udf_subr.c revision 1.160 1 /* $NetBSD: udf_subr.c,v 1.160 2021/12/15 22:02:30 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.160 2021/12/15 22:02:30 reinoud Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_compat_netbsd.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysctl.h>
43 #include <sys/namei.h>
44 #include <sys/proc.h>
45 #include <sys/kernel.h>
46 #include <sys/vnode.h>
47 #include <miscfs/genfs/genfs_node.h>
48 #include <sys/mount.h>
49 #include <sys/buf.h>
50 #include <sys/file.h>
51 #include <sys/device.h>
52 #include <sys/disklabel.h>
53 #include <sys/ioctl.h>
54 #include <sys/malloc.h>
55 #include <sys/dirent.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/kauth.h>
59 #include <fs/unicode.h>
60 #include <dev/clock_subr.h>
61
62 #include <fs/udf/ecma167-udf.h>
63 #include <fs/udf/udf_mount.h>
64 #include <sys/dirhash.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref((vp)); \
77 vput((vp)); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
142 printf("\tdisc flags %s\n", bits);
143 printf("\tdisc id %x\n", di->disc_id);
144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
145
146 printf("\tnum sessions %d\n", di->num_sessions);
147 printf("\tnum tracks %d\n", di->num_tracks);
148
149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
150 printf("\tcapabilities cur %s\n", bits);
151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
152 printf("\tcapabilities cap %s\n", bits);
153 }
154
155 static void
156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
157 {
158 char bits[128];
159
160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
161 return;
162
163 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
164 printf("\tsessionnr %d\n", trackinfo->sessionnr);
165 printf("\ttrack mode %d\n", trackinfo->track_mode);
166 printf("\tdata mode %d\n", trackinfo->data_mode);
167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
168 printf("\tflags %s\n", bits);
169
170 printf("\ttrack start %d\n", trackinfo->track_start);
171 printf("\tnext_writable %d\n", trackinfo->next_writable);
172 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
173 printf("\tpacket_size %d\n", trackinfo->packet_size);
174 printf("\ttrack size %d\n", trackinfo->track_size);
175 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
176 }
177
178 #else
179 #define udf_dump_discinfo(a);
180 #define udf_dump_trackinfo(a);
181 #endif
182
183
184 /* --------------------------------------------------------------------- */
185
186 /* not called often */
187 int
188 udf_update_discinfo(struct udf_mount *ump)
189 {
190 struct vnode *devvp = ump->devvp;
191 uint64_t psize;
192 unsigned secsize;
193 struct mmc_discinfo *di;
194 int error;
195
196 DPRINTF(VOLUMES, ("read/update disc info\n"));
197 di = &ump->discinfo;
198 memset(di, 0, sizeof(struct mmc_discinfo));
199
200 /* check if we're on a MMC capable device, i.e. CD/DVD */
201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
202 if (error == 0) {
203 udf_dump_discinfo(ump);
204 return 0;
205 }
206
207 /* disc partition support */
208 error = getdisksize(devvp, &psize, &secsize);
209 if (error)
210 return error;
211
212 /* set up a disc info profile for partitions */
213 di->mmc_profile = 0x01; /* disc type */
214 di->mmc_class = MMC_CLASS_DISC;
215 di->disc_state = MMC_STATE_CLOSED;
216 di->last_session_state = MMC_STATE_CLOSED;
217 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
218 di->link_block_penalty = 0;
219
220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
222 di->mmc_cap = di->mmc_cur;
223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
224
225 /* TODO problem with last_possible_lba on resizable VND; request */
226 di->last_possible_lba = psize;
227 di->sector_size = secsize;
228
229 di->num_sessions = 1;
230 di->num_tracks = 1;
231
232 di->first_track = 1;
233 di->first_track_last_session = di->last_track_last_session = 1;
234
235 udf_dump_discinfo(ump);
236 return 0;
237 }
238
239
240 int
241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
242 {
243 struct vnode *devvp = ump->devvp;
244 struct mmc_discinfo *di = &ump->discinfo;
245 int error, class;
246
247 DPRINTF(VOLUMES, ("read track info\n"));
248
249 class = di->mmc_class;
250 if (class != MMC_CLASS_DISC) {
251 /* tracknr specified in struct ti */
252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
253 return error;
254 }
255
256 /* disc partition support */
257 if (ti->tracknr != 1)
258 return EIO;
259
260 /* create fake ti (TODO check for resized vnds) */
261 ti->sessionnr = 1;
262
263 ti->track_mode = 0; /* XXX */
264 ti->data_mode = 0; /* XXX */
265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
266
267 ti->track_start = 0;
268 ti->packet_size = 1;
269
270 /* TODO support for resizable vnd */
271 ti->track_size = di->last_possible_lba;
272 ti->next_writable = di->last_possible_lba;
273 ti->last_recorded = ti->next_writable;
274 ti->free_blocks = 0;
275
276 return 0;
277 }
278
279
280 int
281 udf_setup_writeparams(struct udf_mount *ump)
282 {
283 struct mmc_writeparams mmc_writeparams;
284 int error;
285
286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
287 return 0;
288
289 /*
290 * only CD burning normally needs setting up, but other disc types
291 * might need other settings to be made. The MMC framework will set up
292 * the necessary recording parameters according to the disc
293 * characteristics read in. Modifications can be made in the discinfo
294 * structure passed to change the nature of the disc.
295 */
296
297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
300
301 /*
302 * UDF dictates first track to determine track mode for the whole
303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
304 * To prevent problems with a `reserved' track in front we start with
305 * the 2nd track and if that is not valid, go for the 1st.
306 */
307 mmc_writeparams.tracknr = 2;
308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
310
311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
312 FKIOCTL, NOCRED);
313 if (error) {
314 mmc_writeparams.tracknr = 1;
315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
316 &mmc_writeparams, FKIOCTL, NOCRED);
317 }
318 return error;
319 }
320
321
322 void
323 udf_mmc_synchronise_caches(struct udf_mount *ump)
324 {
325 struct mmc_op mmc_op;
326
327 DPRINTF(CALL, ("udf_mcc_synchronise_caches()\n"));
328
329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
330 return;
331
332 /* discs are done now */
333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
334 return;
335
336 memset(&mmc_op, 0, sizeof(struct mmc_op));
337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
338
339 /* ignore return code */
340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
341 }
342
343 /* --------------------------------------------------------------------- */
344
345 /* track/session searching for mounting */
346 int
347 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
348 int *first_tracknr, int *last_tracknr)
349 {
350 struct mmc_trackinfo trackinfo;
351 uint32_t tracknr, start_track, num_tracks;
352 int error;
353
354 /* if negative, sessionnr is relative to last session */
355 if (args->sessionnr < 0) {
356 args->sessionnr += ump->discinfo.num_sessions;
357 }
358
359 /* sanity */
360 if (args->sessionnr < 0)
361 args->sessionnr = 0;
362 if (args->sessionnr > ump->discinfo.num_sessions)
363 args->sessionnr = ump->discinfo.num_sessions;
364
365 /* search the tracks for this session, zero session nr indicates last */
366 if (args->sessionnr == 0)
367 args->sessionnr = ump->discinfo.num_sessions;
368 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
369 args->sessionnr--;
370
371 /* sanity again */
372 if (args->sessionnr < 0)
373 args->sessionnr = 0;
374
375 /* search the first and last track of the specified session */
376 num_tracks = ump->discinfo.num_tracks;
377 start_track = ump->discinfo.first_track;
378
379 /* search for first track of this session */
380 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
381 /* get track info */
382 trackinfo.tracknr = tracknr;
383 error = udf_update_trackinfo(ump, &trackinfo);
384 if (error)
385 return error;
386
387 if (trackinfo.sessionnr == args->sessionnr)
388 break;
389 }
390 *first_tracknr = tracknr;
391
392 /* search for last track of this session */
393 for (;tracknr <= num_tracks; tracknr++) {
394 /* get track info */
395 trackinfo.tracknr = tracknr;
396 error = udf_update_trackinfo(ump, &trackinfo);
397 if (error || (trackinfo.sessionnr != args->sessionnr)) {
398 tracknr--;
399 break;
400 }
401 }
402 if (tracknr > num_tracks)
403 tracknr--;
404
405 *last_tracknr = tracknr;
406
407 if (*last_tracknr < *first_tracknr) {
408 printf( "udf_search_tracks: sanity check on drive+disc failed, "
409 "drive returned garbage\n");
410 return EINVAL;
411 }
412
413 assert(*last_tracknr >= *first_tracknr);
414 return 0;
415 }
416
417
418 /*
419 * NOTE: this is the only routine in this file that directly peeks into the
420 * metadata file but since its at a larval state of the mount it can't hurt.
421 *
422 * XXX candidate for udf_allocation.c
423 * XXX clean me up!, change to new node reading code.
424 */
425
426 static void
427 udf_check_track_metadata_overlap(struct udf_mount *ump,
428 struct mmc_trackinfo *trackinfo)
429 {
430 struct part_desc *part;
431 struct file_entry *fe;
432 struct extfile_entry *efe;
433 struct short_ad *s_ad;
434 struct long_ad *l_ad;
435 uint32_t track_start, track_end;
436 uint32_t phys_part_start, phys_part_end, part_start, part_end;
437 uint32_t sector_size, len, alloclen, plb_num;
438 uint8_t *pos;
439 int addr_type, icblen, icbflags;
440
441 /* get our track extents */
442 track_start = trackinfo->track_start;
443 track_end = track_start + trackinfo->track_size;
444
445 /* get our base partition extent */
446 KASSERT(ump->node_part == ump->fids_part);
447 part = ump->partitions[ump->vtop[ump->node_part]];
448 phys_part_start = udf_rw32(part->start_loc);
449 phys_part_end = phys_part_start + udf_rw32(part->part_len);
450
451 /* no use if its outside the physical partition */
452 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
453 return;
454
455 /*
456 * now follow all extents in the fe/efe to see if they refer to this
457 * track
458 */
459
460 sector_size = ump->discinfo.sector_size;
461
462 /* XXX should we claim exclusive access to the metafile ? */
463 /* TODO: move to new node read code */
464 fe = ump->metadata_node->fe;
465 efe = ump->metadata_node->efe;
466 if (fe) {
467 alloclen = udf_rw32(fe->l_ad);
468 pos = &fe->data[0] + udf_rw32(fe->l_ea);
469 icbflags = udf_rw16(fe->icbtag.flags);
470 } else {
471 assert(efe);
472 alloclen = udf_rw32(efe->l_ad);
473 pos = &efe->data[0] + udf_rw32(efe->l_ea);
474 icbflags = udf_rw16(efe->icbtag.flags);
475 }
476 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
477
478 while (alloclen) {
479 if (addr_type == UDF_ICB_SHORT_ALLOC) {
480 icblen = sizeof(struct short_ad);
481 s_ad = (struct short_ad *) pos;
482 len = udf_rw32(s_ad->len);
483 plb_num = udf_rw32(s_ad->lb_num);
484 } else {
485 /* should not be present, but why not */
486 icblen = sizeof(struct long_ad);
487 l_ad = (struct long_ad *) pos;
488 len = udf_rw32(l_ad->len);
489 plb_num = udf_rw32(l_ad->loc.lb_num);
490 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
491 }
492 /* process extent */
493 len = UDF_EXT_LEN(len);
494
495 part_start = phys_part_start + plb_num;
496 part_end = part_start + (len / sector_size);
497
498 if ((part_start >= track_start) && (part_end <= track_end)) {
499 /* extent is enclosed within this track */
500 ump->metadata_track = *trackinfo;
501 return;
502 }
503
504 pos += icblen;
505 alloclen -= icblen;
506 }
507 }
508
509
510 int
511 udf_search_writing_tracks(struct udf_mount *ump)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_trackinfo trackinfo;
515 struct mmc_op mmc_op;
516 struct part_desc *part;
517 uint32_t tracknr, start_track, num_tracks;
518 uint32_t track_start, track_end, part_start, part_end;
519 int node_alloc, error;
520
521 /*
522 * in the CD/(HD)DVD/BD recordable device model a few tracks within
523 * the last session might be open but in the UDF device model at most
524 * three tracks can be open: a reserved track for delayed ISO VRS
525 * writing, a data track and a metadata track. We search here for the
526 * data track and the metadata track. Note that the reserved track is
527 * troublesome but can be detected by its small size of < 512 sectors.
528 */
529
530 /* update discinfo since it might have changed */
531 error = udf_update_discinfo(ump);
532 if (error)
533 return error;
534
535 num_tracks = ump->discinfo.num_tracks;
536 start_track = ump->discinfo.first_track;
537
538 /* fetch info on first and possibly only track */
539 trackinfo.tracknr = start_track;
540 error = udf_update_trackinfo(ump, &trackinfo);
541 if (error)
542 return error;
543
544 /* copy results to our mount point */
545 ump->data_track = trackinfo;
546 ump->metadata_track = trackinfo;
547
548 /* if not sequential, we're done */
549 if (num_tracks == 1)
550 return 0;
551
552 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
553 /* get track info */
554 trackinfo.tracknr = tracknr;
555 error = udf_update_trackinfo(ump, &trackinfo);
556 if (error)
557 return error;
558
559 /*
560 * If this track is marked damaged, ask for repair. This is an
561 * optional command, so ignore its error but report warning.
562 */
563 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
564 memset(&mmc_op, 0, sizeof(mmc_op));
565 mmc_op.operation = MMC_OP_REPAIRTRACK;
566 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
567 mmc_op.tracknr = tracknr;
568 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
569 if (error)
570 (void)printf("Drive can't explicitly repair "
571 "damaged track %d, but it might "
572 "autorepair\n", tracknr);
573
574 /* reget track info */
575 error = udf_update_trackinfo(ump, &trackinfo);
576 if (error)
577 return error;
578 }
579 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
580 continue;
581
582 track_start = trackinfo.track_start;
583 track_end = track_start + trackinfo.track_size;
584
585 /* check for overlap on data partition */
586 part = ump->partitions[ump->data_part];
587 part_start = udf_rw32(part->start_loc);
588 part_end = part_start + udf_rw32(part->part_len);
589 if ((part_start < track_end) && (part_end > track_start)) {
590 ump->data_track = trackinfo;
591 /* TODO check if UDF partition data_part is writable */
592 }
593
594 /* check for overlap on metadata partition */
595 node_alloc = ump->vtop_alloc[ump->node_part];
596 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
597 (node_alloc == UDF_ALLOC_METABITMAP)) {
598 udf_check_track_metadata_overlap(ump, &trackinfo);
599 } else {
600 ump->metadata_track = trackinfo;
601 }
602 }
603
604 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
605 return EROFS;
606
607 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
608 return EROFS;
609
610 return 0;
611 }
612
613 /* --------------------------------------------------------------------- */
614
615 /*
616 * Check if the blob starts with a good UDF tag. Tags are protected by a
617 * checksum over the reader except one byte at position 4 that is the checksum
618 * itself.
619 */
620
621 int
622 udf_check_tag(void *blob)
623 {
624 struct desc_tag *tag = blob;
625 uint8_t *pos, sum, cnt;
626
627 /* check TAG header checksum */
628 pos = (uint8_t *) tag;
629 sum = 0;
630
631 for(cnt = 0; cnt < 16; cnt++) {
632 if (cnt != 4)
633 sum += *pos;
634 pos++;
635 }
636 if (sum != tag->cksum) {
637 /* bad tag header checksum; this is not a valid tag */
638 return EINVAL;
639 }
640
641 return 0;
642 }
643
644
645 /*
646 * check tag payload will check descriptor CRC as specified.
647 * If the descriptor is too long, it will return EIO otherwise EINVAL.
648 */
649
650 int
651 udf_check_tag_payload(void *blob, uint32_t max_length)
652 {
653 struct desc_tag *tag = blob;
654 uint16_t crc, crc_len;
655
656 crc_len = udf_rw16(tag->desc_crc_len);
657
658 /* check payload CRC if applicable */
659 if (crc_len == 0)
660 return 0;
661
662 if (crc_len > max_length)
663 return EIO;
664
665 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
666 if (crc != udf_rw16(tag->desc_crc)) {
667 /* bad payload CRC; this is a broken tag */
668 return EINVAL;
669 }
670
671 return 0;
672 }
673
674
675 void
676 udf_validate_tag_sum(void *blob)
677 {
678 struct desc_tag *tag = blob;
679 uint8_t *pos, sum, cnt;
680
681 /* calculate TAG header checksum */
682 pos = (uint8_t *) tag;
683 sum = 0;
684
685 for(cnt = 0; cnt < 16; cnt++) {
686 if (cnt != 4) sum += *pos;
687 pos++;
688 }
689 tag->cksum = sum; /* 8 bit */
690 }
691
692
693 /* assumes sector number of descriptor to be saved already present */
694 void
695 udf_validate_tag_and_crc_sums(void *blob)
696 {
697 struct desc_tag *tag = blob;
698 uint8_t *btag = (uint8_t *) tag;
699 uint16_t crc, crc_len;
700
701 crc_len = udf_rw16(tag->desc_crc_len);
702
703 /* check payload CRC if applicable */
704 if (crc_len > 0) {
705 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
706 tag->desc_crc = udf_rw16(crc);
707 }
708
709 /* calculate TAG header checksum */
710 udf_validate_tag_sum(blob);
711 }
712
713 /* --------------------------------------------------------------------- */
714
715 /*
716 * XXX note the different semantics from udfclient: for FIDs it still rounds
717 * up to sectors. Use udf_fidsize() for a correct length.
718 */
719
720 int
721 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
722 {
723 uint32_t size, tag_id, num_lb, elmsz;
724
725 tag_id = udf_rw16(dscr->tag.id);
726
727 switch (tag_id) {
728 case TAGID_LOGVOL :
729 size = sizeof(struct logvol_desc) - 1;
730 size += udf_rw32(dscr->lvd.mt_l);
731 break;
732 case TAGID_UNALLOC_SPACE :
733 elmsz = sizeof(struct extent_ad);
734 size = sizeof(struct unalloc_sp_desc) - elmsz;
735 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
736 break;
737 case TAGID_FID :
738 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
739 size = (size + 3) & ~3;
740 break;
741 case TAGID_LOGVOL_INTEGRITY :
742 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
743 size += udf_rw32(dscr->lvid.l_iu);
744 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
745 break;
746 case TAGID_SPACE_BITMAP :
747 size = sizeof(struct space_bitmap_desc) - 1;
748 size += udf_rw32(dscr->sbd.num_bytes);
749 break;
750 case TAGID_SPARING_TABLE :
751 elmsz = sizeof(struct spare_map_entry);
752 size = sizeof(struct udf_sparing_table) - elmsz;
753 size += udf_rw16(dscr->spt.rt_l) * elmsz;
754 break;
755 case TAGID_FENTRY :
756 size = sizeof(struct file_entry);
757 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
758 break;
759 case TAGID_EXTFENTRY :
760 size = sizeof(struct extfile_entry);
761 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
762 break;
763 case TAGID_FSD :
764 size = sizeof(struct fileset_desc);
765 break;
766 default :
767 size = sizeof(union dscrptr);
768 break;
769 }
770
771 if ((size == 0) || (lb_size == 0))
772 return 0;
773
774 if (lb_size == 1)
775 return size;
776
777 /* round up in sectors */
778 num_lb = (size + lb_size -1) / lb_size;
779 return num_lb * lb_size;
780 }
781
782
783 int
784 udf_fidsize(struct fileid_desc *fid)
785 {
786 uint32_t size;
787
788 if (udf_rw16(fid->tag.id) != TAGID_FID)
789 panic("got udf_fidsize on non FID\n");
790
791 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
792 size = (size + 3) & ~3;
793
794 return size;
795 }
796
797 /* --------------------------------------------------------------------- */
798
799 void
800 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
801 {
802 int ret;
803
804 mutex_enter(&udf_node->node_mutex);
805 /* wait until free */
806 while (udf_node->i_flags & IN_LOCKED) {
807 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
808 /* TODO check if we should return error; abort */
809 if (ret == EWOULDBLOCK) {
810 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
811 "wanted at %s:%d, previously locked at %s:%d\n",
812 udf_node, fname, lineno,
813 udf_node->lock_fname, udf_node->lock_lineno));
814 }
815 }
816 /* grab */
817 udf_node->i_flags |= IN_LOCKED | flag;
818 /* debug */
819 udf_node->lock_fname = fname;
820 udf_node->lock_lineno = lineno;
821
822 mutex_exit(&udf_node->node_mutex);
823 }
824
825
826 void
827 udf_unlock_node(struct udf_node *udf_node, int flag)
828 {
829 mutex_enter(&udf_node->node_mutex);
830 udf_node->i_flags &= ~(IN_LOCKED | flag);
831 cv_broadcast(&udf_node->node_lock);
832 mutex_exit(&udf_node->node_mutex);
833 }
834
835
836 /* --------------------------------------------------------------------- */
837
838 static int
839 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
840 {
841 int error;
842
843 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
844 (union dscrptr **) dst);
845 if (!error) {
846 /* blank terminator blocks are not allowed here */
847 if (*dst == NULL)
848 return ENOENT;
849 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
850 error = ENOENT;
851 free(*dst, M_UDFVOLD);
852 *dst = NULL;
853 DPRINTF(VOLUMES, ("Not an anchor\n"));
854 }
855 }
856
857 return error;
858 }
859
860
861 int
862 udf_read_anchors(struct udf_mount *ump)
863 {
864 struct udf_args *args = &ump->mount_args;
865 struct mmc_trackinfo first_track;
866 struct mmc_trackinfo second_track;
867 struct mmc_trackinfo last_track;
868 struct anchor_vdp **anchorsp;
869 uint32_t track_start;
870 uint32_t track_end;
871 uint32_t positions[4];
872 int first_tracknr, last_tracknr;
873 int error, anch, ok, first_anchor;
874
875 /* search the first and last track of the specified session */
876 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
877 if (!error) {
878 first_track.tracknr = first_tracknr;
879 error = udf_update_trackinfo(ump, &first_track);
880 }
881 if (!error) {
882 last_track.tracknr = last_tracknr;
883 error = udf_update_trackinfo(ump, &last_track);
884 }
885 if ((!error) && (first_tracknr != last_tracknr)) {
886 second_track.tracknr = first_tracknr+1;
887 error = udf_update_trackinfo(ump, &second_track);
888 }
889 if (error) {
890 printf("UDF mount: reading disc geometry failed\n");
891 return 0;
892 }
893
894 track_start = first_track.track_start;
895
896 /* `end' is not as straitforward as start. */
897 track_end = last_track.track_start
898 + last_track.track_size - last_track.free_blocks - 1;
899
900 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
901 /* end of track is not straitforward here */
902 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
903 track_end = last_track.last_recorded;
904 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
905 track_end = last_track.next_writable
906 - ump->discinfo.link_block_penalty;
907 }
908
909 /* its no use reading a blank track */
910 first_anchor = 0;
911 if (first_track.flags & MMC_TRACKINFO_BLANK)
912 first_anchor = 1;
913
914 /* get our packet size */
915 ump->packet_size = first_track.packet_size;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 ump->packet_size = second_track.packet_size;
918
919 if (ump->packet_size <= 1) {
920 /* take max, but not bigger than 64 */
921 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
922 ump->packet_size = MIN(ump->packet_size, 64);
923 }
924 KASSERT(ump->packet_size >= 1);
925
926 /* read anchors start+256, start+512, end-256, end */
927 positions[0] = track_start+256;
928 positions[1] = track_end-256;
929 positions[2] = track_end;
930 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
931 /* XXX shouldn't +512 be preferred over +256 for compat with Roxio CD */
932
933 ok = 0;
934 anchorsp = ump->anchors;
935 for (anch = first_anchor; anch < 4; anch++) {
936 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
937 positions[anch]));
938 error = udf_read_anchor(ump, positions[anch], anchorsp);
939 if (!error) {
940 anchorsp++;
941 ok++;
942 }
943 }
944
945 /* VATs are only recorded on sequential media, but initialise */
946 ump->first_possible_vat_location = track_start + 2;
947 ump->last_possible_vat_location = track_end;
948
949 return ok;
950 }
951
952 /* --------------------------------------------------------------------- */
953
954 int
955 udf_get_c_type(struct udf_node *udf_node)
956 {
957 int isdir, what;
958
959 isdir = (udf_node->vnode->v_type == VDIR);
960 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
961
962 if (udf_node->ump)
963 if (udf_node == udf_node->ump->metadatabitmap_node)
964 what = UDF_C_METADATA_SBM;
965
966 return what;
967 }
968
969
970 int
971 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type)
972 {
973 int vpart_num;
974
975 vpart_num = ump->data_part;
976 if (udf_c_type == UDF_C_NODE)
977 vpart_num = ump->node_part;
978 if (udf_c_type == UDF_C_FIDS)
979 vpart_num = ump->fids_part;
980
981 return vpart_num;
982 }
983
984
985 /*
986 * BUGALERT: some rogue implementations use random physical partition
987 * numbers to break other implementations so lookup the number.
