udf_subr.c revision 1.23 1 /* $NetBSD: udf_subr.c,v 1.23 2006/11/16 01:33:37 christos Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.23 2006/11/16 01:33:37 christos Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67
68 #include <fs/udf/ecma167-udf.h>
69 #include <fs/udf/udf_mount.h>
70
71 #include "udf.h"
72 #include "udf_subr.h"
73 #include "udf_bswap.h"
74
75
76 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
77
78
79 /* predefines */
80
81
82 #if 0
83 {
84 int i, j, dlen;
85 uint8_t *blob;
86
87 blob = (uint8_t *) fid;
88 dlen = file_size - (*offset);
89
90 printf("blob = %p\n", blob);
91 printf("dump of %d bytes\n", dlen);
92
93 for (i = 0; i < dlen; i+ = 16) {
94 printf("%04x ", i);
95 for (j = 0; j < 16; j++) {
96 if (i+j < dlen) {
97 printf("%02x ", blob[i+j]);
98 } else {
99 printf(" ");
100 }
101 }
102 for (j = 0; j < 16; j++) {
103 if (i+j < dlen) {
104 if (blob[i+j]>32 && blob[i+j]! = 127) {
105 printf("%c", blob[i+j]);
106 } else {
107 printf(".");
108 }
109 }
110 }
111 printf("\n");
112 }
113 printf("\n");
114 }
115 Debugger();
116 #endif
117
118
119 /* --------------------------------------------------------------------- */
120
121 /* STUB */
122
123 static int
124 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
125 {
126 int sector_size = ump->discinfo.sector_size;
127 int blks = sector_size / DEV_BSIZE;
128
129 /* NOTE bread() checks if block is in cache or not */
130 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
131 }
132
133
134 /* --------------------------------------------------------------------- */
135
136 /*
137 * Check if the blob starts with a good UDF tag. Tags are protected by a
138 * checksum over the reader except one byte at position 4 that is the checksum
139 * itself.
140 */
141
142 int
143 udf_check_tag(void *blob)
144 {
145 struct desc_tag *tag = blob;
146 uint8_t *pos, sum, cnt;
147
148 /* check TAG header checksum */
149 pos = (uint8_t *) tag;
150 sum = 0;
151
152 for(cnt = 0; cnt < 16; cnt++) {
153 if (cnt != 4)
154 sum += *pos;
155 pos++;
156 }
157 if (sum != tag->cksum) {
158 /* bad tag header checksum; this is not a valid tag */
159 return EINVAL;
160 }
161
162 return 0;
163 }
164
165 /* --------------------------------------------------------------------- */
166
167 /*
168 * check tag payload will check descriptor CRC as specified.
169 * If the descriptor is too short, it will return EIO otherwise EINVAL.
170 */
171
172 int
173 udf_check_tag_payload(void *blob, uint32_t max_length)
174 {
175 struct desc_tag *tag = blob;
176 uint16_t crc, crc_len;
177
178 crc_len = udf_rw16(tag->desc_crc_len);
179
180 /* check payload CRC if applicable */
181 if (crc_len == 0)
182 return 0;
183
184 if (crc_len > max_length)
185 return EIO;
186
187 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
188 if (crc != udf_rw16(tag->desc_crc)) {
189 /* bad payload CRC; this is a broken tag */
190 return EINVAL;
191 }
192
193 return 0;
194 }
195
196 /* --------------------------------------------------------------------- */
197
198 int
199 udf_validate_tag_sum(void *blob)
200 {
201 struct desc_tag *tag = blob;
202 uint8_t *pos, sum, cnt;
203
204 /* calculate TAG header checksum */
205 pos = (uint8_t *) tag;
206 sum = 0;
207
208 for(cnt = 0; cnt < 16; cnt++) {
209 if (cnt != 4) sum += *pos;
210 pos++;
211 }
212 tag->cksum = sum; /* 8 bit */
213
214 return 0;
215 }
216
217 /* --------------------------------------------------------------------- */
218
219 /* assumes sector number of descriptor to be saved already present */
220
221 int
222 udf_validate_tag_and_crc_sums(void *blob)
223 {
224 struct desc_tag *tag = blob;
225 uint8_t *btag = (uint8_t *) tag;
226 uint16_t crc, crc_len;
227
228 crc_len = udf_rw16(tag->desc_crc_len);
229
230 /* check payload CRC if applicable */
231 if (crc_len > 0) {
232 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
233 tag->desc_crc = udf_rw16(crc);
234 }
235
236 /* calculate TAG header checksum */
237 return udf_validate_tag_sum(blob);
238 }
239
240 /* --------------------------------------------------------------------- */
241
242 /*
243 * XXX note the different semantics from udfclient: for FIDs it still rounds
244 * up to sectors. Use udf_fidsize() for a correct length.
