udf_subr.c revision 1.15 1 /* $NetBSD: udf_subr.c,v 1.15 2006/09/05 22:30:52 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.15 2006/09/05 22:30:52 reinoud Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67
68 #include <fs/udf/ecma167-udf.h>
69 #include <fs/udf/udf_mount.h>
70
71 #include "udf.h"
72 #include "udf_subr.h"
73 #include "udf_bswap.h"
74
75
76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77
78
79 /* predefines */
80
81
82 #if 0
83 {
84 int i, j, dlen;
85 uint8_t *blob;
86
87 blob = (uint8_t *) fid;
88 dlen = file_size - (*offset);
89
90 printf("blob = %p\n", blob);
91 printf("dump of %d bytes\n", dlen);
92
93 for (i = 0; i < dlen; i+ = 16) {
94 printf("%04x ", i);
95 for (j = 0; j < 16; j++) {
96 if (i+j < dlen) {
97 printf("%02x ", blob[i+j]);
98 } else {
99 printf(" ");
100 }
101 }
102 for (j = 0; j < 16; j++) {
103 if (i+j < dlen) {
104 if (blob[i+j]>32 && blob[i+j]! = 127) {
105 printf("%c", blob[i+j]);
106 } else {
107 printf(".");
108 }
109 }
110 }
111 printf("\n");
112 }
113 printf("\n");
114 }
115 Debugger();
116 #endif
117
118
119 /* --------------------------------------------------------------------- */
120
121 /* STUB */
122
123 static int
124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 {
126 int sector_size = ump->discinfo.sector_size;
127 int blks = sector_size / DEV_BSIZE;
128
129 /* NOTE bread() checks if block is in cache or not */
130 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 }
132
133
134 /* --------------------------------------------------------------------- */
135
136 /*
137 * Check if the blob starts with a good UDF tag. Tags are protected by a
138 * checksum over the reader except one byte at position 4 that is the checksum
139 * itself.
140 */
141
142 int
143 udf_check_tag(void *blob)
144 {
145 struct desc_tag *tag = blob;
146 uint8_t *pos, sum, cnt;
147
148 /* check TAG header checksum */
149 pos = (uint8_t *) tag;
150 sum = 0;
151
152 for(cnt = 0; cnt < 16; cnt++) {
153 if (cnt != 4)
154 sum += *pos;
155 pos++;
156 }
157 if (sum != tag->cksum) {
158 /* bad tag header checksum; this is not a valid tag */
159 return EINVAL;
160 }
161
162 return 0;
163 }
164
165 /* --------------------------------------------------------------------- */
166
167 /*
168 * check tag payload will check descriptor CRC as specified.
169 * If the descriptor is too short, it will return EIO otherwise EINVAL.
170 */
171
172 int
173 udf_check_tag_payload(void *blob, uint32_t max_length)
174 {
175 struct desc_tag *tag = blob;
176 uint16_t crc, crc_len;
177
178 crc_len = udf_rw16(tag->desc_crc_len);
179
180 /* check payload CRC if applicable */
181 if (crc_len == 0)
182 return 0;
183
184 if (crc_len > max_length)
185 return EIO;
186
187 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 if (crc != udf_rw16(tag->desc_crc)) {
189 /* bad payload CRC; this is a broken tag */
190 return EINVAL;
191 }
192
193 return 0;
194 }
195
196 /* --------------------------------------------------------------------- */
197
198 int
199 udf_validate_tag_sum(void *blob)
200 {
201 struct desc_tag *tag = blob;
202 uint8_t *pos, sum, cnt;
203
204 /* calculate TAG header checksum */
205 pos = (uint8_t *) tag;
206 sum = 0;
207
208 for(cnt = 0; cnt < 16; cnt++) {
209 if (cnt != 4) sum += *pos;
210 pos++;
211 }
212 tag->cksum = sum; /* 8 bit */
213
214 return 0;
215 }
216
217 /* --------------------------------------------------------------------- */
218
219 /* assumes sector number of descriptor to be saved already present */
220
221 int
222 udf_validate_tag_and_crc_sums(void *blob)
223 {
224 struct desc_tag *tag = blob;
225 uint8_t *btag = (uint8_t *) tag;
226 uint16_t crc, crc_len;
227
228 crc_len = udf_rw16(tag->desc_crc_len);
229
230 /* check payload CRC if applicable */
231 if (crc_len > 0) {
232 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 tag->desc_crc = udf_rw16(crc);
234 }
235
236 /* calculate TAG header checksum */
237 return udf_validate_tag_sum(blob);
238 }
239
240 /* --------------------------------------------------------------------- */
241
242 /*
243 * XXX note the different semantics from udfclient: for FIDs it still rounds
244 * up to sectors. Use udf_fidsize() for a correct length.
245 */
246
247 int
248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 {
250 uint32_t size, tag_id, num_secs, elmsz;
251
252 tag_id = udf_rw16(dscr->tag.id);
253
254 switch (tag_id) {
255 case TAGID_LOGVOL :
256 size = sizeof(struct logvol_desc) - 1;
257 size += udf_rw32(dscr->lvd.mt_l);
258 break;
259 case TAGID_UNALLOC_SPACE :
260 elmsz = sizeof(struct extent_ad);
261 size = sizeof(struct unalloc_sp_desc) - elmsz;
262 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 break;
264 case TAGID_FID :
265 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 size = (size + 3) & ~3;
267 break;
268 case TAGID_LOGVOL_INTEGRITY :
269 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 size += udf_rw32(dscr->lvid.l_iu);
271 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 break;
273 case TAGID_SPACE_BITMAP :
274 size = sizeof(struct space_bitmap_desc) - 1;
275 size += udf_rw32(dscr->sbd.num_bytes);
276 break;
277 case TAGID_SPARING_TABLE :
278 elmsz = sizeof(struct spare_map_entry);
279 size = sizeof(struct udf_sparing_table) - elmsz;
280 size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 break;
282 case TAGID_FENTRY :
283 size = sizeof(struct file_entry);
284 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 break;
286 case TAGID_EXTFENTRY :
287 size = sizeof(struct extfile_entry);
288 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 break;
290 case TAGID_FSD :
291 size = sizeof(struct fileset_desc);
292 break;
293 default :
294 size = sizeof(union dscrptr);
295 break;
296 }
297
298 if ((size == 0) || (udf_sector_size == 0)) return 0;
299
300 /* round up in sectors */
301 num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 return num_secs * udf_sector_size;
303 }
304
305
306 static int
307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 {
309 uint32_t size;
310
311 if (udf_rw16(fid->tag.id) != TAGID_FID)
312 panic("got udf_fidsize on non FID\n");
313
314 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 size = (size + 3) & ~3;
316
317 return size;
318 }
319
320 /* --------------------------------------------------------------------- */
321
322 /*
323 * Problem with read_descriptor are long descriptors spanning more than one
324 * sector. Luckily long descriptors can't be in `logical space'.
325 *
326 * Size of allocated piece is returned in multiple of sector size due to
327 * udf_calc_udf_malloc_size().
328 */
329
330 int
331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 struct malloc_type *mtype, union dscrptr **dstp)
333 {
334 union dscrptr *src, *dst;
335 struct buf *bp;
336 uint8_t *pos;
337 int blks, blk, dscrlen;
338 int i, error, sector_size;
339
340 sector_size = ump->discinfo.sector_size;
341
342 *dstp = dst = NULL;
343 dscrlen = sector_size;
344
345 /* read initial piece */
346 error = udf_bread(ump, sector, &bp);
347 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348
349 if (!error) {
350 /* check if its a valid tag */
351 error = udf_check_tag(bp->b_data);
352 if (error) {
353 /* check if its an empty block */
354 pos = bp->b_data;
355 for (i = 0; i < sector_size; i++, pos++) {
356 if (*pos) break;
357 }
358 if (i == sector_size) {
359 /* return no error but with no dscrptr */
360 /* dispose first block */
361 brelse(bp);
362 return 0;
363 }
364 }
365 }
366 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 if (!error) {
368 src = (union dscrptr *) bp->b_data;
369 dscrlen = udf_tagsize(src, sector_size);
370 dst = malloc(dscrlen, mtype, M_WAITOK);
371 memcpy(dst, src, sector_size);
372 }
373 /* dispose first block */
374 bp->b_flags |= B_AGE;
375 brelse(bp);
376
377 if (!error && (dscrlen > sector_size)) {
378 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 /*
380 * Read the rest of descriptor. Since it is only used at mount
381 * time its overdone to define and use a specific udf_breadn
382 * for this alone.