988 */
989
990 static uint16_t
991 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part)
992 {
993 struct part_desc *part;
994 uint16_t phys_part;
995
996 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
997 part = ump->partitions[phys_part];
998 if (part == NULL)
999 break;
1000 if (udf_rw16(part->part_num) == raw_phys_part)
1001 break;
1002 }
1003 return phys_part;
1004 }
1005
1006 /* --------------------------------------------------------------------- */
1007
1008 /* we dont try to be smart; we just record the parts */
1009 #define UDF_UPDATE_DSCR(name, dscr) \
1010 if (name) \
1011 free(name, M_UDFVOLD); \
1012 name = dscr;
1013
1014 static int
1015 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
1016 {
1017 uint16_t phys_part, raw_phys_part;
1018
1019 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 switch (udf_rw16(dscr->tag.id)) {
1022 case TAGID_PRI_VOL : /* primary partition */
1023 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
1024 break;
1025 case TAGID_LOGVOL : /* logical volume */
1026 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
1027 break;
1028 case TAGID_UNALLOC_SPACE : /* unallocated space */
1029 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
1030 break;
1031 case TAGID_IMP_VOL : /* implementation */
1032 /* XXX do we care about multiple impl. descr ? */
1033 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
1034 break;
1035 case TAGID_PARTITION : /* physical partition */
1036 /* not much use if its not allocated */
1037 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
1038 free(dscr, M_UDFVOLD);
1039 break;
1040 }
1041
1042 /*
1043 * BUGALERT: some rogue implementations use random physical
1044 * partition numbers to break other implementations so lookup
1045 * the number.
1046 */
1047 raw_phys_part = udf_rw16(dscr->pd.part_num);
1048 phys_part = udf_find_raw_phys(ump, raw_phys_part);
1049
1050 if (phys_part == UDF_PARTITIONS) {
1051 free(dscr, M_UDFVOLD);
1052 return EINVAL;
1053 }
1054
1055 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1056 break;
1057 case TAGID_VOL : /* volume space extender; rare */
1058 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 default :
1062 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1063 udf_rw16(dscr->tag.id)));
1064 free(dscr, M_UDFVOLD);
1065 }
1066
1067 return 0;
1068 }
1069 #undef UDF_UPDATE_DSCR
1070
1071 /* --------------------------------------------------------------------- */
1072
1073 static int
1074 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1075 {
1076 union dscrptr *dscr;
1077 uint32_t sector_size, dscr_size;
1078 int error;
1079
1080 sector_size = ump->discinfo.sector_size;
1081
1082 /* loc is sectornr, len is in bytes */
1083 error = EIO;
1084 while (len) {
1085 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1086 if (error)
1087 return error;
1088
1089 /* blank block is a terminator */
1090 if (dscr == NULL)
1091 return 0;
1092
1093 /* TERM descriptor is a terminator */
1094 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1095 free(dscr, M_UDFVOLD);
1096 return 0;
1097 }
1098
1099 /* process all others */
1100 dscr_size = udf_tagsize(dscr, sector_size);
1101 error = udf_process_vds_descriptor(ump, dscr);
1102 if (error) {
1103 free(dscr, M_UDFVOLD);
1104 break;
1105 }
1106 assert((dscr_size % sector_size) == 0);
1107
1108 len -= dscr_size;
1109 loc += dscr_size / sector_size;
1110 }
1111
1112 return error;
1113 }
1114
1115
1116 int
1117 udf_read_vds_space(struct udf_mount *ump)
1118 {
1119 /* struct udf_args *args = &ump->mount_args; */
1120 struct anchor_vdp *anchor, *anchor2;
1121 size_t size;
1122 uint32_t main_loc, main_len;
1123 uint32_t reserve_loc, reserve_len;
1124 int error;
1125
1126 /*
1127 * read in VDS space provided by the anchors; if one descriptor read
1128 * fails, try the mirror sector.
1129 *
1130 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1131 * avoids the `compatibility features' of DirectCD that may confuse
1132 * stuff completely.
1133 */
1134
1135 anchor = ump->anchors[0];
1136 anchor2 = ump->anchors[1];
1137 assert(anchor);
1138
1139 if (anchor2) {
1140 size = sizeof(struct extent_ad);
1141 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1142 anchor = anchor2;
1143 /* reserve is specified to be a literal copy of main */
1144 }
1145
1146 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1147 main_len = udf_rw32(anchor->main_vds_ex.len);
1148
1149 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1150 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1151
1152 error = udf_read_vds_extent(ump, main_loc, main_len);
1153 if (error) {
1154 printf("UDF mount: reading in reserve VDS extent\n");
1155 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1156 }
1157
1158 return error;
1159 }
1160
1161 /* --------------------------------------------------------------------- */
1162
1163 /*
1164 * Read in the logical volume integrity sequence pointed to by our logical
1165 * volume descriptor. Its a sequence that can be extended using fields in the
1166 * integrity descriptor itself. On sequential media only one is found, on
1167 * rewritable media a sequence of descriptors can be found as a form of
1168 * history keeping and on non sequential write-once media the chain is vital
1169 * to allow more and more descriptors to be written. The last descriptor
1170 * written in an extent needs to claim space for a new extent.
1171 */
1172
1173 static int
1174 udf_retrieve_lvint(struct udf_mount *ump)
1175 {
1176 union dscrptr *dscr;
1177 struct logvol_int_desc *lvint;
1178 struct udf_lvintq *trace;
1179 uint32_t lb_size, lbnum, len;
1180 int dscr_type, error, trace_len;
1181
1182 lb_size = udf_rw32(ump->logical_vol->lb_size);
1183 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1184 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1185
1186 /* clean trace */
1187 memset(ump->lvint_trace, 0,
1188 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1189
1190 trace_len = 0;
1191 trace = ump->lvint_trace;
1192 trace->start = lbnum;
1193 trace->end = lbnum + len/lb_size;
1194 trace->pos = 0;
1195 trace->wpos = 0;
1196
1197 lvint = NULL;
1198 dscr = NULL;
1199 error = 0;
1200 while (len) {
1201 trace->pos = lbnum - trace->start;
1202 trace->wpos = trace->pos + 1;
1203
1204 /* read in our integrity descriptor */
1205 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1206 if (!error) {
1207 if (dscr == NULL) {
1208 trace->wpos = trace->pos;
1209 break; /* empty terminates */
1210 }
1211 dscr_type = udf_rw16(dscr->tag.id);
1212 if (dscr_type == TAGID_TERM) {
1213 trace->wpos = trace->pos;
1214 break; /* clean terminator */
1215 }
1216 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1217 /* fatal... corrupt disc */
1218 error = ENOENT;
1219 break;
1220 }
1221 if (lvint)
1222 free(lvint, M_UDFVOLD);
1223 lvint = &dscr->lvid;
1224 dscr = NULL;
1225 } /* else hope for the best... maybe the next is ok */
1226
1227 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1228 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1229
1230 /* proceed sequential */
1231 lbnum += 1;
1232 len -= lb_size;
1233
1234 /* are we linking to a new piece? */
1235 if (dscr && lvint->next_extent.len) {
1236 len = udf_rw32(lvint->next_extent.len);
1237 lbnum = udf_rw32(lvint->next_extent.loc);
1238
1239 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1240 /* IEK! segment link full... */
1241 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1242 error = EINVAL;
1243 } else {
1244 trace++;
1245 trace_len++;
1246
1247 trace->start = lbnum;
1248 trace->end = lbnum + len/lb_size;
1249 trace->pos = 0;
1250 trace->wpos = 0;
1251 }
1252 }
1253 }
1254
1255 /* clean up the mess, esp. when there is an error */
1256 if (dscr)
1257 free(dscr, M_UDFVOLD);
1258
1259 if (error && lvint) {
1260 free(lvint, M_UDFVOLD);
1261 lvint = NULL;
1262 }
1263
1264 if (!lvint)
1265 error = ENOENT;
1266
1267 ump->logvol_integrity = lvint;
1268 return error;
1269 }
1270
1271
1272 static int
1273 udf_loose_lvint_history(struct udf_mount *ump)
1274 {
1275 union dscrptr **bufs, *dscr, *last_dscr;
1276 struct udf_lvintq *trace, *in_trace, *out_trace;
1277 struct logvol_int_desc *lvint;
1278 uint32_t in_ext, in_pos, in_len;
1279 uint32_t out_ext, out_wpos, out_len;
1280 uint32_t lb_num;
1281 uint32_t len, start;
1282 int ext, sumext, extlen, cnt, cpy_len, dscr_type;
1283 int losing;
1284 int error;
1285
1286 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1287
1288 /* search smallest extent */
1289 trace = &ump->lvint_trace[0];
1290 sumext = trace->end - trace->start;
1291 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1292 trace = &ump->lvint_trace[ext];
1293 extlen = trace->end - trace->start;
1294 if (extlen == 0)
1295 break;
1296 sumext += extlen;
1297 }
1298
1299 /* just one element? its not legal but be bug compatible */
1300 if (sumext == 1) {
1301 /* overwrite the only entry */
1302 DPRINTF(VOLUMES, ("\tLinux bugcompat overwriting sole entry\n"));
1303 trace = &ump->lvint_trace[0];
1304 trace->wpos = 0;
1305 return 0;
1306 }
1307
1308 losing = MIN(sumext, UDF_LVINT_LOSSAGE);
1309
1310 /* no sense wiping too much */
1311 if (sumext == UDF_LVINT_LOSSAGE)
1312 losing = UDF_LVINT_LOSSAGE/2;
1313
1314 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1315
1316 /* get buffer for pieces */
1317 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1318
1319 in_ext = 0;
1320 in_pos = losing;
1321 in_trace = &ump->lvint_trace[in_ext];
1322 in_len = in_trace->end - in_trace->start;
1323 out_ext = 0;
1324 out_wpos = 0;
1325 out_trace = &ump->lvint_trace[out_ext];
1326 out_len = out_trace->end - out_trace->start;
1327
1328 last_dscr = NULL;
1329 for(;;) {
1330 out_trace->pos = out_wpos;
1331 out_trace->wpos = out_trace->pos;
1332 if (in_pos >= in_len) {
1333 in_ext++;
1334 in_pos = 0;
1335 in_trace = &ump->lvint_trace[in_ext];
1336 in_len = in_trace->end - in_trace->start;
1337 }
1338 if (out_wpos >= out_len) {
1339 out_ext++;
1340 out_wpos = 0;
1341 out_trace = &ump->lvint_trace[out_ext];
1342 out_len = out_trace->end - out_trace->start;
1343 }
1344 /* copy overlap contents */
1345 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1346 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1347 if (cpy_len == 0)
1348 break;
1349
1350 /* copy */
1351 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1352 for (cnt = 0; cnt < cpy_len; cnt++) {
1353 /* read in our integrity descriptor */
1354 lb_num = in_trace->start + in_pos + cnt;
1355 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1356 &dscr);
1357 if (error) {
1358 /* copy last one */
1359 dscr = last_dscr;
1360 }
1361 bufs[cnt] = dscr;
1362 if (!error) {
1363 if (dscr == NULL) {
1364 out_trace->pos = out_wpos + cnt;
1365 out_trace->wpos = out_trace->pos;
1366 break; /* empty terminates */
1367 }
1368 dscr_type = udf_rw16(dscr->tag.id);
1369 if (dscr_type == TAGID_TERM) {
1370 out_trace->pos = out_wpos + cnt;
1371 out_trace->wpos = out_trace->pos;
1372 break; /* clean terminator */
1373 }
1374 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1375 panic( "UDF integrity sequence "
1376 "corrupted while mounted!\n");
1377 }
1378 last_dscr = dscr;
1379 }
1380 }
1381
1382 /* patch up if first entry was on error */
1383 if (bufs[0] == NULL) {
1384 for (cnt = 0; cnt < cpy_len; cnt++)
1385 if (bufs[cnt] != NULL)
1386 break;
1387 last_dscr = bufs[cnt];
1388 for (; cnt > 0; cnt--) {
1389 bufs[cnt] = last_dscr;
1390 }
1391 }
1392
1393 /* glue + write out */
1394 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1395 for (cnt = 0; cnt < cpy_len; cnt++) {
1396 lb_num = out_trace->start + out_wpos + cnt;
1397 lvint = &bufs[cnt]->lvid;
1398
1399 /* set continuation */
1400 len = 0;
1401 start = 0;
1402 if (out_wpos + cnt == out_len) {
1403 /* get continuation */
1404 trace = &ump->lvint_trace[out_ext+1];
1405 len = trace->end - trace->start;
1406 start = trace->start;
1407 }
1408 lvint->next_extent.len = udf_rw32(len);
1409 lvint->next_extent.loc = udf_rw32(start);
1410
1411 lb_num = trace->start + trace->wpos;
1412 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1413 bufs[cnt], lb_num, lb_num);
1414 DPRINTFIF(VOLUMES, error,
1415 ("error writing lvint lb_num\n"));
1416 }
1417
1418 /* free non repeating descriptors */
1419 last_dscr = NULL;
1420 for (cnt = 0; cnt < cpy_len; cnt++) {
1421 if (bufs[cnt] != last_dscr)
1422 free(bufs[cnt], M_UDFVOLD);
1423 last_dscr = bufs[cnt];
1424 }
1425
1426 /* advance */
1427 in_pos += cpy_len;
1428 out_wpos += cpy_len;
1429 }
1430
1431 free(bufs, M_TEMP);
1432
1433 return 0;
1434 }
1435
1436
1437 static int
1438 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1439 {
1440 struct udf_lvintq *trace;
1441 struct timeval now_v;
1442 struct timespec now_s;
1443 uint32_t sector;
1444 int logvol_integrity;
1445 int space, error;
1446
1447 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1448
1449 /* get free space in last chunk */
1450 trace = ump->lvint_trace;
1451 while (trace->wpos > (trace->end - trace->start)) {
1452 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1453 "wpos = %d\n", trace->start, trace->end,
1454 trace->pos, trace->wpos));
1455 trace++;
1456 }
1457
1458 /* check if there is space to append */
1459 space = (trace->end - trace->start) - trace->wpos;
1460 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1461 "space = %d\n", trace->start, trace->end, trace->pos,
1462 trace->wpos, space));
1463
1464 /* get state */
1465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1466 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1467 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1468 /* TODO extent LVINT space if possible */
1469 return EROFS;
1470 }
1471 }
1472
1473 if (space < 1) {
1474 if (lvflag & UDF_APPENDONLY_LVINT)
1475 return EROFS;
1476
1477 /* loose history by re-writing extents */
1478 error = udf_loose_lvint_history(ump);
1479 if (error)
1480 return error;
1481
1482 trace = ump->lvint_trace;
1483 while (trace->wpos > (trace->end - trace->start))
1484 trace++;
1485 space = (trace->end - trace->start) - trace->wpos;
1486 DPRINTF(VOLUMES, ("new try: write start = %d, end = %d, "
1487 "pos = %d, wpos = %d, "
1488 "space = %d\n", trace->start, trace->end,
1489 trace->pos, trace->wpos, space));
1490 }
1491
1492 /* update our integrity descriptor to identify us and timestamp it */
1493 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1494 microtime(&now_v);
1495 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1496 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1497 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1498 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1499
1500 /* writeout integrity descriptor */
1501 sector = trace->start + trace->wpos;
1502 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1503 (union dscrptr *) ump->logvol_integrity,
1504 sector, sector);
1505 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1506 if (error)
1507 return error;
1508
1509 /* advance write position */
1510 trace->wpos++; space--;
1511 if (space >= 1) {
1512 /* append terminator */
1513 sector = trace->start + trace->wpos;
1514 error = udf_write_terminator(ump, sector);
1515
1516 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1517 }
1518
1519 space = (trace->end - trace->start) - trace->wpos;
1520 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1521 "space = %d\n", trace->start, trace->end, trace->pos,
1522 trace->wpos, space));
1523 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1524 "successfully\n"));
1525
1526 return error;
1527 }
1528
1529 /* --------------------------------------------------------------------- */
1530
1531 static int
1532 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1533 {
1534 union dscrptr *dscr;
1535 /* struct udf_args *args = &ump->mount_args; */
1536 struct part_desc *partd;
1537 struct part_hdr_desc *parthdr;
1538 struct udf_bitmap *bitmap;
1539 uint32_t phys_part;
1540 uint32_t lb_num, len;
1541 int error, dscr_type;
1542
1543 /* unallocated space map */
1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1545 partd = ump->partitions[phys_part];
1546 if (partd == NULL)
1547 continue;
1548 parthdr = &partd->_impl_use.part_hdr;
1549
1550 lb_num = udf_rw32(partd->start_loc);
1551 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1552 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1553 if (len == 0)
1554 continue;
1555
1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1558 if (!error && dscr) {
1559 /* analyse */
1560 dscr_type = udf_rw16(dscr->tag.id);
1561 if (dscr_type == TAGID_SPACE_BITMAP) {
1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1563 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1564
1565 /* fill in ump->part_unalloc_bits */
1566 bitmap = &ump->part_unalloc_bits[phys_part];
1567 bitmap->blob = (uint8_t *) dscr;
1568 bitmap->bits = dscr->sbd.data;
1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1570 bitmap->pages = NULL; /* TODO */
1571 bitmap->data_pos = 0;
1572 bitmap->metadata_pos = 0;
1573 } else {
1574 free(dscr, M_UDFVOLD);
1575
1576 printf( "UDF mount: error reading unallocated "
1577 "space bitmap\n");
1578 return EROFS;
1579 }
1580 } else {
1581 /* blank not allowed */
1582 printf("UDF mount: blank unallocated space bitmap\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* unallocated space table (not supported) */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 len = udf_rw32(parthdr->unalloc_space_table.len);
1595 if (len) {
1596 printf("UDF mount: space tables not supported\n");
1597 return EROFS;
1598 }
1599 }
1600
1601 /* freed space map */
1602 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1603 partd = ump->partitions[phys_part];
1604 if (partd == NULL)
1605 continue;
1606 parthdr = &partd->_impl_use.part_hdr;
1607
1608 /* freed space map */
1609 lb_num = udf_rw32(partd->start_loc);
1610 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1611 len = udf_rw32(parthdr->freed_space_bitmap.len);
1612 if (len == 0)
1613 continue;
1614
1615 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1616 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1617 if (!error && dscr) {
1618 /* analyse */
1619 dscr_type = udf_rw16(dscr->tag.id);
1620 if (dscr_type == TAGID_SPACE_BITMAP) {
1621 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1622 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1623
1624 /* fill in ump->part_freed_bits */
1625 bitmap = &ump->part_unalloc_bits[phys_part];
1626 bitmap->blob = (uint8_t *) dscr;
1627 bitmap->bits = dscr->sbd.data;
1628 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1629 bitmap->pages = NULL; /* TODO */
1630 bitmap->data_pos = 0;
1631 bitmap->metadata_pos = 0;
1632 } else {
1633 free(dscr, M_UDFVOLD);
1634
1635 printf( "UDF mount: error reading freed "
1636 "space bitmap\n");
1637 return EROFS;
1638 }
1639 } else {
1640 /* blank not allowed */
1641 printf("UDF mount: blank freed space bitmap\n");
1642 return EROFS;
1643 }
1644 }
1645
1646 /* freed space table (not supported) */
1647 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1648 partd = ump->partitions[phys_part];
1649 if (partd == NULL)
1650 continue;
1651 parthdr = &partd->_impl_use.part_hdr;
1652
1653 len = udf_rw32(parthdr->freed_space_table.len);
1654 if (len) {
1655 printf("UDF mount: space tables not supported\n");
1656 return EROFS;
1657 }
1658 }
1659
1660 return 0;
1661 }
1662
1663
1664 /* TODO implement async writeout */
1665 int
1666 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1667 {
1668 union dscrptr *dscr;
1669 /* struct udf_args *args = &ump->mount_args; */
1670 struct part_desc *partd;
1671 struct part_hdr_desc *parthdr;
1672 uint32_t phys_part;
1673 uint32_t lb_num, len, ptov;
1674 int error_all, error;
1675
1676 error_all = 0;
1677 /* unallocated space map */
1678 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1679 partd = ump->partitions[phys_part];
1680 if (partd == NULL)
1681 continue;
1682 parthdr = &partd->_impl_use.part_hdr;
1683
1684 ptov = udf_rw32(partd->start_loc);
1685 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1686 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1687 if (len == 0)
1688 continue;
1689
1690 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1691 lb_num + ptov));
1692 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1693
1694 /* force a sane minimum for descriptors CRC length */
1695 /* see UDF 2.3.1.2 and 2.3.8.1 */
1696 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1697 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1698 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1699
1700 /* write out space bitmap */
1701 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1702 (union dscrptr *) dscr,
1703 ptov + lb_num, lb_num);
1704 if (error) {
1705 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1706 error_all = error;
1707 }
1708 }
1709
1710 /* freed space map */
1711 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1712 partd = ump->partitions[phys_part];
1713 if (partd == NULL)
1714 continue;
1715 parthdr = &partd->_impl_use.part_hdr;
1716
1717 /* freed space map */
1718 ptov = udf_rw32(partd->start_loc);
1719 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1720 len = udf_rw32(parthdr->freed_space_bitmap.len);
1721 if (len == 0)
1722 continue;
1723
1724 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1725 lb_num + ptov));
1726 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1727
1728 /* force a sane minimum for descriptors CRC length */
1729 /* see UDF 2.3.1.2 and 2.3.8.1 */
1730 KASSERT(udf_rw16(dscr->sbd.tag.id) == TAGID_SPACE_BITMAP);
1731 if (udf_rw16(dscr->sbd.tag.desc_crc_len) == 0)
1732 dscr->sbd.tag.desc_crc_len = udf_rw16(8);
1733
1734 /* write out space bitmap */
1735 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1736 (union dscrptr *) dscr,
1737 ptov + lb_num, lb_num);
1738 if (error) {
1739 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1740 error_all = error;
1741 }
1742 }
1743
1744 return error_all;
1745 }
1746
1747
1748 static int
1749 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1750 {
1751 struct udf_node *bitmap_node;
1752 union dscrptr *dscr;
1753 struct udf_bitmap *bitmap;
1754 uint64_t inflen;
1755 int error, dscr_type;
1756
1757 bitmap_node = ump->metadatabitmap_node;
1758
1759 /* only read in when metadata bitmap node is read in */
1760 if (bitmap_node == NULL)
1761 return 0;
1762
1763 if (bitmap_node->fe) {
1764 inflen = udf_rw64(bitmap_node->fe->inf_len);
1765 } else {
1766 KASSERT(bitmap_node->efe);
1767 inflen = udf_rw64(bitmap_node->efe->inf_len);
1768 }
1769
1770 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1771 "%"PRIu64" bytes\n", inflen));
1772
1773 /* allocate space for bitmap */
1774 dscr = malloc(inflen, M_UDFVOLD, M_WAITOK);
1775 if (!dscr)
1776 return ENOMEM;
1777
1778 /* set vnode type to regular file or we can't read from it! */
1779 bitmap_node->vnode->v_type = VREG;
1780
1781 /* read in complete metadata bitmap file */
1782 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1783 dscr,
1784 inflen, 0,
1785 UIO_SYSSPACE,
1786 IO_SYNC | IO_ALTSEMANTICS, FSCRED,
1787 NULL, NULL);
1788 if (error) {
1789 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1790 goto errorout;
1791 }
1792
1793 /* analyse */
1794 dscr_type = udf_rw16(dscr->tag.id);
1795 if (dscr_type == TAGID_SPACE_BITMAP) {
1796 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1797 ump->metadata_unalloc_dscr = &dscr->sbd;
1798
1799 /* fill in bitmap bits */
1800 bitmap = &ump->metadata_unalloc_bits;
1801 bitmap->blob = (uint8_t *) dscr;
1802 bitmap->bits = dscr->sbd.data;
1803 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1804 bitmap->pages = NULL; /* TODO */
1805 bitmap->data_pos = 0;
1806 bitmap->metadata_pos = 0;
1807 } else {
1808 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1809 goto errorout;
1810 }
1811
1812 return 0;
1813
1814 errorout:
1815 free(dscr, M_UDFVOLD);
1816 printf( "UDF mount: error reading unallocated "
1817 "space bitmap for metadata partition\n");
1818 return EROFS;
1819 }
1820
1821
1822 int
1823 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1824 {
1825 struct udf_node *bitmap_node;
1826 union dscrptr *dscr;
1827 uint64_t new_inflen;
1828 int dummy, error;
1829
1830 bitmap_node = ump->metadatabitmap_node;
1831
1832 /* only write out when metadata bitmap node is known */
1833 if (bitmap_node == NULL)
1834 return 0;
1835
1836 if (!bitmap_node->fe) {
1837 KASSERT(bitmap_node->efe);
1838 }
1839
1840 /* reduce length to zero */
1841 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1842 new_inflen = udf_tagsize(dscr, 1);
1843
1844 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap "
1845 " for %"PRIu64" bytes\n", new_inflen));
1846
1847 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1848 if (error)
1849 printf("Error resizing metadata space bitmap\n");
1850
1851 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1852 dscr,
1853 new_inflen, 0,
1854 UIO_SYSSPACE,
1855 IO_ALTSEMANTICS, FSCRED,
1856 NULL, NULL);
1857
1858 bitmap_node->i_flags |= IN_MODIFIED;
1859 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT);
1860 if (error == 0)
1861 error = VOP_FSYNC(bitmap_node->vnode,
1862 FSCRED, FSYNC_WAIT, 0, 0);
1863
1864 if (error)
1865 printf( "Error writing out metadata partition unalloced "
1866 "space bitmap!\n");
1867
1868 return error;
1869 }
1870
1871
1872 /* --------------------------------------------------------------------- */
1873
1874 /*
1875 * Checks if ump's vds information is correct and complete
1876 */
1877
1878 int
1879 udf_process_vds(struct udf_mount *ump) {
1880 union udf_pmap *mapping;
1881 /* struct udf_args *args = &ump->mount_args; */
1882 struct logvol_int_desc *lvint;
1883 struct udf_logvol_info *lvinfo;
1884 uint32_t n_pm;
1885 uint8_t *pmap_pos;
1886 char *domain_name, *map_name;
1887 const char *check_name;
1888 char bits[128];
1889 int pmap_stype, pmap_size;
1890 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1891 int n_phys, n_virt, n_spar, n_meta;
1892 int len;
1893
1894 if (ump == NULL)
1895 return ENOENT;
1896
1897 /* we need at least an anchor (trivial, but for safety) */
1898 if (ump->anchors[0] == NULL)
1899 return EINVAL;
1900
1901 /* we need at least one primary and one logical volume descriptor */
1902 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1903 return EINVAL;
1904
1905 /* we need at least one partition descriptor */
1906 if (ump->partitions[0] == NULL)
1907 return EINVAL;
1908
1909 /* check logical volume sector size verses device sector size */
1910 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1911 printf("UDF mount: format violation, lb_size != sector size\n");
1912 return EINVAL;
1913 }
1914
1915 /* check domain name */
1916 domain_name = ump->logical_vol->domain_id.id;
1917 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1918 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1919 return EINVAL;
1920 }
1921
1922 /* retrieve logical volume integrity sequence */
1923 (void)udf_retrieve_lvint(ump);
1924
1925 /*
1926 * We need at least one logvol integrity descriptor recorded. Note
1927 * that its OK to have an open logical volume integrity here. The VAT
1928 * will close/update the integrity.