245 */
246
247 int
248 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
249 {
250 uint32_t size, tag_id, num_secs, elmsz;
251
252 tag_id = udf_rw16(dscr->tag.id);
253
254 switch (tag_id) {
255 case TAGID_LOGVOL :
256 size = sizeof(struct logvol_desc) - 1;
257 size += udf_rw32(dscr->lvd.mt_l);
258 break;
259 case TAGID_UNALLOC_SPACE :
260 elmsz = sizeof(struct extent_ad);
261 size = sizeof(struct unalloc_sp_desc) - elmsz;
262 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
263 break;
264 case TAGID_FID :
265 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
266 size = (size + 3) & ~3;
267 break;
268 case TAGID_LOGVOL_INTEGRITY :
269 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
270 size += udf_rw32(dscr->lvid.l_iu);
271 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
272 break;
273 case TAGID_SPACE_BITMAP :
274 size = sizeof(struct space_bitmap_desc) - 1;
275 size += udf_rw32(dscr->sbd.num_bytes);
276 break;
277 case TAGID_SPARING_TABLE :
278 elmsz = sizeof(struct spare_map_entry);
279 size = sizeof(struct udf_sparing_table) - elmsz;
280 size += udf_rw16(dscr->spt.rt_l) * elmsz;
281 break;
282 case TAGID_FENTRY :
283 size = sizeof(struct file_entry);
284 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
285 break;
286 case TAGID_EXTFENTRY :
287 size = sizeof(struct extfile_entry);
288 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
289 break;
290 case TAGID_FSD :
291 size = sizeof(struct fileset_desc);
292 break;
293 default :
294 size = sizeof(union dscrptr);
295 break;
296 }
297
298 if ((size == 0) || (udf_sector_size == 0)) return 0;
299
300 /* round up in sectors */
301 num_secs = (size + udf_sector_size -1) / udf_sector_size;
302 return num_secs * udf_sector_size;
303 }
304
305
306 static int
307 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
308 {
309 uint32_t size;
310
311 if (udf_rw16(fid->tag.id) != TAGID_FID)
312 panic("got udf_fidsize on non FID\n");
313
314 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
315 size = (size + 3) & ~3;
316
317 return size;
318 }
319
320 /* --------------------------------------------------------------------- */
321
322 /*
323 * Problem with read_descriptor are long descriptors spanning more than one
324 * sector. Luckily long descriptors can't be in `logical space'.
325 *
326 * Size of allocated piece is returned in multiple of sector size due to
327 * udf_calc_udf_malloc_size().
328 */
329
330 int
331 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
332 struct malloc_type *mtype, union dscrptr **dstp)
333 {
334 union dscrptr *src, *dst;
335 struct buf *bp;
336 uint8_t *pos;
337 int blks, blk, dscrlen;
338 int i, error, sector_size;
339
340 sector_size = ump->discinfo.sector_size;
341
342 *dstp = dst = NULL;
343 dscrlen = sector_size;
344
345 /* read initial piece */
346 error = udf_bread(ump, sector, &bp);
347 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
348
349 if (!error) {
350 /* check if its a valid tag */
351 error = udf_check_tag(bp->b_data);
352 if (error) {
353 /* check if its an empty block */
354 pos = bp->b_data;
355 for (i = 0; i < sector_size; i++, pos++) {
356 if (*pos) break;
357 }
358 if (i == sector_size) {
359 /* return no error but with no dscrptr */
360 /* dispose first block */
361 brelse(bp);
362 return 0;
363 }
364 }
365 }
366 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
367 if (!error) {
368 src = (union dscrptr *) bp->b_data;
369 dscrlen = udf_tagsize(src, sector_size);
370 dst = malloc(dscrlen, mtype, M_WAITOK);
371 memcpy(dst, src, sector_size);
372 }
373 /* dispose first block */
374 bp->b_flags |= B_AGE;
375 brelse(bp);
376
377 if (!error && (dscrlen > sector_size)) {
378 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
379 /*
380 * Read the rest of descriptor. Since it is only used at mount
381 * time its overdone to define and use a specific udf_breadn
382 * for this alone.
383 */
384 blks = (dscrlen + sector_size -1) / sector_size;
385 for (blk = 1; blk < blks; blk++) {
386 error = udf_bread(ump, sector + blk, &bp);
387 if (error) {
388 brelse(bp);
389 break;
390 }
391 pos = (uint8_t *) dst + blk*sector_size;
392 memcpy(pos, bp->b_data, sector_size);
393
394 /* dispose block */
395 bp->b_flags |= B_AGE;
396 brelse(bp);
397 }
398 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
399 error));
400 }
401 if (!error) {
402 error = udf_check_tag_payload(dst, dscrlen);
403 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
404 }
405 if (error && dst) {
406 free(dst, mtype);
407 dst = NULL;
408 }
409 *dstp = dst;
410
411 return error;
412 }
413
414 /* --------------------------------------------------------------------- */
415 #ifdef DEBUG
416 static void
417 udf_dump_discinfo(struct udf_mount *ump)
418 {
419 char bits[128];
420 struct mmc_discinfo *di = &ump->discinfo;
421
422 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
423 return;
424
425 printf("Device/media info :\n");
426 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
427 printf("\tderived class %d\n", di->mmc_class);
428 printf("\tsector size %d\n", di->sector_size);
429 printf("\tdisc state %d\n", di->disc_state);
430 printf("\tlast ses state %d\n", di->last_session_state);
431 printf("\tbg format state %d\n", di->bg_format_state);
432 printf("\tfrst track %d\n", di->first_track);
433 printf("\tfst on last ses %d\n", di->first_track_last_session);
434 printf("\tlst on last ses %d\n", di->last_track_last_session);
435 printf("\tlink block penalty %d\n", di->link_block_penalty);
436 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
437 sizeof(bits));
438 printf("\tdisc flags %s\n", bits);
