Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.146.2.2
      1 /* $NetBSD: udf_subr.c,v 1.146.2.2 2022/03/13 09:48:32 martin Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.146.2.2 2022/03/13 09:48:32 martin Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_compat_netbsd.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/sysctl.h>
     43 #include <sys/namei.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vnode.h>
     47 #include <miscfs/genfs/genfs_node.h>
     48 #include <sys/mount.h>
     49 #include <sys/buf.h>
     50 #include <sys/file.h>
     51 #include <sys/device.h>
     52 #include <sys/disklabel.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/malloc.h>
     55 #include <sys/dirent.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/kauth.h>
     59 #include <fs/unicode.h>
     60 #include <dev/clock_subr.h>
     61 
     62 #include <fs/udf/ecma167-udf.h>
     63 #include <fs/udf/udf_mount.h>
     64 #include <sys/dirhash.h>
     65 
     66 #include "udf.h"
     67 #include "udf_subr.h"
     68 #include "udf_bswap.h"
     69 
     70 
     71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     72 
     73 #define UDF_SET_SYSTEMFILE(vp) \
     74 	/* XXXAD Is the vnode locked? */	\
     75 	(vp)->v_vflag |= VV_SYSTEM;		\
     76 	vref((vp));			\
     77 	vput((vp));			\
     78 
     79 extern int syncer_maxdelay;     /* maximum delay time */
     80 extern int (**udf_vnodeop_p)(void *);
     81 
     82 /* --------------------------------------------------------------------- */
     83 
     84 //#ifdef DEBUG
     85 #if 1
     86 
     87 #if 0
     88 static void
     89 udf_dumpblob(boid *blob, uint32_t dlen)
     90 {
     91 	int i, j;
     92 
     93 	printf("blob = %p\n", blob);
     94 	printf("dump of %d bytes\n", dlen);
     95 
     96 	for (i = 0; i < dlen; i+ = 16) {
     97 		printf("%04x ", i);
     98 		for (j = 0; j < 16; j++) {
     99 			if (i+j < dlen) {
    100 				printf("%02x ", blob[i+j]);
    101 			} else {
    102 				printf("   ");
    103 			}
    104 		}
    105 		for (j = 0; j < 16; j++) {
    106 			if (i+j < dlen) {
    107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    108 					printf("%c", blob[i+j]);
    109 				} else {
    110 					printf(".");
    111 				}
    112 			}
    113 		}
    114 		printf("\n");
    115 	}
    116 	printf("\n");
    117 	Debugger();
    118 }
    119 #endif
    120 
    121 static void
    122 udf_dump_discinfo(struct udf_mount *ump)
    123 {
    124 	char   bits[128];
    125 	struct mmc_discinfo *di = &ump->discinfo;
    126 
    127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    128 		return;
    129 
    130 	printf("Device/media info  :\n");
    131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    132 	printf("\tderived class      %d\n", di->mmc_class);
    133 	printf("\tsector size        %d\n", di->sector_size);
    134 	printf("\tdisc state         %d\n", di->disc_state);
    135 	printf("\tlast ses state     %d\n", di->last_session_state);
    136 	printf("\tbg format state    %d\n", di->bg_format_state);
    137 	printf("\tfrst track         %d\n", di->first_track);
    138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
    142 	printf("\tdisc flags         %s\n", bits);
    143 	printf("\tdisc id            %x\n", di->disc_id);
    144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    145 
    146 	printf("\tnum sessions       %d\n", di->num_sessions);
    147 	printf("\tnum tracks         %d\n", di->num_tracks);
    148 
    149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
    150 	printf("\tcapabilities cur   %s\n", bits);
    151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
    152 	printf("\tcapabilities cap   %s\n", bits);
    153 }
    154 
    155 static void
    156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
    157 {
    158 	char   bits[128];
    159 
    160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    161 		return;
    162 
    163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
    164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
    165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
    166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
    167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
    168 	printf("\tflags               %s\n", bits);
    169 
    170 	printf("\ttrack start         %d\n", trackinfo->track_start);
    171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
    172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
    173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
    174 	printf("\ttrack size          %d\n", trackinfo->track_size);
    175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
    176 }
    177 
    178 #else
    179 #define udf_dump_discinfo(a);
    180 #define udf_dump_trackinfo(a);
    181 #endif
    182 
    183 
    184 /* --------------------------------------------------------------------- */
    185 
    186 /* not called often */
    187 int
    188 udf_update_discinfo(struct udf_mount *ump)
    189 {
    190 	struct vnode *devvp = ump->devvp;
    191 	uint64_t psize;
    192 	unsigned secsize;
    193 	struct mmc_discinfo *di;
    194 	int error;
    195 
    196 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    197 	di = &ump->discinfo;
    198 	memset(di, 0, sizeof(struct mmc_discinfo));
    199 
    200 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    201 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    202 	if (error == 0) {
    203 		udf_dump_discinfo(ump);
    204 		return 0;
    205 	}
    206 
    207 	/* disc partition support */
    208 	error = getdisksize(devvp, &psize, &secsize);
    209 	if (error)
    210 		return error;
    211 
    212 	/* set up a disc info profile for partitions */
    213 	di->mmc_profile		= 0x01;	/* disc type */
    214 	di->mmc_class		= MMC_CLASS_DISC;
    215 	di->disc_state		= MMC_STATE_CLOSED;
    216 	di->last_session_state	= MMC_STATE_CLOSED;
    217 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    218 	di->link_block_penalty	= 0;
    219 
    220 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    221 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    222 	di->mmc_cap    = di->mmc_cur;
    223 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    224 
    225 	/* TODO problem with last_possible_lba on resizable VND; request */
    226 	di->last_possible_lba = psize;
    227 	di->sector_size       = secsize;
    228 
    229 	di->num_sessions = 1;
    230 	di->num_tracks   = 1;
    231 
    232 	di->first_track  = 1;
    233 	di->first_track_last_session = di->last_track_last_session = 1;
    234 
    235 	udf_dump_discinfo(ump);
    236 	return 0;
    237 }
    238 
    239 
    240 int
    241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    242 {
    243 	struct vnode *devvp = ump->devvp;
    244 	struct mmc_discinfo *di = &ump->discinfo;
    245 	int error, class;
    246 
    247 	DPRINTF(VOLUMES, ("read track info\n"));
    248 
    249 	class = di->mmc_class;
    250 	if (class != MMC_CLASS_DISC) {
    251 		/* tracknr specified in struct ti */
    252 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    253 		return error;
    254 	}
    255 
    256 	/* disc partition support */
    257 	if (ti->tracknr != 1)
    258 		return EIO;
    259 
    260 	/* create fake ti (TODO check for resized vnds) */
    261 	ti->sessionnr  = 1;
    262 
    263 	ti->track_mode = 0;	/* XXX */
    264 	ti->data_mode  = 0;	/* XXX */
    265 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    266 
    267 	ti->track_start    = 0;
    268 	ti->packet_size    = 1;
    269 
    270 	/* TODO support for resizable vnd */
    271 	ti->track_size    = di->last_possible_lba;
    272 	ti->next_writable = di->last_possible_lba;
    273 	ti->last_recorded = ti->next_writable;
    274 	ti->free_blocks   = 0;
    275 
    276 	return 0;
    277 }
    278 
    279 
    280 int
    281 udf_setup_writeparams(struct udf_mount *ump)
    282 {
    283 	struct mmc_writeparams mmc_writeparams;
    284 	int error;
    285 
    286 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    287 		return 0;
    288 
    289 	/*
    290 	 * only CD burning normally needs setting up, but other disc types
    291 	 * might need other settings to be made. The MMC framework will set up
    292 	 * the nessisary recording parameters according to the disc
    293 	 * characteristics read in. Modifications can be made in the discinfo
    294 	 * structure passed to change the nature of the disc.
    295 	 */
    296 
    297 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    298 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    299 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    300 
    301 	/*
    302 	 * UDF dictates first track to determine track mode for the whole
    303 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    304 	 * To prevent problems with a `reserved' track in front we start with
    305 	 * the 2nd track and if that is not valid, go for the 1st.
    306 	 */
    307 	mmc_writeparams.tracknr = 2;
    308 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    309 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    310 
    311 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    312 			FKIOCTL, NOCRED);
    313 	if (error) {
    314 		mmc_writeparams.tracknr = 1;
    315 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    316 				&mmc_writeparams, FKIOCTL, NOCRED);
    317 	}
    318 	return error;
    319 }
    320 
    321 
    322 void
    323 udf_mmc_synchronise_caches(struct udf_mount *ump)
    324 {
    325 	struct mmc_op mmc_op;
    326 
    327 	DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
    328 
    329 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    330 		return;
    331 
    332 	/* discs are done now */
    333 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    334 		return;
    335 
    336 	memset(&mmc_op, 0, sizeof(struct mmc_op));
    337 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    338 
    339 	/* ignore return code */
    340 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    341 }
    342 
    343 /* --------------------------------------------------------------------- */
    344 
    345 /* track/session searching for mounting */
    346 int
    347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    348 		  int *first_tracknr, int *last_tracknr)
    349 {
    350 	struct mmc_trackinfo trackinfo;
    351 	uint32_t tracknr, start_track, num_tracks;
    352 	int error;
    353 
    354 	/* if negative, sessionnr is relative to last session */
    355 	if (args->sessionnr < 0) {
    356 		args->sessionnr += ump->discinfo.num_sessions;
    357 	}
    358 
    359 	/* sanity */
    360 	if (args->sessionnr < 0)
    361 		args->sessionnr = 0;
    362 	if (args->sessionnr > ump->discinfo.num_sessions)
    363 		args->sessionnr = ump->discinfo.num_sessions;
    364 
    365 	/* search the tracks for this session, zero session nr indicates last */
    366 	if (args->sessionnr == 0)
    367 		args->sessionnr = ump->discinfo.num_sessions;
    368 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    369 		args->sessionnr--;
    370 
    371 	/* sanity again */
    372 	if (args->sessionnr < 0)
    373 		args->sessionnr = 0;
    374 
    375 	/* search the first and last track of the specified session */
    376 	num_tracks  = ump->discinfo.num_tracks;
    377 	start_track = ump->discinfo.first_track;
    378 
    379 	/* search for first track of this session */
    380 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    381 		/* get track info */
    382 		trackinfo.tracknr = tracknr;
    383 		error = udf_update_trackinfo(ump, &trackinfo);
    384 		if (error)
    385 			return error;
    386 
    387 		if (trackinfo.sessionnr == args->sessionnr)
    388 			break;
    389 	}
    390 	*first_tracknr = tracknr;
    391 
    392 	/* search for last track of this session */
    393 	for (;tracknr <= num_tracks; tracknr++) {
    394 		/* get track info */
    395 		trackinfo.tracknr = tracknr;
    396 		error = udf_update_trackinfo(ump, &trackinfo);
    397 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    398 			tracknr--;
    399 			break;
    400 		}
    401 	}
    402 	if (tracknr > num_tracks)
    403 		tracknr--;
    404 
    405 	*last_tracknr = tracknr;
    406 
    407 	if (*last_tracknr < *first_tracknr) {
    408 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    409 			"drive returned garbage\n");
    410 		return EINVAL;
    411 	}
    412 
    413 	assert(*last_tracknr >= *first_tracknr);
    414 	return 0;
    415 }
    416 
    417 
    418 /*
    419  * NOTE: this is the only routine in this file that directly peeks into the
    420  * metadata file but since its at a larval state of the mount it can't hurt.
    421  *
    422  * XXX candidate for udf_allocation.c
    423  * XXX clean me up!, change to new node reading code.
    424  */
    425 
    426 static void
    427 udf_check_track_metadata_overlap(struct udf_mount *ump,
    428 	struct mmc_trackinfo *trackinfo)
    429 {
    430 	struct part_desc *part;
    431 	struct file_entry      *fe;
    432 	struct extfile_entry   *efe;
    433 	struct short_ad        *s_ad;
    434 	struct long_ad         *l_ad;
    435 	uint32_t track_start, track_end;
    436 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    437 	uint32_t sector_size, len, alloclen, plb_num;
    438 	uint8_t *pos;
    439 	int addr_type, icblen, icbflags;
    440 
    441 	/* get our track extents */
    442 	track_start = trackinfo->track_start;
    443 	track_end   = track_start + trackinfo->track_size;
    444 
    445 	/* get our base partition extent */
    446 	KASSERT(ump->node_part == ump->fids_part);
    447 	part = ump->partitions[ump->vtop[ump->node_part]];
    448 	phys_part_start = udf_rw32(part->start_loc);
    449 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    450 
    451 	/* no use if its outside the physical partition */
    452 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    453 		return;
    454 
    455 	/*
    456 	 * now follow all extents in the fe/efe to see if they refer to this
    457 	 * track
    458 	 */
    459 
    460 	sector_size = ump->discinfo.sector_size;
    461 
    462 	/* XXX should we claim exclusive access to the metafile ? */
    463 	/* TODO: move to new node read code */
    464 	fe  = ump->metadata_node->fe;
    465 	efe = ump->metadata_node->efe;
    466 	if (fe) {
    467 		alloclen = udf_rw32(fe->l_ad);
    468 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    469 		icbflags = udf_rw16(fe->icbtag.flags);
    470 	} else {
    471 		assert(efe);
    472 		alloclen = udf_rw32(efe->l_ad);
    473 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    474 		icbflags = udf_rw16(efe->icbtag.flags);
    475 	}
    476 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    477 
    478 	while (alloclen) {
    479 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    480 			icblen = sizeof(struct short_ad);
    481 			s_ad   = (struct short_ad *) pos;
    482 			len        = udf_rw32(s_ad->len);
    483 			plb_num    = udf_rw32(s_ad->lb_num);
    484 		} else {
    485 			/* should not be present, but why not */
    486 			icblen = sizeof(struct long_ad);
    487 			l_ad   = (struct long_ad *) pos;
    488 			len        = udf_rw32(l_ad->len);
    489 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    490 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    491 		}
    492 		/* process extent */
    493 		len     = UDF_EXT_LEN(len);
    494 
    495 		part_start = phys_part_start + plb_num;
    496 		part_end   = part_start + (len / sector_size);
    497 
    498 		if ((part_start >= track_start) && (part_end <= track_end)) {
    499 			/* extent is enclosed within this track */
    500 			ump->metadata_track = *trackinfo;
    501 			return;
    502 		}
    503 
    504 		pos        += icblen;
    505 		alloclen   -= icblen;
    506 	}
    507 }
    508 
    509 
    510 int
    511 udf_search_writing_tracks(struct udf_mount *ump)
    512 {
    513 	struct vnode *devvp = ump->devvp;
    514 	struct mmc_trackinfo trackinfo;
    515 	struct mmc_op        mmc_op;
    516 	struct part_desc *part;
    517 	uint32_t tracknr, start_track, num_tracks;
    518 	uint32_t track_start, track_end, part_start, part_end;
    519 	int node_alloc, error;
    520 
    521 	/*
    522 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    523 	 * the last session might be open but in the UDF device model at most
    524 	 * three tracks can be open: a reserved track for delayed ISO VRS
    525 	 * writing, a data track and a metadata track. We search here for the
    526 	 * data track and the metadata track. Note that the reserved track is
    527 	 * troublesome but can be detected by its small size of < 512 sectors.
    528 	 */
    529 
    530 	/* update discinfo since it might have changed */
    531 	error = udf_update_discinfo(ump);
    532 	if (error)
    533 		return error;
    534 
    535 	num_tracks  = ump->discinfo.num_tracks;
    536 	start_track = ump->discinfo.first_track;
    537 
    538 	/* fetch info on first and possibly only track */
    539 	trackinfo.tracknr = start_track;
    540 	error = udf_update_trackinfo(ump, &trackinfo);
    541 	if (error)
    542 		return error;
    543 
    544 	/* copy results to our mount point */
    545 	ump->data_track     = trackinfo;
    546 	ump->metadata_track = trackinfo;
    547 
    548 	/* if not sequential, we're done */
    549 	if (num_tracks == 1)
    550 		return 0;
    551 
    552 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    553 		/* get track info */
    554 		trackinfo.tracknr = tracknr;
    555 		error = udf_update_trackinfo(ump, &trackinfo);
    556 		if (error)
    557 			return error;
    558 
    559 		/*
    560 		 * If this track is marked damaged, ask for repair. This is an
    561 		 * optional command, so ignore its error but report warning.
    562 		 */
    563 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
    564 			memset(&mmc_op, 0, sizeof(mmc_op));
    565 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
    566 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
    567 			mmc_op.tracknr     = tracknr;
    568 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    569 			if (error)
    570 				(void)printf("Drive can't explicitly repair "
    571 					"damaged track %d, but it might "
    572 					"autorepair\n", tracknr);
    573 
    574 			/* reget track info */
    575 			error = udf_update_trackinfo(ump, &trackinfo);
    576 			if (error)
    577 				return error;
    578 		}
    579 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    580 			continue;
    581 
    582 		track_start = trackinfo.track_start;
    583 		track_end   = track_start + trackinfo.track_size;
    584 
    585 		/* check for overlap on data partition */
    586 		part = ump->partitions[ump->data_part];
    587 		part_start = udf_rw32(part->start_loc);
    588 		part_end   = part_start + udf_rw32(part->part_len);
    589 		if ((part_start < track_end) && (part_end > track_start)) {
    590 			ump->data_track = trackinfo;
    591 			/* TODO check if UDF partition data_part is writable */
    592 		}
    593 
    594 		/* check for overlap on metadata partition */
    595 		node_alloc = ump->vtop_alloc[ump->node_part];
    596 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    597 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    598 			udf_check_track_metadata_overlap(ump, &trackinfo);
    599 		} else {
    600 			ump->metadata_track = trackinfo;
    601 		}
    602 	}
    603 
    604 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    605 		return EROFS;
    606 
    607 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    608 		return EROFS;
    609 
    610 	return 0;
    611 }
    612 
    613 /* --------------------------------------------------------------------- */
    614 
    615 /*
    616  * Check if the blob starts with a good UDF tag. Tags are protected by a
    617  * checksum over the reader except one byte at position 4 that is the checksum
    618  * itself.
    619  */
    620 
    621 int
    622 udf_check_tag(void *blob)
    623 {
    624 	struct desc_tag *tag = blob;
    625 	uint8_t *pos, sum, cnt;
    626 
    627 	/* check TAG header checksum */
    628 	pos = (uint8_t *) tag;
    629 	sum = 0;
    630 
    631 	for(cnt = 0; cnt < 16; cnt++) {
    632 		if (cnt != 4)
    633 			sum += *pos;
    634 		pos++;
    635 	}
    636 	if (sum != tag->cksum) {
    637 		/* bad tag header checksum; this is not a valid tag */
    638 		return EINVAL;
    639 	}
    640 
    641 	return 0;
    642 }
    643 
    644 
    645 /*
    646  * check tag payload will check descriptor CRC as specified.
    647  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    648  */
    649 
    650 int
    651 udf_check_tag_payload(void *blob, uint32_t max_length)
    652 {
    653 	struct desc_tag *tag = blob;
    654 	uint16_t crc, crc_len;
    655 
    656 	crc_len = udf_rw16(tag->desc_crc_len);
    657 
    658 	/* check payload CRC if applicable */
    659 	if (crc_len == 0)
    660 		return 0;
    661 
    662 	if (crc_len > max_length)
    663 		return EIO;
    664 
    665 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    666 	if (crc != udf_rw16(tag->desc_crc)) {
    667 		/* bad payload CRC; this is a broken tag */
    668 		return EINVAL;
    669 	}
    670 
    671 	return 0;
    672 }
    673 
    674 
    675 void
    676 udf_validate_tag_sum(void *blob)
    677 {
    678 	struct desc_tag *tag = blob;
    679 	uint8_t *pos, sum, cnt;
    680 
    681 	/* calculate TAG header checksum */
    682 	pos = (uint8_t *) tag;
    683 	sum = 0;
    684 
    685 	for(cnt = 0; cnt < 16; cnt++) {
    686 		if (cnt != 4) sum += *pos;
    687 		pos++;
    688 	}
    689 	tag->cksum = sum;	/* 8 bit */
    690 }
    691 
    692 
    693 /* assumes sector number of descriptor to be saved already present */
    694 void
    695 udf_validate_tag_and_crc_sums(void *blob)
    696 {
    697 	struct desc_tag *tag  = blob;
    698 	uint8_t         *btag = (uint8_t *) tag;
    699 	uint16_t crc, crc_len;
    700 
    701 	crc_len = udf_rw16(tag->desc_crc_len);
    702 
    703 	/* check payload CRC if applicable */
    704 	if (crc_len > 0) {
    705 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    706 		tag->desc_crc = udf_rw16(crc);
    707 	}
    708 
    709 	/* calculate TAG header checksum */
    710 	udf_validate_tag_sum(blob);
    711 }
    712 
    713 /* --------------------------------------------------------------------- */
    714 
    715 /*
    716  * XXX note the different semantics from udfclient: for FIDs it still rounds
    717  * up to sectors. Use udf_fidsize() for a correct length.
    718  */
    719 
    720 int
    721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    722 {
    723 	uint32_t size, tag_id, num_lb, elmsz;
    724 
    725 	tag_id = udf_rw16(dscr->tag.id);
    726 
    727 	switch (tag_id) {
    728 	case TAGID_LOGVOL :
    729 		size  = sizeof(struct logvol_desc) - 1;
    730 		size += udf_rw32(dscr->lvd.mt_l);
    731 		break;
    732 	case TAGID_UNALLOC_SPACE :
    733 		elmsz = sizeof(struct extent_ad);
    734 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    735 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    736 		break;
    737 	case TAGID_FID :
    738 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    739 		size = (size + 3) & ~3;
    740 		break;
    741 	case TAGID_LOGVOL_INTEGRITY :
    742 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    743 		size += udf_rw32(dscr->lvid.l_iu);
    744 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    745 		break;
    746 	case TAGID_SPACE_BITMAP :
    747 		size  = sizeof(struct space_bitmap_desc) - 1;
    748 		size += udf_rw32(dscr->sbd.num_bytes);
    749 		break;
    750 	case TAGID_SPARING_TABLE :
    751 		elmsz = sizeof(struct spare_map_entry);
    752 		size  = sizeof(struct udf_sparing_table) - elmsz;
    753 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    754 		break;
    755 	case TAGID_FENTRY :
    756 		size  = sizeof(struct file_entry);
    757 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    758 		break;
    759 	case TAGID_EXTFENTRY :
    760 		size  = sizeof(struct extfile_entry);
    761 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    762 		break;
    763 	case TAGID_FSD :
    764 		size  = sizeof(struct fileset_desc);
    765 		break;
    766 	default :
    767 		size = sizeof(union dscrptr);
    768 		break;
    769 	}
    770 
    771 	if ((size == 0) || (lb_size == 0))
    772 		return 0;
    773 
    774 	if (lb_size == 1)
    775 		return size;
    776 
    777 	/* round up in sectors */
    778 	num_lb = (size + lb_size -1) / lb_size;
    779 	return num_lb * lb_size;
    780 }
    781 
    782 
    783 int
    784 udf_fidsize(struct fileid_desc *fid)
    785 {
    786 	uint32_t size;
    787 
    788 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    789 		panic("got udf_fidsize on non FID\n");
    790 
    791 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    792 	size = (size + 3) & ~3;
    793 
    794 	return size;
    795 }
    796 
    797 /* --------------------------------------------------------------------- */
    798 
    799 void
    800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    801 {
    802 	int ret;
    803 
    804 	mutex_enter(&udf_node->node_mutex);
    805 	/* wait until free */
    806 	while (udf_node->i_flags & IN_LOCKED) {
    807 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    808 		/* TODO check if we should return error; abort */
    809 		if (ret == EWOULDBLOCK) {
    810 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    811 				"wanted at %s:%d, previously locked at %s:%d\n",
    812 				udf_node, fname, lineno,
    813 				udf_node->lock_fname, udf_node->lock_lineno));
    814 		}
    815 	}
    816 	/* grab */
    817 	udf_node->i_flags |= IN_LOCKED | flag;
    818 	/* debug */
    819 	udf_node->lock_fname  = fname;
    820 	udf_node->lock_lineno = lineno;
    821 
    822 	mutex_exit(&udf_node->node_mutex);
    823 }
    824 
    825 
    826 void
    827 udf_unlock_node(struct udf_node *udf_node, int flag)
    828 {
    829 	mutex_enter(&udf_node->node_mutex);
    830 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    831 	cv_broadcast(&udf_node->node_lock);
    832 	mutex_exit(&udf_node->node_mutex);
    833 }
    834 
    835 
    836 /* --------------------------------------------------------------------- */
    837 
    838 static int
    839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    840 {
    841 	int error;
    842 
    843 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    844 			(union dscrptr **) dst);
    845 	if (!error) {
    846 		/* blank terminator blocks are not allowed here */
    847 		if (*dst == NULL)
    848 			return ENOENT;
    849 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    850 			error = ENOENT;
    851 			free(*dst, M_UDFVOLD);
    852 			*dst = NULL;
    853 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    854 		}
    855 	}
    856 
    857 	return error;
    858 }
    859 
    860 
    861 int
    862 udf_read_anchors(struct udf_mount *ump)
    863 {
    864 	struct udf_args *args = &ump->mount_args;
    865 	struct mmc_trackinfo first_track;
    866 	struct mmc_trackinfo second_track;
    867 	struct mmc_trackinfo last_track;
    868 	struct anchor_vdp **anchorsp;
    869 	uint32_t track_start;
    870 	uint32_t track_end;
    871 	uint32_t positions[4];
    872 	int first_tracknr, last_tracknr;
    873 	int error, anch, ok, first_anchor;
    874 
    875 	/* search the first and last track of the specified session */
    876 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    877 	if (!error) {
    878 		first_track.tracknr = first_tracknr;
    879 		error = udf_update_trackinfo(ump, &first_track);
    880 	}
    881 	if (!error) {
    882 		last_track.tracknr = last_tracknr;
    883 		error = udf_update_trackinfo(ump, &last_track);
    884 	}
    885 	if ((!error) && (first_tracknr != last_tracknr)) {
    886 		second_track.tracknr = first_tracknr+1;
    887 		error = udf_update_trackinfo(ump, &second_track);
    888 	}
    889 	if (error) {
    890 		printf("UDF mount: reading disc geometry failed\n");
    891 		return 0;
    892 	}
    893 
    894 	track_start = first_track.track_start;
    895 
    896 	/* `end' is not as straitforward as start. */
    897 	track_end =   last_track.track_start
    898 		    + last_track.track_size - last_track.free_blocks - 1;
    899 
    900 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    901 		/* end of track is not straitforward here */
    902 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    903 			track_end = last_track.last_recorded;
    904 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    905 			track_end = last_track.next_writable
    906 				    - ump->discinfo.link_block_penalty;
    907 	}
    908 
    909 	/* its no use reading a blank track */
    910 	first_anchor = 0;
    911 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    912 		first_anchor = 1;
    913 
    914 	/* get our packet size */
    915 	ump->packet_size = first_track.packet_size;
    916 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    917 		ump->packet_size = second_track.packet_size;
    918 
    919 	if (ump->packet_size <= 1) {
    920 		/* take max, but not bigger than 64 */
    921 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    922 		ump->packet_size = MIN(ump->packet_size, 64);
    923 	}
    924 	KASSERT(ump->packet_size >= 1);
    925 
    926 	/* read anchors start+256, start+512, end-256, end */
    927 	positions[0] = track_start+256;
    928 	positions[1] =   track_end-256;
    929 	positions[2] =   track_end;
    930 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    931 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    932 
    933 	ok = 0;
    934 	anchorsp = ump->anchors;
    935 	for (anch = first_anchor; anch < 4; anch++) {
    936 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    937 		    positions[anch]));
    938 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    939 		if (!error) {
    940 			anchorsp++;
    941 			ok++;
    942 		}
    943 	}
    944 
    945 	/* VATs are only recorded on sequential media, but initialise */
    946 	ump->first_possible_vat_location = track_start + 2;
    947 	ump->last_possible_vat_location  = track_end;
    948 
    949 	return ok;
    950 }
    951 
    952 /* --------------------------------------------------------------------- */
    953 
    954 int
    955 udf_get_c_type(struct udf_node *udf_node)
    956 {
    957 	int isdir, what;
    958 
    959 	isdir  = (udf_node->vnode->v_type == VDIR);
    960 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
    961 
    962 	if (udf_node->ump)
    963 		if (udf_node == udf_node->ump->metadatabitmap_node)
    964 			what = UDF_C_METADATA_SBM;
    965 
    966 	return what;
    967 }
    968 
    969 
    970 int
    971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
    972 {
    973 	int vpart_num;
    974 
    975 	vpart_num = ump->data_part;
    976 	if (udf_c_type == UDF_C_NODE)
    977 		vpart_num = ump->node_part;
    978 	if (udf_c_type == UDF_C_FIDS)
    979 		vpart_num = ump->fids_part;
    980 
    981 	return vpart_num;
    982 }
    983 
    984 
    985 /*
    986  * BUGALERT: some rogue implementations use random physical partition
    987  * numbers to break other implementations so lookup the number.