1929 */
1930 if (ump->logvol_integrity == NULL)
1931 return EINVAL;
1932
1933 /* process derived structures */
1934 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1935 lvint = ump->logvol_integrity;
1936 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1937 ump->logvol_info = lvinfo;
1938
1939 /* TODO check udf versions? */
1940
1941 /*
1942 * check logvol mappings: effective virt->log partmap translation
1943 * check and recording of the mapping results. Saves expensive
1944 * strncmp() in tight places.
1945 */
1946 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1947 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1948 pmap_pos = ump->logical_vol->maps;
1949
1950 if (n_pm > UDF_PMAPS) {
1951 printf("UDF mount: too many mappings\n");
1952 return EINVAL;
1953 }
1954
1955 /* count types and set partition numbers */
1956 ump->data_part = ump->node_part = ump->fids_part = 0;
1957 n_phys = n_virt = n_spar = n_meta = 0;
1958 for (log_part = 0; log_part < n_pm; log_part++) {
1959 mapping = (union udf_pmap *) pmap_pos;
1960 pmap_stype = pmap_pos[0];
1961 pmap_size = pmap_pos[1];
1962 switch (pmap_stype) {
1963 case 1: /* physical mapping */
1964 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1965 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1966 pmap_type = UDF_VTOP_TYPE_PHYS;
1967 n_phys++;
1968 ump->data_part = log_part;
1969 ump->node_part = log_part;
1970 ump->fids_part = log_part;
1971 break;
1972 case 2: /* virtual/sparable/meta mapping */
1973 map_name = mapping->pm2.part_id.id;
1974 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1975 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1976 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1977 len = UDF_REGID_ID_SIZE;
1978
1979 check_name = "*UDF Virtual Partition";
1980 if (strncmp(map_name, check_name, len) == 0) {
1981 pmap_type = UDF_VTOP_TYPE_VIRT;
1982 n_virt++;
1983 ump->node_part = log_part;
1984 break;
1985 }
1986 check_name = "*UDF Sparable Partition";
1987 if (strncmp(map_name, check_name, len) == 0) {
1988 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1989 n_spar++;
1990 ump->data_part = log_part;
1991 ump->node_part = log_part;
1992 ump->fids_part = log_part;
1993 break;
1994 }
1995 check_name = "*UDF Metadata Partition";
1996 if (strncmp(map_name, check_name, len) == 0) {
1997 pmap_type = UDF_VTOP_TYPE_META;
1998 n_meta++;
1999 ump->node_part = log_part;
2000 ump->fids_part = log_part;
2001 break;
2002 }
2003 break;
2004 default:
2005 return EINVAL;
2006 }
2007
2008 /*
2009 * BUGALERT: some rogue implementations use random physical
2010 * partition numbers to break other implementations so lookup
2011 * the number.
2012 */
2013 phys_part = udf_find_raw_phys(ump, raw_phys_part);
2014
2015 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
2016 raw_phys_part, phys_part, pmap_type));
2017
2018 if (phys_part == UDF_PARTITIONS)
2019 return EINVAL;
2020 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
2021 return EINVAL;
2022
2023 ump->vtop [log_part] = phys_part;
2024 ump->vtop_tp[log_part] = pmap_type;
2025
2026 pmap_pos += pmap_size;
2027 }
2028 /* not winning the beauty contest */
2029 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
2030
2031 /* test some basic UDF assertions/requirements */
2032 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
2033 return EINVAL;
2034
2035 if (n_virt) {
2036 if ((n_phys == 0) || n_spar || n_meta)
2037 return EINVAL;
2038 }
2039 if (n_spar + n_phys == 0)
2040 return EINVAL;
2041
2042 /* select allocation type for each logical partition */
2043 for (log_part = 0; log_part < n_pm; log_part++) {
2044 maps_on = ump->vtop[log_part];
2045 switch (ump->vtop_tp[log_part]) {
2046 case UDF_VTOP_TYPE_PHYS :
2047 assert(maps_on == log_part);
2048 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2049 break;
2050 case UDF_VTOP_TYPE_VIRT :
2051 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
2052 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2053 break;
2054 case UDF_VTOP_TYPE_SPARABLE :
2055 assert(maps_on == log_part);
2056 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
2057 break;
2058 case UDF_VTOP_TYPE_META :
2059 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
2060 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
2061 /* special case for UDF 2.60 */
2062 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2063 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2064 }
2065 break;
2066 default:
2067 panic("bad allocation type in udf's ump->vtop\n");
2068 }
2069 }
2070
2071 /* determine logical volume open/closure actions */
2072 if (n_virt) {
2073 ump->lvopen = 0;
2074 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2075 ump->lvopen |= UDF_OPEN_SESSION ;
2076 ump->lvclose = UDF_WRITE_VAT;
2077 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2078 ump->lvclose |= UDF_CLOSE_SESSION;
2079 } else {
2080 /* `normal' rewritable or non sequential media */
2081 ump->lvopen = UDF_WRITE_LVINT;
2082 ump->lvclose = UDF_WRITE_LVINT;
2083 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2084 ump->lvopen |= UDF_APPENDONLY_LVINT;
2085 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2086 ump->lvopen &= ~UDF_APPENDONLY_LVINT;
2087 }
2088
2089 /*
2090 * Determine sheduler error behaviour. For virtual partitions, update
2091 * the trackinfo; for sparable partitions replace a whole block on the
2092 * sparable table. Always requeue.
2093 */
2094 ump->lvreadwrite = 0;
2095 if (n_virt)
2096 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2097 if (n_spar)
2098 ump->lvreadwrite = UDF_REMAP_BLOCK;
2099
2100 /*
2101 * Select our sheduler
2102 */
2103 ump->strategy = &udf_strat_rmw;
2104 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2105 ump->strategy = &udf_strat_sequential;
2106 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2107 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2108 ump->strategy = &udf_strat_direct;
2109 if (n_spar)
2110 ump->strategy = &udf_strat_rmw;
2111
2112 #if 0
2113 /* read-only access won't benefit from the other shedulers */
2114 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2115 ump->strategy = &udf_strat_direct;
2116 #endif
2117
2118 /* print results */
2119 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2120 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2121 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2122 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2123 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2124 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2125
2126 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
2127 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2128 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
2129 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2130 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
2131 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2132
2133 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2134 (ump->strategy == &udf_strat_direct) ? "Direct" :
2135 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2136 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2137
2138 /* signal its OK for now */
2139 return 0;
2140 }
2141
2142 /* --------------------------------------------------------------------- */
2143
2144 /*
2145 * Update logical volume name in all structures that keep a record of it. We
2146 * use memmove since each of them might be specified as a source.
2147 *
2148 * Note that it doesn't update the VAT structure!
2149 */
2150
2151 static void
2152 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2153 {
2154 struct logvol_desc *lvd = NULL;
2155 struct fileset_desc *fsd = NULL;
2156 struct udf_lv_info *lvi = NULL;
2157
2158 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2159 lvd = ump->logical_vol;
2160 fsd = ump->fileset_desc;
2161 if (ump->implementation)
2162 lvi = &ump->implementation->_impl_use.lv_info;
2163
2164 /* logvol's id might be specified as origional so use memmove here */
2165 memmove(lvd->logvol_id, logvol_id, 128);
2166 if (fsd)
2167 memmove(fsd->logvol_id, logvol_id, 128);
2168 if (lvi)
2169 memmove(lvi->logvol_id, logvol_id, 128);
2170 }
2171
2172 /* --------------------------------------------------------------------- */
2173
2174 void
2175 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2176 uint32_t sector)
2177 {
2178 assert(ump->logical_vol);
2179
2180 tag->id = udf_rw16(tagid);
2181 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2182 tag->cksum = 0;
2183 tag->reserved = 0;
2184 tag->serial_num = ump->logical_vol->tag.serial_num;
2185 tag->tag_loc = udf_rw32(sector);
2186 }
2187
2188
2189 uint64_t
2190 udf_advance_uniqueid(struct udf_mount *ump)
2191 {
2192 uint64_t unique_id;
2193
2194 mutex_enter(&ump->logvol_mutex);
2195 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2196 if (unique_id < 0x10)
2197 unique_id = 0x10;
2198 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2199 mutex_exit(&ump->logvol_mutex);
2200
2201 return unique_id;
2202 }
2203
2204
2205 static void
2206 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2207 {
2208 struct udf_mount *ump = udf_node->ump;
2209 uint32_t num_dirs, num_files;
2210 int udf_file_type;
2211
2212 /* get file type */
2213 if (udf_node->fe) {
2214 udf_file_type = udf_node->fe->icbtag.file_type;
2215 } else {
2216 udf_file_type = udf_node->efe->icbtag.file_type;
2217 }
2218
2219 /* adjust file count */
2220 mutex_enter(&ump->allocate_mutex);
2221 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2222 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2223 ump->logvol_info->num_directories =
2224 udf_rw32((num_dirs + sign));
2225 } else {
2226 num_files = udf_rw32(ump->logvol_info->num_files);
2227 ump->logvol_info->num_files =
2228 udf_rw32((num_files + sign));
2229 }
2230 mutex_exit(&ump->allocate_mutex);
2231 }
2232
2233
2234 void
2235 udf_osta_charset(struct charspec *charspec)
2236 {
2237 memset(charspec, 0, sizeof(struct charspec));
2238 charspec->type = 0;
2239 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2240 }
2241
2242
2243 /* first call udf_set_regid and then the suffix */
2244 void
2245 udf_set_regid(struct regid *regid, char const *name)
2246 {
2247 memset(regid, 0, sizeof(struct regid));
2248 regid->flags = 0; /* not dirty and not protected */
2249 strcpy((char *) regid->id, name);
2250 }
2251
2252
2253 void
2254 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2255 {
2256 uint16_t *ver;
2257
2258 ver = (uint16_t *) regid->id_suffix;
2259 *ver = ump->logvol_info->min_udf_readver;
2260 }
2261
2262
2263 void
2264 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2265 {
2266 uint16_t *ver;
2267
2268 ver = (uint16_t *) regid->id_suffix;
2269 *ver = ump->logvol_info->min_udf_readver;
2270
2271 regid->id_suffix[2] = 4; /* unix */
2272 regid->id_suffix[3] = 8; /* NetBSD */
2273 }
2274
2275
2276 void
2277 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2278 {
2279 regid->id_suffix[0] = 4; /* unix */
2280 regid->id_suffix[1] = 8; /* NetBSD */
2281 }
2282
2283
2284 void
2285 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2286 {
2287 regid->id_suffix[0] = APP_VERSION_MAIN;
2288 regid->id_suffix[1] = APP_VERSION_SUB;
2289 }
2290
2291 static int
2292 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2293 struct long_ad *parent, uint64_t unique_id)
2294 {
2295 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2296 int fidsize = 40;
2297
2298 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2299 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2300 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2301 fid->icb = *parent;
2302 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2303 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2304 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2305
2306 return fidsize;
2307 }
2308
2309 /* --------------------------------------------------------------------- */
2310
2311 /*
2312 * Extended attribute support. UDF knows of 3 places for extended attributes:
2313 *
2314 * (a) inside the file's (e)fe in the length of the extended attribute area
2315 * before the allocation descriptors/filedata
2316 *
2317 * (b) in a file referenced by (e)fe->ext_attr_icb and
2318 *
2319 * (c) in the e(fe)'s associated stream directory that can hold various
2320 * sub-files. In the stream directory a few fixed named subfiles are reserved
2321 * for NT/Unix ACL's and OS/2 attributes.
2322 *
2323 * NOTE: Extended attributes are read randomly but always written
2324 * *atomically*. For ACL's this interface is probably different but not known
2325 * to me yet.
2326 *
2327 * Order of extended attributes in a space:
2328 * ECMA 167 EAs
2329 * Non block aligned Implementation Use EAs
2330 * Block aligned Implementation Use EAs
2331 * Application Use EAs
2332 */
2333
2334 static int
2335 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2336 {
2337 uint16_t *spos;
2338
2339 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2340 /* checksum valid? */
2341 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2342 spos = (uint16_t *) implext->data;
2343 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2344 return EINVAL;
2345 }
2346 return 0;
2347 }
2348
2349 static void
2350 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2351 {
2352 uint16_t *spos;
2353
2354 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2355 /* set checksum */
2356 spos = (uint16_t *) implext->data;
2357 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2358 }
2359 }
2360
2361
2362 int
2363 udf_extattr_search_intern(struct udf_node *node,
2364 uint32_t sattr, char const *sattrname,
2365 uint32_t *offsetp, uint32_t *lengthp)
2366 {
2367 struct extattrhdr_desc *eahdr;
2368 struct extattr_entry *attrhdr;
2369 struct impl_extattr_entry *implext;
2370 uint32_t offset, a_l, sector_size;
2371 int32_t l_ea;
2372 uint8_t *pos;
2373 int error;
2374
2375 /* get mountpoint */
2376 sector_size = node->ump->discinfo.sector_size;
2377
2378 /* get information from fe/efe */
2379 if (node->fe) {
2380 l_ea = udf_rw32(node->fe->l_ea);
2381 eahdr = (struct extattrhdr_desc *) node->fe->data;
2382 } else {
2383 assert(node->efe);
2384 l_ea = udf_rw32(node->efe->l_ea);
2385 eahdr = (struct extattrhdr_desc *) node->efe->data;
2386 }
2387
2388 /* something recorded here? */
2389 if (l_ea == 0)
2390 return ENOENT;
2391
2392 /* check extended attribute tag; what to do if it fails? */
2393 error = udf_check_tag(eahdr);
2394 if (error)
2395 return EINVAL;
2396 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2397 return EINVAL;
2398 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2399 if (error)
2400 return EINVAL;
2401
2402 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2403
2404 /* looking for Ecma-167 attributes? */
2405 offset = sizeof(struct extattrhdr_desc);
2406
2407 /* looking for either implemenation use or application use */
2408 if (sattr == 2048) { /* [4/48.10.8] */
2409 offset = udf_rw32(eahdr->impl_attr_loc);
2410 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2411 return ENOENT;
2412 }
2413 if (sattr == 65536) { /* [4/48.10.9] */
2414 offset = udf_rw32(eahdr->appl_attr_loc);
2415 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2416 return ENOENT;
2417 }
2418
2419 /* paranoia check offset and l_ea */
2420 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2421 return EINVAL;
2422
2423 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2424
2425 /* find our extended attribute */
2426 l_ea -= offset;
2427 pos = (uint8_t *) eahdr + offset;
2428
2429 while (l_ea >= sizeof(struct extattr_entry)) {
2430 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2431 attrhdr = (struct extattr_entry *) pos;
2432 implext = (struct impl_extattr_entry *) pos;
2433
2434 /* get complete attribute length and check for roque values */
2435 a_l = udf_rw32(attrhdr->a_l);
2436 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2437 udf_rw32(attrhdr->type),
2438 attrhdr->subtype, a_l, l_ea));
2439 if ((a_l == 0) || (a_l > l_ea))
2440 return EINVAL;
2441
2442 if (attrhdr->type != sattr)
2443 goto next_attribute;
2444
2445 /* we might have found it! */
2446 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2447 *offsetp = offset;
2448 *lengthp = a_l;
2449 return 0; /* success */
2450 }
2451
2452 /*
2453 * Implementation use and application use extended attributes
2454 * have a name to identify. They share the same structure only
2455 * UDF implementation use extended attributes have a checksum
2456 * we need to check
2457 */
2458
2459 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2460 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2461 /* we have found our appl/implementation attribute */
2462 *offsetp = offset;
2463 *lengthp = a_l;
2464 return 0; /* success */
2465 }
2466
2467 next_attribute:
2468 /* next attribute */
2469 pos += a_l;
2470 l_ea -= a_l;
2471 offset += a_l;
2472 }
2473 /* not found */
2474 return ENOENT;
2475 }
2476
2477
2478 static void
2479 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2480 struct extattr_entry *extattr)
2481 {
2482 struct file_entry *fe;
2483 struct extfile_entry *efe;
2484 struct extattrhdr_desc *extattrhdr;
2485 struct impl_extattr_entry *implext;
2486 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2487 uint32_t *l_eap, l_ad;
2488 uint16_t *spos;
2489 uint8_t *bpos, *data;
2490
2491 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2492 fe = &dscr->fe;
2493 data = fe->data;
2494 l_eap = &fe->l_ea;
2495 l_ad = udf_rw32(fe->l_ad);
2496 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2497 efe = &dscr->efe;
2498 data = efe->data;
2499 l_eap = &efe->l_ea;
2500 l_ad = udf_rw32(efe->l_ad);
2501 } else {
2502 panic("Bad tag passed to udf_extattr_insert_internal");
2503 }
2504
2505 /* can't append already written to file descriptors yet */
2506 assert(l_ad == 0);
2507 __USE(l_ad);
2508
2509 /* should have a header! */
2510 extattrhdr = (struct extattrhdr_desc *) data;
2511 l_ea = udf_rw32(*l_eap);
2512 if (l_ea == 0) {
2513 /* create empty extended attribute header */
2514 exthdr_len = sizeof(struct extattrhdr_desc);
2515
2516 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2517 /* loc */ 0);
2518 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2519 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2520 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2521
2522 /* record extended attribute header length */
2523 l_ea = exthdr_len;
2524 *l_eap = udf_rw32(l_ea);
2525 }
2526
2527 /* extract locations */
2528 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2529 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2530 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2531 impl_attr_loc = l_ea;
2532 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2533 appl_attr_loc = l_ea;
2534
2535 /* Ecma 167 EAs */
2536 if (udf_rw32(extattr->type) < 2048) {
2537 assert(impl_attr_loc == l_ea);
2538 assert(appl_attr_loc == l_ea);
2539 }
2540
2541 /* implementation use extended attributes */
2542 if (udf_rw32(extattr->type) == 2048) {
2543 assert(appl_attr_loc == l_ea);
2544
2545 /* calculate and write extended attribute header checksum */
2546 implext = (struct impl_extattr_entry *) extattr;
2547 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2548 spos = (uint16_t *) implext->data;
2549 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2550 }
2551
2552 /* application use extended attributes */
2553 assert(udf_rw32(extattr->type) != 65536);
2554 assert(appl_attr_loc == l_ea);
2555
2556 /* append the attribute at the end of the current space */
2557 bpos = data + udf_rw32(*l_eap);
2558 a_l = udf_rw32(extattr->a_l);
2559
2560 /* update impl. attribute locations */
2561 if (udf_rw32(extattr->type) < 2048) {
2562 impl_attr_loc = l_ea + a_l;
2563 appl_attr_loc = l_ea + a_l;
2564 }
2565 if (udf_rw32(extattr->type) == 2048) {
2566 appl_attr_loc = l_ea + a_l;
2567 }
2568
2569 /* copy and advance */
2570 memcpy(bpos, extattr, a_l);
2571 l_ea += a_l;
2572 *l_eap = udf_rw32(l_ea);
2573
2574 /* do the `dance` again backwards */
2575 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2576 if (impl_attr_loc == l_ea)
2577 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2578 if (appl_attr_loc == l_ea)
2579 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2580 }
2581
2582 /* store offsets */
2583 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2584 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2585 }
2586
2587
2588 /* --------------------------------------------------------------------- */
2589
2590 static int
2591 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2592 {
2593 struct udf_mount *ump;
2594 struct udf_logvol_info *lvinfo;
2595 struct impl_extattr_entry *implext;
2596 struct vatlvext_extattr_entry lvext;
2597 const char *extstr = "*UDF VAT LVExtension";
2598 uint64_t vat_uniqueid;
2599 uint32_t offset, a_l;
2600 uint8_t *ea_start, *lvextpos;
2601 int error;
2602
2603 /* get mountpoint and lvinfo */
2604 ump = vat_node->ump;
2605 lvinfo = ump->logvol_info;
2606
2607 /* get information from fe/efe */
2608 if (vat_node->fe) {
2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2610 ea_start = vat_node->fe->data;
2611 } else {
2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2613 ea_start = vat_node->efe->data;
2614 }
2615
2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2617 if (error)
2618 return error;
2619
2620 implext = (struct impl_extattr_entry *) (ea_start + offset);
2621 error = udf_impl_extattr_check(implext);
2622 if (error)
2623 return error;
2624
2625 /* paranoia */
2626 if (a_l != sizeof(*implext) -2 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2627 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2628 return EINVAL;
2629 }
2630
2631 /*
2632 * we have found our "VAT LVExtension attribute. BUT due to a
2633 * bug in the specification it might not be word aligned so
2634 * copy first to avoid panics on some machines (!!)
2635 */
2636 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2637 lvextpos = implext->data + udf_rw32(implext->iu_l);
2638 memcpy(&lvext, lvextpos, sizeof(lvext));
2639
2640 /* check if it was updated the last time */
2641 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2642 lvinfo->num_files = lvext.num_files;
2643 lvinfo->num_directories = lvext.num_directories;
2644 udf_update_logvolname(ump, lvext.logvol_id);
2645 } else {
2646 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2647 /* replace VAT LVExt by free space EA */
2648 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2649 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2650 udf_calc_impl_extattr_checksum(implext);
2651 }
2652
2653 return 0;
2654 }
2655
2656
2657 static int
2658 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2659 {
2660 struct udf_mount *ump;
2661 struct udf_logvol_info *lvinfo;
2662 struct impl_extattr_entry *implext;
2663 struct vatlvext_extattr_entry lvext;
2664 const char *extstr = "*UDF VAT LVExtension";
2665 uint64_t vat_uniqueid;
2666 uint32_t offset, a_l;
2667 uint8_t *ea_start;
2668 uintptr_t lvextpos;
2669 int error;
2670
2671 /* get mountpoint and lvinfo */
2672 ump = vat_node->ump;
2673 lvinfo = ump->logvol_info;
2674
2675 /* get information from fe/efe */
2676 if (vat_node->fe) {
2677 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2678 ea_start = vat_node->fe->data;
2679 } else {
2680 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2681 ea_start = vat_node->efe->data;
2682 }
2683
2684 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2685 if (error)
2686 return error;
2687 /* found, it existed */
2688
2689 /* paranoia */
2690 implext = (struct impl_extattr_entry *) (ea_start + offset);
2691 error = udf_impl_extattr_check(implext);
2692 if (error) {
2693 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2694 return error;
2695 }
2696 /* it is correct */
2697
2698 /*
2699 * we have found our "VAT LVExtension attribute. BUT due to a
2700 * bug in the specification it might not be word aligned so
2701 * copy first to avoid panics on some machines (!!)
2702 */
2703 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2704 lvextpos = (uintptr_t)implext->data + udf_rw32(implext->iu_l);
2705
2706 lvext.unique_id_chk = vat_uniqueid;
2707 lvext.num_files = lvinfo->num_files;
2708 lvext.num_directories = lvinfo->num_directories;
2709 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2710
2711 memcpy((void *)lvextpos, &lvext, sizeof(lvext));
2712
2713 return 0;
2714 }
2715
2716 /* --------------------------------------------------------------------- */
2717
2718 int
2719 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2720 {
2721 struct udf_mount *ump = vat_node->ump;
2722
2723 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2724 return EINVAL;
2725
2726 memcpy(blob, ump->vat_table + offset, size);
2727 return 0;
2728 }
2729
2730 int
2731 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2732 {
2733 struct udf_mount *ump = vat_node->ump;
2734 uint32_t offset_high;
2735 uint8_t *new_vat_table;
2736
2737 /* extent VAT allocation if needed */
2738 offset_high = offset + size;
2739 if (offset_high >= ump->vat_table_alloc_len) {
2740 /* realloc */
2741 new_vat_table = realloc(ump->vat_table,
2742 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2743 M_UDFVOLD, M_WAITOK);
2744 if (!new_vat_table) {
2745 printf("udf_vat_write: can't extent VAT, out of mem\n");
2746 return ENOMEM;
2747 }
2748 ump->vat_table = new_vat_table;
2749 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2750 }
2751 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2752
2753 memcpy(ump->vat_table + offset, blob, size);
2754 return 0;
2755 }
2756
2757 /* --------------------------------------------------------------------- */
2758
2759 /* TODO support previous VAT location writeout */
2760 static int
2761 udf_update_vat_descriptor(struct udf_mount *ump)
2762 {
2763 struct udf_node *vat_node = ump->vat_node;
2764 struct udf_logvol_info *lvinfo = ump->logvol_info;
2765 struct icb_tag *icbtag;
2766 struct udf_oldvat_tail *oldvat_tl;
2767 struct udf_vat *vat;
2768 uint64_t unique_id;
2769 uint32_t lb_size;
2770 uint8_t *raw_vat;
2771 int filetype, error;
2772
2773 KASSERT(vat_node);
2774 KASSERT(lvinfo);
2775 lb_size = udf_rw32(ump->logical_vol->lb_size);
2776
2777 /* get our new unique_id */
2778 unique_id = udf_advance_uniqueid(ump);
2779
2780 /* get information from fe/efe */
2781 if (vat_node->fe) {
2782 icbtag = &vat_node->fe->icbtag;
2783 vat_node->fe->unique_id = udf_rw64(unique_id);
2784 } else {
2785 icbtag = &vat_node->efe->icbtag;
2786 vat_node->efe->unique_id = udf_rw64(unique_id);
2787 }
2788
2789 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2790 filetype = icbtag->file_type;
2791 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2792
2793 /* allocate piece to process head or tail of VAT file */
2794 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2795
2796 if (filetype == 0) {
2797 /*
2798 * Update "*UDF VAT LVExtension" extended attribute from the
2799 * lvint if present.