439 printf("\tdisc id %x\n", di->disc_id);
440 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
441
442 printf("\tnum sessions %d\n", di->num_sessions);
443 printf("\tnum tracks %d\n", di->num_tracks);
444
445 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
446 printf("\tcapabilities cur %s\n", bits);
447 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
448 printf("\tcapabilities cap %s\n", bits);
449 }
450 #else
451 #define udf_dump_discinfo(a);
452 #endif
453
454 /* not called often */
455 int
456 udf_update_discinfo(struct udf_mount *ump)
457 {
458 struct vnode *devvp = ump->devvp;
459 struct partinfo dpart;
460 struct mmc_discinfo *di;
461 int error;
462
463 DPRINTF(VOLUMES, ("read/update disc info\n"));
464 di = &ump->discinfo;
465 memset(di, 0, sizeof(struct mmc_discinfo));
466
467 /* check if we're on a MMC capable device, i.e. CD/DVD */
468 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
469 if (error == 0) {
470 udf_dump_discinfo(ump);
471 return 0;
472 }
473
474 /* disc partition support */
475 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
476 if (error)
477 return ENODEV;
478
479 /* set up a disc info profile for partitions */
480 di->mmc_profile = 0x01; /* disc type */
481 di->mmc_class = MMC_CLASS_DISC;
482 di->disc_state = MMC_STATE_CLOSED;
483 di->last_session_state = MMC_STATE_CLOSED;
484 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
485 di->link_block_penalty = 0;
486
487 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
488 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
489 di->mmc_cap = di->mmc_cur;
490 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
491
492 /* TODO problem with last_possible_lba on resizable VND; request */
493 di->last_possible_lba = dpart.part->p_size;
494 di->sector_size = dpart.disklab->d_secsize;
495 di->blockingnr = 1;
496
497 di->num_sessions = 1;
498 di->num_tracks = 1;
499
500 di->first_track = 1;
501 di->first_track_last_session = di->last_track_last_session = 1;
502
503 udf_dump_discinfo(ump);
504 return 0;
505 }
506
507 /* --------------------------------------------------------------------- */
508
509 int
510 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
511 {
512 struct vnode *devvp = ump->devvp;
513 struct mmc_discinfo *di = &ump->discinfo;
514 int error, class;
515
516 DPRINTF(VOLUMES, ("read track info\n"));
517
518 class = di->mmc_class;
519 if (class != MMC_CLASS_DISC) {
520 /* tracknr specified in struct ti */
521 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
522 NOCRED, NULL);
523 return error;
524 }
525
526 /* disc partition support */
527 if (ti->tracknr != 1)
528 return EIO;
529
530 /* create fake ti (TODO check for resized vnds) */
531 ti->sessionnr = 1;
532
533 ti->track_mode = 0; /* XXX */
534 ti->data_mode = 0; /* XXX */
535 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
536
537 ti->track_start = 0;
538 ti->packet_size = 1;
539
540 /* TODO support for resizable vnd */
541 ti->track_size = di->last_possible_lba;
542 ti->next_writable = di->last_possible_lba;
543 ti->last_recorded = ti->next_writable;
544 ti->free_blocks = 0;
545
546 return 0;
547 }
548
549 /* --------------------------------------------------------------------- */
550
551 /* track/session searching for mounting */
552
553 static int
554 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
555 int *first_tracknr, int *last_tracknr)
556 {
557 struct mmc_trackinfo trackinfo;
558 uint32_t tracknr, start_track, num_tracks;
559 int error;
560
561 /* if negative, sessionnr is relative to last session */
562 if (args->sessionnr < 0) {
563 args->sessionnr += ump->discinfo.num_sessions;
564 /* sanity */
565 if (args->sessionnr < 0)
566 args->sessionnr = 0;
567 }
568
569 /* sanity */
570 if (args->sessionnr > ump->discinfo.num_sessions)
571 args->sessionnr = ump->discinfo.num_sessions;
572
573 /* search the tracks for this session, zero session nr indicates last */
574 if (args->sessionnr == 0) {
575 args->sessionnr = ump->discinfo.num_sessions;
576 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
577 args->sessionnr--;
578 }
579 }
580
581 /* search the first and last track of the specified session */
582 num_tracks = ump->discinfo.num_tracks;
583 start_track = ump->discinfo.first_track;
584
585 /* search for first track of this session */
586 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
587 /* get track info */
588 trackinfo.tracknr = tracknr;
589 error = udf_update_trackinfo(ump, &trackinfo);
590 if (error)
591 return error;
592
593 if (trackinfo.sessionnr == args->sessionnr)
594 break;
595 }
596 *first_tracknr = tracknr;
597
598 /* search for last track of this session */
599 for (;tracknr <= num_tracks; tracknr++) {
600 /* get track info */
601 trackinfo.tracknr = tracknr;
602 error = udf_update_trackinfo(ump, &trackinfo);
603 if (error || (trackinfo.sessionnr != args->sessionnr)) {
604 tracknr--;
605 break;
606 }
607 }
608 if (tracknr > num_tracks)
609 tracknr--;
610
611 *last_tracknr = tracknr;
612
613 assert(*last_tracknr >= *first_tracknr);
614 return 0;
615 }
616
617 /* --------------------------------------------------------------------- */
618
619 static int
620 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
621 {
622 int error;
623
624 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
625 (union dscrptr **) dst);
626 if (!error) {
627 /* blank terminator blocks are not allowed here */
628 if (*dst == NULL)
629 return ENOENT;
630 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
631 error = ENOENT;
632 free(*dst, M_UDFVOLD);
633 *dst = NULL;
634 DPRINTF(VOLUMES, ("Not an anchor\n"));
635 }
636 }
637
