 return error;
3751
3752 /* determine data and metadata tracks again */
3753 error = udf_search_writing_tracks(ump);
3754
3755 if (ump->lvclose & UDF_WRITE_VAT) {
3756 /*
3757 * we writeout the VAT to get a self-sustained session
3758 * for fsck
3759 */
3760 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3761
3762 /* write out the VAT data and all its descriptors */
3763 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3764 udf_writeout_vat(ump);
3765
3766 /* force everything to be synchronized on the device */
3767 (void) udf_synchronise_caches(ump);
3768 }
3769 }
3770
3771 /* mark it open */
3772 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3773
3774 /* do we need to write it out? */
3775 if (ump->lvopen & UDF_WRITE_LVINT) {
3776 error = udf_writeout_lvint(ump, ump->lvopen);
3777 /* if we couldn't write it mark it closed again */
3778 if (error) {
3779 ump->logvol_integrity->integrity_type =
3780 udf_rw32(UDF_INTEGRITY_CLOSED);
3781 return error;
3782 }
3783 }
3784
3785 return 0;
3786 }
3787
3788
3789 int
3790 udf_close_logvol(struct udf_mount *ump, int mntflags)
3791 {
3792 struct vnode *devvp = ump->devvp;
3793 struct mmc_op mmc_op;
3794 uint32_t phys;
3795 int logvol_integrity;
3796 int error = 0, error1 = 0, error2 = 0;
3797 int tracknr;
3798 int nvats, n, relblk, wrtrack_skew, nok;
3799
3800 /* already/still closed? */
3801 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3802 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3803 return 0;
3804
3805 /* writeout/update lvint or write out VAT */
3806 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3807 #ifdef DIAGNOSTIC
3808 if (ump->lvclose & UDF_CLOSE_SESSION)
3809 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3810 #endif
3811
3812 if (ump->lvclose & UDF_WRITE_VAT) {
3813 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3814
3815 /* write out the VAT data and all its descriptors */
3816 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3817 udf_writeout_vat(ump);
3818
3819 /*
3820 * For bug-compatibility with Windows, the last VAT sector
3821 * must be a multiple of 16/32 from the start of the track.
3822 * To allow for scratches, write out at least a 32 pieces.
3823 */
3824 phys = ump->data_track.track_start;
3825 wrtrack_skew = phys % 32;
3826
3827 phys = ump->data_track.next_writable;
3828 relblk = phys % 32;
3829 nvats = 32 + 32 - (relblk - wrtrack_skew);
3830
3831 #if notyet
3832 /*
3833 * TODO calculate the available space and if the disc is
3834 * allmost full, write out till end-256-1 with banks, write
3835 * AVDP and fill up with VATs, then close session and close
3836 * disc.
3837 */
3838 if (ump->lvclose & UDF_FINALISE_DISC) {
3839 error = udf_write_phys_dscr_sync(ump, NULL,
3840 UDF_C_FLOAT_DSCR,
3841 (union dscrptr *) ump->anchors[0],
3842 0, 0);
3843 if (error)
3844 printf("writeout of anchor failed!\n");
3845
3846 /* pad space with VAT ICBs */
3847 nvats = 256;
3848 }
3849 #endif
3850
3851 /* write out a number of VAT nodes */
3852 nok = 0;
3853 for (n = 0; n < nvats; n++) {
3854 /* will now only write last FE/EFE */
3855 ump->vat_node->i_flags |= IN_MODIFIED;
3856 error = VOP_FSYNC(ump->vat_node->vnode,
3857 FSCRED, FSYNC_WAIT, 0, 0);
3858 if (!error)
3859 nok++;
3860 }
3861 /* force everything to be synchronized on the device */
3862 (void) udf_synchronise_caches(ump);
3863
3864 if (nok < 14) {
3865 /* arbitrary; but at least one or two CD frames */
3866 printf("writeout of at least 14 VATs failed\n");
3867 return error;
3868 }
3869 }
3870
3871 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3872
3873 /* finish closing of session */
3874 if (ump->lvclose & UDF_CLOSE_SESSION) {
3875 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3876 "as requested\n"));
3877 error = udf_validate_session_start(ump);
3878 if (error)
3879 return error;
3880
3881 (void) udf_synchronise_caches(ump);
3882
3883 /* close all associated tracks */
3884 tracknr = ump->discinfo.first_track_last_session;
3885 error = 0;
3886 while (tracknr <= ump->discinfo.last_track_last_session) {
3887 DPRINTF(VOLUMES, ("\tclosing possible open "
3888 "track %d\n", tracknr));
3889 memset(&mmc_op, 0, sizeof(mmc_op));
3890 mmc_op.operation = MMC_OP_CLOSETRACK;
3891 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3892 mmc_op.tracknr = tracknr;
3893 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3894 FKIOCTL, NOCRED);
3895 if (error)
3896 printf("udf_close_logvol: closing of "
3897 "track %d failed\n", tracknr);
3898 tracknr ++;
3899 }
3900 if (!error) {
3901 DPRINTF(VOLUMES, ("closing session\n"));
3902 memset(&mmc_op, 0, sizeof(mmc_op));
3903 mmc_op.operation = MMC_OP_CLOSESESSION;
3904 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3905 mmc_op.sessionnr = ump->discinfo.num_sessions;
3906 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3907 FKIOCTL, NOCRED);
3908 if (error)
3909 printf("udf_close_logvol: closing of session"
3910 "failed\n");
3911 }
3912 if (!error)
3913 ump->lvopen |= UDF_OPEN_SESSION;
3914 if (error) {
3915 printf("udf_close_logvol: leaving disc as it is\n");
3916 ump->lvclose &= ~UDF_FINALISE_DISC;
3917 }
3918 }
3919
3920 if (ump->lvclose & UDF_FINALISE_DISC) {
3921 memset(&mmc_op, 0, sizeof(mmc_op));
3922 mmc_op.operation = MMC_OP_FINALISEDISC;
3923 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3924 mmc_op.sessionnr = ump->discinfo.num_sessions;
3925 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3926 FKIOCTL, NOCRED);
3927 if (error)
3928 printf("udf_close_logvol: finalising disc"
3929 "failed\n");
3930 }
3931
3932 /* write out partition bitmaps if requested */
3933 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3934 /* sync writeout metadata spacetable if existing */
3935 error1 = udf_write_metadata_partition_spacetable(ump, true);
3936 if (error1)
3937 printf( "udf_close_logvol: writeout of metadata space "
3938 "bitmap failed\n");
3939
3940 /* sync writeout partition spacetables */
3941 error2 = udf_write_physical_partition_spacetables(ump, true);
3942 if (error2)
3943 printf( "udf_close_logvol: writeout of space tables "
3944 "failed\n");
3945
3946 if (error1 || error2)
3947 return (error1 | error2);
3948
3949 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3950 }
3951
3952 /* write out metadata partition nodes if requested */
3953 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3954 /* sync writeout metadata descriptor node */
3955 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3956 if (error1)
3957 printf( "udf_close_logvol: writeout of metadata partition "
3958 "node failed\n");
3959
3960 /* duplicate metadata partition descriptor if needed */
3961 udf_synchronise_metadatamirror_node(ump);
3962
3963 /* sync writeout metadatamirror descriptor node */
3964 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3965 if (error2)
3966 printf( "udf_close_logvol: writeout of metadata partition "
3967 "mirror node failed\n");
3968
3969 if (error1 || error2)
3970 return (error1 | error2);
3971
3972 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3973 }
3974
3975 /* mark it closed */
3976 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3977
3978 /* do we need to write out the logical volume integrity? */
3979 if (ump->lvclose & UDF_WRITE_LVINT)
3980 error = udf_writeout_lvint(ump, ump->lvopen);
3981 if (error) {
3982 /* HELP now what? mark it open again for now */
3983 ump->logvol_integrity->integrity_type =
3984 udf_rw32(UDF_INTEGRITY_OPEN);
3985 return error;
3986 }
3987
3988 (void) udf_synchronise_caches(ump);
3989
3990 return 0;
3991 }
3992
3993 /* --------------------------------------------------------------------- */
3994
3995 /*
3996 * Genfs interfacing
3997 *
3998 * static const struct genfs_ops udf_genfsops = {
3999 * .gop_size = genfs_size,
4000 * size of transfers
4001 * .gop_alloc = udf_gop_alloc,
4002 * allocate len bytes at offset
4003 * .gop_write = genfs_gop_write,
4004 * putpages interface code
4005 * .gop_markupdate = udf_gop_markupdate,
4006 * set update/modify flags etc.
4007 * }
4008 */
4009
4010 /*
4011 * Genfs interface. These four functions are the only ones defined though not
4012 * documented... great....
4013 */
4014
4015 /*
4016 * Called for allocating an extent of the file either by VOP_WRITE() or by
4017 * genfs filling up gaps.