383 */
384 blks = (dscrlen + sector_size -1) / sector_size;
385 for (blk = 1; blk < blks; blk++) {
386 error = udf_bread(ump, sector + blk, &bp);
387 if (error) {
388 brelse(bp);
389 break;
390 }
391 pos = (uint8_t *) dst + blk*sector_size;
392 memcpy(pos, bp->b_data, sector_size);
393
394 /* dispose block */
395 bp->b_flags |= B_AGE;
396 brelse(bp);
397 }
398 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 error));
400 }
401 if (!error) {
402 error = udf_check_tag_payload(dst, dscrlen);
403 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 }
405 if (error && dst) {
406 free(dst, mtype);
407 dst = NULL;
408 }
409 *dstp = dst;
410
411 return error;
412 }
413
414 /* --------------------------------------------------------------------- */
415 #ifdef DEBUG
416 static void
417 udf_dump_discinfo(struct udf_mount *ump)
418 {
419 char bits[128];
420 struct mmc_discinfo *di = &ump->discinfo;
421
422 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 return;
424
425 printf("Device/media info :\n");
426 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
427 printf("\tderived class %d\n", di->mmc_class);
428 printf("\tsector size %d\n", di->sector_size);
429 printf("\tdisc state %d\n", di->disc_state);
430 printf("\tlast ses state %d\n", di->last_session_state);
431 printf("\tbg format state %d\n", di->bg_format_state);
432 printf("\tfrst track %d\n", di->first_track);
433 printf("\tfst on last ses %d\n", di->first_track_last_session);
434 printf("\tlst on last ses %d\n", di->last_track_last_session);
435 printf("\tlink block penalty %d\n", di->link_block_penalty);
436 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 sizeof(bits));
438 printf("\tdisc flags %s\n", bits);
439 printf("\tdisc id %x\n", di->disc_id);
440 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
441
442 printf("\tnum sessions %d\n", di->num_sessions);
443 printf("\tnum tracks %d\n", di->num_tracks);
444
445 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 printf("\tcapabilities cur %s\n", bits);
447 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 printf("\tcapabilities cap %s\n", bits);
449 }
450 #else
451 #define udf_dump_discinfo(a);
452 #endif
453
454 /* not called often */
455 int
456 udf_update_discinfo(struct udf_mount *ump)
457 {
458 struct vnode *devvp = ump->devvp;
459 struct partinfo dpart;
460 struct mmc_discinfo *di;
461 int error;
462
463 DPRINTF(VOLUMES, ("read/update disc info\n"));
464 di = &ump->discinfo;
465 memset(di, 0, sizeof(struct mmc_discinfo));
466
467 /* check if we're on a MMC capable device, i.e. CD/DVD */
468 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 if (error == 0) {
470 udf_dump_discinfo(ump);
471 return 0;
472 }
473
474 /* disc partition support */
475 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 if (error)
477 return ENODEV;
478
479 /* set up a disc info profile for partitions */
480 di->mmc_profile = 0x01; /* disc type */
481 di->mmc_class = MMC_CLASS_DISC;
482 di->disc_state = MMC_STATE_CLOSED;
483 di->last_session_state = MMC_STATE_CLOSED;
484 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
485 di->link_block_penalty = 0;
486
487 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 di->mmc_cap = di->mmc_cur;
490 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491
492 /* TODO problem with last_possible_lba on resizable VND; request */
493 di->last_possible_lba = dpart.part->p_size;
494 di->sector_size = dpart.disklab->d_secsize;
495 di->blockingnr = 1;
496
497 di->num_sessions = 1;
498 di->num_tracks = 1;
499
500 di->first_track = 1;
501 di->first_track_last_session = di->last_track_last_session = 1;
502
503 udf_dump_discinfo(ump);
504 return 0;
505 }
506
507 /* --------------------------------------------------------------------- */
508
509 int
510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 {
512 struct vnode *devvp = ump->devvp;
513 struct mmc_discinfo *di = &ump->discinfo;
514 int error, class;
515
516 DPRINTF(VOLUMES, ("read track info\n"));
517
518 class = di->mmc_class;
519 if (class != MMC_CLASS_DISC) {
520 /* tracknr specified in struct ti */
521 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 NOCRED, NULL);
523 return error;
524 }
525
526 /* disc partition support */
527 if (ti->tracknr != 1)
528 return EIO;
529
530 /* create fake ti (TODO check for resized vnds) */
531 ti->sessionnr = 1;
532
533 ti->track_mode = 0; /* XXX */
534 ti->data_mode = 0; /* XXX */
535 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536
537 ti->track_start = 0;
538 ti->packet_size = 1;
539
540 /* TODO support for resizable vnd */
541 ti->track_size = di->last_possible_lba;
542 ti->next_writable = di->last_possible_lba;
543 ti->last_recorded = ti->next_writable;
544 ti->free_blocks = 0;
545
546 return 0;
547 }
548
549 /* --------------------------------------------------------------------- */
550
551 /* track/session searching for mounting */
552
553 static int
554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 int *first_tracknr, int *last_tracknr)
556 {
557 struct mmc_trackinfo trackinfo;
558 uint32_t tracknr, start_track, num_tracks;
559 int error;
560
561 /* if negative, sessionnr is relative to last session */
562 if (args->sessionnr < 0) {
563 args->sessionnr += ump->discinfo.num_sessions;
564 /* sanity */
565 if (args->sessionnr < 0)
566 args->sessionnr = 0;
567 }
568
569 /* sanity */
570 if (args->sessionnr > ump->discinfo.num_sessions)
571 args->sessionnr = ump->discinfo.num_sessions;
572
573 /* search the tracks for this session, zero session nr indicates last */
574 if (args->sessionnr == 0) {
575 args->sessionnr = ump->discinfo.num_sessions;
576 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 args->sessionnr--;
578 }
579 }
580
581 /* search the first and last track of the specified session */
582 num_tracks = ump->discinfo.num_tracks;
583 start_track = ump->discinfo.first_track;
584
585 /* search for first track of this session */
586 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 /* get track info */
588 trackinfo.tracknr = tracknr;
589 error = udf_update_trackinfo(ump, &trackinfo);
590 if (error)
591 return error;
592
593 if (trackinfo.sessionnr == args->sessionnr)
594 break;
595 }
596 *first_tracknr = tracknr;
597
598 /* search for last track of this session */
599 for (;tracknr <= num_tracks; tracknr++) {
600 /* get track info */
601 trackinfo.tracknr = tracknr;
602 error = udf_update_trackinfo(ump, &trackinfo);
603 if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 tracknr--;
605 break;
606 }
607 }
608 if (tracknr > num_tracks)
609 tracknr--;
610
611 *last_tracknr = tracknr;
612
613 assert(*last_tracknr >= *first_tracknr);
614 return 0;
615 }
616
617 /* --------------------------------------------------------------------- */
618
619 static int
620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 {
622 int error;
623
624 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 (union dscrptr **) dst);
626 if (!error) {
627 /* blank terminator blocks are not allowed here */
628 if (*dst == NULL)
629 return ENOENT;
630 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 error = ENOENT;
632 free(*dst, M_UDFVOLD);
633 *dst = NULL;
634 DPRINTF(VOLUMES, ("Not an anchor\n"));
635 }
636 }
637
638 return error;
639 }
640
641
642 int
643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 {
645 struct mmc_trackinfo first_track;
646 struct mmc_trackinfo last_track;
647 struct anchor_vdp **anchorsp;
648 uint32_t track_start;
649 uint32_t track_end;
650 uint32_t positions[4];
651 int first_tracknr, last_tracknr;
652 int error, anch, ok, first_anchor;
653
654 /* search the first and last track of the specified session */
655 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 if (!error) {
657 first_track.tracknr = first_tracknr;
658 error = udf_update_trackinfo(ump, &first_track);
659 }
660 if (!error) {
661 last_track.tracknr = last_tracknr;
662 error = udf_update_trackinfo(ump, &last_track);
663 }
664 if (error) {
665 printf("UDF mount: reading disc geometry failed\n");
666 return 0;
667 }
668
669 track_start = first_track.track_start;
670
671 /* `end' is not as straitforward as start. */
672 track_end = last_track.track_start
673 + last_track.track_size - last_track.free_blocks - 1;
674
675 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 /* end of track is not straitforward here */
677 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 track_end = last_track.last_recorded;
679 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 track_end = last_track.next_writable
681 - ump->discinfo.link_block_penalty;
682 }
683
684 /* its no use reading a blank track */
685 first_anchor = 0;
686 if (first_track.flags & MMC_TRACKINFO_BLANK)
687 first_anchor = 1;
688
689 /* read anchors start+256, start+512, end-256, end */
690 positions[0] = track_start+256;
691 positions[1] = track_end-256;
692 positions[2] = track_end;
693 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
694 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
695
696 ok = 0;
697 anchorsp = ump->anchors;
698 for (anch = first_anchor; anch < 4; anch++) {
699 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
700 positions[anch]));
701 error = udf_read_anchor(ump, positions[anch], anchorsp);
702 if (!error) {
703 anchorsp++;
704 ok++;
705 }
706 }
707
708 /* VATs are only recorded on sequential media, but initialise */
709 ump->first_possible_vat_location = track_start + 256 + 1;
710 ump->last_possible_vat_location = track_end
711 + ump->discinfo.blockingnr;
712
713 return ok;
714 }
715
716 /* --------------------------------------------------------------------- */
717
718 /* we dont try to be smart; we just record the parts */
719 #define UDF_UPDATE_DSCR(name, dscr) \
720 if (name) \
721 free(name, M_UDFVOLD); \
722 name = dscr;
723
724 static int
725 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
726 {
727 uint16_t partnr;
728
729 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
730 udf_rw16(dscr->tag.id)));
731 switch (udf_rw16(dscr->tag.id)) {
732 case TAGID_PRI_VOL : /* primary partition */
733 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
734 break;
735 case TAGID_LOGVOL : /* logical volume */
736 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
737 break;
738 case TAGID_UNALLOC_SPACE : /* unallocated space */
739 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
740 break;
741 case TAGID_IMP_VOL : /* implementation */
742 /* XXX do we care about multiple impl. descr ? */
743 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
744 break;
745 case TAGID_PARTITION : /* physical partition */
746 /* not much use if its not allocated */
747 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
748 free(dscr, M_UDFVOLD);
749 break;
750 }
751
752 /* check partnr boundaries */
753 partnr = udf_rw16(dscr->pd.part_num);
754 if (partnr >= UDF_PARTITIONS)
755 return EINVAL;
756
757 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
758 break;
759 case TAGID_VOL : /* volume space extender; rare */
760 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
761 free(dscr, M_UDFVOLD);
762 break;
763 default :
764 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
765 udf_rw16(dscr->tag.id)));
766 free(dscr, M_UDFVOLD);
767 }
768
769 return 0;
770 }
771 #undef UDF_UPDATE_DSCR
772
773 /* --------------------------------------------------------------------- */
774
775 static int
776 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
777 {
778 union dscrptr *dscr;
779 uint32_t sector_size, dscr_size;
780 int error;
781
782 sector_size = ump->discinfo.sector_size;
783
784 /* loc is sectornr, len is in bytes */
785 error = EIO;
786 while (len) {
787 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
788 if (error)
789 return error;
790
791 /* blank block is a terminator */
792 if (dscr == NULL)
793 return 0;
794
795 /* TERM descriptor is a terminator */
796 if (udf_rw16(dscr->tag.id) == TAGID_TERM)
797 return 0;
798
799 /* process all others */
800 dscr_size = udf_tagsize(dscr, sector_size);
801 error = udf_process_vds_descriptor(ump, dscr);
802 if (error) {
803 free(dscr, M_UDFVOLD);
804 break;
805 }
806 assert((dscr_size % sector_size) == 0);
807
808 len -= dscr_size;
809 loc += dscr_size / sector_size;
810 }
811
812 return error;
813 }
814
815
816 int
817 udf_read_vds_space(struct udf_mount *ump)
818 {
819 struct anchor_vdp *anchor, *anchor2;
820 size_t size;
821 uint32_t main_loc, main_len;
822 uint32_t reserve_loc, reserve_len;
823 int error;
824
825 /*
826 * read in VDS space provided by the anchors; if one descriptor read
827 * fails, try the mirror sector.