638 return error;
639 }
640
641
642 int
643 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
644 {
645 struct mmc_trackinfo first_track;
646 struct mmc_trackinfo last_track;
647 struct anchor_vdp **anchorsp;
648 uint32_t track_start;
649 uint32_t track_end;
650 uint32_t positions[4];
651 int first_tracknr, last_tracknr;
652 int error, anch, ok, first_anchor;
653
654 /* search the first and last track of the specified session */
655 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
656 if (!error) {
657 first_track.tracknr = first_tracknr;
658 error = udf_update_trackinfo(ump, &first_track);
659 }
660 if (!error) {
661 last_track.tracknr = last_tracknr;
662 error = udf_update_trackinfo(ump, &last_track);
663 }
664 if (error) {
665 printf("UDF mount: reading disc geometry failed\n");
666 return 0;
667 }
668
669 track_start = first_track.track_start;
670
671 /* `end' is not as straitforward as start. */
672 track_end = last_track.track_start
673 + last_track.track_size - last_track.free_blocks - 1;
674
675 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
676 /* end of track is not straitforward here */
677 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
678 track_end = last_track.last_recorded;
679 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
680 track_end = last_track.next_writable
681 - ump->discinfo.link_block_penalty;
682 }
683
684 /* its no use reading a blank track */
685 first_anchor = 0;
686 if (first_track.flags & MMC_TRACKINFO_BLANK)
687 first_anchor = 1;
688
689 /* read anchors start+256, start+512, end-256, end */
690 positions[0] = track_start+256;
691 positions[1] = track_end-256;
692 positions[2] = track_end;
693 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
694 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
695
696 ok = 0;
697 anchorsp = ump->anchors;
698 for (anch = first_anchor; anch < 4; anch++) {
699 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
700 positions[anch]));
701 error = udf_read_anchor(ump, positions[anch], anchorsp);
702 if (!error) {
703 anchorsp++;
704 ok++;
705 }
706 }
707
708 /* VATs are only recorded on sequential media, but initialise */
709 ump->first_possible_vat_location = track_start + 256 + 1;
710 ump->last_possible_vat_location = track_end
711 + ump->discinfo.blockingnr;
712
713 return ok;
714 }
715
716 /* --------------------------------------------------------------------- */
717
718 /* we dont try to be smart; we just record the parts */
719 #define UDF_UPDATE_DSCR(name, dscr) \
720 if (name) \
721 free(name, M_UDFVOLD); \
722 name = dscr;
723
724 static int
725 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
726 {
727 uint16_t partnr;
728
729 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
730 udf_rw16(dscr->tag.id)));
731 switch (udf_rw16(dscr->tag.id)) {
732 case TAGID_PRI_VOL : /* primary partition */
733 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
734 break;
735 case TAGID_LOGVOL : /* logical volume */
736 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
737 break;
738 case TAGID_UNALLOC_SPACE : /* unallocated space */
739 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
740 break;
741 case TAGID_IMP_VOL : /* implementation */
742 /* XXX do we care about multiple impl. descr ? */
743 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
744 break;
745 case TAGID_PARTITION : /* physical partition */
746 /* not much use if its not allocated */
747 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
748 free(dscr, M_UDFVOLD);
749 break;
750 }
751
752 /* check partnr boundaries */
753 partnr = udf_rw16(dscr->pd.part_num);
754 if (partnr >= UDF_PARTITIONS) {
755 free(dscr, M_UDFVOLD);
756 return EINVAL;
757 }
758
759 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
760 break;
761 case TAGID_VOL : /* volume space extender; rare */
762 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
763 free(dscr, M_UDFVOLD);
764 break;
765 default :
766 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
767 udf_rw16(dscr->tag.id)));
768 free(dscr, M_UDFVOLD);
769 }
770
771 return 0;
772 }
773 #undef UDF_UPDATE_DSCR
774
775 /* --------------------------------------------------------------------- */
776
777 static int
778 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
779 {
780 union dscrptr *dscr;
781 uint32_t sector_size, dscr_size;
782 int error;
783
784 sector_size = ump->discinfo.sector_size;
785
786 /* loc is sectornr, len is in bytes */
787 error = EIO;
788 while (len) {
789 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
790 if (error)
791 return error;
792
793 /* blank block is a terminator */
794 if (dscr == NULL)
795 return 0;
796
797 /* TERM descriptor is a terminator */
798 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
799 free(dscr, M_UDFVOLD);
800 return 0;
801 }
802
803 /* process all others */
804 dscr_size = udf_tagsize(dscr, sector_size);
805 error = udf_process_vds_descriptor(ump, dscr);
806 if (error) {
807 free(dscr, M_UDFVOLD);
808 break;
809 }
810 assert((dscr_size % sector_size) == 0);
811
812 len -= dscr_size;
813 loc += dscr_size / sector_size;
814 }
815
816 return error;
817 }
818
819
820 int
821 udf_read_vds_space(struct udf_mount *ump)
822 {
823 struct anchor_vdp *anchor, *anchor2;
824 size_t size;
825 uint32_t main_loc, main_len;
826 uint32_t reserve_loc, reserve_len;
827 int error;
828
829 /*
830 * read in VDS space provided by the anchors; if one descriptor read
831 * fails, try the mirror sector.
832 *
833 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
834 * avoids the `compatibility features' of DirectCD that may confuse
835 * stuff completely.
