udf_subr.c revision 1.18 1 /* $NetBSD: udf_subr.c,v 1.18 2006/09/19 23:59:16 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.18 2006/09/19 23:59:16 reinoud Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67
68 #include <fs/udf/ecma167-udf.h>
69 #include <fs/udf/udf_mount.h>
70
71 #include "udf.h"
72 #include "udf_subr.h"
73 #include "udf_bswap.h"
74
75
76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77
78
79 /* predefines */
80
81
82 #if 0
83 {
84 int i, j, dlen;
85 uint8_t *blob;
86
87 blob = (uint8_t *) fid;
88 dlen = file_size - (*offset);
89
90 printf("blob = %p\n", blob);
91 printf("dump of %d bytes\n", dlen);
92
93 for (i = 0; i < dlen; i+ = 16) {
94 printf("%04x ", i);
95 for (j = 0; j < 16; j++) {
96 if (i+j < dlen) {
97 printf("%02x ", blob[i+j]);
98 } else {
99 printf(" ");
100 }
101 }
102 for (j = 0; j < 16; j++) {
103 if (i+j < dlen) {
104 if (blob[i+j]>32 && blob[i+j]! = 127) {
105 printf("%c", blob[i+j]);
106 } else {
107 printf(".");
108 }
109 }
110 }
111 printf("\n");
112 }
113 printf("\n");
114 }
115 Debugger();
116 #endif
117
118
119 /* --------------------------------------------------------------------- */
120
121 /* STUB */
122
123 static int
124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 {
126 int sector_size = ump->discinfo.sector_size;
127 int blks = sector_size / DEV_BSIZE;
128
129 /* NOTE bread() checks if block is in cache or not */
130 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 }
132
133
134 /* --------------------------------------------------------------------- */
135
136 /*
137 * Check if the blob starts with a good UDF tag. Tags are protected by a
138 * checksum over the reader except one byte at position 4 that is the checksum
139 * itself.
140 */
141
142 int
143 udf_check_tag(void *blob)
144 {
145 struct desc_tag *tag = blob;
146 uint8_t *pos, sum, cnt;
147
148 /* check TAG header checksum */
149 pos = (uint8_t *) tag;
150 sum = 0;
151
152 for(cnt = 0; cnt < 16; cnt++) {
153 if (cnt != 4)
154 sum += *pos;
155 pos++;
156 }
157 if (sum != tag->cksum) {
158 /* bad tag header checksum; this is not a valid tag */
159 return EINVAL;
160 }
161
162 return 0;
163 }
164
165 /* --------------------------------------------------------------------- */
166
167 /*
168 * check tag payload will check descriptor CRC as specified.
169 * If the descriptor is too short, it will return EIO otherwise EINVAL.
170 */
171
172 int
173 udf_check_tag_payload(void *blob, uint32_t max_length)
174 {
175 struct desc_tag *tag = blob;
176 uint16_t crc, crc_len;
177
178 crc_len = udf_rw16(tag->desc_crc_len);
179
180 /* check payload CRC if applicable */
181 if (crc_len == 0)
182 return 0;
183
184 if (crc_len > max_length)
185 return EIO;
186
187 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 if (crc != udf_rw16(tag->desc_crc)) {
189 /* bad payload CRC; this is a broken tag */
190 return EINVAL;
191 }
192
193 return 0;
194 }
195
196 /* --------------------------------------------------------------------- */
197
198 int
199 udf_validate_tag_sum(void *blob)
200 {
201 struct desc_tag *tag = blob;
202 uint8_t *pos, sum, cnt;
203
204 /* calculate TAG header checksum */
205 pos = (uint8_t *) tag;
206 sum = 0;
207
208 for(cnt = 0; cnt < 16; cnt++) {
209 if (cnt != 4) sum += *pos;
210 pos++;
211 }
212 tag->cksum = sum; /* 8 bit */
213
214 return 0;
215 }
216
217 /* --------------------------------------------------------------------- */
218
219 /* assumes sector number of descriptor to be saved already present */
220
221 int
222 udf_validate_tag_and_crc_sums(void *blob)
223 {
224 struct desc_tag *tag = blob;
225 uint8_t *btag = (uint8_t *) tag;
226 uint16_t crc, crc_len;
227
228 crc_len = udf_rw16(tag->desc_crc_len);
229
230 /* check payload CRC if applicable */
231 if (crc_len > 0) {
232 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 tag->desc_crc = udf_rw16(crc);
234 }
235
236 /* calculate TAG header checksum */
237 return udf_validate_tag_sum(blob);
238 }
239
240 /* --------------------------------------------------------------------- */
241
242 /*
243 * XXX note the different semantics from udfclient: for FIDs it still rounds
244 * up to sectors. Use udf_fidsize() for a correct length.
245 */
246
247 int
248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 {
250 uint32_t size, tag_id, num_secs, elmsz;
251
252 tag_id = udf_rw16(dscr->tag.id);
253
254 switch (tag_id) {
255 case TAGID_LOGVOL :
256 size = sizeof(struct logvol_desc) - 1;
257 size += udf_rw32(dscr->lvd.mt_l);
258 break;
259 case TAGID_UNALLOC_SPACE :
260 elmsz = sizeof(struct extent_ad);
261 size = sizeof(struct unalloc_sp_desc) - elmsz;
262 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 break;
264 case TAGID_FID :
265 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 size = (size + 3) & ~3;
267 break;
268 case TAGID_LOGVOL_INTEGRITY :
269 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 size += udf_rw32(dscr->lvid.l_iu);
271 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 break;
273 case TAGID_SPACE_BITMAP :
274 size = sizeof(struct space_bitmap_desc) - 1;
275 size += udf_rw32(dscr->sbd.num_bytes);
276 break;
277 case TAGID_SPARING_TABLE :
278 elmsz = sizeof(struct spare_map_entry);
279 size = sizeof(struct udf_sparing_table) - elmsz;
280 size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 break;
282 case TAGID_FENTRY :
283 size = sizeof(struct file_entry);
284 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 break;
286 case TAGID_EXTFENTRY :
287 size = sizeof(struct extfile_entry);
288 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 break;
290 case TAGID_FSD :
291 size = sizeof(struct fileset_desc);
292 break;
293 default :
294 size = sizeof(union dscrptr);
295 break;
296 }
297
298 if ((size == 0) || (udf_sector_size == 0)) return 0;
299
300 /* round up in sectors */
301 num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 return num_secs * udf_sector_size;
303 }
304
305
306 static int
307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 {
309 uint32_t size;
310
311 if (udf_rw16(fid->tag.id) != TAGID_FID)
312 panic("got udf_fidsize on non FID\n");
313
314 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 size = (size + 3) & ~3;
316
317 return size;
318 }
319
320 /* --------------------------------------------------------------------- */
321
322 /*
323 * Problem with read_descriptor are long descriptors spanning more than one
324 * sector. Luckily long descriptors can't be in `logical space'.
325 *
326 * Size of allocated piece is returned in multiple of sector size due to
327 * udf_calc_udf_malloc_size().
328 */
329
330 int
331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 struct malloc_type *mtype, union dscrptr **dstp)
333 {
334 union dscrptr *src, *dst;
335 struct buf *bp;
336 uint8_t *pos;
337 int blks, blk, dscrlen;
338 int i, error, sector_size;
339
340 sector_size = ump->discinfo.sector_size;
341
342 *dstp = dst = NULL;
343 dscrlen = sector_size;
344
345 /* read initial piece */
346 error = udf_bread(ump, sector, &bp);
347 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348
349 if (!error) {
350 /* check if its a valid tag */
351 error = udf_check_tag(bp->b_data);
352 if (error) {
353 /* check if its an empty block */
354 pos = bp->b_data;
355 for (i = 0; i < sector_size; i++, pos++) {
356 if (*pos) break;
357 }
358 if (i == sector_size) {
359 /* return no error but with no dscrptr */
360 /* dispose first block */
361 brelse(bp);
362 return 0;
363 }
364 }
365 }
366 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 if (!error) {
368 src = (union dscrptr *) bp->b_data;
369 dscrlen = udf_tagsize(src, sector_size);
370 dst = malloc(dscrlen, mtype, M_WAITOK);
371 memcpy(dst, src, sector_size);
372 }
373 /* dispose first block */
374 bp->b_flags |= B_AGE;
375 brelse(bp);
376
377 if (!error && (dscrlen > sector_size)) {
378 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 /*
380 * Read the rest of descriptor. Since it is only used at mount
381 * time its overdone to define and use a specific udf_breadn
382 * for this alone.