828 *
829 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
830 * avoids the `compatibility features' of DirectCD that may confuse
831 * stuff completely.
832 */
833
834 anchor = ump->anchors[0];
835 anchor2 = ump->anchors[1];
836 assert(anchor);
837
838 if (anchor2) {
839 size = sizeof(struct extent_ad);
840 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
841 anchor = anchor2;
842 /* reserve is specified to be a literal copy of main */
843 }
844
845 main_loc = udf_rw32(anchor->main_vds_ex.loc);
846 main_len = udf_rw32(anchor->main_vds_ex.len);
847
848 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
849 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
850
851 error = udf_read_vds_extent(ump, main_loc, main_len);
852 if (error) {
853 printf("UDF mount: reading in reserve VDS extent\n");
854 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
855 }
856
857 return error;
858 }
859
860 /* --------------------------------------------------------------------- */
861
862 /*
863 * Read in the logical volume integrity sequence pointed to by our logical
864 * volume descriptor. Its a sequence that can be extended using fields in the
865 * integrity descriptor itself. On sequential media only one is found, on
866 * rewritable media a sequence of descriptors can be found as a form of
867 * history keeping and on non sequential write-once media the chain is vital
868 * to allow more and more descriptors to be written. The last descriptor
869 * written in an extent needs to claim space for a new extent.
870 */
871
872 static int
873 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
874 {
875 union dscrptr *dscr;
876 struct logvol_int_desc *lvint;
877 uint32_t sector_size, sector, len;
878 int dscr_type, error;
879
880 sector_size = ump->discinfo.sector_size;
881 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
882 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
883
884 lvint = NULL;
885 dscr = NULL;
886 error = 0;
887 while (len) {
888 /* read in our integrity descriptor */
889 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
890 if (!error) {
891 if (dscr == NULL)
892 break; /* empty terminates */
893 dscr_type = udf_rw16(dscr->tag.id);
894 if (dscr_type == TAGID_TERM) {
895 break; /* clean terminator */
896 }
897 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
898 /* fatal... corrupt disc */
899 error = ENOENT;
900 break;
901 }
902 if (lvint)
903 free(lvint, M_UDFVOLD);
904 lvint = &dscr->lvid;
905 dscr = NULL;
906 } /* else hope for the best... maybe the next is ok */
907
908 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
909 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
910
911 /* proceed sequential */
912 sector += 1;
913 len -= sector_size;
914
915 /* are we linking to a new piece? */
916 if (lvint->next_extent.len) {
917 len = udf_rw32(lvint->next_extent.len);
918 sector = udf_rw32(lvint->next_extent.loc);
919 }
920 }
921
922 /* clean up the mess, esp. when there is an error */
923 if (dscr)
924 free(dscr, M_UDFVOLD);
925
926 if (error && lvint) {
927 free(lvint, M_UDFVOLD);
928 lvint = NULL;
929 }
930
931 if (!lvint)
932 error = ENOENT;
933
934 *lvintp = lvint;
935 return error;
936 }
937
938 /* --------------------------------------------------------------------- */
939
940 /*
941 * Checks if ump's vds information is correct and complete
942 */
943
944 int
945 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
946 union udf_pmap *mapping;
947 struct logvol_int_desc *lvint;
948 struct udf_logvol_info *lvinfo;
949 uint32_t n_pm, mt_l;
950 uint8_t *pmap_pos;
951 char *domain_name, *map_name;
952 const char *check_name;
953 int pmap_stype, pmap_size;
954 int pmap_type, log_part, phys_part;
955 int n_phys, n_virt, n_spar, n_meta;
956 int len, error;
957
958 if (ump == NULL)
959 return ENOENT;
960
961 /* we need at least an anchor (trivial, but for safety) */
962 if (ump->anchors[0] == NULL)
963 return EINVAL;
964
965 /* we need at least one primary and one logical volume descriptor */
966 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
967 return EINVAL;
968
969 /* we need at least one partition descriptor */
970 if (ump->partitions[0] == NULL)
971 return EINVAL;
972
973 /* check logical volume sector size verses device sector size */
974 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
975 printf("UDF mount: format violation, lb_size != sector size\n");
976 return EINVAL;
977 }
978
979 domain_name = ump->logical_vol->domain_id.id;
980 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
981 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
982 return EINVAL;
983 }
984
985 /* retrieve logical volume integrity sequence */
986 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
987
988 /*
989 * We need at least one logvol integrity descriptor recorded. Note
990 * that its OK to have an open logical volume integrity here. The VAT
991 * will close/update the integrity.
992 */
993 if (ump->logvol_integrity == NULL)
994 return EINVAL;
995
996 /* process derived structures */
997 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
998 lvint = ump->logvol_integrity;
999 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1000 ump->logvol_info = lvinfo;
1001
1002 /* TODO check udf versions? */
1003
1004 /*
1005 * check logvol mappings: effective virt->log partmap translation
1006 * check and recording of the mapping results. Saves expensive
1007 * strncmp() in tight places.
1008 */
1009 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1010 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1011 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1012 pmap_pos = ump->logical_vol->maps;
1013
1014 if (n_pm > UDF_PMAPS) {
1015 printf("UDF mount: too many mappings\n");
1016 return EINVAL;
1017 }
1018
1019 n_phys = n_virt = n_spar = n_meta = 0;
1020 for (log_part = 0; log_part < n_pm; log_part++) {
1021 mapping = (union udf_pmap *) pmap_pos;
1022 pmap_stype = pmap_pos[0];
1023 pmap_size = pmap_pos[1];
1024 switch (pmap_stype) {
1025 case 1: /* physical mapping */
1026 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1027 phys_part = udf_rw16(mapping->pm1.part_num);
1028 pmap_type = UDF_VTOP_TYPE_PHYS;
1029 n_phys++;
1030 break;
1031 case 2: /* virtual/sparable/meta mapping */
1032 map_name = mapping->pm2.part_id.id;
1033 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1034 phys_part = udf_rw16(mapping->pm2.part_num);
1035 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1036 len = UDF_REGID_ID_SIZE;
1037
1038 check_name = "*UDF Virtual Partition";
1039 if (strncmp(map_name, check_name, len) == 0) {
1040 pmap_type = UDF_VTOP_TYPE_VIRT;
1041 n_virt++;
1042 break;
1043 }
1044 check_name = "*UDF Sparable Partition";
1045 if (strncmp(map_name, check_name, len) == 0) {
1046 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1047 n_spar++;
1048 break;
1049 }
1050 check_name = "*UDF Metadata Partition";
1051 if (strncmp(map_name, check_name, len) == 0) {
1052 pmap_type = UDF_VTOP_TYPE_META;
1053 n_meta++;
1054 break;
1055 }
1056 break;
1057 default:
1058 return EINVAL;
1059 }
1060
1061 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1062 pmap_type));
1063 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1064 return EINVAL;
1065
1066 ump->vtop [log_part] = phys_part;
1067 ump->vtop_tp[log_part] = pmap_type;
1068
1069 pmap_pos += pmap_size;
1070 }
1071 /* not winning the beauty contest */
1072 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1073
1074 /* test some basic UDF assertions/requirements */
1075 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1076 return EINVAL;
1077
1078 if (n_virt) {
1079 if ((n_phys == 0) || n_spar || n_meta)
1080 return EINVAL;
1081 }
1082 if (n_spar + n_phys == 0)
1083 return EINVAL;
1084
1085 /* vat's can only be on a sequential media */
1086 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1087 if (n_virt)
1088 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1089
1090 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1091 if (n_virt)
1092 ump->meta_alloc = UDF_ALLOC_VAT;
1093 if (n_meta)
1094 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1095
1096 /* special cases for pseudo-overwrite */
1097 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1098 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1099 if (n_meta) {
1100 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1101 } else {
1102 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1103 }
1104 }
1105
1106 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1107 ump->data_alloc, ump->meta_alloc));
1108 /* TODO determine partitions to write data and metadata ? */
1109
1110 /* signal its OK for now */
1111 return 0;
1112 }
1113
1114 /* --------------------------------------------------------------------- */
1115
1116 /*
1117 * Read in complete VAT file and check if its indeed a VAT file descriptor
1118 */
1119
1120 static int
1121 udf_check_for_vat(struct udf_node *vat_node)
1122 {
1123 struct udf_mount *ump;
1124 struct icb_tag *icbtag;
1125 struct timestamp *mtime;
1126 struct regid *regid;
1127 struct udf_vat *vat;
1128 struct udf_logvol_info *lvinfo;
1129 uint32_t vat_length, alloc_length;
1130 uint32_t vat_offset, vat_entries;
1131 uint32_t sector_size;
1132 uint32_t sectors;
1133 uint32_t *raw_vat;
1134 char *regid_name;
1135 int filetype;
1136 int error;
1137
1138 /* vat_length is really 64 bits though impossible */
1139
1140 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1141 if (!vat_node)
1142 return ENOENT;
1143
1144 /* get mount info */
1145 ump = vat_node->ump;
1146
1147 /* check assertions */
1148 assert(vat_node->fe || vat_node->efe);
1149 assert(ump->logvol_integrity);
1150
1151 /* get information from fe/efe */
1152 if (vat_node->fe) {
1153 vat_length = udf_rw64(vat_node->fe->inf_len);
1154 icbtag = &vat_node->fe->icbtag;
1155 mtime = &vat_node->fe->mtime;
1156 } else {
1157 vat_length = udf_rw64(vat_node->efe->inf_len);
1158 icbtag = &vat_node->efe->icbtag;
1159 mtime = &vat_node->efe->mtime;
1160 }
1161
1162 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1163 filetype = icbtag->file_type;
1164 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1165 return ENOENT;
1166
1167 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1168 /* place a sanity check on the length; currently 1Mb in size */
1169 if (vat_length > 1*1024*1024)
1170 return ENOENT;
1171
1172 /* get sector size */
1173 sector_size = vat_node->ump->discinfo.sector_size;
1174
1175 /* calculate how many sectors to read in and how much to allocate */
1176 sectors = (vat_length + sector_size -1) / sector_size;
1177 alloc_length = (sectors + 2) * sector_size;
1178
1179 /* try to allocate the space */
1180 ump->vat_table_alloc_length = alloc_length;
1181 ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1182 if (!ump->vat_table)
1183 return ENOMEM; /* impossible to allocate */
1184 DPRINTF(VOLUMES, ("\talloced fine\n"));
1185
1186 /* read it in! */
1187 raw_vat = (uint32_t *) ump->vat_table;
1188 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1189 if (error) {
1190 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1191 /* not completely readable... :( bomb out */
1192 free(ump->vat_table, M_UDFMNT);
1193 ump->vat_table = NULL;
1194 return error;
1195 }
1196 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1197
1198 /*
1199 * check contents of the file if its the old 1.50 VAT table format.