    988  */
    989 
    990 static uint16_t
    991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
    992 {
    993 	struct part_desc *part;
    994 	uint16_t phys_part;
    995 
    996 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    997 		part = ump->partitions[phys_part];
    998 		if (part == NULL)
    999 			break;
   1000 		if (udf_rw16(part->part_num) == raw_phys_part)
   1001 			break;
   1002 	}
   1003 	return phys_part;
   1004 }
   1005 
   1006 /* --------------------------------------------------------------------- */
   1007 
   1008 /* we dont try to be smart; we just record the parts */
   1009 #define UDF_UPDATE_DSCR(name, dscr) \
   1010 	if (name) \
   1011 		free(name, M_UDFVOLD); \
   1012 	name = dscr;
   1013 
   1014 static int
   1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
   1016 {
   1017 	uint16_t phys_part, raw_phys_part;
   1018 
   1019 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
   1020 	    udf_rw16(dscr->tag.id)));
   1021 	switch (udf_rw16(dscr->tag.id)) {
   1022 	case TAGID_PRI_VOL :		/* primary partition		*/
   1023 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
   1024 		break;
   1025 	case TAGID_LOGVOL :		/* logical volume		*/
   1026 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
   1027 		break;
   1028 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
   1029 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
   1030 		break;
   1031 	case TAGID_IMP_VOL :		/* implementation		*/
   1032 		/* XXX do we care about multiple impl. descr ? */
   1033 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
   1034 		break;
   1035 	case TAGID_PARTITION :		/* physical partition		*/
   1036 		/* not much use if its not allocated */
   1037 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
   1038 			free(dscr, M_UDFVOLD);
   1039 			break;
   1040 		}
   1041 
   1042 		/*
   1043 		 * BUGALERT: some rogue implementations use random physical
   1044 		 * partition numbers to break other implementations so lookup
   1045 		 * the number.
   1046 		 */
   1047 		raw_phys_part = udf_rw16(dscr->pd.part_num);
   1048 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
   1049 
   1050 		if (phys_part == UDF_PARTITIONS) {
   1051 			free(dscr, M_UDFVOLD);
   1052 			return EINVAL;
   1053 		}
   1054 
   1055 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
   1056 		break;
   1057 	case TAGID_VOL :		/* volume space extender; rare	*/
   1058 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
   1059 		free(dscr, M_UDFVOLD);
   1060 		break;
   1061 	default :
   1062 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
   1063 		    udf_rw16(dscr->tag.id)));
   1064 		free(dscr, M_UDFVOLD);
   1065 	}
   1066 
   1067 	return 0;
   1068 }
   1069 #undef UDF_UPDATE_DSCR
   1070 
   1071 /* --------------------------------------------------------------------- */
   1072 
   1073 static int
   1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
   1075 {
   1076 	union dscrptr *dscr;
   1077 	uint32_t sector_size, dscr_size;
   1078 	int error;
   1079 
   1080 	sector_size = ump->discinfo.sector_size;
   1081 
   1082 	/* loc is sectornr, len is in bytes */
   1083 	error = EIO;
   1084 	while (len) {
   1085 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
   1086 		if (error)
   1087 			return error;
   1088 
   1089 		/* blank block is a terminator */
   1090 		if (dscr == NULL)
   1091 			return 0;
   1092 
   1093 		/* TERM descriptor is a terminator */
   1094 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
   1095 			free(dscr, M_UDFVOLD);
   1096 			return 0;
   1097 		}
   1098 
   1099 		/* process all others */
   1100 		dscr_size = udf_tagsize(dscr, sector_size);
   1101 		error = udf_process_vds_descriptor(ump, dscr);
   1102 		if (error) {
   1103 			free(dscr, M_UDFVOLD);
   1104 			break;
   1105 		}
   1106 		assert((dscr_size % sector_size) == 0);
   1107 
   1108 		len -= dscr_size;
   1109 		loc += dscr_size / sector_size;
   1110 	}
   1111 
   1112 	return error;
   1113 }
   1114 
   1115 
   1116 int
   1117 udf_read_vds_space(struct udf_mount *ump)
   1118 {
   1119 	/* struct udf_args *args = &ump->mount_args; */
   1120 	struct anchor_vdp *anchor, *anchor2;
   1121 	size_t size;
   1122 	uint32_t main_loc, main_len;
   1123 	uint32_t reserve_loc, reserve_len;
   1124 	int error;
   1125 
   1126 	/*
   1127 	 * read in VDS space provided by the anchors; if one descriptor read
   1128 	 * fails, try the mirror sector.
   1129 	 *
   1130 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1131 	 * avoids the `compatibility features' of DirectCD that may confuse
   1132 	 * stuff completely.
   1133 	 */
   1134 
   1135 	anchor  = ump->anchors[0];
   1136 	anchor2 = ump->anchors[1];
   1137 	assert(anchor);
   1138 
   1139 	if (anchor2) {
   1140 		size = sizeof(struct extent_ad);
   1141 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1142 			anchor = anchor2;
   1143 		/* reserve is specified to be a literal copy of main */
   1144 	}
   1145 
   1146 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1147 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1148 
   1149 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1150 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1151 
   1152 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1153 	if (error) {
   1154 		printf("UDF mount: reading in reserve VDS extent\n");
   1155 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1156 	}
   1157 
   1158 	return error;
   1159 }
   1160 
   1161 /* --------------------------------------------------------------------- */
   1162 
   1163 /*
   1164  * Read in the logical volume integrity sequence pointed to by our logical
   1165  * volume descriptor. Its a sequence that can be extended using fields in the
   1166  * integrity descriptor itself. On sequential media only one is found, on
   1167  * rewritable media a sequence of descriptors can be found as a form of
   1168  * history keeping and on non sequential write-once media the chain is vital
   1169  * to allow more and more descriptors to be written. The last descriptor
   1170  * written in an extent needs to claim space for a new extent.
   1171  */
   1172 
   1173 static int
   1174 udf_retrieve_lvint(struct udf_mount *ump)
   1175 {
   1176 	union dscrptr *dscr;
   1177 	struct logvol_int_desc *lvint;
   1178 	struct udf_lvintq *trace;
   1179 	uint32_t lb_size, lbnum, len;
   1180 	int dscr_type, error, trace_len;
   1181 
   1182 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1183 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1184 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1185 
   1186 	/* clean trace */
   1187 	memset(ump->lvint_trace, 0,
   1188 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1189 
   1190 	trace_len    = 0;
   1191 	trace        = ump->lvint_trace;
   1192 	trace->start = lbnum;
   1193 	trace->end   = lbnum + len/lb_size;
   1194 	trace->pos   = 0;
   1195 	trace->wpos  = 0;
   1196 
   1197 	lvint = NULL;
   1198 	dscr  = NULL;
   1199 	error = 0;
   1200 	while (len) {
   1201 		trace->pos  = lbnum - trace->start;
   1202 		trace->wpos = trace->pos + 1;
   1203 
   1204 		/* read in our integrity descriptor */
   1205 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1206 		if (!error) {
   1207 			if (dscr == NULL) {
   1208 				trace->wpos = trace->pos;
   1209 				break;		/* empty terminates */
   1210 			}
   1211 			dscr_type = udf_rw16(dscr->tag.id);
   1212 			if (dscr_type == TAGID_TERM) {
   1213 				trace->wpos = trace->pos;
   1214 				break;		/* clean terminator */
   1215 			}
   1216 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1217 				/* fatal... corrupt disc */
   1218 				error = ENOENT;
   1219 				break;
   1220 			}
   1221 			if (lvint)
   1222 				free(lvint, M_UDFVOLD);
   1223 			lvint = &dscr->lvid;
   1224 			dscr = NULL;
   1225 		} /* else hope for the best... maybe the next is ok */
   1226 
   1227 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1228 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1229 
   1230 		/* proceed sequential */
   1231 		lbnum += 1;
   1232 		len    -= lb_size;
   1233 
   1234 		/* are we linking to a new piece? */
   1235 		if (dscr && lvint->next_extent.len) {
   1236 			len   = udf_rw32(lvint->next_extent.len);
   1237 			lbnum = udf_rw32(lvint->next_extent.loc);
   1238 
   1239 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1240 				/* IEK! segment link full... */
   1241 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1242 				error = EINVAL;
   1243 			} else {
   1244 				trace++;
   1245 				trace_len++;
   1246 
   1247 				trace->start = lbnum;
   1248 				trace->end   = lbnum + len/lb_size;
   1249 				trace->pos   = 0;
   1250 				trace->wpos  = 0;
   1251 			}
   1252 		}
   1253 	}
   1254 
   1255 	/* clean up the mess, esp. when there is an error */
   1256 	if (dscr)
   1257 		free(dscr, M_UDFVOLD);
   1258 
   1259 	if (error && lvint) {
   1260 		free(lvint, M_UDFVOLD);
   1261 		lvint = NULL;
   1262 	}
   1263 
   1264 	if (!lvint)
   1265 		error = ENOENT;
   1266 
   1267 	ump->logvol_integrity = lvint;
   1268 	return error;
   1269 }
   1270 
   1271 
   1272 static int
   1273 udf_loose_lvint_history(struct udf_mount *ump)
   1274 {
   1275 	union dscrptr **bufs, *dscr, *last_dscr;
   1276 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1277 	struct logvol_int_desc *lvint;
   1278 	uint32_t in_ext, in_pos, in_len;
   1279 	uint32_t out_ext, out_wpos, out_len;
   1280 	uint32_t lb_num;
   1281 	uint32_t len, start;
   1282 	int ext, sumext, extlen, cnt, cpy_len, dscr_type;
   1283 	int losing;
   1284 	int error;
   1285 
   1286 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1287 
   1288 	/* search smallest extent */
   1289 	trace = &ump->lvint_trace[0];
   1290 	sumext = trace->end - trace->start;
   1291 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1292 		trace = &ump->lvint_trace[ext];
   1293 		extlen = trace->end - trace->start;
   1294 		if (extlen == 0)
   1295 			break;
   1296 		sumext += extlen;
   1297 	}
   1298 
   1299 	/* just one element? its not legal but be bug compatible */
   1300 	if (sumext == 1) {
   1301 		/* overwrite the only entry */
   1302 		DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n"));
   1303 		trace = &ump->lvint_trace[0];
   1304 		trace->wpos = 0;
   1305 		return 0;
   1306 	}
   1307 
   1308 	losing = MIN(sumext, UDF_LVINT_LOSSAGE);
   1309 
   1310 	/* no sense wiping too much */
   1311 	if (sumext == UDF_LVINT_LOSSAGE)
   1312 		losing = UDF_LVINT_LOSSAGE/2;
   1313 
   1314 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1315 
   1316 	/* get buffer for pieces */
   1317 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1318 
   1319 	in_ext    = 0;
   1320 	in_pos    = losing;
   1321 	in_trace  = &ump->lvint_trace[in_ext];
   1322 	in_len    = in_trace->end - in_trace->start;
   1323 	out_ext   = 0;
   1324 	out_wpos  = 0;
   1325 	out_trace = &ump->lvint_trace[out_ext];
   1326 	out_len   = out_trace->end - out_trace->start;
   1327 
   1328 	last_dscr = NULL;
   1329 	for(;;) {
   1330 		out_trace->pos  = out_wpos;
   1331 		out_trace->wpos = out_trace->pos;
   1332 		if (in_pos >= in_len) {
   1333 			in_ext++;
   1334 			in_pos = 0;
   1335 			in_trace = &ump->lvint_trace[in_ext];
   1336 			in_len   = in_trace->end - in_trace->start;
   1337 		}
   1338 		if (out_wpos >= out_len) {
   1339 			out_ext++;
   1340 			out_wpos = 0;
   1341 			out_trace = &ump->lvint_trace[out_ext];
   1342 			out_len   = out_trace->end - out_trace->start;
   1343 		}
   1344 		/* copy overlap contents */
   1345 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1346 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1347 		if (cpy_len == 0)
   1348 			break;
   1349 
   1350 		/* copy */
   1351 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1352 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1353 			/* read in our integrity descriptor */
   1354 			lb_num = in_trace->start + in_pos + cnt;
   1355 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1356 				&dscr);
   1357 			if (error) {
   1358 				/* copy last one */
   1359 				dscr = last_dscr;
   1360 			}
   1361 			bufs[cnt] = dscr;
   1362 			if (!error) {
   1363 				if (dscr == NULL) {
   1364 					out_trace->pos  = out_wpos + cnt;
   1365 					out_trace->wpos = out_trace->pos;
   1366 					break;		/* empty terminates */
   1367 				}
   1368 				dscr_type = udf_rw16(dscr->tag.id);
   1369 				if (dscr_type == TAGID_TERM) {
   1370 					out_trace->pos  = out_wpos + cnt;
   1371 					out_trace->wpos = out_trace->pos;
   1372 					break;		/* clean terminator */
   1373 				}
   1374 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1375 					panic(  "UDF integrity sequence "
   1376 						"corrupted while mounted!\n");
   1377 				}
   1378 				last_dscr = dscr;
   1379 			}
   1380 		}
   1381 
   1382 		/* patch up if first entry was on error */
   1383 		if (bufs[0] == NULL) {
   1384 			for (cnt = 0; cnt < cpy_len; cnt++)
   1385 				if (bufs[cnt] != NULL)
   1386 					break;
   1387 			last_dscr = bufs[cnt];
   1388 			for (; cnt > 0; cnt--) {
   1389 				bufs[cnt] = last_dscr;
   1390 			}
   1391 		}
   1392 
   1393 		/* glue + write out */
   1394 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1395 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1396 			lb_num = out_trace->start + out_wpos + cnt;
   1397 			lvint  = &bufs[cnt]->lvid;
   1398 
   1399 			/* set continuation */
   1400 			len = 0;
   1401 			start = 0;
   1402 			if (out_wpos + cnt == out_len) {
   1403 				/* get continuation */
   1404 				trace = &ump->lvint_trace[out_ext+1];
   1405 				len   = trace->end - trace->start;
   1406 				start = trace->start;
   1407 			}
   1408 			lvint->next_extent.len = udf_rw32(len);
   1409 			lvint->next_extent.loc = udf_rw32(start);
   1410 
   1411 			lb_num = trace->start + trace->wpos;
   1412 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1413 				bufs[cnt], lb_num, lb_num);
   1414 			DPRINTFIF(VOLUMES, error,
   1415 				("error writing lvint lb_num\n"));
   1416 		}
   1417 
   1418 		/* free non repeating descriptors */
   1419 		last_dscr = NULL;
   1420 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1421 			if (bufs[cnt] != last_dscr)
   1422 				free(bufs[cnt], M_UDFVOLD);
   1423 			last_dscr = bufs[cnt];
   1424 		}
   1425 
   1426 		/* advance */
   1427 		in_pos   += cpy_len;
   1428 		out_wpos += cpy_len;
   1429 	}
   1430 
   1431 	free(bufs, M_TEMP);
   1432 
   1433 	return 0;
   1434 }
   1435 
   1436 
   1437 static int
   1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1439 {
   1440 	struct udf_lvintq *trace;
   1441 	struct timeval  now_v;
   1442 	struct timespec now_s;
   1443 	uint32_t sector;
   1444 	int logvol_integrity;
   1445 	int space, error;
   1446 
   1447 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1448 
   1449 	/* get free space in last chunk */
   1450 	trace = ump->lvint_trace;
   1451 	while (trace->wpos > (trace->end - trace->start)) {
   1452 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1453 				  "wpos = %d\n", trace->start, trace->end,
   1454 				  trace->pos, trace->wpos));
   1455 		trace++;
   1456 	}
   1457 
   1458 	/* check if there is space to append */
   1459 	space = (trace->end - trace->start) - trace->wpos;
   1460 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1461 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1462 			  trace->wpos, space));
   1463 
   1464 	/* get state */
   1465 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1466 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1467 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1468 			/* TODO extent LVINT space if possible */
   1469 			return EROFS;
   1470 		}
   1471 	}
   1472 
   1473 	if (space < 1) {
   1474 		if (lvflag & UDF_APPENDONLY_LVINT)
   1475 			return EROFS;
   1476 
   1477 		/* loose history by re-writing extents */
   1478 		error = udf_loose_lvint_history(ump);
   1479 		if (error)
   1480 			return error;
   1481 
   1482 		trace = ump->lvint_trace;
   1483 		while (trace->wpos > (trace->end - trace->start))
   1484 			trace++;
   1485 		space = (trace->end - trace->start) - trace->wpos;
   1486 		DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, "
   1487 				  "pos = %d, wpos = %d, "
   1488 				  "space = %d\n", trace->start, trace->end,
   1489 				  trace->pos, trace->wpos, space));
   1490 	}
   1491 
   1492 	/* update our integrity descriptor to identify us and timestamp it */
   1493 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1494 	microtime(&now_v);
   1495 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1496 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1497 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1498 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1499 
   1500 	/* writeout integrity descriptor */
   1501 	sector = trace->start + trace->wpos;
   1502 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1503 			(union dscrptr *) ump->logvol_integrity,
   1504 			sector, sector);
   1505 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1506 	if (error)
   1507 		return error;
   1508 
   1509 	/* advance write position */
   1510 	trace->wpos++; space--;
   1511 	if (space >= 1) {
   1512 		/* append terminator */
   1513 		sector = trace->start + trace->wpos;
   1514 		error = udf_write_terminator(ump, sector);
   1515 
   1516 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1517 	}
   1518 
   1519 	space = (trace->end - trace->start) - trace->wpos;
   1520 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1521 		"space = %d\n", trace->start, trace->end, trace->pos,
   1522 		trace->wpos, space));
   1523 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1524 		"successfull\n"));
   1525 
   1526 	return error;
   1527 }
   1528 
   1529 /* --------------------------------------------------------------------- */
   1530 
   1531 static int
   1532 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1533 {
   1534 	union dscrptr        *dscr;
   1535 	/* struct udf_args *args = &ump->mount_args; */
   1536 	struct part_desc     *partd;
   1537 	struct part_hdr_desc *parthdr;
   1538 	struct udf_bitmap    *bitmap;
   1539 	uint32_t phys_part;
   1540 	uint32_t lb_num, len;
   1541 	int error, dscr_type;
   1542 
   1543 	/* unallocated space map */
   1544 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1545 		partd = ump->partitions[phys_part];
   1546 		if (partd == NULL)
   1547 			continue;
   1548 		parthdr = &partd->_impl_use.part_hdr;
   1549 
   1550 		lb_num  = udf_rw32(partd->start_loc);
   1551 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1552 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1553 		if (len == 0)
   1554 			continue;
   1555 
   1556 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1557 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1558 		if (!error && dscr) {
   1559 			/* analyse */
   1560 			dscr_type = udf_rw16(dscr->tag.id);
   1561 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1562 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1563 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1564 
   1565 				/* fill in ump->part_unalloc_bits */
   1566 				bitmap = &ump->part_unalloc_bits[phys_part];
   1567 				bitmap->blob  = (uint8_t *) dscr;
   1568 				bitmap->bits  = dscr->sbd.data;
   1569 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1570 				bitmap->pages = NULL;	/* TODO */
   1571 				bitmap->data_pos     = 0;
   1572 				bitmap->metadata_pos = 0;
   1573 			} else {
   1574 				free(dscr, M_UDFVOLD);
   1575 
   1576 				printf( "UDF mount: error reading unallocated "
   1577 					"space bitmap\n");
   1578 				return EROFS;
   1579 			}
   1580 		} else {
   1581 			/* blank not allowed */
   1582 			printf("UDF mount: blank unallocated space bitmap\n");
   1583 			return EROFS;
   1584 		}
   1585 	}
   1586 
   1587 	/* unallocated space table (not supported) */
   1588 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1589 		partd = ump->partitions[phys_part];
   1590 		if (partd == NULL)
   1591 			continue;
   1592 		parthdr = &partd->_impl_use.part_hdr;
   1593 
   1594 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1595 		if (len) {
   1596 			printf("UDF mount: space tables not supported\n");
   1597 			return EROFS;
   1598 		}
   1599 	}
   1600 
   1601 	/* freed space map */
   1602 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1603 		partd = ump->partitions[phys_part];
   1604 		if (partd == NULL)
   1605 			continue;
   1606 		parthdr = &partd->_impl_use.part_hdr;
   1607 
   1608 		/* freed space map */
   1609 		lb_num  = udf_rw32(partd->start_loc);
   1610 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1611 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1612 		if (len == 0)
   1613 			continue;
   1614 
   1615 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1616 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1617 		if (!error && dscr) {
   1618 			/* analyse */
   1619 			dscr_type = udf_rw16(dscr->tag.id);
   1620 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1621 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1622 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1623 
   1624 				/* fill in ump->part_freed_bits */
   1625 				bitmap = &ump->part_unalloc_bits[phys_part];
   1626 				bitmap->blob  = (uint8_t *) dscr;
   1627 				bitmap->bits  = dscr->sbd.data;
   1628 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1629 				bitmap->pages = NULL;	/* TODO */
   1630 				bitmap->data_pos     = 0;
   1631 				bitmap->metadata_pos = 0;
   1632 			} else {
   1633 				free(dscr, M_UDFVOLD);
   1634 
   1635 				printf( "UDF mount: error reading freed  "
   1636 					"space bitmap\n");
   1637 				return EROFS;
   1638 			}
   1639 		} else {
   1640 			/* blank not allowed */
   1641 			printf("UDF mount: blank freed space bitmap\n");
   1642 			return EROFS;
   1643 		}
   1644 	}
   1645 
   1646 	/* freed space table (not supported) */
   1647 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1648 		partd = ump->partitions[phys_part];
   1649 		if (partd == NULL)
   1650 			continue;
   1651 		parthdr = &partd->_impl_use.part_hdr;
   1652 
   1653 		len     = udf_rw32(parthdr->freed_space_table.len);
   1654 		if (len) {
   1655 			printf("UDF mount: space tables not supported\n");
   1656 			return EROFS;
   1657 		}
   1658 	}
   1659 
   1660 	return 0;
   1661 }
   1662 
   1663 
   1664 /* TODO implement async writeout */
   1665 int
   1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1667 {
   1668 	union dscrptr        *dscr;
   1669 	/* struct udf_args *args = &ump->mount_args; */
   1670 	struct part_desc     *partd;
   1671 	struct part_hdr_desc *parthdr;
   1672 	uint32_t phys_part;
   1673 	uint32_t lb_num, len, ptov;
   1674 	int error_all, error;
   1675 
   1676 	error_all = 0;
   1677 	/* unallocated space map */
   1678 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1679 		partd = ump->partitions[phys_part];
   1680 		if (partd == NULL)
   1681 			continue;
   1682 		parthdr = &partd->_impl_use.part_hdr;
   1683 
   1684 		ptov   = udf_rw32(partd->start_loc);
   1685 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1686 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1687 		if (len == 0)
   1688 			continue;
   1689 
   1690 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1691 			lb_num + ptov));
   1692 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1693 
   1694 		/* force a sane minimum for descriptors CRC length */
   1695 		/* see UDF 2.3.1.2 and 2.3.8.1 */
   1696 		KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
   1697 		if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
   1698 			dscr->sbd.tag.desc_crc_len = udf_rw16(8);
   1699 
   1700 		/* write out space bitmap */
   1701 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1702 				(union dscrptr *) dscr,
   1703 				ptov + lb_num, lb_num);
   1704 		if (error) {
   1705 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1706 			error_all = error;
   1707 		}
   1708 	}
   1709 
   1710 	/* freed space map */
   1711 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1712 		partd = ump->partitions[phys_part];
   1713 		if (partd == NULL)
   1714 			continue;
   1715 		parthdr = &partd->_impl_use.part_hdr;
   1716 
   1717 		/* freed space map */
   1718 		ptov   = udf_rw32(partd->start_loc);
   1719 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1720 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1721 		if (len == 0)
   1722 			continue;
   1723 
   1724 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1725 			lb_num + ptov));
   1726 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1727 
   1728 		/* force a sane minimum for descriptors CRC length */
   1729 		/* see UDF 2.3.1.2 and 2.3.8.1 */
   1730 		KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
   1731 		if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
   1732 			dscr->sbd.tag.desc_crc_len = udf_rw16(8);
   1733 
   1734 		/* write out space bitmap */
   1735 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1736 				(union dscrptr *) dscr,
   1737 				ptov + lb_num, lb_num);
   1738 		if (error) {
   1739 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1740 			error_all = error;
   1741 		}
   1742 	}
   1743 
   1744 	return error_all;
   1745 }
   1746 
   1747 
   1748 static int
   1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1750 {
   1751 	struct udf_node	     *bitmap_node;
   1752 	union dscrptr        *dscr;
   1753 	struct udf_bitmap    *bitmap;
   1754 	uint64_t inflen;
   1755 	int error, dscr_type;
   1756 
   1757 	bitmap_node = ump->metadatabitmap_node;
   1758 
   1759 	/* only read in when metadata bitmap node is read in */
   1760 	if (bitmap_node == NULL)
   1761 		return 0;
   1762 
   1763 	if (bitmap_node->fe) {
   1764 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1765 	} else {
   1766 		KASSERT(bitmap_node->efe);
   1767 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1768 	}
   1769 
   1770 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1771 		"%"PRIu64" bytes\n", inflen));
   1772 
   1773 	/* allocate space for bitmap */
   1774 	dscr = malloc(inflen, M_UDFVOLD, M_WAITOK);
   1775 	if (!dscr)
   1776 		return ENOMEM;
   1777 
   1778 	/* set vnode type to regular file or we can't read from it! */
   1779 	bitmap_node->vnode->v_type = VREG;
   1780 
   1781 	/* read in complete metadata bitmap file */
   1782 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1783 			dscr,
   1784 			inflen, 0,
   1785 			UIO_SYSSPACE,
   1786 			IO_SYNC | IO_ALTSEMANTICS, FSCRED,
   1787 			NULL, NULL);
   1788 	if (error) {
   1789 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1790 		goto errorout;
   1791 	}
   1792 
   1793 	/* analyse */
   1794 	dscr_type = udf_rw16(dscr->tag.id);
   1795 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1796 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1797 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1798 
   1799 		/* fill in bitmap bits */
   1800 		bitmap = &ump->metadata_unalloc_bits;
   1801 		bitmap->blob  = (uint8_t *) dscr;
   1802 		bitmap->bits  = dscr->sbd.data;
   1803 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1804 		bitmap->pages = NULL;	/* TODO */
   1805 		bitmap->data_pos     = 0;
   1806 		bitmap->metadata_pos = 0;
   1807 	} else {
   1808 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1809 		goto errorout;
   1810 	}
   1811 
   1812 	return 0;
   1813 
   1814 errorout:
   1815 	free(dscr, M_UDFVOLD);
   1816 	printf( "UDF mount: error reading unallocated "
   1817 		"space bitmap for metadata partition\n");
   1818 	return EROFS;
   1819 }
   1820 
   1821 
   1822 int
   1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1824 {
   1825 	struct udf_node	     *bitmap_node;
   1826 	union dscrptr        *dscr;
   1827 	uint64_t new_inflen;
   1828 	int dummy, error;
   1829 
   1830 	bitmap_node = ump->metadatabitmap_node;
   1831 
   1832 	/* only write out when metadata bitmap node is known */
   1833 	if (bitmap_node == NULL)
   1834 		return 0;
   1835 
   1836 	if (!bitmap_node->fe) {
   1837 		KASSERT(bitmap_node->efe);
   1838 	}
   1839 
   1840 	/* reduce length to zero */
   1841 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1842 	new_inflen = udf_tagsize(dscr, 1);
   1843 
   1844 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
   1845 		" for %"PRIu64" bytes\n", new_inflen));
   1846 
   1847 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1848 	if (error)
   1849 		printf("Error resizing metadata space bitmap\n");
   1850 
   1851 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1852 			dscr,
   1853 			new_inflen, 0,
   1854 			UIO_SYSSPACE,
   1855 			IO_ALTSEMANTICS, FSCRED,
   1856 			NULL, NULL);
   1857 
   1858 	bitmap_node->i_flags |= IN_MODIFIED;
   1859 	error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
   1860 	if (error == 0)
   1861 		error = VOP_FSYNC(bitmap_node->vnode,
   1862 				FSCRED, FSYNC_WAIT, 0, 0);
   1863 
   1864 	if (error)
   1865 		printf( "Error writing out metadata partition unalloced "
   1866 			"space bitmap!\n");
   1867 
   1868 	return error;
   1869 }
   1870 
   1871 
   1872 /* --------------------------------------------------------------------- */
   1873 
   1874 /*
   1875  * Checks if ump's vds information is correct and complete
   1876  */
   1877 
   1878 int
   1879 udf_process_vds(struct udf_mount *ump) {
   1880 	union udf_pmap *mapping;
   1881 	/* struct udf_args *args = &ump->mount_args; */
   1882 	struct logvol_int_desc *lvint;
   1883 	struct udf_logvol_info *lvinfo;
   1884 	uint32_t n_pm;
   1885 	uint8_t *pmap_pos;
   1886 	char *domain_name, *map_name;
   1887 	const char *check_name;
   1888 	char bits[128];
   1889 	int pmap_stype, pmap_size;
   1890 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1891 	int n_phys, n_virt, n_spar, n_meta;
   1892 	int len;
   1893 
   1894 	if (ump == NULL)
   1895 		return ENOENT;
   1896 
   1897 	/* we need at least an anchor (trivial, but for safety) */
   1898 	if (ump->anchors[0] == NULL)
   1899 		return EINVAL;
   1900 
   1901 	/* we need at least one primary and one logical volume descriptor */
   1902 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1903 		return EINVAL;
   1904 
   1905 	/* we need at least one partition descriptor */
   1906 	if (ump->partitions[0] == NULL)
   1907 		return EINVAL;
   1908 
   1909 	/* check logical volume sector size verses device sector size */
   1910 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1911 		printf("UDF mount: format violation, lb_size != sector size\n");
   1912 		return EINVAL;
   1913 	}
   1914 
   1915 	/* check domain name */
   1916 	domain_name = ump->logical_vol->domain_id.id;
   1917 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1918 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1919 		return EINVAL;
   1920 	}
   1921 
   1922 	/* retrieve logical volume integrity sequence */
   1923 	(void)udf_retrieve_lvint(ump);
   1924 
   1925 	/*
   1926 	 * We need at least one logvol integrity descriptor recorded.  Note
   1927 	 * that its OK to have an open logical volume integrity here. The VAT
   1928 	 * will close/update the integrity.