2800 */
2801 udf_update_vat_extattr_from_lvid(vat_node);
2802
2803 /* setup identifying regid */
2804 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2805 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2806
2807 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2808 udf_add_udf_regid(ump, &oldvat_tl->id);
2809 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2810
2811 /* write out new tail of virtual allocation table file */
2812 error = udf_vat_write(vat_node, raw_vat,
2813 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2814 } else {
2815 /* compose the VAT2 header */
2816 vat = (struct udf_vat *) raw_vat;
2817 memset(vat, 0, sizeof(struct udf_vat));
2818
2819 vat->header_len = udf_rw16(152); /* as per spec */
2820 vat->impl_use_len = udf_rw16(0);
2821 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2822 vat->prev_vat = udf_rw32(0xffffffff);
2823 vat->num_files = lvinfo->num_files;
2824 vat->num_directories = lvinfo->num_directories;
2825 vat->min_udf_readver = lvinfo->min_udf_readver;
2826 vat->min_udf_writever = lvinfo->min_udf_writever;
2827 vat->max_udf_writever = lvinfo->max_udf_writever;
2828
2829 error = udf_vat_write(vat_node, raw_vat,
2830 sizeof(struct udf_vat), 0);
2831 }
2832 free(raw_vat, M_TEMP);
2833
2834 return error; /* success! */
2835 }
2836
2837
2838 int
2839 udf_writeout_vat(struct udf_mount *ump)
2840 {
2841 struct udf_node *vat_node = ump->vat_node;
2842 int error;
2843
2844 KASSERT(vat_node);
2845
2846 DPRINTF(CALL, ("udf_writeout_vat\n"));
2847
2848 // mutex_enter(&ump->allocate_mutex);
2849 udf_update_vat_descriptor(ump);
2850
2851 /* write out the VAT contents ; TODO intelligent writing */
2852 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2853 ump->vat_table, ump->vat_table_len, 0,
2854 UIO_SYSSPACE, 0, FSCRED, NULL, NULL);
2855 if (error) {
2856 printf("udf_writeout_vat: failed to write out VAT contents\n");
2857 goto out;
2858 }
2859
2860 // mutex_exit(&ump->allocate_mutex);
2861
2862 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT);
2863 if (error)
2864 goto out;
2865 error = VOP_FSYNC(ump->vat_node->vnode,
2866 FSCRED, FSYNC_WAIT, 0, 0);
2867 if (error)
2868 printf("udf_writeout_vat: error writing VAT node!\n");
2869 out:
2870 return error;
2871 }
2872
2873 /* --------------------------------------------------------------------- */
2874
2875 /*
2876 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2877 * descriptor. If OK, read in complete VAT file.
2878 */
2879
2880 static int
2881 udf_check_for_vat(struct udf_node *vat_node)
2882 {
2883 struct udf_mount *ump;
2884 struct icb_tag *icbtag;
2885 struct timestamp *mtime;
2886 struct udf_vat *vat;
2887 struct udf_oldvat_tail *oldvat_tl;
2888 struct udf_logvol_info *lvinfo;
2889 uint64_t unique_id;
2890 uint32_t vat_length;
2891 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2892 uint32_t sector_size;
2893 uint32_t *raw_vat;
2894 uint8_t *vat_table;
2895 char *regid_name;
2896 int filetype;
2897 int error;
2898
2899 /* vat_length is really 64 bits though impossible */
2900
2901 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2902 if (!vat_node)
2903 return ENOENT;
2904
2905 /* get mount info */
2906 ump = vat_node->ump;
2907 sector_size = udf_rw32(ump->logical_vol->lb_size);
2908
2909 /* check assertions */
2910 assert(vat_node->fe || vat_node->efe);
2911 assert(ump->logvol_integrity);
2912
2913 /* set vnode type to regular file or we can't read from it! */
2914 vat_node->vnode->v_type = VREG;
2915
2916 /* get information from fe/efe */
2917 if (vat_node->fe) {
2918 vat_length = udf_rw64(vat_node->fe->inf_len);
2919 icbtag = &vat_node->fe->icbtag;
2920 mtime = &vat_node->fe->mtime;
2921 unique_id = udf_rw64(vat_node->fe->unique_id);
2922 } else {
2923 vat_length = udf_rw64(vat_node->efe->inf_len);
2924 icbtag = &vat_node->efe->icbtag;
2925 mtime = &vat_node->efe->mtime;
2926 unique_id = udf_rw64(vat_node->efe->unique_id);
2927 }
2928
2929 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2930 filetype = icbtag->file_type;
2931 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2932 return ENOENT;
2933
2934 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2935
2936 vat_table_alloc_len =
2937 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2938 * UDF_VAT_CHUNKSIZE;
2939
2940 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, M_WAITOK);
2941 if (vat_table == NULL) {
2942 printf("allocation of %d bytes failed for VAT\n",
2943 vat_table_alloc_len);
2944 return ENOMEM;
2945 }
2946
2947 /* allocate piece to read in head or tail of VAT file */
2948 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2949
2950 /*
2951 * check contents of the file if its the old 1.50 VAT table format.
2952 * Its notoriously broken and allthough some implementations support an
2953 * extension as defined in the UDF 1.50 errata document, its doubtful
2954 * to be useable since a lot of implementations don't maintain it.
2955 */
2956 lvinfo = ump->logvol_info;
2957
2958 if (filetype == 0) {
2959 /* definition */
2960 vat_offset = 0;
2961 vat_entries = (vat_length-36)/4;
2962
2963 /* read in tail of virtual allocation table file */
2964 error = vn_rdwr(UIO_READ, vat_node->vnode,
2965 (uint8_t *) raw_vat,
2966 sizeof(struct udf_oldvat_tail),
2967 vat_entries * 4,
2968 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2969 NULL, NULL);
2970 if (error)
2971 goto out;
2972
2973 /* check 1.50 VAT */
2974 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2975 regid_name = (char *) oldvat_tl->id.id;
2976 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2977 if (error) {
2978 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2979 error = ENOENT;
2980 goto out;
2981 }
2982
2983 /*
2984 * update LVID from "*UDF VAT LVExtension" extended attribute
2985 * if present.
2986 */
2987 udf_update_lvid_from_vat_extattr(vat_node);
2988 } else {
2989 /* read in head of virtual allocation table file */
2990 error = vn_rdwr(UIO_READ, vat_node->vnode,
2991 (uint8_t *) raw_vat,
2992 sizeof(struct udf_vat), 0,
2993 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2994 NULL, NULL);
2995 if (error)
2996 goto out;
2997
2998 /* definition */
2999 vat = (struct udf_vat *) raw_vat;
3000 vat_offset = vat->header_len;
3001 vat_entries = (vat_length - vat_offset)/4;
3002
3003 assert(lvinfo);
3004 lvinfo->num_files = vat->num_files;
3005 lvinfo->num_directories = vat->num_directories;
3006 lvinfo->min_udf_readver = vat->min_udf_readver;
3007 lvinfo->min_udf_writever = vat->min_udf_writever;
3008 lvinfo->max_udf_writever = vat->max_udf_writever;
3009
3010 udf_update_logvolname(ump, vat->logvol_id);
3011 }
3012
3013 /* read in complete VAT file */
3014 error = vn_rdwr(UIO_READ, vat_node->vnode,
3015 vat_table,
3016 vat_length, 0,
3017 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
3018 NULL, NULL);
3019 if (error)
3020 printf("read in of complete VAT file failed (error %d)\n",
3021 error);
3022 if (error)
3023 goto out;
3024
3025 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
3026 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
3027 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3028 ump->logvol_integrity->time = *mtime;
3029
3030 /* if we're updating, free old allocated space */
3031 if (ump->vat_table)
3032 free(ump->vat_table, M_UDFVOLD);
3033
3034 ump->vat_table_len = vat_length;
3035 ump->vat_table_alloc_len = vat_table_alloc_len;
3036 ump->vat_table = vat_table;
3037 ump->vat_offset = vat_offset;
3038 ump->vat_entries = vat_entries;
3039 ump->vat_last_free_lb = 0; /* start at beginning */
3040
3041 out:
3042 if (error) {
3043 if (vat_table)
3044 free(vat_table, M_UDFVOLD);
3045 }
3046 free(raw_vat, M_TEMP);
3047
3048 return error;
3049 }
3050
3051 /* --------------------------------------------------------------------- */
3052
3053 static int
3054 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
3055 {
3056 struct udf_node *vat_node, *accepted_vat_node;
3057 struct long_ad icb_loc;
3058 uint32_t early_vat_loc, late_vat_loc, vat_loc;
3059 int error;
3060
3061 /* mapping info not needed */
3062 mapping = mapping;
3063
3064 DPRINTF(VOLUMES, ("Searching VAT\n"));
3065
3066 /*
3067 * Start reading forward in blocks from the first possible vat
3068 * location. If not found in this block, start again a bit before
3069 * until we get a hit.
3070 */
3071 late_vat_loc = ump->last_possible_vat_location;
3072 early_vat_loc = MAX(late_vat_loc - 64, ump->first_possible_vat_location);
3073
3074 DPRINTF(VOLUMES, ("\tfull range %d to %d\n", early_vat_loc, late_vat_loc));
3075 accepted_vat_node = NULL;
3076 do {
3077 vat_loc = early_vat_loc;
3078 DPRINTF(VOLUMES, ("\tchecking range %d to %d\n",
3079 early_vat_loc, late_vat_loc));
3080 do {
3081 DPRINTF(VOLUMES, ("\t\tChecking for VAT at sector %d\n",
3082 vat_loc));
3083 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3084 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3085
3086 error = udf_get_node(ump, &icb_loc, &vat_node,
3087 LK_EXCLUSIVE);
3088 if (!error) {
3089 error = udf_check_for_vat(vat_node);
3090 vat_node->i_flags = 0; /* reset access */
3091 }
3092 if (!error) {
3093 DPRINTFIF(VOLUMES, !error,
3094 ("VAT candidate accepted at %d\n",
3095 vat_loc));
3096 if (accepted_vat_node)
3097 vput(accepted_vat_node->vnode);
3098 accepted_vat_node = vat_node;
3099 accepted_vat_node->i_flags |= IN_NO_DELETE;
3100 vat_node = NULL;
3101 }
3102 if (vat_node)
3103 vput(vat_node->vnode);
3104 vat_loc++; /* walk forward */
3105 } while (vat_loc <= late_vat_loc);
3106 if (accepted_vat_node)
3107 break;
3108
3109 early_vat_loc = MAX(early_vat_loc - 64, ump->first_possible_vat_location);
3110 late_vat_loc = MIN(early_vat_loc + 64, ump->last_possible_vat_location);
3111 } while (late_vat_loc > ump->first_possible_vat_location);
3112
3113 /* keep our last accepted VAT node around */
3114 if (accepted_vat_node) {
3115 /* revert no delete flag again to avoid potential side effects */
3116 accepted_vat_node->i_flags &= ~IN_NO_DELETE;
3117
3118 UDF_SET_SYSTEMFILE(accepted_vat_node->vnode);
3119 ump->vat_node = accepted_vat_node;
3120 return 0;
3121 }
3122
3123 return error;
3124 }
3125
3126 /* --------------------------------------------------------------------- */
3127
3128 static int
3129 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3130 {
3131 union dscrptr *dscr;
3132 struct part_map_spare *pms = &mapping->pms;
3133 uint32_t lb_num;
3134 int spar, error;
3135
3136 /*
3137 * The partition mapping passed on to us specifies the information we
3138 * need to locate and initialise the sparable partition mapping
3139 * information we need.
3140 */
3141
3142 DPRINTF(VOLUMES, ("Read sparable table\n"));
3143 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3144 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3145
3146 for (spar = 0; spar < pms->n_st; spar++) {
3147 lb_num = pms->st_loc[spar];
3148 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3149 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3150 if (!error && dscr) {
3151 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3152 if (ump->sparing_table)
3153 free(ump->sparing_table, M_UDFVOLD);
3154 ump->sparing_table = &dscr->spt;
3155 dscr = NULL;
3156 DPRINTF(VOLUMES,
3157 ("Sparing table accepted (%d entries)\n",
3158 udf_rw16(ump->sparing_table->rt_l)));
3159 break; /* we're done */
3160 }
3161 }
3162 if (dscr)
3163 free(dscr, M_UDFVOLD);
3164 }
3165
3166 if (ump->sparing_table)
3167 return 0;
3168
3169 return ENOENT;
3170 }
3171
3172 /* --------------------------------------------------------------------- */
3173
3174 static int
3175 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3176 {
3177 struct part_map_meta *pmm = &mapping->pmm;
3178 struct long_ad icb_loc;
3179 struct vnode *vp;
3180 uint16_t raw_phys_part, phys_part;
3181 int error;
3182
3183 /*
3184 * BUGALERT: some rogue implementations use random physical
3185 * partition numbers to break other implementations so lookup
3186 * the number.
3187 */
3188
3189 /* extract our allocation parameters set up on format */
3190 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size);
3191 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size);
3192 ump->metadata_flags = mapping->pmm.flags;
3193
3194 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3195 raw_phys_part = udf_rw16(pmm->part_num);
3196 phys_part = udf_find_raw_phys(ump, raw_phys_part);
3197
3198 icb_loc.loc.part_num = udf_rw16(phys_part);
3199
3200 DPRINTF(VOLUMES, ("Metadata file\n"));
3201 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3202 error = udf_get_node(ump, &icb_loc, &ump->metadata_node,
3203 LK_EXCLUSIVE);
3204 if (ump->metadata_node) {
3205 vp = ump->metadata_node->vnode;
3206 UDF_SET_SYSTEMFILE(vp);
3207 }
3208
3209 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3210 if (icb_loc.loc.lb_num != -1) {
3211 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3212 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node,
3213 LK_EXCLUSIVE);
3214 if (ump->metadatamirror_node) {
3215 vp = ump->metadatamirror_node->vnode;
3216 UDF_SET_SYSTEMFILE(vp);
3217 }
3218 }
3219
3220 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3221 if (icb_loc.loc.lb_num != -1) {
3222 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3223 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node,
3224 LK_EXCLUSIVE);
3225 if (ump->metadatabitmap_node) {
3226 vp = ump->metadatabitmap_node->vnode;
3227 UDF_SET_SYSTEMFILE(vp);
3228 }
3229 }
3230
3231 /* if we're mounting read-only we relax the requirements */
3232 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3233 error = EFAULT;
3234 if (ump->metadata_node)
3235 error = 0;
3236 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3237 printf( "udf mount: Metadata file not readable, "
3238 "substituting Metadata copy file\n");
3239 ump->metadata_node = ump->metadatamirror_node;
3240 ump->metadatamirror_node = NULL;
3241 error = 0;
3242 }
3243 } else {
3244 /* mounting read/write */
3245 /* XXX DISABLED! metadata writing is not working yet XXX */
3246 if (error)
3247 error = EROFS;
3248 }
3249 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3250 "metadata files\n"));
3251 return error;
3252 }
3253
3254 /* --------------------------------------------------------------------- */
3255
3256 int
3257 udf_read_vds_tables(struct udf_mount *ump)
3258 {
3259 union udf_pmap *mapping;
3260 /* struct udf_args *args = &ump->mount_args; */
3261 uint32_t n_pm;
3262 uint32_t log_part;
3263 uint8_t *pmap_pos;
3264 int pmap_size;
3265 int error;
3266
3267 /* Iterate (again) over the part mappings for locations */
3268 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3269 pmap_pos = ump->logical_vol->maps;
3270
3271 for (log_part = 0; log_part < n_pm; log_part++) {
3272 mapping = (union udf_pmap *) pmap_pos;
3273 switch (ump->vtop_tp[log_part]) {
3274 case UDF_VTOP_TYPE_PHYS :
3275 /* nothing */
3276 break;
3277 case UDF_VTOP_TYPE_VIRT :
3278 /* search and load VAT */
3279 error = udf_search_vat(ump, mapping);
3280 if (error)
3281 return ENOENT;
3282 break;
3283 case UDF_VTOP_TYPE_SPARABLE :
3284 /* load one of the sparable tables */
3285 error = udf_read_sparables(ump, mapping);
3286 if (error)
3287 return ENOENT;
3288 break;
3289 case UDF_VTOP_TYPE_META :
3290 /* load the associated file descriptors */
3291 error = udf_read_metadata_nodes(ump, mapping);
3292 if (error)
3293 return ENOENT;
3294 break;
3295 default:
3296 break;
3297 }
3298 pmap_size = pmap_pos[1];
3299 pmap_pos += pmap_size;
3300 }
3301
3302 /* read in and check unallocated and free space info if writing */
3303 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3304 error = udf_read_physical_partition_spacetables(ump);
3305 if (error)
3306 return error;
3307
3308 /* also read in metadata partition spacebitmap if defined */
3309 error = udf_read_metadata_partition_spacetable(ump);
3310 return error;
3311 }
3312
3313 return 0;
3314 }
3315
3316 /* --------------------------------------------------------------------- */
3317
3318 int
3319 udf_read_rootdirs(struct udf_mount *ump)
3320 {
3321 union dscrptr *dscr;
3322 /* struct udf_args *args = &ump->mount_args; */
3323 struct udf_node *rootdir_node, *streamdir_node;
3324 struct long_ad fsd_loc, *dir_loc;
3325 uint32_t lb_num, dummy;
3326 uint32_t fsd_len;
3327 int dscr_type;
3328 int error;
3329
3330 /* TODO implement FSD reading in separate function like integrity? */
3331 /* get fileset descriptor sequence */
3332 fsd_loc = ump->logical_vol->lv_fsd_loc;
3333 fsd_len = udf_rw32(fsd_loc.len);
3334
3335 dscr = NULL;
3336 error = 0;
3337 while (fsd_len || error) {
3338 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3339 /* translate fsd_loc to lb_num */
3340 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3341 if (error)
3342 break;
3343 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3344 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3345 /* end markers */
3346 if (error || (dscr == NULL))
3347 break;
3348
3349 /* analyse */
3350 dscr_type = udf_rw16(dscr->tag.id);
3351 if (dscr_type == TAGID_TERM)
3352 break;
3353 if (dscr_type != TAGID_FSD) {
3354 free(dscr, M_UDFVOLD);
3355 return ENOENT;
3356 }
3357
3358 /*
3359 * TODO check for multiple fileset descriptors; its only
3360 * picking the last now. Also check for FSD
3361 * correctness/interpretability
3362 */
3363
3364 /* update */
3365 if (ump->fileset_desc) {
3366 free(ump->fileset_desc, M_UDFVOLD);
3367 }
3368 ump->fileset_desc = &dscr->fsd;
3369 dscr = NULL;
3370
3371 /* continue to the next fsd */
3372 fsd_len -= ump->discinfo.sector_size;
3373 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3374
3375 /* follow up to fsd->next_ex (long_ad) if its not null */
3376 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3377 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3378 fsd_loc = ump->fileset_desc->next_ex;
3379 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3380 }
3381 }
3382 if (dscr)
3383 free(dscr, M_UDFVOLD);
3384
3385 /* there has to be one */
3386 if (ump->fileset_desc == NULL)
3387 return ENOENT;
3388
3389 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3390 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3391 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3392
3393 /*
3394 * Now the FSD is known, read in the rootdirectory and if one exists,
3395 * the system stream dir. Some files in the system streamdir are not
3396 * wanted in this implementation since they are not maintained. If
3397 * writing is enabled we'll delete these files if they exist.
3398 */
3399
3400 rootdir_node = streamdir_node = NULL;
3401 dir_loc = NULL;
3402
3403 /* try to read in the rootdir */
3404 dir_loc = &ump->fileset_desc->rootdir_icb;
3405 error = udf_get_node(ump, dir_loc, &rootdir_node, LK_EXCLUSIVE);
3406 if (error)
3407 return ENOENT;
3408
3409 /* aparently it read in fine */
3410
3411 /*
3412 * Try the system stream directory; not very likely in the ones we
3413 * test, but for completeness.
3414 */
3415 dir_loc = &ump->fileset_desc->streamdir_icb;
3416 if (udf_rw32(dir_loc->len)) {
3417 printf("udf_read_rootdirs: streamdir defined ");
3418 error = udf_get_node(ump, dir_loc, &streamdir_node,
3419 LK_EXCLUSIVE);
3420 if (error) {
3421 printf("but error in streamdir reading\n");
3422 } else {
3423 printf("but ignored\n");
3424 /*
3425 * TODO process streamdir `baddies' i.e. files we dont
3426 * want if R/W
3427 */
3428 }
3429 }
3430
3431 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3432
3433 /* release the vnodes again; they'll be auto-recycled later */
3434 if (streamdir_node) {
3435 vput(streamdir_node->vnode);
3436 }
3437 if (rootdir_node) {
3438 vput(rootdir_node->vnode);
3439 }
3440
3441 return 0;
3442 }
3443
3444 /* --------------------------------------------------------------------- */
3445
3446 /* To make absolutely sure we are NOT returning zero, add one :) */
3447
3448 long
3449 udf_get_node_id(const struct long_ad *icbptr)
3450 {
3451 /* ought to be enough since each mountpoint has its own chain */
3452 return udf_rw32(icbptr->loc.lb_num) + 1;
3453 }
3454
3455
3456 int
3457 udf_compare_icb(const struct long_ad *a, const struct long_ad *b)
3458 {
3459 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num))
3460 return -1;
3461 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num))
3462 return 1;
3463
3464 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num))
3465 return -1;
3466 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num))
3467 return 1;
3468
3469 return 0;
3470 }
3471
3472
3473 static int
3474 udf_compare_rbnodes(void *ctx, const void *a, const void *b)
3475 {
3476 const struct udf_node *a_node = a;
3477 const struct udf_node *b_node = b;
3478
3479 return udf_compare_icb(&a_node->loc, &b_node->loc);
3480 }
3481
3482
3483 static int
3484 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key)
3485 {
3486 const struct udf_node *a_node = a;
3487 const struct long_ad * const icb = key;
3488
3489 return udf_compare_icb(&a_node->loc, icb);
3490 }
3491
3492
3493 static const rb_tree_ops_t udf_node_rbtree_ops = {
3494 .rbto_compare_nodes = udf_compare_rbnodes,
3495 .rbto_compare_key = udf_compare_rbnode_icb,
3496 .rbto_node_offset = offsetof(struct udf_node, rbnode),
3497 .rbto_context = NULL
3498 };
3499
3500
3501 void
3502 udf_init_nodes_tree(struct udf_mount *ump)
3503 {
3504
3505 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops);
3506 }
3507
3508
3509 /* --------------------------------------------------------------------- */
3510
3511 static int
3512 udf_validate_session_start(struct udf_mount *ump)
3513 {
3514 struct mmc_trackinfo trackinfo;
3515 struct vrs_desc *vrs;
3516 uint32_t tracknr, sessionnr, sector, sector_size;
3517 uint32_t iso9660_vrs, write_track_start;
3518 uint8_t *buffer, *blank, *pos;
3519 int blks, max_sectors, vrs_len;
3520 int error;
3521
3522 /* disc appendable? */
3523 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3524 return EROFS;
3525
3526 /* already written here? if so, there should be an ISO VDS */
3527 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3528 return 0;
3529
3530 /*
3531 * Check if the first track of the session is blank and if so, copy or
3532 * create a dummy ISO descriptor so the disc is valid again.