836 */
837
838 anchor = ump->anchors[0];
839 anchor2 = ump->anchors[1];
840 assert(anchor);
841
842 if (anchor2) {
843 size = sizeof(struct extent_ad);
844 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
845 anchor = anchor2;
846 /* reserve is specified to be a literal copy of main */
847 }
848
849 main_loc = udf_rw32(anchor->main_vds_ex.loc);
850 main_len = udf_rw32(anchor->main_vds_ex.len);
851
852 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
853 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
854
855 error = udf_read_vds_extent(ump, main_loc, main_len);
856 if (error) {
857 printf("UDF mount: reading in reserve VDS extent\n");
858 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
859 }
860
861 return error;
862 }
863
864 /* --------------------------------------------------------------------- */
865
866 /*
867 * Read in the logical volume integrity sequence pointed to by our logical
868 * volume descriptor. Its a sequence that can be extended using fields in the
869 * integrity descriptor itself. On sequential media only one is found, on
870 * rewritable media a sequence of descriptors can be found as a form of
871 * history keeping and on non sequential write-once media the chain is vital
872 * to allow more and more descriptors to be written. The last descriptor
873 * written in an extent needs to claim space for a new extent.
874 */
875
876 static int
877 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
878 {
879 union dscrptr *dscr;
880 struct logvol_int_desc *lvint;
881 uint32_t sector_size, sector, len;
882 int dscr_type, error;
883
884 sector_size = ump->discinfo.sector_size;
885 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
886 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
887
888 lvint = NULL;
889 dscr = NULL;
890 error = 0;
891 while (len) {
892 /* read in our integrity descriptor */
893 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
894 if (!error) {
895 if (dscr == NULL)
896 break; /* empty terminates */
897 dscr_type = udf_rw16(dscr->tag.id);
898 if (dscr_type == TAGID_TERM) {
899 break; /* clean terminator */
900 }
901 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
902 /* fatal... corrupt disc */
903 error = ENOENT;
904 break;
905 }
906 if (lvint)
907 free(lvint, M_UDFVOLD);
908 lvint = &dscr->lvid;
909 dscr = NULL;
910 } /* else hope for the best... maybe the next is ok */
911
912 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
913 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
914
915 /* proceed sequential */
916 sector += 1;
917 len -= sector_size;
918
919 /* are we linking to a new piece? */
920 if (lvint->next_extent.len) {
921 len = udf_rw32(lvint->next_extent.len);
922 sector = udf_rw32(lvint->next_extent.loc);
923 }
924 }
925
926 /* clean up the mess, esp. when there is an error */
927 if (dscr)
928 free(dscr, M_UDFVOLD);
929
930 if (error && lvint) {
931 free(lvint, M_UDFVOLD);
932 lvint = NULL;
933 }
934
935 if (!lvint)
936 error = ENOENT;
937
938 *lvintp = lvint;
939 return error;
940 }
941
942 /* --------------------------------------------------------------------- */
943
944 /*
945 * Checks if ump's vds information is correct and complete
946 */
947
948 int
949 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
950 {
951 union udf_pmap *mapping;
952 struct logvol_int_desc *lvint;
953 struct udf_logvol_info *lvinfo;
954 uint32_t n_pm, mt_l;
955 uint8_t *pmap_pos;
956 char *domain_name, *map_name;
957 const char *check_name;
958 int pmap_stype, pmap_size;
959 int pmap_type, log_part, phys_part;
960 int n_phys, n_virt, n_spar, n_meta;
961 int len, error;
962
963 if (ump == NULL)
964 return ENOENT;
965
966 /* we need at least an anchor (trivial, but for safety) */
967 if (ump->anchors[0] == NULL)
968 return EINVAL;
969
970 /* we need at least one primary and one logical volume descriptor */
971 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
972 return EINVAL;
973
974 /* we need at least one partition descriptor */
975 if (ump->partitions[0] == NULL)
976 return EINVAL;
977
978 /* check logical volume sector size verses device sector size */
979 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
980 printf("UDF mount: format violation, lb_size != sector size\n");
981 return EINVAL;
982 }
983
984 domain_name = ump->logical_vol->domain_id.id;
985 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
986 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
987 return EINVAL;
988 }
989
990 /* retrieve logical volume integrity sequence */
991 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
992
993 /*
994 * We need at least one logvol integrity descriptor recorded. Note
995 * that its OK to have an open logical volume integrity here. The VAT
996 * will close/update the integrity.
997 */
998 if (ump->logvol_integrity == NULL)
999 return EINVAL;
1000
1001 /* process derived structures */
1002 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1003 lvint = ump->logvol_integrity;
1004 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1005 ump->logvol_info = lvinfo;
1006
1007 /* TODO check udf versions? */
1008
1009 /*
1010 * check logvol mappings: effective virt->log partmap translation
1011 * check and recording of the mapping results. Saves expensive
1012 * strncmp() in tight places.