1200 * Its notoriously broken and allthough some implementations support an
1201 * extention as defined in the UDF 1.50 errata document, its doubtfull
1202 * to be useable since a lot of implementations don't maintain it.
1203 */
1204 lvinfo = ump->logvol_info;
1205
1206 if (filetype == 0) {
1207 /* definition */
1208 vat_offset = 0;
1209 vat_entries = (vat_length-36)/4;
1210
1211 /* check 1.50 VAT */
1212 regid = (struct regid *) (raw_vat + vat_entries);
1213 regid_name = (char *) regid->id;
1214 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1215 if (error) {
1216 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1217 free(ump->vat_table, M_UDFMNT);
1218 ump->vat_table = NULL;
1219 return ENOENT;
1220 }
1221 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1222 } else {
1223 vat = (struct udf_vat *) raw_vat;
1224
1225 /* definition */
1226 vat_offset = vat->header_len;
1227 vat_entries = (vat_length - vat_offset)/4;
1228
1229 assert(lvinfo);
1230 lvinfo->num_files = vat->num_files;
1231 lvinfo->num_directories = vat->num_directories;
1232 lvinfo->min_udf_readver = vat->min_udf_readver;
1233 lvinfo->min_udf_writever = vat->min_udf_writever;
1234 lvinfo->max_udf_writever = vat->max_udf_writever;
1235 }
1236
1237 ump->vat_offset = vat_offset;
1238 ump->vat_entries = vat_entries;
1239
1240 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1241 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1242 ump->logvol_integrity->time = *mtime;
1243
1244 return 0; /* success! */
1245 }
1246
1247 /* --------------------------------------------------------------------- */
1248
1249 static int
1250 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1251 {
1252 struct udf_node *vat_node;
1253 struct long_ad icb_loc;
1254 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1255 int error;
1256
1257 /* mapping info not needed */
1258 mapping = mapping;
1259
1260 vat_loc = ump->last_possible_vat_location;
1261 early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1262 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1263 late_vat_loc = vat_loc + 1024;
1264
1265 /* TODO first search last sector? */
1266 do {
1267 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1268 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1269 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1270
1271 error = udf_get_node(ump, &icb_loc, &vat_node);
1272 if (!error) error = udf_check_for_vat(vat_node);
1273 if (!error) break;
1274 if (vat_node) {
1275 vput(vat_node->vnode);
1276 udf_dispose_node(vat_node);
1277 }
1278 vat_loc--; /* walk backwards */
1279 } while (vat_loc >= early_vat_loc);
1280
1281 /* we don't need our VAT node anymore */
1282 if (vat_node) {
1283 vput(vat_node->vnode);
1284 udf_dispose_node(vat_node);
1285 }
1286
1287 return error;
1288 }
1289
1290 /* --------------------------------------------------------------------- */
1291
1292 static int
1293 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1294 {
1295 union dscrptr *dscr;
1296 struct part_map_spare *pms = (struct part_map_spare *) mapping;
1297 uint32_t lb_num;
1298 int spar, error;
1299
1300 /*
1301 * The partition mapping passed on to us specifies the information we
1302 * need to locate and initialise the sparable partition mapping
1303 * information we need.
1304 */
1305
1306 DPRINTF(VOLUMES, ("Read sparable table\n"));
1307 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1308 for (spar = 0; spar < pms->n_st; spar++) {
1309 lb_num = pms->st_loc[spar];
1310 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1311 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1312 if (!error && dscr) {
1313 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1314 if (ump->sparing_table)
1315 free(ump->sparing_table, M_UDFVOLD);
1316 ump->sparing_table = &dscr->spt;
1317 dscr = NULL;
1318 DPRINTF(VOLUMES,
1319 ("Sparing table accepted (%d entries)\n",
1320 udf_rw16(ump->sparing_table->rt_l)));
1321 break; /* we're done */
1322 }
1323 }
1324 if (dscr)
1325 free(dscr, M_UDFVOLD);
1326 }
1327
1328 if (ump->sparing_table)
1329 return 0;
1330
1331 return ENOENT;
1332 }
1333
1334 /* --------------------------------------------------------------------- */
1335
1336 int
1337 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1338 {
1339 union udf_pmap *mapping;
1340 uint32_t n_pm, mt_l;
1341 uint32_t log_part;
1342 uint8_t *pmap_pos;
1343 int pmap_size;
1344 int error;
1345
1346 /* We have to iterate again over the part mappings for locations */
1347 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1348 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1349 pmap_pos = ump->logical_vol->maps;
1350
1351 for (log_part = 0; log_part < n_pm; log_part++) {
1352 mapping = (union udf_pmap *) pmap_pos;
1353 switch (ump->vtop_tp[log_part]) {
1354 case UDF_VTOP_TYPE_PHYS :
1355 /* nothing */
1356 break;
1357 case UDF_VTOP_TYPE_VIRT :
1358 /* search and load VAT */
1359 error = udf_search_vat(ump, mapping);
1360 if (error)
1361 return ENOENT;
1362 break;
1363 case UDF_VTOP_TYPE_SPARABLE :
1364 /* load one of the sparable tables */
1365 error = udf_read_sparables(ump, mapping);
1366 break;
1367 case UDF_VTOP_TYPE_META :
1368 /* TODO load metafile and metabitmapfile FE/EFEs */
1369 break;
1370 default:
1371 break;
1372 }
1373 pmap_size = pmap_pos[1];
1374 pmap_pos += pmap_size;
1375 }
1376
1377 return 0;
1378 }
1379
1380 /* --------------------------------------------------------------------- */
1381
1382 int
1383 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1384 {
1385 struct udf_node *rootdir_node, *streamdir_node;
1386 union dscrptr *dscr;
1387 struct long_ad fsd_loc, *dir_loc;
1388 uint32_t lb_num, dummy;
1389 uint32_t fsd_len;
1390 int dscr_type;
1391 int error;
1392
1393 /* TODO implement FSD reading in seperate function like integrity? */
1394 /* get fileset descriptor sequence */
1395 fsd_loc = ump->logical_vol->lv_fsd_loc;
1396 fsd_len = udf_rw32(fsd_loc.len);
1397
1398 dscr = NULL;
1399 error = 0;
1400 while (fsd_len || error) {
1401 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1402 /* translate fsd_loc to lb_num */
1403 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1404 if (error)
1405 break;
1406 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1407 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1408 /* end markers */
1409 if (error || (dscr == NULL))
1410 break;
1411
1412 /* analyse */
1413 dscr_type = udf_rw16(dscr->tag.id);
1414 if (dscr_type == TAGID_TERM)
1415 break;
1416 if (dscr_type != TAGID_FSD) {
1417 free(dscr, M_UDFVOLD);
1418 return ENOENT;
1419 }
1420
1421 /*
1422 * TODO check for multiple fileset descriptors; its only
1423 * picking the last now. Also check for FSD
1424 * correctness/interpretability
1425 */
1426
1427 /* update */
1428 if (ump->fileset_desc) {
1429 free(ump->fileset_desc, M_UDFVOLD);
1430 }
1431 ump->fileset_desc = &dscr->fsd;
1432 dscr = NULL;
1433
1434 /* continue to the next fsd */
1435 fsd_len -= ump->discinfo.sector_size;
1436 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1437
1438 /* follow up to fsd->next_ex (long_ad) if its not null */
1439 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1440 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1441 fsd_loc = ump->fileset_desc->next_ex;
1442 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1443 }
1444 }
1445 if (dscr)
1446 free(dscr, M_UDFVOLD);
1447
1448 /* there has to be one */
1449 if (ump->fileset_desc == NULL)
1450 return ENOENT;
1451
1452 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1453
1454 /*
1455 * Now the FSD is known, read in the rootdirectory and if one exists,
1456 * the system stream dir. Some files in the system streamdir are not
1457 * wanted in this implementation since they are not maintained. If
1458 * writing is enabled we'll delete these files if they exist.
1459 */
1460
1461 rootdir_node = streamdir_node = NULL;
1462 dir_loc = NULL;
1463
1464 /* try to read in the rootdir */
1465 dir_loc = &ump->fileset_desc->rootdir_icb;
1466 error = udf_get_node(ump, dir_loc, &rootdir_node);
1467 if (error)
1468 return ENOENT;
1469
1470 /* aparently it read in fine */
1471
1472 /*
1473 * Try the system stream directory; not very likely in the ones we
1474 * test, but for completeness.