4018 */
4019 static int
4020 udf_gop_alloc(struct vnode *vp, off_t off,
4021 off_t len, int flags, kauth_cred_t cred)
4022 {
4023 struct udf_node *udf_node = VTOI(vp);
4024 struct udf_mount *ump = udf_node->ump;
4025 uint64_t lb_start, lb_end;
4026 uint32_t lb_size, num_lb;
4027 int udf_c_type, vpart_num, can_fail;
4028 int error;
4029
4030 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
4031 off, len, flags? "SYNC":"NONE"));
4032
4033 /*
4034 * request the pages of our vnode and see how many pages will need to
4035 * be allocated and reserve that space
4036 */
4037 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
4038 lb_start = off / lb_size;
4039 lb_end = (off + len + lb_size -1) / lb_size;
4040 num_lb = lb_end - lb_start;
4041
4042 udf_c_type = udf_get_c_type(udf_node);
4043 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4044
4045 /* all requests can fail */
4046 can_fail = true;
4047
4048 /* fid's (directories) can't fail */
4049 if (udf_c_type == UDF_C_FIDS)
4050 can_fail = false;
4051
4052 /* system files can't fail */
4053 if (vp->v_vflag & VV_SYSTEM)
4054 can_fail = false;
4055
4056 error = udf_reserve_space(ump, udf_node, udf_c_type,
4057 vpart_num, num_lb, can_fail);
4058
4059 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4060 lb_start, lb_end, num_lb));
4061
4062 return error;
4063 }
4064
4065
4066 /*
4067 * callback from genfs to update our flags
4068 */
4069 static void
4070 udf_gop_markupdate(struct vnode *vp, int flags)
4071 {
4072 struct udf_node *udf_node = VTOI(vp);
4073 u_long mask = 0;
4074
4075 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4076 mask = IN_ACCESS;
4077 }
4078 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4079 if (vp->v_type == VREG) {
4080 mask |= IN_CHANGE | IN_UPDATE;
4081 } else {
4082 mask |= IN_MODIFY;
4083 }
4084 }
4085 if (mask) {
4086 udf_node->i_flags |= mask;
4087 }
4088 }
4089
4090
4091 static const struct genfs_ops udf_genfsops = {
4092 .gop_size = genfs_size,
4093 .gop_alloc = udf_gop_alloc,
4094 .gop_write = genfs_gop_write_rwmap,
4095 .gop_markupdate = udf_gop_markupdate,
4096 .gop_putrange = genfs_gop_putrange,
4097 };
4098
4099
4100 /* --------------------------------------------------------------------- */
4101
4102 int
4103 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4104 {
4105 union dscrptr *dscr;
4106 int error;
4107
4108 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4109 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4110
4111 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4112 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4113 (void) udf_validate_tag_and_crc_sums(dscr);
4114
4115 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4116 dscr, sector, sector);
4117
4118 free(dscr, M_TEMP);
4119
4120 return error;
4121 }
4122
4123
4124 /* --------------------------------------------------------------------- */
4125
4126 /* UDF<->unix converters */
4127
4128 /* --------------------------------------------------------------------- */
4129
4130 static mode_t
4131 udf_perm_to_unix_mode(uint32_t perm)
4132 {
4133 mode_t mode;
4134
4135 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4136 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4137 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4138
4139 return mode;
4140 }
4141
4142 /* --------------------------------------------------------------------- */
4143
4144 static uint32_t
4145 unix_mode_to_udf_perm(mode_t mode)
4146 {
4147 uint32_t perm;
4148
4149 perm = ((mode & S_IRWXO) );
4150 perm |= ((mode & S_IRWXG) << 2);
4151 perm |= ((mode & S_IRWXU) << 4);
4152 perm |= ((mode & S_IWOTH) << 3);
4153 perm |= ((mode & S_IWGRP) << 5);
4154 perm |= ((mode & S_IWUSR) << 7);
4155
4156 return perm;
4157 }
4158
4159 /* --------------------------------------------------------------------- */
4160
4161 static uint32_t
4162 udf_icb_to_unix_filetype(uint32_t icbftype)
4163 {
4164 switch (icbftype) {
4165 case UDF_ICB_FILETYPE_DIRECTORY :
4166 case UDF_ICB_FILETYPE_STREAMDIR :
4167 return S_IFDIR;
4168 case UDF_ICB_FILETYPE_FIFO :
4169 return S_IFIFO;
4170 case UDF_ICB_FILETYPE_CHARDEVICE :
4171 return S_IFCHR;
4172 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4173 return S_IFBLK;
4174 case UDF_ICB_FILETYPE_RANDOMACCESS :
4175 case UDF_ICB_FILETYPE_REALTIME :
4176 return S_IFREG;
4177 case UDF_ICB_FILETYPE_SYMLINK :
4178 return S_IFLNK;
4179 case UDF_ICB_FILETYPE_SOCKET :
4180 return S_IFSOCK;
4181 }
4182 /* no idea what this is */
4183 return 0;
4184 }
4185
4186 /* --------------------------------------------------------------------- */
4187
4188 void
4189 udf_to_unix_name(char *result, int result_len, char *id, int len,
4190 struct charspec *chsp)
4191 {
4192 uint16_t *raw_name, *unix_name;
4193 uint16_t *inchp, ch;
4194 uint8_t *outchp;
4195 const char *osta_id = "OSTA Compressed Unicode";
4196 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4197
4198 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4199 unix_name = raw_name + 1024; /* split space in half */
4200 assert(sizeof(char) == sizeof(uint8_t));
4201 outchp = (uint8_t *) result;
4202
4203 is_osta_typ0 = (chsp->type == 0);
4204 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4205 if (is_osta_typ0) {
4206 /* TODO clean up */
4207 *raw_name = *unix_name = 0;
4208 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4209 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4210 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4211 /* output UTF8 */
4212 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4213 ch = *inchp;
4214 nout = wput_utf8(outchp, result_len, ch);
4215 outchp += nout; result_len -= nout;
4216 if (!ch) break;
4217 }
4218 *outchp++ = 0;
4219 } else {
4220 /* assume 8bit char length byte latin-1 */
4221 assert(*id == 8);
4222 assert(strlen((char *) (id+1)) <= NAME_MAX);
4223 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4224 }
4225 free(raw_name, M_UDFTEMP);
4226 }
4227
4228 /* --------------------------------------------------------------------- */
4229
4230 void
4231 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4232 struct charspec *chsp)
4233 {
4234 uint16_t *raw_name;
4235 uint16_t *outchp;
4236 const char *inchp;
4237 const char *osta_id = "OSTA Compressed Unicode";
4238 int udf_chars, is_osta_typ0, bits;
4239 size_t cnt;
4240
4241 /* allocate temporary unicode-16 buffer */
4242 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4243
4244 /* convert utf8 to unicode-16 */
4245 *raw_name = 0;
4246 inchp = name;
4247 outchp = raw_name;
4248 bits = 8;
4249 for (cnt = name_len, udf_chars = 0; cnt;) {
4250 *outchp = wget_utf8(&inchp, &cnt);
4251 if (*outchp > 0xff)
4252 bits=16;
4253 outchp++;
4254 udf_chars++;
4255 }
4256 /* null terminate just in case */
4257 *outchp++ = 0;
4258
4259 is_osta_typ0 = (chsp->type == 0);
4260 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4261 if (is_osta_typ0) {
4262 udf_chars = udf_CompressUnicode(udf_chars, bits,
4263 (unicode_t *) raw_name,
4264 (byte *) result);
4265 } else {
4266 printf("unix to udf name: no CHSP0 ?\n");
4267 /* XXX assume 8bit char length byte latin-1 */
4268 *result++ = 8; udf_chars = 1;
4269 strncpy(result, name + 1, name_len);
4270 udf_chars += name_len;
4271 }
4272 *result_len = udf_chars;
4273 free(raw_name, M_UDFTEMP);
4274 }
4275
4276 /* --------------------------------------------------------------------- */
4277
4278 void
4279 udf_timestamp_to_timespec(struct udf_mount *ump,
4280 struct timestamp *timestamp,
4281 struct timespec *timespec)
4282 {
4283 struct clock_ymdhms ymdhms;
4284 uint32_t usecs, secs, nsecs;
4285 uint16_t tz;
4286
4287 /* fill in ymdhms structure from timestamp */
4288 memset(&ymdhms, 0, sizeof(ymdhms));
4289 ymdhms.dt_year = udf_rw16(timestamp->year);
4290 ymdhms.dt_mon = timestamp->month;
4291 ymdhms.dt_day = timestamp->day;
4292 ymdhms.dt_wday = 0; /* ? */
4293 ymdhms.dt_hour = timestamp->hour;
4294 ymdhms.dt_min = timestamp->minute;
4295 ymdhms.dt_sec = timestamp->second;
4296
4297 secs = clock_ymdhms_to_secs(&ymdhms);
4298 usecs = timestamp->usec +
4299 100*timestamp->hund_usec + 10000*timestamp->centisec;
4300 nsecs = usecs * 1000;
4301
4302 /*
4303 * Calculate the time zone. The timezone is 12 bit signed 2's
4304 * compliment, so we gotta do some extra magic to handle it right.
4305 */
4306 tz = udf_rw16(timestamp->type_tz);
4307 tz &= 0x0fff; /* only lower 12 bits are significant */
4308 if (tz & 0x0800) /* sign extention */
4309 tz |= 0xf000;
4310
4311 /* TODO check timezone conversion */
4312 /* check if we are specified a timezone to convert */
4313 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4314 if ((int16_t) tz != -2047)
4315 secs -= (int16_t) tz * 60;
4316 } else {
4317 secs -= ump->mount_args.gmtoff;
4318 }
4319
4320 timespec->tv_sec = secs;
4321 timespec->tv_nsec = nsecs;
4322 }
4323
4324
4325 void
4326 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4327 {
4328 struct clock_ymdhms ymdhms;
4329 uint32_t husec, usec, csec;
4330
4331 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4332
4333 usec = timespec->tv_nsec / 1000;
4334 husec = usec / 100;
4335 usec -= husec * 100; /* only 0-99 in usec */
4336 csec = husec / 100; /* only 0-99 in csec */
4337 husec -= csec * 100; /* only 0-99 in husec */
4338
4339 /* set method 1 for CUT/GMT */
4340 timestamp->type_tz = udf_rw16((1<<12) + 0);
4341 timestamp->year = udf_rw16(ymdhms.dt_year);
4342 timestamp->month = ymdhms.dt_mon;
4343 timestamp->day = ymdhms.dt_day;
4344 timestamp->hour = ymdhms.dt_hour;
4345 timestamp->minute = ymdhms.dt_min;
4346 timestamp->second = ymdhms.dt_sec;
4347 timestamp->centisec = csec;
4348 timestamp->hund_usec = husec;
4349 timestamp->usec = usec;
4350 }
4351
4352 /* --------------------------------------------------------------------- */
4353
4354 /*
4355 * Attribute and filetypes converters with get/set pairs
4356 */
4357
4358 uint32_t
4359 udf_getaccessmode(struct udf_node *udf_node)
4360 {
4361 struct file_entry *fe = udf_node->fe;
4362 struct extfile_entry *efe = udf_node->efe;
4363 uint32_t udf_perm, icbftype;
4364 uint32_t mode, ftype;
4365 uint16_t icbflags;
4366
4367 UDF_LOCK_NODE(udf_node, 0);
4368 if (fe) {
4369 udf_perm = udf_rw32(fe->perm);
4370 icbftype = fe->icbtag.file_type;
4371 icbflags = udf_rw16(fe->icbtag.flags);
4372 } else {
4373 assert(udf_node->efe);
4374 udf_perm = udf_rw32(efe->perm);
4375 icbftype = efe->icbtag.file_type;
4376 icbflags = udf_rw16(efe->icbtag.flags);
4377 }
4378
4379 mode = udf_perm_to_unix_mode(udf_perm);
4380 ftype = udf_icb_to_unix_filetype(icbftype);
4381
4382 /* set suid, sgid, sticky from flags in fe/efe */
4383 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4384 mode |= S_ISUID;
4385 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4386 mode |= S_ISGID;
4387 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4388 mode |= S_ISVTX;
4389
4390 UDF_UNLOCK_NODE(udf_node, 0);
4391
4392 return mode | ftype;
4393 }
4394
4395
4396 void
4397 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4398 {
4399 struct file_entry *fe = udf_node->fe;
4400 struct extfile_entry *efe = udf_node->efe;
4401 uint32_t udf_perm;
4402 uint16_t icbflags;
4403
4404 UDF_LOCK_NODE(udf_node, 0);
4405 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4406 if (fe) {
4407 icbflags = udf_rw16(fe->icbtag.flags);
4408 } else {
4409 icbflags = udf_rw16(efe->icbtag.flags);
4410 }
4411
4412 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4413 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4414 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4415 if (mode & S_ISUID)
4416 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4417 if (mode & S_ISGID)
4418 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4419 if (mode & S_ISVTX)
4420 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4421
4422 if (fe) {
4423 fe->perm = udf_rw32(udf_perm);
4424 fe->icbtag.flags = udf_rw16(icbflags);
4425 } else {
4426 efe->perm = udf_rw32(udf_perm);
4427 efe->icbtag.flags = udf_rw16(icbflags);
4428 }
4429
4430 UDF_UNLOCK_NODE(udf_node, 0);
4431 }
4432
4433
4434 void
4435 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4436 {
4437 struct udf_mount *ump = udf_node->ump;
4438 struct file_entry *fe = udf_node->fe;
4439 struct extfile_entry *efe = udf_node->efe;
4440 uid_t uid;
4441 gid_t gid;
4442
4443 UDF_LOCK_NODE(udf_node, 0);
4444 if (fe) {
4445 uid = (uid_t)udf_rw32(fe->uid);
4446 gid = (gid_t)udf_rw32(fe->gid);
4447 } else {
4448 assert(udf_node->efe);
4449 uid = (uid_t)udf_rw32(efe->uid);
4450 gid = (gid_t)udf_rw32(efe->gid);
4451 }
4452
4453 /* do the uid/gid translation game */
4454 if (uid == (uid_t) -1)
4455 uid = ump->mount_args.anon_uid;
4456 if (gid == (gid_t) -1)
4457 gid = ump->mount_args.anon_gid;
4458
4459 *uidp = uid;
4460 *gidp = gid;
4461
4462 UDF_UNLOCK_NODE(udf_node, 0);
4463 }
4464
4465
4466 void
4467 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4468 {
4469 struct udf_mount *ump = udf_node->ump;
4470 struct file_entry *fe = udf_node->fe;
4471 struct extfile_entry *efe = udf_node->efe;
4472 uid_t nobody_uid;
4473 gid_t nobody_gid;
4474
4475 UDF_LOCK_NODE(udf_node, 0);
4476
4477 /* do the uid/gid translation game */
4478 nobody_uid = ump->mount_args.nobody_uid;
4479 nobody_gid = ump->mount_args.nobody_gid;
4480 if (uid == nobody_uid)
4481 uid = (uid_t) -1;
4482 if (gid == nobody_gid)
4483 gid = (gid_t) -1;
4484
4485 if (fe) {
4486 fe->uid = udf_rw32((uint32_t) uid);
4487 fe->gid = udf_rw32((uint32_t) gid);
4488 } else {
4489 efe->uid = udf_rw32((uint32_t) uid);
4490 efe->gid = udf_rw32((uint32_t) gid);
4491 }
4492
4493 UDF_UNLOCK_NODE(udf_node, 0);
4494 }
4495
4496
4497 /* --------------------------------------------------------------------- */
4498
4499
4500 int
4501 udf_dirhash_fill(struct udf_node *dir_node)
4502 {
4503 struct vnode *dvp = dir_node->vnode;
4504 struct dirhash *dirh;
4505 struct file_entry *fe = dir_node->fe;
4506 struct extfile_entry *efe = dir_node->efe;
4507 struct fileid_desc *fid;
4508 struct dirent *dirent;
4509 uint64_t file_size, pre_diroffset, diroffset;
4510 uint32_t lb_size;
4511 int error;
4512
4513 /* make sure we have a dirhash to work on */
4514 dirh = dir_node->dir_hash;
4515 KASSERT(dirh);
4516 KASSERT(dirh->refcnt > 0);
4517
4518 if (dirh->flags & DIRH_BROKEN)
4519 return EIO;
4520 if (dirh->flags & DIRH_COMPLETE)
4521 return 0;
4522
4523 /* make sure we have a clean dirhash to add to */
4524 dirhash_purge_entries(dirh);
4525
4526 /* get directory filesize */
4527 if (fe) {
4528 file_size = udf_rw64(fe->inf_len);
4529 } else {
4530 assert(efe);
4531 file_size = udf_rw64(efe->inf_len);
4532 }
4533
4534 /* allocate temporary space for fid */
4535 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4536 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4537
4538 /* allocate temporary space for dirent */
4539 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4540
4541 error = 0;
4542 diroffset = 0;
4543 while (diroffset < file_size) {
4544 /* transfer a new fid/dirent */
4545 pre_diroffset = diroffset;
4546 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4547 if (error) {
4548 /* TODO what to do? continue but not add? */
4549 dirh->flags |= DIRH_BROKEN;
4550 dirhash_purge_entries(dirh);
4551 break;
4552 }
4553
4554 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4555 /* register deleted extent for reuse */
4556 dirhash_enter_freed(dirh, pre_diroffset,
4557 udf_fidsize(fid));
4558 } else {
4559 /* append to the dirhash */
4560 dirhash_enter(dirh, dirent, pre_diroffset,
4561 udf_fidsize(fid), 0);
4562 }
4563 }
4564 dirh->flags |= DIRH_COMPLETE;
4565
4566 free(fid, M_UDFTEMP);
4567 free(dirent, M_UDFTEMP);
4568
4569 return error;
4570 }
4571
4572
4573 /* --------------------------------------------------------------------- */
4574
4575 /*
4576 * Directory read and manipulation functions.
