Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.2
      1 /* $NetBSD: udf_subr.c,v 1.2 2006/02/02 15:38:35 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  */
     35 
     36 
     37 #include <sys/cdefs.h>
     38 #ifndef lint
     39 __RCSID("$NetBSD: udf_subr.c,v 1.2 2006/02/02 15:38:35 reinoud Exp $");
     40 #endif /* not lint */
     41 
     42 
     43 #if defined(_KERNEL_OPT)
     44 #include "opt_quota.h"
     45 #include "opt_compat_netbsd.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/namei.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/vnode.h>
     55 #include <miscfs/genfs/genfs_node.h>
     56 #include <sys/mount.h>
     57 #include <sys/buf.h>
     58 #include <sys/file.h>
     59 #include <sys/device.h>
     60 #include <sys/disklabel.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/malloc.h>
     63 #include <sys/dirent.h>
     64 #include <sys/stat.h>
     65 #include <sys/conf.h>
     66 
     67 #include <fs/udf/ecma167-udf.h>
     68 #include <fs/udf/udf_mount.h>
     69 
     70 #include "udf.h"
     71 #include "udf_subr.h"
     72 #include "udf_bswap.h"
     73 
     74 
     75 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
     76 
     77 
     78 /* predefines */
     79 
     80 
     81 #if 0
     82 {
     83 	int i, j, dlen;
     84 	uint8_t *blob;
     85 
     86 	blob = (uint8_t *) fid;
     87 	dlen = file_size - (*offset);
     88 
     89 	printf("blob = %p\n", blob);
     90 	printf("dump of %d bytes\n", dlen);
     91 
     92 	for (i = 0; i < dlen; i+ = 16) {
     93 		printf("%04x ", i);
     94 		for (j = 0; j < 16; j++) {
     95 			if (i+j < dlen) {
     96 				printf("%02x ", blob[i+j]);
     97 			} else {
     98 				printf("   ");
     99 			};
    100 		};
    101 		for (j = 0; j < 16; j++) {
    102 			if (i+j < dlen) {
    103 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    104 					printf("%c", blob[i+j]);
    105 				} else {
    106 					printf(".");
    107 				};
    108 			};
    109 		};
    110 		printf("\n");
    111 	};
    112 	printf("\n");
    113 };
    114 Debugger();
    115 #endif
    116 
    117 
    118 /* --------------------------------------------------------------------- */
    119 
    120 /* STUB */
    121 
    122 static int
    123 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
    124 {
    125 	int sector_size = ump->discinfo.sector_size;
    126 	int blks = sector_size / DEV_BSIZE;
    127 
    128 	/* NOTE bread() checks if block is in cache or not */
    129 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
    130 }
    131 
    132 
    133 /* --------------------------------------------------------------------- */
    134 
    135 /*
    136  * Check if the blob starts with a good UDF tag. Tags are protected by a
    137  * checksum over the reader except one byte at position 4 that is the checksum
    138  * itself.
    139  */
    140 
    141 int
    142 udf_check_tag(void *blob)
    143 {
    144 	struct desc_tag *tag = blob;
    145 	uint8_t *pos, sum, cnt;
    146 
    147 	/* check TAG header checksum */
    148 	pos = (uint8_t *) tag;
    149 	sum = 0;
    150 
    151 	for(cnt = 0; cnt < 16; cnt++) {
    152 		if (cnt != 4)
    153 			sum += *pos;
    154 		pos++;
    155 	}
    156 	if (sum != tag->cksum) {
    157 		/* bad tag header checksum; this is not a valid tag */
    158 		return EINVAL;
    159 	}
    160 
    161 	return 0;
    162 }
    163 
    164 /* --------------------------------------------------------------------- */
    165 
    166 /*
    167  * check tag payload will check descriptor CRC as specified.
    168  * If the descriptor is too short, it will return EIO otherwise EINVAL.
    169  */
    170 
    171 int
    172 udf_check_tag_payload(void *blob, uint32_t max_length)
    173 {
    174 	struct desc_tag *tag = blob;
    175 	uint16_t crc, crc_len;
    176 
    177 	crc_len = udf_rw16(tag->desc_crc_len);
    178 
    179 	/* check payload CRC if applicable */
    180 	if (crc_len == 0)
    181 		return 0;
    182 
    183 	if (crc_len > max_length)
    184 		return EIO;
    185 
    186 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    187 	if (crc != udf_rw16(tag->desc_crc)) {
    188 		/* bad payload CRC; this is a broken tag */
    189 		return EINVAL;
    190 	};
    191 
    192 	return 0;
    193 }
    194 
    195 /* --------------------------------------------------------------------- */
    196 
    197 int
    198 udf_validate_tag_sum(void *blob)
    199 {
    200 	struct desc_tag *tag = blob;
    201 	uint8_t *pos, sum, cnt;
    202 
    203 	/* calculate TAG header checksum */
    204 	pos = (uint8_t *) tag;
    205 	sum = 0;
    206 
    207 	for(cnt = 0; cnt < 16; cnt++) {
    208 		if (cnt != 4) sum += *pos;
    209 		pos++;
    210 	};
    211 	tag->cksum = sum;	/* 8 bit */
    212 
    213 	return 0;
    214 }
    215 
    216 /* --------------------------------------------------------------------- */
    217 
    218 /* assumes sector number of descriptor to be saved allready present */
    219 
    220 int
    221 udf_validate_tag_and_crc_sums(void *blob)
    222 {
    223 	struct desc_tag *tag  = blob;
    224 	uint8_t         *btag = (uint8_t *) tag;
    225 	uint16_t crc, crc_len;
    226 
    227 	crc_len = udf_rw16(tag->desc_crc_len);
    228 
    229 	/* check payload CRC if applicable */
    230 	if (crc_len > 0) {
    231 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    232 		tag->desc_crc = udf_rw16(crc);
    233 	};
    234 
    235 	/* calculate TAG header checksum */
    236 	return udf_validate_tag_sum(blob);
    237 }
    238 
    239 /* --------------------------------------------------------------------- */
    240 
    241 /*
    242  * XXX note the different semantics from udfclient: for FIDs it still rounds
    243  * up to sectors. Use udf_fidsize() for a correct length.
    244  */
    245 
    246 int
    247 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
    248 {
    249 	uint32_t size, tag_id, num_secs, elmsz;
    250 
    251 	tag_id = udf_rw16(dscr->tag.id);
    252 
    253 	switch (tag_id) {
    254 	case TAGID_LOGVOL :
    255 		size  = sizeof(struct logvol_desc) - 1;
    256 		size += udf_rw32(dscr->lvd.mt_l);
    257 		break;
    258 	case TAGID_UNALLOC_SPACE :
    259 		elmsz = sizeof(struct extent_ad);
    260 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    261 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    262 		break;
    263 	case TAGID_FID :
    264 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    265 		size = (size + 3) & ~3;
    266 		break;
    267 	case TAGID_LOGVOL_INTEGRITY :
    268 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    269 		size += udf_rw32(dscr->lvid.l_iu);
    270 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    271 		break;
    272 	case TAGID_SPACE_BITMAP :
    273 		size  = sizeof(struct space_bitmap_desc) - 1;
    274 		size += udf_rw32(dscr->sbd.num_bytes);
    275 		break;
    276 	case TAGID_SPARING_TABLE :
    277 		elmsz = sizeof(struct spare_map_entry);
    278 		size  = sizeof(struct udf_sparing_table) - elmsz;
    279 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    280 		break;
    281 	case TAGID_FENTRY :
    282 		size  = sizeof(struct file_entry);
    283 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    284 		break;
    285 	case TAGID_EXTFENTRY :
    286 		size  = sizeof(struct extfile_entry);
    287 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    288 		break;
    289 	case TAGID_FSD :
    290 		size  = sizeof(struct fileset_desc);
    291 		break;
    292 	default :
    293 		size = sizeof(union dscrptr);
    294 		break;
    295 	};
    296 
    297 	if ((size == 0) || (udf_sector_size == 0)) return 0;
    298 
    299 	/* round up in sectors */
    300 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
    301 	return num_secs * udf_sector_size;
    302 }
    303 
    304 
    305 static int
    306 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
    307 {
    308 	uint32_t size;
    309 
    310 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    311 		panic("got udf_fidsize on non FID\n");
    312 
    313 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    314 	size = (size + 3) & ~3;
    315 
    316 	return size;
    317 }
    318 
    319 /* --------------------------------------------------------------------- */
    320 
    321 /*
    322  * Problem with read_descriptor are long descriptors spanning more than one
    323  * sector. Luckily long descriptors can't be in `logical space'.
    324  *
    325  * Size of allocated piece is returned in multiple of sector size due to
    326  * udf_calc_udf_malloc_size().
    327  */
    328 
    329 int
    330 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
    331 		    struct malloc_type *mtype, union dscrptr **dstp)
    332 {
    333 	union dscrptr *src, *dst;
    334 	struct buf *bp;
    335 	uint8_t *pos;
    336 	int blks, blk, dscrlen;
    337 	int i, error, sector_size;
    338 
    339 	sector_size = ump->discinfo.sector_size;
    340 
    341 	*dstp = dst = NULL;
    342 	dscrlen = sector_size;
    343 
    344 	/* read initial piece */
    345 	error = udf_bread(ump, sector, &bp);
    346 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
    347 
    348 	if (!error) {
    349 		/* check if its a valid tag */
    350 		error = udf_check_tag(bp->b_data);
    351 		if (error) {
    352 			/* check if its an empty block */
    353 			pos = bp->b_data;
    354 			for (i = 0; i < sector_size; i++, pos++) {
    355 				if (*pos) break;
    356 			};
    357 			if (i == sector_size) {
    358 				/* return no error but with no dscrptr */
    359 				/* dispose first block */
    360 				brelse(bp);
    361 				return 0;
    362 			};
    363 		};
    364 	};
    365 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
    366 	if (!error) {
    367 		src = (union dscrptr *) bp->b_data;
    368 		dscrlen = udf_tagsize(src, sector_size);
    369 		dst = malloc(dscrlen, mtype, M_WAITOK);
    370 		memcpy(dst, src, dscrlen);
    371 	};
    372 	/* dispose first block */
    373 	bp->b_flags |= B_AGE;
    374 	brelse(bp);
    375 
    376 	if (!error && (dscrlen > sector_size)) {
    377 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
    378 		/*
    379 		 * Read the rest of descriptor. Since it is only used at mount
    380 		 * time its overdone to define and use a specific udf_breadn
    381 		 * for this alone.