3533 */
3534
3535 tracknr = ump->discinfo.first_track_last_session;
3536 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3537 trackinfo.tracknr = tracknr;
3538 error = udf_update_trackinfo(ump, &trackinfo);
3539 if (error)
3540 return error;
3541
3542 udf_dump_trackinfo(&trackinfo);
3543 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3544 KASSERT(trackinfo.sessionnr > 1);
3545
3546 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3547 write_track_start = trackinfo.next_writable;
3548
3549 /* we have to copy the ISO VRS from a former session */
3550 DPRINTF(VOLUMES, ("validate_session_start: "
3551 "blank or reserved track, copying VRS\n"));
3552
3553 /* sessionnr should be the session we're mounting */
3554 sessionnr = ump->mount_args.sessionnr;
3555
3556 /* start at the first track */
3557 tracknr = ump->discinfo.first_track;
3558 while (tracknr <= ump->discinfo.num_tracks) {
3559 trackinfo.tracknr = tracknr;
3560 error = udf_update_trackinfo(ump, &trackinfo);
3561 if (error) {
3562 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3563 return error;
3564 }
3565 if (trackinfo.sessionnr == sessionnr)
3566 break;
3567 tracknr++;
3568 }
3569 if (trackinfo.sessionnr != sessionnr) {
3570 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3571 return ENOENT;
3572 }
3573
3574 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3575 udf_dump_trackinfo(&trackinfo);
3576
3577 /*
3578 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3579 * minimum ISO `sector size' 2048
3580 */
3581 sector_size = ump->discinfo.sector_size;
3582 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3583 + trackinfo.track_start;
3584
3585 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3586 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3587 blks = MAX(1, 2048 / sector_size);
3588
3589 error = 0;
3590 for (sector = 0; sector < max_sectors; sector += blks) {
3591 pos = buffer + sector * sector_size;
3592 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3593 iso9660_vrs + sector, blks);
3594 if (error)
3595 break;
3596 /* check this ISO descriptor */
3597 vrs = (struct vrs_desc *) pos;
3598 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3599 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3600 continue;
3601 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3602 continue;
3603 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3604 continue;
3605 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3606 continue;
3607 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3608 continue;
3609 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3610 break;
3611 /* now what? for now, end of sequence */
3612 break;
3613 }
3614 vrs_len = sector + blks;
3615 if (error) {
3616 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3617 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3618
3619 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3620
3621 vrs = (struct vrs_desc *) (buffer);
3622 vrs->struct_type = 0;
3623 vrs->version = 1;
3624 memcpy(vrs->identifier,VRS_BEA01, 5);
3625
3626 vrs = (struct vrs_desc *) (buffer + 2048);
3627 vrs->struct_type = 0;
3628 vrs->version = 1;
3629 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3630 memcpy(vrs->identifier,VRS_NSR02, 5);
3631 } else {
3632 memcpy(vrs->identifier,VRS_NSR03, 5);
3633 }
3634
3635 vrs = (struct vrs_desc *) (buffer + 4096);
3636 vrs->struct_type = 0;
3637 vrs->version = 1;
3638 memcpy(vrs->identifier, VRS_TEA01, 5);
3639
3640 vrs_len = 3*blks;
3641 }
3642
3643 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3644
3645 /*
3646 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3647 * minimum ISO `sector size' 2048
3648 */
3649 sector_size = ump->discinfo.sector_size;
3650 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3651 + write_track_start;
3652
3653 /* write out 32 kb */
3654 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3655 memset(blank, 0, sector_size);
3656 error = 0;
3657 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3658 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3659 blank, sector, 1);
3660 if (error)
3661 break;
3662 }
3663 if (!error) {
3664 /* write out our ISO VRS */
3665 KASSERT(sector == iso9660_vrs);
3666 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3667 sector, vrs_len);
3668 sector += vrs_len;
3669 }
3670 if (!error) {
3671 /* fill upto the first anchor at S+256 */
3672 for (; sector < write_track_start+256; sector++) {
3673 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3674 blank, sector, 1);
3675 if (error)
3676 break;
3677 }
3678 }
3679 if (!error) {
3680 /* write out anchor; write at ABSOLUTE place! */
3681 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3682 (union dscrptr *) ump->anchors[0], sector, sector);
3683 if (error)
3684 printf("writeout of anchor failed!\n");
3685 }
3686
3687 free(blank, M_TEMP);
3688 free(buffer, M_TEMP);
3689
3690 if (error)
3691 printf("udf_open_session: error writing iso vrs! : "
3692 "leaving disc in compromised state!\n");
3693
3694 /* synchronise device caches */
3695 (void) udf_synchronise_caches(ump);
3696
3697 return error;
3698 }
3699
3700
3701 int
3702 udf_open_logvol(struct udf_mount *ump)
3703 {
3704 int logvol_integrity;
3705 int error;
3706
3707 /* already/still open? */
3708 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3709 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3710 return 0;
3711
3712 /* can we open it ? */
3713 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3714 return EROFS;
3715
3716 /* setup write parameters */
3717 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3718 if ((error = udf_setup_writeparams(ump)) != 0)
3719 return error;
3720
3721 /* determine data and metadata tracks (most likely same) */
3722 error = udf_search_writing_tracks(ump);
3723 if (error) {
3724 /* most likely lack of space */
3725 printf("udf_open_logvol: error searching writing tracks\n");
3726 return EROFS;
3727 }
3728
3729 /* writeout/update lvint on disc or only in memory */
3730 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3731 if (ump->lvopen & UDF_OPEN_SESSION) {
3732 /* TODO optional track reservation opening */
3733 error = udf_validate_session_start(ump);
3734 if (error)
3735 return error;
3736
3737 /* determine data and metadata tracks again */
3738 error = udf_search_writing_tracks(ump);
3739
3740 if (ump->lvclose & UDF_WRITE_VAT) {
3741 /*
3742 * we writeout the VAT to get a self-sustained session
3743 * for fsck
3744 */
3745 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3746
3747 /* write out the VAT data and all its descriptors */
3748 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3749 udf_writeout_vat(ump);
3750
3751 /* force everything to be synchronized on the device */
3752 (void) udf_synchronise_caches(ump);
3753 }
3754 }
3755
3756 /* mark it open */
3757 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3758
3759 /* do we need to write it out? */
3760 if (ump->lvopen & UDF_WRITE_LVINT) {
3761 error = udf_writeout_lvint(ump, ump->lvopen);
3762 /* if we couldn't write it mark it closed again */
3763 if (error) {
3764 ump->logvol_integrity->integrity_type =
3765 udf_rw32(UDF_INTEGRITY_CLOSED);
3766 return error;
3767 }
3768 }
3769
3770 return 0;
3771 }
3772
3773
3774 int
3775 udf_close_logvol(struct udf_mount *ump, int mntflags)
3776 {
3777 struct vnode *devvp = ump->devvp;
3778 struct mmc_op mmc_op;
3779 int logvol_integrity;
3780 int error = 0, error1 = 0, error2 = 0;
3781 int tracknr;
3782 int nvats, n, nok;
3783
3784 /* already/still closed? */
3785 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3786 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3787 return 0;
3788
3789 /* writeout/update lvint or write out VAT */
3790 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3791 #ifdef DIAGNOSTIC
3792 if (ump->lvclose & UDF_CLOSE_SESSION)
3793 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3794 #endif
3795
3796 if (ump->lvclose & UDF_WRITE_VAT) {
3797 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3798
3799 /* write out the VAT data and all its descriptors */
3800 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3801 udf_writeout_vat(ump);
3802
3803 /* at least two DVD packets and 3 CD-R packets */
3804 nvats = 32;
3805
3806 #if notyet
3807 /*
3808 * TODO calculate the available space and if the disc is
3809 * allmost full, write out till end-256-1 with banks, write
3810 * AVDP and fill up with VATs, then close session and close
3811 * disc.
3812 */
3813 if (ump->lvclose & UDF_FINALISE_DISC) {
3814 error = udf_write_phys_dscr_sync(ump, NULL,
3815 UDF_C_FLOAT_DSCR,
3816 (union dscrptr *) ump->anchors[0],
3817 0, 0);
3818 if (error)
3819 printf("writeout of anchor failed!\n");
3820
3821 /* pad space with VAT ICBs */
3822 nvats = 256;
3823 }
3824 #endif
3825
3826 /* write out a number of VAT nodes */
3827 nok = 0;
3828 for (n = 0; n < nvats; n++) {
3829 /* will now only write last FE/EFE */
3830 ump->vat_node->i_flags |= IN_MODIFIED;
3831 error = VOP_FSYNC(ump->vat_node->vnode,
3832 FSCRED, FSYNC_WAIT, 0, 0);
3833 if (!error)
3834 nok++;
3835 }
3836 /* force everything to be synchronized on the device */
3837 (void) udf_synchronise_caches(ump);
3838
3839 if (nok < 14) {
3840 /* arbitrary; but at least one or two CD frames */
3841 printf("writeout of at least 14 VATs failed\n");
3842 return error;
3843 }
3844 }
3845
3846 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3847
3848 /* finish closing of session */
3849 if (ump->lvclose & UDF_CLOSE_SESSION) {
3850 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3851 "as requested\n"));
3852 error = udf_validate_session_start(ump);
3853 if (error)
3854 return error;
3855
3856 (void) udf_synchronise_caches(ump);
3857
3858 /* close all associated tracks */
3859 tracknr = ump->discinfo.first_track_last_session;
3860 error = 0;
3861 while (tracknr <= ump->discinfo.last_track_last_session) {
3862 DPRINTF(VOLUMES, ("\tclosing possible open "
3863 "track %d\n", tracknr));
3864 memset(&mmc_op, 0, sizeof(mmc_op));
3865 mmc_op.operation = MMC_OP_CLOSETRACK;
3866 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3867 mmc_op.tracknr = tracknr;
3868 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3869 FKIOCTL, NOCRED);
3870 if (error)
3871 printf("udf_close_logvol: closing of "
3872 "track %d failed\n", tracknr);
3873 tracknr ++;
3874 }
3875 if (!error) {
3876 DPRINTF(VOLUMES, ("closing session\n"));
3877 memset(&mmc_op, 0, sizeof(mmc_op));
3878 mmc_op.operation = MMC_OP_CLOSESESSION;
3879 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3880 mmc_op.sessionnr = ump->discinfo.num_sessions;
3881 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3882 FKIOCTL, NOCRED);
3883 if (error)
3884 printf("udf_close_logvol: closing of session"
3885 "failed\n");
3886 }
3887 if (!error)
3888 ump->lvopen |= UDF_OPEN_SESSION;
3889 if (error) {
3890 printf("udf_close_logvol: leaving disc as it is\n");
3891 ump->lvclose &= ~UDF_FINALISE_DISC;
3892 }
3893 }
3894
3895 if (ump->lvclose & UDF_FINALISE_DISC) {
3896 memset(&mmc_op, 0, sizeof(mmc_op));
3897 mmc_op.operation = MMC_OP_FINALISEDISC;
3898 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3899 mmc_op.sessionnr = ump->discinfo.num_sessions;
3900 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3901 FKIOCTL, NOCRED);
3902 if (error)
3903 printf("udf_close_logvol: finalising disc"
3904 "failed\n");
3905 }
3906
3907 /* write out partition bitmaps if requested */
3908 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3909 /* sync writeout metadata spacetable if existing */
3910 error1 = udf_write_metadata_partition_spacetable(ump, true);
3911 if (error1)
3912 printf( "udf_close_logvol: writeout of metadata space "
3913 "bitmap failed\n");
3914
3915 /* sync writeout partition spacetables */
3916 error2 = udf_write_physical_partition_spacetables(ump, true);
3917 if (error2)
3918 printf( "udf_close_logvol: writeout of space tables "
3919 "failed\n");
3920
3921 if (error1 || error2)
3922 return (error1 | error2);
3923
3924 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3925 }
3926
3927 /* write out metadata partition nodes if requested */
3928 if (ump->lvclose & UDF_WRITE_METAPART_NODES) {
3929 /* sync writeout metadata descriptor node */
3930 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT);
3931 if (error1)
3932 printf( "udf_close_logvol: writeout of metadata partition "
3933 "node failed\n");
3934
3935 /* duplicate metadata partition descriptor if needed */
3936 udf_synchronise_metadatamirror_node(ump);
3937
3938 /* sync writeout metadatamirror descriptor node */
3939 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT);
3940 if (error2)
3941 printf( "udf_close_logvol: writeout of metadata partition "
3942 "mirror node failed\n");
3943
3944 if (error1 || error2)
3945 return (error1 | error2);
3946
3947 ump->lvclose &= ~UDF_WRITE_METAPART_NODES;
3948 }
3949
3950 /* mark it closed */
3951 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3952
3953 /* do we need to write out the logical volume integrity? */
3954 if (ump->lvclose & UDF_WRITE_LVINT)
3955 error = udf_writeout_lvint(ump, ump->lvopen);
3956 if (error) {
3957 /* HELP now what? mark it open again for now */
3958 ump->logvol_integrity->integrity_type =
3959 udf_rw32(UDF_INTEGRITY_OPEN);
3960 return error;
3961 }
3962
3963 (void) udf_synchronise_caches(ump);
3964
3965 return 0;
3966 }
3967
3968 /* --------------------------------------------------------------------- */
3969
3970 /*
3971 * Genfs interfacing
3972 *
3973 * static const struct genfs_ops udf_genfsops = {
3974 * .gop_size = genfs_size,
3975 * size of transfers
3976 * .gop_alloc = udf_gop_alloc,
3977 * allocate len bytes at offset
3978 * .gop_write = genfs_gop_write,
3979 * putpages interface code
3980 * .gop_markupdate = udf_gop_markupdate,
3981 * set update/modify flags etc.
3982 * }
3983 */
3984
3985 /*
3986 * Genfs interface. These four functions are the only ones defined though not
3987 * documented... great....
3988 */
3989
3990 /*
3991 * Called for allocating an extent of the file either by VOP_WRITE() or by
3992 * genfs filling up gaps.
3993 */
3994 static int
3995 udf_gop_alloc(struct vnode *vp, off_t off,
3996 off_t len, int flags, kauth_cred_t cred)
3997 {
3998 struct udf_node *udf_node = VTOI(vp);
3999 struct udf_mount *ump = udf_node->ump;
4000 uint64_t lb_start, lb_end;
4001 uint32_t lb_size, num_lb;
4002 int udf_c_type, vpart_num, can_fail;
4003 int error;
4004
4005 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n",
4006 off, len, flags? "SYNC":"NONE"));
4007
4008 /*
4009 * request the pages of our vnode and see how many pages will need to
4010 * be allocated and reserve that space
4011 */
4012 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
4013 lb_start = off / lb_size;
4014 lb_end = (off + len + lb_size -1) / lb_size;
4015 num_lb = lb_end - lb_start;
4016
4017 udf_c_type = udf_get_c_type(udf_node);
4018 vpart_num = udf_get_record_vpart(ump, udf_c_type);
4019
4020 /* all requests can fail */
4021 can_fail = true;
4022
4023 /* fid's (directories) can't fail */
4024 if (udf_c_type == UDF_C_FIDS)
4025 can_fail = false;
4026
4027 /* system files can't fail */
4028 if (vp->v_vflag & VV_SYSTEM)
4029 can_fail = false;
4030
4031 error = udf_reserve_space(ump, udf_node, udf_c_type,
4032 vpart_num, num_lb, can_fail);
4033
4034 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n",
4035 lb_start, lb_end, num_lb));
4036
4037 return error;
4038 }
4039
4040
4041 /*
4042 * callback from genfs to update our flags
4043 */
4044 static void
4045 udf_gop_markupdate(struct vnode *vp, int flags)
4046 {
4047 struct udf_node *udf_node = VTOI(vp);
4048 u_long mask = 0;
4049
4050 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
4051 mask = IN_ACCESS;
4052 }
4053 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
4054 if (vp->v_type == VREG) {
4055 mask |= IN_CHANGE | IN_UPDATE;
4056 } else {
4057 mask |= IN_MODIFY;
4058 }
4059 }
4060 if (mask) {
4061 udf_node->i_flags |= mask;
4062 }
4063 }
4064
4065
4066 static const struct genfs_ops udf_genfsops = {
4067 .gop_size = genfs_size,
4068 .gop_alloc = udf_gop_alloc,
4069 .gop_write = genfs_gop_write_rwmap,
4070 .gop_markupdate = udf_gop_markupdate,
4071 .gop_putrange = genfs_gop_putrange,
4072 };
4073
4074
4075 /* --------------------------------------------------------------------- */
4076
4077 int
4078 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
4079 {
4080 union dscrptr *dscr;
4081 int error;
4082
4083 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
4084 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
4085
4086 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
4087 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
4088 (void) udf_validate_tag_and_crc_sums(dscr);
4089
4090 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
4091 dscr, sector, sector);
4092
4093 free(dscr, M_TEMP);
4094
4095 return error;
4096 }
4097
4098
4099 /* --------------------------------------------------------------------- */
4100
4101 /* UDF<->unix converters */
4102
4103 /* --------------------------------------------------------------------- */
4104
4105 static mode_t
4106 udf_perm_to_unix_mode(uint32_t perm)
4107 {
4108 mode_t mode;
4109
4110 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
4111 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
4112 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
4113
4114 return mode;
4115 }
4116
4117 /* --------------------------------------------------------------------- */
4118
4119 static uint32_t
4120 unix_mode_to_udf_perm(mode_t mode)
4121 {
4122 uint32_t perm;
4123
4124 perm = ((mode & S_IRWXO) );
4125 perm |= ((mode & S_IRWXG) << 2);
4126 perm |= ((mode & S_IRWXU) << 4);
4127 perm |= ((mode & S_IWOTH) << 3);
4128 perm |= ((mode & S_IWGRP) << 5);
4129 perm |= ((mode & S_IWUSR) << 7);
4130
4131 return perm;
4132 }
4133
4134 /* --------------------------------------------------------------------- */
4135
4136 static uint32_t
4137 udf_icb_to_unix_filetype(uint32_t icbftype)
4138 {
4139 switch (icbftype) {
4140 case UDF_ICB_FILETYPE_DIRECTORY :
4141 case UDF_ICB_FILETYPE_STREAMDIR :
4142 return S_IFDIR;
4143 case UDF_ICB_FILETYPE_FIFO :
4144 return S_IFIFO;
4145 case UDF_ICB_FILETYPE_CHARDEVICE :
4146 return S_IFCHR;
4147 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4148 return S_IFBLK;
4149 case UDF_ICB_FILETYPE_RANDOMACCESS :
4150 case UDF_ICB_FILETYPE_REALTIME :
4151 return S_IFREG;
4152 case UDF_ICB_FILETYPE_SYMLINK :
4153 return S_IFLNK;
4154 case UDF_ICB_FILETYPE_SOCKET :
4155 return S_IFSOCK;
4156 }
4157 /* no idea what this is */
4158 return 0;
4159 }
4160
4161 /* --------------------------------------------------------------------- */
4162
4163 void
4164 udf_to_unix_name(char *result, int result_len, char *id, int len,
4165 struct charspec *chsp)
4166 {
4167 uint16_t *raw_name, *unix_name;
4168 uint16_t *inchp, ch;
4169 uint8_t *outchp;
4170 const char *osta_id = "OSTA Compressed Unicode";
4171 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4172
4173 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4174 unix_name = raw_name + 1024; /* split space in half */
4175 assert(sizeof(char) == sizeof(uint8_t));
4176 outchp = (uint8_t *) result;
4177
4178 is_osta_typ0 = (chsp->type == 0);
4179 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4180 if (is_osta_typ0) {
4181 /* TODO clean up */
4182 *raw_name = *unix_name = 0;
4183 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4184 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4185 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4186 /* output UTF8 */
4187 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4188 ch = *inchp;
4189 nout = wput_utf8(outchp, result_len, ch);
4190 outchp += nout; result_len -= nout;
4191 if (!ch) break;
4192 }
4193 *outchp++ = 0;
4194 } else {
4195 /* assume 8bit char length byte latin-1 */
4196 assert(*id == 8);
4197 assert(strlen((char *) (id+1)) <= NAME_MAX);
4198 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4199 }
4200 free(raw_name, M_UDFTEMP);
4201 }
4202
4203 /* --------------------------------------------------------------------- */
4204
4205 void
4206 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4207 struct charspec *chsp)
4208 {
4209 uint16_t *raw_name;
4210 uint16_t *outchp;
4211 const char *inchp;
4212 const char *osta_id = "OSTA Compressed Unicode";
4213 int udf_chars, is_osta_typ0, bits;
4214 size_t cnt;
4215
4216 /* allocate temporary unicode-16 buffer */
4217 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4218
4219 /* convert utf8 to unicode-16 */
4220 *raw_name = 0;
4221 inchp = name;
4222 outchp = raw_name;
4223 bits = 8;
4224 for (cnt = name_len, udf_chars = 0; cnt;) {
4225 *outchp = wget_utf8(&inchp, &cnt);
4226 if (*outchp > 0xff)
4227 bits=16;
4228 outchp++;
4229 udf_chars++;
4230 }
4231 /* null terminate just in case */
4232 *outchp++ = 0;
4233
4234 is_osta_typ0 = (chsp->type == 0);
4235 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4236 if (is_osta_typ0) {
4237 udf_chars = udf_CompressUnicode(udf_chars, bits,
4238 (unicode_t *) raw_name,
4239 (byte *) result);
4240 } else {
4241 printf("unix to udf name: no CHSP0 ?\n");
4242 /* XXX assume 8bit char length byte latin-1 */
4243 *result++ = 8; udf_chars = 1;
4244 strncpy(result, name + 1, name_len);
4245 udf_chars += name_len;
4246 }
4247 *result_len = udf_chars;
4248 free(raw_name, M_UDFTEMP);
4249 }
4250
4251 /* --------------------------------------------------------------------- */
4252
4253 void
4254 udf_timestamp_to_timespec(struct udf_mount *ump,
4255 struct timestamp *timestamp,
4256 struct timespec *timespec)
4257 {
4258 struct clock_ymdhms ymdhms;
4259 uint32_t usecs, secs, nsecs;
4260 uint16_t tz;
4261
4262 /* fill in ymdhms structure from timestamp */
4263 memset(&ymdhms, 0, sizeof(ymdhms));
4264 ymdhms.dt_year = udf_rw16(timestamp->year);
4265 ymdhms.dt_mon = timestamp->month;
4266 ymdhms.dt_day = timestamp->day;
4267 ymdhms.dt_wday = 0; /* ? */
4268 ymdhms.dt_hour = timestamp->hour;
4269 ymdhms.dt_min = timestamp->minute;
4270 ymdhms.dt_sec = timestamp->second;
4271
4272 secs = clock_ymdhms_to_secs(&ymdhms);
4273 usecs = timestamp->usec +
4274 100*timestamp->hund_usec + 10000*timestamp->centisec;
4275 nsecs = usecs * 1000;
4276
4277 /*
4278 * Calculate the time zone. The timezone is 12 bit signed 2's
4279 * compliment, so we gotta do some extra magic to handle it right.