1013 */
1014 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1015 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1016 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1017 pmap_pos = ump->logical_vol->maps;
1018
1019 if (n_pm > UDF_PMAPS) {
1020 printf("UDF mount: too many mappings\n");
1021 return EINVAL;
1022 }
1023
1024 n_phys = n_virt = n_spar = n_meta = 0;
1025 for (log_part = 0; log_part < n_pm; log_part++) {
1026 mapping = (union udf_pmap *) pmap_pos;
1027 pmap_stype = pmap_pos[0];
1028 pmap_size = pmap_pos[1];
1029 switch (pmap_stype) {
1030 case 1: /* physical mapping */
1031 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1032 phys_part = udf_rw16(mapping->pm1.part_num);
1033 pmap_type = UDF_VTOP_TYPE_PHYS;
1034 n_phys++;
1035 break;
1036 case 2: /* virtual/sparable/meta mapping */
1037 map_name = mapping->pm2.part_id.id;
1038 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1039 phys_part = udf_rw16(mapping->pm2.part_num);
1040 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1041 len = UDF_REGID_ID_SIZE;
1042
1043 check_name = "*UDF Virtual Partition";
1044 if (strncmp(map_name, check_name, len) == 0) {
1045 pmap_type = UDF_VTOP_TYPE_VIRT;
1046 n_virt++;
1047 break;
1048 }
1049 check_name = "*UDF Sparable Partition";
1050 if (strncmp(map_name, check_name, len) == 0) {
1051 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1052 n_spar++;
1053 break;
1054 }
1055 check_name = "*UDF Metadata Partition";
1056 if (strncmp(map_name, check_name, len) == 0) {
1057 pmap_type = UDF_VTOP_TYPE_META;
1058 n_meta++;
1059 break;
1060 }
1061 break;
1062 default:
1063 return EINVAL;
1064 }
1065
1066 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1067 pmap_type));
1068 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1069 return EINVAL;
1070
1071 ump->vtop [log_part] = phys_part;
1072 ump->vtop_tp[log_part] = pmap_type;
1073
1074 pmap_pos += pmap_size;
1075 }
1076 /* not winning the beauty contest */
1077 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1078
1079 /* test some basic UDF assertions/requirements */
1080 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1081 return EINVAL;
1082
1083 if (n_virt) {
1084 if ((n_phys == 0) || n_spar || n_meta)
1085 return EINVAL;
1086 }
1087 if (n_spar + n_phys == 0)
1088 return EINVAL;
1089
1090 /* vat's can only be on a sequential media */
1091 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1092 if (n_virt)
1093 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1094
1095 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1096 if (n_virt)
1097 ump->meta_alloc = UDF_ALLOC_VAT;
1098 if (n_meta)
1099 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1100
1101 /* special cases for pseudo-overwrite */
1102 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1103 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1104 if (n_meta) {
1105 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1106 } else {
1107 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1108 }
1109 }
1110
1111 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1112 ump->data_alloc, ump->meta_alloc));
1113 /* TODO determine partitions to write data and metadata ? */
1114
1115 /* signal its OK for now */
1116 return 0;
1117 }
1118
1119 /* --------------------------------------------------------------------- */
1120
1121 /*
1122 * Read in complete VAT file and check if its indeed a VAT file descriptor
1123 */
1124
1125 static int
1126 udf_check_for_vat(struct udf_node *vat_node)
1127 {
1128 struct udf_mount *ump;
1129 struct icb_tag *icbtag;
1130 struct timestamp *mtime;
1131 struct regid *regid;
1132 struct udf_vat *vat;
1133 struct udf_logvol_info *lvinfo;
1134 uint32_t vat_length, alloc_length;
1135 uint32_t vat_offset, vat_entries;
1136 uint32_t sector_size;
1137 uint32_t sectors;
1138 uint32_t *raw_vat;
1139 char *regid_name;
1140 int filetype;
1141 int error;
1142
1143 /* vat_length is really 64 bits though impossible */
1144
1145 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1146 if (!vat_node)
1147 return ENOENT;
1148
1149 /* get mount info */
1150 ump = vat_node->ump;
1151
1152 /* check assertions */
1153 assert(vat_node->fe || vat_node->efe);
1154 assert(ump->logvol_integrity);
1155
1156 /* get information from fe/efe */
1157 if (vat_node->fe) {
1158 vat_length = udf_rw64(vat_node->fe->inf_len);
1159 icbtag = &vat_node->fe->icbtag;
1160 mtime = &vat_node->fe->mtime;
1161 } else {
1162 vat_length = udf_rw64(vat_node->efe->inf_len);
1163 icbtag = &vat_node->efe->icbtag;
1164 mtime = &vat_node->efe->mtime;
1165 }
1166
1167 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1168 filetype = icbtag->file_type;
1169 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1170 return ENOENT;
1171
1172 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1173 /* place a sanity check on the length; currently 1Mb in size */
1174 if (vat_length > 1*1024*1024)
1175 return ENOENT;
1176
1177 /* get sector size */
1178 sector_size = vat_node->ump->discinfo.sector_size;
1179
1180 /* calculate how many sectors to read in and how much to allocate */
1181 sectors = (vat_length + sector_size -1) / sector_size;
1182 alloc_length = (sectors + 2) * sector_size;
1183
1184 /* try to allocate the space */
1185 ump->vat_table_alloc_length = alloc_length;
1186 ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1187 if (!ump->vat_table)
1188 return ENOMEM; /* impossible to allocate */
1189 DPRINTF(VOLUMES, ("\talloced fine\n"));
1190
1191 /* read it in! */
1192 raw_vat = (uint32_t *) ump->vat_table;
1193 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1194 if (error) {
1195 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1196 /* not completely readable... :( bomb out */
1197 free(ump->vat_table, M_UDFVOLD);
1198 ump->vat_table = NULL;
1199 return error;
1200 }
1201 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1202
1203 /*
1204 * check contents of the file if its the old 1.50 VAT table format.
1205 * Its notoriously broken and allthough some implementations support an
1206 * extention as defined in the UDF 1.50 errata document, its doubtfull
1207 * to be useable since a lot of implementations don't maintain it.