    382 		 */
    383 		blks = (dscrlen + sector_size -1) / sector_size;
    384 		for (blk = 1; blk < blks; blk++) {
    385 			error = udf_bread(ump, sector + blk, &bp);
    386 			if (error) {
    387 				brelse(bp);
    388 				break;
    389 			};
    390 			pos = (uint8_t *) dst + blk*sector_size;
    391 			memcpy(pos, bp->b_data, sector_size);
    392 
    393 			/* dispose block */
    394 			bp->b_flags |= B_AGE;
    395 			brelse(bp);
    396 		};
    397 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
    398 		    error));
    399 	};
    400 	if (!error) {
    401 		error = udf_check_tag_payload(dst, dscrlen);
    402 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
    403 	};
    404 	if (error && dst) {
    405 		free(dst, mtype);
    406 		dst = NULL;
    407 	};
    408 	*dstp = dst;
    409 
    410 	return error;
    411 }
    412 
    413 /* --------------------------------------------------------------------- */
    414 #ifdef DEBUG
    415 static void
    416 udf_dump_discinfo(struct udf_mount *ump)
    417 {
    418 	char   bits[128];
    419 	struct mmc_discinfo *di = &ump->discinfo;
    420 
    421 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    422 		return;
    423 
    424 	printf("Device/media info  :\n");
    425 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    426 	printf("\tderived class      %d\n", di->mmc_class);
    427 	printf("\tsector size        %d\n", di->sector_size);
    428 	printf("\tdisc state         %d\n", di->disc_state);
    429 	printf("\tlast ses state     %d\n", di->last_session_state);
    430 	printf("\tbg format state    %d\n", di->bg_format_state);
    431 	printf("\tfrst track         %d\n", di->first_track);
    432 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    433 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    434 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    435 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    436 		sizeof(bits));
    437 	printf("\tdisc flags         %s\n", bits);
    438 	printf("\tdisc id            %x\n", di->disc_id);
    439 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    440 
    441 	printf("\tnum sessions       %d\n", di->num_sessions);
    442 	printf("\tnum tracks         %d\n", di->num_tracks);
    443 
    444 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    445 	printf("\tcapabilities cur   %s\n", bits);
    446 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    447 	printf("\tcapabilities cap   %s\n", bits);
    448 }
    449 #else
    450 #define udf_dump_discinfo(a);
    451 #endif
    452 
    453 /* not called often */
    454 int
    455 udf_update_discinfo(struct udf_mount *ump)
    456 {
    457 	struct vnode *devvp = ump->devvp;
    458 	struct partinfo dpart;
    459 	struct mmc_discinfo *di;
    460 	int error;
    461 
    462 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    463 	di = &ump->discinfo;
    464 	memset(di, 0, sizeof(struct mmc_discinfo));
    465 
    466 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    467 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
    468 	if (error == 0) {
    469 		udf_dump_discinfo(ump);
    470 		return 0;
    471 	};
    472 
    473 	/* disc partition support */
    474 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
    475 	if (error)
    476 		return ENODEV;
    477 
    478 	/* set up a disc info profile for partitions */
    479 	di->mmc_profile		= 0x01;	/* disc type */
    480 	di->mmc_class		= MMC_CLASS_DISC;
    481 	di->disc_state		= MMC_STATE_CLOSED;
    482 	di->last_session_state	= MMC_STATE_CLOSED;
    483 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    484 	di->link_block_penalty	= 0;
    485 
    486 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    487 		MMC_CAP_ZEROLINKBLK;
    488 	di->mmc_cap    = di->mmc_cur;
    489 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    490 
    491 	/* TODO problem with last_possible_lba on resizable VND; request */
    492 	di->last_possible_lba = dpart.part->p_size;
    493 	di->sector_size       = dpart.disklab->d_secsize;
    494 	di->blockingnr        = 1;
    495 
    496 	di->num_sessions = 1;
    497 	di->num_tracks   = 1;
    498 
    499 	di->first_track  = 1;
    500 	di->first_track_last_session = di->last_track_last_session = 1;
    501 
    502 	udf_dump_discinfo(ump);
    503 	return 0;
    504 }
    505 
    506 /* --------------------------------------------------------------------- */
    507 
    508 int
    509 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    510 {
    511 	struct vnode *devvp = ump->devvp;
    512 	struct mmc_discinfo *di = &ump->discinfo;
    513 	int error, class;
    514 
    515 	DPRINTF(VOLUMES, ("read track info\n"));
    516 
    517 	class = di->mmc_class;
    518 	if (class != MMC_CLASS_DISC) {
    519 		/* tracknr specified in struct ti */
    520 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
    521 			NOCRED, NULL);
    522 		return error;
    523 	};
    524 
    525 	/* disc partition support */
    526 	if (ti->tracknr != 1)
    527 		return EIO;
    528 
    529 	/* create fake ti (TODO check for resized vnds) */
    530 	ti->sessionnr  = 1;
    531 
    532 	ti->track_mode = 0;	/* XXX */
    533 	ti->data_mode  = 0;	/* XXX */
    534 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    535 
    536 	ti->track_start    = 0;
    537 	ti->packet_size    = 1;
    538 
    539 	/* TODO support for resizable vnd */
    540 	ti->track_size    = di->last_possible_lba;
    541 	ti->next_writable = di->last_possible_lba;
    542 	ti->last_recorded = ti->next_writable;
    543 	ti->free_blocks   = 0;
    544 
    545 	return 0;
    546 }
    547 
    548 /* --------------------------------------------------------------------- */
    549 
    550 /* track/session searching for mounting */
    551 
    552 static int
    553 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    554 		  int *first_tracknr, int *last_tracknr)
    555 {
    556 	struct mmc_trackinfo trackinfo;
    557 	uint32_t tracknr, start_track, num_tracks;
    558 	int error;
    559 
    560 	/* if negative, sessionnr is relative to last session */
    561 	if (args->sessionnr < 0) {
    562 		args->sessionnr += ump->discinfo.num_sessions;
    563 		/* sanity */
    564 		if (args->sessionnr < 0)
    565 			args->sessionnr = 0;
    566 	};
    567 
    568 	/* sanity */
    569 	if (args->sessionnr > ump->discinfo.num_sessions)
    570 		args->sessionnr = ump->discinfo.num_sessions;
    571 
    572 	/* search the tracks for this session, zero session nr indicates last */
    573 	if (args->sessionnr == 0) {
    574 		args->sessionnr = ump->discinfo.num_sessions;
    575 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
    576 			args->sessionnr--;
    577 		}
    578 	};
    579 
    580 	/* search the first and last track of the specified session */
    581 	num_tracks  = ump->discinfo.num_tracks;
    582 	start_track = ump->discinfo.first_track;
    583 
    584 	/* search for first track of this session */
    585 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    586 		/* get track info */
    587 		trackinfo.tracknr = tracknr;
    588 		error = udf_update_trackinfo(ump, &trackinfo);
    589 		if (error)
    590 			return error;
    591 
    592 		if (trackinfo.sessionnr == args->sessionnr)
    593 			break;
    594 	}
    595 	*first_tracknr = tracknr;
    596 
    597 	/* search for last track of this session */
    598 	for (;tracknr <= num_tracks; tracknr++) {
    599 		/* get track info */
    600 		trackinfo.tracknr = tracknr;
    601 		error = udf_update_trackinfo(ump, &trackinfo);
    602 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    603 			tracknr--;
    604 			break;
    605 		};
    606 	};
    607 	if (tracknr > num_tracks)
    608 		tracknr--;
    609 
    610 	*last_tracknr = tracknr;
    611 
    612 	assert(*last_tracknr >= *first_tracknr);
    613 	return 0;
    614 }
    615 
    616 /* --------------------------------------------------------------------- */
    617 
    618 static int
    619 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    620 {
    621 	int error;
    622 
    623 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
    624 			(union dscrptr **) dst);
    625 	if (!error) {
    626 		/* blank terminator blocks are not allowed here */
    627 		if (*dst == NULL)
    628 			return ENOENT;
    629 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    630 			error = ENOENT;
    631 			free(*dst, M_UDFVOLD);
    632 			*dst = NULL;
    633 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    634 		};
    635 	};
    636 
    637 	return error;
    638 }
    639 
    640 
    641 int
    642 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
    643 {
    644 	struct mmc_trackinfo first_track;
    645 	struct mmc_trackinfo last_track;
    646 	struct anchor_vdp **anchorsp;
    647 	uint32_t track_start;
    648 	uint32_t track_end;
    649 	uint32_t positions[4];
    650 	int first_tracknr, last_tracknr;
    651 	int error, anch, ok, first_anchor;
    652 
    653 	/* search the first and last track of the specified session */
    654 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    655 	if (!error) {
    656 		first_track.tracknr = first_tracknr;
    657 		error = udf_update_trackinfo(ump, &first_track);
    658 	};
    659 	if (!error) {
    660 		last_track.tracknr = last_tracknr;
    661 		error = udf_update_trackinfo(ump, &last_track);
    662 	};
    663 	if (error) {
    664 		printf("UDF mount: reading disc geometry failed\n");
    665 		return 0;
    666 	};
    667 
    668 	track_start = first_track.track_start;
    669 
    670 	/* `end' is not as straitforward as start. */
    671 	track_end =   last_track.track_start
    672 		    + last_track.track_size - last_track.free_blocks - 1;
    673 
    674 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    675 		/* end of track is not straitforward here */
    676 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    677 			track_end = last_track.last_recorded;
    678 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    679 			track_end = last_track.next_writable
    680 				    - ump->discinfo.link_block_penalty;
    681 	};
    682 	/* VATs are only recorded on sequential media, but initialise */
    683 	ump->possible_vat_location = track_end;
    684 
    685 	/* its no use reading a blank track */
    686 	first_anchor = 0;
    687 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    688 		first_anchor = 1;
    689 
    690 	/* read anchors start+256, start+512, end-256, end */
    691 	positions[0] = track_start+256;
    692 	positions[1] =   track_end-256;
    693 	positions[2] =   track_end;
    694 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    695 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    696 
    697 	ok = 0;
    698 	anchorsp = ump->anchors;
    699 	for (anch = first_anchor; anch < 4; anch++) {
    700 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    701 		    positions[anch]));
    702 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    703 		if (!error) {
    704 			anchorsp++;
    705 			ok++;
    706 		};
    707 	};
    708 
    709 	return ok;
    710 }
    711 
    712 /* --------------------------------------------------------------------- */
    713 
    714 /* we dont try to be smart; we just record the parts */
    715 #define UDF_UPDATE_DSCR(name, dscr) \
    716 	if (name) \
    717 		free(name, M_UDFVOLD); \
    718 	name = dscr;
    719 
    720 static int
    721 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    722 {
    723 	uint16_t partnr;
    724 
    725 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    726 	    udf_rw16(dscr->tag.id)));
    727 	switch (udf_rw16(dscr->tag.id)) {
    728 	case TAGID_PRI_VOL :		/* primary partition		*/
    729 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    730 		break;
    731 	case TAGID_LOGVOL :		/* logical volume		*/
    732 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    733 		break;
    734 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    735 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    736 		break;
    737 	case TAGID_IMP_VOL :		/* implementation		*/
    738 		/* XXX do we care about multiple impl. descr ? */
    739 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    740 		break;
    741 	case TAGID_PARTITION :		/* physical partition		*/
    742 		/* not much use if its not allocated */
    743 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    744 			free(dscr, M_UDFVOLD);
    745 			break;
    746 		};
    747 
    748 		/* check partnr boundaries */
    749 		partnr = udf_rw16(dscr->pd.part_num);
    750 		if (partnr >= UDF_PARTITIONS)
    751 			return EINVAL;
    752 
    753 		UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
    754 		break;
    755 	case TAGID_VOL :		/* volume space extender; rare	*/
    756 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    757 		free(dscr, M_UDFVOLD);
    758 		break;
    759 	default :
    760 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    761 		    udf_rw16(dscr->tag.id)));
    762 		free(dscr, M_UDFVOLD);
    763 	};
    764 
    765 	return 0;
    766 }
    767 #undef UDF_UPDATE_DSCR
    768 
    769 /* --------------------------------------------------------------------- */
    770 
    771 static int
    772 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    773 {
    774 	union dscrptr *dscr;
    775 	uint32_t sector_size, dscr_size;
    776 	int error;
    777 
    778 	sector_size = ump->discinfo.sector_size;
    779 
    780 	/* loc is sectornr, len is in bytes */
    781 	error = EIO;
    782 	while (len) {
    783 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
    784 		if (error)
    785 			return error;
    786 
    787 		/* blank block is a terminator */
    788 		if (dscr == NULL)
    789 			return 0;
    790 
    791 		/* TERM descriptor is a terminator */
    792 		if (udf_rw16(dscr->tag.id) == TAGID_TERM)
    793 			return 0;
    794 
    795 		/* process all others */
    796 		dscr_size = udf_tagsize(dscr, sector_size);
    797 		error = udf_process_vds_descriptor(ump, dscr);
    798 		if (error) {
    799 			free(dscr, M_UDFVOLD);
    800 			break;
    801 		};
    802 		assert((dscr_size % sector_size) == 0);
    803 
    804 		len -= dscr_size;
    805 		loc += dscr_size / sector_size;
    806 	};
    807 
    808 	return error;
    809 }
    810 
    811 
    812 int
    813 udf_read_vds_space(struct udf_mount *ump)
    814 {
    815 	struct anchor_vdp *anchor, *anchor2;
    816 	size_t size;
    817 	uint32_t main_loc, main_len;
    818 	uint32_t reserve_loc, reserve_len;
    819 	int error;
    820 
    821 	/*
    822 	 * read in VDS space provided by the anchors; if one descriptor read
    823 	 * fails, try the mirror sector.