4577 *
4578 */
4579
4580 int
4581 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4582 struct long_ad *icb_loc, int *found)
4583 {
4584 struct udf_node *dir_node = VTOI(vp);
4585 struct dirhash *dirh;
4586 struct dirhash_entry *dirh_ep;
4587 struct fileid_desc *fid;
4588 struct dirent *dirent, *s_dirent;
4589 struct charspec osta_charspec;
4590 uint64_t diroffset;
4591 uint32_t lb_size;
4592 int hit, error;
4593
4594 /* set default return */
4595 *found = 0;
4596
4597 /* get our dirhash and make sure its read in */
4598 dirhash_get(&dir_node->dir_hash);
4599 error = udf_dirhash_fill(dir_node);
4600 if (error) {
4601 dirhash_put(dir_node->dir_hash);
4602 return error;
4603 }
4604 dirh = dir_node->dir_hash;
4605
4606 /* allocate temporary space for fid */
4607 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4608 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4609 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4610 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4611
4612 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4613 namelen, namelen, name));
4614
4615 /* convert given unix name to canonical unix name */
4616 udf_osta_charset(&osta_charspec);
4617 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4618 name, namelen, &osta_charspec);
4619 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4620 (char *) fid->data, fid->l_fi,
4621 &osta_charspec);
4622 s_dirent->d_namlen = strlen(s_dirent->d_name);
4623
4624 /* search our dirhash hits */
4625 memset(icb_loc, 0, sizeof(*icb_loc));
4626 dirh_ep = NULL;
4627 for (;;) {
4628 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4629 /* if no hit, abort the search */
4630 if (!hit)
4631 break;
4632
4633 /* check this hit */
4634 diroffset = dirh_ep->offset;
4635
4636 /* transfer a new fid/dirent */
4637 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4638 if (error)
4639 break;
4640
4641 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4642 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4643
4644 /* see if its our entry */
4645 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4646 *found = 1;
4647 *icb_loc = fid->icb;
4648 break;
4649 }
4650 }
4651 free(fid, M_UDFTEMP);
4652 free(dirent, M_UDFTEMP);
4653 free(s_dirent, M_UDFTEMP);
4654
4655 dirhash_put(dir_node->dir_hash);
4656
4657 return error;
4658 }
4659
4660 /* --------------------------------------------------------------------- */
4661
4662 static int
4663 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4664 struct long_ad *node_icb, struct long_ad *parent_icb,
4665 uint64_t parent_unique_id)
4666 {
4667 struct timespec now;
4668 struct icb_tag *icb;
4669 struct filetimes_extattr_entry *ft_extattr;
4670 uint64_t unique_id;
4671 uint32_t fidsize, lb_num;
4672 uint8_t *bpos;
4673 int crclen, attrlen;
4674
4675 lb_num = udf_rw32(node_icb->loc.lb_num);
4676 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4677 icb = &fe->icbtag;
4678
4679 /*
4680 * Always use strategy type 4 unless on WORM wich we don't support
4681 * (yet). Fill in defaults and set for internal allocation of data.
4682 */
4683 icb->strat_type = udf_rw16(4);
4684 icb->max_num_entries = udf_rw16(1);
4685 icb->file_type = file_type; /* 8 bit */
4686 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4687
4688 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4689 fe->link_cnt = udf_rw16(0); /* explicit setting */
4690
4691 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4692
4693 vfs_timestamp(&now);
4694 udf_timespec_to_timestamp(&now, &fe->atime);
4695 udf_timespec_to_timestamp(&now, &fe->attrtime);
4696 udf_timespec_to_timestamp(&now, &fe->mtime);
4697
4698 udf_set_regid(&fe->imp_id, IMPL_NAME);
4699 udf_add_impl_regid(ump, &fe->imp_id);
4700
4701 unique_id = udf_advance_uniqueid(ump);
4702 fe->unique_id = udf_rw64(unique_id);
4703 fe->l_ea = udf_rw32(0);
4704
4705 /* create extended attribute to record our creation time */
4706 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4707 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4708 memset(ft_extattr, 0, attrlen);
4709 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4710 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4711 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4712 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4713 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4714 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4715
4716 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4717 (struct extattr_entry *) ft_extattr);
4718 free(ft_extattr, M_UDFTEMP);
4719
4720 /* if its a directory, create '..' */
4721 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4722 fidsize = 0;
4723 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4724 fidsize = udf_create_parentfid(ump,
4725 (struct fileid_desc *) bpos, parent_icb,
4726 parent_unique_id);
4727 }
4728
4729 /* record fidlength information */
4730 fe->inf_len = udf_rw64(fidsize);
4731 fe->l_ad = udf_rw32(fidsize);
4732 fe->logblks_rec = udf_rw64(0); /* intern */
4733
4734 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4735 crclen += udf_rw32(fe->l_ea) + fidsize;
4736 fe->tag.desc_crc_len = udf_rw16(crclen);
4737
4738 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4739
4740 return fidsize;
4741 }
4742
4743 /* --------------------------------------------------------------------- */
4744
4745 static int
4746 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4747 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4748 uint64_t parent_unique_id)
4749 {
4750 struct timespec now;
4751 struct icb_tag *icb;
4752 uint64_t unique_id;
4753 uint32_t fidsize, lb_num;
4754 uint8_t *bpos;
4755 int crclen;
4756
4757 lb_num = udf_rw32(node_icb->loc.lb_num);
4758 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4759 icb = &efe->icbtag;
4760
4761 /*
4762 * Always use strategy type 4 unless on WORM wich we don't support
4763 * (yet). Fill in defaults and set for internal allocation of data.
4764 */
4765 icb->strat_type = udf_rw16(4);
4766 icb->max_num_entries = udf_rw16(1);
4767 icb->file_type = file_type; /* 8 bit */
4768 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4769
4770 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4771 efe->link_cnt = udf_rw16(0); /* explicit setting */
4772
4773 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4774
4775 vfs_timestamp(&now);
4776 udf_timespec_to_timestamp(&now, &efe->ctime);
4777 udf_timespec_to_timestamp(&now, &efe->atime);
4778 udf_timespec_to_timestamp(&now, &efe->attrtime);
4779 udf_timespec_to_timestamp(&now, &efe->mtime);
4780
4781 udf_set_regid(&efe->imp_id, IMPL_NAME);
4782 udf_add_impl_regid(ump, &efe->imp_id);
4783
4784 unique_id = udf_advance_uniqueid(ump);
4785 efe->unique_id = udf_rw64(unique_id);
4786 efe->l_ea = udf_rw32(0);
4787
4788 /* if its a directory, create '..' */
4789 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4790 fidsize = 0;
4791 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4792 fidsize = udf_create_parentfid(ump,
4793 (struct fileid_desc *) bpos, parent_icb,
4794 parent_unique_id);
4795 }
4796
4797 /* record fidlength information */
4798 efe->obj_size = udf_rw64(fidsize);
4799 efe->inf_len = udf_rw64(fidsize);
4800 efe->l_ad = udf_rw32(fidsize);
4801 efe->logblks_rec = udf_rw64(0); /* intern */
4802
4803 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4804 crclen += udf_rw32(efe->l_ea) + fidsize;
4805 efe->tag.desc_crc_len = udf_rw16(crclen);
4806
4807 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4808
4809 return fidsize;
4810 }
4811
4812 /* --------------------------------------------------------------------- */
4813
4814 int
4815 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4816 struct udf_node *udf_node, struct componentname *cnp)
4817 {
4818 struct vnode *dvp = dir_node->vnode;
4819 struct dirhash *dirh;
4820 struct dirhash_entry *dirh_ep;
4821 struct file_entry *fe = dir_node->fe;
4822 struct fileid_desc *fid;
4823 struct dirent *dirent, *s_dirent;
4824 struct charspec osta_charspec;
4825 uint64_t diroffset;
4826 uint32_t lb_size, fidsize;
4827 int found, error;
4828 int hit, refcnt;
4829
4830 /* get our dirhash and make sure its read in */
4831 dirhash_get(&dir_node->dir_hash);
4832 error = udf_dirhash_fill(dir_node);
4833 if (error) {
4834 dirhash_put(dir_node->dir_hash);
4835 return error;
4836 }
4837 dirh = dir_node->dir_hash;
4838
4839 /* get directory filesize */
4840 if (!fe) {
4841 assert(dir_node->efe);
4842 }
4843
4844 /* allocate temporary space for fid and dirents */
4845 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4846 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4847 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4848 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4849
4850 /* convert given unix name to canonical unix name */
4851 udf_osta_charset(&osta_charspec);
4852 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4853 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4854 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4855 (char *) fid->data, fid->l_fi,
4856 &osta_charspec);
4857 s_dirent->d_namlen = strlen(s_dirent->d_name);
4858
4859 /* search our dirhash hits */
4860 found = 0;
4861 dirh_ep = NULL;
4862 for (;;) {
4863 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4864 /* if no hit, abort the search */
4865 if (!hit)
4866 break;
4867
4868 /* check this hit */
4869 diroffset = dirh_ep->offset;
4870
4871 /* transfer a new fid/dirent */
4872 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4873 if (error)
4874 break;
4875
4876 /* see if its our entry */
4877 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4878 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4879 found = 1;
4880 break;
4881 }
4882 }
4883
4884 if (!found)
4885 error = ENOENT;
4886 if (error)
4887 goto error_out;
4888
4889 /* mark deleted */
4890 fid->file_char |= UDF_FILE_CHAR_DEL;
4891 #ifdef UDF_COMPLETE_DELETE
4892 memset(&fid->icb, 0, sizeof(fid->icb));
4893 #endif
4894 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4895
4896 /* get size of fid and compensate for the read_fid_stream advance */
4897 fidsize = udf_fidsize(fid);
4898 diroffset -= fidsize;
4899
4900 /* write out */
4901 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4902 fid, fidsize, diroffset,
4903 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4904 FSCRED, NULL, NULL);
4905 if (error)
4906 goto error_out;
4907
4908 /* get reference count of attached node */
4909 if (udf_node->fe) {
4910 refcnt = udf_rw16(udf_node->fe->link_cnt);
4911 } else {
4912 KASSERT(udf_node->efe);
4913 refcnt = udf_rw16(udf_node->efe->link_cnt);
4914 }
4915 #ifdef UDF_COMPLETE_DELETE
4916 /* substract reference counter in attached node */
4917 refcnt -= 1;
4918 if (udf_node->fe) {
4919 udf_node->fe->link_cnt = udf_rw16(refcnt);
4920 } else {
4921 udf_node->efe->link_cnt = udf_rw16(refcnt);
4922 }
4923
4924 /* prevent writeout when refcnt == 0 */
4925 if (refcnt == 0)
4926 udf_node->i_flags |= IN_DELETED;
4927
4928 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4929 int drefcnt;
4930
4931 /* substract reference counter in directory node */
4932 /* note subtract 2 (?) for its was also backreferenced */
4933 if (dir_node->fe) {
4934 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4935 drefcnt -= 1;
4936 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4937 } else {
4938 KASSERT(dir_node->efe);
4939 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4940 drefcnt -= 1;
4941 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4942 }
4943 }
4944
4945 udf_node->i_flags |= IN_MODIFIED;
4946 dir_node->i_flags |= IN_MODIFIED;
4947 #endif