4280 */
4281 tz = udf_rw16(timestamp->type_tz);
4282 tz &= 0x0fff; /* only lower 12 bits are significant */
4283 if (tz & 0x0800) /* sign extension */
4284 tz |= 0xf000;
4285
4286 /* TODO check timezone conversion */
4287 /* check if we are specified a timezone to convert */
4288 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4289 if ((int16_t) tz != -2047)
4290 secs -= (int16_t) tz * 60;
4291 } else {
4292 secs -= ump->mount_args.gmtoff;
4293 }
4294
4295 timespec->tv_sec = secs;
4296 timespec->tv_nsec = nsecs;
4297 }
4298
4299
4300 void
4301 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4302 {
4303 struct clock_ymdhms ymdhms;
4304 uint32_t husec, usec, csec;
4305
4306 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4307
4308 usec = timespec->tv_nsec / 1000;
4309 husec = usec / 100;
4310 usec -= husec * 100; /* only 0-99 in usec */
4311 csec = husec / 100; /* only 0-99 in csec */
4312 husec -= csec * 100; /* only 0-99 in husec */
4313
4314 /* set method 1 for CUT/GMT */
4315 timestamp->type_tz = udf_rw16((1<<12) + 0);
4316 timestamp->year = udf_rw16(ymdhms.dt_year);
4317 timestamp->month = ymdhms.dt_mon;
4318 timestamp->day = ymdhms.dt_day;
4319 timestamp->hour = ymdhms.dt_hour;
4320 timestamp->minute = ymdhms.dt_min;
4321 timestamp->second = ymdhms.dt_sec;
4322 timestamp->centisec = csec;
4323 timestamp->hund_usec = husec;
4324 timestamp->usec = usec;
4325 }
4326
4327 /* --------------------------------------------------------------------- */
4328
4329 /*
4330 * Attribute and filetypes converters with get/set pairs
4331 */
4332
4333 uint32_t
4334 udf_getaccessmode(struct udf_node *udf_node)
4335 {
4336 struct file_entry *fe = udf_node->fe;
4337 struct extfile_entry *efe = udf_node->efe;
4338 uint32_t udf_perm, icbftype;
4339 uint32_t mode, ftype;
4340 uint16_t icbflags;
4341
4342 UDF_LOCK_NODE(udf_node, 0);
4343 if (fe) {
4344 udf_perm = udf_rw32(fe->perm);
4345 icbftype = fe->icbtag.file_type;
4346 icbflags = udf_rw16(fe->icbtag.flags);
4347 } else {
4348 assert(udf_node->efe);
4349 udf_perm = udf_rw32(efe->perm);
4350 icbftype = efe->icbtag.file_type;
4351 icbflags = udf_rw16(efe->icbtag.flags);
4352 }
4353
4354 mode = udf_perm_to_unix_mode(udf_perm);
4355 ftype = udf_icb_to_unix_filetype(icbftype);
4356
4357 /* set suid, sgid, sticky from flags in fe/efe */
4358 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4359 mode |= S_ISUID;
4360 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4361 mode |= S_ISGID;
4362 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4363 mode |= S_ISVTX;
4364
4365 UDF_UNLOCK_NODE(udf_node, 0);
4366
4367 return mode | ftype;
4368 }
4369
4370
4371 void
4372 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4373 {
4374 struct file_entry *fe = udf_node->fe;
4375 struct extfile_entry *efe = udf_node->efe;
4376 uint32_t udf_perm;
4377 uint16_t icbflags;
4378
4379 UDF_LOCK_NODE(udf_node, 0);
4380 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4381 if (fe) {
4382 icbflags = udf_rw16(fe->icbtag.flags);
4383 } else {
4384 icbflags = udf_rw16(efe->icbtag.flags);
4385 }
4386
4387 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4388 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4389 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4390 if (mode & S_ISUID)
4391 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4392 if (mode & S_ISGID)
4393 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4394 if (mode & S_ISVTX)
4395 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4396
4397 if (fe) {
4398 fe->perm = udf_rw32(udf_perm);
4399 fe->icbtag.flags = udf_rw16(icbflags);
4400 } else {
4401 efe->perm = udf_rw32(udf_perm);
4402 efe->icbtag.flags = udf_rw16(icbflags);
4403 }
4404
4405 UDF_UNLOCK_NODE(udf_node, 0);
4406 }
4407
4408
4409 void
4410 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4411 {
4412 struct udf_mount *ump = udf_node->ump;
4413 struct file_entry *fe = udf_node->fe;
4414 struct extfile_entry *efe = udf_node->efe;
4415 uid_t uid;
4416 gid_t gid;
4417
4418 UDF_LOCK_NODE(udf_node, 0);
4419 if (fe) {
4420 uid = (uid_t)udf_rw32(fe->uid);
4421 gid = (gid_t)udf_rw32(fe->gid);
4422 } else {
4423 assert(udf_node->efe);
4424 uid = (uid_t)udf_rw32(efe->uid);
4425 gid = (gid_t)udf_rw32(efe->gid);
4426 }
4427
4428 /* do the uid/gid translation game */
4429 if (uid == (uid_t) -1)
4430 uid = ump->mount_args.anon_uid;
4431 if (gid == (gid_t) -1)
4432 gid = ump->mount_args.anon_gid;
4433
4434 *uidp = uid;
4435 *gidp = gid;
4436
4437 UDF_UNLOCK_NODE(udf_node, 0);
4438 }
4439
4440
4441 void
4442 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4443 {
4444 struct udf_mount *ump = udf_node->ump;
4445 struct file_entry *fe = udf_node->fe;
4446 struct extfile_entry *efe = udf_node->efe;
4447 uid_t nobody_uid;
4448 gid_t nobody_gid;
4449
4450 UDF_LOCK_NODE(udf_node, 0);
4451
4452 /* do the uid/gid translation game */
4453 nobody_uid = ump->mount_args.nobody_uid;
4454 nobody_gid = ump->mount_args.nobody_gid;
4455 if (uid == nobody_uid)
4456 uid = (uid_t) -1;
4457 if (gid == nobody_gid)
4458 gid = (gid_t) -1;
4459
4460 if (fe) {
4461 fe->uid = udf_rw32((uint32_t) uid);
4462 fe->gid = udf_rw32((uint32_t) gid);
4463 } else {
4464 efe->uid = udf_rw32((uint32_t) uid);
4465 efe->gid = udf_rw32((uint32_t) gid);
4466 }
4467
4468 UDF_UNLOCK_NODE(udf_node, 0);
4469 }
4470
4471
4472 /* --------------------------------------------------------------------- */
4473
4474
4475 int
4476 udf_dirhash_fill(struct udf_node *dir_node)
4477 {
4478 struct vnode *dvp = dir_node->vnode;
4479 struct dirhash *dirh;
4480 struct file_entry *fe = dir_node->fe;
4481 struct extfile_entry *efe = dir_node->efe;
4482 struct fileid_desc *fid;
4483 struct dirent *dirent;
4484 uint64_t file_size, pre_diroffset, diroffset;
4485 uint32_t lb_size;
4486 int error;
4487
4488 /* make sure we have a dirhash to work on */
4489 dirh = dir_node->dir_hash;
4490 KASSERT(dirh);
4491 KASSERT(dirh->refcnt > 0);
4492
4493 if (dirh->flags & DIRH_BROKEN)
4494 return EIO;
4495 if (dirh->flags & DIRH_COMPLETE)
4496 return 0;
4497
4498 /* make sure we have a clean dirhash to add to */
4499 dirhash_purge_entries(dirh);
4500
4501 /* get directory filesize */
4502 if (fe) {
4503 file_size = udf_rw64(fe->inf_len);
4504 } else {
4505 assert(efe);
4506 file_size = udf_rw64(efe->inf_len);
4507 }
4508
4509 /* allocate temporary space for fid */
4510 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4511 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4512
4513 /* allocate temporary space for dirent */
4514 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4515
4516 error = 0;
4517 diroffset = 0;
4518 while (diroffset < file_size) {
4519 /* transfer a new fid/dirent */
4520 pre_diroffset = diroffset;
4521 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4522 if (error) {
4523 /* TODO what to do? continue but not add? */
4524 dirh->flags |= DIRH_BROKEN;
4525 dirhash_purge_entries(dirh);
4526 break;
4527 }
4528
4529 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4530 /* register deleted extent for reuse */
4531 dirhash_enter_freed(dirh, pre_diroffset,
4532 udf_fidsize(fid));
4533 } else {
4534 /* append to the dirhash */
4535 dirhash_enter(dirh, dirent, pre_diroffset,
4536 udf_fidsize(fid), 0);
4537 }
4538 }
4539 dirh->flags |= DIRH_COMPLETE;
4540
4541 free(fid, M_UDFTEMP);
4542 free(dirent, M_UDFTEMP);
4543
4544 return error;
4545 }
4546
4547
4548 /* --------------------------------------------------------------------- */
4549
4550 /*
4551 * Directory read and manipulation functions.
4552 *
4553 */
4554
4555 int
4556 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4557 struct long_ad *icb_loc, int *found)
4558 {
4559 struct udf_node *dir_node = VTOI(vp);
4560 struct dirhash *dirh;
4561 struct dirhash_entry *dirh_ep;
4562 struct fileid_desc *fid;
4563 struct dirent *dirent, *s_dirent;
4564 struct charspec osta_charspec;
4565 uint64_t diroffset;
4566 uint32_t lb_size;
4567 int hit, error;
4568
4569 /* set default return */
4570 *found = 0;
4571
4572 /* get our dirhash and make sure its read in */
4573 dirhash_get(&dir_node->dir_hash);
4574 error = udf_dirhash_fill(dir_node);
4575 if (error) {
4576 dirhash_put(dir_node->dir_hash);
4577 return error;
4578 }
4579 dirh = dir_node->dir_hash;
4580
4581 /* allocate temporary space for fid */
4582 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4583 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4584 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4585 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4586
4587 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4588 namelen, namelen, name));
4589
4590 /* convert given unix name to canonical unix name */
4591 udf_osta_charset(&osta_charspec);
4592 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4593 name, namelen, &osta_charspec);
4594 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4595 (char *) fid->data, fid->l_fi,
4596 &osta_charspec);
4597 s_dirent->d_namlen = strlen(s_dirent->d_name);
4598
4599 /* search our dirhash hits */
4600 memset(icb_loc, 0, sizeof(*icb_loc));
4601 dirh_ep = NULL;
4602 for (;;) {
4603 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4604 /* if no hit, abort the search */
4605 if (!hit)
4606 break;
4607
4608 /* check this hit */
4609 diroffset = dirh_ep->offset;
4610
4611 /* transfer a new fid/dirent */
4612 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4613 if (error)
4614 break;
4615
4616 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4617 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4618
4619 /* see if its our entry */
4620 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4621 *found = 1;
4622 *icb_loc = fid->icb;
4623 break;
4624 }
4625 }
4626 free(fid, M_UDFTEMP);
4627 free(dirent, M_UDFTEMP);
4628 free(s_dirent, M_UDFTEMP);
4629
4630 dirhash_put(dir_node->dir_hash);
4631
4632 return error;
4633 }
4634
4635 /* --------------------------------------------------------------------- */
4636
4637 static int
4638 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4639 struct long_ad *node_icb, struct long_ad *parent_icb,
4640 uint64_t parent_unique_id)
4641 {
4642 struct timespec now;
4643 struct icb_tag *icb;
4644 struct filetimes_extattr_entry *ft_extattr;
4645 uint64_t unique_id;
4646 uint32_t fidsize, lb_num;
4647 uint8_t *bpos;
4648 int crclen, attrlen;
4649
4650 lb_num = udf_rw32(node_icb->loc.lb_num);
4651 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4652 icb = &fe->icbtag;
4653
4654 /*
4655 * Always use strategy type 4 unless on WORM wich we don't support
4656 * (yet). Fill in defaults and set for internal allocation of data.
4657 */
4658 icb->strat_type = udf_rw16(4);
4659 icb->max_num_entries = udf_rw16(1);
4660 icb->file_type = file_type; /* 8 bit */
4661 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4662
4663 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4664 fe->link_cnt = udf_rw16(0); /* explicit setting */
4665
4666 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4667
4668 vfs_timestamp(&now);
4669 udf_timespec_to_timestamp(&now, &fe->atime);
4670 udf_timespec_to_timestamp(&now, &fe->attrtime);
4671 udf_timespec_to_timestamp(&now, &fe->mtime);
4672
4673 udf_set_regid(&fe->imp_id, IMPL_NAME);
4674 udf_add_impl_regid(ump, &fe->imp_id);
4675
4676 unique_id = udf_advance_uniqueid(ump);
4677 fe->unique_id = udf_rw64(unique_id);
4678 fe->l_ea = udf_rw32(0);
4679
4680 /* create extended attribute to record our creation time */
4681 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4682 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4683 memset(ft_extattr, 0, attrlen);
4684 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4685 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4686 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4687 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4688 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4689 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4690
4691 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4692 (struct extattr_entry *) ft_extattr);
4693 free(ft_extattr, M_UDFTEMP);
4694
4695 /* if its a directory, create '..' */
4696 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4697 fidsize = 0;
4698 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4699 fidsize = udf_create_parentfid(ump,
4700 (struct fileid_desc *) bpos, parent_icb,
4701 parent_unique_id);
4702 }
4703
4704 /* record fidlength information */
4705 fe->inf_len = udf_rw64(fidsize);
4706 fe->l_ad = udf_rw32(fidsize);
4707 fe->logblks_rec = udf_rw64(0); /* intern */
4708
4709 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4710 crclen += udf_rw32(fe->l_ea) + fidsize;
4711 fe->tag.desc_crc_len = udf_rw16(crclen);
4712
4713 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4714
4715 return fidsize;
4716 }
4717
4718 /* --------------------------------------------------------------------- */
4719
4720 static int
4721 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4722 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4723 uint64_t parent_unique_id)
4724 {
4725 struct timespec now;
4726 struct icb_tag *icb;
4727 uint64_t unique_id;
4728 uint32_t fidsize, lb_num;
4729 uint8_t *bpos;
4730 int crclen;
4731
4732 lb_num = udf_rw32(node_icb->loc.lb_num);
4733 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4734 icb = &efe->icbtag;
4735
4736 /*
4737 * Always use strategy type 4 unless on WORM wich we don't support
4738 * (yet). Fill in defaults and set for internal allocation of data.
4739 */
4740 icb->strat_type = udf_rw16(4);
4741 icb->max_num_entries = udf_rw16(1);
4742 icb->file_type = file_type; /* 8 bit */
4743 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4744
4745 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4746 efe->link_cnt = udf_rw16(0); /* explicit setting */
4747
4748 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4749
4750 vfs_timestamp(&now);
4751 udf_timespec_to_timestamp(&now, &efe->ctime);
4752 udf_timespec_to_timestamp(&now, &efe->atime);
4753 udf_timespec_to_timestamp(&now, &efe->attrtime);
4754 udf_timespec_to_timestamp(&now, &efe->mtime);
4755
4756 udf_set_regid(&efe->imp_id, IMPL_NAME);
4757 udf_add_impl_regid(ump, &efe->imp_id);
4758
4759 unique_id = udf_advance_uniqueid(ump);
4760 efe->unique_id = udf_rw64(unique_id);
4761 efe->l_ea = udf_rw32(0);
4762
4763 /* if its a directory, create '..' */
4764 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4765 fidsize = 0;
4766 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4767 fidsize = udf_create_parentfid(ump,
4768 (struct fileid_desc *) bpos, parent_icb,
4769 parent_unique_id);
4770 }
4771
4772 /* record fidlength information */
4773 efe->obj_size = udf_rw64(fidsize);
4774 efe->inf_len = udf_rw64(fidsize);
4775 efe->l_ad = udf_rw32(fidsize);
4776 efe->logblks_rec = udf_rw64(0); /* intern */
4777
4778 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4779 crclen += udf_rw32(efe->l_ea) + fidsize;
4780 efe->tag.desc_crc_len = udf_rw16(crclen);
4781
4782 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4783
4784 return fidsize;
4785 }
4786
4787 /* --------------------------------------------------------------------- */
4788
4789 int
4790 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4791 struct udf_node *udf_node, struct componentname *cnp)
4792 {
4793 struct vnode *dvp = dir_node->vnode;
4794 struct dirhash *dirh;
4795 struct dirhash_entry *dirh_ep;
4796 struct file_entry *fe = dir_node->fe;
4797 struct fileid_desc *fid;
4798 struct dirent *dirent, *s_dirent;
4799 struct charspec osta_charspec;
4800 uint64_t diroffset;
4801 uint32_t lb_size, fidsize;
4802 int found, error;
4803 int hit, refcnt;
4804
4805 /* get our dirhash and make sure its read in */
4806 dirhash_get(&dir_node->dir_hash);
4807 error = udf_dirhash_fill(dir_node);
4808 if (error) {
4809 dirhash_put(dir_node->dir_hash);
4810 return error;
4811 }
4812 dirh = dir_node->dir_hash;
4813
4814 /* get directory filesize */
4815 if (!fe) {
4816 assert(dir_node->efe);
4817 }
4818
4819 /* allocate temporary space for fid and dirents */
4820 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4821 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4822 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4823 s_dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4824
4825 /* convert given unix name to canonical unix name */
4826 udf_osta_charset(&osta_charspec);
4827 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4828 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4829 udf_to_unix_name(s_dirent->d_name, NAME_MAX,
4830 (char *) fid->data, fid->l_fi,
4831 &osta_charspec);
4832 s_dirent->d_namlen = strlen(s_dirent->d_name);
4833
4834 /* search our dirhash hits */
4835 found = 0;
4836 dirh_ep = NULL;
4837 for (;;) {
4838 hit = dirhash_lookup(dirh, s_dirent->d_name, s_dirent->d_namlen, &dirh_ep);
4839 /* if no hit, abort the search */
4840 if (!hit)
4841 break;
4842
4843 /* check this hit */
4844 diroffset = dirh_ep->offset;
4845
4846 /* transfer a new fid/dirent */
4847 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4848 if (error)
4849 break;
4850
4851 /* see if its our entry */
4852 KASSERT(dirent->d_namlen == s_dirent->d_namlen);
4853 if (strncmp(dirent->d_name, s_dirent->d_name, s_dirent->d_namlen) == 0) {
4854 found = 1;
4855 break;
4856 }
4857 }
4858
4859 if (!found)
4860 error = ENOENT;
4861 if (error)
4862 goto error_out;
4863
4864 /* mark deleted */
4865 fid->file_char |= UDF_FILE_CHAR_DEL;
4866 #ifdef UDF_COMPLETE_DELETE
4867 memset(&fid->icb, 0, sizeof(fid->icb));
4868 #endif
4869 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4870
4871 /* get size of fid and compensate for the read_fid_stream advance */
4872 fidsize = udf_fidsize(fid);
4873 diroffset -= fidsize;
4874
4875 /* write out */
4876 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4877 fid, fidsize, diroffset,
4878 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4879 FSCRED, NULL, NULL);
4880 if (error)
4881 goto error_out;
4882
4883 /* get reference count of attached node */
4884 if (udf_node->fe) {
4885 refcnt = udf_rw16(udf_node->fe->link_cnt);
4886 } else {
4887 KASSERT(udf_node->efe);
4888 refcnt = udf_rw16(udf_node->efe->link_cnt);
4889 }
4890 #ifdef UDF_COMPLETE_DELETE
4891 /* substract reference counter in attached node */
4892 refcnt -= 1;
4893 if (udf_node->fe) {
4894 udf_node->fe->link_cnt = udf_rw16(refcnt);
4895 } else {
4896 udf_node->efe->link_cnt = udf_rw16(refcnt);
4897 }
4898
4899 /* prevent writeout when refcnt == 0 */
4900 if (refcnt == 0)
4901 udf_node->i_flags |= IN_DELETED;
4902
4903 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4904 int drefcnt;
4905
4906 /* substract reference counter in directory node */
4907 /* note subtract 2 (?) for its was also backreferenced */
4908 if (dir_node->fe) {
4909 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4910 drefcnt -= 1;
4911 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4912 } else {
4913 KASSERT(dir_node->efe);
4914 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4915 drefcnt -= 1;
4916 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4917 }
4918 }
4919
4920 udf_node->i_flags |= IN_MODIFIED;
4921 dir_node->i_flags |= IN_MODIFIED;
4922 #endif
4923 /* if it is/was a hardlink adjust the file count */
4924 if (refcnt > 0)
4925 udf_adjust_filecount(udf_node, -1);
4926
4927 /* remove from the dirhash */
4928 dirhash_remove(dirh, dirent, diroffset,
4929 udf_fidsize(fid));
4930
4931 error_out:
4932 free(fid, M_UDFTEMP);
4933 free(dirent, M_UDFTEMP);
4934 free(s_dirent, M_UDFTEMP);
4935
4936 dirhash_put(dir_node->dir_hash);
4937
4938 return error;
4939 }
4940
4941 /* --------------------------------------------------------------------- */
4942
4943 int
4944 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node,
4945 struct udf_node *new_parent_node)
4946 {
4947 struct vnode *dvp = dir_node->vnode;
4948 struct dirhash *dirh;
4949 struct dirhash_entry *dirh_ep;
4950 struct file_entry *fe;
4951 struct extfile_entry *efe;
4952 struct fileid_desc *fid;
4953 struct dirent *dirent;
4954 uint64_t diroffset;
4955 uint64_t new_parent_unique_id;
4956 uint32_t lb_size, fidsize;
4957 int found, error;
4958 char const *name = "..";
4959 int namelen = 2;
4960 int hit;
4961
4962 /* get our dirhash and make sure its read in */
4963 dirhash_get(&dir_node->dir_hash);
4964 error = udf_dirhash_fill(dir_node);
4965 if (error) {
4966 dirhash_put(dir_node->dir_hash);
4967 return error;
4968 }
4969 dirh = dir_node->dir_hash;
4970
4971 /* get new parent's unique ID */
4972 fe = new_parent_node->fe;
4973 efe = new_parent_node->efe;
4974 if (fe) {
4975 new_parent_unique_id = udf_rw64(fe->unique_id);
4976 } else {
4977 assert(efe);
4978 new_parent_unique_id = udf_rw64(efe->unique_id);
4979 }
4980
4981 /* get directory filesize */
4982 fe = dir_node->fe;
4983 efe = dir_node->efe;
4984 if (!fe) {
4985 assert(efe);
4986 }
4987
4988 /* allocate temporary space for fid */
4989 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4990 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4991 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4992
4993 /*
4994 * NOTE the standard does not dictate the FID entry '..' should be
4995 * first, though in practice it will most likely be.
4996 */
4997
4998 /* search our dirhash hits */
4999 found = 0;
5000 dirh_ep = NULL;
5001 for (;;) {
5002 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
5003 /* if no hit, abort the search */
5004 if (!hit)
5005 break;
5006
5007 /* check this hit */
5008 diroffset = dirh_ep->offset;
5009
5010 /* transfer a new fid/dirent */
5011 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
5012 if (error)
5013 break;
5014
5015 /* see if its our entry */
5016 KASSERT(dirent->d_namlen == namelen);
5017 if (strncmp(dirent->d_name, name, namelen) == 0) {
5018 found = 1;
5019 break;
5020 }
5021 }
5022
5023 if (!found)
5024 error = ENOENT;
5025 if (error)
5026 goto error_out;
5027
5028 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */
5029 fid->icb = new_parent_node->write_loc;
5030 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id);
5031
5032 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5033
5034 /* get size of fid and compensate for the read_fid_stream advance */
5035 fidsize = udf_fidsize(fid);
5036 diroffset -= fidsize;
5037
5038 /* write out */
5039 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
5040 fid, fidsize, diroffset,
5041 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5042 FSCRED, NULL, NULL);
5043
5044 /* nothing to be done in the dirhash */
5045
5046 error_out:
5047 free(fid, M_UDFTEMP);
5048 free(dirent, M_UDFTEMP);
5049
5050 dirhash_put(dir_node->dir_hash);
5051
5052 return error;
5053 }
5054
5055 /* --------------------------------------------------------------------- */
5056
5057 /*
5058 * We are not allowed to split the fid tag itself over an logical block so
5059 * check the space remaining in the logical block.
5060 *
5061 * We try to select the smallest candidate for recycling or when none is
5062 * found, append a new one at the end of the directory.
5063 */
5064
5065 int
5066 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
5067 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
5068 {
5069 struct vnode *dvp = dir_node->vnode;
5070 struct dirhash *dirh;
5071 struct dirhash_entry *dirh_ep;
5072 struct fileid_desc *fid;
5073 struct icb_tag *icbtag;
5074 struct charspec osta_charspec;
5075 struct dirent dirent;
5076 uint64_t unique_id, dir_size;
5077 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
5078 uint32_t chosen_size, chosen_size_diff;
5079 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
5080 int file_char, refcnt, icbflags, addr_type, hit, error;
5081
5082 /* get our dirhash and make sure its read in */
5083 dirhash_get(&dir_node->dir_hash);
5084 error = udf_dirhash_fill(dir_node);
5085 if (error) {
5086 dirhash_put(dir_node->dir_hash);
5087 return error;
5088 }
5089 dirh = dir_node->dir_hash;
5090
5091 /* get info */
5092 lb_size = udf_rw32(ump->logical_vol->lb_size);
5093 udf_osta_charset(&osta_charspec);
5094
5095 if (dir_node->fe) {
5096 dir_size = udf_rw64(dir_node->fe->inf_len);
5097 icbtag = &dir_node->fe->icbtag;
5098 } else {
5099 dir_size = udf_rw64(dir_node->efe->inf_len);
5100 icbtag = &dir_node->efe->icbtag;
5101 }
5102
5103 icbflags = udf_rw16(icbtag->flags);
5104 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5105
5106 if (udf_node->fe) {
5107 unique_id = udf_rw64(udf_node->fe->unique_id);
5108 refcnt = udf_rw16(udf_node->fe->link_cnt);
5109 } else {
5110 unique_id = udf_rw64(udf_node->efe->unique_id);
5111 refcnt = udf_rw16(udf_node->efe->link_cnt);
5112 }
5113
5114 if (refcnt > 0) {
5115 unique_id = udf_advance_uniqueid(ump);
5116 udf_adjust_filecount(udf_node, 1);
5117 }
5118
5119 /* determine file characteristics */
5120 file_char = 0; /* visible non deleted file and not stream metadata */
5121 if (vap->va_type == VDIR)
5122 file_char = UDF_FILE_CHAR_DIR;
5123
5124 /* malloc scrap buffer */
5125 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
5126
5127 /* calculate _minimum_ fid size */
5128 unix_to_udf_name((char *) fid->data, &fid->l_fi,
5129 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5130 fidsize = UDF_FID_SIZE + fid->l_fi;
5131 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
5132
5133 /* find position that will fit the FID */
5134 chosen_fid_pos = dir_size;
5135 chosen_size = 0;
5136 chosen_size_diff = UINT_MAX;
5137
5138 /* shut up gcc */
5139 dirent.d_namlen = 0;
5140
5141 /* search our dirhash hits */
5142 error = 0;
5143 dirh_ep = NULL;
5144 for (;;) {
5145 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
5146 /* if no hit, abort the search */
5147 if (!hit)
5148 break;
5149
5150 /* check this hit for size */
5151 this_fidsize = dirh_ep->entry_size;
5152
5153 /* check this hit */
5154 fid_pos = dirh_ep->offset;
5155 end_fid_pos = fid_pos + this_fidsize;
5156 size_diff = this_fidsize - fidsize;
5157 lb_rest = lb_size - (end_fid_pos % lb_size);
5158
5159 #ifndef UDF_COMPLETE_DELETE
5160 /* transfer a new fid/dirent */
5161 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
5162 if (error)
5163 goto error_out;
5164
5165 /* only reuse entries that are wiped */
5166 /* check if the len + loc are marked zero */
5167 if (udf_rw32(fid->icb.len) != 0)
5168 continue;
5169 if (udf_rw32(fid->icb.loc.lb_num) != 0)
5170 continue;
5171 if (udf_rw16(fid->icb.loc.part_num) != 0)
5172 continue;
5173 #endif /* UDF_COMPLETE_DELETE */
5174
5175 /* select if not splitting the tag and its smaller */
5176 if ((size_diff >= 0) &&
5177 (size_diff < chosen_size_diff) &&
5178 (lb_rest >= sizeof(struct desc_tag)))
5179 {
5180 /* UDF 2.3.4.2+3 specifies rules for iu size */
5181 if ((size_diff == 0) || (size_diff >= 32)) {
5182 chosen_fid_pos = fid_pos;
5183 chosen_size = this_fidsize;
5184 chosen_size_diff = size_diff;
5185 }
5186 }
5187 }
5188
5189
5190 /* extend directory if no other candidate found */
5191 if (chosen_size == 0) {
5192 chosen_fid_pos = dir_size;
5193 chosen_size = fidsize;
5194 chosen_size_diff = 0;
5195
5196 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
5197 if (addr_type == UDF_ICB_INTERN_ALLOC) {
5198 /* pre-grow directory to see if we're to switch */
5199 udf_grow_node(dir_node, dir_size + chosen_size);
5200
5201 icbflags = udf_rw16(icbtag->flags);
5202 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
5203 }
5204
5205 /* make sure the next fid desc_tag won't be split */
5206 if (addr_type != UDF_ICB_INTERN_ALLOC) {
5207 end_fid_pos = chosen_fid_pos + chosen_size;
5208 lb_rest = lb_size - (end_fid_pos % lb_size);
5209
5210 /* pad with implementation use regid if needed */
5211 if (lb_rest < sizeof(struct desc_tag))
5212 chosen_size += 32;
5213 }
5214 }
5215 chosen_size_diff = chosen_size - fidsize;
5216
5217 /* populate the FID */
5218 memset(fid, 0, lb_size);
5219 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
5220 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
5221 fid->file_char = file_char;
5222 fid->icb = udf_node->loc;
5223 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
5224 fid->l_iu = udf_rw16(0);
5225
5226 if (chosen_size > fidsize) {
5227 /* insert implementation-use regid to space it correctly */
5228 fid->l_iu = udf_rw16(chosen_size_diff);
5229
5230 /* set implementation use */
5231 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
5232 udf_add_impl_regid(ump, (struct regid *) fid->data);
5233 }
5234
5235 /* fill in name */
5236 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
5237 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5238
5239 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
5240 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5241
5242 /* writeout FID/update parent directory */
5243 error = vn_rdwr(UIO_WRITE, dvp,
5244 fid, chosen_size, chosen_fid_pos,
5245 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5246 FSCRED, NULL, NULL);
5247
5248 if (error)
5249 goto error_out;
5250
5251 /* add reference counter in attached node */
5252 if (udf_node->fe) {
5253 refcnt = udf_rw16(udf_node->fe->link_cnt);
5254 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5255 } else {
5256 KASSERT(udf_node->efe);
5257 refcnt = udf_rw16(udf_node->efe->link_cnt);
5258 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5259 }
5260
5261 /* mark not deleted if it was... just in case, but do warn */
5262 if (udf_node->i_flags & IN_DELETED) {
5263 printf("udf: warning, marking a file undeleted\n");
5264 udf_node->i_flags &= ~IN_DELETED;
5265 }
5266
5267 if (file_char & UDF_FILE_CHAR_DIR) {
5268 /* add reference counter in directory node for '..' */
5269 if (dir_node->fe) {
5270 refcnt = udf_rw16(dir_node->fe->link_cnt);
5271 refcnt++;
5272 dir_node->fe->link_cnt = udf_rw16(refcnt);
5273 } else {
5274 KASSERT(dir_node->efe);
5275 refcnt = udf_rw16(dir_node->efe->link_cnt);
5276 refcnt++;
5277 dir_node->efe->link_cnt = udf_rw16(refcnt);
5278 }
5279 }
5280
5281 /* append to the dirhash */
5282 /* NOTE do not use dirent anymore or it won't match later! */
5283 udf_to_unix_name(dirent.d_name, NAME_MAX,
5284 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec);
5285 dirent.d_namlen = strlen(dirent.d_name);
5286 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5287 udf_fidsize(fid), 1);
5288
5289 /* note updates */
5290 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5291 /* VN_KNOTE(udf_node, ...) */
5292 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5293
5294 error_out:
5295 free(fid, M_TEMP);
5296
5297 dirhash_put(dir_node->dir_hash);
5298
5299 return error;
5300 }
5301
5302 /* --------------------------------------------------------------------- */
5303
5304 /*
5305 * Each node can have an attached streamdir node though not recursively. These
5306 * are otherwise known as named substreams/named extended attributes that have
5307 * no size limitations.