    824 	 *
    825 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
    826 	 * avoids the `compatibility features' of DirectCD that may confuse
    827 	 * stuff completely.
    828 	 */
    829 
    830 	anchor  = ump->anchors[0];
    831 	anchor2 = ump->anchors[1];
    832 	assert(anchor);
    833 
    834 	if (anchor2) {
    835 		size = sizeof(struct extent_ad);
    836 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
    837 			anchor = anchor2;
    838 		/* reserve is specified to be a literal copy of main */
    839 	};
    840 
    841 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
    842 	main_len    = udf_rw32(anchor->main_vds_ex.len);
    843 
    844 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
    845 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
    846 
    847 	error = udf_read_vds_extent(ump, main_loc, main_len);
    848 	if (error) {
    849 		printf("UDF mount: reading in reserve VDS extent\n");
    850 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
    851 	};
    852 
    853 	return error;
    854 }
    855 
    856 /* --------------------------------------------------------------------- */
    857 
    858 /*
    859  * Read in the logical volume integrity sequence pointed to by our logical
    860  * volume descriptor. Its a sequence that can be extended using fields in the
    861  * integrity descriptor itself. On sequential media only one is found, on
    862  * rewritable media a sequence of descriptors can be found as a form of
    863  * history keeping and on non sequential write-once media the chain is vital
    864  * to allow more and more descriptors to be written. The last descriptor
    865  * written in an extent needs to claim space for a new extent.
    866  */
    867 
    868 static int
    869 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
    870 {
    871 	union dscrptr *dscr;
    872 	struct logvol_int_desc *lvint;
    873 	uint32_t sector_size, sector, len;
    874 	int dscr_type, error;
    875 
    876 	sector_size = ump->discinfo.sector_size;
    877 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
    878 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
    879 
    880 	lvint = NULL;
    881 	dscr  = NULL;
    882 	error = 0;
    883 	while (len) {
    884 		/* read in our integrity descriptor */
    885 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
    886 		if (!error) {
    887 			if (dscr == NULL)
    888 				break;		/* empty terminates */
    889 			dscr_type = udf_rw16(dscr->tag.id);
    890 			if (dscr_type == TAGID_TERM) {
    891 				break;		/* clean terminator */
    892 			};
    893 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
    894 				/* fatal... corrupt disc */
    895 				error = ENOENT;
    896 				break;
    897 			};
    898 			if (lvint)
    899 				free(lvint, M_UDFVOLD);
    900 			lvint = &dscr->lvid;
    901 			dscr = NULL;
    902 		}; /* else hope for the best... maybe the next is ok */
    903 
    904 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
    905 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
    906 
    907 		/* proceed sequential */
    908 		sector += 1;
    909 		len    -= sector_size;
    910 
    911 		/* are we linking to a new piece? */
    912 		if (lvint->next_extent.len) {
    913 			len    = udf_rw32(lvint->next_extent.len);
    914 			sector = udf_rw32(lvint->next_extent.loc);
    915 		};
    916 	};
    917 
    918 	/* clean up the mess, esp. when there is an error */
    919 	if (dscr)
    920 		free(dscr, M_UDFVOLD);
    921 	if (error && lvint)
    922 		free(lvint, M_UDFVOLD);
    923 	*lvintp = lvint;
    924 
    925 	if (!lvint)
    926 		error = ENOENT;
    927 
    928 	return error;
    929 }
    930 
    931 /* --------------------------------------------------------------------- */
    932 
    933 /*
    934  * Checks if ump's vds information is correct and complete
    935  */
    936 
    937 int
    938 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
    939 	union udf_pmap *mapping;
    940 	struct logvol_int_desc *lvint;
    941 	struct udf_logvol_info *lvinfo;
    942 	uint32_t n_pm, mt_l;
    943 	uint8_t *pmap_pos;
    944 	char *domain_name, *map_name;
    945 	const char *check_name;
    946 	int pmap_stype, pmap_size;
    947 	int pmap_type, log_part, phys_part;
    948 	int n_phys, n_virt, n_spar, n_meta;
    949 	int len, error;
    950 
    951 	if (ump == NULL)
    952 		return ENOENT;
    953 
    954 	/* we need at least an anchor (trivial, but for safety) */
    955 	if (ump->anchors[0] == NULL)
    956 		return EINVAL;
    957 
    958 	/* we need at least one primary and one logical volume descriptor */
    959 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
    960 		return EINVAL;
    961 
    962 	/* we need at least one partition descriptor */
    963 	if (ump->partitions[0] == NULL)
    964 		return EINVAL;
    965 
    966 	/* check logical volume sector size verses device sector size */
    967 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
    968 		printf("UDF mount: format violation, lb_size != sector size\n");
    969 		return EINVAL;
    970 	};
    971 
    972 	domain_name = ump->logical_vol->domain_id.id;
    973 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
    974 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
    975 		return EINVAL;
    976 	};
    977 
    978 	/* retrieve logical volume integrity sequence */
    979 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
    980 
    981 	/*
    982 	 * We need at least one logvol integrity descriptor recorded.  Note
    983 	 * that its OK to have an open logical volume integrity here. The VAT
    984 	 * will close/update the integrity.
    985 	 */
    986 	if (ump->logvol_integrity == NULL)
    987 		return EINVAL;
    988 
    989 	/* process derived structures */
    990 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
    991 	lvint  = ump->logvol_integrity;
    992 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
    993 	ump->logvol_info = lvinfo;
    994 
    995 	/* TODO check udf versions? */
    996 
    997 	/*
    998 	 * check logvol mappings: effective virt->log partmap translation
    999 	 * check and recording of the mapping results. Saves expensive
   1000 	 * strncmp() in tight places.
   1001 	 */
   1002 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1003 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1004 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1005 	pmap_pos =  ump->logical_vol->maps;
   1006 
   1007 	if (n_pm > UDF_PMAPS) {
   1008 		printf("UDF mount: too many mappings\n");
   1009 		return EINVAL;
   1010 	};
   1011 
   1012 	n_phys = n_virt = n_spar = n_meta = 0;
   1013 	for (log_part = 0; log_part < n_pm; log_part++) {
   1014 		mapping = (union udf_pmap *) pmap_pos;
   1015 		pmap_stype = pmap_pos[0];
   1016 		pmap_size  = pmap_pos[1];
   1017 		switch (pmap_stype) {
   1018 		case 1:	/* physical mapping */
   1019 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1020 			phys_part = udf_rw16(mapping->pm1.part_num);
   1021 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1022 			n_phys++;
   1023 			break;
   1024 		case 2: /* virtual/sparable/meta mapping */
   1025 			map_name  = mapping->pm2.part_id.id;
   1026 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1027 			phys_part = udf_rw16(mapping->pm2.part_num);
   1028 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1029 			len = UDF_REGID_ID_SIZE;
   1030 
   1031 			check_name = "*UDF Virtual Partition";
   1032 			if (strncmp(map_name, check_name, len) == 0) {
   1033 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1034 				n_virt++;
   1035 				break;
   1036 			};
   1037 			check_name = "*UDF Sparable Partition";
   1038 			if (strncmp(map_name, check_name, len) == 0) {
   1039 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1040 				n_spar++;
   1041 				break;
   1042 			};
   1043 			check_name = "*UDF Metadata Partition";
   1044 			if (strncmp(map_name, check_name, len) == 0) {
   1045 				pmap_type = UDF_VTOP_TYPE_META;
   1046 				n_meta++;
   1047 				break;
   1048 			};
   1049 			break;
   1050 		default:
   1051 			return EINVAL;
   1052 		};
   1053 
   1054 		DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
   1055 		    pmap_type));
   1056 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1057 			return EINVAL;
   1058 
   1059 		ump->vtop   [log_part] = phys_part;
   1060 		ump->vtop_tp[log_part] = pmap_type;
   1061 
   1062 		pmap_pos += pmap_size;
   1063 	};
   1064 	/* not winning the beauty contest */
   1065 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1066 
   1067 	/* test some basic UDF assertions/requirements */
   1068 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1069 		return EINVAL;
   1070 
   1071 	if (n_virt) {
   1072 		if ((n_phys == 0) || n_spar || n_meta)
   1073 			return EINVAL;
   1074 	};
   1075 	if (n_spar + n_phys == 0)
   1076 		return EINVAL;
   1077 
   1078 	/* vat's can only be on a sequential media */
   1079 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
   1080 	if (n_virt)
   1081 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1082 
   1083 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
   1084 	if (n_virt)
   1085 		ump->meta_alloc = UDF_ALLOC_VAT;
   1086 	if (n_meta)
   1087 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
   1088 
   1089 	/* special cases for pseudo-overwrite */
   1090 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1091 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1092 		if (n_meta) {
   1093 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
   1094 		} else {
   1095 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
   1096 		};
   1097 	};
   1098 
   1099 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
   1100 	    ump->data_alloc, ump->meta_alloc));
   1101 	/* TODO determine partitions to write data and metadata ? */
   1102 
   1103 	/* signal its OK for now */
   1104 	return 0;
   1105 }
   1106 
   1107 /* --------------------------------------------------------------------- */
   1108 
   1109 /*
   1110  * Read in complete VAT file and check if its indeed a VAT file descriptor
   1111  */
   1112 
   1113 static int
   1114 udf_check_for_vat(struct udf_node *vat_node)
   1115 {
   1116 	struct udf_mount *ump;
   1117 	struct icb_tag   *icbtag;
   1118 	struct timestamp *mtime;
   1119 	struct regid     *regid;
   1120 	struct udf_vat   *vat;
   1121 	struct udf_logvol_info *lvinfo;
   1122 	uint32_t  vat_length, alloc_length;
   1123 	uint32_t  vat_offset, vat_entries;
   1124 	uint32_t  sector_size;
   1125 	uint32_t  sectors;
   1126 	uint32_t *raw_vat;
   1127 	char     *regid_name;
   1128 	int filetype;
   1129 	int error;
   1130 
   1131 	/* vat_length is really 64 bits though impossible */
   1132 
   1133 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   1134 	if (!vat_node)
   1135 		return ENOENT;
   1136 
   1137 	/* get mount info */
   1138 	ump = vat_node->ump;
   1139 
   1140 	/* check assertions */
   1141 	assert(vat_node->fe || vat_node->efe);
   1142 	assert(ump->logvol_integrity);
   1143 
   1144 	/* get information from fe/efe */
   1145 	if (vat_node->fe) {
   1146 		vat_length = udf_rw64(vat_node->fe->inf_len);
   1147 		icbtag = &vat_node->fe->icbtag;
   1148 		mtime  = &vat_node->fe->mtime;
   1149 	} else {
   1150 		vat_length = udf_rw64(vat_node->efe->inf_len);
   1151 		icbtag = &vat_node->efe->icbtag;
   1152 		mtime  = &vat_node->efe->mtime;
   1153 	};
   1154 
   1155 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   1156 	filetype = icbtag->file_type;
   1157 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   1158 		return ENOENT;
   1159 
   1160 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   1161 	/* place a sanity check on the length; currently 1Mb in size */
   1162 	if (vat_length > 1*1024*1024)
   1163 		return ENOENT;
   1164 
   1165 	/* get sector size */
   1166 	sector_size = vat_node->ump->discinfo.sector_size;
   1167 
   1168 	/* calculate how many sectors to read in and how much to allocate */
   1169 	sectors = (vat_length + sector_size -1) / sector_size;
   1170 	alloc_length = (sectors + 2) * sector_size;
   1171 
   1172 	/* try to allocate the space */
   1173 	ump->vat_table_alloc_length = alloc_length;
   1174 	ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
   1175 	if (!ump->vat_table)
   1176 		return ENOMEM;		/* impossible to allocate */
   1177 	DPRINTF(VOLUMES, ("\talloced fine\n"));
   1178 
   1179 	/* read it in! */
   1180 	raw_vat = (uint32_t *) ump->vat_table;
   1181 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
   1182 	if (error) {
   1183 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
   1184 		/* not completely readable... :( bomb out */
   1185 		free(ump->vat_table, M_UDFMNT);
   1186 		ump->vat_table = NULL;
   1187 		return error;
   1188 	};
   1189 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
   1190 
   1191 	/*
   1192 	 * check contents of the file if its the old 1.50 VAT table format.