1475 */
1476 dir_loc = &ump->fileset_desc->streamdir_icb;
1477 if (udf_rw32(dir_loc->len)) {
1478 error = udf_get_node(ump, dir_loc, &streamdir_node);
1479 if (error)
1480 printf("udf mount: streamdir defined but ignored\n");
1481 if (!error) {
1482 /*
1483 * TODO process streamdir `baddies' i.e. files we dont
1484 * want if R/W
1485 */
1486 }
1487 }
1488
1489 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1490
1491 /* release the vnodes again; they'll be auto-recycled later */
1492 if (streamdir_node) {
1493 vput(streamdir_node->vnode);
1494 }
1495 if (rootdir_node) {
1496 vput(rootdir_node->vnode);
1497 }
1498
1499 return 0;
1500 }
1501
1502 /* --------------------------------------------------------------------- */
1503
1504 int
1505 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1506 uint32_t *lb_numres, uint32_t *extres)
1507 {
1508 struct part_desc *pdesc;
1509 struct spare_map_entry *sme;
1510 uint32_t *trans;
1511 uint32_t lb_num, lb_rel, lb_packet;
1512 int rel, vpart, part;
1513
1514 assert(ump && icb_loc && lb_numres);
1515
1516 vpart = udf_rw16(icb_loc->loc.part_num);
1517 lb_num = udf_rw32(icb_loc->loc.lb_num);
1518 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1519 return EINVAL;
1520
1521 switch (ump->vtop_tp[vpart]) {
1522 case UDF_VTOP_TYPE_RAW :
1523 /* 1:1 to the end of the device */
1524 *lb_numres = lb_num;
1525 *extres = INT_MAX;
1526 return 0;
1527 case UDF_VTOP_TYPE_PHYS :
1528 /* transform into its disc logical block */
1529 part = ump->vtop[vpart];
1530 pdesc = ump->partitions[part];
1531 if (lb_num > udf_rw32(pdesc->part_len))
1532 return EINVAL;
1533 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1534
1535 /* extent from here to the end of the partition */
1536 *extres = udf_rw32(pdesc->part_len) - lb_num;
1537 return 0;
1538 case UDF_VTOP_TYPE_VIRT :
1539 /* only maps one sector, lookup in VAT */
1540 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1541 return EINVAL;
1542
1543 /* lookup in virtual allocation table */
1544 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1545 lb_num = udf_rw32(trans[lb_num]);
1546
1547 /* transform into its disc logical block */
1548 part = ump->vtop[vpart];
1549 pdesc = ump->partitions[part];
1550 if (lb_num > udf_rw32(pdesc->part_len))
1551 return EINVAL;
1552 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1553
1554 /* just one logical block */
1555 *extres = 1;
1556 return 0;
1557 case UDF_VTOP_TYPE_SPARABLE :
1558 /* check if the packet containing the lb_num is remapped */
1559 lb_packet = lb_num / ump->sparable_packet_len;
1560 lb_rel = lb_num % ump->sparable_packet_len;
1561
1562 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1563 sme = &ump->sparing_table->entries[rel];
1564 if (lb_packet == udf_rw32(sme->org)) {
1565 /* NOTE maps to absolute disc logical block! */
1566 *lb_numres = udf_rw32(sme->map) + lb_rel;
1567 *extres = ump->sparable_packet_len - lb_rel;
1568 return 0;
1569 }
1570 }
1571
1572 /* transform into its disc logical block */
1573 part = ump->vtop[vpart];
1574 pdesc = ump->partitions[part];
1575 if (lb_num > udf_rw32(pdesc->part_len))
1576 return EINVAL;
1577 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1578
1579 /* rest of block */
1580 *extres = ump->sparable_packet_len - lb_rel;
1581 return 0;
1582 case UDF_VTOP_TYPE_META :
1583 default:
1584 printf("UDF vtop translation scheme %d unimplemented yet\n",
1585 ump->vtop_tp[vpart]);
1586 }
1587
1588 return EINVAL;
1589 }
1590
1591 /* --------------------------------------------------------------------- */
1592
1593 /* To make absolutely sure we are NOT returning zero, add one :) */
1594
1595 long
1596 udf_calchash(struct long_ad *icbptr)
1597 {
1598 /* ought to be enough since each mountpoint has its own chain */
1599 return udf_rw32(icbptr->loc.lb_num) + 1;
1600 }
1601
1602 /* --------------------------------------------------------------------- */
1603
1604 static struct udf_node *
1605 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1606 {
1607 struct udf_node *unp;
1608 struct vnode *vp;
1609 uint32_t hashline;
1610
1611 loop:
1612 simple_lock(&ump->ihash_slock);
1613
1614 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1615 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1616 assert(unp);
1617 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1618 unp->loc.loc.part_num == icbptr->loc.part_num) {
1619 vp = unp->vnode;
1620 assert(vp);
1621 simple_lock(&vp->v_interlock);
1622 simple_unlock(&ump->ihash_slock);
1623 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1624 goto loop;
1625 return unp;
1626 }
1627 }
1628 simple_unlock(&ump->ihash_slock);
1629
1630 return NULL;
1631 }
1632
1633 /* --------------------------------------------------------------------- */
1634
1635 static void
1636 udf_hashins(struct udf_node *unp)
1637 {
1638 struct udf_mount *ump;
1639 uint32_t hashline;
1640
1641 ump = unp->ump;
1642 simple_lock(&ump->ihash_slock);
1643
1644 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1645 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1646
1647 simple_unlock(&ump->ihash_slock);
1648 }
1649
1650 /* --------------------------------------------------------------------- */
1651
1652 static void
1653 udf_hashrem(struct udf_node *unp)
1654 {
1655 struct udf_mount *ump;
1656
1657 ump = unp->ump;
1658 simple_lock(&ump->ihash_slock);
1659
1660 LIST_REMOVE(unp, hashchain);
1661
1662 simple_unlock(&ump->ihash_slock);
1663 }
1664
1665 /* --------------------------------------------------------------------- */
1666
1667 int
1668 udf_dispose_locked_node(struct udf_node *node)
1669 {
1670 if (!node)
1671 return 0;
1672 if (node->vnode)
1673 VOP_UNLOCK(node->vnode, 0);
1674 return udf_dispose_node(node);
1675 }
1676
1677 /* --------------------------------------------------------------------- */
1678
1679 int
1680 udf_dispose_node(struct udf_node *node)
1681 {
1682 struct vnode *vp;
1683
1684 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1685 if (!node) {
1686 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1687 return 0;
1688 }
1689
1690 vp = node->vnode;
1691
1692 /* TODO extended attributes and streamdir */
1693
1694 /* remove from our hash lookup table */
1695 udf_hashrem(node);
1696
1697 /* dissociate our udf_node from the vnode */
1698 vp->v_data = NULL;
1699
1700 /* free associated memory and the node itself */
1701 if (node->fe)
1702 pool_put(node->ump->desc_pool, node->fe);
1703 if (node->efe)
1704 pool_put(node->ump->desc_pool, node->efe);
1705 pool_put(&udf_node_pool, node);
1706
1707 return 0;
1708 }
1709
1710 /* --------------------------------------------------------------------- */
1711
1712 /*
1713 * Genfs interfacing
1714 *
1715 * static const struct genfs_ops udffs_genfsops = {
1716 * .gop_size = genfs_size,
1717 * size of transfers
1718 * .gop_alloc = udf_gop_alloc,
1719 * unknown
1720 * .gop_write = genfs_gop_write,
1721 * putpages interface code
1722 * .gop_markupdate = udf_gop_markupdate,
1723 * set update/modify flags etc.
1724 * }
1725 */
1726
1727 /*
1728 * Genfs interface. These four functions are the only ones defined though not
1729 * documented... great.... why is chosen for the `.' initialisers i dont know
1730 * but other filingsystems seem to use it this way.
1731 */
1732
1733 static int
1734 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1735 kauth_cred_t cred)
1736 {
1737 return 0;
1738 }
1739
1740
1741 static void
1742 udf_gop_markupdate(struct vnode *vp, int flags)
1743 {
1744 struct udf_node *udf_node = VTOI(vp);
1745 u_long mask;
1746
1747 udf_node = udf_node; /* shut up gcc */
1748
1749 mask = 0;
1750 #ifdef notyet
1751 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1752 mask = UDF_SET_ACCESS;
1753 }
1754 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1755 mask |= UDF_SET_UPDATE;
1756 }
1757 if (mask) {
1758 udf_node->update_flag |= mask;
1759 }
1760 #endif
1761 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1762 }
1763
1764
1765 static const struct genfs_ops udf_genfsops = {
1766 .gop_size = genfs_size,
1767 .gop_alloc = udf_gop_alloc,
1768 .gop_write = genfs_gop_write,
1769 .gop_markupdate = udf_gop_markupdate,
1770 };
1771
1772 /* --------------------------------------------------------------------- */
1773
1774 /*
1775 * Each node can have an attached streamdir node though not
1776 * recursively. These are otherwise known as named substreams/named
1777 * extended attributes that have no size limitations.
1778 *
1779 * `Normal' extended attributes are indicated with a number and are recorded
1780 * in either the fe/efe descriptor itself for small descriptors or recorded in
1781 * the attached extended attribute file. Since this file can get fragmented,
1782 * care ought to be taken.
1783 */
1784
1785 int
1786 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1787 struct udf_node **noderes)
1788 {
1789 union dscrptr *dscr, *tmpdscr;
1790 struct udf_node *node;
1791 struct vnode *nvp;
1792 struct long_ad icb_loc;
1793 extern int (**udf_vnodeop_p)(void *);
1794 uint64_t file_size;
1795 uint32_t lb_size, sector, dummy;
1796 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1797 int error;
1798
1799 DPRINTF(NODE, ("udf_get_node called\n"));
1800 *noderes = node = NULL;
1801
1802 /* lock to disallow simultanious creation of same node */
1803 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1804
1805 DPRINTF(NODE, ("\tlookup in hash table\n"));
1806 /* lookup in hash table */
1807 assert(ump);
1808 assert(node_icb_loc);
1809 node = udf_hashget(ump, node_icb_loc);
1810 if (node) {
1811 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1812 /* vnode is returned locked */
1813 *noderes = node;
1814 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1815 return 0;
1816 }
1817
1818 /* garbage check: translate node_icb_loc to sectornr */
1819 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1820 if (error) {
1821 /* no use, this will fail anyway */
1822 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1823 return EINVAL;
1824 }
1825
1826 /* build node (do initialise!) */
1827 node = pool_get(&udf_node_pool, PR_WAITOK);
1828 memset(node, 0, sizeof(struct udf_node));
1829
1830 DPRINTF(NODE, ("\tget new vnode\n"));
1831 /* give it a vnode */
1832 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1833 if (error) {
1834 pool_put(&udf_node_pool, node);
1835 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1836 return error;
1837 }
1838
1839 /* allways return locked vnode */
1840 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1841 /* recycle vnode and unlock; simultanious will fail too */
1842 ungetnewvnode(nvp);
1843 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1844 return error;
1845 }
1846
1847 /* initialise crosslinks, note location of fe/efe for hashing */
1848 node->ump = ump;
1849 node->vnode = nvp;
1850 nvp->v_data = node;
1851 node->loc = *node_icb_loc;
1852 node->lockf = 0;
1853
1854 /* insert into the hash lookup */
1855 udf_hashins(node);
1856
1857 /* safe to unlock, the entry is in the hash table, vnode is locked */
1858 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1859
1860 icb_loc = *node_icb_loc;
1861 needs_indirect = 0;
1862 strat4096 = 0;
1863 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1864 file_size = 0;
1865 lb_size = udf_rw32(ump->logical_vol->lb_size);
1866
1867 do {
1868 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
1869 if (error)
1870 break;
1871
1872 /* try to read in fe/efe */
1873 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1874
1875 /* blank sector marks end of sequence, check this */
1876 if ((tmpdscr == NULL) && (!strat4096))
1877 error = ENOENT;
1878
1879 /* break if read error or blank sector */
1880 if (error || (tmpdscr == NULL))
1881 break;
1882
1883 /* process descriptor based on the descriptor type */
1884 dscr_type = udf_rw16(tmpdscr->tag.id);
1885
1886 /* if dealing with an indirect entry, follow the link */
1887 if (dscr_type == TAGID_INDIRECT_ENTRY) {
1888 needs_indirect = 0;
1889 icb_loc = tmpdscr->inde.indirect_icb;
1890 free(tmpdscr, M_UDFTEMP);
1891 continue;
1892 }
1893
1894 /* only file entries and extended file entries allowed here */
1895 if ((dscr_type != TAGID_FENTRY) &&
1896 (dscr_type != TAGID_EXTFENTRY)) {
1897 free(tmpdscr, M_UDFTEMP);
1898 error = ENOENT;
1899 break;
1900 }
1901
1902 /* get descriptor space from our pool */
1903 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1904
1905 dscr = pool_get(ump->desc_pool, PR_WAITOK);
1906 memcpy(dscr, tmpdscr, lb_size);
1907 free(tmpdscr, M_UDFTEMP);
1908
1909 /* record and process/update (ext)fentry */
1910 if (dscr_type == TAGID_FENTRY) {
1911 if (node->fe)
1912 pool_put(ump->desc_pool, node->fe);
1913 node->fe = &dscr->fe;
1914 strat = udf_rw16(node->fe->icbtag.strat_type);
1915 udf_file_type = node->fe->icbtag.file_type;
1916 file_size = udf_rw64(node->fe->inf_len);
1917 } else {
1918 if (node->efe)
1919 pool_put(ump->desc_pool, node->efe);
1920 node->efe = &dscr->efe;
1921 strat = udf_rw16(node->efe->icbtag.strat_type);
1922 udf_file_type = node->efe->icbtag.file_type;
1923 file_size = udf_rw64(node->efe->inf_len);
1924 }
1925
1926 /* check recording strategy (structure) */
1927
1928 /*
1929 * Strategy 4096 is a daisy linked chain terminating with an
1930 * unrecorded sector or a TERM descriptor. The next
1931 * descriptor is to be found in the sector that follows the
1932 * current sector.