4948 /* if it is/was a hardlink adjust the file count */
4949 if (refcnt > 0)
4950 udf_adjust_filecount(udf_node, -1);
4951
4952 /* remove from the dirhash */
4953 dirhash_remove(dirh, dirent, diroffset,
4954 udf_fidsize(fid));
4955
4956 error_out:
4957 free(fid, M_UDFTEMP);
4958 free(dirent, M_UDFTEMP);
4959 free(s_dirent, M_UDFTEMP);
4960
4961 dirhash_put(dir_node->dir_hash);
4962
4963 return error;
4964 }
4965
4966 /* --------------------------------------------------------------------- */
4967
4968 int
4969 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4970 struct udf_node *new_parent_node)
4971 {
4972 struct vnode *dvp = dir_node->vnode;
4973 struct dirhash *dirh;
4974 struct dirhash_entry *dirh_ep;
4975 struct file_entry *fe;
4976 struct extfile_entry *efe;
4977 struct fileid_desc *fid;
4978 struct dirent *dirent;
4979 uint64_t diroffset;
4980 uint64_t new_parent_unique_id;
4981 uint32_t lb_size, fidsize;
4982 int found, error;
4983 char const *name = "..";
4984 int namelen = 2;
4985 int hit;
4986
4987 /* get our dirhash and make sure its read in */
4988 dirhash_get(&dir_node->dir_hash);
4989 error = udf_dirhash_fill(dir_node);
4990 if (error) {
4991 dirhash_put(dir_node->dir_hash);
4992 return error;
4993 }
4994 dirh = dir_node->dir_hash;
4995
4996 /* get new parent's unique ID */
4997 fe = new_parent_node->fe;
4998 efe = new_parent_node->efe;
4999 if (fe) {
5000 new_parent_unique_id = udf_rw64(fe->unique_id);
5001 } else {
5002 assert(efe);
5003 new_parent_unique_id = udf_rw64(efe->unique_id);
5004 }
5005
5006 /* get directory filesize */
5007 fe = dir_node->fe;
5008 efe = dir_node->efe;
5009 if (!fe) {
5010 assert(efe);
5011 }
5012
5013 /* allocate temporary space for fid */
5014 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
5015 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
5016 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
5017
5018 /*
5019 * NOTE the standard does not dictate the FID entry '..' should be
5020 * first, though in practice it will most likely be.
5021 */
5022
5023 /* search our dirhash hits */
5024 found = 0;
5025 dirh_ep = NULL;
5026 for (;;) {
5027 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
5028 /* if no hit, abort the search */
5029 if (!hit)
5030 break;
5031
5032 /* check this hit */
5033 diroffset = dirh_ep->offset;
5034
5035 /* transfer a new fid/dirent */
5036 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
5037 if (error)
5038 break;
5039
5040 /* see if its our entry */
5041 KASSERT(dirent->d_namlen == namelen);
5042 if (strncmp(dirent->d_name, name, namelen) == 0) {
5043 found = 1;
5044 break;
5045 }
5046 }
5047
5048 if (!found)
5049 error = ENOENT;
5050 if (error)
5051 goto error_out;
5052
5053 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5054 fid->icb = new_parent_node->write_loc;
5055 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5056
5057 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5058
5059 /* get size of fid and compensate for the read_fid_stream advance */
5060 fidsize = udf_fidsize(fid);
5061 diroffset -= fidsize;
5062
5063 /* write out */
5064 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5065 fid, fidsize, diroffset,
5066 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5067 FSCRED, NULL, NULL);
5068
5069 /* nothing to be done in the dirhash */
5070
5071 error_out:
5072 free(fid, M_UDFTEMP);
5073 free(dirent, M_UDFTEMP);
5074
5075 dirhash_put(dir_node->dir_hash);
5076
5077 return error;
5078 }
5079
5080 /* --------------------------------------------------------------------- */
5081
5082 /*
5083 * We are not allowed to split the fid tag itself over an logical block so
5084 * check the space remaining in the logical block.
5085 *
5086 * We try to select the smallest candidate for recycling or when none is
5087 * found, append a new one at the end of the directory.
5088 */
5089
5090 int
5091 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5092 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5093 {
5094 struct vnode *dvp = dir_node->vnode;
5095 struct dirhash *dirh;
5096 struct dirhash_entry *dirh_ep;
5097 struct fileid_desc *fid;
5098 struct icb_tag *icbtag;
5099 struct charspec osta_charspec;
5100 struct dirent dirent;
5101 uint64_t unique_id, dir_size;
5102 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5103 uint32_t chosen_size, chosen_size_diff;
5104 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5105 int file_char, refcnt, icbflags, addr_type, hit, error;
5106
5107 /* get our dirhash and make sure its read in */
5108 dirhash_get(&dir_node->dir_hash);
5109 error = udf_dirhash_fill(dir_node);
5110 if (error) {
5111 dirhash_put(dir_node->dir_hash);
5112 return error;
5113 }
5114 dirh = dir_node->dir_hash;
5115
5116 /* get info */
5117 lb_size = udf_rw32(ump->logical_vol->lb_size);
5118 udf_osta_charset(&osta_charspec);
5119
5120 if (dir_node->fe) {
5121 dir_size = udf_rw64(dir_node->fe->inf_len);
5122 icbtag = &dir_node->fe->icbtag;
5123 } else {
5124 dir_size = udf_rw64(dir_node->efe->inf_len);
5125 icbtag = &dir_node->efe->icbtag;
5126 }
5127
5128 icbflags = udf_rw16(icbtag->flags);
5129 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5130
5131 if (udf_node->fe) {
5132 unique_id = udf_rw64(udf_node->fe->unique_id);
5133 refcnt = udf_rw16(udf_node->fe->link_cnt);
5134 } else {
5135 unique_id = udf_rw64(udf_node->efe->unique_id);
5136 refcnt = udf_rw16(udf_node->efe->link_cnt);
5137 }
5138
5139 if (refcnt > 0) {
5140 unique_id = udf_advance_uniqueid(ump);
5141 udf_adjust_filecount(udf_node, 1);
5142 }
5143
5144 /* determine file characteristics */
5145 file_char = 0; /* visible non deleted file and not stream metadata */
5146 if (vap->va_type == VDIR)
5147 file_char = UDF_FILE_CHAR_DIR;
5148
5149 /* malloc scrap buffer */
5150 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5151
5152 /* calculate _minimum_ fid size */
5153 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5154 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5155 fidsize = UDF_FID_SIZE + fid->l_fi;
5156 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5157
5158 /* find position that will fit the FID */
5159 chosen_fid_pos = dir_size;
5160 chosen_size = 0;
5161 chosen_size_diff = UINT_MAX;
5162
5163 /* shut up gcc */
5164 dirent.d_namlen = 0;
5165
5166 /* search our dirhash hits */
5167 error = 0;
5168 dirh_ep = NULL;
5169 for (;;) {
5170 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5171 /* if no hit, abort the search */
5172 if (!hit)
5173 break;
5174
5175 /* check this hit for size */
5176 this_fidsize = dirh_ep->entry_size;
5177
5178 /* check this hit */
5179 fid_pos = dirh_ep->offset;
5180 end_fid_pos = fid_pos + this_fidsize;
5181 size_diff = this_fidsize - fidsize;
5182 lb_rest = lb_size - (end_fid_pos % lb_size);
5183
5184 #ifndef UDF_COMPLETE_DELETE
5185 /* transfer a new fid/dirent */
5186 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5187 if (error)
5188 goto error_out;
5189
5190 /* only reuse entries that are wiped */
5191 /* check if the len + loc are marked zero */
5192 if (udf_rw32(fid->icb.len) != 0)
5193 continue;
5194 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5195 continue;
5196 if (udf_rw16(fid->icb.loc.part_num) != 0)
5197 continue;
5198 #endif /* UDF_COMPLETE_DELETE */
5199
5200 /* select if not splitting the tag and its smaller */
5201 if ((size_diff >= 0) &&
5202 (size_diff < chosen_size_diff) &&
5203 (lb_rest >= sizeof(struct desc_tag)))
5204 {
5205 /* UDF 2.3.4.2+3 specifies rules for iu size */
5206 if ((size_diff == 0) || (size_diff >= 32)) {
5207 chosen_fid_pos = fid_pos;
5208 chosen_size = this_fidsize;
5209 chosen_size_diff = size_diff;
5210 }
5211 }
5212 }
5213
5214
5215 /* extend directory if no other candidate found */
5216 if (chosen_size == 0) {
5217 chosen_fid_pos = dir_size;
5218 chosen_size = fidsize;
5219 chosen_size_diff = 0;
5220
5221 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5222 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5223 /* pre-grow directory to see if we're to switch */
5224 udf_grow_node(dir_node, dir_size + chosen_size);
5225
5226 icbflags = udf_rw16(icbtag->flags);
5227 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5228 }
5229
5230 /* make sure the next fid desc_tag won't be splitted */
5231 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5232 end_fid_pos = chosen_fid_pos + chosen_size;
5233 lb_rest = lb_size - (end_fid_pos % lb_size);
5234
5235 /* pad with implementation use regid if needed */
5236 if (lb_rest < sizeof(struct desc_tag))
5237 chosen_size += 32;
5238 }
5239 }
5240 chosen_size_diff = chosen_size - fidsize;
5241
5242 /* populate the FID */
5243 memset(fid, 0, lb_size);
5244 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5245 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5246 fid->file_char = file_char;
5247 fid->icb = udf_node->loc;
5248 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5249 fid->l_iu = udf_rw16(0);
5250
5251 if (chosen_size > fidsize) {
5252 /* insert implementation-use regid to space it correctly */
5253 fid->l_iu = udf_rw16(chosen_size_diff);
5254
5255 /* set implementation use */
5256 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5257 udf_add_impl_regid(ump, (struct regid *) fid->data);
5258 }
5259
5260 /* fill in name */
5261 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5262 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5263
5264 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5265 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5266
5267 /* writeout FID/update parent directory */
5268 error = vn_rdwr(UIO_WRITE, dvp,
5269 fid, chosen_size, chosen_fid_pos,
5270 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5271 FSCRED, NULL, NULL);
5272
5273 if (error)
5274 goto error_out;
5275
5276 /* add reference counter in attached node */
5277 if (udf_node->fe) {
5278 refcnt = udf_rw16(udf_node->fe->link_cnt);
5279 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5280 } else {
5281 KASSERT(udf_node->efe);
5282 refcnt = udf_rw16(udf_node->efe->link_cnt);
5283 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5284 }
5285
5286 /* mark not deleted if it was... just in case, but do warn */
5287 if (udf_node->i_flags & IN_DELETED) {
5288 printf("udf: warning, marking a file undeleted\n");
5289 udf_node->i_flags &= ~IN_DELETED;
5290 }
5291
5292 if (file_char & UDF_FILE_CHAR_DIR) {
5293 /* add reference counter in directory node for '..' */
5294 if (dir_node->fe) {
5295 refcnt = udf_rw16(dir_node->fe->link_cnt);
5296 refcnt++;
5297 dir_node->fe->link_cnt = udf_rw16(refcnt);
5298 } else {
5299 KASSERT(dir_node->efe);
5300 refcnt = udf_rw16(dir_node->efe->link_cnt);
5301 refcnt++;
5302 dir_node->efe->link_cnt = udf_rw16(refcnt);
5303 }
5304 }
5305
5306 /* append to the dirhash */
5307 /* NOTE do not use dirent anymore or it won't match later! */
5308 udf_to_unix_name(dirent.d_name, NAME_MAX,
5309 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5310 dirent.d_namlen = strlen(dirent.d_name);
5311 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5312 udf_fidsize(fid), 1);
5313
5314 /* note updates */
5315 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5316 /* VN_KNOTE(udf_node, ...) */
5317 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5318
5319 error_out:
5320 free(fid, M_TEMP);
5321
5322 dirhash_put(dir_node->dir_hash);
5323
5324 return error;
5325 }
5326
5327 /* --------------------------------------------------------------------- */
5328
5329 /*
5330 * Each node can have an attached streamdir node though not recursively. These
5331 * are otherwise known as named substreams/named extended attributes that have
5332 * no size limitations.