   1193 	 * Its notoriously broken and allthough some implementations support an
   1194 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   1195 	 * to be useable since a lot of implementations don't maintain it.
   1196 	 */
   1197 	lvinfo = ump->logvol_info;
   1198 
   1199 	if (filetype == 0) {
   1200 		/* definition */
   1201 		vat_offset  = 0;
   1202 		vat_entries = (vat_length-36)/4;
   1203 
   1204 		/* check 1.50 VAT */
   1205 		regid = (struct regid *) (raw_vat + vat_entries);
   1206 		regid_name = (char *) regid->id;
   1207 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   1208 		if (error) {
   1209 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   1210 			free(ump->vat_table, M_UDFMNT);
   1211 			ump->vat_table = NULL;
   1212 			return ENOENT;
   1213 		};
   1214 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
   1215 	} else {
   1216 		vat = (struct udf_vat *) raw_vat;
   1217 
   1218 		/* definition */
   1219 		vat_offset  = vat->header_len;
   1220 		vat_entries = (vat_length - vat_offset)/4;
   1221 
   1222 		assert(lvinfo);
   1223 		lvinfo->num_files        = vat->num_files;
   1224 		lvinfo->num_directories  = vat->num_directories;
   1225 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   1226 		lvinfo->min_udf_writever = vat->min_udf_writever;
   1227 		lvinfo->max_udf_writever = vat->max_udf_writever;
   1228 	};
   1229 
   1230 	ump->vat_offset  = vat_offset;
   1231 	ump->vat_entries = vat_entries;
   1232 
   1233 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   1234 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   1235 	ump->logvol_integrity->time           = *mtime;
   1236 
   1237 	return 0;	/* success! */
   1238 }
   1239 
   1240 /* --------------------------------------------------------------------- */
   1241 
   1242 static int
   1243 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   1244 {
   1245 	struct udf_node *vat_node;
   1246 	struct long_ad	 icb_loc;
   1247 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   1248 	int error;
   1249 
   1250 	/* mapping info not needed */
   1251 	mapping = mapping;
   1252 
   1253 	vat_loc = ump->possible_vat_location;
   1254 	early_vat_loc = vat_loc - 20;
   1255 	late_vat_loc  = vat_loc + 1024;
   1256 
   1257 	/* TODO first search last sector? */
   1258 	do {
   1259 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   1260 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   1261 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   1262 
   1263 		error = udf_get_node(ump, &icb_loc, &vat_node);
   1264 		if (!error) error = udf_check_for_vat(vat_node);
   1265 		if (!error) break;
   1266 		if (vat_node) {
   1267 			vput(vat_node->vnode);
   1268 			udf_dispose_node(vat_node);
   1269 		};
   1270 		vat_loc--;	/* walk backwards */
   1271 	} while (vat_loc >= early_vat_loc);
   1272 
   1273 	/* we don't need our VAT node anymore */
   1274 	if (vat_node) {
   1275 		vput(vat_node->vnode);
   1276 		udf_dispose_node(vat_node);
   1277 	};
   1278 
   1279 	return error;
   1280 }
   1281 
   1282 /* --------------------------------------------------------------------- */
   1283 
   1284 static int
   1285 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   1286 {
   1287 	union dscrptr *dscr;
   1288 	struct part_map_spare *pms = (struct part_map_spare *) mapping;
   1289 	uint32_t lb_num;
   1290 	int spar, error;
   1291 
   1292 	/*
   1293 	 * The partition mapping passed on to us specifies the information we
   1294 	 * need to locate and initialise the sparable partition mapping
   1295 	 * information we need.
   1296 	 */
   1297 
   1298 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   1299 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
   1300 	for (spar = 0; spar < pms->n_st; spar++) {
   1301 		lb_num = pms->st_loc[spar];
   1302 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   1303 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1304 		if (!error && dscr) {
   1305 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   1306 				if (ump->sparing_table)
   1307 					free(ump->sparing_table, M_UDFVOLD);
   1308 				ump->sparing_table = &dscr->spt;
   1309 				dscr = NULL;
   1310 				DPRINTF(VOLUMES,
   1311 				    ("Sparing table accepted (%d entries)\n",
   1312 				     udf_rw16(ump->sparing_table->rt_l)));
   1313 				break;	/* we're done */
   1314 			};
   1315 		};
   1316 		if (dscr)
   1317 			free(dscr, M_UDFVOLD);
   1318 	};
   1319 
   1320 	if (ump->sparing_table)
   1321 		return 0;
   1322 
   1323 	return ENOENT;
   1324 }
   1325 
   1326 /* --------------------------------------------------------------------- */
   1327 
   1328 int
   1329 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
   1330 {
   1331 	union udf_pmap *mapping;
   1332 	uint32_t n_pm, mt_l;
   1333 	uint32_t log_part;
   1334 	uint8_t *pmap_pos;
   1335 	int pmap_size;
   1336 	int error;
   1337 
   1338 	/* We have to iterate again over the part mappings for locations   */
   1339 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1340 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1341 	pmap_pos =  ump->logical_vol->maps;
   1342 
   1343 	for (log_part = 0; log_part < n_pm; log_part++) {
   1344 		mapping = (union udf_pmap *) pmap_pos;
   1345 		switch (ump->vtop_tp[log_part]) {
   1346 		case UDF_VTOP_TYPE_PHYS :
   1347 			/* nothing */
   1348 			break;
   1349 		case UDF_VTOP_TYPE_VIRT :
   1350 			/* search and load VAT */
   1351 			error = udf_search_vat(ump, mapping);
   1352 			if (error)
   1353 				return ENOENT;
   1354 			break;
   1355 		case UDF_VTOP_TYPE_SPARABLE :
   1356 			/* load one of the sparable tables */
   1357 			error = udf_read_sparables(ump, mapping);
   1358 			break;
   1359 		case UDF_VTOP_TYPE_META :
   1360 			/* load metafile and metabitmapfile FE/EFEs */
   1361 			break;
   1362 		default:
   1363 			break;
   1364 		};
   1365 		pmap_size  = pmap_pos[1];
   1366 		pmap_pos  += pmap_size;
   1367 	};
   1368 
   1369 	return 0;
   1370 }
   1371 
   1372 /* --------------------------------------------------------------------- */
   1373 
   1374 int
   1375 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
   1376 {
   1377 	struct udf_node *rootdir_node, *streamdir_node;
   1378 	union dscrptr *dscr;
   1379 	struct long_ad  fsd_loc, *dir_loc;
   1380 	uint32_t lb_num, dummy;
   1381 	uint32_t fsd_len;
   1382 	int dscr_type;
   1383 	int error;
   1384 
   1385 	/* TODO implement FSD reading in seperate function like integrity? */
   1386 	/* get fileset descriptor sequence */
   1387 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   1388 	fsd_len = udf_rw32(fsd_loc.len);
   1389 
   1390 	dscr  = NULL;
   1391 	error = 0;
   1392 	while (fsd_len || error) {
   1393 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   1394 		/* translate fsd_loc to lb_num */
   1395 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   1396 		if (error)
   1397 			break;
   1398 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   1399 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1400 		/* end markers */
   1401 		if (error || (dscr == NULL))
   1402 			break;
   1403 
   1404 		/* analyse */
   1405 		dscr_type = udf_rw16(dscr->tag.id);
   1406 		if (dscr_type == TAGID_TERM)
   1407 			break;
   1408 		if (dscr_type != TAGID_FSD) {
   1409 			free(dscr, M_UDFVOLD);
   1410 			return ENOENT;
   1411 		};
   1412 
   1413 		/*
   1414 		 * TODO check for multiple fileset descriptors; its only
   1415 		 * picking the last now. Also check for FSD
   1416 		 * correctness/interpretability
   1417 		 */
   1418 
   1419 		/* update */
   1420 		if (ump->fileset_desc) {
   1421 			free(ump->fileset_desc, M_UDFVOLD);
   1422 		};
   1423 		ump->fileset_desc = &dscr->fsd;
   1424 		dscr = NULL;
   1425 
   1426 		/* continue to the next fsd */
   1427 		fsd_len -= ump->discinfo.sector_size;
   1428 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   1429 
   1430 		/* follow up to fsd->next_ex (long_ad) if its not null */
   1431 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   1432 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   1433 			fsd_loc = ump->fileset_desc->next_ex;
   1434 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   1435 		};
   1436 	};
   1437 	if (dscr)
   1438 		free(dscr, M_UDFVOLD);
   1439 
   1440 	/* there has to be one */
   1441 	if (ump->fileset_desc == NULL)
   1442 		return ENOENT;
   1443 
   1444 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   1445 
   1446 	/*
   1447 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   1448 	 * the system stream dir. Some files in the system streamdir are not
   1449 	 * wanted in this implementation since they are not maintained. If
   1450 	 * writing is enabled we'll delete these files if they exist.
   1451 	 */
   1452 
   1453 	rootdir_node = streamdir_node = NULL;
   1454 	dir_loc = NULL;
   1455 
   1456 	/* try to read in the rootdir */
   1457 	dir_loc = &ump->fileset_desc->rootdir_icb;
   1458 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   1459 	if (error)
   1460 		return ENOENT;
   1461 
   1462 	/* aparently it read in fine */
   1463 
   1464 	/*
   1465 	 * Try the system stream directory; not very likely in the ones we
   1466 	 * test, but for completeness.