1933 */
1934 if (strat == 4096) {
1935 strat4096 = 1;
1936 needs_indirect = 1;
1937
1938 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1939 }
1940
1941 /*
1942 * Strategy 4 is the normal strategy and terminates, but if
1943 * we're in strategy 4096, we can't have strategy 4 mixed in
1944 */
1945
1946 if (strat == 4) {
1947 if (strat4096) {
1948 error = EINVAL;
1949 break;
1950 }
1951 break; /* done */
1952 }
1953 } while (!error);
1954
1955 if (error) {
1956 /* recycle udf_node */
1957 udf_dispose_node(node);
1958
1959 /* recycle vnode */
1960 nvp->v_data = NULL;
1961 ungetnewvnode(nvp);
1962
1963 return EINVAL; /* error code ok? */
1964 }
1965
1966 /* post process and initialise node */
1967
1968 /* assert no references to dscr anymore beyong this point */
1969 assert((node->fe) || (node->efe));
1970 dscr = NULL;
1971
1972 /*
1973 * Record where to record an updated version of the descriptor. If
1974 * there is a sequence of indirect entries, icb_loc will have been
1975 * updated. Its the write disipline to allocate new space and to make
1976 * sure the chain is maintained.
1977 *
1978 * `needs_indirect' flags if the next location is to be filled with
1979 * with an indirect entry.
1980 */
1981 node->next_loc = icb_loc;
1982 node->needs_indirect = needs_indirect;
1983
1984 /*
1985 * Translate UDF filetypes into vnode types.
1986 *
1987 * Systemfiles like the meta main and mirror files are not treated as
1988 * normal files, so we type them as having no type. UDF dictates that
1989 * they are not allowed to be visible.
1990 */
1991
1992 /* TODO specfs, fifofs etc etc. vnops setting */
1993 switch (udf_file_type) {
1994 case UDF_ICB_FILETYPE_DIRECTORY :
1995 case UDF_ICB_FILETYPE_STREAMDIR :
1996 nvp->v_type = VDIR;
1997 break;
1998 case UDF_ICB_FILETYPE_BLOCKDEVICE :
1999 nvp->v_type = VBLK;
2000 break;
2001 case UDF_ICB_FILETYPE_CHARDEVICE :
2002 nvp->v_type = VCHR;
2003 break;
2004 case UDF_ICB_FILETYPE_SYMLINK :
2005 nvp->v_type = VLNK;
2006 break;
2007 case UDF_ICB_FILETYPE_META_MAIN :
2008 case UDF_ICB_FILETYPE_META_MIRROR :
2009 nvp->v_type = VNON;
2010 break;
2011 case UDF_ICB_FILETYPE_RANDOMACCESS :
2012 nvp->v_type = VREG;
2013 break;
2014 default:
2015 /* YIKES, either a block/char device, fifo or something else */
2016 nvp->v_type = VNON;
2017 }
2018
2019 /* initialise genfs */
2020 genfs_node_init(nvp, &udf_genfsops);
2021
2022 /* don't forget to set vnode's v_size */
2023 nvp->v_size = file_size;
2024
2025 /* TODO ext attr and streamdir nodes */
2026
2027 *noderes = node;
2028
2029 return 0;
2030 }
2031
2032 /* --------------------------------------------------------------------- */
2033
2034 /* UDF<->unix converters */
2035
2036 /* --------------------------------------------------------------------- */
2037
2038 static mode_t
2039 udf_perm_to_unix_mode(uint32_t perm)
2040 {
2041 mode_t mode;
2042
2043 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2044 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2045 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2046
2047 return mode;
2048 }
2049
2050 /* --------------------------------------------------------------------- */
2051
2052 #ifdef notyet
2053 static uint32_t
2054 unix_mode_to_udf_perm(mode_t mode)
2055 {
2056 uint32_t perm;
2057
2058 perm = ((mode & S_IRWXO) );
2059 perm |= ((mode & S_IRWXG) << 2);
2060 perm |= ((mode & S_IRWXU) << 4);
2061 perm |= ((mode & S_IWOTH) << 3);
2062 perm |= ((mode & S_IWGRP) << 5);
2063 perm |= ((mode & S_IWUSR) << 7);
2064
2065 return perm;
2066 }
2067 #endif
2068
2069 /* --------------------------------------------------------------------- */
2070
2071 static uint32_t
2072 udf_icb_to_unix_filetype(uint32_t icbftype)
2073 {
2074 switch (icbftype) {
2075 case UDF_ICB_FILETYPE_DIRECTORY :
2076 case UDF_ICB_FILETYPE_STREAMDIR :
2077 return S_IFDIR;
2078 case UDF_ICB_FILETYPE_FIFO :
2079 return S_IFIFO;
2080 case UDF_ICB_FILETYPE_CHARDEVICE :
2081 return S_IFCHR;
2082 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2083 return S_IFBLK;
2084 case UDF_ICB_FILETYPE_RANDOMACCESS :
2085 return S_IFREG;
2086 case UDF_ICB_FILETYPE_SYMLINK :
2087 return S_IFLNK;
2088 case UDF_ICB_FILETYPE_SOCKET :
2089 return S_IFSOCK;
2090 }
2091 /* no idea what this is */
2092 return 0;
2093 }
2094
2095 /* --------------------------------------------------------------------- */
2096
2097 /* TODO KNF-ify */
2098
2099 void
2100 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2101 {
2102 uint16_t *raw_name, *unix_name;
2103 uint16_t *inchp, ch;
2104 uint8_t *outchp;
2105 int ucode_chars, nice_uchars;
2106
2107 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2108 unix_name = raw_name + 1024; /* split space in half */
2109 assert(sizeof(char) == sizeof(uint8_t));
2110 outchp = (uint8_t *) result;
2111 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2112 *raw_name = *unix_name = 0;
2113 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2114 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2115 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2116 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2117 ch = *inchp;
2118 /* XXX sloppy unicode -> latin */
2119 *outchp++ = ch & 255;
2120 if (!ch) break;
2121 }
2122 *outchp++ = 0;
2123 } else {
2124 /* assume 8bit char length byte latin-1 */
2125 assert(*id == 8);
2126 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2127 }
2128 free(raw_name, M_UDFTEMP);
2129 }
2130
2131 /* --------------------------------------------------------------------- */
2132
2133 /* TODO KNF-ify */
2134
2135 void
2136 unix_to_udf_name(char *result, char *name,
2137 uint8_t *result_len, struct charspec *chsp)
2138 {
2139 uint16_t *raw_name;
2140 int udf_chars, name_len;
2141 char *inchp;
2142 uint16_t *outchp;
2143
2144 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2145 /* convert latin-1 or whatever to unicode-16 */
2146 *raw_name = 0;
2147 name_len = 0;
2148 inchp = name;
2149 outchp = raw_name;
2150 while (*inchp) {
2151 *outchp++ = (uint16_t) (*inchp++);
2152 name_len++;
2153 }
2154
2155 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2156 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2157 } else {
2158 /* XXX assume 8bit char length byte latin-1 */
2159 *result++ = 8; udf_chars = 1;
2160 strncpy(result, name + 1, strlen(name+1));
2161 udf_chars += strlen(name);
2162 }
2163 *result_len = udf_chars;
2164 free(raw_name, M_UDFTEMP);
2165 }
2166
2167 /* --------------------------------------------------------------------- */
2168
2169 /*
2170 * Timestamp to timespec conversion code is taken with small modifications
2171 * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
2172 * permission from Scott.
2173 */
2174
2175 static int mon_lens[2][12] = {
2176 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2177 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2178 };
2179
2180
2181 static int
2182 udf_isaleapyear(int year)
2183 {
2184 int i;
2185
2186 i = (year % 4) ? 0 : 1;
2187 i &= (year % 100) ? 1 : 0;
2188 i |= (year % 400) ? 0 : 1;
2189
2190 return i;
2191 }
2192
2193
2194 void
2195 udf_timestamp_to_timespec(struct udf_mount *ump,
2196 struct timestamp *timestamp,
2197 struct timespec *timespec)
2198 {
2199 uint32_t usecs, secs, nsecs;
2200 uint16_t tz;
2201 int i, lpyear, daysinyear, year;
2202
2203 timespec->tv_sec = secs = 0;
2204 timespec->tv_nsec = nsecs = 0;
2205
2206 /*
2207 * DirectCD seems to like using bogus year values.