5333 *
5334 * `Normal' extended attributes are indicated with a number and are recorded
5335 * in either the fe/efe descriptor itself for small descriptors or recorded in
5336 * the attached extended attribute file. Since these spaces can get
5337 * fragmented, care ought to be taken.
5338 *
5339 * Since the size of the space reserved for allocation descriptors is limited,
5340 * there is a mechanim provided for extending this space; this is done by a
5341 * special extent to allow schrinking of the allocations without breaking the
5342 * linkage to the allocation extent descriptor.
5343 */
5344
5345 int
5346 udf_loadvnode(struct mount *mp, struct vnode *vp,
5347 const void *key, size_t key_len, const void **new_key)
5348 {
5349 union dscrptr *dscr;
5350 struct udf_mount *ump;
5351 struct udf_node *udf_node;
5352 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5353 uint64_t file_size;
5354 uint32_t lb_size, sector, dummy;
5355 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5356 int slot, eof, error;
5357 int num_indir_followed = 0;
5358
5359 DPRINTF(NODE, ("udf_loadvnode called\n"));
5360 udf_node = NULL;
5361 ump = VFSTOUDF(mp);
5362
5363 KASSERT(key_len == sizeof(node_icb_loc.loc));
5364 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5365 node_icb_loc.len = ump->logical_vol->lb_size;
5366 memcpy(&node_icb_loc.loc, key, key_len);
5367
5368 /* garbage check: translate udf_node_icb_loc to sectornr */
5369 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5370 if (error) {
5371 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5372 /* no use, this will fail anyway */
5373 return EINVAL;
5374 }
5375
5376 /* build udf_node (do initialise!) */
5377 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5378 memset(udf_node, 0, sizeof(struct udf_node));
5379
5380 vp->v_tag = VT_UDF;
5381 vp->v_op = udf_vnodeop_p;
5382 vp->v_data = udf_node;
5383
5384 /* initialise crosslinks, note location of fe/efe for hashing */
5385 udf_node->ump = ump;
5386 udf_node->vnode = vp;
5387 udf_node->loc = node_icb_loc;
5388 udf_node->lockf = 0;
5389 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5390 cv_init(&udf_node->node_lock, "udf_nlk");
5391 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5392 udf_node->outstanding_bufs = 0;
5393 udf_node->outstanding_nodedscr = 0;
5394 udf_node->uncommitted_lbs = 0;
5395
5396 /* check if we're fetching the root */
5397 if (ump->fileset_desc)
5398 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5399 sizeof(struct long_ad)) == 0)
5400 vp->v_vflag |= VV_ROOT;
5401
5402 icb_loc = node_icb_loc;
5403 needs_indirect = 0;
5404 strat4096 = 0;
5405 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5406 file_size = 0;
5407 lb_size = udf_rw32(ump->logical_vol->lb_size);
5408
5409 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5410 do {
5411 /* try to read in fe/efe */
5412 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5413
5414 /* blank sector marks end of sequence, check this */
5415 if ((dscr == NULL) && (!strat4096))
5416 error = ENOENT;
5417
5418 /* break if read error or blank sector */
5419 if (error || (dscr == NULL))
5420 break;
5421
5422 /* process descriptor based on the descriptor type */
5423 dscr_type = udf_rw16(dscr->tag.id);
5424 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5425
5426 /* if dealing with an indirect entry, follow the link */
5427 if (dscr_type == TAGID_INDIRECTENTRY) {
5428 needs_indirect = 0;
5429 next_icb_loc = dscr->inde.indirect_icb;
5430 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5431 icb_loc = next_icb_loc;
5432 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5433 error = EMLINK;
5434 break;
5435 }
5436 continue;
5437 }
5438
5439 /* only file entries and extended file entries allowed here */
5440 if ((dscr_type != TAGID_FENTRY) &&
5441 (dscr_type != TAGID_EXTFENTRY)) {
5442 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5443 error = ENOENT;
5444 break;
5445 }
5446
5447 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5448
5449 /* choose this one */
5450 last_fe_icb_loc = icb_loc;
5451
5452 /* record and process/update (ext)fentry */
5453 if (dscr_type == TAGID_FENTRY) {
5454 if (udf_node->fe)
5455 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5456 udf_node->fe);
5457 udf_node->fe = &dscr->fe;
5458 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5459 udf_file_type = udf_node->fe->icbtag.file_type;
5460 file_size = udf_rw64(udf_node->fe->inf_len);
5461 } else {
5462 if (udf_node->efe)
5463 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5464 udf_node->efe);
5465 udf_node->efe = &dscr->efe;
5466 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5467 udf_file_type = udf_node->efe->icbtag.file_type;
5468 file_size = udf_rw64(udf_node->efe->inf_len);
5469 }
5470
5471 /* check recording strategy (structure) */
5472
5473 /*
5474 * Strategy 4096 is a daisy linked chain terminating with an
5475 * unrecorded sector or a TERM descriptor. The next
5476 * descriptor is to be found in the sector that follows the
5477 * current sector.
5478 */
5479 if (strat == 4096) {
5480 strat4096 = 1;
5481 needs_indirect = 1;
5482
5483 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5484 }
5485
5486 /*
5487 * Strategy 4 is the normal strategy and terminates, but if
5488 * we're in strategy 4096, we can't have strategy 4 mixed in
5489 */
5490
5491 if (strat == 4) {
5492 if (strat4096) {
5493 error = EINVAL;
5494 break;
5495 }
5496 break; /* done */
5497 }
5498 } while (!error);
5499
5500 /* first round of cleanup code */
5501 if (error) {
5502 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5503 /* recycle udf_node */
5504 udf_dispose_node(udf_node);
5505
5506 return EINVAL; /* error code ok? */
5507 }
5508 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5509
5510 /* assert no references to dscr anymore beyong this point */
5511 assert((udf_node->fe) || (udf_node->efe));
5512 dscr = NULL;
5513
5514 /*
5515 * Remember where to record an updated version of the descriptor. If
5516 * there is a sequence of indirect entries, icb_loc will have been
5517 * updated. Its the write disipline to allocate new space and to make
5518 * sure the chain is maintained.
5519 *
5520 * `needs_indirect' flags if the next location is to be filled with
5521 * with an indirect entry.
5522 */
5523 udf_node->write_loc = icb_loc;
5524 udf_node->needs_indirect = needs_indirect;
5525
5526 /*
5527 * Go trough all allocations extents of this descriptor and when
5528 * encountering a redirect read in the allocation extension. These are
5529 * daisy-chained.
5530 */
5531 UDF_LOCK_NODE(udf_node, 0);
5532 udf_node->num_extensions = 0;
5533
5534 error = 0;
5535 slot = 0;
5536 for (;;) {
5537 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5538 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5539 "lb_num = %d, part = %d\n", slot, eof,
5540 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5541 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5542 udf_rw32(icb_loc.loc.lb_num),
5543 udf_rw16(icb_loc.loc.part_num)));
5544 if (eof)
5545 break;
5546 slot++;
5547
5548 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5549 continue;
5550
5551 DPRINTF(NODE, ("\tgot redirect extent\n"));
5552 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5553 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5554 "too many allocation extensions on "
5555 "udf_node\n"));
5556 error = EINVAL;
5557 break;
5558 }
5559
5560 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5561 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5562 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5563 "extension size in udf_node\n"));
5564 error = EINVAL;
5565 break;
5566 }
5567
5568 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5569 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5570 /* load in allocation extent */
5571 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5572 if (error || (dscr == NULL))
5573 break;
5574
5575 /* process read-in descriptor */
5576 dscr_type = udf_rw16(dscr->tag.id);
5577
5578 if (dscr_type != TAGID_ALLOCEXTENT) {
5579 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5580 error = ENOENT;
5581 break;
5582 }
5583
5584 DPRINTF(NODE, ("\trecording redirect extent\n"));
5585 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5586 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5587
5588 udf_node->num_extensions++;
5589
5590 } /* while */
5591 UDF_UNLOCK_NODE(udf_node, 0);
5592
5593 /* second round of cleanup code */
5594 if (error) {
5595 /* recycle udf_node */
5596 udf_dispose_node(udf_node);
5597
5598 return EINVAL; /* error code ok? */
5599 }
5600
5601 DPRINTF(NODE, ("\tnode read in fine\n"));
5602
5603 /*
5604 * Translate UDF filetypes into vnode types.
5605 *
5606 * Systemfiles like the meta main and mirror files are not treated as
5607 * normal files, so we type them as having no type. UDF dictates that
5608 * they are not allowed to be visible.