   1467 	 */
   1468 	dir_loc = &ump->fileset_desc->streamdir_icb;
   1469 	if (udf_rw32(dir_loc->len)) {
   1470 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   1471 		if (error)
   1472 			printf("udf mount: streamdir defined but ignored\n");
   1473 		if (!error) {
   1474 			/*
   1475 			 * TODO process streamdir `baddies' i.e. files we dont
   1476 			 * want if R/W
   1477 			 */
   1478 		};
   1479 	};
   1480 
   1481 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   1482 
   1483 	/* release the vnodes again; they'll be auto-recycled later */
   1484 	if (streamdir_node) {
   1485 		vput(streamdir_node->vnode);
   1486 	};
   1487 	if (rootdir_node) {
   1488 		vput(rootdir_node->vnode);
   1489 	};
   1490 
   1491 	return 0;
   1492 }
   1493 
   1494 /* --------------------------------------------------------------------- */
   1495 
   1496 int
   1497 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
   1498 		   uint32_t *lb_numres, uint32_t *extres)
   1499 {
   1500 	struct part_desc       *pdesc;
   1501 	struct spare_map_entry *sme;
   1502 	uint32_t *trans;
   1503 	uint32_t  lb_num, lb_rel, lb_packet;
   1504 	int rel, vpart, part;
   1505 
   1506 	assert(ump && icb_loc && lb_numres);
   1507 
   1508 	vpart  = udf_rw16(icb_loc->loc.part_num);
   1509 	lb_num = udf_rw32(icb_loc->loc.lb_num);
   1510 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
   1511 		return EINVAL;
   1512 
   1513 	switch (ump->vtop_tp[vpart]) {
   1514 	case UDF_VTOP_TYPE_RAW :
   1515 		/* 1:1 to the end of the device */
   1516 		*lb_numres = lb_num;
   1517 		*extres = INT_MAX;
   1518 		return 0;
   1519 	case UDF_VTOP_TYPE_PHYS :
   1520 		/* transform into its disc logical block */
   1521 		part = ump->vtop[vpart];
   1522 		pdesc = ump->partitions[part];
   1523 		if (lb_num > udf_rw32(pdesc->part_len))
   1524 			return EINVAL;
   1525 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1526 
   1527 		/* extent from here to the end of the partition */
   1528 		*extres = udf_rw32(pdesc->part_len) - lb_num;
   1529 		return 0;
   1530 	case UDF_VTOP_TYPE_VIRT :
   1531 		/* only maps one sector, lookup in VAT */
   1532 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
   1533 			return EINVAL;
   1534 
   1535 		/* lookup in virtual allocation table */
   1536 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
   1537 		lb_num = udf_rw32(trans[lb_num]);
   1538 
   1539 		/* transform into its disc logical block */
   1540 		part = ump->vtop[vpart];
   1541 		pdesc = ump->partitions[part];
   1542 		if (lb_num > udf_rw32(pdesc->part_len))
   1543 			return EINVAL;
   1544 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1545 
   1546 		/* just one logical block */
   1547 		*extres = 1;
   1548 		return 0;
   1549 	case UDF_VTOP_TYPE_SPARABLE :
   1550 		/* check if the packet containing the lb_num is remapped */
   1551 		lb_packet = lb_num / ump->sparable_packet_len;
   1552 		lb_rel    = lb_num % ump->sparable_packet_len;
   1553 
   1554 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
   1555 			sme = &ump->sparing_table->entries[rel];
   1556 			if (lb_packet == udf_rw32(sme->org)) {
   1557 				/* NOTE maps to absolute disc logical block! */
   1558 				*lb_numres = udf_rw32(sme->map) + lb_rel;
   1559 				*extres    = ump->sparable_packet_len - lb_rel;
   1560 				return 0;
   1561 			};
   1562 		};
   1563 
   1564 		/* transform into its disc logical block */
   1565 		part = ump->vtop[vpart];
   1566 		pdesc = ump->partitions[part];
   1567 		if (lb_num > udf_rw32(pdesc->part_len))
   1568 			return EINVAL;
   1569 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1570 
   1571 		/* rest of block */
   1572 		*extres = ump->sparable_packet_len - lb_rel;
   1573 		return 0;
   1574 	case UDF_VTOP_TYPE_META :
   1575 	default:
   1576 		printf("UDF vtop translation scheme %d unimplemented yet\n",
   1577 			ump->vtop_tp[vpart]);
   1578 	};
   1579 
   1580 	return EINVAL;
   1581 }
   1582 
   1583 /* --------------------------------------------------------------------- */
   1584 
   1585 /* To make absolutely sure we are NOT returning zero, add one :) */
   1586 
   1587 long
   1588 udf_calchash(struct long_ad *icbptr)
   1589 {
   1590 	/* ought to be enough since each mountpoint has its own chain */
   1591 	return udf_rw32(icbptr->loc.lb_num) + 1;
   1592 }
   1593 
   1594 /* --------------------------------------------------------------------- */
   1595 
   1596 static struct udf_node *
   1597 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
   1598 {
   1599 	struct udf_node *unp;
   1600 	struct vnode *vp;
   1601 	uint32_t hashline;
   1602 
   1603 loop:
   1604 	simple_lock(&ump->ihash_slock);
   1605 
   1606 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   1607 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
   1608 		assert(unp);
   1609 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
   1610 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
   1611 			vp = unp->vnode;
   1612 			assert(vp);
   1613 			simple_lock(&vp->v_interlock);
   1614 			simple_unlock(&ump->ihash_slock);
   1615 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   1616 				goto loop;
   1617 			return unp;
   1618 		};
   1619 	};
   1620 	simple_unlock(&ump->ihash_slock);
   1621 
   1622 	return NULL;
   1623 };
   1624 
   1625 /* --------------------------------------------------------------------- */
   1626 
   1627 static void
   1628 udf_hashins(struct udf_node *unp)
   1629 {
   1630 	struct udf_mount *ump;
   1631 	uint32_t hashline;
   1632 
   1633 	ump = unp->ump;
   1634 	simple_lock(&ump->ihash_slock);
   1635 
   1636 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
   1637 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
   1638 
   1639 	simple_unlock(&ump->ihash_slock);
   1640 }
   1641 
   1642 /* --------------------------------------------------------------------- */
   1643 
   1644 static void
   1645 udf_hashrem(struct udf_node *unp)
   1646 {
   1647 	struct udf_mount *ump;
   1648 
   1649 	ump = unp->ump;
   1650 	simple_lock(&ump->ihash_slock);
   1651 
   1652 	LIST_REMOVE(unp, hashchain);
   1653 
   1654 	simple_unlock(&ump->ihash_slock);
   1655 }
   1656 
   1657 /* --------------------------------------------------------------------- */
   1658 
   1659 int
   1660 udf_dispose_locked_node(struct udf_node *node)
   1661 {
   1662 	if (!node)
   1663 		return 0;
   1664 	if (node->vnode)
   1665 		VOP_UNLOCK(node->vnode, 0);
   1666 	return udf_dispose_node(node);
   1667 }
   1668 
   1669 /* --------------------------------------------------------------------- */
   1670 
   1671 int
   1672 udf_dispose_node(struct udf_node *node)
   1673 {
   1674 	struct vnode *vp;
   1675 
   1676 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
   1677 	if (!node) {
   1678 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   1679 		return 0;
   1680 	};
   1681 
   1682 	vp  = node->vnode;
   1683 
   1684 	/* TODO extended attributes and streamdir */
   1685 
   1686 	/* remove from our hash lookup table */
   1687 	udf_hashrem(node);
   1688 
   1689 	/* dissociate our udf_node from the vnode */
   1690 	vp->v_data = NULL;
   1691 
   1692 	/* free associated memory and the node itself */
   1693 	if (node->fe)
   1694 		pool_put(&node->ump->desc_pool, node->fe);
   1695 	if (node->efe)
   1696 		pool_put(&node->ump->desc_pool, node->efe);
   1697 	pool_put(&udf_node_pool, node);
   1698 
   1699 	return 0;
   1700 }
   1701 
   1702 /* --------------------------------------------------------------------- */
   1703 
   1704 /*
   1705  * Genfs interfacing
   1706  *
   1707  * static const struct genfs_ops udffs_genfsops = {
   1708  * 	.gop_size = genfs_size,
   1709  * 		size of transfers
   1710  * 	.gop_alloc = udf_gop_alloc,
   1711  * 		unknown
   1712  * 	.gop_write = genfs_gop_write,
   1713  * 		putpages interface code
   1714  * 	.gop_markupdate = udf_gop_markupdate,
   1715  * 		set update/modify flags etc.
   1716  * };
   1717  */
   1718 
   1719 /*
   1720  * Genfs interface. These four functions are the only ones defined though not
   1721  * documented... great.... why is chosen for the `.' initialisers i dont know
   1722  * but other filingsystems seem to use it this way.
   1723  */
   1724 
   1725 static int
   1726 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
   1727     struct ucred *cred)
   1728 {
   1729 	return 0;
   1730 }
   1731 
   1732 
   1733 static void
   1734 udf_gop_markupdate(struct vnode *vp, int flags)
   1735 {
   1736 	struct udf_node *udf_node = VTOI(vp);
   1737 	u_long mask;
   1738 
   1739 	udf_node = udf_node;	/* shut up gcc */
   1740 
   1741 	mask = 0;
   1742 #ifdef notyet
   1743 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   1744 		mask = UDF_SET_ACCESS;
   1745 	}
   1746 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   1747 		mask |= UDF_SET_UPDATE;
   1748 	}
   1749 	if (mask) {
   1750 		udf_node->update_flag |= mask;
   1751 	}
   1752 #endif
   1753 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
   1754 }
   1755 
   1756 
   1757 static const struct genfs_ops udf_genfsops = {
   1758 	.gop_size = genfs_size,
   1759 	.gop_alloc = udf_gop_alloc,
   1760 	.gop_write = genfs_gop_write,
   1761 	.gop_markupdate = udf_gop_markupdate,
   1762 };
   1763 
   1764 /* --------------------------------------------------------------------- */
   1765 
   1766 /*
   1767  * Each node can have an attached streamdir node though not
   1768  * recursively. These are otherwise known as named substreams/named
   1769  * extended attributes that have no size limitations.
   1770  *
   1771  * `Normal' extended attributes are indicated with a number and are recorded
   1772  * in either the fe/efe descriptor itself for small descriptors or recorded in
   1773  * the attached extended attribute file. Since this file can get fragmented,
   1774  * care ought to be taken.