1208 */
1209 lvinfo = ump->logvol_info;
1210
1211 if (filetype == 0) {
1212 /* definition */
1213 vat_offset = 0;
1214 vat_entries = (vat_length-36)/4;
1215
1216 /* check 1.50 VAT */
1217 regid = (struct regid *) (raw_vat + vat_entries);
1218 regid_name = (char *) regid->id;
1219 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1220 if (error) {
1221 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1222 free(ump->vat_table, M_UDFVOLD);
1223 ump->vat_table = NULL;
1224 return ENOENT;
1225 }
1226 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1227 } else {
1228 vat = (struct udf_vat *) raw_vat;
1229
1230 /* definition */
1231 vat_offset = vat->header_len;
1232 vat_entries = (vat_length - vat_offset)/4;
1233
1234 assert(lvinfo);
1235 lvinfo->num_files = vat->num_files;
1236 lvinfo->num_directories = vat->num_directories;
1237 lvinfo->min_udf_readver = vat->min_udf_readver;
1238 lvinfo->min_udf_writever = vat->min_udf_writever;
1239 lvinfo->max_udf_writever = vat->max_udf_writever;
1240 }
1241
1242 ump->vat_offset = vat_offset;
1243 ump->vat_entries = vat_entries;
1244
1245 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1246 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1247 ump->logvol_integrity->time = *mtime;
1248
1249 return 0; /* success! */
1250 }
1251
1252 /* --------------------------------------------------------------------- */
1253
1254 static int
1255 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1256 {
1257 struct udf_node *vat_node;
1258 struct long_ad icb_loc;
1259 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1260 int error;
1261
1262 /* mapping info not needed */
1263 mapping = mapping;
1264
1265 vat_loc = ump->last_possible_vat_location;
1266 early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1267 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1268 late_vat_loc = vat_loc + 1024;
1269
1270 /* TODO first search last sector? */
1271 do {
1272 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1273 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1274 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1275
1276 error = udf_get_node(ump, &icb_loc, &vat_node);
1277 if (!error) error = udf_check_for_vat(vat_node);
1278 if (!error) break;
1279 if (vat_node) {
1280 vput(vat_node->vnode);
1281 udf_dispose_node(vat_node);
1282 }
1283 vat_loc--; /* walk backwards */
1284 } while (vat_loc >= early_vat_loc);
1285
1286 /* we don't need our VAT node anymore */
1287 if (vat_node) {
1288 vput(vat_node->vnode);
1289 udf_dispose_node(vat_node);
1290 }
1291
1292 return error;
1293 }
1294
1295 /* --------------------------------------------------------------------- */
1296
1297 static int
1298 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1299 {
1300 union dscrptr *dscr;
1301 struct part_map_spare *pms = (struct part_map_spare *) mapping;
1302 uint32_t lb_num;
1303 int spar, error;
1304
1305 /*
1306 * The partition mapping passed on to us specifies the information we
1307 * need to locate and initialise the sparable partition mapping
1308 * information we need.
1309 */
1310
1311 DPRINTF(VOLUMES, ("Read sparable table\n"));
1312 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1313 for (spar = 0; spar < pms->n_st; spar++) {
1314 lb_num = pms->st_loc[spar];
1315 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1316 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1317 if (!error && dscr) {
1318 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1319 if (ump->sparing_table)
1320 free(ump->sparing_table, M_UDFVOLD);
1321 ump->sparing_table = &dscr->spt;
1322 dscr = NULL;
1323 DPRINTF(VOLUMES,
1324 ("Sparing table accepted (%d entries)\n",
1325 udf_rw16(ump->sparing_table->rt_l)));
1326 break; /* we're done */
1327 }
1328 }
1329 if (dscr)
1330 free(dscr, M_UDFVOLD);
1331 }
1332
1333 if (ump->sparing_table)
1334 return 0;
1335
1336 return ENOENT;
1337 }
1338
1339 /* --------------------------------------------------------------------- */
1340
1341 int
1342 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1343 {
1344 union udf_pmap *mapping;
1345 uint32_t n_pm, mt_l;
1346 uint32_t log_part;
1347 uint8_t *pmap_pos;
1348 int pmap_size;
1349 int error;
1350
1351 /* We have to iterate again over the part mappings for locations */
1352 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1353 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1354 pmap_pos = ump->logical_vol->maps;
1355
1356 for (log_part = 0; log_part < n_pm; log_part++) {
1357 mapping = (union udf_pmap *) pmap_pos;
1358 switch (ump->vtop_tp[log_part]) {
1359 case UDF_VTOP_TYPE_PHYS :
1360 /* nothing */
1361 break;
1362 case UDF_VTOP_TYPE_VIRT :
1363 /* search and load VAT */
1364 error = udf_search_vat(ump, mapping);
1365 if (error)
1366 return ENOENT;
1367 break;
1368 case UDF_VTOP_TYPE_SPARABLE :
1369 /* load one of the sparable tables */
1370 error = udf_read_sparables(ump, mapping);
1371 if (error)
1372 return ENOENT;
1373 break;
1374 case UDF_VTOP_TYPE_META :
1375 /* TODO load metafile and metabitmapfile FE/EFEs */
1376 return ENOENT;
1377 default:
1378 break;
1379 }
1380 pmap_size = pmap_pos[1];
1381 pmap_pos += pmap_size;