5609 */
5610
5611 switch (udf_file_type) {
5612 case UDF_ICB_FILETYPE_DIRECTORY :
5613 case UDF_ICB_FILETYPE_STREAMDIR :
5614 vp->v_type = VDIR;
5615 break;
5616 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5617 vp->v_type = VBLK;
5618 break;
5619 case UDF_ICB_FILETYPE_CHARDEVICE :
5620 vp->v_type = VCHR;
5621 break;
5622 case UDF_ICB_FILETYPE_SOCKET :
5623 vp->v_type = VSOCK;
5624 break;
5625 case UDF_ICB_FILETYPE_FIFO :
5626 vp->v_type = VFIFO;
5627 break;
5628 case UDF_ICB_FILETYPE_SYMLINK :
5629 vp->v_type = VLNK;
5630 break;
5631 case UDF_ICB_FILETYPE_VAT :
5632 case UDF_ICB_FILETYPE_META_MAIN :
5633 case UDF_ICB_FILETYPE_META_MIRROR :
5634 vp->v_type = VNON;
5635 break;
5636 case UDF_ICB_FILETYPE_RANDOMACCESS :
5637 case UDF_ICB_FILETYPE_REALTIME :
5638 vp->v_type = VREG;
5639 break;
5640 default:
5641 /* YIKES, something else */
5642 vp->v_type = VNON;
5643 }
5644
5645 /* TODO specfs, fifofs etc etc. vnops setting */
5646
5647 /* don't forget to set vnode's v_size */
5648 uvm_vnp_setsize(vp, file_size);
5649
5650 /* TODO ext attr and streamdir udf_nodes */
5651
5652 *new_key = &udf_node->loc.loc;
5653
5654 return 0;
5655 }
5656
5657 int
5658 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5659 struct udf_node **udf_noderes)
5660 {
5661 int error;
5662 struct vnode *vp;
5663
5664 *udf_noderes = NULL;
5665
5666 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5667 sizeof(node_icb_loc->loc), &vp);
5668 if (error)
5669 return error;
5670 error = vn_lock(vp, LK_EXCLUSIVE);
5671 if (error) {
5672 vrele(vp);
5673 return error;
5674 }
5675 *udf_noderes = VTOI(vp);
5676 return 0;
5677 }
5678
5679 /* --------------------------------------------------------------------- */
5680
5681 int
5682 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5683 {
5684 union dscrptr *dscr;
5685 struct long_ad *loc;
5686 int extnr, error;
5687
5688 DPRINTF(NODE, ("udf_writeout_node called\n"));
5689
5690 KASSERT(udf_node->outstanding_bufs == 0);
5691 KASSERT(udf_node->outstanding_nodedscr == 0);
5692
5693 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5694
5695 if (udf_node->i_flags & IN_DELETED) {
5696 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5697 udf_cleanup_reservation(udf_node);
5698 return 0;
5699 }
5700
5701 /* lock node; unlocked in callback */
5702 UDF_LOCK_NODE(udf_node, 0);
5703
5704 /* remove pending reservations, we're written out */
5705 udf_cleanup_reservation(udf_node);
5706
5707 /* at least one descriptor writeout */
5708 udf_node->outstanding_nodedscr = 1;
5709
5710 /* we're going to write out the descriptor so clear the flags */
5711 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5712
5713 /* if we were rebuild, write out the allocation extents */
5714 if (udf_node->i_flags & IN_NODE_REBUILD) {
5715 /* mark outstanding node descriptors and issue them */
5716 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5717 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5718 loc = &udf_node->ext_loc[extnr];
5719 dscr = (union dscrptr *) udf_node->ext[extnr];
5720 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5721 if (error)
5722 return error;
5723 }
5724 /* mark allocation extents written out */
5725 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5726 }
5727
5728 if (udf_node->fe) {
5729 KASSERT(udf_node->efe == NULL);
5730 dscr = (union dscrptr *) udf_node->fe;
5731 } else {
5732 KASSERT(udf_node->efe);
5733 KASSERT(udf_node->fe == NULL);
5734 dscr = (union dscrptr *) udf_node->efe;
5735 }
5736 KASSERT(dscr);
5737
5738 loc = &udf_node->write_loc;
5739 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5740
5741 return error;
5742 }
5743
5744 /* --------------------------------------------------------------------- */
5745
5746 int
5747 udf_dispose_node(struct udf_node *udf_node)
5748 {
5749 struct vnode *vp;
5750 int extnr;
5751
5752 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5753 if (!udf_node) {
5754 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5755 return 0;
5756 }
5757
5758 vp = udf_node->vnode;
5759 #ifdef DIAGNOSTIC
5760 if (vp->v_numoutput)
5761 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5762 "v_numoutput = %d", udf_node, vp->v_numoutput);
5763 #endif
5764
5765 udf_cleanup_reservation(udf_node);
5766
5767 /* TODO extended attributes and streamdir */
5768
5769 /* remove dirhash if present */
5770 dirhash_purge(&udf_node->dir_hash);
5771
5772 /* destroy our lock */
5773 mutex_destroy(&udf_node->node_mutex);
5774 cv_destroy(&udf_node->node_lock);
5775
5776 /* dissociate our udf_node from the vnode */
5777 genfs_node_destroy(udf_node->vnode);
5778 mutex_enter(vp->v_interlock);
5779 vp->v_data = NULL;
5780 mutex_exit(vp->v_interlock);
5781
5782 /* free associated memory and the node itself */
5783 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5784 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5785 udf_node->ext[extnr]);
5786 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5787 }
5788
5789 if (udf_node->fe)
5790 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5791 udf_node->fe);
5792 if (udf_node->efe)
5793 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5794 udf_node->efe);
5795
5796 udf_node->fe = (void *) 0xdeadaaaa;
5797 udf_node->efe = (void *) 0xdeadbbbb;
5798 udf_node->ump = (void *) 0xdeadbeef;
5799 pool_put(&udf_node_pool, udf_node);
5800
5801 return 0;
5802 }
5803
5804
5805
5806 /*
5807 * create a new node using the specified dvp, vap and cnp.
5808 * This allows special files to be created. Use with care.
5809 */
5810
5811 int
5812 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5813 struct vattr *vap, kauth_cred_t cred, void *extra,
5814 size_t *key_len, const void **new_key)
5815 {
5816 union dscrptr *dscr;
5817 struct udf_node *dir_node = VTOI(dvp);
5818 struct udf_node *udf_node;
5819 struct udf_mount *ump = dir_node->ump;
5820 struct long_ad node_icb_loc;
5821 uint64_t parent_unique_id;
5822 uint64_t lmapping;
5823 uint32_t lb_size, lb_num;
5824 uint16_t vpart_num;
5825 uid_t uid;
5826 gid_t gid, parent_gid;
5827 int (**vnodeops)(void *);
5828 int udf_file_type, fid_size, error;
5829
5830 vnodeops = udf_vnodeop_p;
5831 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5832
5833 switch (vap->va_type) {
5834 case VREG :
5835 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5836 break;
5837 case VDIR :
5838 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5839 break;
5840 case VLNK :
5841 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5842 break;
5843 case VBLK :
5844 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5845 /* specfs */
5846 return ENOTSUP;
5847 break;
5848 case VCHR :
5849 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5850 /* specfs */
5851 return ENOTSUP;
5852 break;
5853 case VFIFO :
5854 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5855 /* fifofs */
5856 return ENOTSUP;
5857 break;
5858 case VSOCK :
5859 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5860 return ENOTSUP;
5861 break;
5862 case VNON :
5863 case VBAD :
5864 default :
5865 /* nothing; can we even create these? */
5866 return EINVAL;
5867 }
5868
5869 lb_size = udf_rw32(ump->logical_vol->lb_size);
5870
5871 /* reserve space for one logical block */
5872 vpart_num = ump->node_part;
5873 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5874 vpart_num, 1, /* can_fail */ true);
5875 if (error)
5876 return error;
5877
5878 /* allocate node */
5879 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5880 vpart_num, 1, &lmapping);
5881 if (error) {
5882 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5883 return error;
5884 }
5885
5886 lb_num = lmapping;
5887
5888 /* initialise pointer to location */
5889 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5890 node_icb_loc.len = udf_rw32(lb_size);
5891 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5892 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5893
5894 /* build udf_node (do initialise!) */
5895 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5896 memset(udf_node, 0, sizeof(struct udf_node));
5897
5898 /* initialise crosslinks, note location of fe/efe for hashing */
5899 /* bugalert: synchronise with udf_get_node() */
5900 udf_node->ump = ump;
5901 udf_node->vnode = vp;
5902 vp->v_data = udf_node;
5903 udf_node->loc = node_icb_loc;
5904 udf_node->write_loc = node_icb_loc;
5905 udf_node->lockf = 0;
5906 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5907 cv_init(&udf_node->node_lock, "udf_nlk");
5908 udf_node->outstanding_bufs = 0;
5909 udf_node->outstanding_nodedscr = 0;
5910 udf_node->uncommitted_lbs = 0;
5911
5912 vp->v_tag = VT_UDF;
5913 vp->v_op = vnodeops;
5914
5915 /* initialise genfs */
5916 genfs_node_init(vp, &udf_genfsops);
5917
5918 /* get parent's unique ID for refering '..' if its a directory */
5919 if (dir_node->fe) {
5920 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5921 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5922 } else {
5923 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5924 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5925 }
5926
5927 /* get descriptor */
5928 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5929
5930 /* choose a fe or an efe for it */
5931 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5932 udf_node->fe = &dscr->fe;
5933 fid_size = udf_create_new_fe(ump, udf_node->fe,
5934 udf_file_type, &udf_node->loc,
5935 &dir_node->loc, parent_unique_id);
5936 /* TODO add extended attribute for creation time */
5937 } else {
5938 udf_node->efe = &dscr->efe;
5939 fid_size = udf_create_new_efe(ump, udf_node->efe,
5940 udf_file_type, &udf_node->loc,
5941 &dir_node->loc, parent_unique_id);
5942 }
5943 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5944
5945 /* update vnode's size and type */
5946 vp->v_type = vap->va_type;
5947 uvm_vnp_setsize(vp, fid_size);
5948
5949 /* set access mode */
5950 udf_setaccessmode(udf_node, vap->va_mode);
5951
5952 /* set ownership */
5953 uid = kauth_cred_geteuid(cred);
5954 gid = parent_gid;
5955 udf_setownership(udf_node, uid, gid);
5956
5957 *key_len = sizeof(udf_node->loc.loc);
5958 *new_key = &udf_node->loc.loc;
5959
5960 return 0;
5961 }
5962
5963
5964 int
5965 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5966 struct componentname *cnp)
5967 {
5968 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5969 struct udf_mount *ump = dir_node->ump;
5970 int error;
5971
5972 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp);
5973 if (error)
5974 return error;
5975
5976 udf_node = VTOI(*vpp);
5977 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5978 if (error) {
5979 struct long_ad *node_icb_loc = &udf_node->loc;
5980 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5981 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5982
5983 /* free disc allocation for node */
5984 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5985
5986 /* recycle udf_node */
5987 udf_dispose_node(udf_node);
5988 vrele(*vpp);
5989
5990 *vpp = NULL;
5991 return error;
5992 }
5993
5994 /* adjust file count */
5995 udf_adjust_filecount(udf_node, 1);
5996
5997 return 0;
5998 }
5999
6000 /* --------------------------------------------------------------------- */
6001
6002 static void
6003 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
6004 {
6005 struct udf_mount *ump = udf_node->ump;
6006 uint32_t lb_size, lb_num, len, num_lb;
6007 uint16_t vpart_num;
6008
6009 /* is there really one? */
6010 if (mem == NULL)
6011 return;
6012
6013 /* got a descriptor here */
6014 len = UDF_EXT_LEN(udf_rw32(loc->len));
6015 lb_num = udf_rw32(loc->loc.lb_num);
6016 vpart_num = udf_rw16(loc->loc.part_num);
6017
6018 lb_size = udf_rw32(ump->logical_vol->lb_size);
6019 num_lb = (len + lb_size -1) / lb_size;
6020
6021 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
6022 }
6023
6024 void
6025 udf_delete_node(struct udf_node *udf_node)
6026 {
6027 void *dscr;
6028 struct long_ad *loc;
6029 int extnr, lvint, dummy;
6030
6031 if (udf_node->i_flags & IN_NO_DELETE)
6032 return;
6033
6034 /* paranoia check on integrity; should be open!; we could panic */
6035 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6036 if (lvint == UDF_INTEGRITY_CLOSED)
6037 printf("\tIntegrity was CLOSED!\n");
6038
6039 /* whatever the node type, change its size to zero */
6040 (void) udf_resize_node(udf_node, 0, &dummy);
6041
6042 /* force it to be `clean'; no use writing it out */
6043 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6044 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6045
6046 /* adjust file count */
6047 udf_adjust_filecount(udf_node, -1);
6048
6049 /*
6050 * Free its allocated descriptors; memory will be released when
6051 * vop_reclaim() is called.