   1775  */
   1776 
   1777 int
   1778 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   1779 	     struct udf_node **noderes)
   1780 {
   1781 	union dscrptr   *dscr, *tmpdscr;
   1782 	struct udf_node *node;
   1783 	struct vnode    *nvp;
   1784 	struct long_ad   icb_loc;
   1785 	extern int (**udf_vnodeop_p)(void *);
   1786 	uint64_t file_size;
   1787 	uint32_t lb_size, sector, dummy;
   1788 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   1789 	int error;
   1790 
   1791 	DPRINTF(NODE, ("udf_get_node called\n"));
   1792 	*noderes = node = NULL;
   1793 
   1794 	/* lock to disallow simultanious creation of same node */
   1795 	lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
   1796 
   1797 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   1798 	/* lookup in hash table */
   1799 	assert(ump);
   1800 	assert(node_icb_loc);
   1801 	node = udf_hashget(ump, node_icb_loc);
   1802 	if (node) {
   1803 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   1804 		/* vnode is returned locked */
   1805 		*noderes = node;
   1806 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1807 		return 0;
   1808 	};
   1809 
   1810 	/* garbage check: translate node_icb_loc to sectornr */
   1811 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   1812 	if (error) {
   1813 		/* no use, this will fail anyway */
   1814 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1815 		return EINVAL;
   1816 	};
   1817 
   1818 	/* build node (do initialise!) */
   1819 	node = pool_get(&udf_node_pool, PR_WAITOK);
   1820 	memset(node, 0, sizeof(struct udf_node));
   1821 
   1822 	DPRINTF(NODE, ("\tget new vnode\n"));
   1823 	/* give it a vnode */
   1824 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   1825         if (error) {
   1826 		pool_put(&udf_node_pool, node);
   1827 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1828 		return error;
   1829 	};
   1830 
   1831 	/* allways return locked vnode */
   1832 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   1833 		/* recycle vnode and unlock; simultanious will fail too */
   1834 		ungetnewvnode(nvp);
   1835 		lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1836 		return error;
   1837 	};
   1838 
   1839 	/* initialise crosslinks, note location of fe/efe for hashing */
   1840 	node->ump    =  ump;
   1841 	node->vnode  =  nvp;
   1842 	nvp->v_data  =  node;
   1843 	node->loc    = *node_icb_loc;
   1844 	node->lockf  =  0;
   1845 
   1846 	/* insert into the hash lookup */
   1847 	udf_hashins(node);
   1848 
   1849 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   1850 	lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
   1851 
   1852 	icb_loc = *node_icb_loc;
   1853 	needs_indirect = 0;
   1854 	strat4096 = 0;
   1855 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   1856 	file_size = 0;
   1857 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1858 
   1859 	do {
   1860 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
   1861 		if (error)
   1862 			break;
   1863 
   1864 		/* try to read in fe/efe */
   1865 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
   1866 
   1867 		/* blank sector marks end of sequence, check this */
   1868 		if ((tmpdscr == NULL) &&  (!strat4096))
   1869 			error = ENOENT;
   1870 
   1871 		/* break if read error or blank sector */
   1872 		if (error || (tmpdscr == NULL))
   1873 			break;
   1874 
   1875 		/* process descriptor based on the descriptor type */
   1876 		dscr_type = udf_rw16(tmpdscr->tag.id);
   1877 
   1878 		/* if dealing with an indirect entry, follow the link */
   1879 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
   1880 			needs_indirect = 0;
   1881 			icb_loc = tmpdscr->inde.indirect_icb;
   1882 			free(tmpdscr, M_UDFTEMP);
   1883 			continue;
   1884 		};
   1885 
   1886 		/* only file entries and extended file entries allowed here */
   1887 		if ((dscr_type != TAGID_FENTRY) &&
   1888 		    (dscr_type != TAGID_EXTFENTRY)) {
   1889 			free(tmpdscr, M_UDFTEMP);
   1890 			error = ENOENT;
   1891 			break;
   1892 		};
   1893 
   1894 		/* get descriptor space from our pool */
   1895 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
   1896 
   1897 		dscr = pool_get(&ump->desc_pool, PR_WAITOK);
   1898 		memcpy(dscr, tmpdscr, lb_size);
   1899 		free(tmpdscr, M_UDFTEMP);
   1900 
   1901 		/* record and process/update (ext)fentry */
   1902 		if (dscr_type == TAGID_FENTRY) {
   1903 			if (node->fe)
   1904 				pool_put(&ump->desc_pool, node->fe);
   1905 			node->fe  = &dscr->fe;
   1906 			strat = udf_rw16(node->fe->icbtag.strat_type);
   1907 			udf_file_type = node->fe->icbtag.file_type;
   1908 			file_size = udf_rw64(node->fe->inf_len);
   1909 		} else {
   1910 			if (node->efe)
   1911 				pool_put(&ump->desc_pool, node->efe);
   1912 			node->efe = &dscr->efe;
   1913 			strat = udf_rw16(node->efe->icbtag.strat_type);
   1914 			udf_file_type = node->efe->icbtag.file_type;
   1915 			file_size = udf_rw64(node->efe->inf_len);
   1916 		};
   1917 
   1918 		/* check recording strategy (structure) */
   1919 
   1920 		/*
   1921 		 * Strategy 4096 is a daisy linked chain terminating with an
   1922 		 * unrecorded sector or a TERM descriptor. The next
   1923 		 * descriptor is to be found in the sector that follows the
   1924 		 * current sector.
   1925 		 */
   1926 		if (strat == 4096) {
   1927 			strat4096 = 1;
   1928 			needs_indirect = 1;
   1929 
   1930 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   1931 		};
   1932 
   1933 		/*
   1934 		 * Strategy 4 is the normal strategy and terminates, but if
   1935 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   1936 		 */
   1937 
   1938 		if (strat == 4) {
   1939 			if (strat4096) {
   1940 				error = EINVAL;
   1941 				break;
   1942 			};
   1943 			break;		/* done */
   1944 		};
   1945 	} while (!error);
   1946 
   1947 	if (error) {
   1948 		/* recycle udf_node */
   1949 		udf_dispose_node(node);
   1950 
   1951 		/* recycle vnode */
   1952 		nvp->v_data = NULL;
   1953 		ungetnewvnode(nvp);
   1954 
   1955 		return EINVAL;		/* error code ok? */
   1956 	};
   1957 
   1958 	/* post process and initialise node */
   1959 
   1960 	/* assert no references to dscr anymore beyong this point */
   1961 	assert((node->fe) || (node->efe));
   1962 	dscr = NULL;
   1963 
   1964 	/*
   1965 	 * Record where to record an updated version of the descriptor. If
   1966 	 * there is a sequence of indirect entries, icb_loc will have been
   1967 	 * updated. Its the write disipline to allocate new space and to make
   1968 	 * sure the chain is maintained.
   1969 	 *
   1970 	 * `needs_indirect' flags if the next location is to be filled with
   1971 	 * with an indirect entry.
   1972 	 */
   1973 	node->next_loc = icb_loc;
   1974 	node->needs_indirect = needs_indirect;
   1975 
   1976 	/*
   1977 	 * Translate UDF filetypes into vnode types.
   1978 	 *
   1979 	 * Systemfiles like the meta main and mirror files are not treated as
   1980 	 * normal files, so we type them as having no type. UDF dictates that
   1981 	 * they are not allowed to be visible.
   1982 	 */
   1983 
   1984 	/* TODO specfs, fifofs etc etc. vnops setting */
   1985 	switch (udf_file_type) {
   1986 	case UDF_ICB_FILETYPE_DIRECTORY :
   1987 	case UDF_ICB_FILETYPE_STREAMDIR :
   1988 		nvp->v_type = VDIR;
   1989 		break;
   1990 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   1991 		nvp->v_type = VBLK;
   1992 		break;
   1993 	case UDF_ICB_FILETYPE_CHARDEVICE :
   1994 		nvp->v_type = VCHR;
   1995 		break;
   1996 	case UDF_ICB_FILETYPE_SYMLINK :
   1997 		nvp->v_type = VLNK;
   1998 		break;
   1999 	case UDF_ICB_FILETYPE_META_MAIN :
   2000 	case UDF_ICB_FILETYPE_META_MIRROR :
   2001 		nvp->v_type = VNON;
   2002 		break;
   2003 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2004 		nvp->v_type = VREG;
   2005 		break;
   2006 	default:
   2007 		/* YIKES, either a block/char device, fifo or something else */
   2008 		nvp->v_type = VNON;
   2009 	};
   2010 
   2011 	/* initialise genfs */
   2012 	genfs_node_init(nvp, &udf_genfsops);
   2013 
   2014 	/* don't forget to set vnode's v_size */
   2015 	nvp->v_size = file_size;
   2016 
   2017 	/* TODO ext attr and streamdir nodes */
   2018 
   2019 	*noderes = node;
   2020 
   2021 	return 0;
   2022 }
   2023 
   2024 /* --------------------------------------------------------------------- */
   2025 
   2026 /* UDF<->unix converters */
   2027 
   2028 /* --------------------------------------------------------------------- */
   2029 
   2030 static mode_t
   2031 udf_perm_to_unix_mode(uint32_t perm)
   2032 {
   2033 	mode_t mode;
   2034 
   2035 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   2036 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   2037 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   2038 
   2039 	return mode;
   2040 }
   2041 
   2042 /* --------------------------------------------------------------------- */
   2043 
   2044 #ifdef notyet
   2045 static uint32_t
   2046 unix_mode_to_udf_perm(mode_t mode)
   2047 {
   2048 	uint32_t perm;
   2049 
   2050 	perm  = ((mode & S_IRWXO)     );
   2051 	perm |= ((mode & S_IRWXG) << 2);
   2052 	perm |= ((mode & S_IRWXU) << 4);
   2053 	perm |= ((mode & S_IWOTH) << 3);
   2054 	perm |= ((mode & S_IWGRP) << 5);
   2055 	perm |= ((mode & S_IWUSR) << 7);
   2056 
   2057 	return perm;
   2058 }
   2059 #endif
   2060 
   2061 /* --------------------------------------------------------------------- */
   2062 
   2063 static uint32_t
   2064 udf_icb_to_unix_filetype(uint32_t icbftype)
   2065 {
   2066 	switch (icbftype) {
   2067 	case UDF_ICB_FILETYPE_DIRECTORY :
   2068 	case UDF_ICB_FILETYPE_STREAMDIR :
   2069 		return S_IFDIR;
   2070 	case UDF_ICB_FILETYPE_FIFO :
   2071 		return S_IFIFO;
   2072 	case UDF_ICB_FILETYPE_CHARDEVICE :
   2073 		return S_IFCHR;
   2074 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   2075 		return S_IFBLK;
   2076 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2077 		return S_IFREG;
   2078 	case UDF_ICB_FILETYPE_SYMLINK :
   2079 		return S_IFLNK;
   2080 	case UDF_ICB_FILETYPE_SOCKET :
   2081 		return S_IFSOCK;
   2082 	};
   2083 	/* no idea what this is */
   2084 	return 0;
   2085 }
   2086 
   2087 /* --------------------------------------------------------------------- */
   2088 
   2089 /* TODO KNF-ify */
   2090 
   2091 void
   2092 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
   2093 {
   2094 	uint16_t  raw_name[1024], unix_name[1024];
   2095 	uint16_t *inchp, ch;
   2096 	uint8_t	 *outchp;
   2097 	int       ucode_chars, nice_uchars;
   2098 
   2099 	assert(sizeof(char) == sizeof(uint8_t));
   2100 	outchp = (uint8_t *) result;
   2101 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2102 		*raw_name = *unix_name = 0;
   2103 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   2104 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   2105 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   2106 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   2107 			ch = *inchp;
   2108 			/* XXX sloppy unicode -> latin */
   2109 			*outchp++ = ch & 255;
   2110 			if (!ch) break;
   2111 		};
   2112 		*outchp++ = 0;
   2113 	} else {
   2114 		/* assume 8bit char length byte latin-1 */
   2115 		assert(*id == 8);
   2116 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   2117 	};
   2118 }
   2119 
   2120 /* --------------------------------------------------------------------- */
   2121 
   2122 /* TODO KNF-ify */
   2123 
   2124 void
   2125 unix_to_udf_name(char *result, char *name,
   2126 		 uint8_t *result_len, struct charspec *chsp)
   2127 {
   2128 	uint16_t  raw_name[1024];
   2129 	int       udf_chars, name_len;
   2130 	char     *inchp;
   2131 	uint16_t *outchp;
   2132 
   2133 	/* convert latin-1 or whatever to unicode-16 */
   2134 	*raw_name = 0;
   2135 	name_len  = 0;
   2136 	inchp  = name;
   2137 	outchp = raw_name;
   2138 	while (*inchp) {
   2139 		*outchp++ = (uint16_t) (*inchp++);
   2140 		name_len++;
   2141 	};
   2142 
   2143 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2144 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
   2145 	} else {
   2146 		/* XXX assume 8bit char length byte latin-1 */
   2147 		*result++ = 8; udf_chars = 1;
   2148 		strncpy(result, name + 1, strlen(name+1));
   2149 		udf_chars += strlen(name);
   2150 	};
   2151 	*result_len = udf_chars;
   2152 }
   2153 
   2154 /* --------------------------------------------------------------------- */
   2155 
   2156 /*
   2157  * Timestamp to timespec conversion code is taken with small modifications
   2158  * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
   2159  * permission from Scott.