   1929 	 */
   1930 	if (ump->logvol_integrity == NULL)
   1931 		return EINVAL;
   1932 
   1933 	/* process derived structures */
   1934 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1935 	lvint  = ump->logvol_integrity;
   1936 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1937 	ump->logvol_info = lvinfo;
   1938 
   1939 	/* TODO check udf versions? */
   1940 
   1941 	/*
   1942 	 * check logvol mappings: effective virt->log partmap translation
   1943 	 * check and recording of the mapping results. Saves expensive
   1944 	 * strncmp() in tight places.
   1945 	 */
   1946 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1947 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1948 	pmap_pos =  ump->logical_vol->maps;
   1949 
   1950 	if (n_pm > UDF_PMAPS) {
   1951 		printf("UDF mount: too many mappings\n");
   1952 		return EINVAL;
   1953 	}
   1954 
   1955 	/* count types and set partition numbers */
   1956 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1957 	n_phys = n_virt = n_spar = n_meta = 0;
   1958 	for (log_part = 0; log_part < n_pm; log_part++) {
   1959 		mapping = (union udf_pmap *) pmap_pos;
   1960 		pmap_stype = pmap_pos[0];
   1961 		pmap_size  = pmap_pos[1];
   1962 		switch (pmap_stype) {
   1963 		case 1:	/* physical mapping */
   1964 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1965 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1966 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1967 			n_phys++;
   1968 			ump->data_part = log_part;
   1969 			ump->node_part = log_part;
   1970 			ump->fids_part = log_part;
   1971 			break;
   1972 		case 2: /* virtual/sparable/meta mapping */
   1973 			map_name  = mapping->pm2.part_id.id;
   1974 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1975 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1976 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1977 			len = UDF_REGID_ID_SIZE;
   1978 
   1979 			check_name = "*UDF Virtual Partition";
   1980 			if (strncmp(map_name, check_name, len) == 0) {
   1981 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1982 				n_virt++;
   1983 				ump->node_part = log_part;
   1984 				break;
   1985 			}
   1986 			check_name = "*UDF Sparable Partition";
   1987 			if (strncmp(map_name, check_name, len) == 0) {
   1988 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1989 				n_spar++;
   1990 				ump->data_part = log_part;
   1991 				ump->node_part = log_part;
   1992 				ump->fids_part = log_part;
   1993 				break;
   1994 			}
   1995 			check_name = "*UDF Metadata Partition";
   1996 			if (strncmp(map_name, check_name, len) == 0) {
   1997 				pmap_type = UDF_VTOP_TYPE_META;
   1998 				n_meta++;
   1999 				ump->node_part = log_part;
   2000 				ump->fids_part = log_part;
   2001 				break;
   2002 			}
   2003 			break;
   2004 		default:
   2005 			return EINVAL;
   2006 		}
   2007 
   2008 		/*
   2009 		 * BUGALERT: some rogue implementations use random physical
   2010 		 * partition numbers to break other implementations so lookup
   2011 		 * the number.
   2012 		 */
   2013 		phys_part = udf_find_raw_phys(ump, raw_phys_part);
   2014 
   2015 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   2016 		    raw_phys_part, phys_part, pmap_type));
   2017 
   2018 		if (phys_part == UDF_PARTITIONS)
   2019 			return EINVAL;
   2020 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   2021 			return EINVAL;
   2022 
   2023 		ump->vtop   [log_part] = phys_part;
   2024 		ump->vtop_tp[log_part] = pmap_type;
   2025 
   2026 		pmap_pos += pmap_size;
   2027 	}
   2028 	/* not winning the beauty contest */
   2029 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   2030 
   2031 	/* test some basic UDF assertions/requirements */
   2032 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   2033 		return EINVAL;
   2034 
   2035 	if (n_virt) {
   2036 		if ((n_phys == 0) || n_spar || n_meta)
   2037 			return EINVAL;
   2038 	}
   2039 	if (n_spar + n_phys == 0)
   2040 		return EINVAL;
   2041 
   2042 	/* select allocation type for each logical partition */
   2043 	for (log_part = 0; log_part < n_pm; log_part++) {
   2044 		maps_on = ump->vtop[log_part];
   2045 		switch (ump->vtop_tp[log_part]) {
   2046 		case UDF_VTOP_TYPE_PHYS :
   2047 			assert(maps_on == log_part);
   2048 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   2049 			break;
   2050 		case UDF_VTOP_TYPE_VIRT :
   2051 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   2052 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   2053 			break;
   2054 		case UDF_VTOP_TYPE_SPARABLE :
   2055 			assert(maps_on == log_part);
   2056 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   2057 			break;
   2058 		case UDF_VTOP_TYPE_META :
   2059 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   2060 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   2061 				/* special case for UDF 2.60 */
   2062 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   2063 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   2064 			}
   2065 			break;
   2066 		default:
   2067 			panic("bad alloction type in udf's ump->vtop\n");
   2068 		}
   2069 	}
   2070 
   2071 	/* determine logical volume open/closure actions */
   2072 	if (n_virt) {
   2073 		ump->lvopen  = 0;
   2074 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
   2075 			ump->lvopen |= UDF_OPEN_SESSION ;
   2076 		ump->lvclose = UDF_WRITE_VAT;
   2077 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   2078 			ump->lvclose |= UDF_CLOSE_SESSION;
   2079 	} else {
   2080 		/* `normal' rewritable or non sequential media */
   2081 		ump->lvopen  = UDF_WRITE_LVINT;
   2082 		ump->lvclose = UDF_WRITE_LVINT;
   2083 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   2084 			ump->lvopen  |=  UDF_APPENDONLY_LVINT;
   2085 		if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   2086 			ump->lvopen  &= ~UDF_APPENDONLY_LVINT;
   2087 	}
   2088 
   2089 	/*
   2090 	 * Determine sheduler error behaviour. For virtual partitions, update
   2091 	 * the trackinfo; for sparable partitions replace a whole block on the
   2092 	 * sparable table. Allways requeue.
   2093 	 */
   2094 	ump->lvreadwrite = 0;
   2095 	if (n_virt)
   2096 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   2097 	if (n_spar)
   2098 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   2099 
   2100 	/*
   2101 	 * Select our sheduler
   2102 	 */
   2103 	ump->strategy = &udf_strat_rmw;
   2104 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   2105 		ump->strategy = &udf_strat_sequential;
   2106 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   2107 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   2108 			ump->strategy = &udf_strat_direct;
   2109 	if (n_spar)
   2110 		ump->strategy = &udf_strat_rmw;
   2111 
   2112 #if 0
   2113 	/* read-only access won't benefit from the other shedulers */
   2114 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   2115 		ump->strategy = &udf_strat_direct;
   2116 #endif
   2117 
   2118 	/* print results */
   2119 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   2120 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2121 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2122 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2123 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2124 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2125 
   2126 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
   2127 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2128 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
   2129 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2130 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
   2131 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2132 
   2133 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2134 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2135 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2136 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2137 
   2138 	/* signal its OK for now */
   2139 	return 0;
   2140 }
   2141 
   2142 /* --------------------------------------------------------------------- */
   2143 
   2144 /*
   2145  * Update logical volume name in all structures that keep a record of it. We
   2146  * use memmove since each of them might be specified as a source.
   2147  *
   2148  * Note that it doesn't update the VAT structure!
   2149  */
   2150 
   2151 static void
   2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2153 {
   2154 	struct logvol_desc     *lvd = NULL;
   2155 	struct fileset_desc    *fsd = NULL;
   2156 	struct udf_lv_info     *lvi = NULL;
   2157 
   2158 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2159 	lvd = ump->logical_vol;
   2160 	fsd = ump->fileset_desc;
   2161 	if (ump->implementation)
   2162 		lvi = &ump->implementation->_impl_use.lv_info;
   2163 
   2164 	/* logvol's id might be specified as origional so use memmove here */
   2165 	memmove(lvd->logvol_id, logvol_id, 128);
   2166 	if (fsd)
   2167 		memmove(fsd->logvol_id, logvol_id, 128);
   2168 	if (lvi)
   2169 		memmove(lvi->logvol_id, logvol_id, 128);
   2170 }
   2171 
   2172 /* --------------------------------------------------------------------- */
   2173 
   2174 void
   2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2176 	uint32_t sector)
   2177 {
   2178 	assert(ump->logical_vol);
   2179 
   2180 	tag->id 		= udf_rw16(tagid);
   2181 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2182 	tag->cksum		= 0;
   2183 	tag->reserved		= 0;
   2184 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2185 	tag->tag_loc            = udf_rw32(sector);
   2186 }
   2187 
   2188 
   2189 uint64_t
   2190 udf_advance_uniqueid(struct udf_mount *ump)
   2191 {
   2192 	uint64_t unique_id;
   2193 
   2194 	mutex_enter(&ump->logvol_mutex);
   2195 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2196 	if (unique_id < 0x10)
   2197 		unique_id = 0x10;
   2198 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2199 	mutex_exit(&ump->logvol_mutex);
   2200 
   2201 	return unique_id;
   2202 }
   2203 
   2204 
   2205 static void
   2206 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2207 {
   2208 	struct udf_mount *ump = udf_node->ump;
   2209 	uint32_t num_dirs, num_files;
   2210 	int udf_file_type;
   2211 
   2212 	/* get file type */
   2213 	if (udf_node->fe) {
   2214 		udf_file_type = udf_node->fe->icbtag.file_type;
   2215 	} else {
   2216 		udf_file_type = udf_node->efe->icbtag.file_type;
   2217 	}
   2218 
   2219 	/* adjust file count */
   2220 	mutex_enter(&ump->allocate_mutex);
   2221 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2222 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2223 		ump->logvol_info->num_directories =
   2224 			udf_rw32((num_dirs + sign));
   2225 	} else {
   2226 		num_files = udf_rw32(ump->logvol_info->num_files);
   2227 		ump->logvol_info->num_files =
   2228 			udf_rw32((num_files + sign));
   2229 	}
   2230 	mutex_exit(&ump->allocate_mutex);
   2231 }
   2232 
   2233 
   2234 void
   2235 udf_osta_charset(struct charspec *charspec)
   2236 {
   2237 	memset(charspec, 0, sizeof(struct charspec));
   2238 	charspec->type = 0;
   2239 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2240 }
   2241 
   2242 
   2243 /* first call udf_set_regid and then the suffix */
   2244 void
   2245 udf_set_regid(struct regid *regid, char const *name)
   2246 {
   2247 	memset(regid, 0, sizeof(struct regid));
   2248 	regid->flags    = 0;		/* not dirty and not protected */
   2249 	strcpy((char *) regid->id, name);
   2250 }
   2251 
   2252 
   2253 void
   2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2255 {
   2256 	uint16_t *ver;
   2257 
   2258 	ver  = (uint16_t *) regid->id_suffix;
   2259 	*ver = ump->logvol_info->min_udf_readver;
   2260 }
   2261 
   2262 
   2263 void
   2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2265 {
   2266 	uint16_t *ver;
   2267 
   2268 	ver  = (uint16_t *) regid->id_suffix;
   2269 	*ver = ump->logvol_info->min_udf_readver;
   2270 
   2271 	regid->id_suffix[2] = 4;	/* unix */
   2272 	regid->id_suffix[3] = 8;	/* NetBSD */
   2273 }
   2274 
   2275 
   2276 void
   2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2278 {
   2279 	regid->id_suffix[0] = 4;	/* unix */
   2280 	regid->id_suffix[1] = 8;	/* NetBSD */
   2281 }
   2282 
   2283 
   2284 void
   2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2286 {
   2287 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2288 	regid->id_suffix[1] = APP_VERSION_SUB;
   2289 }
   2290 
   2291 static int
   2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2293 	struct long_ad *parent, uint64_t unique_id)
   2294 {
   2295 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2296 	int fidsize = 40;
   2297 
   2298 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2299 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2300 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2301 	fid->icb = *parent;
   2302 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2303 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
   2304 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2305 
   2306 	return fidsize;
   2307 }
   2308 
   2309 /* --------------------------------------------------------------------- */
   2310 
   2311 /*
   2312  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2313  *
   2314  * (a) inside the file's (e)fe in the length of the extended attribute area
   2315  * before the allocation descriptors/filedata
   2316  *
   2317  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2318  *
   2319  * (c) in the e(fe)'s associated stream directory that can hold various
   2320  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2321  * for NT/Unix ACL's and OS/2 attributes.
   2322  *
   2323  * NOTE: Extended attributes are read randomly but allways written
   2324  * *atomicaly*. For ACL's this interface is propably different but not known
   2325  * to me yet.
   2326  *
   2327  * Order of extended attributes in a space :
   2328  *   ECMA 167 EAs
   2329  *   Non block aligned Implementation Use EAs
   2330  *   Block aligned Implementation Use EAs
   2331  *   Application Use EAs
   2332  */
   2333 
   2334 static int
   2335 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2336 {
   2337 	uint16_t   *spos;
   2338 
   2339 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2340 		/* checksum valid? */
   2341 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2342 		spos = (uint16_t *) implext->data;
   2343 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2344 			return EINVAL;
   2345 	}
   2346 	return 0;
   2347 }
   2348 
   2349 static void
   2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2351 {
   2352 	uint16_t   *spos;
   2353 
   2354 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2355 		/* set checksum */
   2356 		spos = (uint16_t *) implext->data;
   2357 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2358 	}
   2359 }
   2360 
   2361 
   2362 int
   2363 udf_extattr_search_intern(struct udf_node *node,
   2364 	uint32_t sattr, char const *sattrname,
   2365 	uint32_t *offsetp, uint32_t *lengthp)
   2366 {
   2367 	struct extattrhdr_desc    *eahdr;
   2368 	struct extattr_entry      *attrhdr;
   2369 	struct impl_extattr_entry *implext;
   2370 	uint32_t    offset, a_l, sector_size;
   2371 	 int32_t    l_ea;
   2372 	uint8_t    *pos;
   2373 	int         error;
   2374 
   2375 	/* get mountpoint */
   2376 	sector_size = node->ump->discinfo.sector_size;
   2377 
   2378 	/* get information from fe/efe */
   2379 	if (node->fe) {
   2380 		l_ea  = udf_rw32(node->fe->l_ea);
   2381 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2382 	} else {
   2383 		assert(node->efe);
   2384 		l_ea  = udf_rw32(node->efe->l_ea);
   2385 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2386 	}
   2387 
   2388 	/* something recorded here? */
   2389 	if (l_ea == 0)
   2390 		return ENOENT;
   2391 
   2392 	/* check extended attribute tag; what to do if it fails? */
   2393 	error = udf_check_tag(eahdr);
   2394 	if (error)
   2395 		return EINVAL;
   2396 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2397 		return EINVAL;
   2398 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2399 	if (error)
   2400 		return EINVAL;
   2401 
   2402 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2403 
   2404 	/* looking for Ecma-167 attributes? */
   2405 	offset = sizeof(struct extattrhdr_desc);
   2406 
   2407 	/* looking for either implemenation use or application use */
   2408 	if (sattr == 2048) {				/* [4/48.10.8] */
   2409 		offset = udf_rw32(eahdr->impl_attr_loc);
   2410 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2411 			return ENOENT;
   2412 	}
   2413 	if (sattr == 65536) {				/* [4/48.10.9] */
   2414 		offset = udf_rw32(eahdr->appl_attr_loc);
   2415 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2416 			return ENOENT;
   2417 	}
   2418 
   2419 	/* paranoia check offset and l_ea */
   2420 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2421 		return EINVAL;
   2422 
   2423 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2424 
   2425 	/* find our extended attribute  */
   2426 	l_ea -= offset;
   2427 	pos = (uint8_t *) eahdr + offset;
   2428 
   2429 	while (l_ea >= sizeof(struct extattr_entry)) {
   2430 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2431 		attrhdr = (struct extattr_entry *) pos;
   2432 		implext = (struct impl_extattr_entry *) pos;
   2433 
   2434 		/* get complete attribute length and check for roque values */
   2435 		a_l = udf_rw32(attrhdr->a_l);
   2436 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2437 				udf_rw32(attrhdr->type),
   2438 				attrhdr->subtype, a_l, l_ea));
   2439 		if ((a_l == 0) || (a_l > l_ea))
   2440 			return EINVAL;
   2441 
   2442 		if (attrhdr->type != sattr)
   2443 			goto next_attribute;
   2444 
   2445 		/* we might have found it! */
   2446 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2447 			*offsetp = offset;
   2448 			*lengthp = a_l;
   2449 			return 0;		/* success */
   2450 		}
   2451 
   2452 		/*
   2453 		 * Implementation use and application use extended attributes
   2454 		 * have a name to identify. They share the same structure only
   2455 		 * UDF implementation use extended attributes have a checksum
   2456 		 * we need to check
   2457 		 */
   2458 
   2459 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2460 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2461 			/* we have found our appl/implementation attribute */
   2462 			*offsetp = offset;
   2463 			*lengthp = a_l;
   2464 			return 0;		/* success */
   2465 		}
   2466 
   2467 next_attribute:
   2468 		/* next attribute */
   2469 		pos    += a_l;
   2470 		l_ea   -= a_l;
   2471 		offset += a_l;
   2472 	}
   2473 	/* not found */
   2474 	return ENOENT;
   2475 }
   2476 
   2477 
   2478 static void
   2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2480 	struct extattr_entry *extattr)
   2481 {
   2482 	struct file_entry      *fe;
   2483 	struct extfile_entry   *efe;
   2484 	struct extattrhdr_desc *extattrhdr;
   2485 	struct impl_extattr_entry *implext;
   2486 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2487 	uint32_t *l_eap, l_ad;
   2488 	uint16_t *spos;
   2489 	uint8_t *bpos, *data;
   2490 
   2491 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2492 		fe    = &dscr->fe;
   2493 		data  = fe->data;
   2494 		l_eap = &fe->l_ea;
   2495 		l_ad  = udf_rw32(fe->l_ad);
   2496 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2497 		efe   = &dscr->efe;
   2498 		data  = efe->data;
   2499 		l_eap = &efe->l_ea;
   2500 		l_ad  = udf_rw32(efe->l_ad);
   2501 	} else {
   2502 		panic("Bad tag passed to udf_extattr_insert_internal");
   2503 	}
   2504 
   2505 	/* can't append already written to file descriptors yet */
   2506 	assert(l_ad == 0);
   2507 	__USE(l_ad);
   2508 
   2509 	/* should have a header! */
   2510 	extattrhdr = (struct extattrhdr_desc *) data;
   2511 	l_ea = udf_rw32(*l_eap);
   2512 	if (l_ea == 0) {
   2513 		/* create empty extended attribute header */
   2514 		exthdr_len = sizeof(struct extattrhdr_desc);
   2515 
   2516 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2517 			/* loc */ 0);
   2518 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2519 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2520 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2521 
   2522 		/* record extended attribute header length */
   2523 		l_ea = exthdr_len;
   2524 		*l_eap = udf_rw32(l_ea);
   2525 	}
   2526 
   2527 	/* extract locations */
   2528 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2529 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2530 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2531 		impl_attr_loc = l_ea;
   2532 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2533 		appl_attr_loc = l_ea;
   2534 
   2535 	/* Ecma 167 EAs */
   2536 	if (udf_rw32(extattr->type) < 2048) {
   2537 		assert(impl_attr_loc == l_ea);
   2538 		assert(appl_attr_loc == l_ea);
   2539 	}
   2540 
   2541 	/* implementation use extended attributes */
   2542 	if (udf_rw32(extattr->type) == 2048) {
   2543 		assert(appl_attr_loc == l_ea);
   2544 
   2545 		/* calculate and write extended attribute header checksum */
   2546 		implext = (struct impl_extattr_entry *) extattr;
   2547 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2548 		spos = (uint16_t *) implext->data;
   2549 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2550 	}
   2551 
   2552 	/* application use extended attributes */
   2553 	assert(udf_rw32(extattr->type) != 65536);
   2554 	assert(appl_attr_loc == l_ea);
   2555 
   2556 	/* append the attribute at the end of the current space */
   2557 	bpos = data + udf_rw32(*l_eap);
   2558 	a_l  = udf_rw32(extattr->a_l);
   2559 
   2560 	/* update impl. attribute locations */
   2561 	if (udf_rw32(extattr->type) < 2048) {
   2562 		impl_attr_loc = l_ea + a_l;
   2563 		appl_attr_loc = l_ea + a_l;
   2564 	}
   2565 	if (udf_rw32(extattr->type) == 2048) {
   2566 		appl_attr_loc = l_ea + a_l;
   2567 	}
   2568 
   2569 	/* copy and advance */
   2570 	memcpy(bpos, extattr, a_l);
   2571 	l_ea += a_l;
   2572 	*l_eap = udf_rw32(l_ea);
   2573 
   2574 	/* do the `dance` again backwards */
   2575 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2576 		if (impl_attr_loc == l_ea)
   2577 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2578 		if (appl_attr_loc == l_ea)
   2579 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2580 	}
   2581 
   2582 	/* store offsets */
   2583 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2584 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2585 }
   2586 
   2587 
   2588 /* --------------------------------------------------------------------- */
   2589 
   2590 static int
   2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2592 {
   2593 	struct udf_mount       *ump;
   2594 	struct udf_logvol_info *lvinfo;
   2595 	struct impl_extattr_entry     *implext;
   2596 	struct vatlvext_extattr_entry  lvext;
   2597 	const char *extstr = "*UDF VAT LVExtension";
   2598 	uint64_t    vat_uniqueid;
   2599 	uint32_t    offset, a_l;
   2600 	uint8_t    *ea_start, *lvextpos;
   2601 	int         error;
   2602 
   2603 	/* get mountpoint and lvinfo */
   2604 	ump    = vat_node->ump;
   2605 	lvinfo = ump->logvol_info;
   2606 
   2607 	/* get information from fe/efe */
   2608 	if (vat_node->fe) {
   2609 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2610 		ea_start     = vat_node->fe->data;
   2611 	} else {
   2612 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2613 		ea_start     = vat_node->efe->data;
   2614 	}
   2615 
   2616 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2617 	if (error)
   2618 		return error;
   2619 
   2620 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2621 	error = udf_impl_extattr_check(implext);
   2622 	if (error)
   2623 		return error;
   2624 
   2625 	/* paranoia */
   2626 	if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2627 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2628 		return EINVAL;
   2629 	}
   2630 
   2631 	/*
   2632 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2633 	 * bug in the specification it might not be word aligned so
   2634 	 * copy first to avoid panics on some machines (!!)
   2635 	 */
   2636 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2637 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2638 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2639 
   2640 	/* check if it was updated the last time */
   2641 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2642 		lvinfo->num_files       = lvext.num_files;
   2643 		lvinfo->num_directories = lvext.num_directories;
   2644 		udf_update_logvolname(ump, lvext.logvol_id);
   2645 	} else {
   2646 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2647 		/* replace VAT LVExt by free space EA */
   2648 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2649 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2650 		udf_calc_impl_extattr_checksum(implext);
   2651 	}
   2652 
   2653 	return 0;
   2654 }
   2655 
   2656 
   2657 static int
   2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2659 {
   2660 	struct udf_mount       *ump;
   2661 	struct udf_logvol_info *lvinfo;
   2662 	struct impl_extattr_entry     *implext;
   2663 	struct vatlvext_extattr_entry  lvext;
   2664 	const char *extstr = "*UDF VAT LVExtension";
   2665 	uint64_t    vat_uniqueid;
   2666 	uint32_t    offset, a_l;
   2667 	uint8_t    *ea_start, *lvextpos;
   2668 	int         error;
   2669 
   2670 	/* get mountpoint and lvinfo */
   2671 	ump    = vat_node->ump;
   2672 	lvinfo = ump->logvol_info;
   2673 
   2674 	/* get information from fe/efe */
   2675 	if (vat_node->fe) {
   2676 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2677 		ea_start     = vat_node->fe->data;
   2678 	} else {
   2679 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2680 		ea_start     = vat_node->efe->data;
   2681 	}
   2682 
   2683 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2684 	if (error)
   2685 		return error;
   2686 	/* found, it existed */
   2687 
   2688 	/* paranoia */
   2689 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2690 	error = udf_impl_extattr_check(implext);
   2691 	if (error) {
   2692 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2693 		return error;
   2694 	}
   2695 	/* it is correct */
   2696 
   2697 	/*
   2698 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2699 	 * bug in the specification it might not be word aligned so
   2700 	 * copy first to avoid panics on some machines (!!)