383 */
384 blks = (dscrlen + sector_size -1) / sector_size;
385 for (blk = 1; blk < blks; blk++) {
386 error = udf_bread(ump, sector + blk, &bp);
387 if (error) {
388 brelse(bp);
389 break;
390 }
391 pos = (uint8_t *) dst + blk*sector_size;
392 memcpy(pos, bp->b_data, sector_size);
393
394 /* dispose block */
395 bp->b_flags |= B_AGE;
396 brelse(bp);
397 }
398 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 error));
400 }
401 if (!error) {
402 error = udf_check_tag_payload(dst, dscrlen);
403 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 }
405 if (error && dst) {
406 free(dst, mtype);
407 dst = NULL;
408 }
409 *dstp = dst;
410
411 return error;
412 }
413
414 /* --------------------------------------------------------------------- */
415 #ifdef DEBUG
416 static void
417 udf_dump_discinfo(struct udf_mount *ump)
418 {
419 char bits[128];
420 struct mmc_discinfo *di = &ump->discinfo;
421
422 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 return;
424
425 printf("Device/media info :\n");
426 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
427 printf("\tderived class %d\n", di->mmc_class);
428 printf("\tsector size %d\n", di->sector_size);
429 printf("\tdisc state %d\n", di->disc_state);
430 printf("\tlast ses state %d\n", di->last_session_state);
431 printf("\tbg format state %d\n", di->bg_format_state);
432 printf("\tfrst track %d\n", di->first_track);
433 printf("\tfst on last ses %d\n", di->first_track_last_session);
434 printf("\tlst on last ses %d\n", di->last_track_last_session);
435 printf("\tlink block penalty %d\n", di->link_block_penalty);
436 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 sizeof(bits));
438 printf("\tdisc flags %s\n", bits);
439 printf("\tdisc id %x\n", di->disc_id);
440 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
441
442 printf("\tnum sessions %d\n", di->num_sessions);
443 printf("\tnum tracks %d\n", di->num_tracks);
444
445 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 printf("\tcapabilities cur %s\n", bits);
447 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 printf("\tcapabilities cap %s\n", bits);
449 }
450 #else
451 #define udf_dump_discinfo(a);
452 #endif
453
454 /* not called often */
455 int
456 udf_update_discinfo(struct udf_mount *ump)
457 {
458 struct vnode *devvp = ump->devvp;
459 struct partinfo dpart;
460 struct mmc_discinfo *di;
461 int error;
462
463 DPRINTF(VOLUMES, ("read/update disc info\n"));
464 di = &ump->discinfo;
465 memset(di, 0, sizeof(struct mmc_discinfo));
466
467 /* check if we're on a MMC capable device, i.e. CD/DVD */
468 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 if (error == 0) {
470 udf_dump_discinfo(ump);
471 return 0;
472 }
473
474 /* disc partition support */
475 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 if (error)
477 return ENODEV;
478
479 /* set up a disc info profile for partitions */
480 di->mmc_profile = 0x01; /* disc type */
481 di->mmc_class = MMC_CLASS_DISC;
482 di->disc_state = MMC_STATE_CLOSED;
483 di->last_session_state = MMC_STATE_CLOSED;
484 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
485 di->link_block_penalty = 0;
486
487 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 di->mmc_cap = di->mmc_cur;
490 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491
492 /* TODO problem with last_possible_lba on resizable VND; request */
493 di->last_possible_lba = dpart.part->p_size;
494 di->sector_size = dpart.disklab->d_secsize;
495 di->blockingnr = 1;
496
497 di->num_sessions = 1;
498 di->num_tracks = 1;
499
500 di->first_track = 1;
501 di->first_track_last_session = di->last_track_last_session = 1;
502
503 udf_dump_discinfo(ump);
504 return 0;
505 }
506
507 /* --------------------------------------------------------------------- */
508
509 int
510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 {
512 struct vnode *devvp = ump->devvp;
513 struct mmc_discinfo *di = &ump->discinfo;
514 int error, class;
515
516 DPRINTF(VOLUMES, ("read track info\n"));
517
518 class = di->mmc_class;
519 if (class != MMC_CLASS_DISC) {
520 /* tracknr specified in struct ti */
521 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 NOCRED, NULL);
523 return error;
524 }
525
526 /* disc partition support */
527 if (ti->tracknr != 1)
528 return EIO;
529
530 /* create fake ti (TODO check for resized vnds) */
531 ti->sessionnr = 1;
532
533 ti->track_mode = 0; /* XXX */
534 ti->data_mode = 0; /* XXX */
535 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536
537 ti->track_start = 0;
538 ti->packet_size = 1;
539
540 /* TODO support for resizable vnd */
541 ti->track_size = di->last_possible_lba;
542 ti->next_writable = di->last_possible_lba;
543 ti->last_recorded = ti->next_writable;
544 ti->free_blocks = 0;
545
546 return 0;
547 }
548
549 /* --------------------------------------------------------------------- */
550
551 /* track/session searching for mounting */
552
553 static int
554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 int *first_tracknr, int *last_tracknr)
556 {
557 struct mmc_trackinfo trackinfo;
558 uint32_t tracknr, start_track, num_tracks;
559 int error;
560
561 /* if negative, sessionnr is relative to last session */
562 if (args->sessionnr < 0) {
563 args->sessionnr += ump->discinfo.num_sessions;
564 /* sanity */
565 if (args->sessionnr < 0)
566 args->sessionnr = 0;
567 }
568
569 /* sanity */
570 if (args->sessionnr > ump->discinfo.num_sessions)
571 args->sessionnr = ump->discinfo.num_sessions;
572
573 /* search the tracks for this session, zero session nr indicates last */
574 if (args->sessionnr == 0) {
575 args->sessionnr = ump->discinfo.num_sessions;
576 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 args->sessionnr--;
578 }
579 }
580
581 /* search the first and last track of the specified session */
582 num_tracks = ump->discinfo.num_tracks;
583 start_track = ump->discinfo.first_track;
584
585 /* search for first track of this session */
586 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 /* get track info */
588 trackinfo.tracknr = tracknr;
589 error = udf_update_trackinfo(ump, &trackinfo);
590 if (error)
591 return error;
592
593 if (trackinfo.sessionnr == args->sessionnr)
594 break;
595 }
596 *first_tracknr = tracknr;
597
598 /* search for last track of this session */
599 for (;tracknr <= num_tracks; tracknr++) {
600 /* get track info */
601 trackinfo.tracknr = tracknr;
602 error = udf_update_trackinfo(ump, &trackinfo);
603 if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 tracknr--;
605 break;
606 }
607 }
608 if (tracknr > num_tracks)
609 tracknr--;
610
611 *last_tracknr = tracknr;
612
613 assert(*last_tracknr >= *first_tracknr);
614 return 0;
615 }
616
617 /* --------------------------------------------------------------------- */
618
619 static int
620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 {
622 int error;
623
624 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 (union dscrptr **) dst);
626 if (!error) {
627 /* blank terminator blocks are not allowed here */
628 if (*dst == NULL)
629 return ENOENT;
630 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 error = ENOENT;
632 free(*dst, M_UDFVOLD);
633 *dst = NULL;
634 DPRINTF(VOLUMES, ("Not an anchor\n"));
635 }
636 }
637
638 return error;
639 }
640
641
642 int
643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 {
645 struct mmc_trackinfo first_track;
646 struct mmc_trackinfo last_track;
647 struct anchor_vdp **anchorsp;
648 uint32_t track_start;
649 uint32_t track_end;
650 uint32_t positions[4];
651 int first_tracknr, last_tracknr;
652 int error, anch, ok, first_anchor;
653
654 /* search the first and last track of the specified session */
655 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 if (!error) {
657 first_track.tracknr = first_tracknr;
658 error = udf_update_trackinfo(ump, &first_track);
659 }
660 if (!error) {
661 last_track.tracknr = last_tracknr;
662 error = udf_update_trackinfo(ump, &last_track);
663 }
664 if (error) {
665 printf("UDF mount: reading disc geometry failed\n");
666 return 0;
667 }
668
669 track_start = first_track.track_start;
670
671 /* `end' is not as straitforward as start. */
672 track_end = last_track.track_start
673 + last_track.track_size - last_track.free_blocks - 1;
674
675 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 /* end of track is not straitforward here */
677 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 track_end = last_track.last_recorded;
679 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 track_end = last_track.next_writable
681 - ump->discinfo.link_block_penalty;
682 }
683
684 /* its no use reading a blank track */
685 first_anchor = 0;
686 if (first_track.flags & MMC_TRACKINFO_BLANK)
687 first_anchor = 1;
688
689 /* read anchors start+256, start+512, end-256, end */
690 positions[0] = track_start+256;
691 positions[1] = track_end-256;
692 positions[2] = track_end;
693 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
694 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
695
696 ok = 0;
697 anchorsp = ump->anchors;
698 for (anch = first_anchor; anch < 4; anch++) {
699 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
700 positions[anch]));
701 error = udf_read_anchor(ump, positions[anch], anchorsp);
702 if (!error) {
703 anchorsp++;
704 ok++;
705 }
706 }
707
708 /* VATs are only recorded on sequential media, but initialise */
709 ump->first_possible_vat_location = track_start + 256 + 1;
710 ump->last_possible_vat_location = track_end
711 + ump->discinfo.blockingnr;
712
713 return ok;
714 }
715
716 /* --------------------------------------------------------------------- */
717
718 /* we dont try to be smart; we just record the parts */
719 #define UDF_UPDATE_DSCR(name, dscr) \
720 if (name) \
721 free(name, M_UDFVOLD); \
722 name = dscr;
723
724 static int
725 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
726 {
727 uint16_t partnr;
728
729 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
730 udf_rw16(dscr->tag.id)));
731 switch (udf_rw16(dscr->tag.id)) {
732 case TAGID_PRI_VOL : /* primary partition */
733 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
734 break;
735 case TAGID_LOGVOL : /* logical volume */
736 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
737 break;
738 case TAGID_UNALLOC_SPACE : /* unallocated space */
739 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
740 break;
741 case TAGID_IMP_VOL : /* implementation */
742 /* XXX do we care about multiple impl. descr ? */
743 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
744 break;
745 case TAGID_PARTITION : /* physical partition */
746 /* not much use if its not allocated */
747 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
748 free(dscr, M_UDFVOLD);
749 break;
750 }
751
752 /* check partnr boundaries */
753 partnr = udf_rw16(dscr->pd.part_num);
754 if (partnr >= UDF_PARTITIONS)
755 return EINVAL;
756
757 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
758 break;
759 case TAGID_VOL : /* volume space extender; rare */
760 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
761 free(dscr, M_UDFVOLD);
762 break;
763 default :
764 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
765 udf_rw16(dscr->tag.id)));
766 free(dscr, M_UDFVOLD);
767 }
768
769 return 0;
770 }
771 #undef UDF_UPDATE_DSCR
772
773 /* --------------------------------------------------------------------- */
774
775 static int
776 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
777 {
778 union dscrptr *dscr;
779 uint32_t sector_size, dscr_size;
780 int error;
781
782 sector_size = ump->discinfo.sector_size;
783
784 /* loc is sectornr, len is in bytes */
785 error = EIO;
786 while (len) {
787 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
788 if (error)
789 return error;
790
791 /* blank block is a terminator */
792 if (dscr == NULL)
793 return 0;
794
795 /* TERM descriptor is a terminator */
796 if (udf_rw16(dscr->tag.id) == TAGID_TERM)
797 return 0;
798
799 /* process all others */
800 dscr_size = udf_tagsize(dscr, sector_size);
801 error = udf_process_vds_descriptor(ump, dscr);
802 if (error) {
803 free(dscr, M_UDFVOLD);
804 break;
805 }
806 assert((dscr_size % sector_size) == 0);
807
808 len -= dscr_size;
809 loc += dscr_size / sector_size;
810 }
811
812 return error;
813 }
814
815
816 int
817 udf_read_vds_space(struct udf_mount *ump)
818 {
819 struct anchor_vdp *anchor, *anchor2;
820 size_t size;
821 uint32_t main_loc, main_len;
822 uint32_t reserve_loc, reserve_len;
823 int error;
824
825 /*
826 * read in VDS space provided by the anchors; if one descriptor read
827 * fails, try the mirror sector.