6052 */
6053 loc = &udf_node->loc;
6054
6055 dscr = udf_node->fe;
6056 udf_free_descriptor_space(udf_node, loc, dscr);
6057 dscr = udf_node->efe;
6058 udf_free_descriptor_space(udf_node, loc, dscr);
6059
6060 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6061 dscr = udf_node->ext[extnr];
6062 loc = &udf_node->ext_loc[extnr];
6063 udf_free_descriptor_space(udf_node, loc, dscr);
6064 }
6065 }
6066
6067 /* --------------------------------------------------------------------- */
6068
6069 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6070 int
6071 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6072 {
6073 struct file_entry *fe = udf_node->fe;
6074 struct extfile_entry *efe = udf_node->efe;
6075 uint64_t file_size;
6076 int error;
6077
6078 if (fe) {
6079 file_size = udf_rw64(fe->inf_len);
6080 } else {
6081 assert(udf_node->efe);
6082 file_size = udf_rw64(efe->inf_len);
6083 }
6084
6085 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6086 file_size, new_size));
6087
6088 /* if not changing, we're done */
6089 if (file_size == new_size)
6090 return 0;
6091
6092 *extended = (new_size > file_size);
6093 if (*extended) {
6094 error = udf_grow_node(udf_node, new_size);
6095 } else {
6096 error = udf_shrink_node(udf_node, new_size);
6097 }
6098
6099 return error;
6100 }
6101
6102
6103 /* --------------------------------------------------------------------- */
6104
6105 void
6106 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6107 struct timespec *mod, struct timespec *birth)
6108 {
6109 struct timespec now;
6110 struct file_entry *fe;
6111 struct extfile_entry *efe;
6112 struct filetimes_extattr_entry *ft_extattr;
6113 struct timestamp *atime, *mtime, *attrtime, *ctime;
6114 struct timestamp fe_ctime;
6115 struct timespec cur_birth;
6116 uint32_t offset, a_l;
6117 uint8_t *filedata;
6118 int error;
6119
6120 /* protect against rogue values */
6121 if (!udf_node)
6122 return;
6123
6124 fe = udf_node->fe;
6125 efe = udf_node->efe;
6126
6127 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6128 return;
6129
6130 /* get descriptor information */
6131 if (fe) {
6132 atime = &fe->atime;
6133 mtime = &fe->mtime;
6134 attrtime = &fe->attrtime;
6135 filedata = fe->data;
6136
6137 /* initial save dummy setting */
6138 ctime = &fe_ctime;
6139
6140 /* check our extended attribute if present */
6141 error = udf_extattr_search_intern(udf_node,
6142 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6143 if (!error) {
6144 ft_extattr = (struct filetimes_extattr_entry *)
6145 (filedata + offset);
6146 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6147 ctime = &ft_extattr->times[0];
6148 }
6149 /* TODO create the extended attribute if not found ? */
6150 } else {
6151 assert(udf_node->efe);
6152 atime = &efe->atime;
6153 mtime = &efe->mtime;
6154 attrtime = &efe->attrtime;
6155 ctime = &efe->ctime;
6156 }
6157
6158 vfs_timestamp(&now);
6159
6160 /* set access time */
6161 if (udf_node->i_flags & IN_ACCESS) {
6162 if (acc == NULL)
6163 acc = &now;
6164 udf_timespec_to_timestamp(acc, atime);
6165 }
6166
6167 /* set modification time */
6168 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6169 if (mod == NULL)
6170 mod = &now;
6171 udf_timespec_to_timestamp(mod, mtime);
6172
6173 /* ensure birthtime is older than set modification! */
6174 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6175 if ((cur_birth.tv_sec > mod->tv_sec) ||
6176 ((cur_birth.tv_sec == mod->tv_sec) &&
6177 (cur_birth.tv_nsec > mod->tv_nsec))) {
6178 udf_timespec_to_timestamp(mod, ctime);
6179 }
6180 }
6181
6182 /* update birthtime if specified */
6183 /* XXX we assume here that given birthtime is older than mod */
6184 if (birth && (birth->tv_sec != VNOVAL)) {
6185 udf_timespec_to_timestamp(birth, ctime);
6186 }
6187
6188 /* set change time */
6189 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6190 udf_timespec_to_timestamp(&now, attrtime);
6191
6192 /* notify updates to the node itself */
6193 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6194 udf_node->i_flags |= IN_ACCESSED;
6195 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6196 udf_node->i_flags |= IN_MODIFIED;
6197
6198 /* clear modification flags */
6199 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6200 }
6201
6202 /* --------------------------------------------------------------------- */
6203
6204 int
6205 udf_update(struct vnode *vp, struct timespec *acc,
6206 struct timespec *mod, struct timespec *birth, int updflags)
6207 {
6208 union dscrptr *dscrptr;
6209 struct udf_node *udf_node = VTOI(vp);
6210 struct udf_mount *ump = udf_node->ump;
6211 struct regid *impl_id;
6212 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6213 int waitfor, flags;
6214
6215 #ifdef DEBUG
6216 char bits[128];
6217 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6218 updflags));
6219 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6220 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6221 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6222 #endif
6223
6224 /* set our times */
6225 udf_itimes(udf_node, acc, mod, birth);
6226
6227 /* set our implementation id */
6228 if (udf_node->fe) {
6229 dscrptr = (union dscrptr *) udf_node->fe;
6230 impl_id = &udf_node->fe->imp_id;
6231 } else {
6232 dscrptr = (union dscrptr *) udf_node->efe;
6233 impl_id = &udf_node->efe->imp_id;
6234 }
6235
6236 /* set our ID */
6237 udf_set_regid(impl_id, IMPL_NAME);
6238 udf_add_impl_regid(ump, impl_id);
6239
6240 /* update our crc! on RMW we are not allowed to change a thing */
6241 udf_validate_tag_and_crc_sums(dscrptr);
6242
6243 /* if called when mounted readonly, never write back */
6244 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6245 return 0;
6246
6247 /* check if the node is dirty 'enough'*/
6248 if (updflags & UPDATE_CLOSE) {
6249 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6250 } else {
6251 flags = udf_node->i_flags & IN_MODIFIED;
6252 }
6253 if (flags == 0)
6254 return 0;
6255
6256 /* determine if we need to write sync or async */
6257 waitfor = 0;
6258 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6259 /* sync mounted */
6260 waitfor = updflags & UPDATE_WAIT;
6261 if (updflags & UPDATE_DIROP)
6262 waitfor |= UPDATE_WAIT;
6263 }
6264 if (waitfor)
6265 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6266
6267 return 0;
6268 }
6269
6270
6271 /* --------------------------------------------------------------------- */
6272
6273
6274 /*
6275 * Read one fid and process it into a dirent and advance to the next (*fid)
6276 * has to be allocated a logical block in size, (*dirent) struct dirent length
6277 */
6278
6279 int
6280 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6281 struct fileid_desc *fid, struct dirent *dirent)
6282 {
6283 struct udf_node *dir_node = VTOI(vp);
6284 struct udf_mount *ump = dir_node->ump;
6285 struct file_entry *fe = dir_node->fe;
6286 struct extfile_entry *efe = dir_node->efe;
6287 uint32_t fid_size, lb_size;
6288 uint64_t file_size;
6289 char *fid_name;
6290 int enough, error;
6291
6292 assert(fid);
6293 assert(dirent);
6294 assert(dir_node);
6295 assert(offset);
6296 assert(*offset != 1);
6297
6298 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6299 /* check if we're past the end of the directory */
6300 if (fe) {
6301 file_size = udf_rw64(fe->inf_len);
6302 } else {
6303 assert(dir_node->efe);
6304 file_size = udf_rw64(efe->inf_len);
6305 }
6306 if (*offset >= file_size)
6307 return EINVAL;
6308
6309 /* get maximum length of FID descriptor */
6310 lb_size = udf_rw32(ump->logical_vol->lb_size);
6311
6312 /* initialise return values */
6313 fid_size = 0;
6314 memset(dirent, 0, sizeof(struct dirent));
6315 memset(fid, 0, lb_size);
6316
6317 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6318 if (!enough) {
6319 /* short dir ... */
6320 return EIO;
6321 }
6322
6323 error = vn_rdwr(UIO_READ, vp,
6324 fid, MIN(file_size - (*offset), lb_size), *offset,
6325 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6326 NULL, NULL);
6327 if (error)
6328 return error;
6329
6330 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6331 /*
6332 * Check if we got a whole descriptor.
6333 * TODO Try to `resync' directory stream when something is very wrong.
6334 */
6335
6336 /* check if our FID header is OK */
6337 error = udf_check_tag(fid);
6338 if (error) {
6339 goto brokendir;
6340 }
6341 DPRINTF(FIDS, ("\ttag check ok\n"));
6342
6343 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6344 error = EIO;
6345 goto brokendir;
6346 }
6347 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6348
6349 /* check for length */
6350 fid_size = udf_fidsize(fid);
6351 enough = (file_size - (*offset) >= fid_size);
6352 if (!enough) {
6353 error = EIO;
6354 goto brokendir;
6355 }
6356 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6357
6358 /* check FID contents */
6359 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6360 brokendir:
6361 if (error) {
6362 /* note that is sometimes a bit quick to report */
6363 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6364 /* RESYNC? */
6365 /* TODO: use udf_resync_fid_stream */
6366 return EIO;
6367 }
6368 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6369
6370 /* we got a whole and valid descriptor! */
6371 DPRINTF(FIDS, ("\tinterpret FID\n"));
6372
6373 /* create resulting dirent structure */
6374 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6375 udf_to_unix_name(dirent->d_name, NAME_MAX,
6376 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6377
6378 /* '..' has no name, so provide one */
6379 if (fid->file_char & UDF_FILE_CHAR_PAR)
6380 strcpy(dirent->d_name, "..");
6381
6382 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6383 dirent->d_namlen = strlen(dirent->d_name);
6384 dirent->d_reclen = _DIRENT_SIZE(dirent);
6385
6386 /*
6387 * Note that its not worth trying to go for the filetypes now... its
6388 * too expensive too
6389 */
6390 dirent->d_type = DT_UNKNOWN;
6391
6392 /* initial guess for filetype we can make */
6393 if (fid->file_char & UDF_FILE_CHAR_DIR)
6394 dirent->d_type = DT_DIR;
6395
6396 /* advance */
6397 *offset += fid_size;
6398
6399 return error;
6400 }
6401
6402
6403 /* --------------------------------------------------------------------- */
6404
6405 static void
6406 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6407 {
6408 struct udf_node *udf_node, *n_udf_node;
6409 struct vnode *vp;
6410 int vdirty, error;
6411
6412 KASSERT(mutex_owned(&ump->sync_lock));
6413
6414 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6415 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6416 for (;udf_node; udf_node = n_udf_node) {
6417 DPRINTF(SYNC, ("."));
6418
6419 vp = udf_node->vnode;
6420
6421 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6422 udf_node, RB_DIR_RIGHT);
6423
6424 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6425 if (error) {
6426 KASSERT(error == EBUSY);
6427 *ndirty += 1;
6428 continue;
6429 }
6430
6431 switch (pass) {
6432 case 1:
6433 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6434 break;
6435 case 2:
6436 vdirty = vp->v_numoutput;
6437 if (vp->v_tag == VT_UDF)
6438 vdirty += udf_node->outstanding_bufs +
6439 udf_node->outstanding_nodedscr;
6440 if (vdirty == 0)
6441 VOP_FSYNC(vp, cred, 0,0,0);
6442 *ndirty += vdirty;
6443 break;
6444 case 3:
6445 vdirty = vp->v_numoutput;
6446 if (vp->v_tag == VT_UDF)
6447 vdirty += udf_node->outstanding_bufs +
6448 udf_node->outstanding_nodedscr;
6449 *ndirty += vdirty;
6450 break;
6451 }
6452
6453 VOP_UNLOCK(vp);
6454 }
6455 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6456 }
6457
6458
6459 static bool
6460 udf_sync_selector(void *cl, struct vnode *vp)
6461 {
6462 struct udf_node *udf_node;
6463
6464 KASSERT(mutex_owned(vp->v_interlock));
6465
6466 udf_node = VTOI(vp);
6467
6468 if (vp->v_vflag & VV_SYSTEM)
6469 return false;
6470 if (vp->v_type == VNON)
6471 return false;
6472 if (udf_node == NULL)
6473 return false;
6474 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6475 return false;
6476 if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
6477 return false;
6478
6479 return true;
6480 }
6481
6482 void
6483 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6484 {
6485 struct vnode_iterator *marker;
6486 struct vnode *vp;
6487 struct udf_node *udf_node, *udf_next_node;
6488 int dummy, ndirty;
6489
6490 if (waitfor == MNT_LAZY)
6491 return;
6492
6493 mutex_enter(&ump->sync_lock);
6494
6495 /* Fill the rbtree with nodes to sync. */
6496 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6497 while ((vp = vfs_vnode_iterator_next(marker,
6498 udf_sync_selector, NULL)) != NULL) {
6499 udf_node = VTOI(vp);
6500 udf_node->i_flags |= IN_SYNCED;
6501 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6502 }
6503 vfs_vnode_iterator_destroy(marker);
6504
6505 dummy = 0;
6506 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6507 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6508 udf_sync_pass(ump, cred, 1, &dummy);
6509
6510 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6511 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6512 udf_sync_pass(ump, cred, 2, &dummy);
6513
6514 if (waitfor == MNT_WAIT) {
6515 recount:
6516 ndirty = ump->devvp->v_numoutput;
6517 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6518 ndirty));
6519 udf_sync_pass(ump, cred, 3, &ndirty);
6520 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6521 ndirty));
6522
6523 if (ndirty) {
6524 /* 1/4 second wait */
6525 kpause("udfsync2", false, hz/4, NULL);
6526 goto recount;
6527 }
6528 }
6529
6530 /* Clean the rbtree. */
6531 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6532 udf_node; udf_node = udf_next_node) {
6533 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6534 udf_node, RB_DIR_RIGHT);
6535 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6536 udf_node->i_flags &= ~IN_SYNCED;
6537 vrele(udf_node->vnode);
6538 }
6539
6540 mutex_exit(&ump->sync_lock);
6541 }
6542
6543 /* --------------------------------------------------------------------- */
6544
6545 /*
6546 * Read and write file extent in/from the buffer.