   2701 	 */
   2702 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2703 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2704 
   2705 	lvext.unique_id_chk   = vat_uniqueid;
   2706 	lvext.num_files       = lvinfo->num_files;
   2707 	lvext.num_directories = lvinfo->num_directories;
   2708 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2709 
   2710 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2711 
   2712 	return 0;
   2713 }
   2714 
   2715 /* --------------------------------------------------------------------- */
   2716 
   2717 int
   2718 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2719 {
   2720 	struct udf_mount *ump = vat_node->ump;
   2721 
   2722 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2723 		return EINVAL;
   2724 
   2725 	memcpy(blob, ump->vat_table + offset, size);
   2726 	return 0;
   2727 }
   2728 
   2729 int
   2730 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2731 {
   2732 	struct udf_mount *ump = vat_node->ump;
   2733 	uint32_t offset_high;
   2734 	uint8_t *new_vat_table;
   2735 
   2736 	/* extent VAT allocation if needed */
   2737 	offset_high = offset + size;
   2738 	if (offset_high >= ump->vat_table_alloc_len) {
   2739 		/* realloc */
   2740 		new_vat_table = realloc(ump->vat_table,
   2741 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2742 			M_UDFVOLD, M_WAITOK);
   2743 		if (!new_vat_table) {
   2744 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2745 			return ENOMEM;
   2746 		}
   2747 		ump->vat_table = new_vat_table;
   2748 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2749 	}
   2750 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2751 
   2752 	memcpy(ump->vat_table + offset, blob, size);
   2753 	return 0;
   2754 }
   2755 
   2756 /* --------------------------------------------------------------------- */
   2757 
   2758 /* TODO support previous VAT location writeout */
   2759 static int
   2760 udf_update_vat_descriptor(struct udf_mount *ump)
   2761 {
   2762 	struct udf_node *vat_node = ump->vat_node;
   2763 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2764 	struct icb_tag *icbtag;
   2765 	struct udf_oldvat_tail *oldvat_tl;
   2766 	struct udf_vat *vat;
   2767 	struct regid *regid;
   2768 	uint64_t unique_id;
   2769 	uint32_t lb_size;
   2770 	uint8_t *raw_vat;
   2771 	int vat_length, impl_use_len, filetype, error;
   2772 
   2773 	KASSERT(vat_node);
   2774 	KASSERT(lvinfo);
   2775 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2776 
   2777 	/* get our new unique_id */
   2778 	unique_id = udf_advance_uniqueid(ump);
   2779 
   2780 	/* get information from fe/efe */
   2781 	if (vat_node->fe) {
   2782 		icbtag    = &vat_node->fe->icbtag;
   2783 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2784 	} else {
   2785 		icbtag = &vat_node->efe->icbtag;
   2786 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2787 	}
   2788 
   2789 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2790 	filetype = icbtag->file_type;
   2791 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2792 
   2793 	/* allocate piece to process head or tail of VAT file */
   2794 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2795 
   2796 	if (filetype == 0) {
   2797 		/*
   2798 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2799 		 * lvint if present.
   2800 		 */
   2801 		udf_update_vat_extattr_from_lvid(vat_node);
   2802 
   2803 		/* setup identifying regid */
   2804 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2805 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2806 
   2807 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2808 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2809 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2810 
   2811 		/* write out new tail of virtual allocation table file */
   2812 		error = udf_vat_write(vat_node, raw_vat,
   2813 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2814 	} else {
   2815 		/* compose the VAT2 header */
   2816 		vat_length = sizeof(struct udf_vat);
   2817 		vat = (struct udf_vat *) raw_vat;
   2818 
   2819 		error = udf_vat_read(vat_node, raw_vat, vat_length, 0);
   2820 		if (error)
   2821 			goto errout;
   2822 
   2823 		impl_use_len = udf_rw16(vat->impl_use_len);
   2824 		vat_length += impl_use_len;
   2825 
   2826 		error = udf_vat_read(vat_node, raw_vat, vat_length, 0);
   2827 		if (error)
   2828 			goto errout;
   2829 
   2830 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2831 		vat->prev_vat         = udf_rw32(0xffffffff);
   2832 		vat->num_files        = lvinfo->num_files;
   2833 		vat->num_directories  = lvinfo->num_directories;
   2834 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2835 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2836 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2837 
   2838 		if (impl_use_len >= sizeof(struct regid)) {
   2839 			/* insert our implementation identification */
   2840 			memset(vat->data, 0, impl_use_len);
   2841 			regid = (struct regid *) vat->data;
   2842 			udf_set_regid(regid, IMPL_NAME);
   2843 			udf_add_app_regid(ump, regid);
   2844 		} else {
   2845 			if (impl_use_len)
   2846 				memset(vat->data, 0, impl_use_len);
   2847 			vat->impl_use_len = 0;
   2848 		}
   2849 		error = udf_vat_write(vat_node, raw_vat, vat_length, 0);
   2850 	}
   2851 errout:
   2852 	free(raw_vat, M_TEMP);
   2853 
   2854 	return error;	/* success! */
   2855 }
   2856 
   2857 
   2858 int
   2859 udf_writeout_vat(struct udf_mount *ump)
   2860 {
   2861 	struct udf_node *vat_node = ump->vat_node;
   2862 	int error;
   2863 
   2864 	KASSERT(vat_node);
   2865 
   2866 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2867 
   2868 //	mutex_enter(&ump->allocate_mutex);
   2869 	udf_update_vat_descriptor(ump);
   2870 
   2871 	/* write out the VAT contents ; TODO intelligent writing */
   2872 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2873 		ump->vat_table, ump->vat_table_len, 0,
   2874 		UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
   2875 	if (error) {
   2876 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2877 		goto out;
   2878 	}
   2879 
   2880 //	mutex_exit(&ump->allocate_mutex);
   2881 
   2882 	error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
   2883 	if (error)
   2884 		goto out;
   2885 	error = VOP_FSYNC(ump->vat_node->vnode,
   2886 			FSCRED, FSYNC_WAIT, 0, 0);
   2887 	if (error)
   2888 		printf("udf_writeout_vat: error writing VAT node!\n");
   2889 out:
   2890 	return error;
   2891 }
   2892 
   2893 /* --------------------------------------------------------------------- */
   2894 
   2895 /*
   2896  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2897  * descriptor. If OK, read in complete VAT file.
   2898  */
   2899 
   2900 static int
   2901 udf_check_for_vat(struct udf_node *vat_node)
   2902 {
   2903 	struct udf_mount *ump;
   2904 	struct icb_tag   *icbtag;
   2905 	struct timestamp *mtime;
   2906 	struct udf_vat   *vat;
   2907 	struct udf_oldvat_tail *oldvat_tl;
   2908 	struct udf_logvol_info *lvinfo;
   2909 	uint64_t  unique_id;
   2910 	uint32_t  vat_length;
   2911 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2912 	uint32_t  sector_size;
   2913 	uint32_t *raw_vat;
   2914 	uint8_t  *vat_table;
   2915 	char     *regid_name;
   2916 	int filetype;
   2917 	int error;
   2918 
   2919 	/* vat_length is really 64 bits though impossible */
   2920 
   2921 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2922 	if (!vat_node)
   2923 		return ENOENT;
   2924 
   2925 	/* get mount info */
   2926 	ump = vat_node->ump;
   2927 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2928 
   2929 	/* check assertions */
   2930 	assert(vat_node->fe || vat_node->efe);
   2931 	assert(ump->logvol_integrity);
   2932 
   2933 	/* set vnode type to regular file or we can't read from it! */
   2934 	vat_node->vnode->v_type = VREG;
   2935 
   2936 	/* get information from fe/efe */
   2937 	if (vat_node->fe) {
   2938 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2939 		icbtag    = &vat_node->fe->icbtag;
   2940 		mtime     = &vat_node->fe->mtime;
   2941 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2942 	} else {
   2943 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2944 		icbtag = &vat_node->efe->icbtag;
   2945 		mtime  = &vat_node->efe->mtime;
   2946 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2947 	}
   2948 
   2949 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2950 	filetype = icbtag->file_type;
   2951 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2952 		return ENOENT;
   2953 
   2954 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2955 
   2956 	vat_table_alloc_len =
   2957 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2958 			* UDF_VAT_CHUNKSIZE;
   2959 
   2960 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK);
   2961 	if (vat_table == NULL) {
   2962 		printf("allocation of %d bytes failed for VAT\n",
   2963 			vat_table_alloc_len);
   2964 		return ENOMEM;
   2965 	}
   2966 
   2967 	/* allocate piece to read in head or tail of VAT file */
   2968 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2969 
   2970 	/*
   2971 	 * check contents of the file if its the old 1.50 VAT table format.
   2972 	 * Its notoriously broken and allthough some implementations support an
   2973 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2974 	 * to be useable since a lot of implementations don't maintain it.
   2975 	 */
   2976 	lvinfo = ump->logvol_info;
   2977 
   2978 	if (filetype == 0) {
   2979 		/* definition */
   2980 		vat_offset  = 0;
   2981 		vat_entries = (vat_length-36)/4;
   2982 
   2983 		/* read in tail of virtual allocation table file */
   2984 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2985 				(uint8_t *) raw_vat,
   2986 				sizeof(struct udf_oldvat_tail),
   2987 				vat_entries * 4,
   2988 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2989 				NULL, NULL);
   2990 		if (error)
   2991 			goto out;
   2992 
   2993 		/* check 1.50 VAT */
   2994 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2995 		regid_name = (char *) oldvat_tl->id.id;
   2996 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2997 		if (error) {
   2998 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2999 			error = ENOENT;
   3000 			goto out;
   3001 		}
   3002 
   3003 		/*
   3004 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   3005 		 * if present.
   3006 		 */
   3007 		udf_update_lvid_from_vat_extattr(vat_node);
   3008 	} else {
   3009 		/* read in head of virtual allocation table file */
   3010 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   3011 				(uint8_t *) raw_vat,
   3012 				sizeof(struct udf_vat), 0,
   3013 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   3014 				NULL, NULL);
   3015 		if (error)
   3016 			goto out;
   3017 
   3018 		/* definition */
   3019 		vat = (struct udf_vat *) raw_vat;
   3020 		vat_offset  = udf_rw16(vat->header_len);
   3021 		vat_entries = (vat_length - vat_offset)/4;
   3022 
   3023 		assert(lvinfo);
   3024 		lvinfo->num_files        = vat->num_files;
   3025 		lvinfo->num_directories  = vat->num_directories;
   3026 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   3027 		lvinfo->min_udf_writever = vat->min_udf_writever;
   3028 		lvinfo->max_udf_writever = vat->max_udf_writever;
   3029 
   3030 		udf_update_logvolname(ump, vat->logvol_id);
   3031 	}
   3032 
   3033 	/* read in complete VAT file */
   3034 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   3035 			vat_table,
   3036 			vat_length, 0,
   3037 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   3038 			NULL, NULL);
   3039 	if (error)
   3040 		printf("read in of complete VAT file failed (error %d)\n",
   3041 			error);
   3042 	if (error)
   3043 		goto out;
   3044 
   3045 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   3046 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
   3047 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3048 	ump->logvol_integrity->time           = *mtime;
   3049 
   3050 	/* if we're updating, free old allocated space */
   3051 	if (ump->vat_table)
   3052 		free(ump->vat_table, M_UDFVOLD);
   3053 
   3054 	ump->vat_table_len = vat_length;
   3055 	ump->vat_table_alloc_len = vat_table_alloc_len;
   3056 	ump->vat_table   = vat_table;
   3057 	ump->vat_offset  = vat_offset;
   3058 	ump->vat_entries = vat_entries;
   3059 	ump->vat_last_free_lb = 0;		/* start at beginning */
   3060 
   3061 out:
   3062 	if (error) {
   3063 		if (vat_table)
   3064 			free(vat_table, M_UDFVOLD);
   3065 	}
   3066 	free(raw_vat, M_TEMP);
   3067 
   3068 	return error;
   3069 }
   3070 
   3071 /* --------------------------------------------------------------------- */
   3072 
   3073 static int
   3074 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   3075 {
   3076 	struct udf_node *vat_node, *accepted_vat_node;
   3077 	struct long_ad	 icb_loc;
   3078 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   3079 	int error;
   3080 
   3081 	/* mapping info not needed */
   3082 	mapping = mapping;
   3083 
   3084 	DPRINTF(VOLUMES, ("Searching VAT\n"));
   3085 
   3086 	/*
   3087 	 * Start reading forward in blocks from the first possible vat
   3088 	 * location. If not found in this block, start again a bit before
   3089 	 * until we get a hit.
   3090 	 */
   3091 	late_vat_loc = ump->last_possible_vat_location;
   3092 	early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
   3093 
   3094 	DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
   3095 	accepted_vat_node = NULL;
   3096 	do {
   3097 		vat_loc = early_vat_loc;
   3098 		DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
   3099 			early_vat_loc, late_vat_loc));
   3100 		do {
   3101 			DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
   3102 				vat_loc));
   3103 			icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   3104 			icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   3105 
   3106 			error = udf_get_node(ump, &icb_loc, &vat_node);
   3107 			if (!error) {
   3108 				error = udf_check_for_vat(vat_node);
   3109 				vat_node->i_flags = 0;	/* reset access */
   3110 			}
   3111 			if (!error) {
   3112 				DPRINTFIF(VOLUMES, !error,
   3113 					("VAT candidate accepted at %d\n",
   3114 					 vat_loc));
   3115 				if (accepted_vat_node)
   3116 					vput(accepted_vat_node->vnode);
   3117 				accepted_vat_node = vat_node;
   3118 				accepted_vat_node->i_flags |= IN_NO_DELETE;
   3119 				vat_node = NULL;
   3120 			}
   3121 			if (vat_node)
   3122 				vput(vat_node->vnode);
   3123 			vat_loc++;	/* walk forward */
   3124 		} while (vat_loc <= late_vat_loc);
   3125 		if (accepted_vat_node)
   3126 			break;
   3127 
   3128 		early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
   3129 		late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
   3130 	} while (late_vat_loc > ump->first_possible_vat_location);
   3131 
   3132 	/* keep our last accepted VAT node around */
   3133 	if (accepted_vat_node) {
   3134 		/* revert no delete flag again to avoid potential side effects */
   3135 		accepted_vat_node->i_flags &= ~IN_NO_DELETE;
   3136 
   3137 		UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
   3138 		ump->vat_node = accepted_vat_node;
   3139 		return 0;
   3140 	}
   3141 
   3142 	return error;
   3143 }
   3144 
   3145 /* --------------------------------------------------------------------- */
   3146 
   3147 static int
   3148 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   3149 {
   3150 	union dscrptr *dscr;
   3151 	struct part_map_spare *pms = &mapping->pms;
   3152 	uint32_t lb_num;
   3153 	int spar, error;
   3154 
   3155 	/*
   3156 	 * The partition mapping passed on to us specifies the information we
   3157 	 * need to locate and initialise the sparable partition mapping
   3158 	 * information we need.
   3159 	 */
   3160 
   3161 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   3162 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   3163 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   3164 
   3165 	for (spar = 0; spar < pms->n_st; spar++) {
   3166 		lb_num = pms->st_loc[spar];
   3167 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3168 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3169 		if (!error && dscr) {
   3170 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3171 				if (ump->sparing_table)
   3172 					free(ump->sparing_table, M_UDFVOLD);
   3173 				ump->sparing_table = &dscr->spt;
   3174 				dscr = NULL;
   3175 				DPRINTF(VOLUMES,
   3176 				    ("Sparing table accepted (%d entries)\n",
   3177 				     udf_rw16(ump->sparing_table->rt_l)));
   3178 				break;	/* we're done */
   3179 			}
   3180 		}
   3181 		if (dscr)
   3182 			free(dscr, M_UDFVOLD);
   3183 	}
   3184 
   3185 	if (ump->sparing_table)
   3186 		return 0;
   3187 
   3188 	return ENOENT;
   3189 }
   3190 
   3191 /* --------------------------------------------------------------------- */
   3192 
   3193 static int
   3194 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3195 {
   3196 	struct part_map_meta *pmm = &mapping->pmm;
   3197 	struct long_ad	 icb_loc;
   3198 	struct vnode *vp;
   3199 	uint16_t raw_phys_part, phys_part;
   3200 	int error;
   3201 
   3202 	/*
   3203 	 * BUGALERT: some rogue implementations use random physical
   3204 	 * partition numbers to break other implementations so lookup
   3205 	 * the number.
   3206 	 */
   3207 
   3208 	/* extract our allocation parameters set up on format */
   3209 	ump->metadata_alloc_unit_size     = udf_rw32(mapping->pmm.alloc_unit_size);
   3210 	ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
   3211 	ump->metadata_flags = mapping->pmm.flags;
   3212 
   3213 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3214 	raw_phys_part = udf_rw16(pmm->part_num);
   3215 	phys_part = udf_find_raw_phys(ump, raw_phys_part);
   3216 
   3217 	icb_loc.loc.part_num = udf_rw16(phys_part);
   3218 
   3219 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3220 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3221 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3222 	if (ump->metadata_node) {
   3223 		vp = ump->metadata_node->vnode;
   3224 		UDF_SET_SYSTEMFILE(vp);
   3225 	}
   3226 
   3227 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3228 	if (icb_loc.loc.lb_num != -1) {
   3229 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3230 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3231 		if (ump->metadatamirror_node) {
   3232 			vp = ump->metadatamirror_node->vnode;
   3233 			UDF_SET_SYSTEMFILE(vp);
   3234 		}
   3235 	}
   3236 
   3237 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3238 	if (icb_loc.loc.lb_num != -1) {
   3239 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3240 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3241 		if (ump->metadatabitmap_node) {
   3242 			vp = ump->metadatabitmap_node->vnode;
   3243 			UDF_SET_SYSTEMFILE(vp);
   3244 		}
   3245 	}
   3246 
   3247 	/* if we're mounting read-only we relax the requirements */
   3248 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3249 		error = EFAULT;
   3250 		if (ump->metadata_node)
   3251 			error = 0;
   3252 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3253 			printf( "udf mount: Metadata file not readable, "
   3254 				"substituting Metadata copy file\n");
   3255 			ump->metadata_node = ump->metadatamirror_node;
   3256 			ump->metadatamirror_node = NULL;
   3257 			error = 0;
   3258 		}
   3259 	} else {
   3260 		/* mounting read/write */
   3261 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3262 		if (error)
   3263 			error = EROFS;
   3264 	}
   3265 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3266 				   "metadata files\n"));
   3267 	return error;
   3268 }
   3269 
   3270 /* --------------------------------------------------------------------- */
   3271 
   3272 int
   3273 udf_read_vds_tables(struct udf_mount *ump)
   3274 {
   3275 	union udf_pmap *mapping;
   3276 	/* struct udf_args *args = &ump->mount_args; */
   3277 	uint32_t n_pm;
   3278 	uint32_t log_part;
   3279 	uint8_t *pmap_pos;
   3280 	int pmap_size;
   3281 	int error;
   3282 
   3283 	/* Iterate (again) over the part mappings for locations   */
   3284 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3285 	pmap_pos =  ump->logical_vol->maps;
   3286 
   3287 	for (log_part = 0; log_part < n_pm; log_part++) {
   3288 		mapping = (union udf_pmap *) pmap_pos;
   3289 		switch (ump->vtop_tp[log_part]) {
   3290 		case UDF_VTOP_TYPE_PHYS :
   3291 			/* nothing */
   3292 			break;
   3293 		case UDF_VTOP_TYPE_VIRT :
   3294 			/* search and load VAT */
   3295 			error = udf_search_vat(ump, mapping);
   3296 			if (error)
   3297 				return ENOENT;
   3298 			break;
   3299 		case UDF_VTOP_TYPE_SPARABLE :
   3300 			/* load one of the sparable tables */
   3301 			error = udf_read_sparables(ump, mapping);
   3302 			if (error)
   3303 				return ENOENT;
   3304 			break;
   3305 		case UDF_VTOP_TYPE_META :
   3306 			/* load the associated file descriptors */
   3307 			error = udf_read_metadata_nodes(ump, mapping);
   3308 			if (error)
   3309 				return ENOENT;
   3310 			break;
   3311 		default:
   3312 			break;
   3313 		}
   3314 		pmap_size  = pmap_pos[1];
   3315 		pmap_pos  += pmap_size;
   3316 	}
   3317 
   3318 	/* read in and check unallocated and free space info if writing */
   3319 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3320 		error = udf_read_physical_partition_spacetables(ump);
   3321 		if (error)
   3322 			return error;
   3323 
   3324 		/* also read in metadata partition spacebitmap if defined */
   3325 		error = udf_read_metadata_partition_spacetable(ump);
   3326 			return error;
   3327 	}
   3328 
   3329 	return 0;
   3330 }
   3331 
   3332 /* --------------------------------------------------------------------- */
   3333 
   3334 int
   3335 udf_read_rootdirs(struct udf_mount *ump)
   3336 {
   3337 	union dscrptr *dscr;
   3338 	/* struct udf_args *args = &ump->mount_args; */
   3339 	struct udf_node *rootdir_node, *streamdir_node;
   3340 	struct long_ad  fsd_loc, *dir_loc;
   3341 	uint32_t lb_num, dummy;
   3342 	uint32_t fsd_len;
   3343 	int dscr_type;
   3344 	int error;
   3345 
   3346 	/* TODO implement FSD reading in separate function like integrity? */
   3347 	/* get fileset descriptor sequence */
   3348 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3349 	fsd_len = udf_rw32(fsd_loc.len);
   3350 
   3351 	dscr  = NULL;
   3352 	error = 0;
   3353 	while (fsd_len || error) {
   3354 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3355 		/* translate fsd_loc to lb_num */
   3356 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3357 		if (error)
   3358 			break;
   3359 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3360 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3361 		/* end markers */
   3362 		if (error || (dscr == NULL))
   3363 			break;
   3364 
   3365 		/* analyse */
   3366 		dscr_type = udf_rw16(dscr->tag.id);
   3367 		if (dscr_type == TAGID_TERM)
   3368 			break;
   3369 		if (dscr_type != TAGID_FSD) {
   3370 			free(dscr, M_UDFVOLD);
   3371 			return ENOENT;
   3372 		}
   3373 
   3374 		/*
   3375 		 * TODO check for multiple fileset descriptors; its only
   3376 		 * picking the last now. Also check for FSD
   3377 		 * correctness/interpretability
   3378 		 */
   3379 
   3380 		/* update */
   3381 		if (ump->fileset_desc) {
   3382 			free(ump->fileset_desc, M_UDFVOLD);
   3383 		}
   3384 		ump->fileset_desc = &dscr->fsd;
   3385 		dscr = NULL;
   3386 
   3387 		/* continue to the next fsd */
   3388 		fsd_len -= ump->discinfo.sector_size;
   3389 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3390 
   3391 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3392 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3393 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3394 			fsd_loc = ump->fileset_desc->next_ex;
   3395 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3396 		}
   3397 	}
   3398 	if (dscr)
   3399 		free(dscr, M_UDFVOLD);
   3400 
   3401 	/* there has to be one */
   3402 	if (ump->fileset_desc == NULL)
   3403 		return ENOENT;
   3404 
   3405 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3406 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3407 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3408 
   3409 	/*
   3410 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3411 	 * the system stream dir. Some files in the system streamdir are not
   3412 	 * wanted in this implementation since they are not maintained. If
   3413 	 * writing is enabled we'll delete these files if they exist.
   3414 	 */
   3415 
   3416 	rootdir_node = streamdir_node = NULL;
   3417 	dir_loc = NULL;
   3418 
   3419 	/* try to read in the rootdir */
   3420 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3421 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3422 	if (error)
   3423 		return ENOENT;
   3424 
   3425 	/* aparently it read in fine */
   3426 
   3427 	/*
   3428 	 * Try the system stream directory; not very likely in the ones we
   3429 	 * test, but for completeness.
   3430 	 */
   3431 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3432 	if (udf_rw32(dir_loc->len)) {
   3433 		printf("udf_read_rootdirs: streamdir defined ");
   3434 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3435 		if (error) {
   3436 			printf("but error in streamdir reading\n");
   3437 		} else {
   3438 			printf("but ignored\n");
   3439 			/*
   3440 			 * TODO process streamdir `baddies' i.e. files we dont
   3441 			 * want if R/W
   3442 			 */
   3443 		}
   3444 	}
   3445 
   3446 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3447 
   3448 	/* release the vnodes again; they'll be auto-recycled later */
   3449 	if (streamdir_node) {
   3450 		vput(streamdir_node->vnode);
   3451 	}
   3452 	if (rootdir_node) {
   3453 		vput(rootdir_node->vnode);
   3454 	}
   3455 
   3456 	return 0;
   3457 }
   3458 
   3459 /* --------------------------------------------------------------------- */
   3460 
   3461 /* To make absolutely sure we are NOT returning zero, add one :) */
   3462 
   3463 long
   3464 udf_get_node_id(const struct long_ad *icbptr)
   3465 {
   3466 	/* ought to be enough since each mountpoint has its own chain */
   3467 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3468 }
   3469 
   3470 
   3471 int
   3472 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
   3473 {
   3474 	if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
   3475 		return -1;
   3476 	if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
   3477 		return 1;
   3478 
   3479 	if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
   3480 		return -1;
   3481 	if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
   3482 		return 1;
   3483 
   3484 	return 0;
   3485 }
   3486 
   3487 
   3488 static int
   3489 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
   3490 {
   3491 	const struct udf_node *a_node = a;
   3492 	const struct udf_node *b_node = b;
   3493 
   3494 	return udf_compare_icb(&a_node->loc, &b_node->loc);
   3495 }
   3496 
   3497 
   3498 static int
   3499 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
   3500 {
   3501 	const struct udf_node *a_node = a;
   3502 	const struct long_ad * const icb = key;
   3503 
   3504 	return udf_compare_icb(&a_node->loc, icb);
   3505 }
   3506 
   3507 
   3508 static const rb_tree_ops_t udf_node_rbtree_ops = {
   3509 	.rbto_compare_nodes = udf_compare_rbnodes,
   3510 	.rbto_compare_key = udf_compare_rbnode_icb,
   3511 	.rbto_node_offset = offsetof(struct udf_node, rbnode),
   3512 	.rbto_context = NULL
   3513 };
   3514 
   3515 
   3516 void
   3517 udf_init_nodes_tree(struct udf_mount *ump)
   3518 {
   3519 
   3520 	rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
   3521 }
   3522 
   3523 
   3524 /* --------------------------------------------------------------------- */
   3525 
   3526 static int
   3527 udf_validate_session_start(struct udf_mount *ump)
   3528 {
   3529 	struct mmc_trackinfo trackinfo;
   3530 	struct vrs_desc *vrs;
   3531 	uint32_t tracknr, sessionnr, sector, sector_size;
   3532 	uint32_t iso9660_vrs, write_track_start;
   3533 	uint8_t *buffer, *blank, *pos;
   3534 	int blks, max_sectors, vrs_len;
   3535 	int error;
   3536 
   3537 	/* disc appendable? */
   3538 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
   3539 		return EROFS;
   3540 
   3541 	/* already written here? if so, there should be an ISO VDS */
   3542 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
   3543 		return 0;
   3544 
   3545 	/*
   3546 	 * Check if the first track of the session is blank and if so, copy or
   3547 	 * create a dummy ISO descriptor so the disc is valid again.