2208 *
2209 * Distrust time->month especially, since it will be used for an array
2210 * index.
2211 */
2212 year = udf_rw16(timestamp->year);
2213 if ((year < 1970) || (timestamp->month > 12)) {
2214 return;
2215 }
2216
2217 /* Calculate the time and day
2218 * Day is 1-31, Month is 1-12
2219 */
2220
2221 usecs = timestamp->usec +
2222 100*timestamp->hund_usec + 10000*timestamp->centisec;
2223 nsecs = usecs * 1000;
2224 secs = timestamp->second;
2225 secs += timestamp->minute * 60;
2226 secs += timestamp->hour * 3600;
2227 secs += (timestamp->day-1) * 3600 * 24;
2228
2229 /* Calclulate the month */
2230 lpyear = udf_isaleapyear(year);
2231 for (i = 1; i < timestamp->month; i++)
2232 secs += mon_lens[lpyear][i-1] * 3600 * 24;
2233
2234 for (i = 1970; i < year; i++) {
2235 daysinyear = udf_isaleapyear(i) + 365 ;
2236 secs += daysinyear * 3600 * 24;
2237 }
2238
2239 /*
2240 * Calculate the time zone. The timezone is 12 bit signed 2's
2241 * compliment, so we gotta do some extra magic to handle it right.
2242 */
2243 tz = udf_rw16(timestamp->type_tz);
2244 tz &= 0x0fff; /* only lower 12 bits are significant */
2245 if (tz & 0x0800) /* sign extention */
2246 tz |= 0xf000;
2247
2248 /* TODO check timezone conversion */
2249 /* check if we are specified a timezone to convert */
2250 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2251 if ((int16_t) tz != -2047)
2252 secs -= (int16_t) tz * 60;
2253 } else {
2254 secs -= ump->mount_args.gmtoff;
2255 }
2256
2257 timespec->tv_sec = secs;
2258 timespec->tv_nsec = nsecs;
2259 }
2260
2261 /* --------------------------------------------------------------------- */
2262
2263 /*
2264 * Attribute and filetypes converters with get/set pairs
2265 */
2266
2267 uint32_t
2268 udf_getaccessmode(struct udf_node *udf_node)
2269 {
2270 struct file_entry *fe;
2271 struct extfile_entry *efe;
2272 uint32_t udf_perm, icbftype;
2273 uint32_t mode, ftype;
2274 uint16_t icbflags;
2275
2276 if (udf_node->fe) {
2277 fe = udf_node->fe;
2278 udf_perm = udf_rw32(fe->perm);
2279 icbftype = fe->icbtag.file_type;
2280 icbflags = udf_rw16(fe->icbtag.flags);
2281 } else {
2282 assert(udf_node->efe);
2283 efe = udf_node->efe;
2284 udf_perm = udf_rw32(efe->perm);
2285 icbftype = efe->icbtag.file_type;
2286 icbflags = udf_rw16(efe->icbtag.flags);
2287 }
2288
2289 mode = udf_perm_to_unix_mode(udf_perm);
2290 ftype = udf_icb_to_unix_filetype(icbftype);
2291
2292 /* set suid, sgid, sticky from flags in fe/efe */
2293 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2294 mode |= S_ISUID;
2295 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2296 mode |= S_ISGID;
2297 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2298 mode |= S_ISVTX;
2299
2300 return mode | ftype;
2301 }
2302
2303 /* --------------------------------------------------------------------- */
2304
2305 /*
2306 * Directory read and manipulation functions
2307 */
2308
2309 int
2310 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2311 struct long_ad *icb_loc)
2312 {
2313 struct udf_node *dir_node = VTOI(vp);
2314 struct file_entry *fe;
2315 struct extfile_entry *efe;
2316 struct fileid_desc *fid;
2317 struct dirent dirent;
2318 uint64_t file_size, diroffset;
2319 uint32_t lb_size;
2320 int found, error;
2321
2322 /* get directory filesize */
2323 if (dir_node->fe) {
2324 fe = dir_node->fe;
2325 file_size = udf_rw64(fe->inf_len);
2326 } else {
2327 assert(dir_node->efe);
2328 efe = dir_node->efe;
2329 file_size = udf_rw64(efe->inf_len);
2330 }
2331
2332 /* allocate temporary space for fid */
2333 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2334 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2335
2336 found = 0;
2337 diroffset = 0;
2338 while (!found && (diroffset < file_size)) {
2339 /* transfer a new fid/dirent */
2340 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2341 if (error)
2342 break;
2343
2344 /* skip deleted entries */
2345 if (fid->file_char & UDF_FILE_CHAR_DEL)
2346 continue;
2347
2348 if ((strlen(dirent.d_name) == namelen) &&
2349 (strncmp(dirent.d_name, name, namelen) == 0)) {
2350 found = 1;
2351 *icb_loc = fid->icb;
2352 }
2353 }
2354 free(fid, M_TEMP);
2355
2356 return found;
2357 }
2358
2359 /* --------------------------------------------------------------------- */
2360
2361 /*
2362 * Read one fid and process it into a dirent and advance to the next (*fid)
2363 * has to be allocated a logical block in size, (*dirent) struct dirent length
2364 */
2365
2366 int
2367 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2368 struct fileid_desc *fid, struct dirent *dirent)
2369 {
2370 struct udf_node *dir_node = VTOI(vp);
2371 struct udf_mount *ump = dir_node->ump;
2372 struct file_entry *fe;
2373 struct extfile_entry *efe;
2374 struct uio dir_uio;
2375 struct iovec dir_iovec;
2376 uint32_t entry_length, lb_size;
2377 uint64_t file_size;
2378 char *fid_name;
2379 int enough, error;
2380
2381 assert(fid);
2382 assert(dirent);
2383 assert(dir_node);
2384 assert(offset);
2385 assert(*offset != 1);
2386
2387 DPRINTF(FIDS, ("read_fid_stream called\n"));
2388 /* check if we're past the end of the directory */
2389 if (dir_node->fe) {
2390 fe = dir_node->fe;
2391 file_size = udf_rw64(fe->inf_len);
2392 } else {
2393 assert(dir_node->efe);
2394 efe = dir_node->efe;
2395 file_size = udf_rw64(efe->inf_len);
2396 }
2397 if (*offset >= file_size)
2398 return EINVAL;
2399
2400 /* get maximum length of FID descriptor */
2401 lb_size = udf_rw32(ump->logical_vol->lb_size);
2402
2403 /* initialise return values */
2404 entry_length = 0;
2405 memset(dirent, 0, sizeof(struct dirent));
2406 memset(fid, 0, lb_size);
2407
2408 /* TODO use vn_rdwr instead of creating our own uio */
2409 /* read part of the directory */
2410 memset(&dir_uio, 0, sizeof(struct uio));
2411 dir_uio.uio_rw = UIO_READ; /* read into this space */
2412 dir_uio.uio_iovcnt = 1;
2413 dir_uio.uio_iov = &dir_iovec;
2414 UIO_SETUP_SYSSPACE(&dir_uio);
2415 dir_iovec.iov_base = fid;
2416 dir_iovec.iov_len = lb_size;
2417 dir_uio.uio_offset = *offset;
2418
2419 /* limit length of read in piece */
2420 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2421
2422 /* read the part into the fid space */
2423 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2424 if (error)
2425 return error;
2426
2427 /*
2428 * Check if we got a whole descriptor.
2429 * XXX Try to `resync' directory stream when something is very wrong.
2430 *
2431 */
2432 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2433 if (!enough) {
2434 /* short dir ... */
2435 return EIO;
2436 }
2437
2438 /* check if our FID header is OK */
2439 error = udf_check_tag(fid);
2440 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2441 if (!error) {
2442 if (udf_rw16(fid->tag.id) != TAGID_FID)
2443 error = ENOENT;
2444 }
2445 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2446
2447 /* check for length */
2448 if (!error) {
2449 entry_length = udf_fidsize(fid, lb_size);
2450 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2451 }
2452 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2453 entry_length, enough?"yes":"no"));
2454
2455 if (!enough) {
2456 /* short dir ... bomb out */
2457 return EIO;
2458 }
2459
2460 /* check FID contents */
2461 if (!error) {
2462 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2463 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2464 }
2465 if (error) {
2466 /* note that is sometimes a bit quick to report */
2467 printf("BROKEN DIRECTORY ENTRY\n");
2468 /* RESYNC? */
2469 /* TODO: use udf_resync_fid_stream */
2470 return EIO;
2471 }
2472 DPRINTF(FIDS, ("\tinterpret FID\n"));
2473
2474 /* we got a whole and valid descriptor! */
2475
2476 /* create resulting dirent structure */
2477 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2478 udf_to_unix_name(dirent->d_name,
2479 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2480
2481 /* '..' has no name, so provide one */
2482 if (fid->file_char & UDF_FILE_CHAR_PAR)
2483 strcpy(dirent->d_name, "..");
2484
2485 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2486 dirent->d_namlen = strlen(dirent->d_name);
2487 dirent->d_reclen = _DIRENT_SIZE(dirent);
2488
2489 /*
2490 * Note that its not worth trying to go for the filetypes now... its
2491 * too expensive too
2492 */
2493 dirent->d_type = DT_UNKNOWN;
2494
2495 /* initial guess for filetype we can make */
2496 if (fid->file_char & UDF_FILE_CHAR_DIR)
2497 dirent->d_type = DT_DIR;
2498
2499 /* advance */
2500 *offset += entry_length;
2501
2502 return error;
2503 }
2504
2505 /* --------------------------------------------------------------------- */
2506
2507 /*
2508 * block based file reading and writing
2509 */
2510
2511 static int
2512 udf_read_internal(struct udf_node *node, uint8_t *blob)
2513 {
2514 struct udf_mount *ump;
2515 struct file_entry *fe;
2516 struct extfile_entry *efe;
2517 uint64_t inflen;
2518 uint32_t sector_size;
2519 uint8_t *pos;
2520 int icbflags, addr_type;
2521
2522 /* shut up gcc */
2523 inflen = addr_type = icbflags = 0;
2524 pos = NULL;
2525
2526 /* get extent and do some paranoia checks */
2527 ump = node->ump;
2528 sector_size = ump->discinfo.sector_size;
2529
2530 fe = node->fe;
2531 efe = node->efe;
2532 if (fe) {
2533 inflen = udf_rw64(fe->inf_len);
2534 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2535 icbflags = udf_rw16(fe->icbtag.flags);
2536 }
2537 if (efe) {
2538 inflen = udf_rw64(efe->inf_len);
2539 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2540 icbflags = udf_rw16(efe->icbtag.flags);
2541 }
2542 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2543
2544 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2545 assert(inflen < sector_size);
2546
2547 /* copy out info */
2548 memset(blob, 0, sector_size);
2549 memcpy(blob, pos, inflen);
2550
2551 return 0;
2552 }
2553
2554 /* --------------------------------------------------------------------- */
2555
2556 /*
2557 * Read file extent reads an extent specified in sectors from the file. It is
2558 * sector based; i.e. no `fancy' offsets.