   2160  */
   2161 
   2162 static int mon_lens[2][12] = {
   2163 	{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
   2164 	{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
   2165 };
   2166 
   2167 
   2168 static int
   2169 udf_isaleapyear(int year)
   2170 {
   2171 	int i;
   2172 
   2173 	i  = (year % 4) ? 0 : 1;
   2174 	i &= (year % 100) ? 1 : 0;
   2175 	i |= (year % 400) ? 0 : 1;
   2176 
   2177 	return i;
   2178 }
   2179 
   2180 
   2181 void
   2182 udf_timestamp_to_timespec(struct udf_mount *ump,
   2183 			  struct timestamp *timestamp,
   2184 		          struct timespec  *timespec)
   2185 {
   2186 	uint32_t usecs, secs, nsecs;
   2187 	uint16_t tz;
   2188 	int i, lpyear, daysinyear, year;
   2189 
   2190 	timespec->tv_sec  = secs  = 0;
   2191 	timespec->tv_nsec = nsecs = 0;
   2192 
   2193        /*
   2194 	* DirectCD seems to like using bogus year values.
   2195 	*
   2196 	* Distrust time->month especially, since it will be used for an array
   2197 	* index.
   2198 	*/
   2199 	year = udf_rw16(timestamp->year);
   2200 	if ((year < 1970) || (timestamp->month > 12)) {
   2201 		return;
   2202 	}
   2203 
   2204 	/* Calculate the time and day
   2205 	 * Day is 1-31, Month is 1-12
   2206 	 */
   2207 
   2208 	usecs = timestamp->usec +
   2209 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   2210 	nsecs = usecs * 1000;
   2211 	secs  = timestamp->second;
   2212 	secs += timestamp->minute * 60;
   2213 	secs += timestamp->hour * 3600;
   2214 	secs += (timestamp->day-1) * 3600 * 24;
   2215 
   2216 	/* Calclulate the month */
   2217 	lpyear = udf_isaleapyear(year);
   2218 	for (i = 1; i < timestamp->month; i++)
   2219 		secs += mon_lens[lpyear][i-1] * 3600 * 24;
   2220 
   2221 	for (i = 1970; i < year; i++) {
   2222 		daysinyear = udf_isaleapyear(i) + 365 ;
   2223 		secs += daysinyear * 3600 * 24;
   2224 	}
   2225 
   2226 	/*
   2227 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   2228 	 * compliment, so we gotta do some extra magic to handle it right.
   2229 	 */
   2230 	tz  = udf_rw16(timestamp->type_tz);
   2231 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   2232 	if (tz & 0x0800)		/* sign extention */
   2233 		tz |= 0xf000;
   2234 
   2235 	/* TODO check timezone conversion */
   2236 	/* check if we are specified a timezone to convert */
   2237 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   2238 		if ((int16_t) tz != -2047)
   2239 			secs -= (int16_t) tz * 60;
   2240 	} else {
   2241 		secs -= ump->mount_args.gmtoff;
   2242 	};
   2243 
   2244 	timespec->tv_sec  = secs;
   2245 	timespec->tv_nsec = nsecs;
   2246 }
   2247 
   2248 /* --------------------------------------------------------------------- */
   2249 
   2250 /*
   2251  * Attribute and filetypes converters with get/set pairs
   2252  */
   2253 
   2254 uint32_t
   2255 udf_getaccessmode(struct udf_node *udf_node)
   2256 {
   2257 	struct file_entry *fe;
   2258 	struct extfile_entry *efe;
   2259 	uint32_t udf_perm, icbftype;
   2260 	uint32_t mode, ftype;
   2261 	uint16_t icbflags;
   2262 
   2263 	if (udf_node->fe) {
   2264 		fe = udf_node->fe;
   2265 		udf_perm = udf_rw32(fe->perm);
   2266 		icbftype = fe->icbtag.file_type;
   2267 		icbflags = udf_rw16(fe->icbtag.flags);
   2268 	} else {
   2269 		assert(udf_node->efe);
   2270 		efe = udf_node->efe;
   2271 		udf_perm = udf_rw32(efe->perm);
   2272 		icbftype = efe->icbtag.file_type;
   2273 		icbflags = udf_rw16(efe->icbtag.flags);
   2274 	};
   2275 
   2276 	mode  = udf_perm_to_unix_mode(udf_perm);
   2277 	ftype = udf_icb_to_unix_filetype(icbftype);
   2278 
   2279 	/* set suid, sgid, sticky from flags in fe/efe */
   2280 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   2281 		mode |= S_ISUID;
   2282 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   2283 		mode |= S_ISGID;
   2284 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   2285 		mode |= S_ISVTX;
   2286 
   2287 	return mode | ftype;
   2288 }
   2289 
   2290 /* --------------------------------------------------------------------- */
   2291 
   2292 /*
   2293  * Directory read and manipulation functions
   2294  */
   2295 
   2296 int
   2297 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   2298 		       struct long_ad *icb_loc)
   2299 {
   2300 	struct udf_node  *dir_node = VTOI(vp);
   2301 	struct file_entry    *fe;
   2302 	struct extfile_entry *efe;
   2303 	struct fileid_desc *fid;
   2304 	struct dirent dirent;
   2305 	uint64_t file_size, diroffset;
   2306 	uint32_t lb_size;
   2307 	int found, error;
   2308 
   2309 	/* get directory filesize */
   2310 	if (dir_node->fe) {
   2311 		fe = dir_node->fe;
   2312 		file_size = udf_rw64(fe->inf_len);
   2313 	} else {
   2314 		assert(dir_node->efe);
   2315 		efe = dir_node->efe;
   2316 		file_size = udf_rw64(efe->inf_len);
   2317 	};
   2318 
   2319 	/* allocate temporary space for fid */
   2320 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   2321 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   2322 
   2323 	found = 0;
   2324 	diroffset = 0;
   2325 	while (!found && (diroffset < file_size)) {
   2326 		/* transfer a new fid/dirent */
   2327 		error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
   2328 		if (error)
   2329 			break;
   2330 
   2331 		/* skip deleted entries */
   2332 		if (fid->file_char & UDF_FILE_CHAR_DEL)
   2333 			continue;
   2334 
   2335 		if ((strlen(dirent.d_name) == namelen) &&
   2336 		    (strncmp(dirent.d_name, name, namelen) == 0)) {
   2337 			found = 1;
   2338 			*icb_loc = fid->icb;
   2339 		};
   2340 	};
   2341 	free(fid, M_TEMP);
   2342 
   2343 	return found;
   2344 }
   2345 
   2346 /* --------------------------------------------------------------------- */
   2347 
   2348 /*
   2349  * Read one fid and process it into a dirent and advance to the next (*fid)
   2350  * has to be allocated a logical block in size, (*dirent) struct dirent length
   2351  */
   2352 
   2353 int
   2354 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   2355 		    struct fileid_desc *fid, struct dirent *dirent)
   2356 {
   2357 	struct udf_node  *dir_node = VTOI(vp);
   2358 	struct udf_mount *ump = dir_node->ump;
   2359 	struct file_entry    *fe;
   2360 	struct extfile_entry *efe;
   2361 	struct uio    dir_uio;
   2362 	struct iovec  dir_iovec;
   2363 	uint32_t      entry_length, lb_size;
   2364 	uint64_t      file_size;
   2365 	char         *fid_name;
   2366 	int           enough, error;
   2367 
   2368 	assert(fid);
   2369 	assert(dirent);
   2370 	assert(dir_node);
   2371 	assert(offset);
   2372 	assert(*offset != 1);
   2373 
   2374 	DPRINTF(FIDS, ("read_fid_stream called\n"));
   2375 	/* check if we're past the end of the directory */
   2376 	if (dir_node->fe) {
   2377 		fe = dir_node->fe;
   2378 		file_size = udf_rw64(fe->inf_len);
   2379 	} else {
   2380 		assert(dir_node->efe);
   2381 		efe = dir_node->efe;
   2382 		file_size = udf_rw64(efe->inf_len);
   2383 	};
   2384 	if (*offset >= file_size)
   2385 		return EINVAL;
   2386 
   2387 	/* get maximum length of FID descriptor */
   2388 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2389 
   2390 	/* initialise return values */
   2391 	entry_length = 0;
   2392 	memset(dirent, 0, sizeof(struct dirent));
   2393 	memset(fid, 0, lb_size);
   2394 
   2395 	/* TODO use vn_rdwr instead of creating our own uio */
   2396 	/* read part of the directory */
   2397 	memset(&dir_uio, 0, sizeof(struct uio));
   2398 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
   2399 	dir_uio.uio_iovcnt = 1;
   2400 	dir_uio.uio_iov    = &dir_iovec;
   2401 	dir_uio.uio_segflg = UIO_SYSSPACE;
   2402 	dir_iovec.iov_base = fid;
   2403 	dir_iovec.iov_len  = lb_size;
   2404 	dir_uio.uio_offset = *offset;
   2405 
   2406 	/* limit length of read in piece */
   2407 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
   2408 
   2409 	/* read the part into the fid space */
   2410 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
   2411 	if (error)
   2412 		return error;
   2413 
   2414 	/*
   2415 	 * Check if we got a whole descriptor.
   2416 	 * XXX Try to `resync' directory stream when something is very wrong.
   2417 	 *
   2418 	 */
   2419 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
   2420 	if (!enough) {
   2421 		/* short dir ... */
   2422 		return EIO;
   2423 	};
   2424 
   2425 	/* check if our FID header is OK */
   2426 	error = udf_check_tag(fid);
   2427 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
   2428 	if (!error) {
   2429 		if (udf_rw16(fid->tag.id) != TAGID_FID)
   2430 			error = ENOENT;
   2431 	};
   2432 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
   2433 
   2434 	/* check for length */
   2435 	if (!error) {
   2436 		entry_length = udf_fidsize(fid, lb_size);
   2437 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
   2438 	};
   2439 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
   2440 	    entry_length, enough?"yes":"no"));
   2441 
   2442 	if (!enough) {
   2443 		/* short dir ... bomb out */
   2444 		return EIO;
   2445 	};
   2446 
   2447 	/* check FID contents */
   2448 	if (!error) {
   2449 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   2450 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
   2451 	};
   2452 	if (error) {
   2453 		/* note that is sometimes a bit quick to report */
   2454 		printf("BROKEN DIRECTORY ENTRY\n");
   2455 		/* RESYNC? */
   2456 		/* TODO: use udf_resync_fid_stream */
   2457 		return EIO;
   2458 	};
   2459 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   2460 
   2461 	/* we got a whole and valid descriptor! */
   2462 
   2463 	/* create resulting dirent structure */
   2464 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   2465 	udf_to_unix_name(dirent->d_name,
   2466 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   2467 
   2468 	/* '..' has no name, so provide one */
   2469 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   2470 		strcpy(dirent->d_name, "..");
   2471 
   2472 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   2473 	dirent->d_namlen = strlen(dirent->d_name);
   2474 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   2475 
   2476 	/*
   2477 	 * Note that its not worth trying to go for the filetypes now... its
   2478 	 * too expensive too
   2479 	 */
   2480 	dirent->d_type = DT_UNKNOWN;
   2481 
   2482 	/* initial guess for filetype we can make */
   2483 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   2484 		dirent->d_type = DT_DIR;
   2485 
   2486 	/* advance */
   2487 	*offset += entry_length;
   2488 
   2489 	return error;
   2490 }
   2491 
   2492 /* --------------------------------------------------------------------- */
   2493 
   2494 /*
   2495  * block based file reading and writing
   2496  */
   2497 
   2498 static int
   2499 udf_read_internal(struct udf_node *node, uint8_t *blob)
   2500 {
   2501 	struct udf_mount *ump;
   2502 	struct file_entry *fe;
   2503 	struct extfile_entry *efe;
   2504 	uint64_t inflen;
   2505 	uint32_t sector_size;
   2506 	uint8_t  *pos;
   2507 	int icbflags, addr_type;
   2508 
   2509 	/* shut up gcc */
   2510 	inflen = addr_type = icbflags = 0;
   2511 	pos = NULL;
   2512 
   2513 	/* get extent and do some paranoia checks */
   2514 	ump = node->ump;
   2515 	sector_size = ump->discinfo.sector_size;
   2516 
   2517 	fe  = node->fe;
   2518 	efe = node->efe;
   2519 	if (fe) {
   2520 		inflen   = udf_rw64(fe->inf_len);
   2521 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2522 		icbflags = udf_rw16(fe->icbtag.flags);
   2523 	};
   2524 	if (efe) {
   2525 		inflen   = udf_rw64(efe->inf_len);
   2526 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2527 		icbflags = udf_rw16(efe->icbtag.flags);
   2528 	};
   2529 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2530 
   2531 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   2532 	assert(inflen < sector_size);
   2533 
   2534 	/* copy out info */
   2535 	memset(blob, 0, sector_size);
   2536 	memcpy(blob, pos, inflen);
   2537 
   2538 	return 0;
   2539 }
   2540 
   2541 /* --------------------------------------------------------------------- */
   2542 
   2543 /*
   2544  * Read file extent reads an extent specified in sectors from the file. It is
   2545  * sector based; i.e. no `fancy' offsets.