828 *
829 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
830 * avoids the `compatibility features' of DirectCD that may confuse
831 * stuff completely.
832 */
833
834 anchor = ump->anchors[0];
835 anchor2 = ump->anchors[1];
836 assert(anchor);
837
838 if (anchor2) {
839 size = sizeof(struct extent_ad);
840 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
841 anchor = anchor2;
842 /* reserve is specified to be a literal copy of main */
843 }
844
845 main_loc = udf_rw32(anchor->main_vds_ex.loc);
846 main_len = udf_rw32(anchor->main_vds_ex.len);
847
848 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
849 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
850
851 error = udf_read_vds_extent(ump, main_loc, main_len);
852 if (error) {
853 printf("UDF mount: reading in reserve VDS extent\n");
854 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
855 }
856
857 return error;
858 }
859
860 /* --------------------------------------------------------------------- */
861
862 /*
863 * Read in the logical volume integrity sequence pointed to by our logical
864 * volume descriptor. Its a sequence that can be extended using fields in the
865 * integrity descriptor itself. On sequential media only one is found, on
866 * rewritable media a sequence of descriptors can be found as a form of
867 * history keeping and on non sequential write-once media the chain is vital
868 * to allow more and more descriptors to be written. The last descriptor
869 * written in an extent needs to claim space for a new extent.
870 */
871
872 static int
873 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
874 {
875 union dscrptr *dscr;
876 struct logvol_int_desc *lvint;
877 uint32_t sector_size, sector, len;
878 int dscr_type, error;
879
880 sector_size = ump->discinfo.sector_size;
881 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
882 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
883
884 lvint = NULL;
885 dscr = NULL;
886 error = 0;
887 while (len) {
888 /* read in our integrity descriptor */
889 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
890 if (!error) {
891 if (dscr == NULL)
892 break; /* empty terminates */
893 dscr_type = udf_rw16(dscr->tag.id);
894 if (dscr_type == TAGID_TERM) {
895 break; /* clean terminator */
896 }
897 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
898 /* fatal... corrupt disc */
899 error = ENOENT;
900 break;
901 }
902 if (lvint)
903 free(lvint, M_UDFVOLD);
904 lvint = &dscr->lvid;
905 dscr = NULL;
906 } /* else hope for the best... maybe the next is ok */
907
908 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
909 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
910
911 /* proceed sequential */
912 sector += 1;
913 len -= sector_size;
914
915 /* are we linking to a new piece? */
916 if (lvint->next_extent.len) {
917 len = udf_rw32(lvint->next_extent.len);
918 sector = udf_rw32(lvint->next_extent.loc);
919 }
920 }
921
922 /* clean up the mess, esp. when there is an error */
923 if (dscr)
924 free(dscr, M_UDFVOLD);
925
926 if (error && lvint) {
927 free(lvint, M_UDFVOLD);
928 lvint = NULL;
929 }
930
931 if (!lvint)
932 error = ENOENT;
933
934 *lvintp = lvint;
935 return error;
936 }
937
938 /* --------------------------------------------------------------------- */
939
940 /*
941 * Checks if ump's vds information is correct and complete
942 */
943
944 int
945 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
946 union udf_pmap *mapping;
947 struct logvol_int_desc *lvint;
948 struct udf_logvol_info *lvinfo;
949 uint32_t n_pm, mt_l;
950 uint8_t *pmap_pos;
951 char *domain_name, *map_name;
952 const char *check_name;
953 int pmap_stype, pmap_size;
954 int pmap_type, log_part, phys_part;
955 int n_phys, n_virt, n_spar, n_meta;
956 int len, error;
957
958 if (ump == NULL)
959 return ENOENT;
960
961 /* we need at least an anchor (trivial, but for safety) */
962 if (ump->anchors[0] == NULL)
963 return EINVAL;
964
965 /* we need at least one primary and one logical volume descriptor */
966 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
967 return EINVAL;
968
969 /* we need at least one partition descriptor */
970 if (ump->partitions[0] == NULL)
971 return EINVAL;
972
973 /* check logical volume sector size verses device sector size */
974 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
975 printf("UDF mount: format violation, lb_size != sector size\n");
976 return EINVAL;
977 }
978
979 domain_name = ump->logical_vol->domain_id.id;
980 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
981 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
982 return EINVAL;
983 }
984
985 /* retrieve logical volume integrity sequence */
986 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
987
988 /*
989 * We need at least one logvol integrity descriptor recorded. Note
990 * that its OK to have an open logical volume integrity here. The VAT
991 * will close/update the integrity.
992 */
993 if (ump->logvol_integrity == NULL)
994 return EINVAL;
995
996 /* process derived structures */
997 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
998 lvint = ump->logvol_integrity;
999 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1000 ump->logvol_info = lvinfo;
1001
1002 /* TODO check udf versions? */
1003
1004 /*
1005 * check logvol mappings: effective virt->log partmap translation
1006 * check and recording of the mapping results. Saves expensive
1007 * strncmp() in tight places.
1008 */
1009 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1010 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1011 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1012 pmap_pos = ump->logical_vol->maps;
1013
1014 if (n_pm > UDF_PMAPS) {
1015 printf("UDF mount: too many mappings\n");
1016 return EINVAL;
1017 }
1018
1019 n_phys = n_virt = n_spar = n_meta = 0;
1020 for (log_part = 0; log_part < n_pm; log_part++) {
1021 mapping = (union udf_pmap *) pmap_pos;
1022 pmap_stype = pmap_pos[0];
1023 pmap_size = pmap_pos[1];
1024 switch (pmap_stype) {
1025 case 1: /* physical mapping */
1026 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1027 phys_part = udf_rw16(mapping->pm1.part_num);
1028 pmap_type = UDF_VTOP_TYPE_PHYS;
1029 n_phys++;
1030 break;
1031 case 2: /* virtual/sparable/meta mapping */
1032 map_name = mapping->pm2.part_id.id;
1033 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1034 phys_part = udf_rw16(mapping->pm2.part_num);
1035 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1036 len = UDF_REGID_ID_SIZE;
1037
1038 check_name = "*UDF Virtual Partition";
1039 if (strncmp(map_name, check_name, len) == 0) {
1040 pmap_type = UDF_VTOP_TYPE_VIRT;
1041 n_virt++;
1042 break;
1043 }
1044 check_name = "*UDF Sparable Partition";
1045 if (strncmp(map_name, check_name, len) == 0) {
1046 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1047 n_spar++;
1048 break;
1049 }
1050 check_name = "*UDF Metadata Partition";
1051 if (strncmp(map_name, check_name, len) == 0) {
1052 pmap_type = UDF_VTOP_TYPE_META;
1053 n_meta++;
1054 break;
1055 }
1056 break;
1057 default:
1058 return EINVAL;
1059 }
1060
1061 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1062 pmap_type));
1063 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1064 return EINVAL;
1065
1066 ump->vtop [log_part] = phys_part;
1067 ump->vtop_tp[log_part] = pmap_type;
1068
1069 pmap_pos += pmap_size;
1070 }
1071 /* not winning the beauty contest */
1072 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1073
1074 /* test some basic UDF assertions/requirements */
1075 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1076 return EINVAL;
1077
1078 if (n_virt) {
1079 if ((n_phys == 0) || n_spar || n_meta)
1080 return EINVAL;
1081 }
1082 if (n_spar + n_phys == 0)
1083 return EINVAL;
1084
1085 /* vat's can only be on a sequential media */
1086 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1087 if (n_virt)
1088 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1089
1090 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1091 if (n_virt)
1092 ump->meta_alloc = UDF_ALLOC_VAT;
1093 if (n_meta)
1094 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1095
1096 /* special cases for pseudo-overwrite */
1097 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1098 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1099 if (n_meta) {
1100 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1101 } else {
1102 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1103 }
1104 }
1105
1106 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1107 ump->data_alloc, ump->meta_alloc));
1108 /* TODO determine partitions to write data and metadata ? */
1109
1110 /* signal its OK for now */
1111 return 0;
1112 }
1113
1114 /* --------------------------------------------------------------------- */
1115
1116 /*
1117 * Read in complete VAT file and check if its indeed a VAT file descriptor
1118 */
1119
1120 static int
1121 udf_check_for_vat(struct udf_node *vat_node)
1122 {
1123 struct udf_mount *ump;
1124 struct icb_tag *icbtag;
1125 struct timestamp *mtime;
1126 struct regid *regid;
1127 struct udf_vat *vat;
1128 struct udf_logvol_info *lvinfo;
1129 uint32_t vat_length, alloc_length;
1130 uint32_t vat_offset, vat_entries;
1131 uint32_t sector_size;
1132 uint32_t sectors;
1133 uint32_t *raw_vat;
1134 char *regid_name;
1135 int filetype;
1136 int error;
1137
1138 /* vat_length is really 64 bits though impossible */
1139
1140 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1141 if (!vat_node)
1142 return ENOENT;
1143
1144 /* get mount info */
1145 ump = vat_node->ump;
1146
1147 /* check assertions */
1148 assert(vat_node->fe || vat_node->efe);
1149 assert(ump->logvol_integrity);
1150
1151 /* get information from fe/efe */
1152 if (vat_node->fe) {
1153 vat_length = udf_rw64(vat_node->fe->inf_len);
1154 icbtag = &vat_node->fe->icbtag;
1155 mtime = &vat_node->fe->mtime;
1156 } else {
1157 vat_length = udf_rw64(vat_node->efe->inf_len);
1158 icbtag = &vat_node->efe->icbtag;
1159 mtime = &vat_node->efe->mtime;
1160 }
1161
1162 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1163 filetype = icbtag->file_type;
1164 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1165 return ENOENT;
1166
1167 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1168 /* place a sanity check on the length; currently 1Mb in size */
1169 if (vat_length > 1*1024*1024)
1170 return ENOENT;
1171
1172 /* get sector size */
1173 sector_size = vat_node->ump->discinfo.sector_size;
1174
1175 /* calculate how many sectors to read in and how much to allocate */
1176 sectors = (vat_length + sector_size -1) / sector_size;
1177 alloc_length = (sectors + 2) * sector_size;
1178
1179 /* try to allocate the space */
1180 ump->vat_table_alloc_length = alloc_length;
1181 ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1182 if (!ump->vat_table)
1183 return ENOMEM; /* impossible to allocate */
1184 DPRINTF(VOLUMES, ("\talloced fine\n"));
1185
1186 /* read it in! */
1187 raw_vat = (uint32_t *) ump->vat_table;
1188 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1189 if (error) {
1190 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1191 /* not completely readable... :( bomb out */
1192 free(ump->vat_table, M_UDFMNT);
1193 ump->vat_table = NULL;
1194 return error;
1195 }
1196 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1197
1198 /*
1199 * check contents of the file if its the old 1.50 VAT table format.