   3548 	 */
   3549 
   3550 	tracknr = ump->discinfo.first_track_last_session;
   3551 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
   3552 	trackinfo.tracknr = tracknr;
   3553 	error = udf_update_trackinfo(ump, &trackinfo);
   3554 	if (error)
   3555 		return error;
   3556 
   3557 	udf_dump_trackinfo(&trackinfo);
   3558 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
   3559 	KASSERT(trackinfo.sessionnr > 1);
   3560 
   3561 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
   3562 	write_track_start = trackinfo.next_writable;
   3563 
   3564 	/* we have to copy the ISO VRS from a former session */
   3565 	DPRINTF(VOLUMES, ("validate_session_start: "
   3566 			"blank or reserved track, copying VRS\n"));
   3567 
   3568 	/* sessionnr should be the session we're mounting */
   3569 	sessionnr = ump->mount_args.sessionnr;
   3570 
   3571 	/* start at the first track */
   3572 	tracknr   = ump->discinfo.first_track;
   3573 	while (tracknr <= ump->discinfo.num_tracks) {
   3574 		trackinfo.tracknr = tracknr;
   3575 		error = udf_update_trackinfo(ump, &trackinfo);
   3576 		if (error) {
   3577 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3578 			return error;
   3579 		}
   3580 		if (trackinfo.sessionnr == sessionnr)
   3581 			break;
   3582 		tracknr++;
   3583 	}
   3584 	if (trackinfo.sessionnr != sessionnr) {
   3585 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3586 		return ENOENT;
   3587 	}
   3588 
   3589 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
   3590 	udf_dump_trackinfo(&trackinfo);
   3591 
   3592         /*
   3593          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3594          * minimum ISO `sector size' 2048
   3595          */
   3596 	sector_size = ump->discinfo.sector_size;
   3597 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3598 		 + trackinfo.track_start;
   3599 
   3600 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
   3601 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
   3602 	blks = MAX(1, 2048 / sector_size);
   3603 
   3604 	error = 0;
   3605 	for (sector = 0; sector < max_sectors; sector += blks) {
   3606 		pos = buffer + sector * sector_size;
   3607 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
   3608 			iso9660_vrs + sector, blks);
   3609 		if (error)
   3610 			break;
   3611 		/* check this ISO descriptor */
   3612 		vrs = (struct vrs_desc *) pos;
   3613 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
   3614 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
   3615 			continue;
   3616 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
   3617 			continue;
   3618 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
   3619 			continue;
   3620 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
   3621 			continue;
   3622 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
   3623 			continue;
   3624 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
   3625 			break;
   3626 		/* now what? for now, end of sequence */
   3627 		break;
   3628 	}
   3629 	vrs_len = sector + blks;
   3630 	if (error) {
   3631 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
   3632 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
   3633 
   3634 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
   3635 
   3636 		vrs = (struct vrs_desc *) (buffer);
   3637 		vrs->struct_type = 0;
   3638 		vrs->version     = 1;
   3639 		memcpy(vrs->identifier,VRS_BEA01, 5);
   3640 
   3641 		vrs = (struct vrs_desc *) (buffer + 2048);
   3642 		vrs->struct_type = 0;
   3643 		vrs->version     = 1;
   3644 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   3645 			memcpy(vrs->identifier,VRS_NSR02, 5);
   3646 		} else {
   3647 			memcpy(vrs->identifier,VRS_NSR03, 5);
   3648 		}
   3649 
   3650 		vrs = (struct vrs_desc *) (buffer + 4096);
   3651 		vrs->struct_type = 0;
   3652 		vrs->version     = 1;
   3653 		memcpy(vrs->identifier, VRS_TEA01, 5);
   3654 
   3655 		vrs_len = 3*blks;
   3656 	}
   3657 
   3658 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
   3659 
   3660         /*
   3661          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3662          * minimum ISO `sector size' 2048
   3663          */
   3664 	sector_size = ump->discinfo.sector_size;
   3665 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3666 		 + write_track_start;
   3667 
   3668 	/* write out 32 kb */
   3669 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
   3670 	memset(blank, 0, sector_size);
   3671 	error = 0;
   3672 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
   3673 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3674 			blank, sector, 1);
   3675 		if (error)
   3676 			break;
   3677 	}
   3678 	if (!error) {
   3679 		/* write out our ISO VRS */
   3680 		KASSERT(sector == iso9660_vrs);
   3681 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
   3682 				sector, vrs_len);
   3683 		sector += vrs_len;
   3684 	}
   3685 	if (!error) {
   3686 		/* fill upto the first anchor at S+256 */
   3687 		for (; sector < write_track_start+256; sector++) {
   3688 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3689 				blank, sector, 1);
   3690 			if (error)
   3691 				break;
   3692 		}
   3693 	}
   3694 	if (!error) {
   3695 		/* write out anchor; write at ABSOLUTE place! */
   3696 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
   3697 			(union dscrptr *) ump->anchors[0], sector, sector);
   3698 		if (error)
   3699 			printf("writeout of anchor failed!\n");
   3700 	}
   3701 
   3702 	free(blank, M_TEMP);
   3703 	free(buffer, M_TEMP);
   3704 
   3705 	if (error)
   3706 		printf("udf_open_session: error writing iso vrs! : "
   3707 				"leaving disc in compromised state!\n");
   3708 
   3709 	/* synchronise device caches */
   3710 	(void) udf_synchronise_caches(ump);
   3711 
   3712 	return error;
   3713 }
   3714 
   3715 
   3716 int
   3717 udf_open_logvol(struct udf_mount *ump)
   3718 {
   3719 	int logvol_integrity;
   3720 	int error;
   3721 
   3722 	/* already/still open? */
   3723 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3724 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3725 		return 0;
   3726 
   3727 	/* can we open it ? */
   3728 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3729 		return EROFS;
   3730 
   3731 	/* setup write parameters */
   3732 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3733 	if ((error = udf_setup_writeparams(ump)) != 0)
   3734 		return error;
   3735 
   3736 	/* determine data and metadata tracks (most likely same) */
   3737 	error = udf_search_writing_tracks(ump);
   3738 	if (error) {
   3739 		/* most likely lack of space */
   3740 		printf("udf_open_logvol: error searching writing tracks\n");
   3741 		return EROFS;
   3742 	}
   3743 
   3744 	/* writeout/update lvint on disc or only in memory */
   3745 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3746 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3747 		/* TODO optional track reservation opening */
   3748 		error = udf_validate_session_start(ump);
   3749 		if (error)
   3750 			return error;
   3751 
   3752 		/* determine data and metadata tracks again */
   3753 		error = udf_search_writing_tracks(ump);
   3754 
   3755 		if (ump->lvclose & UDF_WRITE_VAT) {
   3756 			/*
   3757 			 * we writeout the VAT to get a self-sustained session
   3758 			 * for fsck
   3759 			 */
   3760 			DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3761 
   3762 			/* write out the VAT data and all its descriptors */
   3763 			DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3764 			udf_writeout_vat(ump);
   3765 
   3766 			/* force everything to be synchronized on the device */
   3767 			(void) udf_synchronise_caches(ump);
   3768 		}
   3769 	}
   3770 
   3771 	/* mark it open */
   3772 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3773 
   3774 	/* do we need to write it out? */
   3775 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3776 		error = udf_writeout_lvint(ump, ump->lvopen);
   3777 		/* if we couldn't write it mark it closed again */
   3778 		if (error) {
   3779 			ump->logvol_integrity->integrity_type =
   3780 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3781 			return error;
   3782 		}
   3783 	}
   3784 
   3785 	return 0;
   3786 }
   3787 
   3788 
   3789 int
   3790 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3791 {
   3792 	struct vnode *devvp = ump->devvp;
   3793 	struct mmc_op mmc_op;
   3794 	uint32_t phys;
   3795 	int logvol_integrity;
   3796 	int error = 0, error1 = 0, error2 = 0;
   3797 	int tracknr;
   3798 	int nvats, n, relblk, wrtrack_skew, nok;
   3799 
   3800 	/* already/still closed? */
   3801 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3802 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3803 		return 0;
   3804 
   3805 	/* writeout/update lvint or write out VAT */
   3806 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
   3807 #ifdef DIAGNOSTIC
   3808 	if (ump->lvclose & UDF_CLOSE_SESSION)
   3809 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
   3810 #endif
   3811 
   3812 	if (ump->lvclose & UDF_WRITE_VAT) {
   3813 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3814 
   3815 		/* write out the VAT data and all its descriptors */
   3816 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3817 		udf_writeout_vat(ump);
   3818 
   3819 		/*
   3820 		 * For bug-compatibility with Windows, the last VAT sector
   3821 		 * must be a multiple of 16/32 from the start of the track.
   3822 		 * To allow for scratches, write out at least a 32 pieces.
   3823 		 */
   3824 		phys = ump->data_track.track_start;
   3825 		wrtrack_skew = phys % 32;
   3826 
   3827 		phys = ump->data_track.next_writable;
   3828 		relblk = phys % 32;
   3829 		nvats = 32 + 32 - (relblk - wrtrack_skew);
   3830 
   3831 #if notyet
   3832 		/*
   3833 		 * TODO calculate the available space and if the disc is
   3834 		 * allmost full, write out till end-256-1 with banks, write
   3835 		 * AVDP and fill up with VATs, then close session and close
   3836 		 * disc.
   3837 		 */
   3838 		if (ump->lvclose & UDF_FINALISE_DISC) {
   3839 			error = udf_write_phys_dscr_sync(ump, NULL,
   3840 					UDF_C_FLOAT_DSCR,
   3841 					(union dscrptr *) ump->anchors[0],
   3842 					0, 0);
   3843 			if (error)
   3844 				printf("writeout of anchor failed!\n");
   3845 
   3846 			/* pad space with VAT ICBs */
   3847 			nvats = 256;
   3848 		}
   3849 #endif
   3850 
   3851 		/* write out a number of VAT nodes */
   3852 		nok = 0;
   3853 		for (n = 0; n < nvats; n++) {
   3854 			/* will now only write last FE/EFE */
   3855 			ump->vat_node->i_flags |= IN_MODIFIED;
   3856 			error = VOP_FSYNC(ump->vat_node->vnode,
   3857 					FSCRED, FSYNC_WAIT, 0, 0);
   3858 			if (!error)
   3859 				nok++;
   3860 		}
   3861 		/* force everything to be synchronized on the device */
   3862 		(void) udf_synchronise_caches(ump);
   3863 
   3864 		if (nok < 14) {
   3865 			/* arbitrary; but at least one or two CD frames */
   3866 			printf("writeout of at least 14 VATs failed\n");
   3867 			return error;
   3868 		}
   3869 	}
   3870 
   3871 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
   3872 
   3873 	/* finish closing of session */
   3874 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3875 		DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
   3876 			"as requested\n"));
   3877 		error = udf_validate_session_start(ump);
   3878 		if (error)
   3879 			return error;
   3880 
   3881 		(void) udf_synchronise_caches(ump);
   3882 
   3883 		/* close all associated tracks */
   3884 		tracknr = ump->discinfo.first_track_last_session;
   3885 		error = 0;
   3886 		while (tracknr <= ump->discinfo.last_track_last_session) {
   3887 			DPRINTF(VOLUMES, ("\tclosing possible open "
   3888 				"track %d\n", tracknr));
   3889 			memset(&mmc_op, 0, sizeof(mmc_op));
   3890 			mmc_op.operation   = MMC_OP_CLOSETRACK;
   3891 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3892 			mmc_op.tracknr     = tracknr;
   3893 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3894 					FKIOCTL, NOCRED);
   3895 			if (error)
   3896 				printf("udf_close_logvol: closing of "
   3897 					"track %d failed\n", tracknr);
   3898 			tracknr ++;
   3899 		}
   3900 		if (!error) {
   3901 			DPRINTF(VOLUMES, ("closing session\n"));
   3902 			memset(&mmc_op, 0, sizeof(mmc_op));
   3903 			mmc_op.operation   = MMC_OP_CLOSESESSION;
   3904 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3905 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3906 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3907 					FKIOCTL, NOCRED);
   3908 			if (error)
   3909 				printf("udf_close_logvol: closing of session"
   3910 						"failed\n");
   3911 		}
   3912 		if (!error)
   3913 			ump->lvopen |= UDF_OPEN_SESSION;
   3914 		if (error) {
   3915 			printf("udf_close_logvol: leaving disc as it is\n");
   3916 			ump->lvclose &= ~UDF_FINALISE_DISC;
   3917 		}
   3918 	}
   3919 
   3920 	if (ump->lvclose & UDF_FINALISE_DISC) {
   3921 		memset(&mmc_op, 0, sizeof(mmc_op));
   3922 		mmc_op.operation   = MMC_OP_FINALISEDISC;
   3923 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3924 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3925 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3926 				FKIOCTL, NOCRED);
   3927 		if (error)
   3928 			printf("udf_close_logvol: finalising disc"
   3929 					"failed\n");
   3930 	}
   3931 
   3932 	/* write out partition bitmaps if requested */
   3933 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3934 		/* sync writeout metadata spacetable if existing */
   3935 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3936 		if (error1)
   3937 			printf( "udf_close_logvol: writeout of metadata space "
   3938 				"bitmap failed\n");
   3939 
   3940 		/* sync writeout partition spacetables */
   3941 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3942 		if (error2)
   3943 			printf( "udf_close_logvol: writeout of space tables "
   3944 				"failed\n");
   3945 
   3946 		if (error1 || error2)
   3947 			return (error1 | error2);
   3948 
   3949 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3950 	}
   3951 
   3952 	/* write out metadata partition nodes if requested */
   3953 	if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
   3954 		/* sync writeout metadata descriptor node */
   3955 		error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
   3956 		if (error1)
   3957 			printf( "udf_close_logvol: writeout of metadata partition "
   3958 				"node failed\n");
   3959 
   3960 		/* duplicate metadata partition descriptor if needed */
   3961 		udf_synchronise_metadatamirror_node(ump);
   3962 
   3963 		/* sync writeout metadatamirror descriptor node */
   3964 		error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
   3965 		if (error2)
   3966 			printf( "udf_close_logvol: writeout of metadata partition "
   3967 				"mirror node failed\n");
   3968 
   3969 		if (error1 || error2)
   3970 			return (error1 | error2);
   3971 
   3972 		ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
   3973 	}
   3974 
   3975 	/* mark it closed */
   3976 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3977 
   3978 	/* do we need to write out the logical volume integrity? */
   3979 	if (ump->lvclose & UDF_WRITE_LVINT)
   3980 		error = udf_writeout_lvint(ump, ump->lvopen);
   3981 	if (error) {
   3982 		/* HELP now what? mark it open again for now */
   3983 		ump->logvol_integrity->integrity_type =
   3984 			udf_rw32(UDF_INTEGRITY_OPEN);
   3985 		return error;
   3986 	}
   3987 
   3988 	(void) udf_synchronise_caches(ump);
   3989 
   3990 	return 0;
   3991 }
   3992 
   3993 /* --------------------------------------------------------------------- */
   3994 
   3995 /*
   3996  * Genfs interfacing
   3997  *
   3998  * static const struct genfs_ops udf_genfsops = {
   3999  * 	.gop_size = genfs_size,
   4000  * 		size of transfers
   4001  * 	.gop_alloc = udf_gop_alloc,
   4002  * 		allocate len bytes at offset
   4003  * 	.gop_write = genfs_gop_write,
   4004  * 		putpages interface code
   4005  * 	.gop_markupdate = udf_gop_markupdate,
   4006  * 		set update/modify flags etc.
   4007  * }
   4008  */
   4009 
   4010 /*
   4011  * Genfs interface. These four functions are the only ones defined though not
   4012  * documented... great....
   4013  */
   4014 
   4015 /*
   4016  * Called for allocating an extent of the file either by VOP_WRITE() or by
   4017  * genfs filling up gaps.
   4018  */
   4019 static int
   4020 udf_gop_alloc(struct vnode *vp, off_t off,
   4021     off_t len, int flags, kauth_cred_t cred)
   4022 {
   4023 	struct udf_node *udf_node = VTOI(vp);
   4024 	struct udf_mount *ump = udf_node->ump;
   4025 	uint64_t lb_start, lb_end;
   4026 	uint32_t lb_size, num_lb;
   4027 	int udf_c_type, vpart_num, can_fail;
   4028 	int error;
   4029 
   4030 	DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
   4031 		off, len, flags? "SYNC":"NONE"));
   4032 
   4033 	/*
   4034 	 * request the pages of our vnode and see how many pages will need to
   4035 	 * be allocated and reserve that space
   4036 	 */
   4037 	lb_size  = udf_rw32(udf_node->ump->logical_vol->lb_size);
   4038 	lb_start = off / lb_size;
   4039 	lb_end   = (off + len + lb_size -1) / lb_size;
   4040 	num_lb   = lb_end - lb_start;
   4041 
   4042 	udf_c_type = udf_get_c_type(udf_node);
   4043 	vpart_num  = udf_get_record_vpart(ump, udf_c_type);
   4044 
   4045 	/* all requests can fail */
   4046 	can_fail   = true;
   4047 
   4048 	/* fid's (directories) can't fail */
   4049 	if (udf_c_type == UDF_C_FIDS)
   4050 		can_fail   = false;
   4051 
   4052 	/* system files can't fail */
   4053 	if (vp->v_vflag & VV_SYSTEM)
   4054 		can_fail = false;
   4055 
   4056 	error = udf_reserve_space(ump, udf_node, udf_c_type,
   4057 		vpart_num, num_lb, can_fail);
   4058 
   4059 	DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
   4060 		lb_start, lb_end, num_lb));
   4061 
   4062 	return error;
   4063 }
   4064 
   4065 
   4066 /*
   4067  * callback from genfs to update our flags
   4068  */
   4069 static void
   4070 udf_gop_markupdate(struct vnode *vp, int flags)
   4071 {
   4072 	struct udf_node *udf_node = VTOI(vp);
   4073 	u_long mask = 0;
   4074 
   4075 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   4076 		mask = IN_ACCESS;
   4077 	}
   4078 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   4079 		if (vp->v_type == VREG) {
   4080 			mask |= IN_CHANGE | IN_UPDATE;
   4081 		} else {
   4082 			mask |= IN_MODIFY;
   4083 		}
   4084 	}
   4085 	if (mask) {
   4086 		udf_node->i_flags |= mask;
   4087 	}
   4088 }
   4089 
   4090 
   4091 static const struct genfs_ops udf_genfsops = {
   4092 	.gop_size = genfs_size,
   4093 	.gop_alloc = udf_gop_alloc,
   4094 	.gop_write = genfs_gop_write_rwmap,
   4095 	.gop_markupdate = udf_gop_markupdate,
   4096 	.gop_putrange = genfs_gop_putrange,
   4097 };
   4098 
   4099 
   4100 /* --------------------------------------------------------------------- */
   4101 
   4102 int
   4103 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   4104 {
   4105 	union dscrptr *dscr;
   4106 	int error;
   4107 
   4108 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
   4109 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   4110 
   4111 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   4112 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   4113 	(void) udf_validate_tag_and_crc_sums(dscr);
   4114 
   4115 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   4116 			dscr, sector, sector);
   4117 
   4118 	free(dscr, M_TEMP);
   4119 
   4120 	return error;
   4121 }
   4122 
   4123 
   4124 /* --------------------------------------------------------------------- */
   4125 
   4126 /* UDF<->unix converters */
   4127 
   4128 /* --------------------------------------------------------------------- */
   4129 
   4130 static mode_t
   4131 udf_perm_to_unix_mode(uint32_t perm)
   4132 {
   4133 	mode_t mode;
   4134 
   4135 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   4136 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   4137 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   4138 
   4139 	return mode;
   4140 }
   4141 
   4142 /* --------------------------------------------------------------------- */
   4143 
   4144 static uint32_t
   4145 unix_mode_to_udf_perm(mode_t mode)
   4146 {
   4147 	uint32_t perm;
   4148 
   4149 	perm  = ((mode & S_IRWXO)     );
   4150 	perm |= ((mode & S_IRWXG) << 2);
   4151 	perm |= ((mode & S_IRWXU) << 4);
   4152 	perm |= ((mode & S_IWOTH) << 3);
   4153 	perm |= ((mode & S_IWGRP) << 5);
   4154 	perm |= ((mode & S_IWUSR) << 7);
   4155 
   4156 	return perm;
   4157 }
   4158 
   4159 /* --------------------------------------------------------------------- */
   4160 
   4161 static uint32_t
   4162 udf_icb_to_unix_filetype(uint32_t icbftype)
   4163 {
   4164 	switch (icbftype) {
   4165 	case UDF_ICB_FILETYPE_DIRECTORY :
   4166 	case UDF_ICB_FILETYPE_STREAMDIR :
   4167 		return S_IFDIR;
   4168 	case UDF_ICB_FILETYPE_FIFO :
   4169 		return S_IFIFO;
   4170 	case UDF_ICB_FILETYPE_CHARDEVICE :
   4171 		return S_IFCHR;
   4172 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   4173 		return S_IFBLK;
   4174 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   4175 	case UDF_ICB_FILETYPE_REALTIME :
   4176 		return S_IFREG;
   4177 	case UDF_ICB_FILETYPE_SYMLINK :
   4178 		return S_IFLNK;
   4179 	case UDF_ICB_FILETYPE_SOCKET :
   4180 		return S_IFSOCK;
   4181 	}
   4182 	/* no idea what this is */
   4183 	return 0;
   4184 }
   4185 
   4186 /* --------------------------------------------------------------------- */
   4187 
   4188 void
   4189 udf_to_unix_name(char *result, int result_len, char *id, int len,
   4190 	struct charspec *chsp)
   4191 {
   4192 	uint16_t   *raw_name, *unix_name;
   4193 	uint16_t   *inchp, ch;
   4194 	uint8_t	   *outchp;
   4195 	const char *osta_id = "OSTA Compressed Unicode";
   4196 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   4197 
   4198 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   4199 	unix_name = raw_name + 1024;			/* split space in half */
   4200 	assert(sizeof(char) == sizeof(uint8_t));
   4201 	outchp = (uint8_t *) result;
   4202 
   4203 	is_osta_typ0  = (chsp->type == 0);
   4204 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4205 	if (is_osta_typ0) {
   4206 		/* TODO clean up */
   4207 		*raw_name = *unix_name = 0;
   4208 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   4209 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   4210 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   4211 		/* output UTF8 */
   4212 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   4213 			ch = *inchp;
   4214 			nout = wput_utf8(outchp, result_len, ch);
   4215 			outchp += nout; result_len -= nout;
   4216 			if (!ch) break;
   4217 		}
   4218 		*outchp++ = 0;
   4219 	} else {
   4220 		/* assume 8bit char length byte latin-1 */
   4221 		assert(*id == 8);
   4222 		assert(strlen((char *) (id+1)) <= NAME_MAX);
   4223 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   4224 	}
   4225 	free(raw_name, M_UDFTEMP);
   4226 }
   4227 
   4228 /* --------------------------------------------------------------------- */
   4229 
   4230 void
   4231 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   4232 	struct charspec *chsp)
   4233 {
   4234 	uint16_t   *raw_name;
   4235 	uint16_t   *outchp;
   4236 	const char *inchp;
   4237 	const char *osta_id = "OSTA Compressed Unicode";
   4238 	int         udf_chars, is_osta_typ0, bits;
   4239 	size_t      cnt;
   4240 
   4241 	/* allocate temporary unicode-16 buffer */
   4242 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   4243 
   4244 	/* convert utf8 to unicode-16 */
   4245 	*raw_name = 0;
   4246 	inchp  = name;
   4247 	outchp = raw_name;
   4248 	bits = 8;
   4249 	for (cnt = name_len, udf_chars = 0; cnt;) {
   4250 		*outchp = wget_utf8(&inchp, &cnt);
   4251 		if (*outchp > 0xff)
   4252 			bits=16;
   4253 		outchp++;
   4254 		udf_chars++;
   4255 	}
   4256 	/* null terminate just in case */
   4257 	*outchp++ = 0;
   4258 
   4259 	is_osta_typ0  = (chsp->type == 0);
   4260 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4261 	if (is_osta_typ0) {
   4262 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   4263 				(unicode_t *) raw_name,
   4264 				(byte *) result);
   4265 	} else {
   4266 		printf("unix to udf name: no CHSP0 ?\n");
   4267 		/* XXX assume 8bit char length byte latin-1 */
   4268 		*result++ = 8; udf_chars = 1;
   4269 		strncpy(result, name + 1, name_len);
   4270 		udf_chars += name_len;
   4271 	}
   4272 	*result_len = udf_chars;
   4273 	free(raw_name, M_UDFTEMP);
   4274 }
   4275 
   4276 /* --------------------------------------------------------------------- */
   4277 
   4278 void
   4279 udf_timestamp_to_timespec(struct udf_mount *ump,
   4280 			  struct timestamp *timestamp,
   4281 			  struct timespec  *timespec)
   4282 {
   4283 	struct clock_ymdhms ymdhms;
   4284 	uint32_t usecs, secs, nsecs;
   4285 	uint16_t tz;
   4286 
   4287 	/* fill in ymdhms structure from timestamp */
   4288 	memset(&ymdhms, 0, sizeof(ymdhms));
   4289 	ymdhms.dt_year = udf_rw16(timestamp->year);
   4290 	ymdhms.dt_mon  = timestamp->month;
   4291 	ymdhms.dt_day  = timestamp->day;
   4292 	ymdhms.dt_wday = 0; /* ? */
   4293 	ymdhms.dt_hour = timestamp->hour;
   4294 	ymdhms.dt_min  = timestamp->minute;
   4295 	ymdhms.dt_sec  = timestamp->second;
   4296 
   4297 	secs = clock_ymdhms_to_secs(&ymdhms);
   4298 	usecs = timestamp->usec +
   4299 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   4300 	nsecs = usecs * 1000;
   4301 
   4302 	/*
   4303 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   4304 	 * compliment, so we gotta do some extra magic to handle it right.