2559 */
2560
2561 int
2562 udf_read_file_extent(struct udf_node *node,
2563 uint32_t from, uint32_t sectors,
2564 uint8_t *blob)
2565 {
2566 struct buf buf;
2567 uint32_t sector_size;
2568
2569 BUF_INIT(&buf);
2570
2571 sector_size = node->ump->discinfo.sector_size;
2572
2573 buf.b_bufsize = sectors * sector_size;
2574 buf.b_data = blob;
2575 buf.b_bcount = buf.b_bufsize;
2576 buf.b_resid = buf.b_bcount;
2577 buf.b_flags = B_BUSY | B_READ;
2578 buf.b_vp = node->vnode;
2579 buf.b_proc = NULL;
2580
2581 buf.b_blkno = from;
2582 buf.b_lblkno = 0;
2583 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2584
2585 udf_read_filebuf(node, &buf);
2586 return biowait(&buf);
2587 }
2588
2589
2590 /* --------------------------------------------------------------------- */
2591
2592 /*
2593 * Read file extent in the buffer.
2594 *
2595 * The splitup of the extent into seperate request-buffers is to minimise
2596 * copying around as much as possible.
2597 */
2598
2599
2600 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2601 #define FILEBUFSECT 128
2602
2603 void
2604 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2605 {
2606 struct buf *nestbuf;
2607 uint64_t *mapping;
2608 uint64_t run_start;
2609 uint32_t sector_size;
2610 uint32_t buf_offset, sector, rbuflen, rblk;
2611 uint8_t *buf_pos;
2612 int error, run_length;
2613
2614 uint32_t from;
2615 uint32_t sectors;
2616
2617 sector_size = node->ump->discinfo.sector_size;
2618
2619 from = buf->b_blkno;
2620 sectors = buf->b_bcount / sector_size;
2621
2622 /* assure we have enough translation slots */
2623 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2624 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2625
2626 if (sectors > FILEBUFSECT) {
2627 printf("udf_read_filebuf: implementation limit on bufsize\n");
2628 buf->b_error = EIO;
2629 buf->b_flags |= B_ERROR;
2630 biodone(buf);
2631 return;
2632 }
2633
2634 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2635
2636 error = 0;
2637 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2638 error = udf_translate_file_extent(node, from, sectors, mapping);
2639 if (error) {
2640 buf->b_error = error;
2641 buf->b_flags |= B_ERROR;
2642 biodone(buf);
2643 goto out;
2644 }
2645 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2646
2647 /* pre-check if internal or parts are zero */
2648 if (*mapping == UDF_TRANS_INTERN) {
2649 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2650 if (error) {
2651 buf->b_error = error;
2652 buf->b_flags |= B_ERROR;
2653 }
2654 biodone(buf);
2655 goto out;
2656 }
2657 DPRINTF(READ, ("\tnot intern\n"));
2658
2659 /* request read-in of data from disc sheduler */
2660 buf->b_resid = buf->b_bcount;
2661 for (sector = 0; sector < sectors; sector++) {
2662 buf_offset = sector * sector_size;
2663 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2664 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2665
2666 switch (mapping[sector]) {
2667 case UDF_TRANS_UNMAPPED:
2668 case UDF_TRANS_ZERO:
2669 /* copy zero sector */
2670 memset(buf_pos, 0, sector_size);
2671 DPRINTF(READ, ("\treturning zero sector\n"));
2672 nestiobuf_done(buf, sector_size, 0);
2673 break;
2674 default :
2675 DPRINTF(READ, ("\tread sector "
2676 "%"PRIu64"\n", mapping[sector]));
2677
2678 run_start = mapping[sector];
2679 run_length = 1;
2680 while (sector < sectors-1) {
2681 if (mapping[sector+1] != mapping[sector]+1)
2682 break;
2683 run_length++;
2684 sector++;
2685 }
2686
2687 /*
2688 * nest an iobuf and mark it for async reading. Since
2689 * we're using nested buffers, they can't be cached by
2690 * design.
2691 */
2692 rbuflen = run_length * sector_size;
2693 rblk = run_start * (sector_size/DEV_BSIZE);
2694
2695 nestbuf = getiobuf();
2696 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2697 /* nestbuf is B_ASYNC */
2698
2699 /* CD shedules on raw blkno */
2700 nestbuf->b_blkno = rblk;
2701 nestbuf->b_proc = NULL;
2702 nestbuf->b_cylinder = 0;
2703 nestbuf->b_rawblkno = rblk;
2704 VOP_STRATEGY(node->ump->devvp, nestbuf);
2705 }
2706 }
2707 out:
2708 DPRINTF(READ, ("\tend of read_filebuf\n"));
2709 free(mapping, M_TEMP);
2710 return;
2711 }
2712 #undef FILEBUFSECT
2713
2714
2715 /* --------------------------------------------------------------------- */
2716
2717 /*
2718 * Translate an extent (in sectors) into sector numbers; used for read and
2719 * write operations. DOESNT't check extents.
2720 */
2721
2722 int
2723 udf_translate_file_extent(struct udf_node *node,
2724 uint32_t from, uint32_t pages,
2725 uint64_t *map)
2726 {
2727 struct udf_mount *ump;
2728 struct file_entry *fe;
2729 struct extfile_entry *efe;
2730 struct short_ad *s_ad;
2731 struct long_ad *l_ad, t_ad;
2732 uint64_t transsec;
2733 uint32_t sector_size, transsec32;
2734 uint32_t overlap, translen;
2735 uint32_t vpart_num, lb_num, len, alloclen;
2736 uint8_t *pos;
2737 int error, flags, addr_type, icblen, icbflags;
2738
2739 if (!node)
2740 return ENOENT;
2741
2742 /* shut up gcc */
2743 alloclen = addr_type = icbflags = 0;
2744 pos = NULL;
2745
2746 /* do the work */
2747 ump = node->ump;
2748 sector_size = ump->discinfo.sector_size;
2749 fe = node->fe;
2750 efe = node->efe;
2751 if (fe) {
2752 alloclen = udf_rw32(fe->l_ad);
2753 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2754 icbflags = udf_rw16(fe->icbtag.flags);
2755 }
2756 if (efe) {
2757 alloclen = udf_rw32(efe->l_ad);
2758 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2759 icbflags = udf_rw16(efe->icbtag.flags);
2760 }
2761 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2762
2763 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2764 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2765
2766 vpart_num = udf_rw16(node->loc.loc.part_num);
2767 lb_num = len = icblen = 0; /* shut up gcc */
2768 while (pages && alloclen) {
2769 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2770 switch (addr_type) {
2771 case UDF_ICB_INTERN_ALLOC :
2772 /* TODO check extents? */
2773 *map = UDF_TRANS_INTERN;
2774 return 0;
2775 case UDF_ICB_SHORT_ALLOC :
2776 icblen = sizeof(struct short_ad);
2777 s_ad = (struct short_ad *) pos;
2778 len = udf_rw32(s_ad->len);
2779 lb_num = udf_rw32(s_ad->lb_num);
2780 break;
2781 case UDF_ICB_LONG_ALLOC :
2782 icblen = sizeof(struct long_ad);
2783 l_ad = (struct long_ad *) pos;
2784 len = udf_rw32(l_ad->len);
2785 lb_num = udf_rw32(l_ad->loc.lb_num);
2786 vpart_num = udf_rw16(l_ad->loc.part_num);
2787 DPRINTFIF(TRANSLATE,
2788 (l_ad->impl.im_used.flags &
2789 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2790 ("UDF: got an `extent erased' flag in long_ad\n"));
2791 break;
2792 default:
2793 /* can't be here */
2794 return EINVAL; /* for sure */
2795 }
2796
2797 /* process extent */
2798 flags = UDF_EXT_FLAGS(len);
2799 len = UDF_EXT_LEN(len);
2800
2801 overlap = (len + sector_size -1) / sector_size;
2802 if (from) {
2803 if (from > overlap) {
2804 from -= overlap;
2805 overlap = 0;
2806 } else {
2807 lb_num += from; /* advance in extent */
2808 overlap -= from;
2809 from = 0;
2810 }
2811 }
2812
2813 overlap = MIN(overlap, pages);
2814 while (overlap) {
2815 switch (flags) {
2816 case UDF_EXT_REDIRECT :
2817 /* no support for allocation extentions yet */
2818 /* TODO support for allocation extention */
2819 return ENOENT;
2820 case UDF_EXT_FREED :
2821 case UDF_EXT_FREE :
2822 transsec = UDF_TRANS_ZERO;
2823 translen = overlap;
2824 while (overlap && pages && translen) {
2825 *map++ = transsec;
2826 overlap--; pages--; translen--;
2827 }
2828 break;
2829 case UDF_EXT_ALLOCATED :
2830 t_ad.loc.lb_num = udf_rw32(lb_num);
2831 t_ad.loc.part_num = udf_rw16(vpart_num);
2832 error = udf_translate_vtop(ump,
2833 &t_ad, &transsec32, &translen);
2834 transsec = transsec32;
2835 if (error)
2836 return error;
2837 while (overlap && pages && translen) {
2838 *map++ = transsec;
2839 transsec++;
2840 overlap--; pages--; translen--;
2841 }
2842 break;
2843 }
2844 }
2845 pos += icblen;
2846 alloclen -= icblen;
2847 }
2848 return 0;
2849 }
2850
2851 /* --------------------------------------------------------------------- */
2852
2853