1200 * Its notoriously broken and allthough some implementations support an
1201 * extention as defined in the UDF 1.50 errata document, its doubtfull
1202 * to be useable since a lot of implementations don't maintain it.
1203 */
1204 lvinfo = ump->logvol_info;
1205
1206 if (filetype == 0) {
1207 /* definition */
1208 vat_offset = 0;
1209 vat_entries = (vat_length-36)/4;
1210
1211 /* check 1.50 VAT */
1212 regid = (struct regid *) (raw_vat + vat_entries);
1213 regid_name = (char *) regid->id;
1214 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1215 if (error) {
1216 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1217 free(ump->vat_table, M_UDFMNT);
1218 ump->vat_table = NULL;
1219 return ENOENT;
1220 }
1221 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1222 } else {
1223 vat = (struct udf_vat *) raw_vat;
1224
1225 /* definition */
1226 vat_offset = vat->header_len;
1227 vat_entries = (vat_length - vat_offset)/4;
1228
1229 assert(lvinfo);
1230 lvinfo->num_files = vat->num_files;
1231 lvinfo->num_directories = vat->num_directories;
1232 lvinfo->min_udf_readver = vat->min_udf_readver;
1233 lvinfo->min_udf_writever = vat->min_udf_writever;
1234 lvinfo->max_udf_writever = vat->max_udf_writever;
1235 }
1236
1237 ump->vat_offset = vat_offset;
1238 ump->vat_entries = vat_entries;
1239
1240 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1241 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1242 ump->logvol_integrity->time = *mtime;
1243
1244 return 0; /* success! */
1245 }
1246
1247 /* --------------------------------------------------------------------- */
1248
1249 static int
1250 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1251 {
1252 struct udf_node *vat_node;
1253 struct long_ad icb_loc;
1254 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1255 int error;
1256
1257 /* mapping info not needed */
1258 mapping = mapping;
1259
1260 vat_loc = ump->last_possible_vat_location;
1261 early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1262 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1263 late_vat_loc = vat_loc + 1024;
1264
1265 /* TODO first search last sector? */
1266 do {
1267 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1268 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1269 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1270
1271 error = udf_get_node(ump, &icb_loc, &vat_node);
1272 if (!error) error = udf_check_for_vat(vat_node);
1273 if (!error) break;
1274 if (vat_node) {
1275 vput(vat_node->vnode);
1276 udf_dispose_node(vat_node);
1277 }
1278 vat_loc--; /* walk backwards */
1279 } while (vat_loc >= early_vat_loc);
1280
1281 /* we don't need our VAT node anymore */
1282 if (vat_node) {
1283 vput(vat_node->vnode);
1284 udf_dispose_node(vat_node);
1285 }
1286
1287 return error;
1288 }
1289
1290 /* --------------------------------------------------------------------- */
1291
1292 static int
1293 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1294 {
1295 union dscrptr *dscr;
1296 struct part_map_spare *pms = (struct part_map_spare *) mapping;
1297 uint32_t lb_num;
1298 int spar, error;
1299
1300 /*
1301 * The partition mapping passed on to us specifies the information we
1302 * need to locate and initialise the sparable partition mapping
1303 * information we need.
1304 */
1305
1306 DPRINTF(VOLUMES, ("Read sparable table\n"));
1307 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1308 for (spar = 0; spar < pms->n_st; spar++) {
1309 lb_num = pms->st_loc[spar];
1310 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1311 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1312 if (!error && dscr) {
1313 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1314 if (ump->sparing_table)
1315 free(ump->sparing_table, M_UDFVOLD);
1316 ump->sparing_table = &dscr->spt;
1317 dscr = NULL;
1318 DPRINTF(VOLUMES,
1319 ("Sparing table accepted (%d entries)\n",
1320 udf_rw16(ump->sparing_table->rt_l)));
1321 break; /* we're done */
1322 }
1323 }
1324 if (dscr)
1325 free(dscr, M_UDFVOLD);
1326 }
1327
1328 if (ump->sparing_table)
1329 return 0;
1330
1331 return ENOENT;
1332 }
1333
1334 /* --------------------------------------------------------------------- */
1335
1336 int
1337 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1338 {
1339 union udf_pmap *mapping;
1340 uint32_t n_pm, mt_l;
1341 uint32_t log_part;
1342 uint8_t *pmap_pos;
1343 int pmap_size;
1344 int error;
1345
1346 /* We have to iterate again over the part mappings for locations */
1347 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1348 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1349 pmap_pos = ump->logical_vol->maps;
1350
1351 for (log_part = 0; log_part < n_pm; log_part++) {
1352 mapping = (union udf_pmap *) pmap_pos;
1353 switch (ump->vtop_tp[log_part]) {
1354 case UDF_VTOP_TYPE_PHYS :
1355 /* nothing */
1356 break;
1357 case UDF_VTOP_TYPE_VIRT :
1358 /* search and load VAT */
1359 error = udf_search_vat(ump, mapping);
1360 if (error)
1361 return ENOENT;
1362 break;
1363 case UDF_VTOP_TYPE_SPARABLE :
1364 /* load one of the sparable tables */
1365 error = udf_read_sparables(ump, mapping);
1366 if (error)
1367 return ENOENT;
1368 break;
1369 case UDF_VTOP_TYPE_META :
1370 /* TODO load metafile and metabitmapfile FE/EFEs */
1371 return ENOENT;
1372 default:
1373 break;
1374 }
1375 pmap_size = pmap_pos[1];
1376 pmap_pos += pmap_size;
1377 }
1378
1379 return 0;
1380 }
1381
1382 /* --------------------------------------------------------------------- */
1383
1384 int
1385 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1386 {
1387 struct udf_node *rootdir_node, *streamdir_node;
1388 union dscrptr *dscr;
1389 struct long_ad fsd_loc, *dir_loc;
1390 uint32_t lb_num, dummy;
1391 uint32_t fsd_len;
1392 int dscr_type;
1393 int error;
1394
1395 /* TODO implement FSD reading in seperate function like integrity? */
1396 /* get fileset descriptor sequence */
1397 fsd_loc = ump->logical_vol->lv_fsd_loc;
1398 fsd_len = udf_rw32(fsd_loc.len);
1399
1400 dscr = NULL;
1401 error = 0;
1402 while (fsd_len || error) {
1403 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1404 /* translate fsd_loc to lb_num */
1405 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1406 if (error)
1407 break;
1408 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1409 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1410 /* end markers */
1411 if (error || (dscr == NULL))
1412 break;
1413
1414 /* analyse */
1415 dscr_type = udf_rw16(dscr->tag.id);
1416 if (dscr_type == TAGID_TERM)
1417 break;
1418 if (dscr_type != TAGID_FSD) {
1419 free(dscr, M_UDFVOLD);
1420 return ENOENT;
1421 }
1422
1423 /*
1424 * TODO check for multiple fileset descriptors; its only
1425 * picking the last now. Also check for FSD
1426 * correctness/interpretability
1427 */
1428
1429 /* update */
1430 if (ump->fileset_desc) {
1431 free(ump->fileset_desc, M_UDFVOLD);
1432 }
1433 ump->fileset_desc = &dscr->fsd;
1434 dscr = NULL;
1435
1436 /* continue to the next fsd */
1437 fsd_len -= ump->discinfo.sector_size;
1438 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1439
1440 /* follow up to fsd->next_ex (long_ad) if its not null */
1441 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1442 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1443 fsd_loc = ump->fileset_desc->next_ex;
1444 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1445 }
1446 }
1447 if (dscr)
1448 free(dscr, M_UDFVOLD);
1449
1450 /* there has to be one */
1451 if (ump->fileset_desc == NULL)
1452 return ENOENT;
1453
1454 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1455
1456 /*
1457 * Now the FSD is known, read in the rootdirectory and if one exists,
1458 * the system stream dir. Some files in the system streamdir are not
1459 * wanted in this implementation since they are not maintained. If
1460 * writing is enabled we'll delete these files if they exist.
1461 */
1462
1463 rootdir_node = streamdir_node = NULL;
1464 dir_loc = NULL;
1465
1466 /* try to read in the rootdir */
1467 dir_loc = &ump->fileset_desc->rootdir_icb;
1468 error = udf_get_node(ump, dir_loc, &rootdir_node);
1469 if (error)
1470 return ENOENT;
1471
1472 /* aparently it read in fine */
1473
1474 /*
1475 * Try the system stream directory; not very likely in the ones we
1476 * test, but for completeness.