   4305 	 */
   4306 	tz  = udf_rw16(timestamp->type_tz);
   4307 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   4308 	if (tz & 0x0800)		/* sign extention */
   4309 		tz |= 0xf000;
   4310 
   4311 	/* TODO check timezone conversion */
   4312 	/* check if we are specified a timezone to convert */
   4313 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   4314 		if ((int16_t) tz != -2047)
   4315 			secs -= (int16_t) tz * 60;
   4316 	} else {
   4317 		secs -= ump->mount_args.gmtoff;
   4318 	}
   4319 
   4320 	timespec->tv_sec  = secs;
   4321 	timespec->tv_nsec = nsecs;
   4322 }
   4323 
   4324 
   4325 void
   4326 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   4327 {
   4328 	struct clock_ymdhms ymdhms;
   4329 	uint32_t husec, usec, csec;
   4330 
   4331 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   4332 
   4333 	usec   = timespec->tv_nsec / 1000;
   4334 	husec  =  usec / 100;
   4335 	usec  -= husec * 100;				/* only 0-99 in usec  */
   4336 	csec   = husec / 100;				/* only 0-99 in csec  */
   4337 	husec -=  csec * 100;				/* only 0-99 in husec */
   4338 
   4339 	/* set method 1 for CUT/GMT */
   4340 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   4341 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   4342 	timestamp->month	= ymdhms.dt_mon;
   4343 	timestamp->day		= ymdhms.dt_day;
   4344 	timestamp->hour		= ymdhms.dt_hour;
   4345 	timestamp->minute	= ymdhms.dt_min;
   4346 	timestamp->second	= ymdhms.dt_sec;
   4347 	timestamp->centisec	= csec;
   4348 	timestamp->hund_usec	= husec;
   4349 	timestamp->usec		= usec;
   4350 }
   4351 
   4352 /* --------------------------------------------------------------------- */
   4353 
   4354 /*
   4355  * Attribute and filetypes converters with get/set pairs
   4356  */
   4357 
   4358 uint32_t
   4359 udf_getaccessmode(struct udf_node *udf_node)
   4360 {
   4361 	struct file_entry     *fe = udf_node->fe;
   4362 	struct extfile_entry *efe = udf_node->efe;
   4363 	uint32_t udf_perm, icbftype;
   4364 	uint32_t mode, ftype;
   4365 	uint16_t icbflags;
   4366 
   4367 	UDF_LOCK_NODE(udf_node, 0);
   4368 	if (fe) {
   4369 		udf_perm = udf_rw32(fe->perm);
   4370 		icbftype = fe->icbtag.file_type;
   4371 		icbflags = udf_rw16(fe->icbtag.flags);
   4372 	} else {
   4373 		assert(udf_node->efe);
   4374 		udf_perm = udf_rw32(efe->perm);
   4375 		icbftype = efe->icbtag.file_type;
   4376 		icbflags = udf_rw16(efe->icbtag.flags);
   4377 	}
   4378 
   4379 	mode  = udf_perm_to_unix_mode(udf_perm);
   4380 	ftype = udf_icb_to_unix_filetype(icbftype);
   4381 
   4382 	/* set suid, sgid, sticky from flags in fe/efe */
   4383 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   4384 		mode |= S_ISUID;
   4385 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   4386 		mode |= S_ISGID;
   4387 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   4388 		mode |= S_ISVTX;
   4389 
   4390 	UDF_UNLOCK_NODE(udf_node, 0);
   4391 
   4392 	return mode | ftype;
   4393 }
   4394 
   4395 
   4396 void
   4397 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   4398 {
   4399 	struct file_entry    *fe  = udf_node->fe;
   4400 	struct extfile_entry *efe = udf_node->efe;
   4401 	uint32_t udf_perm;
   4402 	uint16_t icbflags;
   4403 
   4404 	UDF_LOCK_NODE(udf_node, 0);
   4405 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   4406 	if (fe) {
   4407 		icbflags = udf_rw16(fe->icbtag.flags);
   4408 	} else {
   4409 		icbflags = udf_rw16(efe->icbtag.flags);
   4410 	}
   4411 
   4412 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   4413 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   4414 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   4415 	if (mode & S_ISUID)
   4416 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   4417 	if (mode & S_ISGID)
   4418 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   4419 	if (mode & S_ISVTX)
   4420 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   4421 
   4422 	if (fe) {
   4423 		fe->perm  = udf_rw32(udf_perm);
   4424 		fe->icbtag.flags  = udf_rw16(icbflags);
   4425 	} else {
   4426 		efe->perm = udf_rw32(udf_perm);
   4427 		efe->icbtag.flags = udf_rw16(icbflags);
   4428 	}
   4429 
   4430 	UDF_UNLOCK_NODE(udf_node, 0);
   4431 }
   4432 
   4433 
   4434 void
   4435 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   4436 {
   4437 	struct udf_mount     *ump = udf_node->ump;
   4438 	struct file_entry    *fe  = udf_node->fe;
   4439 	struct extfile_entry *efe = udf_node->efe;
   4440 	uid_t uid;
   4441 	gid_t gid;
   4442 
   4443 	UDF_LOCK_NODE(udf_node, 0);
   4444 	if (fe) {
   4445 		uid = (uid_t)udf_rw32(fe->uid);
   4446 		gid = (gid_t)udf_rw32(fe->gid);
   4447 	} else {
   4448 		assert(udf_node->efe);
   4449 		uid = (uid_t)udf_rw32(efe->uid);
   4450 		gid = (gid_t)udf_rw32(efe->gid);
   4451 	}
   4452 
   4453 	/* do the uid/gid translation game */
   4454 	if (uid == (uid_t) -1)
   4455 		uid = ump->mount_args.anon_uid;
   4456 	if (gid == (gid_t) -1)
   4457 		gid = ump->mount_args.anon_gid;
   4458 
   4459 	*uidp = uid;
   4460 	*gidp = gid;
   4461 
   4462 	UDF_UNLOCK_NODE(udf_node, 0);
   4463 }
   4464 
   4465 
   4466 void
   4467 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   4468 {
   4469 	struct udf_mount     *ump = udf_node->ump;
   4470 	struct file_entry    *fe  = udf_node->fe;
   4471 	struct extfile_entry *efe = udf_node->efe;
   4472 	uid_t nobody_uid;
   4473 	gid_t nobody_gid;
   4474 
   4475 	UDF_LOCK_NODE(udf_node, 0);
   4476 
   4477 	/* do the uid/gid translation game */
   4478 	nobody_uid = ump->mount_args.nobody_uid;
   4479 	nobody_gid = ump->mount_args.nobody_gid;
   4480 	if (uid == nobody_uid)
   4481 		uid = (uid_t) -1;
   4482 	if (gid == nobody_gid)
   4483 		gid = (gid_t) -1;
   4484 
   4485 	if (fe) {
   4486 		fe->uid  = udf_rw32((uint32_t) uid);
   4487 		fe->gid  = udf_rw32((uint32_t) gid);
   4488 	} else {
   4489 		efe->uid = udf_rw32((uint32_t) uid);
   4490 		efe->gid = udf_rw32((uint32_t) gid);
   4491 	}
   4492 
   4493 	UDF_UNLOCK_NODE(udf_node, 0);
   4494 }
   4495 
   4496 
   4497 /* --------------------------------------------------------------------- */
   4498 
   4499 
   4500 int
   4501 udf_dirhash_fill(struct udf_node *dir_node)
   4502 {
   4503 	struct vnode *dvp = dir_node->vnode;
   4504 	struct dirhash *dirh;
   4505 	struct file_entry    *fe  = dir_node->fe;
   4506 	struct extfile_entry *efe = dir_node->efe;
   4507 	struct fileid_desc *fid;
   4508 	struct dirent *dirent;
   4509 	uint64_t file_size, pre_diroffset, diroffset;
   4510 	uint32_t lb_size;
   4511 	int error;
   4512 
   4513 	/* make sure we have a dirhash to work on */
   4514 	dirh = dir_node->dir_hash;
   4515 	KASSERT(dirh);
   4516 	KASSERT(dirh->refcnt > 0);
   4517 
   4518 	if (dirh->flags & DIRH_BROKEN)
   4519 		return EIO;
   4520 	if (dirh->flags & DIRH_COMPLETE)
   4521 		return 0;
   4522 
   4523 	/* make sure we have a clean dirhash to add to */
   4524 	dirhash_purge_entries(dirh);
   4525 
   4526 	/* get directory filesize */
   4527 	if (fe) {
   4528 		file_size = udf_rw64(fe->inf_len);
   4529 	} else {
   4530 		assert(efe);
   4531 		file_size = udf_rw64(efe->inf_len);
   4532 	}
   4533 
   4534 	/* allocate temporary space for fid */
   4535 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4536 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4537 
   4538 	/* allocate temporary space for dirent */
   4539 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4540 
   4541 	error = 0;
   4542 	diroffset = 0;
   4543 	while (diroffset < file_size) {
   4544 		/* transfer a new fid/dirent */
   4545 		pre_diroffset = diroffset;
   4546 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4547 		if (error) {
   4548 			/* TODO what to do? continue but not add? */
   4549 			dirh->flags |= DIRH_BROKEN;
   4550 			dirhash_purge_entries(dirh);
   4551 			break;
   4552 		}
   4553 
   4554 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4555 			/* register deleted extent for reuse */
   4556 			dirhash_enter_freed(dirh, pre_diroffset,
   4557 				udf_fidsize(fid));
   4558 		} else {
   4559 			/* append to the dirhash */
   4560 			dirhash_enter(dirh, dirent, pre_diroffset,
   4561 				udf_fidsize(fid), 0);
   4562 		}
   4563 	}
   4564 	dirh->flags |= DIRH_COMPLETE;
   4565 
   4566 	free(fid, M_UDFTEMP);
   4567 	free(dirent, M_UDFTEMP);
   4568 
   4569 	return error;
   4570 }
   4571 
   4572 
   4573 /* --------------------------------------------------------------------- */
   4574 
   4575 /*
   4576  * Directory read and manipulation functions.
   4577  *
   4578  */
   4579 
   4580 int
   4581 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4582        struct long_ad *icb_loc, int *found)
   4583 {
   4584 	struct udf_node  *dir_node = VTOI(vp);
   4585 	struct dirhash       *dirh;
   4586 	struct dirhash_entry *dirh_ep;
   4587 	struct fileid_desc *fid;
   4588 	struct dirent *dirent, *s_dirent;
   4589 	struct charspec osta_charspec;
   4590 	uint64_t diroffset;
   4591 	uint32_t lb_size;
   4592 	int hit, error;
   4593 
   4594 	/* set default return */
   4595 	*found = 0;
   4596 
   4597 	/* get our dirhash and make sure its read in */
   4598 	dirhash_get(&dir_node->dir_hash);
   4599 	error = udf_dirhash_fill(dir_node);
   4600 	if (error) {
   4601 		dirhash_put(dir_node->dir_hash);
   4602 		return error;
   4603 	}
   4604 	dirh = dir_node->dir_hash;
   4605 
   4606 	/* allocate temporary space for fid */
   4607 	lb_size  = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4608 	fid      = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4609 	dirent   = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4610 	s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4611 
   4612 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4613 		namelen, namelen, name));
   4614 
   4615 	/* convert given unix name to canonical unix name */
   4616 	udf_osta_charset(&osta_charspec);
   4617 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4618 		name, namelen, &osta_charspec);
   4619 	udf_to_unix_name(s_dirent->d_name, NAME_MAX,
   4620 		(char *) fid->data, fid->l_fi,
   4621 		&osta_charspec);
   4622 	s_dirent->d_namlen = strlen(s_dirent->d_name);
   4623 
   4624 	/* search our dirhash hits */
   4625 	memset(icb_loc, 0, sizeof(*icb_loc));
   4626 	dirh_ep = NULL;
   4627 	for (;;) {
   4628 		hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
   4629 		/* if no hit, abort the search */
   4630 		if (!hit)
   4631 			break;
   4632 
   4633 		/* check this hit */
   4634 		diroffset = dirh_ep->offset;
   4635 
   4636 		/* transfer a new fid/dirent */
   4637 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4638 		if (error)
   4639 			break;
   4640 
   4641 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4642 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4643 
   4644 		/* see if its our entry */
   4645 		if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
   4646 			*found = 1;
   4647 			*icb_loc = fid->icb;
   4648 			break;
   4649 		}
   4650 	}
   4651 	free(fid, M_UDFTEMP);
   4652 	free(dirent, M_UDFTEMP);
   4653 	free(s_dirent, M_UDFTEMP);
   4654 
   4655 	dirhash_put(dir_node->dir_hash);
   4656 
   4657 	return error;
   4658 }
   4659 
   4660 /* --------------------------------------------------------------------- */
   4661 
   4662 static int
   4663 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4664 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4665 	uint64_t parent_unique_id)
   4666 {
   4667 	struct timespec now;
   4668 	struct icb_tag *icb;
   4669 	struct filetimes_extattr_entry *ft_extattr;
   4670 	uint64_t unique_id;
   4671 	uint32_t fidsize, lb_num;
   4672 	uint8_t *bpos;
   4673 	int crclen, attrlen;
   4674 
   4675 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4676 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4677 	icb = &fe->icbtag;
   4678 
   4679 	/*
   4680 	 * Always use strategy type 4 unless on WORM wich we don't support
   4681 	 * (yet). Fill in defaults and set for internal allocation of data.
   4682 	 */
   4683 	icb->strat_type      = udf_rw16(4);
   4684 	icb->max_num_entries = udf_rw16(1);
   4685 	icb->file_type       = file_type;	/* 8 bit */
   4686 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4687 
   4688 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4689 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4690 
   4691 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4692 
   4693 	vfs_timestamp(&now);
   4694 	udf_timespec_to_timestamp(&now, &fe->atime);
   4695 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4696 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4697 
   4698 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4699 	udf_add_impl_regid(ump, &fe->imp_id);
   4700 
   4701 	unique_id = udf_advance_uniqueid(ump);
   4702 	fe->unique_id = udf_rw64(unique_id);
   4703 	fe->l_ea = udf_rw32(0);
   4704 
   4705 	/* create extended attribute to record our creation time */
   4706 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4707 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4708 	memset(ft_extattr, 0, attrlen);
   4709 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4710 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4711 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4712 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4713 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4714 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4715 
   4716 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4717 		(struct extattr_entry *) ft_extattr);
   4718 	free(ft_extattr, M_UDFTEMP);
   4719 
   4720 	/* if its a directory, create '..' */
   4721 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4722 	fidsize = 0;
   4723 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4724 		fidsize = udf_create_parentfid(ump,
   4725 			(struct fileid_desc *) bpos, parent_icb,
   4726 			parent_unique_id);
   4727 	}
   4728 
   4729 	/* record fidlength information */
   4730 	fe->inf_len = udf_rw64(fidsize);
   4731 	fe->l_ad    = udf_rw32(fidsize);
   4732 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4733 
   4734 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4735 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4736 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4737 
   4738 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4739 
   4740 	return fidsize;
   4741 }
   4742 
   4743 /* --------------------------------------------------------------------- */
   4744 
   4745 static int
   4746 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4747 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4748 	uint64_t parent_unique_id)
   4749 {
   4750 	struct timespec now;
   4751 	struct icb_tag *icb;
   4752 	uint64_t unique_id;
   4753 	uint32_t fidsize, lb_num;
   4754 	uint8_t *bpos;
   4755 	int crclen;
   4756 
   4757 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4758 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4759 	icb = &efe->icbtag;
   4760 
   4761 	/*
   4762 	 * Always use strategy type 4 unless on WORM wich we don't support
   4763 	 * (yet). Fill in defaults and set for internal allocation of data.
   4764 	 */
   4765 	icb->strat_type      = udf_rw16(4);
   4766 	icb->max_num_entries = udf_rw16(1);
   4767 	icb->file_type       = file_type;	/* 8 bit */
   4768 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4769 
   4770 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4771 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4772 
   4773 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4774 
   4775 	vfs_timestamp(&now);
   4776 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4777 	udf_timespec_to_timestamp(&now, &efe->atime);
   4778 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4779 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4780 
   4781 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4782 	udf_add_impl_regid(ump, &efe->imp_id);
   4783 
   4784 	unique_id = udf_advance_uniqueid(ump);
   4785 	efe->unique_id = udf_rw64(unique_id);
   4786 	efe->l_ea = udf_rw32(0);
   4787 
   4788 	/* if its a directory, create '..' */
   4789 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4790 	fidsize = 0;
   4791 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4792 		fidsize = udf_create_parentfid(ump,
   4793 			(struct fileid_desc *) bpos, parent_icb,
   4794 			parent_unique_id);
   4795 	}
   4796 
   4797 	/* record fidlength information */
   4798 	efe->obj_size = udf_rw64(fidsize);
   4799 	efe->inf_len  = udf_rw64(fidsize);
   4800 	efe->l_ad     = udf_rw32(fidsize);
   4801 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4802 
   4803 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4804 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4805 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4806 
   4807 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4808 
   4809 	return fidsize;
   4810 }
   4811 
   4812 /* --------------------------------------------------------------------- */
   4813 
   4814 int
   4815 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4816 	struct udf_node *udf_node, struct componentname *cnp)
   4817 {
   4818 	struct vnode *dvp = dir_node->vnode;
   4819 	struct dirhash       *dirh;
   4820 	struct dirhash_entry *dirh_ep;
   4821 	struct file_entry    *fe  = dir_node->fe;
   4822 	struct fileid_desc *fid;
   4823 	struct dirent *dirent, *s_dirent;
   4824 	struct charspec osta_charspec;
   4825 	uint64_t diroffset;
   4826 	uint32_t lb_size, fidsize;
   4827 	int found, error;
   4828 	int hit, refcnt;
   4829 
   4830 	/* get our dirhash and make sure its read in */
   4831 	dirhash_get(&dir_node->dir_hash);
   4832 	error = udf_dirhash_fill(dir_node);
   4833 	if (error) {
   4834 		dirhash_put(dir_node->dir_hash);
   4835 		return error;
   4836 	}
   4837 	dirh = dir_node->dir_hash;
   4838 
   4839 	/* get directory filesize */
   4840 	if (!fe) {
   4841 		assert(dir_node->efe);
   4842 	}
   4843 
   4844 	/* allocate temporary space for fid and dirents */
   4845 	lb_size  = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4846 	fid      = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4847 	dirent   = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4848 	s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4849 
   4850 	/* convert given unix name to canonical unix name */
   4851 	udf_osta_charset(&osta_charspec);
   4852 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4853 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4854 	udf_to_unix_name(s_dirent->d_name, NAME_MAX,
   4855 		(char *) fid->data, fid->l_fi,
   4856 		&osta_charspec);
   4857 	s_dirent->d_namlen = strlen(s_dirent->d_name);
   4858 
   4859 	/* search our dirhash hits */
   4860 	found = 0;
   4861 	dirh_ep = NULL;
   4862 	for (;;) {
   4863 		hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
   4864 		/* if no hit, abort the search */
   4865 		if (!hit)
   4866 			break;
   4867 
   4868 		/* check this hit */
   4869 		diroffset = dirh_ep->offset;
   4870 
   4871 		/* transfer a new fid/dirent */
   4872 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4873 		if (error)
   4874 			break;
   4875 
   4876 		/* see if its our entry */
   4877 		KASSERT(dirent->d_namlen == s_dirent->d_namlen);
   4878 		if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
   4879 			found = 1;
   4880 			break;
   4881 		}
   4882 	}
   4883 
   4884 	if (!found)
   4885 		error = ENOENT;
   4886 	if (error)
   4887 		goto error_out;
   4888 
   4889 	/* mark deleted */
   4890 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4891 #ifdef UDF_COMPLETE_DELETE
   4892 	memset(&fid->icb, 0, sizeof(fid->icb));
   4893 #endif
   4894 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4895 
   4896 	/* get size of fid and compensate for the read_fid_stream advance */
   4897 	fidsize = udf_fidsize(fid);
   4898 	diroffset -= fidsize;
   4899 
   4900 	/* write out */
   4901 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4902 			fid, fidsize, diroffset,
   4903 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4904 			FSCRED, NULL, NULL);
   4905 	if (error)
   4906 		goto error_out;
   4907 
   4908 	/* get reference count of attached node */
   4909 	if (udf_node->fe) {
   4910 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4911 	} else {
   4912 		KASSERT(udf_node->efe);
   4913 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4914 	}
   4915 #ifdef UDF_COMPLETE_DELETE
   4916 	/* substract reference counter in attached node */
   4917 	refcnt -= 1;
   4918 	if (udf_node->fe) {
   4919 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4920 	} else {
   4921 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4922 	}
   4923 
   4924 	/* prevent writeout when refcnt == 0 */
   4925 	if (refcnt == 0)
   4926 		udf_node->i_flags |= IN_DELETED;
   4927 
   4928 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4929 		int drefcnt;
   4930 
   4931 		/* substract reference counter in directory node */
   4932 		/* note subtract 2 (?) for its was also backreferenced */
   4933 		if (dir_node->fe) {
   4934 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4935 			drefcnt -= 1;
   4936 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4937 		} else {
   4938 			KASSERT(dir_node->efe);
   4939 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4940 			drefcnt -= 1;
   4941 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4942 		}
   4943 	}
   4944 
   4945 	udf_node->i_flags |= IN_MODIFIED;
   4946 	dir_node->i_flags |= IN_MODIFIED;
   4947 #endif
   4948 	/* if it is/was a hardlink adjust the file count */
   4949 	if (refcnt > 0)
   4950 		udf_adjust_filecount(udf_node, -1);
   4951 
   4952 	/* remove from the dirhash */
   4953 	dirhash_remove(dirh, dirent, diroffset,
   4954 		udf_fidsize(fid));
   4955 
   4956 error_out:
   4957 	free(fid, M_UDFTEMP);
   4958 	free(dirent, M_UDFTEMP);
   4959 	free(s_dirent, M_UDFTEMP);
   4960 
   4961 	dirhash_put(dir_node->dir_hash);
   4962 
   4963 	return error;
   4964 }
   4965 
   4966 /* --------------------------------------------------------------------- */
   4967 
   4968 int
   4969 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
   4970 	struct udf_node *new_parent_node)
   4971 {
   4972 	struct vnode *dvp = dir_node->vnode;
   4973 	struct dirhash       *dirh;
   4974 	struct dirhash_entry *dirh_ep;
   4975 	struct file_entry    *fe;
   4976 	struct extfile_entry *efe;
   4977 	struct fileid_desc *fid;
   4978 	struct dirent *dirent;
   4979 	uint64_t diroffset;
   4980 	uint64_t new_parent_unique_id;
   4981 	uint32_t lb_size, fidsize;
   4982 	int found, error;
   4983 	char const *name  = "..";
   4984 	int namelen = 2;
   4985 	int hit;
   4986 
   4987 	/* get our dirhash and make sure its read in */
   4988 	dirhash_get(&dir_node->dir_hash);
   4989 	error = udf_dirhash_fill(dir_node);
   4990 	if (error) {
   4991 		dirhash_put(dir_node->dir_hash);
   4992 		return error;
   4993 	}
   4994 	dirh = dir_node->dir_hash;
   4995 
   4996 	/* get new parent's unique ID */
   4997 	fe  = new_parent_node->fe;
   4998 	efe = new_parent_node->efe;
   4999 	if (fe) {
   5000 		new_parent_unique_id = udf_rw64(fe->unique_id);
   5001 	} else {
   5002 		assert(efe);
   5003 		new_parent_unique_id = udf_rw64(efe->unique_id);
   5004 	}
   5005 
   5006 	/* get directory filesize */
   5007 	fe  = dir_node->fe;
   5008 	efe = dir_node->efe;
   5009 	if (!fe) {
   5010 		assert(efe);
   5011 	}
   5012 
   5013 	/* allocate temporary space for fid */
   5014 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   5015 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   5016 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   5017 
   5018 	/*
   5019 	 * NOTE the standard does not dictate the FID entry '..' should be
   5020 	 * first, though in practice it will most likely be.
   5021 	 */
   5022 
   5023 	/* search our dirhash hits */
   5024 	found = 0;
   5025 	dirh_ep = NULL;
   5026 	for (;;) {
   5027 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   5028 		/* if no hit, abort the search */
   5029 		if (!hit)
   5030 			break;
   5031 
   5032 		/* check this hit */
   5033 		diroffset = dirh_ep->offset;
   5034 
   5035 		/* transfer a new fid/dirent */
   5036 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   5037 		if (error)
   5038 			break;
   5039 
   5040 		/* see if its our entry */
   5041 		KASSERT(dirent->d_namlen == namelen);
   5042 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   5043 			found = 1;
   5044 			break;
   5045 		}
   5046 	}
   5047 
   5048 	if (!found)
   5049 		error = ENOENT;
   5050 	if (error)
   5051 		goto error_out;
   5052 
   5053 	/* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
   5054 	fid->icb = new_parent_node->write_loc;
   5055 	fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
   5056 
   5057 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   5058 
   5059 	/* get size of fid and compensate for the read_fid_stream advance */
   5060 	fidsize = udf_fidsize(fid);
   5061 	diroffset -= fidsize;
   5062 
   5063 	/* write out */
   5064 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   5065 			fid, fidsize, diroffset,
   5066 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   5067 			FSCRED, NULL, NULL);
   5068 
   5069 	/* nothing to be done in the dirhash */
   5070 
   5071 error_out:
   5072 	free(fid, M_UDFTEMP);
   5073 	free(dirent, M_UDFTEMP);
   5074 
   5075 	dirhash_put(dir_node->dir_hash);
   5076 
   5077 	return error;
   5078 }
   5079 
   5080 /* --------------------------------------------------------------------- */
   5081 
   5082 /*
   5083  * We are not allowed to split the fid tag itself over an logical block so
   5084  * check the space remaining in the logical block.
   5085  *
   5086  * We try to select the smallest candidate for recycling or when none is
   5087  * found, append a new one at the end of the directory.
   5088  */
   5089 
   5090 int
   5091 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   5092 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   5093 {
   5094 	struct vnode *dvp = dir_node->vnode;
   5095 	struct dirhash       *dirh;
   5096 	struct dirhash_entry *dirh_ep;
   5097 	struct fileid_desc   *fid;
   5098 	struct icb_tag       *icbtag;
   5099 	struct charspec osta_charspec;
   5100 	struct dirent   dirent;
   5101 	uint64_t unique_id, dir_size;
   5102 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   5103 	uint32_t chosen_size, chosen_size_diff;
   5104 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   5105 	int file_char, refcnt, icbflags, addr_type, hit, error;
   5106 
   5107 	/* get our dirhash and make sure its read in */
   5108 	dirhash_get(&dir_node->dir_hash);
   5109 	error = udf_dirhash_fill(dir_node);
   5110 	if (error) {
   5111 		dirhash_put(dir_node->dir_hash);
   5112 		return error;
   5113 	}
   5114 	dirh = dir_node->dir_hash;
   5115 
   5116 	/* get info */
   5117 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5118 	udf_osta_charset(&osta_charspec);
   5119 
   5120 	if (dir_node->fe) {
   5121 		dir_size = udf_rw64(dir_node->fe->inf_len);
   5122 		icbtag   = &dir_node->fe->icbtag;
   5123 	} else {
   5124 		dir_size = udf_rw64(dir_node->efe->inf_len);
   5125 		icbtag   = &dir_node->efe->icbtag;
   5126 	}
   5127 
   5128 	icbflags   = udf_rw16(icbtag->flags);
   5129 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5130 
   5131 	if (udf_node->fe) {
   5132 		unique_id = udf_rw64(udf_node->fe->unique_id);
   5133 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   5134 	} else {
   5135 		unique_id = udf_rw64(udf_node->efe->unique_id);
   5136 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   5137 	}
   5138 
   5139 	if (refcnt > 0) {
   5140 		unique_id = udf_advance_uniqueid(ump);
   5141 		udf_adjust_filecount(udf_node, 1);
   5142 	}
   5143 
   5144 	/* determine file characteristics */
   5145 	file_char = 0;	/* visible non deleted file and not stream metadata */
   5146 	if (vap->va_type == VDIR)
   5147 		file_char = UDF_FILE_CHAR_DIR;
   5148 
   5149 	/* malloc scrap buffer */
   5150 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
   5151 
   5152 	/* calculate _minimum_ fid size */
   5153 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   5154 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   5155 	fidsize = UDF_FID_SIZE + fid->l_fi;
   5156 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   5157 
   5158 	/* find position that will fit the FID */
   5159 	chosen_fid_pos   = dir_size;
   5160 	chosen_size      = 0;
   5161 	chosen_size_diff = UINT_MAX;
   5162 
   5163 	/* shut up gcc */
   5164 	dirent.d_namlen = 0;
   5165 
   5166 	/* search our dirhash hits */
   5167 	error = 0;
   5168 	dirh_ep = NULL;
   5169 	for (;;) {
   5170 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
   5171 		/* if no hit, abort the search */
   5172 		if (!hit)
   5173 			break;
   5174 
   5175 		/* check this hit for size */
   5176 		this_fidsize = dirh_ep->entry_size;
   5177 
   5178 		/* check this hit */
   5179 		fid_pos     = dirh_ep->offset;
   5180 		end_fid_pos = fid_pos + this_fidsize;
   5181 		size_diff   = this_fidsize - fidsize;
   5182 		lb_rest = lb_size - (end_fid_pos % lb_size);
   5183 
   5184 #ifndef UDF_COMPLETE_DELETE
   5185 		/* transfer a new fid/dirent */
   5186 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   5187 		if (error)
   5188 			goto error_out;
   5189 
   5190 		/* only reuse entries that are wiped */
   5191 		/* check if the len + loc are marked zero */
   5192 		if (udf_rw32(fid->icb.len) != 0)
   5193 			continue;
   5194 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   5195 			continue;
   5196 		if (udf_rw16(fid->icb.loc.part_num) != 0)
   5197 			continue;
   5198 #endif	/* UDF_COMPLETE_DELETE */
   5199 
   5200 		/* select if not splitting the tag and its smaller */
   5201 		if ((size_diff >= 0)  &&
   5202 			(size_diff < chosen_size_diff) &&
   5203 			(lb_rest >= sizeof(struct desc_tag)))
   5204 		{
   5205 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   5206 			if ((size_diff == 0) || (size_diff >= 32)) {
   5207 				chosen_fid_pos   = fid_pos;
   5208 				chosen_size      = this_fidsize;
   5209 				chosen_size_diff = size_diff;
   5210 			}
   5211 		}
   5212 	}
   5213 
   5214 
   5215 	/* extend directory if no other candidate found */
   5216 	if (chosen_size == 0) {
   5217 		chosen_fid_pos   = dir_size;
   5218 		chosen_size      = fidsize;
   5219 		chosen_size_diff = 0;
   5220 
   5221 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   5222 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   5223 			/* pre-grow directory to see if we're to switch */
   5224 			udf_grow_node(dir_node, dir_size + chosen_size);
   5225 
   5226 			icbflags   = udf_rw16(icbtag->flags);
   5227 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5228 		}
   5229 
   5230 		/* make sure the next fid desc_tag won't be splitted */
   5231 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   5232 			end_fid_pos = chosen_fid_pos + chosen_size;
   5233 			lb_rest = lb_size - (end_fid_pos % lb_size);
   5234 
   5235 			/* pad with implementation use regid if needed */
   5236 			if (lb_rest < sizeof(struct desc_tag))
   5237 				chosen_size += 32;
   5238 		}
   5239 	}
   5240 	chosen_size_diff = chosen_size - fidsize;
   5241 
   5242 	/* populate the FID */
   5243 	memset(fid, 0, lb_size);
   5244 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   5245 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   5246 	fid->file_char           = file_char;
   5247 	fid->icb                 = udf_node->loc;
   5248 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   5249 	fid->l_iu                = udf_rw16(0);
   5250 
   5251 	if (chosen_size > fidsize) {
   5252 		/* insert implementation-use regid to space it correctly */
   5253 		fid->l_iu = udf_rw16(chosen_size_diff);
   5254 
   5255 		/* set implementation use */
   5256 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   5257 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   5258 	}
   5259 
   5260 	/* fill in name */
   5261 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   5262 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   5263 
   5264 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
   5265 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   5266 
   5267 	/* writeout FID/update parent directory */
   5268 	error = vn_rdwr(UIO_WRITE, dvp,
   5269 			fid, chosen_size, chosen_fid_pos,
   5270 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   5271 			FSCRED, NULL, NULL);
   5272 
   5273 	if (error)
   5274 		goto error_out;
   5275 
   5276 	/* add reference counter in attached node */
   5277 	if (udf_node->fe) {
   5278 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   5279 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   5280 	} else {
   5281 		KASSERT(udf_node->efe);
   5282 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   5283 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   5284 	}
   5285 
   5286 	/* mark not deleted if it was... just in case, but do warn */
   5287 	if (udf_node->i_flags & IN_DELETED) {
   5288 		printf("udf: warning, marking a file undeleted\n");
   5289 		udf_node->i_flags &= ~IN_DELETED;
   5290 	}
   5291 
   5292 	if (file_char & UDF_FILE_CHAR_DIR) {
   5293 		/* add reference counter in directory node for '..' */
   5294 		if (dir_node->fe) {
   5295 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   5296 			refcnt++;
   5297 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   5298 		} else {
   5299 			KASSERT(dir_node->efe);
   5300 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   5301 			refcnt++;
   5302 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   5303 		}
   5304 	}
   5305 
   5306 	/* append to the dirhash */
   5307 	/* NOTE do not use dirent anymore or it won't match later! */
   5308 	udf_to_unix_name(dirent.d_name, NAME_MAX,
   5309 		(char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
   5310 	dirent.d_namlen = strlen(dirent.d_name);
   5311 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
   5312 		udf_fidsize(fid), 1);
   5313 
   5314 	/* note updates */
   5315 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   5316 	/* VN_KNOTE(udf_node,  ...) */
   5317 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   5318 
   5319 error_out:
   5320 	free(fid, M_TEMP);
   5321 
   5322 	dirhash_put(dir_node->dir_hash);
   5323 
   5324 	return error;
   5325 }
   5326 
   5327 /* --------------------------------------------------------------------- */
   5328 
   5329 /*
   5330  * Each node can have an attached streamdir node though not recursively. These
   5331  * are otherwise known as named substreams/named extended attributes that have
   5332  * no size limitations.