6547 *
6548 * The splitup of the extent into separate request-buffers is to minimise
6549 * copying around as much as possible.
6550 *
6551 * block based file reading and writing
6552 */
6553
6554 static int
6555 udf_read_internal(struct udf_node *node, uint8_t *blob)
6556 {
6557 struct udf_mount *ump;
6558 struct file_entry *fe = node->fe;
6559 struct extfile_entry *efe = node->efe;
6560 uint64_t inflen;
6561 uint32_t sector_size;
6562 uint8_t *srcpos;
6563 int icbflags, addr_type;
6564
6565 /* get extent and do some paranoia checks */
6566 ump = node->ump;
6567 sector_size = ump->discinfo.sector_size;
6568
6569 /*
6570 * XXX there should be real bounds-checking logic here,
6571 * in case ->l_ea or ->inf_len contains nonsense.
6572 */
6573
6574 if (fe) {
6575 inflen = udf_rw64(fe->inf_len);
6576 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6577 icbflags = udf_rw16(fe->icbtag.flags);
6578 } else {
6579 assert(node->efe);
6580 inflen = udf_rw64(efe->inf_len);
6581 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6582 icbflags = udf_rw16(efe->icbtag.flags);
6583 }
6584 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6585
6586 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6587 __USE(addr_type);
6588 assert(inflen < sector_size);
6589
6590 /* copy out info */
6591 memcpy(blob, srcpos, inflen);
6592 memset(&blob[inflen], 0, sector_size - inflen);
6593
6594 return 0;
6595 }
6596
6597
6598 static int
6599 udf_write_internal(struct udf_node *node, uint8_t *blob)
6600 {
6601 struct udf_mount *ump;
6602 struct file_entry *fe = node->fe;
6603 struct extfile_entry *efe = node->efe;
6604 uint64_t inflen;
6605 uint32_t sector_size;
6606 uint8_t *pos;
6607 int icbflags, addr_type;
6608
6609 /* get extent and do some paranoia checks */
6610 ump = node->ump;
6611 sector_size = ump->discinfo.sector_size;
6612
6613 if (fe) {
6614 inflen = udf_rw64(fe->inf_len);
6615 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6616 icbflags = udf_rw16(fe->icbtag.flags);
6617 } else {
6618 assert(node->efe);
6619 inflen = udf_rw64(efe->inf_len);
6620 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6621 icbflags = udf_rw16(efe->icbtag.flags);
6622 }
6623 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6624
6625 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6626 __USE(addr_type);
6627 assert(inflen < sector_size);
6628 __USE(sector_size);
6629
6630 /* copy in blob */
6631 /* memset(pos, 0, inflen); */
6632 memcpy(pos, blob, inflen);
6633
6634 return 0;
6635 }
6636
6637
6638 void
6639 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6640 {
6641 struct buf *nestbuf;
6642 struct udf_mount *ump = udf_node->ump;
6643 uint64_t *mapping;
6644 uint64_t run_start;
6645 uint32_t sector_size;
6646 uint32_t buf_offset, sector, rbuflen, rblk;
6647 uint32_t from, lblkno;
6648 uint32_t sectors;
6649 uint8_t *buf_pos;
6650 int error, run_length, what;
6651
6652 sector_size = udf_node->ump->discinfo.sector_size;
6653
6654 from = buf->b_blkno;
6655 sectors = buf->b_bcount / sector_size;
6656
6657 what = udf_get_c_type(udf_node);
6658
6659 /* assure we have enough translation slots */
6660 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6661 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6662
6663 if (sectors > UDF_MAX_MAPPINGS) {
6664 printf("udf_read_filebuf: implementation limit on bufsize\n");
6665 buf->b_error = EIO;
6666 biodone(buf);
6667 return;
6668 }
6669
6670 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6671
6672 error = 0;
6673 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6674 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6675 if (error) {
6676 buf->b_error = error;
6677 biodone(buf);
6678 goto out;
6679 }
6680 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6681
6682 /* pre-check if its an internal */
6683 if (*mapping == UDF_TRANS_INTERN) {
6684 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6685 if (error)
6686 buf->b_error = error;
6687 biodone(buf);
6688 goto out;
6689 }
6690 DPRINTF(READ, ("\tnot intern\n"));
6691
6692 #ifdef DEBUG
6693 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6694 printf("Returned translation table:\n");
6695 for (sector = 0; sector < sectors; sector++) {
6696 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6697 }
6698 }
6699 #endif
6700
6701 /* request read-in of data from disc sheduler */
6702 buf->b_resid = buf->b_bcount;
6703 for (sector = 0; sector < sectors; sector++) {
6704 buf_offset = sector * sector_size;
6705 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6706 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6707
6708 /* check if its zero or unmapped to stop reading */
6709 switch (mapping[sector]) {
6710 case UDF_TRANS_UNMAPPED:
6711 case UDF_TRANS_ZERO:
6712 /* copy zero sector TODO runlength like below */
6713 memset(buf_pos, 0, sector_size);
6714 DPRINTF(READ, ("\treturning zero sector\n"));
6715 nestiobuf_done(buf, sector_size, 0);
6716 break;
6717 default :
6718 DPRINTF(READ, ("\tread sector "
6719 "%"PRIu64"\n", mapping[sector]));
6720
6721 lblkno = from + sector;
6722 run_start = mapping[sector];
6723 run_length = 1;
6724 while (sector < sectors-1) {
6725 if (mapping[sector+1] != mapping[sector]+1)
6726 break;
6727 run_length++;
6728 sector++;
6729 }
6730
6731 /*
6732 * nest an iobuf and mark it for async reading. Since
6733 * we're using nested buffers, they can't be cached by
6734 * design.
6735 */
6736 rbuflen = run_length * sector_size;
6737 rblk = run_start * (sector_size/DEV_BSIZE);
6738
6739 nestbuf = getiobuf(NULL, true);
6740 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6741 /* nestbuf is B_ASYNC */
6742
6743 /* identify this nestbuf */
6744 nestbuf->b_lblkno = lblkno;
6745 assert(nestbuf->b_vp == udf_node->vnode);
6746
6747 /* CD shedules on raw blkno */
6748 nestbuf->b_blkno = rblk;
6749 nestbuf->b_proc = NULL;
6750 nestbuf->b_rawblkno = rblk;
6751 nestbuf->b_udf_c_type = what;
6752
6753 udf_discstrat_queuebuf(ump, nestbuf);
6754 }
6755 }
6756 out:
6757 /* if we're synchronously reading, wait for the completion */
6758 if ((buf->b_flags & B_ASYNC) == 0)
6759 biowait(buf);
6760
6761 DPRINTF(READ, ("\tend of read_filebuf\n"));
6762 free(mapping, M_TEMP);
6763 return;
6764 }
6765
6766
6767 void
6768 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6769 {
6770 struct buf *nestbuf;
6771 struct udf_mount *ump = udf_node->ump;
6772 uint64_t *mapping;
6773 uint64_t run_start;
6774 uint32_t lb_size;
6775 uint32_t buf_offset, lb_num, rbuflen, rblk;
6776 uint32_t from, lblkno;
6777 uint32_t num_lb;
6778 int error, run_length, what, s;
6779
6780 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6781
6782 from = buf->b_blkno;
6783 num_lb = buf->b_bcount / lb_size;
6784
6785 what = udf_get_c_type(udf_node);
6786
6787 /* assure we have enough translation slots */
6788 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6789 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6790
6791 if (num_lb > UDF_MAX_MAPPINGS) {
6792 printf("udf_write_filebuf: implementation limit on bufsize\n");
6793 buf->b_error = EIO;
6794 biodone(buf);
6795 return;
6796 }
6797
6798 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6799
6800 error = 0;
6801 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6802 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6803 if (error) {
6804 buf->b_error = error;
6805 biodone(buf);
6806 goto out;
6807 }
6808 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6809
6810 /* if its internally mapped, we can write it in the descriptor itself */
6811 if (*mapping == UDF_TRANS_INTERN) {
6812 /* TODO paranoia check if we ARE going to have enough space */
6813 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6814 if (error)
6815 buf->b_error = error;
6816 biodone(buf);
6817 goto out;
6818 }
6819 DPRINTF(WRITE, ("\tnot intern\n"));
6820
6821 /* request write out of data to disc sheduler */
6822 buf->b_resid = buf->b_bcount;
6823 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6824 buf_offset = lb_num * lb_size;
6825 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6826
6827 /*
6828 * Mappings are not that important here. Just before we write
6829 * the lb_num we late-allocate them when needed and update the
6830 * mapping in the udf_node.
6831 */
6832
6833 /* XXX why not ignore the mapping altogether ? */
6834 DPRINTF(WRITE, ("\twrite lb_num "
6835 "%"PRIu64, mapping[lb_num]));
6836
6837 lblkno = from + lb_num;
6838 run_start = mapping[lb_num];
6839 run_length = 1;
6840 while (lb_num < num_lb-1) {
6841 if (mapping[lb_num+1] != mapping[lb_num]+1)
6842 if (mapping[lb_num+1] != mapping[lb_num])
6843 break;
6844 run_length++;
6845 lb_num++;
6846 }
6847 DPRINTF(WRITE, ("+ %d\n", run_length));
6848
6849 /* nest an iobuf on the master buffer for the extent */
6850 rbuflen = run_length * lb_size;
6851 rblk = run_start * (lb_size/DEV_BSIZE);
6852
6853 nestbuf = getiobuf(NULL, true);
6854 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6855 /* nestbuf is B_ASYNC */
6856
6857 /* identify this nestbuf */
6858 nestbuf->b_lblkno = lblkno;
6859 KASSERT(nestbuf->b_vp == udf_node->vnode);
6860
6861 /* CD shedules on raw blkno */
6862 nestbuf->b_blkno = rblk;
6863 nestbuf->b_proc = NULL;
6864 nestbuf->b_rawblkno = rblk;
6865 nestbuf->b_udf_c_type = what;
6866
6867 /* increment our outstanding bufs counter */
6868 s = splbio();
6869 udf_node->outstanding_bufs++;
6870 splx(s);
6871
6872 udf_discstrat_queuebuf(ump, nestbuf);
6873 }
6874 out:
6875 /* if we're synchronously writing, wait for the completion */
6876 if ((buf->b_flags & B_ASYNC) == 0)
6877 biowait(buf);
6878
6879 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6880 free(mapping, M_TEMP);
6881 return;
6882 }
6883
6884 /* --------------------------------------------------------------------- */
6885