1477 */
1478 dir_loc = &ump->fileset_desc->streamdir_icb;
1479 if (udf_rw32(dir_loc->len)) {
1480 error = udf_get_node(ump, dir_loc, &streamdir_node);
1481 if (error)
1482 printf("udf mount: streamdir defined but ignored\n");
1483 if (!error) {
1484 /*
1485 * TODO process streamdir `baddies' i.e. files we dont
1486 * want if R/W
1487 */
1488 }
1489 }
1490
1491 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1492
1493 /* release the vnodes again; they'll be auto-recycled later */
1494 if (streamdir_node) {
1495 vput(streamdir_node->vnode);
1496 }
1497 if (rootdir_node) {
1498 vput(rootdir_node->vnode);
1499 }
1500
1501 return 0;
1502 }
1503
1504 /* --------------------------------------------------------------------- */
1505
1506 int
1507 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1508 uint32_t *lb_numres, uint32_t *extres)
1509 {
1510 struct part_desc *pdesc;
1511 struct spare_map_entry *sme;
1512 uint32_t *trans;
1513 uint32_t lb_num, lb_rel, lb_packet;
1514 int rel, vpart, part;
1515
1516 assert(ump && icb_loc && lb_numres);
1517
1518 vpart = udf_rw16(icb_loc->loc.part_num);
1519 lb_num = udf_rw32(icb_loc->loc.lb_num);
1520 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1521 return EINVAL;
1522
1523 switch (ump->vtop_tp[vpart]) {
1524 case UDF_VTOP_TYPE_RAW :
1525 /* 1:1 to the end of the device */
1526 *lb_numres = lb_num;
1527 *extres = INT_MAX;
1528 return 0;
1529 case UDF_VTOP_TYPE_PHYS :
1530 /* transform into its disc logical block */
1531 part = ump->vtop[vpart];
1532 pdesc = ump->partitions[part];
1533 if (lb_num > udf_rw32(pdesc->part_len))
1534 return EINVAL;
1535 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1536
1537 /* extent from here to the end of the partition */
1538 *extres = udf_rw32(pdesc->part_len) - lb_num;
1539 return 0;
1540 case UDF_VTOP_TYPE_VIRT :
1541 /* only maps one sector, lookup in VAT */
1542 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1543 return EINVAL;
1544
1545 /* lookup in virtual allocation table */
1546 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1547 lb_num = udf_rw32(trans[lb_num]);
1548
1549 /* transform into its disc logical block */
1550 part = ump->vtop[vpart];
1551 pdesc = ump->partitions[part];
1552 if (lb_num > udf_rw32(pdesc->part_len))
1553 return EINVAL;
1554 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1555
1556 /* just one logical block */
1557 *extres = 1;
1558 return 0;
1559 case UDF_VTOP_TYPE_SPARABLE :
1560 /* check if the packet containing the lb_num is remapped */
1561 lb_packet = lb_num / ump->sparable_packet_len;
1562 lb_rel = lb_num % ump->sparable_packet_len;
1563
1564 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1565 sme = &ump->sparing_table->entries[rel];
1566 if (lb_packet == udf_rw32(sme->org)) {
1567 /* NOTE maps to absolute disc logical block! */
1568 *lb_numres = udf_rw32(sme->map) + lb_rel;
1569 *extres = ump->sparable_packet_len - lb_rel;
1570 return 0;
1571 }
1572 }
1573
1574 /* transform into its disc logical block */
1575 part = ump->vtop[vpart];
1576 pdesc = ump->partitions[part];
1577 if (lb_num > udf_rw32(pdesc->part_len))
1578 return EINVAL;
1579 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1580
1581 /* rest of block */
1582 *extres = ump->sparable_packet_len - lb_rel;
1583 return 0;
1584 case UDF_VTOP_TYPE_META :
1585 default:
1586 printf("UDF vtop translation scheme %d unimplemented yet\n",
1587 ump->vtop_tp[vpart]);
1588 }
1589
1590 return EINVAL;
1591 }
1592
1593 /* --------------------------------------------------------------------- */
1594
1595 /* To make absolutely sure we are NOT returning zero, add one :) */
1596
1597 long
1598 udf_calchash(struct long_ad *icbptr)
1599 {
1600 /* ought to be enough since each mountpoint has its own chain */
1601 return udf_rw32(icbptr->loc.lb_num) + 1;
1602 }
1603
1604 /* --------------------------------------------------------------------- */
1605
1606 static struct udf_node *
1607 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1608 {
1609 struct udf_node *unp;
1610 struct vnode *vp;
1611 uint32_t hashline;
1612
1613 loop:
1614 simple_lock(&ump->ihash_slock);
1615
1616 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1617 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1618 assert(unp);
1619 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1620 unp->loc.loc.part_num == icbptr->loc.part_num) {
1621 vp = unp->vnode;
1622 assert(vp);
1623 simple_lock(&vp->v_interlock);
1624 simple_unlock(&ump->ihash_slock);
1625 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1626 goto loop;
1627 return unp;
1628 }
1629 }
1630 simple_unlock(&ump->ihash_slock);
1631
1632 return NULL;
1633 }
1634
1635 /* --------------------------------------------------------------------- */
1636
1637 static void
1638 udf_hashins(struct udf_node *unp)
1639 {
1640 struct udf_mount *ump;
1641 uint32_t hashline;
1642
1643 ump = unp->ump;
1644 simple_lock(&ump->ihash_slock);
1645
1646 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1647 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1648
1649 simple_unlock(&ump->ihash_slock);
1650 }
1651
1652 /* --------------------------------------------------------------------- */
1653
1654 static void
1655 udf_hashrem(struct udf_node *unp)
1656 {
1657 struct udf_mount *ump;
1658
1659 ump = unp->ump;
1660 simple_lock(&ump->ihash_slock);
1661
1662 LIST_REMOVE(unp, hashchain);
1663
1664 simple_unlock(&ump->ihash_slock);
1665 }
1666
1667 /* --------------------------------------------------------------------- */
1668
1669 int
1670 udf_dispose_locked_node(struct udf_node *node)
1671 {
1672 if (!node)
1673 return 0;
1674 if (node->vnode)
1675 VOP_UNLOCK(node->vnode, 0);
1676 return udf_dispose_node(node);
1677 }
1678
1679 /* --------------------------------------------------------------------- */
1680
1681 int
1682 udf_dispose_node(struct udf_node *node)
1683 {
1684 struct vnode *vp;
1685
1686 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1687 if (!node) {
1688 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1689 return 0;
1690 }
1691
1692 vp = node->vnode;
1693
1694 /* TODO extended attributes and streamdir */
1695
1696 /* remove from our hash lookup table */
1697 udf_hashrem(node);
1698
1699 /* dissociate our udf_node from the vnode */
1700 vp->v_data = NULL;
1701
1702 /* free associated memory and the node itself */
1703 if (node->fe)
1704 pool_put(node->ump->desc_pool, node->fe);
1705 if (node->efe)
1706 pool_put(node->ump->desc_pool, node->efe);
1707 pool_put(&udf_node_pool, node);
1708
1709 return 0;
1710 }
1711
1712 /* --------------------------------------------------------------------- */
1713
1714 /*
1715 * Genfs interfacing
1716 *
1717 * static const struct genfs_ops udffs_genfsops = {
1718 * .gop_size = genfs_size,
1719 * size of transfers
1720 * .gop_alloc = udf_gop_alloc,
1721 * unknown
1722 * .gop_write = genfs_gop_write,
1723 * putpages interface code
1724 * .gop_markupdate = udf_gop_markupdate,
1725 * set update/modify flags etc.
1726 * }
1727 */
1728
1729 /*
1730 * Genfs interface. These four functions are the only ones defined though not
1731 * documented... great.... why is chosen for the `.' initialisers i dont know
1732 * but other filingsystems seem to use it this way.
1733 */
1734
1735 static int
1736 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1737 kauth_cred_t cred)
1738 {
1739 return 0;
1740 }
1741
1742
1743 static void
1744 udf_gop_markupdate(struct vnode *vp, int flags)
1745 {
1746 struct udf_node *udf_node = VTOI(vp);
1747 u_long mask;
1748
1749 udf_node = udf_node; /* shut up gcc */
1750
1751 mask = 0;
1752 #ifdef notyet
1753 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1754 mask = UDF_SET_ACCESS;
1755 }
1756 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1757 mask |= UDF_SET_UPDATE;
1758 }
1759 if (mask) {
1760 udf_node->update_flag |= mask;
1761 }
1762 #endif
1763 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1764 }
1765
1766
1767 static const struct genfs_ops udf_genfsops = {
1768 .gop_size = genfs_size,
1769 .gop_alloc = udf_gop_alloc,
1770 .gop_write = genfs_gop_write,
1771 .gop_markupdate = udf_gop_markupdate,
1772 };
1773
1774 /* --------------------------------------------------------------------- */
1775
1776 /*
1777 * Each node can have an attached streamdir node though not
1778 * recursively. These are otherwise known as named substreams/named
1779 * extended attributes that have no size limitations.
1780 *
1781 * `Normal' extended attributes are indicated with a number and are recorded
1782 * in either the fe/efe descriptor itself for small descriptors or recorded in
1783 * the attached extended attribute file. Since this file can get fragmented,
1784 * care ought to be taken.
1785 */
1786
1787 int
1788 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1789 struct udf_node **noderes)
1790 {
1791 union dscrptr *dscr, *tmpdscr;
1792 struct udf_node *node;
1793 struct vnode *nvp;
1794 struct long_ad icb_loc;
1795 extern int (**udf_vnodeop_p)(void *);
1796 uint64_t file_size;
1797 uint32_t lb_size, sector, dummy;
1798 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1799 int error;
1800
1801 DPRINTF(NODE, ("udf_get_node called\n"));
1802 *noderes = node = NULL;
1803
1804 /* lock to disallow simultanious creation of same node */
1805 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1806
1807 DPRINTF(NODE, ("\tlookup in hash table\n"));
1808 /* lookup in hash table */
1809 assert(ump);
1810 assert(node_icb_loc);
1811 node = udf_hashget(ump, node_icb_loc);
1812 if (node) {
1813 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1814 /* vnode is returned locked */
1815 *noderes = node;
1816 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1817 return 0;
1818 }
1819
1820 /* garbage check: translate node_icb_loc to sectornr */
1821 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1822 if (error) {
1823 /* no use, this will fail anyway */
1824 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1825 return EINVAL;
1826 }
1827
1828 /* build node (do initialise!) */
1829 node = pool_get(&udf_node_pool, PR_WAITOK);
1830 memset(node, 0, sizeof(struct udf_node));
1831
1832 DPRINTF(NODE, ("\tget new vnode\n"));
1833 /* give it a vnode */
1834 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1835 if (error) {
1836 pool_put(&udf_node_pool, node);
1837 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1838 return error;
1839 }
1840
1841 /* allways return locked vnode */
1842 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1843 /* recycle vnode and unlock; simultanious will fail too */
1844 ungetnewvnode(nvp);
1845 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1846 return error;
1847 }
1848
1849 /* initialise crosslinks, note location of fe/efe for hashing */
1850 node->ump = ump;
1851 node->vnode = nvp;
1852 nvp->v_data = node;
1853 node->loc = *node_icb_loc;
1854 node->lockf = 0;
1855
1856 /* insert into the hash lookup */
1857 udf_hashins(node);
1858
1859 /* safe to unlock, the entry is in the hash table, vnode is locked */
1860 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1861
1862 icb_loc = *node_icb_loc;
1863 needs_indirect = 0;
1864 strat4096 = 0;
1865 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1866 file_size = 0;
1867 lb_size = udf_rw32(ump->logical_vol->lb_size);
1868
1869 do {
1870 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
1871 if (error)
1872 break;
1873
1874 /* try to read in fe/efe */
1875 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1876
1877 /* blank sector marks end of sequence, check this */
1878 if ((tmpdscr == NULL) && (!strat4096))
1879 error = ENOENT;
1880
1881 /* break if read error or blank sector */
1882 if (error || (tmpdscr == NULL))
1883 break;
1884
1885 /* process descriptor based on the descriptor type */
1886 dscr_type = udf_rw16(tmpdscr->tag.id);
1887
1888 /* if dealing with an indirect entry, follow the link */
1889 if (dscr_type == TAGID_INDIRECT_ENTRY) {
1890 needs_indirect = 0;
1891 icb_loc = tmpdscr->inde.indirect_icb;
1892 free(tmpdscr, M_UDFTEMP);
1893 continue;
1894 }
1895
1896 /* only file entries and extended file entries allowed here */
1897 if ((dscr_type != TAGID_FENTRY) &&
1898 (dscr_type != TAGID_EXTFENTRY)) {
1899 free(tmpdscr, M_UDFTEMP);
1900 error = ENOENT;
1901 break;
1902 }
1903
1904 /* get descriptor space from our pool */
1905 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1906
1907 dscr = pool_get(ump->desc_pool, PR_WAITOK);
1908 memcpy(dscr, tmpdscr, lb_size);
1909 free(tmpdscr, M_UDFTEMP);
1910
1911 /* record and process/update (ext)fentry */
1912 if (dscr_type == TAGID_FENTRY) {
1913 if (node->fe)
1914 pool_put(ump->desc_pool, node->fe);
1915 node->fe = &dscr->fe;
1916 strat = udf_rw16(node->fe->icbtag.strat_type);
1917 udf_file_type = node->fe->icbtag.file_type;
1918 file_size = udf_rw64(node->fe->inf_len);
1919 } else {
1920 if (node->efe)
1921 pool_put(ump->desc_pool, node->efe);
1922 node->efe = &dscr->efe;
1923 strat = udf_rw16(node->efe->icbtag.strat_type);
1924 udf_file_type = node->efe->icbtag.file_type;
1925 file_size = udf_rw64(node->efe->inf_len);
1926 }
1927
1928 /* check recording strategy (structure) */
1929
1930 /*
1931 * Strategy 4096 is a daisy linked chain terminating with an
1932 * unrecorded sector or a TERM descriptor. The next
1933 * descriptor is to be found in the sector that follows the
1934 * current sector.