   5333  *
   5334  * `Normal' extended attributes are indicated with a number and are recorded
   5335  * in either the fe/efe descriptor itself for small descriptors or recorded in
   5336  * the attached extended attribute file. Since these spaces can get
   5337  * fragmented, care ought to be taken.
   5338  *
   5339  * Since the size of the space reserved for allocation descriptors is limited,
   5340  * there is a mechanim provided for extending this space; this is done by a
   5341  * special extent to allow schrinking of the allocations without breaking the
   5342  * linkage to the allocation extent descriptor.
   5343  */
   5344 
   5345 int
   5346 udf_loadvnode(struct mount *mp, struct vnode *vp,
   5347      const void *key, size_t key_len, const void **new_key)
   5348 {
   5349 	union dscrptr   *dscr;
   5350 	struct udf_mount *ump;
   5351 	struct udf_node *udf_node;
   5352 	struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
   5353 	uint64_t file_size;
   5354 	uint32_t lb_size, sector, dummy;
   5355 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   5356 	int slot, eof, error;
   5357 	int num_indir_followed = 0;
   5358 
   5359 	DPRINTF(NODE, ("udf_loadvnode called\n"));
   5360 	udf_node = NULL;
   5361 	ump = VFSTOUDF(mp);
   5362 
   5363 	KASSERT(key_len == sizeof(node_icb_loc.loc));
   5364 	memset(&node_icb_loc, 0, sizeof(node_icb_loc));
   5365 	node_icb_loc.len = ump->logical_vol->lb_size;
   5366 	memcpy(&node_icb_loc.loc, key, key_len);
   5367 
   5368 	/* garbage check: translate udf_node_icb_loc to sectornr */
   5369 	error = udf_translate_vtop(ump, &node_icb_loc, &sector, &dummy);
   5370 	if (error) {
   5371 		DPRINTF(NODE, ("\tcan't translate icb address!\n"));
   5372 		/* no use, this will fail anyway */
   5373 		return EINVAL;
   5374 	}
   5375 
   5376 	/* build udf_node (do initialise!) */
   5377 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5378 	memset(udf_node, 0, sizeof(struct udf_node));
   5379 
   5380 	vp->v_tag = VT_UDF;
   5381 	vp->v_op = udf_vnodeop_p;
   5382 	vp->v_data = udf_node;
   5383 
   5384 	/* initialise crosslinks, note location of fe/efe for hashing */
   5385 	udf_node->ump    =  ump;
   5386 	udf_node->vnode  =  vp;
   5387 	udf_node->loc    =  node_icb_loc;
   5388 	udf_node->lockf  =  0;
   5389 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5390 	cv_init(&udf_node->node_lock, "udf_nlk");
   5391 	genfs_node_init(vp, &udf_genfsops);	/* inititise genfs */
   5392 	udf_node->outstanding_bufs = 0;
   5393 	udf_node->outstanding_nodedscr = 0;
   5394 	udf_node->uncommitted_lbs = 0;
   5395 
   5396 	/* check if we're fetching the root */
   5397 	if (ump->fileset_desc)
   5398 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
   5399 		    sizeof(struct long_ad)) == 0)
   5400 			vp->v_vflag |= VV_ROOT;
   5401 
   5402 	icb_loc = node_icb_loc;
   5403 	needs_indirect = 0;
   5404 	strat4096 = 0;
   5405 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   5406 	file_size = 0;
   5407 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5408 
   5409 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   5410 	do {
   5411 		/* try to read in fe/efe */
   5412 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5413 
   5414 		/* blank sector marks end of sequence, check this */
   5415 		if ((dscr == NULL) &&  (!strat4096))
   5416 			error = ENOENT;
   5417 
   5418 		/* break if read error or blank sector */
   5419 		if (error || (dscr == NULL))
   5420 			break;
   5421 
   5422 		/* process descriptor based on the descriptor type */
   5423 		dscr_type = udf_rw16(dscr->tag.id);
   5424 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   5425 
   5426 		/* if dealing with an indirect entry, follow the link */
   5427 		if (dscr_type == TAGID_INDIRECTENTRY) {
   5428 			needs_indirect = 0;
   5429 			next_icb_loc = dscr->inde.indirect_icb;
   5430 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5431 			icb_loc = next_icb_loc;
   5432 			if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
   5433 				error = EMLINK;
   5434 				break;
   5435 			}
   5436 			continue;
   5437 		}
   5438 
   5439 		/* only file entries and extended file entries allowed here */
   5440 		if ((dscr_type != TAGID_FENTRY) &&
   5441 		    (dscr_type != TAGID_EXTFENTRY)) {
   5442 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5443 			error = ENOENT;
   5444 			break;
   5445 		}
   5446 
   5447 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   5448 
   5449 		/* choose this one */
   5450 		last_fe_icb_loc = icb_loc;
   5451 
   5452 		/* record and process/update (ext)fentry */
   5453 		if (dscr_type == TAGID_FENTRY) {
   5454 			if (udf_node->fe)
   5455 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5456 					udf_node->fe);
   5457 			udf_node->fe  = &dscr->fe;
   5458 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   5459 			udf_file_type = udf_node->fe->icbtag.file_type;
   5460 			file_size = udf_rw64(udf_node->fe->inf_len);
   5461 		} else {
   5462 			if (udf_node->efe)
   5463 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5464 					udf_node->efe);
   5465 			udf_node->efe = &dscr->efe;
   5466 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   5467 			udf_file_type = udf_node->efe->icbtag.file_type;
   5468 			file_size = udf_rw64(udf_node->efe->inf_len);
   5469 		}
   5470 
   5471 		/* check recording strategy (structure) */
   5472 
   5473 		/*
   5474 		 * Strategy 4096 is a daisy linked chain terminating with an
   5475 		 * unrecorded sector or a TERM descriptor. The next
   5476 		 * descriptor is to be found in the sector that follows the
   5477 		 * current sector.
   5478 		 */
   5479 		if (strat == 4096) {
   5480 			strat4096 = 1;
   5481 			needs_indirect = 1;
   5482 
   5483 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   5484 		}
   5485 
   5486 		/*
   5487 		 * Strategy 4 is the normal strategy and terminates, but if
   5488 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   5489 		 */
   5490 
   5491 		if (strat == 4) {
   5492 			if (strat4096) {
   5493 				error = EINVAL;
   5494 				break;
   5495 			}
   5496 			break;		/* done */
   5497 		}
   5498 	} while (!error);
   5499 
   5500 	/* first round of cleanup code */
   5501 	if (error) {
   5502 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   5503 		/* recycle udf_node */
   5504 		udf_dispose_node(udf_node);
   5505 
   5506 		return EINVAL;		/* error code ok? */
   5507 	}
   5508 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   5509 
   5510 	/* assert no references to dscr anymore beyong this point */
   5511 	assert((udf_node->fe) || (udf_node->efe));
   5512 	dscr = NULL;
   5513 
   5514 	/*
   5515 	 * Remember where to record an updated version of the descriptor. If
   5516 	 * there is a sequence of indirect entries, icb_loc will have been
   5517 	 * updated. Its the write disipline to allocate new space and to make
   5518 	 * sure the chain is maintained.
   5519 	 *
   5520 	 * `needs_indirect' flags if the next location is to be filled with
   5521 	 * with an indirect entry.
   5522 	 */
   5523 	udf_node->write_loc = icb_loc;
   5524 	udf_node->needs_indirect = needs_indirect;
   5525 
   5526 	/*
   5527 	 * Go trough all allocations extents of this descriptor and when
   5528 	 * encountering a redirect read in the allocation extension. These are
   5529 	 * daisy-chained.
   5530 	 */
   5531 	UDF_LOCK_NODE(udf_node, 0);
   5532 	udf_node->num_extensions = 0;
   5533 
   5534 	error   = 0;
   5535 	slot    = 0;
   5536 	for (;;) {
   5537 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   5538 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   5539 			"lb_num = %d, part = %d\n", slot, eof,
   5540 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   5541 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   5542 			udf_rw32(icb_loc.loc.lb_num),
   5543 			udf_rw16(icb_loc.loc.part_num)));
   5544 		if (eof)
   5545 			break;
   5546 		slot++;
   5547 
   5548 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   5549 			continue;
   5550 
   5551 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   5552 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   5553 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   5554 					"too many allocation extensions on "
   5555 					"udf_node\n"));
   5556 			error = EINVAL;
   5557 			break;
   5558 		}
   5559 
   5560 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   5561 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   5562 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   5563 					"extension size in udf_node\n"));
   5564 			error = EINVAL;
   5565 			break;
   5566 		}
   5567 
   5568 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   5569 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   5570 		/* load in allocation extent */
   5571 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5572 		if (error || (dscr == NULL))
   5573 			break;
   5574 
   5575 		/* process read-in descriptor */
   5576 		dscr_type = udf_rw16(dscr->tag.id);
   5577 
   5578 		if (dscr_type != TAGID_ALLOCEXTENT) {
   5579 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5580 			error = ENOENT;
   5581 			break;
   5582 		}
   5583 
   5584 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5585 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5586 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5587 
   5588 		udf_node->num_extensions++;
   5589 
   5590 	} /* while */
   5591 	UDF_UNLOCK_NODE(udf_node, 0);
   5592 
   5593 	/* second round of cleanup code */
   5594 	if (error) {
   5595 		/* recycle udf_node */
   5596 		udf_dispose_node(udf_node);
   5597 
   5598 		return EINVAL;		/* error code ok? */
   5599 	}
   5600 
   5601 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5602 
   5603 	/*
   5604 	 * Translate UDF filetypes into vnode types.
   5605 	 *
   5606 	 * Systemfiles like the meta main and mirror files are not treated as
   5607 	 * normal files, so we type them as having no type. UDF dictates that
   5608 	 * they are not allowed to be visible.
   5609 	 */
   5610 
   5611 	switch (udf_file_type) {
   5612 	case UDF_ICB_FILETYPE_DIRECTORY :
   5613 	case UDF_ICB_FILETYPE_STREAMDIR :
   5614 		vp->v_type = VDIR;
   5615 		break;
   5616 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5617 		vp->v_type = VBLK;
   5618 		break;
   5619 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5620 		vp->v_type = VCHR;
   5621 		break;
   5622 	case UDF_ICB_FILETYPE_SOCKET :
   5623 		vp->v_type = VSOCK;
   5624 		break;
   5625 	case UDF_ICB_FILETYPE_FIFO :
   5626 		vp->v_type = VFIFO;
   5627 		break;
   5628 	case UDF_ICB_FILETYPE_SYMLINK :
   5629 		vp->v_type = VLNK;
   5630 		break;
   5631 	case UDF_ICB_FILETYPE_VAT :
   5632 	case UDF_ICB_FILETYPE_META_MAIN :
   5633 	case UDF_ICB_FILETYPE_META_MIRROR :
   5634 		vp->v_type = VNON;
   5635 		break;
   5636 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5637 	case UDF_ICB_FILETYPE_REALTIME :
   5638 		vp->v_type = VREG;
   5639 		break;
   5640 	default:
   5641 		/* YIKES, something else */
   5642 		vp->v_type = VNON;
   5643 	}
   5644 
   5645 	/* TODO specfs, fifofs etc etc. vnops setting */
   5646 
   5647 	/* don't forget to set vnode's v_size */
   5648 	uvm_vnp_setsize(vp, file_size);
   5649 
   5650 	/* TODO ext attr and streamdir udf_nodes */
   5651 
   5652 	*new_key = &udf_node->loc.loc;
   5653 
   5654 	return 0;
   5655 }
   5656 
   5657 int
   5658 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   5659 	     struct udf_node **udf_noderes)
   5660 {
   5661 	int error;
   5662 	struct vnode *vp;
   5663 
   5664 	*udf_noderes = NULL;
   5665 
   5666 	error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
   5667 	    sizeof(node_icb_loc->loc), &vp);
   5668 	if (error)
   5669 		return error;
   5670 	error = vn_lock(vp, LK_EXCLUSIVE);
   5671 	if (error) {
   5672 		vrele(vp);
   5673 		return error;
   5674 	}
   5675 	*udf_noderes = VTOI(vp);
   5676 	return 0;
   5677 }
   5678 
   5679 /* --------------------------------------------------------------------- */
   5680 
   5681 int
   5682 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5683 {
   5684 	union dscrptr *dscr;
   5685 	struct long_ad *loc;
   5686 	int extnr, error;
   5687 
   5688 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5689 
   5690 	KASSERT(udf_node->outstanding_bufs == 0);
   5691 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5692 
   5693 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5694 
   5695 	if (udf_node->i_flags & IN_DELETED) {
   5696 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5697 		udf_cleanup_reservation(udf_node);
   5698 		return 0;
   5699 	}
   5700 
   5701 	/* lock node; unlocked in callback */
   5702 	UDF_LOCK_NODE(udf_node, 0);
   5703 
   5704 	/* remove pending reservations, we're written out */
   5705 	udf_cleanup_reservation(udf_node);
   5706 
   5707 	/* at least one descriptor writeout */
   5708 	udf_node->outstanding_nodedscr = 1;
   5709 
   5710 	/* we're going to write out the descriptor so clear the flags */
   5711 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5712 
   5713 	/* if we were rebuild, write out the allocation extents */
   5714 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5715 		/* mark outstanding node descriptors and issue them */
   5716 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5717 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5718 			loc = &udf_node->ext_loc[extnr];
   5719 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5720 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5721 			if (error)
   5722 				return error;
   5723 		}
   5724 		/* mark allocation extents written out */
   5725 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5726 	}
   5727 
   5728 	if (udf_node->fe) {
   5729 		KASSERT(udf_node->efe == NULL);
   5730 		dscr = (union dscrptr *) udf_node->fe;
   5731 	} else {
   5732 		KASSERT(udf_node->efe);
   5733 		KASSERT(udf_node->fe == NULL);
   5734 		dscr = (union dscrptr *) udf_node->efe;
   5735 	}
   5736 	KASSERT(dscr);
   5737 
   5738 	loc = &udf_node->write_loc;
   5739 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5740 
   5741 	return error;
   5742 }
   5743 
   5744 /* --------------------------------------------------------------------- */
   5745 
   5746 int
   5747 udf_dispose_node(struct udf_node *udf_node)
   5748 {
   5749 	struct vnode *vp;
   5750 	int extnr;
   5751 
   5752 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5753 	if (!udf_node) {
   5754 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5755 		return 0;
   5756 	}
   5757 
   5758 	vp  = udf_node->vnode;
   5759 #ifdef DIAGNOSTIC
   5760 	if (vp->v_numoutput)
   5761 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5762 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5763 #endif
   5764 
   5765 	udf_cleanup_reservation(udf_node);
   5766 
   5767 	/* TODO extended attributes and streamdir */
   5768 
   5769 	/* remove dirhash if present */
   5770 	dirhash_purge(&udf_node->dir_hash);
   5771 
   5772 	/* destroy our lock */
   5773 	mutex_destroy(&udf_node->node_mutex);
   5774 	cv_destroy(&udf_node->node_lock);
   5775 
   5776 	/* dissociate our udf_node from the vnode */
   5777 	genfs_node_destroy(udf_node->vnode);
   5778 	mutex_enter(vp->v_interlock);
   5779 	vp->v_data = NULL;
   5780 	mutex_exit(vp->v_interlock);
   5781 
   5782 	/* free associated memory and the node itself */
   5783 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5784 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5785 			udf_node->ext[extnr]);
   5786 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5787 	}
   5788 
   5789 	if (udf_node->fe)
   5790 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5791 			udf_node->fe);
   5792 	if (udf_node->efe)
   5793 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5794 			udf_node->efe);
   5795 
   5796 	udf_node->fe  = (void *) 0xdeadaaaa;
   5797 	udf_node->efe = (void *) 0xdeadbbbb;
   5798 	udf_node->ump = (void *) 0xdeadbeef;
   5799 	pool_put(&udf_node_pool, udf_node);
   5800 
   5801 	return 0;
   5802 }
   5803 
   5804 
   5805 
   5806 /*
   5807  * create a new node using the specified dvp, vap and cnp.
   5808  * This allows special files to be created. Use with care.
   5809  */
   5810 
   5811 int
   5812 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
   5813     struct vattr *vap, kauth_cred_t cred, void *extra,
   5814     size_t *key_len, const void **new_key)
   5815 {
   5816 	union dscrptr *dscr;
   5817 	struct udf_node *dir_node = VTOI(dvp);
   5818 	struct udf_node *udf_node;
   5819 	struct udf_mount *ump = dir_node->ump;
   5820 	struct long_ad node_icb_loc;
   5821 	uint64_t parent_unique_id;
   5822 	uint64_t lmapping;
   5823 	uint32_t lb_size, lb_num;
   5824 	uint16_t vpart_num;
   5825 	uid_t uid;
   5826 	gid_t gid, parent_gid;
   5827 	int (**vnodeops)(void *);
   5828 	int udf_file_type, fid_size, error;
   5829 
   5830 	vnodeops = udf_vnodeop_p;
   5831 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5832 
   5833 	switch (vap->va_type) {
   5834 	case VREG :
   5835 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5836 		break;
   5837 	case VDIR :
   5838 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5839 		break;
   5840 	case VLNK :
   5841 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5842 		break;
   5843 	case VBLK :
   5844 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5845 		/* specfs */
   5846 		return ENOTSUP;
   5847 		break;
   5848 	case VCHR :
   5849 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5850 		/* specfs */
   5851 		return ENOTSUP;
   5852 		break;
   5853 	case VFIFO :
   5854 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5855 		/* fifofs */
   5856 		return ENOTSUP;
   5857 		break;
   5858 	case VSOCK :
   5859 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5860 		return ENOTSUP;
   5861 		break;
   5862 	case VNON :
   5863 	case VBAD :
   5864 	default :
   5865 		/* nothing; can we even create these? */
   5866 		return EINVAL;
   5867 	}
   5868 
   5869 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5870 
   5871 	/* reserve space for one logical block */
   5872 	vpart_num = ump->node_part;
   5873 	error = udf_reserve_space(ump, NULL, UDF_C_NODE,
   5874 		vpart_num, 1, /* can_fail */ true);
   5875 	if (error)
   5876 		return error;
   5877 
   5878 	/* allocate node */
   5879 	error = udf_allocate_space(ump, NULL, UDF_C_NODE,
   5880 			vpart_num, 1, &lmapping);
   5881 	if (error) {
   5882 		udf_do_unreserve_space(ump, NULL, vpart_num, 1);
   5883 		return error;
   5884 	}
   5885 
   5886 	lb_num = lmapping;
   5887 
   5888 	/* initialise pointer to location */
   5889 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5890 	node_icb_loc.len = udf_rw32(lb_size);
   5891 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5892 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5893 
   5894 	/* build udf_node (do initialise!) */
   5895 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5896 	memset(udf_node, 0, sizeof(struct udf_node));
   5897 
   5898 	/* initialise crosslinks, note location of fe/efe for hashing */
   5899 	/* bugalert: synchronise with udf_get_node() */
   5900 	udf_node->ump       = ump;
   5901 	udf_node->vnode     = vp;
   5902 	vp->v_data          = udf_node;
   5903 	udf_node->loc       = node_icb_loc;
   5904 	udf_node->write_loc = node_icb_loc;
   5905 	udf_node->lockf     = 0;
   5906 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5907 	cv_init(&udf_node->node_lock, "udf_nlk");
   5908 	udf_node->outstanding_bufs = 0;
   5909 	udf_node->outstanding_nodedscr = 0;
   5910 	udf_node->uncommitted_lbs = 0;
   5911 
   5912 	vp->v_tag = VT_UDF;
   5913 	vp->v_op = vnodeops;
   5914 
   5915 	/* initialise genfs */
   5916 	genfs_node_init(vp, &udf_genfsops);
   5917 
   5918 	/* get parent's unique ID for refering '..' if its a directory */
   5919 	if (dir_node->fe) {
   5920 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5921 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5922 	} else {
   5923 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5924 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5925 	}
   5926 
   5927 	/* get descriptor */
   5928 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5929 
   5930 	/* choose a fe or an efe for it */
   5931 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   5932 		udf_node->fe = &dscr->fe;
   5933 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5934 			udf_file_type, &udf_node->loc,
   5935 			&dir_node->loc, parent_unique_id);
   5936 		/* TODO add extended attribute for creation time */
   5937 	} else {
   5938 		udf_node->efe = &dscr->efe;
   5939 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5940 			udf_file_type, &udf_node->loc,
   5941 			&dir_node->loc, parent_unique_id);
   5942 	}
   5943 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5944 
   5945 	/* update vnode's size and type */
   5946 	vp->v_type = vap->va_type;
   5947 	uvm_vnp_setsize(vp, fid_size);
   5948 
   5949 	/* set access mode */
   5950 	udf_setaccessmode(udf_node, vap->va_mode);
   5951 
   5952 	/* set ownership */
   5953 	uid = kauth_cred_geteuid(cred);
   5954 	gid = parent_gid;
   5955 	udf_setownership(udf_node, uid, gid);
   5956 
   5957 	*key_len = sizeof(udf_node->loc.loc);
   5958 	*new_key = &udf_node->loc.loc;
   5959 
   5960 	return 0;
   5961 }
   5962 
   5963 
   5964 int
   5965 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5966 	struct componentname *cnp)
   5967 {
   5968 	struct udf_node *udf_node, *dir_node = VTOI(dvp);
   5969 	struct udf_mount *ump = dir_node->ump;
   5970 	int error;
   5971 
   5972 	error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp);
   5973 	if (error)
   5974 		return error;
   5975 
   5976 	udf_node = VTOI(*vpp);
   5977 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5978 	if (error) {
   5979 		struct long_ad *node_icb_loc = &udf_node->loc;
   5980 		uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
   5981 		uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
   5982 
   5983 		/* free disc allocation for node */
   5984 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5985 
   5986 		/* recycle udf_node */
   5987 		udf_dispose_node(udf_node);
   5988 		vrele(*vpp);
   5989 
   5990 		*vpp = NULL;
   5991 		return error;
   5992 	}
   5993 
   5994 	/* adjust file count */
   5995 	udf_adjust_filecount(udf_node, 1);
   5996 
   5997 	return 0;
   5998 }
   5999 
   6000 /* --------------------------------------------------------------------- */
   6001 
   6002 static void
   6003 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   6004 {
   6005 	struct udf_mount *ump = udf_node->ump;
   6006 	uint32_t lb_size, lb_num, len, num_lb;
   6007 	uint16_t vpart_num;
   6008 
   6009 	/* is there really one? */
   6010 	if (mem == NULL)
   6011 		return;
   6012 
   6013 	/* got a descriptor here */
   6014 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   6015 	lb_num    = udf_rw32(loc->loc.lb_num);
   6016 	vpart_num = udf_rw16(loc->loc.part_num);
   6017 
   6018 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   6019 	num_lb = (len + lb_size -1) / lb_size;
   6020 
   6021 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   6022 }
   6023 
   6024 void
   6025 udf_delete_node(struct udf_node *udf_node)
   6026 {
   6027 	void *dscr;
   6028 	struct long_ad *loc;
   6029 	int extnr, lvint, dummy;
   6030 
   6031 	if (udf_node->i_flags & IN_NO_DELETE)
   6032 		return;
   6033 
   6034 	/* paranoia check on integrity; should be open!; we could panic */
   6035 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   6036 	if (lvint == UDF_INTEGRITY_CLOSED)
   6037 		printf("\tIntegrity was CLOSED!\n");
   6038 
   6039 	/* whatever the node type, change its size to zero */
   6040 	(void) udf_resize_node(udf_node, 0, &dummy);
   6041 
   6042 	/* force it to be `clean'; no use writing it out */
   6043 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   6044 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   6045 
   6046 	/* adjust file count */
   6047 	udf_adjust_filecount(udf_node, -1);
   6048 
   6049 	/*
   6050 	 * Free its allocated descriptors; memory will be released when
   6051 	 * vop_reclaim() is called.