5308 *
5309 * `Normal' extended attributes are indicated with a number and are recorded
5310 * in either the fe/efe descriptor itself for small descriptors or recorded in
5311 * the attached extended attribute file. Since these spaces can get
5312 * fragmented, care ought to be taken.
5313 *
5314 * Since the size of the space reserved for allocation descriptors is limited,
5315 * there is a mechanim provided for extending this space; this is done by a
5316 * special extent to allow schrinking of the allocations without breaking the
5317 * linkage to the allocation extent descriptor.
5318 */
5319
5320 int
5321 udf_loadvnode(struct mount *mp, struct vnode *vp,
5322 const void *key, size_t key_len, const void **new_key)
5323 {
5324 union dscrptr *dscr;
5325 struct udf_mount *ump;
5326 struct udf_node *udf_node;
5327 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc;
5328 uint64_t file_size;
5329 uint32_t lb_size, sector, dummy;
5330 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5331 int slot, eof, error;
5332 int num_indir_followed = 0;
5333
5334 DPRINTF(NODE, ("udf_loadvnode called\n"));
5335 udf_node = NULL;
5336 ump = VFSTOUDF(mp);
5337
5338 KASSERT(key_len == sizeof(node_icb_loc.loc));
5339 memset(&node_icb_loc, 0, sizeof(node_icb_loc));
5340 node_icb_loc.len = ump->logical_vol->lb_size;
5341 memcpy(&node_icb_loc.loc, key, key_len);
5342
5343 /* garbage check: translate udf_node_icb_loc to sectornr */
5344 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy);
5345 if (error) {
5346 DPRINTF(NODE, ("\tcan't translate icb address!\n"));
5347 /* no use, this will fail anyway */
5348 return EINVAL;
5349 }
5350
5351 /* build udf_node (do initialise!) */
5352 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5353 memset(udf_node, 0, sizeof(struct udf_node));
5354
5355 vp->v_tag = VT_UDF;
5356 vp->v_op = udf_vnodeop_p;
5357 vp->v_data = udf_node;
5358
5359 /* initialise crosslinks, note location of fe/efe for hashing */
5360 udf_node->ump = ump;
5361 udf_node->vnode = vp;
5362 udf_node->loc = node_icb_loc;
5363 udf_node->lockf = 0;
5364 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5365 cv_init(&udf_node->node_lock, "udf_nlk");
5366 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */
5367 udf_node->outstanding_bufs = 0;
5368 udf_node->outstanding_nodedscr = 0;
5369 udf_node->uncommitted_lbs = 0;
5370
5371 /* check if we're fetching the root */
5372 if (ump->fileset_desc)
5373 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5374 sizeof(struct long_ad)) == 0)
5375 vp->v_vflag |= VV_ROOT;
5376
5377 icb_loc = node_icb_loc;
5378 needs_indirect = 0;
5379 strat4096 = 0;
5380 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5381 file_size = 0;
5382 lb_size = udf_rw32(ump->logical_vol->lb_size);
5383
5384 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5385 do {
5386 /* try to read in fe/efe */
5387 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5388
5389 /* blank sector marks end of sequence, check this */
5390 if ((dscr == NULL) && (!strat4096))
5391 error = ENOENT;
5392
5393 /* break if read error or blank sector */
5394 if (error || (dscr == NULL))
5395 break;
5396
5397 /* process descriptor based on the descriptor type */
5398 dscr_type = udf_rw16(dscr->tag.id);
5399 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5400
5401 /* if dealing with an indirect entry, follow the link */
5402 if (dscr_type == TAGID_INDIRECTENTRY) {
5403 needs_indirect = 0;
5404 next_icb_loc = dscr->inde.indirect_icb;
5405 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5406 icb_loc = next_icb_loc;
5407 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) {
5408 error = EMLINK;
5409 break;
5410 }
5411 continue;
5412 }
5413
5414 /* only file entries and extended file entries allowed here */
5415 if ((dscr_type != TAGID_FENTRY) &&
5416 (dscr_type != TAGID_EXTFENTRY)) {
5417 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5418 error = ENOENT;
5419 break;
5420 }
5421
5422 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5423
5424 /* choose this one */
5425 last_fe_icb_loc = icb_loc;
5426
5427 /* record and process/update (ext)fentry */
5428 if (dscr_type == TAGID_FENTRY) {
5429 if (udf_node->fe)
5430 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5431 udf_node->fe);
5432 udf_node->fe = &dscr->fe;
5433 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5434 udf_file_type = udf_node->fe->icbtag.file_type;
5435 file_size = udf_rw64(udf_node->fe->inf_len);
5436 } else {
5437 if (udf_node->efe)
5438 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5439 udf_node->efe);
5440 udf_node->efe = &dscr->efe;
5441 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5442 udf_file_type = udf_node->efe->icbtag.file_type;
5443 file_size = udf_rw64(udf_node->efe->inf_len);
5444 }
5445
5446 /* check recording strategy (structure) */
5447
5448 /*
5449 * Strategy 4096 is a daisy linked chain terminating with an
5450 * unrecorded sector or a TERM descriptor. The next
5451 * descriptor is to be found in the sector that follows the
5452 * current sector.
5453 */
5454 if (strat == 4096) {
5455 strat4096 = 1;
5456 needs_indirect = 1;
5457
5458 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5459 }
5460
5461 /*
5462 * Strategy 4 is the normal strategy and terminates, but if
5463 * we're in strategy 4096, we can't have strategy 4 mixed in
5464 */
5465
5466 if (strat == 4) {
5467 if (strat4096) {
5468 error = EINVAL;
5469 break;
5470 }
5471 break; /* done */
5472 }
5473 } while (!error);
5474
5475 /* first round of cleanup code */
5476 if (error) {
5477 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5478 /* recycle udf_node */
5479 udf_dispose_node(udf_node);
5480
5481 return EINVAL; /* error code ok? */
5482 }
5483 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5484
5485 /* assert no references to dscr anymore beyong this point */
5486 assert((udf_node->fe) || (udf_node->efe));
5487 dscr = NULL;
5488
5489 /*
5490 * Remember where to record an updated version of the descriptor. If
5491 * there is a sequence of indirect entries, icb_loc will have been
5492 * updated. Its the write disipline to allocate new space and to make
5493 * sure the chain is maintained.
5494 *
5495 * `needs_indirect' flags if the next location is to be filled with
5496 * with an indirect entry.
5497 */
5498 udf_node->write_loc = icb_loc;
5499 udf_node->needs_indirect = needs_indirect;
5500
5501 /*
5502 * Go trough all allocations extents of this descriptor and when
5503 * encountering a redirect read in the allocation extension. These are
5504 * daisy-chained.
5505 */
5506 UDF_LOCK_NODE(udf_node, 0);
5507 udf_node->num_extensions = 0;
5508
5509 error = 0;
5510 slot = 0;
5511 for (;;) {
5512 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5513 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5514 "lb_num = %d, part = %d\n", slot, eof,
5515 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5516 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5517 udf_rw32(icb_loc.loc.lb_num),
5518 udf_rw16(icb_loc.loc.part_num)));
5519 if (eof)
5520 break;
5521 slot++;
5522
5523 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5524 continue;
5525
5526 DPRINTF(NODE, ("\tgot redirect extent\n"));
5527 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5528 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5529 "too many allocation extensions on "
5530 "udf_node\n"));
5531 error = EINVAL;
5532 break;
5533 }
5534
5535 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5536 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5537 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5538 "extension size in udf_node\n"));
5539 error = EINVAL;
5540 break;
5541 }
5542
5543 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5544 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5545 /* load in allocation extent */
5546 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5547 if (error || (dscr == NULL))
5548 break;
5549
5550 /* process read-in descriptor */
5551 dscr_type = udf_rw16(dscr->tag.id);
5552
5553 if (dscr_type != TAGID_ALLOCEXTENT) {
5554 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5555 error = ENOENT;
5556 break;
5557 }
5558
5559 DPRINTF(NODE, ("\trecording redirect extent\n"));
5560 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5561 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5562
5563 udf_node->num_extensions++;
5564
5565 } /* while */
5566 UDF_UNLOCK_NODE(udf_node, 0);
5567
5568 /* second round of cleanup code */
5569 if (error) {
5570 /* recycle udf_node */
5571 udf_dispose_node(udf_node);
5572
5573 return EINVAL; /* error code ok? */
5574 }
5575
5576 DPRINTF(NODE, ("\tnode read in fine\n"));
5577
5578 /*
5579 * Translate UDF filetypes into vnode types.
5580 *
5581 * Systemfiles like the meta main and mirror files are not treated as
5582 * normal files, so we type them as having no type. UDF dictates that
5583 * they are not allowed to be visible.
5584 */
5585
5586 switch (udf_file_type) {
5587 case UDF_ICB_FILETYPE_DIRECTORY :
5588 case UDF_ICB_FILETYPE_STREAMDIR :
5589 vp->v_type = VDIR;
5590 break;
5591 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5592 vp->v_type = VBLK;
5593 break;
5594 case UDF_ICB_FILETYPE_CHARDEVICE :
5595 vp->v_type = VCHR;
5596 break;
5597 case UDF_ICB_FILETYPE_SOCKET :
5598 vp->v_type = VSOCK;
5599 break;
5600 case UDF_ICB_FILETYPE_FIFO :
5601 vp->v_type = VFIFO;
5602 break;
5603 case UDF_ICB_FILETYPE_SYMLINK :
5604 vp->v_type = VLNK;
5605 break;
5606 case UDF_ICB_FILETYPE_VAT :
5607 case UDF_ICB_FILETYPE_META_MAIN :
5608 case UDF_ICB_FILETYPE_META_MIRROR :
5609 vp->v_type = VNON;
5610 break;
5611 case UDF_ICB_FILETYPE_RANDOMACCESS :
5612 case UDF_ICB_FILETYPE_REALTIME :
5613 vp->v_type = VREG;
5614 break;
5615 default:
5616 /* YIKES, something else */
5617 vp->v_type = VNON;
5618 }
5619
5620 /* TODO specfs, fifofs etc etc. vnops setting */
5621
5622 /* don't forget to set vnode's v_size */
5623 uvm_vnp_setsize(vp, file_size);
5624
5625 /* TODO ext attr and streamdir udf_nodes */
5626
5627 *new_key = &udf_node->loc.loc;
5628
5629 return 0;
5630 }
5631
5632 int
5633 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5634 struct udf_node **udf_noderes, int lktype)
5635 {
5636 int error;
5637 struct vnode *vp;
5638
5639 *udf_noderes = NULL;
5640
5641 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc,
5642 sizeof(node_icb_loc->loc), &vp);
5643 if (error)
5644 return error;
5645 error = vn_lock(vp, lktype);
5646 if (error) {
5647 vrele(vp);
5648 return error;
5649 }
5650 *udf_noderes = VTOI(vp);
5651 return 0;
5652 }
5653
5654 /* --------------------------------------------------------------------- */
5655
5656 int
5657 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5658 {
5659 union dscrptr *dscr;
5660 struct long_ad *loc;
5661 int extnr, error;
5662
5663 DPRINTF(NODE, ("udf_writeout_node called\n"));
5664
5665 KASSERT(udf_node->outstanding_bufs == 0);
5666 KASSERT(udf_node->outstanding_nodedscr == 0);
5667
5668 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5669
5670 if (udf_node->i_flags & IN_DELETED) {
5671 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5672 udf_cleanup_reservation(udf_node);
5673 return 0;
5674 }
5675
5676 /* lock node; unlocked in callback */
5677 UDF_LOCK_NODE(udf_node, 0);
5678
5679 /* remove pending reservations, we're written out */
5680 udf_cleanup_reservation(udf_node);
5681
5682 /* at least one descriptor writeout */
5683 udf_node->outstanding_nodedscr = 1;
5684
5685 /* we're going to write out the descriptor so clear the flags */
5686 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5687
5688 /* if we were rebuild, write out the allocation extents */
5689 if (udf_node->i_flags & IN_NODE_REBUILD) {
5690 /* mark outstanding node descriptors and issue them */
5691 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5692 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5693 loc = &udf_node->ext_loc[extnr];
5694 dscr = (union dscrptr *) udf_node->ext[extnr];
5695 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5696 if (error)
5697 return error;
5698 }
5699 /* mark allocation extents written out */
5700 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5701 }
5702
5703 if (udf_node->fe) {
5704 KASSERT(udf_node->efe == NULL);
5705 dscr = (union dscrptr *) udf_node->fe;
5706 } else {
5707 KASSERT(udf_node->efe);
5708 KASSERT(udf_node->fe == NULL);
5709 dscr = (union dscrptr *) udf_node->efe;
5710 }
5711 KASSERT(dscr);
5712
5713 loc = &udf_node->write_loc;
5714 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5715
5716 return error;
5717 }
5718
5719 /* --------------------------------------------------------------------- */
5720
5721 int
5722 udf_dispose_node(struct udf_node *udf_node)
5723 {
5724 struct vnode *vp;
5725 int extnr;
5726
5727 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5728 if (!udf_node) {
5729 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5730 return 0;
5731 }
5732
5733 vp = udf_node->vnode;
5734 #ifdef DIAGNOSTIC
5735 if (vp->v_numoutput)
5736 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5737 "v_numoutput = %d", udf_node, vp->v_numoutput);
5738 #endif
5739
5740 udf_cleanup_reservation(udf_node);
5741
5742 /* TODO extended attributes and streamdir */
5743
5744 /* remove dirhash if present */
5745 dirhash_purge(&udf_node->dir_hash);
5746
5747 /* destroy our lock */
5748 mutex_destroy(&udf_node->node_mutex);
5749 cv_destroy(&udf_node->node_lock);
5750
5751 /* dissociate our udf_node from the vnode */
5752 genfs_node_destroy(udf_node->vnode);
5753 mutex_enter(vp->v_interlock);
5754 vp->v_data = NULL;
5755 mutex_exit(vp->v_interlock);
5756
5757 /* free associated memory and the node itself */
5758 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5759 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5760 udf_node->ext[extnr]);
5761 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5762 }
5763
5764 if (udf_node->fe)
5765 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5766 udf_node->fe);
5767 if (udf_node->efe)
5768 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5769 udf_node->efe);
5770
5771 udf_node->fe = (void *) 0xdeadaaaa;
5772 udf_node->efe = (void *) 0xdeadbbbb;
5773 udf_node->ump = (void *) 0xdeadbeef;
5774 pool_put(&udf_node_pool, udf_node);
5775
5776 return 0;
5777 }
5778
5779
5780
5781 /*
5782 * create a new node using the specified dvp, vap and cnp.
5783 * This allows special files to be created. Use with care.
5784 */
5785
5786 int
5787 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
5788 struct vattr *vap, kauth_cred_t cred, void *extra,
5789 size_t *key_len, const void **new_key)
5790 {
5791 union dscrptr *dscr;
5792 struct udf_node *dir_node = VTOI(dvp);
5793 struct udf_node *udf_node;
5794 struct udf_mount *ump = dir_node->ump;
5795 struct long_ad node_icb_loc;
5796 uint64_t parent_unique_id;
5797 uint64_t lmapping;
5798 uint32_t lb_size, lb_num;
5799 uint16_t vpart_num;
5800 uid_t uid;
5801 gid_t gid, parent_gid;
5802 int (**vnodeops)(void *);
5803 int udf_file_type, fid_size, error;
5804
5805 vnodeops = udf_vnodeop_p;
5806 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5807
5808 switch (vap->va_type) {
5809 case VREG :
5810 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5811 break;
5812 case VDIR :
5813 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5814 break;
5815 case VLNK :
5816 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5817 break;
5818 case VBLK :
5819 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5820 /* specfs */
5821 return ENOTSUP;
5822 break;
5823 case VCHR :
5824 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5825 /* specfs */
5826 return ENOTSUP;
5827 break;
5828 case VFIFO :
5829 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5830 /* fifofs */
5831 return ENOTSUP;
5832 break;
5833 case VSOCK :
5834 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5835 return ENOTSUP;
5836 break;
5837 case VNON :
5838 case VBAD :
5839 default :
5840 /* nothing; can we even create these? */
5841 return EINVAL;
5842 }
5843
5844 lb_size = udf_rw32(ump->logical_vol->lb_size);
5845
5846 /* reserve space for one logical block */
5847 vpart_num = ump->node_part;
5848 error = udf_reserve_space(ump, NULL, UDF_C_NODE,
5849 vpart_num, 1, /* can_fail */ true);
5850 if (error)
5851 return error;
5852
5853 /* allocate node */
5854 error = udf_allocate_space(ump, NULL, UDF_C_NODE,
5855 vpart_num, 1, &lmapping);
5856 if (error) {
5857 udf_do_unreserve_space(ump, NULL, vpart_num, 1);
5858 return error;
5859 }
5860
5861 lb_num = lmapping;
5862
5863 /* initialise pointer to location */
5864 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5865 node_icb_loc.len = udf_rw32(lb_size);
5866 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5867 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5868
5869 /* build udf_node (do initialise!) */
5870 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5871 memset(udf_node, 0, sizeof(struct udf_node));
5872
5873 /* initialise crosslinks, note location of fe/efe for hashing */
5874 /* bugalert: synchronise with udf_get_node() */
5875 udf_node->ump = ump;
5876 udf_node->vnode = vp;
5877 vp->v_data = udf_node;
5878 udf_node->loc = node_icb_loc;
5879 udf_node->write_loc = node_icb_loc;
5880 udf_node->lockf = 0;
5881 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5882 cv_init(&udf_node->node_lock, "udf_nlk");
5883 udf_node->outstanding_bufs = 0;
5884 udf_node->outstanding_nodedscr = 0;
5885 udf_node->uncommitted_lbs = 0;
5886
5887 vp->v_tag = VT_UDF;
5888 vp->v_op = vnodeops;
5889
5890 /* initialise genfs */
5891 genfs_node_init(vp, &udf_genfsops);
5892
5893 /* get parent's unique ID for refering '..' if its a directory */
5894 if (dir_node->fe) {
5895 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5896 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5897 } else {
5898 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5899 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5900 }
5901
5902 /* get descriptor */
5903 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5904
5905 /* choose a fe or an efe for it */
5906 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5907 udf_node->fe = &dscr->fe;
5908 fid_size = udf_create_new_fe(ump, udf_node->fe,
5909 udf_file_type, &udf_node->loc,
5910 &dir_node->loc, parent_unique_id);
5911 /* TODO add extended attribute for creation time */
5912 } else {
5913 udf_node->efe = &dscr->efe;
5914 fid_size = udf_create_new_efe(ump, udf_node->efe,
5915 udf_file_type, &udf_node->loc,
5916 &dir_node->loc, parent_unique_id);
5917 }
5918 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5919
5920 /* update vnode's size and type */
5921 vp->v_type = vap->va_type;
5922 uvm_vnp_setsize(vp, fid_size);
5923
5924 /* set access mode */
5925 udf_setaccessmode(udf_node, vap->va_mode);
5926
5927 /* set ownership */
5928 uid = kauth_cred_geteuid(cred);
5929 gid = parent_gid;
5930 udf_setownership(udf_node, uid, gid);
5931
5932 *key_len = sizeof(udf_node->loc.loc);
5933 *new_key = &udf_node->loc.loc;
5934
5935 return 0;
5936 }
5937
5938
5939 int
5940 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5941 struct componentname *cnp)
5942 {
5943 struct udf_node *udf_node, *dir_node = VTOI(dvp);
5944 struct udf_mount *ump = dir_node->ump;
5945 int error;
5946
5947 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, NULL, vpp);
5948 if (error)
5949 return error;
5950
5951 udf_node = VTOI(*vpp);
5952 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5953 if (error) {
5954 struct long_ad *node_icb_loc = &udf_node->loc;
5955 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num);
5956 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num);
5957
5958 /* free disc allocation for node */
5959 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5960
5961 /* recycle udf_node */
5962 udf_dispose_node(udf_node);
5963 vrele(*vpp);
5964
5965 *vpp = NULL;
5966 return error;
5967 }
5968
5969 /* adjust file count */
5970 udf_adjust_filecount(udf_node, 1);
5971
5972 cache_enter(dvp, *vpp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_flags);
5973 return 0;
5974 }
5975
5976 /* --------------------------------------------------------------------- */
5977
5978 static void
5979 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5980 {
5981 struct udf_mount *ump = udf_node->ump;
5982 uint32_t lb_size, lb_num, len, num_lb;
5983 uint16_t vpart_num;
5984
5985 /* is there really one? */
5986 if (mem == NULL)
5987 return;
5988
5989 /* got a descriptor here */
5990 len = UDF_EXT_LEN(udf_rw32(loc->len));
5991 lb_num = udf_rw32(loc->loc.lb_num);
5992 vpart_num = udf_rw16(loc->loc.part_num);
5993
5994 lb_size = udf_rw32(ump->logical_vol->lb_size);
5995 num_lb = (len + lb_size -1) / lb_size;
5996
5997 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5998 }
5999
6000 void
6001 udf_delete_node(struct udf_node *udf_node)
6002 {
6003 void *dscr;
6004 struct long_ad *loc;
6005 int extnr, lvint, dummy;
6006
6007 if (udf_node->i_flags & IN_NO_DELETE)
6008 return;
6009
6010 /* paranoia check on integrity; should be open!; we could panic */
6011 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
6012 if (lvint == UDF_INTEGRITY_CLOSED)
6013 printf("\tIntegrity was CLOSED!\n");
6014
6015 /* whatever the node type, change its size to zero */
6016 (void) udf_resize_node(udf_node, 0, &dummy);
6017
6018 /* force it to be `clean'; no use writing it out */
6019 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
6020 IN_CHANGE | IN_UPDATE | IN_MODIFY);
6021
6022 /* adjust file count */
6023 udf_adjust_filecount(udf_node, -1);
6024
6025 /*
6026 * Free its allocated descriptors; memory will be released when
6027 * vop_reclaim() is called.