1935 */
1936 if (strat == 4096) {
1937 strat4096 = 1;
1938 needs_indirect = 1;
1939
1940 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1941 }
1942
1943 /*
1944 * Strategy 4 is the normal strategy and terminates, but if
1945 * we're in strategy 4096, we can't have strategy 4 mixed in
1946 */
1947
1948 if (strat == 4) {
1949 if (strat4096) {
1950 error = EINVAL;
1951 break;
1952 }
1953 break; /* done */
1954 }
1955 } while (!error);
1956
1957 if (error) {
1958 /* recycle udf_node */
1959 udf_dispose_node(node);
1960
1961 /* recycle vnode */
1962 nvp->v_data = NULL;
1963 ungetnewvnode(nvp);
1964
1965 return EINVAL; /* error code ok? */
1966 }
1967
1968 /* post process and initialise node */
1969
1970 /* assert no references to dscr anymore beyong this point */
1971 assert((node->fe) || (node->efe));
1972 dscr = NULL;
1973
1974 /*
1975 * Record where to record an updated version of the descriptor. If
1976 * there is a sequence of indirect entries, icb_loc will have been
1977 * updated. Its the write disipline to allocate new space and to make
1978 * sure the chain is maintained.
1979 *
1980 * `needs_indirect' flags if the next location is to be filled with
1981 * with an indirect entry.
1982 */
1983 node->next_loc = icb_loc;
1984 node->needs_indirect = needs_indirect;
1985
1986 /*
1987 * Translate UDF filetypes into vnode types.
1988 *
1989 * Systemfiles like the meta main and mirror files are not treated as
1990 * normal files, so we type them as having no type. UDF dictates that
1991 * they are not allowed to be visible.
1992 */
1993
1994 /* TODO specfs, fifofs etc etc. vnops setting */
1995 switch (udf_file_type) {
1996 case UDF_ICB_FILETYPE_DIRECTORY :
1997 case UDF_ICB_FILETYPE_STREAMDIR :
1998 nvp->v_type = VDIR;
1999 break;
2000 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2001 nvp->v_type = VBLK;
2002 break;
2003 case UDF_ICB_FILETYPE_CHARDEVICE :
2004 nvp->v_type = VCHR;
2005 break;
2006 case UDF_ICB_FILETYPE_SYMLINK :
2007 nvp->v_type = VLNK;
2008 break;
2009 case UDF_ICB_FILETYPE_META_MAIN :
2010 case UDF_ICB_FILETYPE_META_MIRROR :
2011 nvp->v_type = VNON;
2012 break;
2013 case UDF_ICB_FILETYPE_RANDOMACCESS :
2014 nvp->v_type = VREG;
2015 break;
2016 default:
2017 /* YIKES, either a block/char device, fifo or something else */
2018 nvp->v_type = VNON;
2019 }
2020
2021 /* initialise genfs */
2022 genfs_node_init(nvp, &udf_genfsops);
2023
2024 /* don't forget to set vnode's v_size */
2025 nvp->v_size = file_size;
2026
2027 /* TODO ext attr and streamdir nodes */
2028
2029 *noderes = node;
2030
2031 return 0;
2032 }
2033
2034 /* --------------------------------------------------------------------- */
2035
2036 /* UDF<->unix converters */
2037
2038 /* --------------------------------------------------------------------- */
2039
2040 static mode_t
2041 udf_perm_to_unix_mode(uint32_t perm)
2042 {
2043 mode_t mode;
2044
2045 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2046 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2047 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2048
2049 return mode;
2050 }
2051
2052 /* --------------------------------------------------------------------- */
2053
2054 #ifdef notyet
2055 static uint32_t
2056 unix_mode_to_udf_perm(mode_t mode)
2057 {
2058 uint32_t perm;
2059
2060 perm = ((mode & S_IRWXO) );
2061 perm |= ((mode & S_IRWXG) << 2);
2062 perm |= ((mode & S_IRWXU) << 4);
2063 perm |= ((mode & S_IWOTH) << 3);
2064 perm |= ((mode & S_IWGRP) << 5);
2065 perm |= ((mode & S_IWUSR) << 7);
2066
2067 return perm;
2068 }
2069 #endif
2070
2071 /* --------------------------------------------------------------------- */
2072
2073 static uint32_t
2074 udf_icb_to_unix_filetype(uint32_t icbftype)
2075 {
2076 switch (icbftype) {
2077 case UDF_ICB_FILETYPE_DIRECTORY :
2078 case UDF_ICB_FILETYPE_STREAMDIR :
2079 return S_IFDIR;
2080 case UDF_ICB_FILETYPE_FIFO :
2081 return S_IFIFO;
2082 case UDF_ICB_FILETYPE_CHARDEVICE :
2083 return S_IFCHR;
2084 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2085 return S_IFBLK;
2086 case UDF_ICB_FILETYPE_RANDOMACCESS :
2087 return S_IFREG;
2088 case UDF_ICB_FILETYPE_SYMLINK :
2089 return S_IFLNK;
2090 case UDF_ICB_FILETYPE_SOCKET :
2091 return S_IFSOCK;
2092 }
2093 /* no idea what this is */
2094 return 0;
2095 }
2096
2097 /* --------------------------------------------------------------------- */
2098
2099 /* TODO KNF-ify */
2100
2101 void
2102 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2103 {
2104 uint16_t *raw_name, *unix_name;
2105 uint16_t *inchp, ch;
2106 uint8_t *outchp;
2107 int ucode_chars, nice_uchars;
2108
2109 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2110 unix_name = raw_name + 1024; /* split space in half */
2111 assert(sizeof(char) == sizeof(uint8_t));
2112 outchp = (uint8_t *) result;
2113 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2114 *raw_name = *unix_name = 0;
2115 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2116 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2117 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2118 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2119 ch = *inchp;
2120 /* XXX sloppy unicode -> latin */
2121 *outchp++ = ch & 255;
2122 if (!ch) break;
2123 }
2124 *outchp++ = 0;
2125 } else {
2126 /* assume 8bit char length byte latin-1 */
2127 assert(*id == 8);
2128 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2129 }
2130 free(raw_name, M_UDFTEMP);
2131 }
2132
2133 /* --------------------------------------------------------------------- */
2134
2135 /* TODO KNF-ify */
2136
2137 void
2138 unix_to_udf_name(char *result, char *name,
2139 uint8_t *result_len, struct charspec *chsp)
2140 {
2141 uint16_t *raw_name;
2142 int udf_chars, name_len;
2143 char *inchp;
2144 uint16_t *outchp;
2145
2146 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2147 /* convert latin-1 or whatever to unicode-16 */
2148 *raw_name = 0;
2149 name_len = 0;
2150 inchp = name;
2151 outchp = raw_name;
2152 while (*inchp) {
2153 *outchp++ = (uint16_t) (*inchp++);
2154 name_len++;
2155 }
2156
2157 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2158 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2159 } else {
2160 /* XXX assume 8bit char length byte latin-1 */
2161 *result++ = 8; udf_chars = 1;
2162 strncpy(result, name + 1, strlen(name+1));
2163 udf_chars += strlen(name);
2164 }
2165 *result_len = udf_chars;
2166 free(raw_name, M_UDFTEMP);
2167 }
2168
2169 /* --------------------------------------------------------------------- */
2170
2171 /*
2172 * Timestamp to timespec conversion code is taken with small modifications
2173 * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
2174 * permission from Scott.
2175 */
2176
2177 static int mon_lens[2][12] = {
2178 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2179 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2180 };
2181
2182
2183 static int
2184 udf_isaleapyear(int year)
2185 {
2186 int i;
2187
2188 i = (year % 4) ? 0 : 1;
2189 i &= (year % 100) ? 1 : 0;
2190 i |= (year % 400) ? 0 : 1;
2191
2192 return i;
2193 }
2194
2195
2196 void
2197 udf_timestamp_to_timespec(struct udf_mount *ump,
2198 struct timestamp *timestamp,
2199 struct timespec *timespec)
2200 {
2201 uint32_t usecs, secs, nsecs;
2202 uint16_t tz;
2203 int i, lpyear, daysinyear, year;
2204
2205 timespec->tv_sec = secs = 0;
2206 timespec->tv_nsec = nsecs = 0;
2207
2208 /*
2209 * DirectCD seems to like using bogus year values.