   2546  */
   2547 
   2548 int
   2549 udf_read_file_extent(struct udf_node *node,
   2550 		     uint32_t from, uint32_t sectors,
   2551 		     uint8_t *blob)
   2552 {
   2553 	struct buf buf;
   2554 	uint32_t sector_size;
   2555 
   2556 	BUF_INIT(&buf);
   2557 
   2558 	sector_size = node->ump->discinfo.sector_size;
   2559 
   2560 	buf.b_bufsize = sectors * sector_size;
   2561 	buf.b_data    = blob;
   2562 	buf.b_bcount  = buf.b_bufsize;
   2563 	buf.b_resid   = buf.b_bcount;
   2564 	buf.b_flags   = B_BUSY | B_READ;
   2565 	buf.b_vp      = node->vnode;
   2566 	buf.b_proc    = NULL;
   2567 
   2568 	buf.b_blkno  = from;
   2569 	buf.b_lblkno = 0;
   2570 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
   2571 
   2572 	udf_read_filebuf(node, &buf);
   2573 	return biowait(&buf);
   2574 }
   2575 
   2576 
   2577 /* --------------------------------------------------------------------- */
   2578 
   2579 /*
   2580  * Read file extent in the buffer.
   2581  *
   2582  * The splitup of the extent into seperate request-buffers is to minimise
   2583  * copying around as much as possible.
   2584  */
   2585 
   2586 
   2587 /* mininum of 128 translations (!) (64 kb in 512 byte sectors) */
   2588 #define FILEBUFSECT 128
   2589 
   2590 void
   2591 udf_read_filebuf(struct udf_node *node, struct buf *buf)
   2592 {
   2593 	struct buf *nestbuf;
   2594 	uint64_t    mapping[FILEBUFSECT];
   2595 	uint64_t    run_start;
   2596 	uint32_t    sector_size;
   2597 	uint32_t    buf_offset, sector, rbuflen, rblk;
   2598 	uint8_t    *buf_pos;
   2599 	int error, run_length;
   2600 
   2601 	uint32_t  from;
   2602 	uint32_t  sectors;
   2603 
   2604 	sector_size = node->ump->discinfo.sector_size;
   2605 
   2606 	from    = buf->b_blkno;
   2607 	sectors = buf->b_bcount / sector_size;
   2608 
   2609 	/* assure we have enough translation slots */
   2610 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
   2611 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
   2612 
   2613 	if (sectors > FILEBUFSECT) {
   2614 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   2615 		buf->b_error  = EIO;
   2616 		buf->b_flags |= B_ERROR;
   2617 		biodone(buf);
   2618 		return;
   2619 	};
   2620 
   2621 	error = 0;
   2622 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   2623 	error = udf_translate_file_extent(node, from, sectors, mapping);
   2624 	if (error) {
   2625 		buf->b_error  = error;
   2626 		buf->b_flags |= B_ERROR;
   2627 		biodone(buf);
   2628 		return;
   2629 	};
   2630 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   2631 
   2632 	/* pre-check if internal or parts are zero */
   2633 	if (*mapping == UDF_TRANS_INTERN) {
   2634 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
   2635 		if (error) {
   2636 			buf->b_error  = error;
   2637 			buf->b_flags |= B_ERROR;
   2638 		};
   2639 		biodone(buf);
   2640 		return;
   2641 	};
   2642 	DPRINTF(READ, ("\tnot intern\n"));
   2643 
   2644 	/* request read-in of data from disc sheduler */
   2645 	buf->b_resid = buf->b_bcount;
   2646 	for (sector = 0; sector < sectors; sector++) {
   2647 		buf_offset = sector * sector_size;
   2648 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   2649 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   2650 
   2651 		switch (mapping[sector]) {
   2652 		case UDF_TRANS_UNMAPPED:
   2653 		case UDF_TRANS_ZERO:
   2654 			/* copy zero sector */
   2655 			memset(buf_pos, 0, sector_size);
   2656 			DPRINTF(READ, ("\treturning zero sector\n"));
   2657 			nestiobuf_done(buf, sector_size, 0);
   2658 			break;
   2659 		default :
   2660 			DPRINTF(READ, ("\tread sector "
   2661 			    "%"PRIu64"\n", mapping[sector]));
   2662 
   2663 			run_start  = mapping[sector];
   2664 			run_length = 1;
   2665 			while (sector < sectors-1) {
   2666 				if (mapping[sector+1] != mapping[sector]+1)
   2667 					break;
   2668 				run_length++;
   2669 				sector++;
   2670 			};
   2671 
   2672 			/*
   2673 			 * nest an iobuf and mark it for async reading. Since
   2674 			 * we're using nested buffers, they can't be cached by
   2675 			 * design.
   2676 			 */
   2677 			rbuflen = run_length * sector_size;
   2678 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   2679 
   2680 			nestbuf = getiobuf();
   2681 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   2682 			/* nestbuf is B_ASYNC */
   2683 
   2684 			/* CD shedules on raw blkno */
   2685 			nestbuf->b_blkno    = rblk;
   2686 			nestbuf->b_proc     = NULL;
   2687 			nestbuf->b_cylinder = 0;
   2688 			nestbuf->b_rawblkno = rblk;
   2689 			VOP_STRATEGY(node->ump->devvp, nestbuf);
   2690 		};
   2691 	};
   2692 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   2693 }
   2694 #undef FILEBUFSECT
   2695 
   2696 
   2697 /* --------------------------------------------------------------------- */
   2698 
   2699 /*
   2700  * Translate an extent (in sectors) into sector numbers; used for read and
   2701  * write operations. DOESNT't check extents.
   2702  */
   2703 
   2704 int
   2705 udf_translate_file_extent(struct udf_node *node,
   2706 		          uint32_t from, uint32_t pages,
   2707 			  uint64_t *map)
   2708 {
   2709 	struct udf_mount *ump;
   2710 	struct file_entry *fe;
   2711 	struct extfile_entry *efe;
   2712 	struct short_ad *s_ad;
   2713 	struct long_ad  *l_ad, t_ad;
   2714 	uint64_t transsec;
   2715 	uint32_t sector_size, transsec32;
   2716 	uint32_t overlap, translen;
   2717 	uint32_t vpart_num, lb_num, len, alloclen;
   2718 	uint8_t *pos;
   2719 	int error, flags, addr_type, icblen, icbflags;
   2720 
   2721 	if (!node)
   2722 		return ENOENT;
   2723 
   2724 	/* shut up gcc */
   2725 	alloclen = addr_type = icbflags = 0;
   2726 	pos = NULL;
   2727 
   2728 	/* do the work */
   2729 	ump = node->ump;
   2730 	sector_size = ump->discinfo.sector_size;
   2731 	fe  = node->fe;
   2732 	efe = node->efe;
   2733 	if (fe) {
   2734 		alloclen = udf_rw32(fe->l_ad);
   2735 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2736 		icbflags = udf_rw16(fe->icbtag.flags);
   2737 	};
   2738 	if (efe) {
   2739 		alloclen = udf_rw32(efe->l_ad);
   2740 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2741 		icbflags = udf_rw16(efe->icbtag.flags);
   2742 	};
   2743 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2744 
   2745 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
   2746 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
   2747 
   2748 	vpart_num = udf_rw16(node->loc.loc.part_num);
   2749 	lb_num = len = icblen = 0;	/* shut up gcc */
   2750 	while (pages && alloclen) {
   2751 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
   2752 		switch (addr_type) {
   2753 		case UDF_ICB_INTERN_ALLOC :
   2754 			/* TODO check extents? */
   2755 			*map = UDF_TRANS_INTERN;
   2756 			return 0;
   2757 		case UDF_ICB_SHORT_ALLOC :
   2758 			icblen = sizeof(struct short_ad);
   2759 			s_ad   = (struct short_ad *) pos;
   2760 			len       = udf_rw32(s_ad->len);
   2761 			lb_num    = udf_rw32(s_ad->lb_num);
   2762 			break;
   2763 		case UDF_ICB_LONG_ALLOC  :
   2764 			icblen = sizeof(struct long_ad);
   2765 			l_ad   = (struct long_ad *) pos;
   2766 			len       = udf_rw32(l_ad->len);
   2767 			lb_num    = udf_rw32(l_ad->loc.lb_num);
   2768 			vpart_num = udf_rw16(l_ad->loc.part_num);
   2769 			DPRINTFIF(TRANSLATE,
   2770 			    (l_ad->impl.im_used.flags &
   2771 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
   2772 			    ("UDF: got an `extent erased' flag in long_ad\n"));
   2773 			break;
   2774 		default:
   2775 			/* can't be here */
   2776 			return EINVAL;	/* for sure */
   2777 		};
   2778 
   2779 		/* process extent */
   2780 		flags   = UDF_EXT_FLAGS(len);
   2781 		len     = UDF_EXT_LEN(len);
   2782 
   2783 		overlap = (len + sector_size -1) / sector_size;
   2784 		if (from) {
   2785 			if (from > overlap) {
   2786 				from -= overlap;
   2787 				overlap = 0;
   2788 			} else {
   2789 				lb_num  += from;	/* advance in extent */
   2790 				overlap -= from;
   2791 				from = 0;
   2792 			};
   2793 		};
   2794 
   2795 		overlap = MIN(overlap, pages);
   2796 		while (overlap) {
   2797 			switch (flags) {
   2798 			case UDF_EXT_REDIRECT :
   2799 				/* no support for allocation extentions yet */
   2800 				/* TODO support for allocation extention */
   2801 				return ENOENT;
   2802 			case UDF_EXT_FREED :
   2803 			case UDF_EXT_FREE :
   2804 				transsec = UDF_TRANS_ZERO;
   2805 				translen = overlap;
   2806 				while (overlap && pages && translen) {
   2807 					*map++ = transsec;
   2808 					overlap--; pages--; translen--;
   2809 				};
   2810 				break;
   2811 			case UDF_EXT_ALLOCATED :
   2812 				t_ad.loc.lb_num   = udf_rw32(lb_num);
   2813 				t_ad.loc.part_num = udf_rw16(vpart_num);
   2814 				error = udf_translate_vtop(ump,
   2815 						&t_ad, &transsec32, &translen);
   2816 				transsec = transsec32;
   2817 				if (error)
   2818 					return error;
   2819 				while (overlap && pages && translen) {
   2820 					*map++ = transsec;
   2821 					transsec++;
   2822 					overlap--; pages--; translen--;
   2823 				};
   2824 				break;
   2825 			};
   2826 		};
   2827 		pos      += icblen;
   2828 		alloclen -= icblen;
   2829 	};
   2830 	return 0;
   2831 }
   2832 
   2833 /* --------------------------------------------------------------------- */
   2834 
   2835