6028 */
6029 loc = &udf_node->loc;
6030
6031 dscr = udf_node->fe;
6032 udf_free_descriptor_space(udf_node, loc, dscr);
6033 dscr = udf_node->efe;
6034 udf_free_descriptor_space(udf_node, loc, dscr);
6035
6036 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
6037 dscr = udf_node->ext[extnr];
6038 loc = &udf_node->ext_loc[extnr];
6039 udf_free_descriptor_space(udf_node, loc, dscr);
6040 }
6041 }
6042
6043 /* --------------------------------------------------------------------- */
6044
6045 /* set new filesize; node but be LOCKED on entry and is locked on exit */
6046 int
6047 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
6048 {
6049 struct file_entry *fe = udf_node->fe;
6050 struct extfile_entry *efe = udf_node->efe;
6051 uint64_t file_size;
6052 int error;
6053
6054 if (fe) {
6055 file_size = udf_rw64(fe->inf_len);
6056 } else {
6057 assert(udf_node->efe);
6058 file_size = udf_rw64(efe->inf_len);
6059 }
6060
6061 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
6062 file_size, new_size));
6063
6064 /* if not changing, we're done */
6065 if (file_size == new_size)
6066 return 0;
6067
6068 *extended = (new_size > file_size);
6069 if (*extended) {
6070 error = udf_grow_node(udf_node, new_size);
6071 } else {
6072 error = udf_shrink_node(udf_node, new_size);
6073 }
6074
6075 return error;
6076 }
6077
6078
6079 /* --------------------------------------------------------------------- */
6080
6081 void
6082 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
6083 struct timespec *mod, struct timespec *birth)
6084 {
6085 struct timespec now;
6086 struct file_entry *fe;
6087 struct extfile_entry *efe;
6088 struct filetimes_extattr_entry *ft_extattr;
6089 struct timestamp *atime, *mtime, *attrtime, *ctime;
6090 struct timestamp fe_ctime;
6091 struct timespec cur_birth;
6092 uint32_t offset, a_l;
6093 uint8_t *filedata;
6094 int error;
6095
6096 /* protect against rogue values */
6097 if (!udf_node)
6098 return;
6099
6100 fe = udf_node->fe;
6101 efe = udf_node->efe;
6102
6103 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
6104 return;
6105
6106 /* get descriptor information */
6107 if (fe) {
6108 atime = &fe->atime;
6109 mtime = &fe->mtime;
6110 attrtime = &fe->attrtime;
6111 filedata = fe->data;
6112
6113 /* initial save dummy setting */
6114 ctime = &fe_ctime;
6115
6116 /* check our extended attribute if present */
6117 error = udf_extattr_search_intern(udf_node,
6118 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
6119 if (!error) {
6120 ft_extattr = (struct filetimes_extattr_entry *)
6121 (filedata + offset);
6122 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
6123 ctime = &ft_extattr->times[0];
6124 }
6125 /* TODO create the extended attribute if not found ? */
6126 } else {
6127 assert(udf_node->efe);
6128 atime = &efe->atime;
6129 mtime = &efe->mtime;
6130 attrtime = &efe->attrtime;
6131 ctime = &efe->ctime;
6132 }
6133
6134 vfs_timestamp(&now);
6135
6136 /* set access time */
6137 if (udf_node->i_flags & IN_ACCESS) {
6138 if (acc == NULL)
6139 acc = &now;
6140 udf_timespec_to_timestamp(acc, atime);
6141 }
6142
6143 /* set modification time */
6144 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
6145 if (mod == NULL)
6146 mod = &now;
6147 udf_timespec_to_timestamp(mod, mtime);
6148
6149 /* ensure birthtime is older than set modification! */
6150 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
6151 if ((cur_birth.tv_sec > mod->tv_sec) ||
6152 ((cur_birth.tv_sec == mod->tv_sec) &&
6153 (cur_birth.tv_nsec > mod->tv_nsec))) {
6154 udf_timespec_to_timestamp(mod, ctime);
6155 }
6156 }
6157
6158 /* update birthtime if specified */
6159 /* XXX we assume here that given birthtime is older than mod */
6160 if (birth && (birth->tv_sec != VNOVAL)) {
6161 udf_timespec_to_timestamp(birth, ctime);
6162 }
6163
6164 /* set change time */
6165 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
6166 udf_timespec_to_timestamp(&now, attrtime);
6167
6168 /* notify updates to the node itself */
6169 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
6170 udf_node->i_flags |= IN_ACCESSED;
6171 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
6172 udf_node->i_flags |= IN_MODIFIED;
6173
6174 /* clear modification flags */
6175 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
6176 }
6177
6178 /* --------------------------------------------------------------------- */
6179
6180 int
6181 udf_update(struct vnode *vp, struct timespec *acc,
6182 struct timespec *mod, struct timespec *birth, int updflags)
6183 {
6184 union dscrptr *dscrptr;
6185 struct udf_node *udf_node = VTOI(vp);
6186 struct udf_mount *ump = udf_node->ump;
6187 struct regid *impl_id;
6188 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
6189 int waitfor, flags;
6190
6191 #ifdef DEBUG
6192 char bits[128];
6193 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
6194 updflags));
6195 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
6196 DPRINTF(CALL, ("\tnode flags %s\n", bits));
6197 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
6198 #endif
6199
6200 /* set our times */
6201 udf_itimes(udf_node, acc, mod, birth);
6202
6203 /* set our implementation id */
6204 if (udf_node->fe) {
6205 dscrptr = (union dscrptr *) udf_node->fe;
6206 impl_id = &udf_node->fe->imp_id;
6207 } else {
6208 dscrptr = (union dscrptr *) udf_node->efe;
6209 impl_id = &udf_node->efe->imp_id;
6210 }
6211
6212 /* set our ID */
6213 udf_set_regid(impl_id, IMPL_NAME);
6214 udf_add_impl_regid(ump, impl_id);
6215
6216 /* update our crc! on RMW we are not allowed to change a thing */
6217 udf_validate_tag_and_crc_sums(dscrptr);
6218
6219 /* if called when mounted readonly, never write back */
6220 if (vp->v_mount->mnt_flag & MNT_RDONLY)
6221 return 0;
6222
6223 /* check if the node is dirty 'enough'*/
6224 if (updflags & UPDATE_CLOSE) {
6225 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6226 } else {
6227 flags = udf_node->i_flags & IN_MODIFIED;
6228 }
6229 if (flags == 0)
6230 return 0;
6231
6232 /* determine if we need to write sync or async */
6233 waitfor = 0;
6234 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6235 /* sync mounted */
6236 waitfor = updflags & UPDATE_WAIT;
6237 if (updflags & UPDATE_DIROP)
6238 waitfor |= UPDATE_WAIT;
6239 }
6240 if (waitfor)
6241 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6242
6243 return 0;
6244 }
6245
6246
6247 /* --------------------------------------------------------------------- */
6248
6249
6250 /*
6251 * Read one fid and process it into a dirent and advance to the next (*fid)
6252 * has to be allocated a logical block in size, (*dirent) struct dirent length
6253 */
6254
6255 int
6256 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6257 struct fileid_desc *fid, struct dirent *dirent)
6258 {
6259 struct udf_node *dir_node = VTOI(vp);
6260 struct udf_mount *ump = dir_node->ump;
6261 struct file_entry *fe = dir_node->fe;
6262 struct extfile_entry *efe = dir_node->efe;
6263 uint32_t fid_size, lb_size;
6264 uint64_t file_size;
6265 char *fid_name;
6266 int enough, error;
6267
6268 assert(fid);
6269 assert(dirent);
6270 assert(dir_node);
6271 assert(offset);
6272 assert(*offset != 1);
6273
6274 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6275 /* check if we're past the end of the directory */
6276 if (fe) {
6277 file_size = udf_rw64(fe->inf_len);
6278 } else {
6279 assert(dir_node->efe);
6280 file_size = udf_rw64(efe->inf_len);
6281 }
6282 if (*offset >= file_size)
6283 return EINVAL;
6284
6285 /* get maximum length of FID descriptor */
6286 lb_size = udf_rw32(ump->logical_vol->lb_size);
6287
6288 /* initialise return values */
6289 fid_size = 0;
6290 memset(dirent, 0, sizeof(struct dirent));
6291 memset(fid, 0, lb_size);
6292
6293 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6294 if (!enough) {
6295 /* short dir ... */
6296 return EIO;
6297 }
6298
6299 error = vn_rdwr(UIO_READ, vp,
6300 fid, MIN(file_size - (*offset), lb_size), *offset,
6301 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6302 NULL, NULL);
6303 if (error)
6304 return error;
6305
6306 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6307 /*
6308 * Check if we got a whole descriptor.
6309 * TODO Try to `resync' directory stream when something is very wrong.
6310 */
6311
6312 /* check if our FID header is OK */
6313 error = udf_check_tag(fid);
6314 if (error) {
6315 goto brokendir;
6316 }
6317 DPRINTF(FIDS, ("\ttag check ok\n"));
6318
6319 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6320 error = EIO;
6321 goto brokendir;
6322 }
6323 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6324
6325 /* check for length */
6326 fid_size = udf_fidsize(fid);
6327 enough = (file_size - (*offset) >= fid_size);
6328 if (!enough) {
6329 error = EIO;
6330 goto brokendir;
6331 }
6332 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6333
6334 /* check FID contents */
6335 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6336 brokendir:
6337 if (error) {
6338 /* note that is sometimes a bit quick to report */
6339 printf("UDF: BROKEN DIRECTORY ENTRY\n");
6340 /* RESYNC? */
6341 /* TODO: use udf_resync_fid_stream */
6342 return EIO;
6343 }
6344 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6345
6346 /* we got a whole and valid descriptor! */
6347 DPRINTF(FIDS, ("\tinterpret FID\n"));
6348
6349 /* create resulting dirent structure */
6350 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6351 udf_to_unix_name(dirent->d_name, NAME_MAX,
6352 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6353
6354 /* '..' has no name, so provide one */
6355 if (fid->file_char & UDF_FILE_CHAR_PAR)
6356 strcpy(dirent->d_name, "..");
6357
6358 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */
6359 dirent->d_namlen = strlen(dirent->d_name);
6360 dirent->d_reclen = _DIRENT_SIZE(dirent);
6361
6362 /*
6363 * Note that its not worth trying to go for the filetypes now... its
6364 * too expensive too
6365 */
6366 dirent->d_type = DT_UNKNOWN;
6367
6368 /* initial guess for filetype we can make */
6369 if (fid->file_char & UDF_FILE_CHAR_DIR)
6370 dirent->d_type = DT_DIR;
6371
6372 /* advance */
6373 *offset += fid_size;
6374
6375 return error;
6376 }
6377
6378
6379 /* --------------------------------------------------------------------- */
6380
6381 static void
6382 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int pass, int *ndirty)
6383 {
6384 struct udf_node *udf_node, *n_udf_node;
6385 struct vnode *vp;
6386 int vdirty, error;
6387
6388 KASSERT(mutex_owned(&ump->sync_lock));
6389
6390 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6391 udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6392 for (;udf_node; udf_node = n_udf_node) {
6393 DPRINTF(SYNC, ("."));
6394
6395 vp = udf_node->vnode;
6396
6397 n_udf_node = rb_tree_iterate(&ump->udf_node_tree,
6398 udf_node, RB_DIR_RIGHT);
6399
6400 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
6401 if (error) {
6402 KASSERT(error == EBUSY);
6403 *ndirty += 1;
6404 continue;
6405 }
6406
6407 switch (pass) {
6408 case 1:
6409 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6410 break;
6411 case 2:
6412 vdirty = vp->v_numoutput;
6413 if (vp->v_tag == VT_UDF)
6414 vdirty += udf_node->outstanding_bufs +
6415 udf_node->outstanding_nodedscr;
6416 if (vdirty == 0)
6417 VOP_FSYNC(vp, cred, 0,0,0);
6418 *ndirty += vdirty;
6419 break;
6420 case 3:
6421 vdirty = vp->v_numoutput;
6422 if (vp->v_tag == VT_UDF)
6423 vdirty += udf_node->outstanding_bufs +
6424 udf_node->outstanding_nodedscr;
6425 *ndirty += vdirty;
6426 break;
6427 }
6428
6429 VOP_UNLOCK(vp);
6430 }
6431 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6432 }
6433
6434
6435 static bool
6436 udf_sync_selector(void *cl, struct vnode *vp)
6437 {
6438 struct udf_node *udf_node;
6439
6440 KASSERT(mutex_owned(vp->v_interlock));
6441
6442 udf_node = VTOI(vp);
6443
6444 if (vp->v_vflag & VV_SYSTEM)
6445 return false;
6446 if (vp->v_type == VNON)
6447 return false;
6448 if (udf_node == NULL)
6449 return false;
6450 if ((udf_node->i_flags & (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0)
6451 return false;
6452 if (LIST_EMPTY(&vp->v_dirtyblkhd) && (vp->v_iflag & VI_ONWORKLST) == 0)
6453 return false;
6454
6455 return true;
6456 }
6457
6458 void
6459 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6460 {
6461 struct vnode_iterator *marker;
6462 struct vnode *vp;
6463 struct udf_node *udf_node, *udf_next_node;
6464 int dummy, ndirty;
6465
6466 if (waitfor == MNT_LAZY)
6467 return;
6468
6469 mutex_enter(&ump->sync_lock);
6470
6471 /* Fill the rbtree with nodes to sync. */
6472 vfs_vnode_iterator_init(ump->vfs_mountp, &marker);
6473 while ((vp = vfs_vnode_iterator_next(marker,
6474 udf_sync_selector, NULL)) != NULL) {
6475 udf_node = VTOI(vp);
6476 udf_node->i_flags |= IN_SYNCED;
6477 rb_tree_insert_node(&ump->udf_node_tree, udf_node);
6478 }
6479 vfs_vnode_iterator_destroy(marker);
6480
6481 dummy = 0;
6482 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6483 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6484 udf_sync_pass(ump, cred, 1, &dummy);
6485
6486 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6487 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6488 udf_sync_pass(ump, cred, 2, &dummy);
6489
6490 if (waitfor == MNT_WAIT) {
6491 recount:
6492 ndirty = ump->devvp->v_numoutput;
6493 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6494 ndirty));
6495 udf_sync_pass(ump, cred, 3, &ndirty);
6496 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6497 ndirty));
6498
6499 if (ndirty) {
6500 /* 1/4 second wait */
6501 kpause("udfsync2", false, hz/4, NULL);
6502 goto recount;
6503 }
6504 }
6505
6506 /* Clean the rbtree. */
6507 for (udf_node = RB_TREE_MIN(&ump->udf_node_tree);
6508 udf_node; udf_node = udf_next_node) {
6509 udf_next_node = rb_tree_iterate(&ump->udf_node_tree,
6510 udf_node, RB_DIR_RIGHT);
6511 rb_tree_remove_node(&ump->udf_node_tree, udf_node);
6512 udf_node->i_flags &= ~IN_SYNCED;
6513 vrele(udf_node->vnode);
6514 }
6515
6516 mutex_exit(&ump->sync_lock);
6517 }
6518
6519 /* --------------------------------------------------------------------- */
6520
6521 /*
6522 * Read and write file extent in/from the buffer.
6523 *
6524 * The splitup of the extent into separate request-buffers is to minimise
6525 * copying around as much as possible.
6526 *
6527 * block based file reading and writing
6528 */
6529
6530 static int
6531 udf_read_internal(struct udf_node *node, uint8_t *blob)
6532 {
6533 struct udf_mount *ump;
6534 struct file_entry *fe = node->fe;
6535 struct extfile_entry *efe = node->efe;
6536 uint64_t inflen;
6537 uint32_t sector_size;
6538 uint8_t *srcpos;
6539 int icbflags, addr_type;
6540
6541 /* get extent and do some paranoia checks */
6542 ump = node->ump;
6543 sector_size = ump->discinfo.sector_size;
6544
6545 /*
6546 * XXX there should be real bounds-checking logic here,
6547 * in case ->l_ea or ->inf_len contains nonsense.
6548 */
6549
6550 if (fe) {
6551 inflen = udf_rw64(fe->inf_len);
6552 srcpos = &fe->data[0] + udf_rw32(fe->l_ea);
6553 icbflags = udf_rw16(fe->icbtag.flags);
6554 } else {
6555 assert(node->efe);
6556 inflen = udf_rw64(efe->inf_len);
6557 srcpos = &efe->data[0] + udf_rw32(efe->l_ea);
6558 icbflags = udf_rw16(efe->icbtag.flags);
6559 }
6560 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6561
6562 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6563 __USE(addr_type);
6564 assert(inflen < sector_size);
6565
6566 /* copy out info */
6567 memcpy(blob, srcpos, inflen);
6568 memset(&blob[inflen], 0, sector_size - inflen);
6569
6570 return 0;
6571 }
6572
6573
6574 static int
6575 udf_write_internal(struct udf_node *node, uint8_t *blob)
6576 {
6577 struct udf_mount *ump;
6578 struct file_entry *fe = node->fe;
6579 struct extfile_entry *efe = node->efe;
6580 uint64_t inflen;
6581 uint32_t sector_size;
6582 uint8_t *pos;
6583 int icbflags, addr_type;
6584
6585 /* get extent and do some paranoia checks */
6586 ump = node->ump;
6587 sector_size = ump->discinfo.sector_size;
6588
6589 if (fe) {
6590 inflen = udf_rw64(fe->inf_len);
6591 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6592 icbflags = udf_rw16(fe->icbtag.flags);
6593 } else {
6594 assert(node->efe);
6595 inflen = udf_rw64(efe->inf_len);
6596 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6597 icbflags = udf_rw16(efe->icbtag.flags);
6598 }
6599 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6600
6601 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6602 __USE(addr_type);
6603 assert(inflen < sector_size);
6604 __USE(sector_size);
6605
6606 /* copy in blob */
6607 /* memset(pos, 0, inflen); */
6608 memcpy(pos, blob, inflen);
6609
6610 return 0;
6611 }
6612
6613
6614 void
6615 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6616 {
6617 struct buf *nestbuf;
6618 struct udf_mount *ump = udf_node->ump;
6619 uint64_t *mapping;
6620 uint64_t run_start;
6621 uint32_t sector_size;
6622 uint32_t buf_offset, sector, rbuflen, rblk;
6623 uint32_t from, lblkno;
6624 uint32_t sectors;
6625 uint8_t *buf_pos;
6626 int error, run_length, what;
6627
6628 sector_size = udf_node->ump->discinfo.sector_size;
6629
6630 from = buf->b_blkno;
6631 sectors = buf->b_bcount / sector_size;
6632
6633 what = udf_get_c_type(udf_node);
6634
6635 /* assure we have enough translation slots */
6636 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6637 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6638
6639 if (sectors > UDF_MAX_MAPPINGS) {
6640 printf("udf_read_filebuf: implementation limit on bufsize\n");
6641 buf->b_error = EIO;
6642 biodone(buf);
6643 return;
6644 }
6645
6646 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6647
6648 error = 0;
6649 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6650 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6651 if (error) {
6652 buf->b_error = error;
6653 biodone(buf);
6654 goto out;
6655 }
6656 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6657
6658 /* pre-check if its an internal */
6659 if (*mapping == UDF_TRANS_INTERN) {
6660 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6661 if (error)
6662 buf->b_error = error;
6663 biodone(buf);
6664 goto out;
6665 }
6666 DPRINTF(READ, ("\tnot intern\n"));
6667
6668 #ifdef DEBUG
6669 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6670 printf("Returned translation table:\n");
6671 for (sector = 0; sector < sectors; sector++) {
6672 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6673 }
6674 }
6675 #endif
6676
6677 /* request read-in of data from disc sheduler */
6678 buf->b_resid = buf->b_bcount;
6679 for (sector = 0; sector < sectors; sector++) {
6680 buf_offset = sector * sector_size;
6681 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6682 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6683
6684 /* check if its zero or unmapped to stop reading */
6685 switch (mapping[sector]) {
6686 case UDF_TRANS_UNMAPPED:
6687 case UDF_TRANS_ZERO:
6688 /* copy zero sector TODO runlength like below */
6689 memset(buf_pos, 0, sector_size);
6690 DPRINTF(READ, ("\treturning zero sector\n"));
6691 nestiobuf_done(buf, sector_size, 0);
6692 break;
6693 default :
6694 DPRINTF(READ, ("\tread sector "
6695 "%"PRIu64"\n", mapping[sector]));
6696
6697 lblkno = from + sector;
6698 run_start = mapping[sector];
6699 run_length = 1;
6700 while (sector < sectors-1) {
6701 if (mapping[sector+1] != mapping[sector]+1)
6702 break;
6703 run_length++;
6704 sector++;
6705 }
6706
6707 /*
6708 * nest an iobuf and mark it for async reading. Since
6709 * we're using nested buffers, they can't be cached by
6710 * design.
6711 */
6712 rbuflen = run_length * sector_size;
6713 rblk = run_start * (sector_size/DEV_BSIZE);
6714
6715 nestbuf = getiobuf(NULL, true);
6716 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6717 /* nestbuf is B_ASYNC */
6718
6719 /* identify this nestbuf */
6720 nestbuf->b_lblkno = lblkno;
6721 assert(nestbuf->b_vp == udf_node->vnode);
6722
6723 /* CD shedules on raw blkno */
6724 nestbuf->b_blkno = rblk;
6725 nestbuf->b_proc = NULL;
6726 nestbuf->b_rawblkno = rblk;
6727 nestbuf->b_udf_c_type = what;
6728
6729 udf_discstrat_queuebuf(ump, nestbuf);
6730 }
6731 }
6732 out:
6733 /* if we're synchronously reading, wait for the completion */
6734 if ((buf->b_flags & B_ASYNC) == 0)
6735 biowait(buf);
6736
6737 DPRINTF(READ, ("\tend of read_filebuf\n"));
6738 free(mapping, M_TEMP);
6739 return;
6740 }
6741
6742
6743 void
6744 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6745 {
6746 struct buf *nestbuf;
6747 struct udf_mount *ump = udf_node->ump;
6748 uint64_t *mapping;
6749 uint64_t run_start;
6750 uint32_t lb_size;
6751 uint32_t buf_offset, lb_num, rbuflen, rblk;
6752 uint32_t from, lblkno;
6753 uint32_t num_lb;
6754 int error, run_length, what, s;
6755
6756 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6757
6758 from = buf->b_blkno;
6759 num_lb = buf->b_bcount / lb_size;
6760
6761 what = udf_get_c_type(udf_node);
6762
6763 /* assure we have enough translation slots */
6764 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6765 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6766
6767 if (num_lb > UDF_MAX_MAPPINGS) {
6768 printf("udf_write_filebuf: implementation limit on bufsize\n");
6769 buf->b_error = EIO;
6770 biodone(buf);
6771 return;
6772 }
6773
6774 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6775
6776 error = 0;
6777 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6778 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6779 if (error) {
6780 buf->b_error = error;
6781 biodone(buf);
6782 goto out;
6783 }
6784 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6785
6786 /* if its internally mapped, we can write it in the descriptor itself */
6787 if (*mapping == UDF_TRANS_INTERN) {
6788 /* TODO paranoia check if we ARE going to have enough space */
6789 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6790 if (error)
6791 buf->b_error = error;
6792 biodone(buf);
6793 goto out;
6794 }
6795 DPRINTF(WRITE, ("\tnot intern\n"));
6796
6797 /* request write out of data to disc sheduler */
6798 buf->b_resid = buf->b_bcount;
6799 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6800 buf_offset = lb_num * lb_size;
6801 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6802
6803 /*
6804 * Mappings are not that important here. Just before we write
6805 * the lb_num we late-allocate them when needed and update the
6806 * mapping in the udf_node.
6807 */
6808
6809 /* XXX why not ignore the mapping altogether ? */
6810 DPRINTF(WRITE, ("\twrite lb_num "
6811 "%"PRIu64, mapping[lb_num]));
6812
6813 lblkno = from + lb_num;
6814 run_start = mapping[lb_num];
6815 run_length = 1;
6816 while (lb_num < num_lb-1) {
6817 if (mapping[lb_num+1] != mapping[lb_num]+1)
6818 if (mapping[lb_num+1] != mapping[lb_num])
6819 break;
6820 run_length++;
6821 lb_num++;
6822 }
6823 DPRINTF(WRITE, ("+ %d\n", run_length));
6824
6825 /* nest an iobuf on the master buffer for the extent */
6826 rbuflen = run_length * lb_size;
6827 rblk = run_start * (lb_size/DEV_BSIZE);
6828
6829 nestbuf = getiobuf(NULL, true);
6830 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6831 /* nestbuf is B_ASYNC */
6832
6833 /* identify this nestbuf */
6834 nestbuf->b_lblkno = lblkno;
6835 KASSERT(nestbuf->b_vp == udf_node->vnode);
6836
6837 /* CD shedules on raw blkno */
6838 nestbuf->b_blkno = rblk;
6839 nestbuf->b_proc = NULL;
6840 nestbuf->b_rawblkno = rblk;
6841 nestbuf->b_udf_c_type = what;
6842
6843 /* increment our outstanding bufs counter */
6844 s = splbio();
6845 udf_node->outstanding_bufs++;
6846 splx(s);
6847
6848 udf_discstrat_queuebuf(ump, nestbuf);
6849 }
6850 out:
6851 /* if we're synchronously writing, wait for the completion */
6852 if ((buf->b_flags & B_ASYNC) == 0)
6853 biowait(buf);
6854
6855 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6856 free(mapping, M_TEMP);
6857 return;
6858 }
6859
6860 /* --------------------------------------------------------------------- */
6861