2210 *
2211 * Distrust time->month especially, since it will be used for an array
2212 * index.
2213 */
2214 year = udf_rw16(timestamp->year);
2215 if ((year < 1970) || (timestamp->month > 12)) {
2216 return;
2217 }
2218
2219 /* Calculate the time and day
2220 * Day is 1-31, Month is 1-12
2221 */
2222
2223 usecs = timestamp->usec +
2224 100*timestamp->hund_usec + 10000*timestamp->centisec;
2225 nsecs = usecs * 1000;
2226 secs = timestamp->second;
2227 secs += timestamp->minute * 60;
2228 secs += timestamp->hour * 3600;
2229 secs += (timestamp->day-1) * 3600 * 24;
2230
2231 /* Calclulate the month */
2232 lpyear = udf_isaleapyear(year);
2233 for (i = 1; i < timestamp->month; i++)
2234 secs += mon_lens[lpyear][i-1] * 3600 * 24;
2235
2236 for (i = 1970; i < year; i++) {
2237 daysinyear = udf_isaleapyear(i) + 365 ;
2238 secs += daysinyear * 3600 * 24;
2239 }
2240
2241 /*
2242 * Calculate the time zone. The timezone is 12 bit signed 2's
2243 * compliment, so we gotta do some extra magic to handle it right.
2244 */
2245 tz = udf_rw16(timestamp->type_tz);
2246 tz &= 0x0fff; /* only lower 12 bits are significant */
2247 if (tz & 0x0800) /* sign extention */
2248 tz |= 0xf000;
2249
2250 /* TODO check timezone conversion */
2251 /* check if we are specified a timezone to convert */
2252 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2253 if ((int16_t) tz != -2047)
2254 secs -= (int16_t) tz * 60;
2255 } else {
2256 secs -= ump->mount_args.gmtoff;
2257 }
2258
2259 timespec->tv_sec = secs;
2260 timespec->tv_nsec = nsecs;
2261 }
2262
2263 /* --------------------------------------------------------------------- */
2264
2265 /*
2266 * Attribute and filetypes converters with get/set pairs
2267 */
2268
2269 uint32_t
2270 udf_getaccessmode(struct udf_node *udf_node)
2271 {
2272 struct file_entry *fe;
2273 struct extfile_entry *efe;
2274 uint32_t udf_perm, icbftype;
2275 uint32_t mode, ftype;
2276 uint16_t icbflags;
2277
2278 if (udf_node->fe) {
2279 fe = udf_node->fe;
2280 udf_perm = udf_rw32(fe->perm);
2281 icbftype = fe->icbtag.file_type;
2282 icbflags = udf_rw16(fe->icbtag.flags);
2283 } else {
2284 assert(udf_node->efe);
2285 efe = udf_node->efe;
2286 udf_perm = udf_rw32(efe->perm);
2287 icbftype = efe->icbtag.file_type;
2288 icbflags = udf_rw16(efe->icbtag.flags);
2289 }
2290
2291 mode = udf_perm_to_unix_mode(udf_perm);
2292 ftype = udf_icb_to_unix_filetype(icbftype);
2293
2294 /* set suid, sgid, sticky from flags in fe/efe */
2295 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2296 mode |= S_ISUID;
2297 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2298 mode |= S_ISGID;
2299 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2300 mode |= S_ISVTX;
2301
2302 return mode | ftype;
2303 }
2304
2305 /* --------------------------------------------------------------------- */
2306
2307 /*
2308 * Directory read and manipulation functions
2309 */
2310
2311 int
2312 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2313 struct long_ad *icb_loc)
2314 {
2315 struct udf_node *dir_node = VTOI(vp);
2316 struct file_entry *fe;
2317 struct extfile_entry *efe;
2318 struct fileid_desc *fid;
2319 struct dirent dirent;
2320 uint64_t file_size, diroffset;
2321 uint32_t lb_size;
2322 int found, error;
2323
2324 /* get directory filesize */
2325 if (dir_node->fe) {
2326 fe = dir_node->fe;
2327 file_size = udf_rw64(fe->inf_len);
2328 } else {
2329 assert(dir_node->efe);
2330 efe = dir_node->efe;
2331 file_size = udf_rw64(efe->inf_len);
2332 }
2333
2334 /* allocate temporary space for fid */
2335 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2336 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2337
2338 found = 0;
2339 diroffset = dir_node->last_diroffset;
2340 while (!found) {
2341 /* if not found in this track, turn trough zero */
2342 if (diroffset >= file_size)
2343 diroffset = 0;
2344
2345 /* transfer a new fid/dirent */
2346 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2347 if (error)
2348 break;
2349
2350 if (diroffset == dir_node->last_diroffset) {
2351 /* we have cycled */
2352 break;
2353 }
2354
2355 /* skip deleted entries */
2356 if (fid->file_char & UDF_FILE_CHAR_DEL)
2357 continue;
2358
2359 if ((strlen(dirent.d_name) == namelen) &&
2360 (strncmp(dirent.d_name, name, namelen) == 0)) {
2361 found = 1;
2362 *icb_loc = fid->icb;
2363 }
2364 }
2365 free(fid, M_TEMP);
2366 dir_node->last_diroffset = diroffset;
2367
2368 return found;
2369 }
2370
2371 /* --------------------------------------------------------------------- */
2372
2373 /*
2374 * Read one fid and process it into a dirent and advance to the next (*fid)
2375 * has to be allocated a logical block in size, (*dirent) struct dirent length
2376 */
2377
2378 int
2379 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2380 struct fileid_desc *fid, struct dirent *dirent)
2381 {
2382 struct udf_node *dir_node = VTOI(vp);
2383 struct udf_mount *ump = dir_node->ump;
2384 struct file_entry *fe;
2385 struct extfile_entry *efe;
2386 struct uio dir_uio;
2387 struct iovec dir_iovec;
2388 uint32_t entry_length, lb_size;
2389 uint64_t file_size;
2390 char *fid_name;
2391 int enough, error;
2392
2393 assert(fid);
2394 assert(dirent);
2395 assert(dir_node);
2396 assert(offset);
2397 assert(*offset != 1);
2398
2399 DPRINTF(FIDS, ("read_fid_stream called\n"));
2400 /* check if we're past the end of the directory */
2401 if (dir_node->fe) {
2402 fe = dir_node->fe;
2403 file_size = udf_rw64(fe->inf_len);
2404 } else {
2405 assert(dir_node->efe);
2406 efe = dir_node->efe;
2407 file_size = udf_rw64(efe->inf_len);
2408 }
2409 if (*offset >= file_size)
2410 return EINVAL;
2411
2412 /* get maximum length of FID descriptor */
2413 lb_size = udf_rw32(ump->logical_vol->lb_size);
2414
2415 /* initialise return values */
2416 entry_length = 0;
2417 memset(dirent, 0, sizeof(struct dirent));
2418 memset(fid, 0, lb_size);
2419
2420 /* TODO use vn_rdwr instead of creating our own uio */
2421 /* read part of the directory */
2422 memset(&dir_uio, 0, sizeof(struct uio));
2423 dir_uio.uio_rw = UIO_READ; /* read into this space */
2424 dir_uio.uio_iovcnt = 1;
2425 dir_uio.uio_iov = &dir_iovec;
2426 UIO_SETUP_SYSSPACE(&dir_uio);
2427 dir_iovec.iov_base = fid;
2428 dir_iovec.iov_len = lb_size;
2429 dir_uio.uio_offset = *offset;
2430
2431 /* limit length of read in piece */
2432 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2433
2434 /* read the part into the fid space */
2435 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2436 if (error)
2437 return error;
2438
2439 /*
2440 * Check if we got a whole descriptor.
2441 * XXX Try to `resync' directory stream when something is very wrong.
2442 *
2443 */
2444 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2445 if (!enough) {
2446 /* short dir ... */
2447 return EIO;
2448 }
2449
2450 /* check if our FID header is OK */
2451 error = udf_check_tag(fid);
2452 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2453 if (!error) {
2454 if (udf_rw16(fid->tag.id) != TAGID_FID)
2455 error = ENOENT;
2456 }
2457 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2458
2459 /* check for length */
2460 if (!error) {
2461 entry_length = udf_fidsize(fid, lb_size);
2462 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2463 }
2464 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2465 entry_length, enough?"yes":"no"));
2466
2467 if (!enough) {
2468 /* short dir ... bomb out */
2469 return EIO;
2470 }
2471
2472 /* check FID contents */
2473 if (!error) {
2474 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2475 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2476 }
2477 if (error) {
2478 /* note that is sometimes a bit quick to report */
2479 printf("BROKEN DIRECTORY ENTRY\n");
2480 /* RESYNC? */
2481 /* TODO: use udf_resync_fid_stream */
2482 return EIO;
2483 }
2484 DPRINTF(FIDS, ("\tinterpret FID\n"));
2485
2486 /* we got a whole and valid descriptor! */
2487
2488 /* create resulting dirent structure */
2489 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2490 udf_to_unix_name(dirent->d_name,
2491 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2492
2493 /* '..' has no name, so provide one */
2494 if (fid->file_char & UDF_FILE_CHAR_PAR)
2495 strcpy(dirent->d_name, "..");
2496
2497 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2498 dirent->d_namlen = strlen(dirent->d_name);
2499 dirent->d_reclen = _DIRENT_SIZE(dirent);
2500
2501 /*
2502 * Note that its not worth trying to go for the filetypes now... its
2503 * too expensive too
2504 */
2505 dirent->d_type = DT_UNKNOWN;
2506
2507 /* initial guess for filetype we can make */
2508 if (fid->file_char & UDF_FILE_CHAR_DIR)
2509 dirent->d_type = DT_DIR;
2510
2511 /* advance */
2512 *offset += entry_length;
2513
2514 return error;
2515 }
2516
2517 /* --------------------------------------------------------------------- */
2518
2519 /*
2520 * block based file reading and writing
2521 */
2522
2523 static int
2524 udf_read_internal(struct udf_node *node, uint8_t *blob)
2525 {
2526 struct udf_mount *ump;
2527 struct file_entry *fe;
2528 struct extfile_entry *efe;
2529 uint64_t inflen;
2530 uint32_t sector_size;
2531 uint8_t *pos;
2532 int icbflags, addr_type;
2533
2534 /* shut up gcc */
2535 inflen = addr_type = icbflags = 0;
2536 pos = NULL;
2537
2538 /* get extent and do some paranoia checks */
2539 ump = node->ump;
2540 sector_size = ump->discinfo.sector_size;
2541
2542 fe = node->fe;
2543 efe = node->efe;
2544 if (fe) {
2545 inflen = udf_rw64(fe->inf_len);
2546 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2547 icbflags = udf_rw16(fe->icbtag.flags);
2548 }
2549 if (efe) {
2550 inflen = udf_rw64(efe->inf_len);
2551 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2552 icbflags = udf_rw16(efe->icbtag.flags);
2553 }
2554 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2555
2556 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2557 assert(inflen < sector_size);
2558
2559 /* copy out info */
2560 memset(blob, 0, sector_size);
2561 memcpy(blob, pos, inflen);
2562
2563 return 0;
2564 }
2565
2566 /* --------------------------------------------------------------------- */
2567
2568 /*
2569 * Read file extent reads an extent specified in sectors from the file. It is
2570 * sector based; i.e. no `fancy' offsets.