   6052 	 */
   6053 	loc = &udf_node->loc;
   6054 
   6055 	dscr = udf_node->fe;
   6056 	udf_free_descriptor_space(udf_node, loc, dscr);
   6057 	dscr = udf_node->efe;
   6058 	udf_free_descriptor_space(udf_node, loc, dscr);
   6059 
   6060 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   6061 		dscr =  udf_node->ext[extnr];
   6062 		loc  = &udf_node->ext_loc[extnr];
   6063 		udf_free_descriptor_space(udf_node, loc, dscr);
   6064 	}
   6065 }
   6066 
   6067 /* --------------------------------------------------------------------- */
   6068 
   6069 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   6070 int
   6071 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   6072 {
   6073 	struct file_entry    *fe  = udf_node->fe;
   6074 	struct extfile_entry *efe = udf_node->efe;
   6075 	uint64_t file_size;
   6076 	int error;
   6077 
   6078 	if (fe) {
   6079 		file_size  = udf_rw64(fe->inf_len);
   6080 	} else {
   6081 		assert(udf_node->efe);
   6082 		file_size  = udf_rw64(efe->inf_len);
   6083 	}
   6084 
   6085 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   6086 			file_size, new_size));
   6087 
   6088 	/* if not changing, we're done */
   6089 	if (file_size == new_size)
   6090 		return 0;
   6091 
   6092 	*extended = (new_size > file_size);
   6093 	if (*extended) {
   6094 		error = udf_grow_node(udf_node, new_size);
   6095 	} else {
   6096 		error = udf_shrink_node(udf_node, new_size);
   6097 	}
   6098 
   6099 	return error;
   6100 }
   6101 
   6102 
   6103 /* --------------------------------------------------------------------- */
   6104 
   6105 void
   6106 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   6107 	struct timespec *mod, struct timespec *birth)
   6108 {
   6109 	struct timespec now;
   6110 	struct file_entry    *fe;
   6111 	struct extfile_entry *efe;
   6112 	struct filetimes_extattr_entry *ft_extattr;
   6113 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   6114 	struct timestamp  fe_ctime;
   6115 	struct timespec   cur_birth;
   6116 	uint32_t offset, a_l;
   6117 	uint8_t *filedata;
   6118 	int error;
   6119 
   6120 	/* protect against rogue values */
   6121 	if (!udf_node)
   6122 		return;
   6123 
   6124 	fe  = udf_node->fe;
   6125 	efe = udf_node->efe;
   6126 
   6127 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   6128 		return;
   6129 
   6130 	/* get descriptor information */
   6131 	if (fe) {
   6132 		atime    = &fe->atime;
   6133 		mtime    = &fe->mtime;
   6134 		attrtime = &fe->attrtime;
   6135 		filedata = fe->data;
   6136 
   6137 		/* initial save dummy setting */
   6138 		ctime    = &fe_ctime;
   6139 
   6140 		/* check our extended attribute if present */
   6141 		error = udf_extattr_search_intern(udf_node,
   6142 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   6143 		if (!error) {
   6144 			ft_extattr = (struct filetimes_extattr_entry *)
   6145 				(filedata + offset);
   6146 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   6147 				ctime = &ft_extattr->times[0];
   6148 		}
   6149 		/* TODO create the extended attribute if not found ? */
   6150 	} else {
   6151 		assert(udf_node->efe);
   6152 		atime    = &efe->atime;
   6153 		mtime    = &efe->mtime;
   6154 		attrtime = &efe->attrtime;
   6155 		ctime    = &efe->ctime;
   6156 	}
   6157 
   6158 	vfs_timestamp(&now);
   6159 
   6160 	/* set access time */
   6161 	if (udf_node->i_flags & IN_ACCESS) {
   6162 		if (acc == NULL)
   6163 			acc = &now;
   6164 		udf_timespec_to_timestamp(acc, atime);
   6165 	}
   6166 
   6167 	/* set modification time */
   6168 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   6169 		if (mod == NULL)
   6170 			mod = &now;
   6171 		udf_timespec_to_timestamp(mod, mtime);
   6172 
   6173 		/* ensure birthtime is older than set modification! */
   6174 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   6175 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   6176 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   6177 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   6178 			udf_timespec_to_timestamp(mod, ctime);
   6179 		}
   6180 	}
   6181 
   6182 	/* update birthtime if specified */
   6183 	/* XXX we assume here that given birthtime is older than mod */
   6184 	if (birth && (birth->tv_sec != VNOVAL)) {
   6185 		udf_timespec_to_timestamp(birth, ctime);
   6186 	}
   6187 
   6188 	/* set change time */
   6189 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   6190 		udf_timespec_to_timestamp(&now, attrtime);
   6191 
   6192 	/* notify updates to the node itself */
   6193 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   6194 		udf_node->i_flags |= IN_ACCESSED;
   6195 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   6196 		udf_node->i_flags |= IN_MODIFIED;
   6197 
   6198 	/* clear modification flags */
   6199 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   6200 }
   6201 
   6202 /* --------------------------------------------------------------------- */
   6203 
   6204 int
   6205 udf_update(struct vnode *vp, struct timespec *acc,
   6206 	struct timespec *mod, struct timespec *birth, int updflags)
   6207 {
   6208 	union dscrptr *dscrptr;
   6209 	struct udf_node  *udf_node = VTOI(vp);
   6210 	struct udf_mount *ump = udf_node->ump;
   6211 	struct regid     *impl_id;
   6212 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   6213 	int waitfor, flags;
   6214 
   6215 #ifdef DEBUG
   6216 	char bits[128];
   6217 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   6218 		updflags));
   6219 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
   6220 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   6221 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   6222 #endif
   6223 
   6224 	/* set our times */
   6225 	udf_itimes(udf_node, acc, mod, birth);
   6226 
   6227 	/* set our implementation id */
   6228 	if (udf_node->fe) {
   6229 		dscrptr = (union dscrptr *) udf_node->fe;
   6230 		impl_id = &udf_node->fe->imp_id;
   6231 	} else {
   6232 		dscrptr = (union dscrptr *) udf_node->efe;
   6233 		impl_id = &udf_node->efe->imp_id;
   6234 	}
   6235 
   6236 	/* set our ID */
   6237 	udf_set_regid(impl_id, IMPL_NAME);
   6238 	udf_add_impl_regid(ump, impl_id);
   6239 
   6240 	/* update our crc! on RMW we are not allowed to change a thing */
   6241 	udf_validate_tag_and_crc_sums(dscrptr);
   6242 
   6243 	/* if called when mounted readonly, never write back */
   6244 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   6245 		return 0;
   6246 
   6247 	/* check if the node is dirty 'enough'*/
   6248 	if (updflags & UPDATE_CLOSE) {
   6249 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   6250 	} else {
   6251 		flags = udf_node->i_flags & IN_MODIFIED;
   6252 	}
   6253 	if (flags == 0)
   6254 		return 0;
   6255 
   6256 	/* determine if we need to write sync or async */
   6257 	waitfor = 0;
   6258 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   6259 		/* sync mounted */
   6260 		waitfor = updflags & UPDATE_WAIT;
   6261 		if (updflags & UPDATE_DIROP)
   6262 			waitfor |= UPDATE_WAIT;
   6263 	}
   6264 	if (waitfor)
   6265 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   6266 
   6267 	return 0;
   6268 }
   6269 
   6270 
   6271 /* --------------------------------------------------------------------- */
   6272 
   6273 
   6274 /*
   6275  * Read one fid and process it into a dirent and advance to the next (*fid)
   6276  * has to be allocated a logical block in size, (*dirent) struct dirent length
   6277  */
   6278 
   6279 int
   6280 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   6281 		struct fileid_desc *fid, struct dirent *dirent)
   6282 {
   6283 	struct udf_node  *dir_node = VTOI(vp);
   6284 	struct udf_mount *ump = dir_node->ump;
   6285 	struct file_entry    *fe  = dir_node->fe;
   6286 	struct extfile_entry *efe = dir_node->efe;
   6287 	uint32_t      fid_size, lb_size;
   6288 	uint64_t      file_size;
   6289 	char         *fid_name;
   6290 	int           enough, error;
   6291 
   6292 	assert(fid);
   6293 	assert(dirent);
   6294 	assert(dir_node);
   6295 	assert(offset);
   6296 	assert(*offset != 1);
   6297 
   6298 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   6299 	/* check if we're past the end of the directory */
   6300 	if (fe) {
   6301 		file_size = udf_rw64(fe->inf_len);
   6302 	} else {
   6303 		assert(dir_node->efe);
   6304 		file_size = udf_rw64(efe->inf_len);
   6305 	}
   6306 	if (*offset >= file_size)
   6307 		return EINVAL;
   6308 
   6309 	/* get maximum length of FID descriptor */
   6310 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   6311 
   6312 	/* initialise return values */
   6313 	fid_size = 0;
   6314 	memset(dirent, 0, sizeof(struct dirent));
   6315 	memset(fid, 0, lb_size);
   6316 
   6317 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   6318 	if (!enough) {
   6319 		/* short dir ... */
   6320 		return EIO;
   6321 	}
   6322 
   6323 	error = vn_rdwr(UIO_READ, vp,
   6324 			fid, MIN(file_size - (*offset), lb_size), *offset,
   6325 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   6326 			NULL, NULL);
   6327 	if (error)
   6328 		return error;
   6329 
   6330 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   6331 	/*
   6332 	 * Check if we got a whole descriptor.
   6333 	 * TODO Try to `resync' directory stream when something is very wrong.
   6334 	 */
   6335 
   6336 	/* check if our FID header is OK */
   6337 	error = udf_check_tag(fid);
   6338 	if (error) {
   6339 		goto brokendir;
   6340 	}
   6341 	DPRINTF(FIDS, ("\ttag check ok\n"));
   6342 
   6343 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   6344 		error = EIO;
   6345 		goto brokendir;
   6346 	}
   6347 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   6348 
   6349 	/* check for length */
   6350 	fid_size = udf_fidsize(fid);
   6351 	enough = (file_size - (*offset) >= fid_size);
   6352 	if (!enough) {
   6353 		error = EIO;
   6354 		goto brokendir;
   6355 	}
   6356 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   6357 
   6358 	/* check FID contents */
   6359 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   6360 brokendir:
   6361 	if (error) {
   6362 		/* note that is sometimes a bit quick to report */
   6363 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
   6364 		/* RESYNC? */
   6365 		/* TODO: use udf_resync_fid_stream */
   6366 		return EIO;
   6367 	}
   6368 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   6369 
   6370 	/* we got a whole and valid descriptor! */
   6371 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   6372 
   6373 	/* create resulting dirent structure */
   6374 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   6375 	udf_to_unix_name(dirent->d_name, NAME_MAX,
   6376 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   6377 
   6378 	/* '..' has no name, so provide one */
   6379 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   6380 		strcpy(dirent->d_name, "..");
   6381 
   6382 	dirent->d_fileno = udf_get_node_id(&fid->icb);	/* inode hash XXX */
   6383 	dirent->d_namlen = strlen(dirent->d_name);
   6384 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   6385 
   6386 	/*
   6387 	 * Note that its not worth trying to go for the filetypes now... its
   6388 	 * too expensive too
   6389 	 */
   6390 	dirent->d_type = DT_UNKNOWN;
   6391 
   6392 	/* initial guess for filetype we can make */
   6393 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   6394 		dirent->d_type = DT_DIR;
   6395 
   6396 	/* advance */
   6397 	*offset += fid_size;
   6398 
   6399 	return error;
   6400 }
   6401 
   6402 
   6403 /* --------------------------------------------------------------------- */
   6404 
   6405 static void
   6406 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
   6407 {
   6408 	struct udf_node *udf_node, *n_udf_node;
   6409 	struct vnode *vp;
   6410 	int vdirty, error;
   6411 
   6412 	KASSERT(mutex_owned(&ump->sync_lock));
   6413 
   6414 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   6415 	udf_node = RB_TREE_MIN(&ump->udf_node_tree);
   6416 	for (;udf_node; udf_node = n_udf_node) {
   6417 		DPRINTF(SYNC, ("."));
   6418 
   6419 		vp = udf_node->vnode;
   6420 
   6421 		n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
   6422 		    udf_node, RB_DIR_RIGHT);
   6423 
   6424 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
   6425 		if (error) {
   6426 			KASSERT(error == EBUSY);
   6427 			*ndirty += 1;
   6428 			continue;
   6429 		}
   6430 
   6431 		switch (pass) {
   6432 		case 1:
   6433 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   6434 			break;
   6435 		case 2:
   6436 			vdirty = vp->v_numoutput;
   6437 			if (vp->v_tag == VT_UDF)
   6438 				vdirty += udf_node->outstanding_bufs +
   6439 					udf_node->outstanding_nodedscr;
   6440 			if (vdirty == 0)
   6441 				VOP_FSYNC(vp, cred, 0,0,0);
   6442 			*ndirty += vdirty;
   6443 			break;
   6444 		case 3:
   6445 			vdirty = vp->v_numoutput;
   6446 			if (vp->v_tag == VT_UDF)
   6447 				vdirty += udf_node->outstanding_bufs +
   6448 					udf_node->outstanding_nodedscr;
   6449 			*ndirty += vdirty;
   6450 			break;
   6451 		}
   6452 
   6453 		VOP_UNLOCK(vp);
   6454 	}
   6455 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   6456 }
   6457 
   6458 
   6459 static bool
   6460 udf_sync_selector(void *cl, struct vnode *vp)
   6461 {
   6462 	struct udf_node *udf_node;
   6463 
   6464 	KASSERT(mutex_owned(vp->v_interlock));
   6465 
   6466 	udf_node = VTOI(vp);
   6467 
   6468 	if (vp->v_vflag & VV_SYSTEM)
   6469 		return false;
   6470 	if (vp->v_type == VNON)
   6471 		return false;
   6472 	if (udf_node == NULL)
   6473 		return false;
   6474 	if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
   6475 		return false;
   6476 	if (LIST_EMPTY(&vp->v_dirtyblkhd) && UVM_OBJ_IS_CLEAN(&vp->v_uobj))
   6477 		return false;
   6478 
   6479 	return true;
   6480 }
   6481 
   6482 void
   6483 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   6484 {
   6485 	struct vnode_iterator *marker;
   6486 	struct vnode *vp;
   6487 	struct udf_node *udf_node, *udf_next_node;
   6488 	int dummy, ndirty;
   6489 
   6490 	if (waitfor == MNT_LAZY)
   6491 		return;
   6492 
   6493 	mutex_enter(&ump->sync_lock);
   6494 
   6495 	/* Fill the rbtree with nodes to sync. */
   6496 	vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
   6497 	while ((vp = vfs_vnode_iterator_next(marker,
   6498 	    udf_sync_selector, NULL)) != NULL) {
   6499 		udf_node = VTOI(vp);
   6500 		udf_node->i_flags |= IN_SYNCED;
   6501 		rb_tree_insert_node(&ump->udf_node_tree, udf_node);
   6502 	}
   6503 	vfs_vnode_iterator_destroy(marker);
   6504 
   6505 	dummy = 0;
   6506 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6507 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6508 	udf_sync_pass(ump, cred, 1, &dummy);
   6509 
   6510 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6511 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6512 	udf_sync_pass(ump, cred, 2, &dummy);
   6513 
   6514 	if (waitfor == MNT_WAIT) {
   6515 recount:
   6516 		ndirty = ump->devvp->v_numoutput;
   6517 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
   6518 			ndirty));
   6519 		udf_sync_pass(ump, cred, 3, &ndirty);
   6520 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
   6521 			ndirty));
   6522 
   6523 		if (ndirty) {
   6524 			/* 1/4 second wait */
   6525 			kpause("udfsync2", false, hz/4, NULL);
   6526 			goto recount;
   6527 		}
   6528 	}
   6529 
   6530 	/* Clean the rbtree. */
   6531 	for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
   6532 	    udf_node; udf_node = udf_next_node) {
   6533 		udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
   6534 		    udf_node, RB_DIR_RIGHT);
   6535 		rb_tree_remove_node(&ump->udf_node_tree, udf_node);
   6536 		udf_node->i_flags &= ~IN_SYNCED;
   6537 		vrele(udf_node->vnode);
   6538 	}
   6539 
   6540 	mutex_exit(&ump->sync_lock);
   6541 }
   6542 
   6543 /* --------------------------------------------------------------------- */
   6544 
   6545 /*
   6546  * Read and write file extent in/from the buffer.
   6547  *
   6548  * The splitup of the extent into separate request-buffers is to minimise
   6549  * copying around as much as possible.
   6550  *
   6551  * block based file reading and writing
   6552  */
   6553 
   6554 static int
   6555 udf_read_internal(struct udf_node *node, uint8_t *blob)
   6556 {
   6557 	struct udf_mount *ump;
   6558 	struct file_entry     *fe = node->fe;
   6559 	struct extfile_entry *efe = node->efe;
   6560 	uint64_t inflen;
   6561 	uint32_t sector_size;
   6562 	uint8_t  *srcpos;
   6563 	int icbflags, addr_type;
   6564 
   6565 	/* get extent and do some paranoia checks */
   6566 	ump = node->ump;
   6567 	sector_size = ump->discinfo.sector_size;
   6568 
   6569 	/*
   6570 	 * XXX there should be real bounds-checking logic here,
   6571 	 * in case ->l_ea or ->inf_len contains nonsense.
   6572 	 */
   6573 
   6574 	if (fe) {
   6575 		inflen   = udf_rw64(fe->inf_len);
   6576 		srcpos   = &fe->data[0] + udf_rw32(fe->l_ea);
   6577 		icbflags = udf_rw16(fe->icbtag.flags);
   6578 	} else {
   6579 		assert(node->efe);
   6580 		inflen   = udf_rw64(efe->inf_len);
   6581 		srcpos   = &efe->data[0] + udf_rw32(efe->l_ea);
   6582 		icbflags = udf_rw16(efe->icbtag.flags);
   6583 	}
   6584 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6585 
   6586 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6587 	__USE(addr_type);
   6588 	assert(inflen < sector_size);
   6589 
   6590 	/* copy out info */
   6591 	memcpy(blob, srcpos, inflen);
   6592 	memset(&blob[inflen], 0, sector_size - inflen);
   6593 
   6594 	return 0;
   6595 }
   6596 
   6597 
   6598 static int
   6599 udf_write_internal(struct udf_node *node, uint8_t *blob)
   6600 {
   6601 	struct udf_mount *ump;
   6602 	struct file_entry     *fe = node->fe;
   6603 	struct extfile_entry *efe = node->efe;
   6604 	uint64_t inflen;
   6605 	uint32_t sector_size;
   6606 	uint8_t  *pos;
   6607 	int icbflags, addr_type;
   6608 
   6609 	/* get extent and do some paranoia checks */
   6610 	ump = node->ump;
   6611 	sector_size = ump->discinfo.sector_size;
   6612 
   6613 	if (fe) {
   6614 		inflen   = udf_rw64(fe->inf_len);
   6615 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6616 		icbflags = udf_rw16(fe->icbtag.flags);
   6617 	} else {
   6618 		assert(node->efe);
   6619 		inflen   = udf_rw64(efe->inf_len);
   6620 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6621 		icbflags = udf_rw16(efe->icbtag.flags);
   6622 	}
   6623 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6624 
   6625 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6626 	__USE(addr_type);
   6627 	assert(inflen < sector_size);
   6628 	__USE(sector_size);
   6629 
   6630 	/* copy in blob */
   6631 	/* memset(pos, 0, inflen); */
   6632 	memcpy(pos, blob, inflen);
   6633 
   6634 	return 0;
   6635 }
   6636 
   6637 
   6638 void
   6639 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6640 {
   6641 	struct buf *nestbuf;
   6642 	struct udf_mount *ump = udf_node->ump;
   6643 	uint64_t   *mapping;
   6644 	uint64_t    run_start;
   6645 	uint32_t    sector_size;
   6646 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6647 	uint32_t    from, lblkno;
   6648 	uint32_t    sectors;
   6649 	uint8_t    *buf_pos;
   6650 	int error, run_length, what;
   6651 
   6652 	sector_size = udf_node->ump->discinfo.sector_size;
   6653 
   6654 	from    = buf->b_blkno;
   6655 	sectors = buf->b_bcount / sector_size;
   6656 
   6657 	what = udf_get_c_type(udf_node);
   6658 
   6659 	/* assure we have enough translation slots */
   6660 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6661 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6662 
   6663 	if (sectors > UDF_MAX_MAPPINGS) {
   6664 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6665 		buf->b_error  = EIO;
   6666 		biodone(buf);
   6667 		return;
   6668 	}
   6669 
   6670 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6671 
   6672 	error = 0;
   6673 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6674 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6675 	if (error) {
   6676 		buf->b_error  = error;
   6677 		biodone(buf);
   6678 		goto out;
   6679 	}
   6680 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6681 
   6682 	/* pre-check if its an internal */
   6683 	if (*mapping == UDF_TRANS_INTERN) {
   6684 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6685 		if (error)
   6686 			buf->b_error  = error;
   6687 		biodone(buf);
   6688 		goto out;
   6689 	}
   6690 	DPRINTF(READ, ("\tnot intern\n"));
   6691 
   6692 #ifdef DEBUG
   6693 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6694 		printf("Returned translation table:\n");
   6695 		for (sector = 0; sector < sectors; sector++) {
   6696 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6697 		}
   6698 	}
   6699 #endif
   6700 
   6701 	/* request read-in of data from disc sheduler */
   6702 	buf->b_resid = buf->b_bcount;
   6703 	for (sector = 0; sector < sectors; sector++) {
   6704 		buf_offset = sector * sector_size;
   6705 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6706 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6707 
   6708 		/* check if its zero or unmapped to stop reading */
   6709 		switch (mapping[sector]) {
   6710 		case UDF_TRANS_UNMAPPED:
   6711 		case UDF_TRANS_ZERO:
   6712 			/* copy zero sector TODO runlength like below */
   6713 			memset(buf_pos, 0, sector_size);
   6714 			DPRINTF(READ, ("\treturning zero sector\n"));
   6715 			nestiobuf_done(buf, sector_size, 0);
   6716 			break;
   6717 		default :
   6718 			DPRINTF(READ, ("\tread sector "
   6719 			    "%"PRIu64"\n", mapping[sector]));
   6720 
   6721 			lblkno = from + sector;
   6722 			run_start  = mapping[sector];
   6723 			run_length = 1;
   6724 			while (sector < sectors-1) {
   6725 				if (mapping[sector+1] != mapping[sector]+1)
   6726 					break;
   6727 				run_length++;
   6728 				sector++;
   6729 			}
   6730 
   6731 			/*
   6732 			 * nest an iobuf and mark it for async reading. Since
   6733 			 * we're using nested buffers, they can't be cached by
   6734 			 * design.
   6735 			 */
   6736 			rbuflen = run_length * sector_size;
   6737 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6738 
   6739 			nestbuf = getiobuf(NULL, true);
   6740 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6741 			/* nestbuf is B_ASYNC */
   6742 
   6743 			/* identify this nestbuf */
   6744 			nestbuf->b_lblkno   = lblkno;
   6745 			assert(nestbuf->b_vp == udf_node->vnode);
   6746 
   6747 			/* CD shedules on raw blkno */
   6748 			nestbuf->b_blkno      = rblk;
   6749 			nestbuf->b_proc       = NULL;
   6750 			nestbuf->b_rawblkno   = rblk;
   6751 			nestbuf->b_udf_c_type = what;
   6752 
   6753 			udf_discstrat_queuebuf(ump, nestbuf);
   6754 		}
   6755 	}
   6756 out:
   6757 	/* if we're synchronously reading, wait for the completion */
   6758 	if ((buf->b_flags & B_ASYNC) == 0)
   6759 		biowait(buf);
   6760 
   6761 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6762 	free(mapping, M_TEMP);
   6763 	return;
   6764 }
   6765 
   6766 
   6767 void
   6768 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6769 {
   6770 	struct buf *nestbuf;
   6771 	struct udf_mount *ump = udf_node->ump;
   6772 	uint64_t   *mapping;
   6773 	uint64_t    run_start;
   6774 	uint32_t    lb_size;
   6775 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6776 	uint32_t    from, lblkno;
   6777 	uint32_t    num_lb;
   6778 	int error, run_length, what, s;
   6779 
   6780 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6781 
   6782 	from   = buf->b_blkno;
   6783 	num_lb = buf->b_bcount / lb_size;
   6784 
   6785 	what = udf_get_c_type(udf_node);
   6786 
   6787 	/* assure we have enough translation slots */
   6788 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6789 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6790 
   6791 	if (num_lb > UDF_MAX_MAPPINGS) {
   6792 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6793 		buf->b_error  = EIO;
   6794 		biodone(buf);
   6795 		return;
   6796 	}
   6797 
   6798 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6799 
   6800 	error = 0;
   6801 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6802 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6803 	if (error) {
   6804 		buf->b_error  = error;
   6805 		biodone(buf);
   6806 		goto out;
   6807 	}
   6808 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6809 
   6810 	/* if its internally mapped, we can write it in the descriptor itself */
   6811 	if (*mapping == UDF_TRANS_INTERN) {
   6812 		/* TODO paranoia check if we ARE going to have enough space */
   6813 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6814 		if (error)
   6815 			buf->b_error  = error;
   6816 		biodone(buf);
   6817 		goto out;
   6818 	}
   6819 	DPRINTF(WRITE, ("\tnot intern\n"));
   6820 
   6821 	/* request write out of data to disc sheduler */
   6822 	buf->b_resid = buf->b_bcount;
   6823 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6824 		buf_offset = lb_num * lb_size;
   6825 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6826 
   6827 		/*
   6828 		 * Mappings are not that important here. Just before we write
   6829 		 * the lb_num we late-allocate them when needed and update the
   6830 		 * mapping in the udf_node.
   6831 		 */
   6832 
   6833 		/* XXX why not ignore the mapping altogether ? */
   6834 		DPRINTF(WRITE, ("\twrite lb_num "
   6835 		    "%"PRIu64, mapping[lb_num]));
   6836 
   6837 		lblkno = from + lb_num;
   6838 		run_start  = mapping[lb_num];
   6839 		run_length = 1;
   6840 		while (lb_num < num_lb-1) {
   6841 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6842 				if (mapping[lb_num+1] != mapping[lb_num])
   6843 					break;
   6844 			run_length++;
   6845 			lb_num++;
   6846 		}
   6847 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6848 
   6849 		/* nest an iobuf on the master buffer for the extent */
   6850 		rbuflen = run_length * lb_size;
   6851 		rblk = run_start * (lb_size/DEV_BSIZE);
   6852 
   6853 		nestbuf = getiobuf(NULL, true);
   6854 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6855 		/* nestbuf is B_ASYNC */
   6856 
   6857 		/* identify this nestbuf */
   6858 		nestbuf->b_lblkno   = lblkno;
   6859 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6860 
   6861 		/* CD shedules on raw blkno */
   6862 		nestbuf->b_blkno      = rblk;
   6863 		nestbuf->b_proc       = NULL;
   6864 		nestbuf->b_rawblkno   = rblk;
   6865 		nestbuf->b_udf_c_type = what;
   6866 
   6867 		/* increment our outstanding bufs counter */
   6868 		s = splbio();
   6869 			udf_node->outstanding_bufs++;
   6870 		splx(s);
   6871 
   6872 		udf_discstrat_queuebuf(ump, nestbuf);
   6873 	}
   6874 out:
   6875 	/* if we're synchronously writing, wait for the completion */
   6876 	if ((buf->b_flags & B_ASYNC) == 0)
   6877 		biowait(buf);
   6878 
   6879 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6880 	free(mapping, M_TEMP);
   6881 	return;
   6882 }
   6883 
   6884 /* --------------------------------------------------------------------- */
   6885