2571 */
2572
2573 int
2574 udf_read_file_extent(struct udf_node *node,
2575 uint32_t from, uint32_t sectors,
2576 uint8_t *blob)
2577 {
2578 struct buf buf;
2579 uint32_t sector_size;
2580
2581 BUF_INIT(&buf);
2582
2583 sector_size = node->ump->discinfo.sector_size;
2584
2585 buf.b_bufsize = sectors * sector_size;
2586 buf.b_data = blob;
2587 buf.b_bcount = buf.b_bufsize;
2588 buf.b_resid = buf.b_bcount;
2589 buf.b_flags = B_BUSY | B_READ;
2590 buf.b_vp = node->vnode;
2591 buf.b_proc = NULL;
2592
2593 buf.b_blkno = from;
2594 buf.b_lblkno = 0;
2595 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2596
2597 udf_read_filebuf(node, &buf);
2598 return biowait(&buf);
2599 }
2600
2601
2602 /* --------------------------------------------------------------------- */
2603
2604 /*
2605 * Read file extent in the buffer.
2606 *
2607 * The splitup of the extent into seperate request-buffers is to minimise
2608 * copying around as much as possible.
2609 */
2610
2611
2612 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2613 #define FILEBUFSECT 128
2614
2615 void
2616 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2617 {
2618 struct buf *nestbuf;
2619 uint64_t *mapping;
2620 uint64_t run_start;
2621 uint32_t sector_size;
2622 uint32_t buf_offset, sector, rbuflen, rblk;
2623 uint8_t *buf_pos;
2624 int error, run_length;
2625
2626 uint32_t from;
2627 uint32_t sectors;
2628
2629 sector_size = node->ump->discinfo.sector_size;
2630
2631 from = buf->b_blkno;
2632 sectors = buf->b_bcount / sector_size;
2633
2634 /* assure we have enough translation slots */
2635 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2636 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2637
2638 if (sectors > FILEBUFSECT) {
2639 printf("udf_read_filebuf: implementation limit on bufsize\n");
2640 buf->b_error = EIO;
2641 buf->b_flags |= B_ERROR;
2642 biodone(buf);
2643 return;
2644 }
2645
2646 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2647
2648 error = 0;
2649 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2650 error = udf_translate_file_extent(node, from, sectors, mapping);
2651 if (error) {
2652 buf->b_error = error;
2653 buf->b_flags |= B_ERROR;
2654 biodone(buf);
2655 goto out;
2656 }
2657 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2658
2659 /* pre-check if internal or parts are zero */
2660 if (*mapping == UDF_TRANS_INTERN) {
2661 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2662 if (error) {
2663 buf->b_error = error;
2664 buf->b_flags |= B_ERROR;
2665 }
2666 biodone(buf);
2667 goto out;
2668 }
2669 DPRINTF(READ, ("\tnot intern\n"));
2670
2671 /* request read-in of data from disc sheduler */
2672 buf->b_resid = buf->b_bcount;
2673 for (sector = 0; sector < sectors; sector++) {
2674 buf_offset = sector * sector_size;
2675 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2676 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2677
2678 switch (mapping[sector]) {
2679 case UDF_TRANS_UNMAPPED:
2680 case UDF_TRANS_ZERO:
2681 /* copy zero sector */
2682 memset(buf_pos, 0, sector_size);
2683 DPRINTF(READ, ("\treturning zero sector\n"));
2684 nestiobuf_done(buf, sector_size, 0);
2685 break;
2686 default :
2687 DPRINTF(READ, ("\tread sector "
2688 "%"PRIu64"\n", mapping[sector]));
2689
2690 run_start = mapping[sector];
2691 run_length = 1;
2692 while (sector < sectors-1) {
2693 if (mapping[sector+1] != mapping[sector]+1)
2694 break;
2695 run_length++;
2696 sector++;
2697 }
2698
2699 /*
2700 * nest an iobuf and mark it for async reading. Since
2701 * we're using nested buffers, they can't be cached by
2702 * design.
2703 */
2704 rbuflen = run_length * sector_size;
2705 rblk = run_start * (sector_size/DEV_BSIZE);
2706
2707 nestbuf = getiobuf();
2708 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2709 /* nestbuf is B_ASYNC */
2710
2711 /* CD shedules on raw blkno */
2712 nestbuf->b_blkno = rblk;
2713 nestbuf->b_proc = NULL;
2714 nestbuf->b_cylinder = 0;
2715 nestbuf->b_rawblkno = rblk;
2716 VOP_STRATEGY(node->ump->devvp, nestbuf);
2717 }
2718 }
2719 out:
2720 DPRINTF(READ, ("\tend of read_filebuf\n"));
2721 free(mapping, M_TEMP);
2722 return;
2723 }
2724 #undef FILEBUFSECT
2725
2726
2727 /* --------------------------------------------------------------------- */
2728
2729 /*
2730 * Translate an extent (in sectors) into sector numbers; used for read and
2731 * write operations. DOESNT't check extents.
2732 */
2733
2734 int
2735 udf_translate_file_extent(struct udf_node *node,
2736 uint32_t from, uint32_t pages,
2737 uint64_t *map)
2738 {
2739 struct udf_mount *ump;
2740 struct file_entry *fe;
2741 struct extfile_entry *efe;
2742 struct short_ad *s_ad;
2743 struct long_ad *l_ad, t_ad;
2744 uint64_t transsec;
2745 uint32_t sector_size, transsec32;
2746 uint32_t overlap, translen;
2747 uint32_t vpart_num, lb_num, len, alloclen;
2748 uint8_t *pos;
2749 int error, flags, addr_type, icblen, icbflags;
2750
2751 if (!node)
2752 return ENOENT;
2753
2754 /* shut up gcc */
2755 alloclen = addr_type = icbflags = 0;
2756 pos = NULL;
2757
2758 /* do the work */
2759 ump = node->ump;
2760 sector_size = ump->discinfo.sector_size;
2761 fe = node->fe;
2762 efe = node->efe;
2763 if (fe) {
2764 alloclen = udf_rw32(fe->l_ad);
2765 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2766 icbflags = udf_rw16(fe->icbtag.flags);
2767 }
2768 if (efe) {
2769 alloclen = udf_rw32(efe->l_ad);
2770 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2771 icbflags = udf_rw16(efe->icbtag.flags);
2772 }
2773 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2774
2775 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2776 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2777
2778 vpart_num = udf_rw16(node->loc.loc.part_num);
2779 lb_num = len = icblen = 0; /* shut up gcc */
2780 while (pages && alloclen) {
2781 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2782 switch (addr_type) {
2783 case UDF_ICB_INTERN_ALLOC :
2784 /* TODO check extents? */
2785 *map = UDF_TRANS_INTERN;
2786 return 0;
2787 case UDF_ICB_SHORT_ALLOC :
2788 icblen = sizeof(struct short_ad);
2789 s_ad = (struct short_ad *) pos;
2790 len = udf_rw32(s_ad->len);
2791 lb_num = udf_rw32(s_ad->lb_num);
2792 break;
2793 case UDF_ICB_LONG_ALLOC :
2794 icblen = sizeof(struct long_ad);
2795 l_ad = (struct long_ad *) pos;
2796 len = udf_rw32(l_ad->len);
2797 lb_num = udf_rw32(l_ad->loc.lb_num);
2798 vpart_num = udf_rw16(l_ad->loc.part_num);
2799 DPRINTFIF(TRANSLATE,
2800 (l_ad->impl.im_used.flags &
2801 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2802 ("UDF: got an `extent erased' flag in long_ad\n"));
2803 break;
2804 default:
2805 /* can't be here */
2806 return EINVAL; /* for sure */
2807 }
2808
2809 /* process extent */
2810 flags = UDF_EXT_FLAGS(len);
2811 len = UDF_EXT_LEN(len);
2812
2813 overlap = (len + sector_size -1) / sector_size;
2814 if (from) {
2815 if (from > overlap) {
2816 from -= overlap;
2817 overlap = 0;
2818 } else {
2819 lb_num += from; /* advance in extent */
2820 overlap -= from;
2821 from = 0;
2822 }
2823 }
2824
2825 overlap = MIN(overlap, pages);
2826 while (overlap) {
2827 switch (flags) {
2828 case UDF_EXT_REDIRECT :
2829 /* no support for allocation extentions yet */
2830 /* TODO support for allocation extention */
2831 return ENOENT;
2832 case UDF_EXT_FREED :
2833 case UDF_EXT_FREE :
2834 transsec = UDF_TRANS_ZERO;
2835 translen = overlap;
2836 while (overlap && pages && translen) {
2837 *map++ = transsec;
2838 lb_num++;
2839 overlap--; pages--; translen--;
2840 }
2841 break;
2842 case UDF_EXT_ALLOCATED :
2843 t_ad.loc.lb_num = udf_rw32(lb_num);
2844 t_ad.loc.part_num = udf_rw16(vpart_num);
2845 error = udf_translate_vtop(ump,
2846 &t_ad, &transsec32, &translen);
2847 transsec = transsec32;
2848 if (error)
2849 return error;
2850 while (overlap && pages && translen) {
2851 *map++ = transsec;
2852 lb_num++; transsec++;
2853 overlap--; pages--; translen--;
2854 }
2855 break;
2856 }
2857 }
2858 pos += icblen;
2859 alloclen -= icblen;
2860 }
2861 return 0;
2862 }
2863
2864 /* --------------------------------------------------------------------- */
2865
2866