1382 }
1383
1384 return 0;
1385 }
1386
1387 /* --------------------------------------------------------------------- */
1388
1389 int
1390 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1391 {
1392 struct udf_node *rootdir_node, *streamdir_node;
1393 union dscrptr *dscr;
1394 struct long_ad fsd_loc, *dir_loc;
1395 uint32_t lb_num, dummy;
1396 uint32_t fsd_len;
1397 int dscr_type;
1398 int error;
1399
1400 /* TODO implement FSD reading in seperate function like integrity? */
1401 /* get fileset descriptor sequence */
1402 fsd_loc = ump->logical_vol->lv_fsd_loc;
1403 fsd_len = udf_rw32(fsd_loc.len);
1404
1405 dscr = NULL;
1406 error = 0;
1407 while (fsd_len || error) {
1408 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1409 /* translate fsd_loc to lb_num */
1410 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1411 if (error)
1412 break;
1413 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1414 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1415 /* end markers */
1416 if (error || (dscr == NULL))
1417 break;
1418
1419 /* analyse */
1420 dscr_type = udf_rw16(dscr->tag.id);
1421 if (dscr_type == TAGID_TERM)
1422 break;
1423 if (dscr_type != TAGID_FSD) {
1424 free(dscr, M_UDFVOLD);
1425 return ENOENT;
1426 }
1427
1428 /*
1429 * TODO check for multiple fileset descriptors; its only
1430 * picking the last now. Also check for FSD
1431 * correctness/interpretability
1432 */
1433
1434 /* update */
1435 if (ump->fileset_desc) {
1436 free(ump->fileset_desc, M_UDFVOLD);
1437 }
1438 ump->fileset_desc = &dscr->fsd;
1439 dscr = NULL;
1440
1441 /* continue to the next fsd */
1442 fsd_len -= ump->discinfo.sector_size;
1443 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1444
1445 /* follow up to fsd->next_ex (long_ad) if its not null */
1446 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1447 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1448 fsd_loc = ump->fileset_desc->next_ex;
1449 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1450 }
1451 }
1452 if (dscr)
1453 free(dscr, M_UDFVOLD);
1454
1455 /* there has to be one */
1456 if (ump->fileset_desc == NULL)
1457 return ENOENT;
1458
1459 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1460
1461 /*
1462 * Now the FSD is known, read in the rootdirectory and if one exists,
1463 * the system stream dir. Some files in the system streamdir are not
1464 * wanted in this implementation since they are not maintained. If
1465 * writing is enabled we'll delete these files if they exist.
1466 */
1467
1468 rootdir_node = streamdir_node = NULL;
1469 dir_loc = NULL;
1470
1471 /* try to read in the rootdir */
1472 dir_loc = &ump->fileset_desc->rootdir_icb;
1473 error = udf_get_node(ump, dir_loc, &rootdir_node);
1474 if (error)
1475 return ENOENT;
1476
1477 /* aparently it read in fine */
1478
1479 /*
1480 * Try the system stream directory; not very likely in the ones we
1481 * test, but for completeness.
1482 */
1483 dir_loc = &ump->fileset_desc->streamdir_icb;
1484 if (udf_rw32(dir_loc->len)) {
1485 error = udf_get_node(ump, dir_loc, &streamdir_node);
1486 if (error)
1487 printf("udf mount: streamdir defined but ignored\n");
1488 if (!error) {
1489 /*
1490 * TODO process streamdir `baddies' i.e. files we dont
1491 * want if R/W
1492 */
1493 }
1494 }
1495
1496 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1497
1498 /* release the vnodes again; they'll be auto-recycled later */
1499 if (streamdir_node) {
1500 vput(streamdir_node->vnode);
1501 }
1502 if (rootdir_node) {
1503 vput(rootdir_node->vnode);
1504 }
1505
1506 return 0;
1507 }
1508
1509 /* --------------------------------------------------------------------- */
1510
1511 int
1512 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1513 uint32_t *lb_numres, uint32_t *extres)
1514 {
1515 struct part_desc *pdesc;
1516 struct spare_map_entry *sme;
1517 uint32_t *trans;
1518 uint32_t lb_num, lb_rel, lb_packet;
1519 int rel, vpart, part;
1520
1521 assert(ump && icb_loc && lb_numres);
1522
1523 vpart = udf_rw16(icb_loc->loc.part_num);
1524 lb_num = udf_rw32(icb_loc->loc.lb_num);
1525 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1526 return EINVAL;
1527
1528 switch (ump->vtop_tp[vpart]) {
1529 case UDF_VTOP_TYPE_RAW :
1530 /* 1:1 to the end of the device */
1531 *lb_numres = lb_num;
1532 *extres = INT_MAX;
1533 return 0;
1534 case UDF_VTOP_TYPE_PHYS :
1535 /* transform into its disc logical block */
1536 part = ump->vtop[vpart];
1537 pdesc = ump->partitions[part];
1538 if (lb_num > udf_rw32(pdesc->part_len))
1539 return EINVAL;
1540 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1541
1542 /* extent from here to the end of the partition */
1543 *extres = udf_rw32(pdesc->part_len) - lb_num;
1544 return 0;
1545 case UDF_VTOP_TYPE_VIRT :
1546 /* only maps one sector, lookup in VAT */
1547 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1548 return EINVAL;
1549
1550 /* lookup in virtual allocation table */
1551 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1552 lb_num = udf_rw32(trans[lb_num]);
1553
1554 /* transform into its disc logical block */
1555 part = ump->vtop[vpart];
1556 pdesc = ump->partitions[part];
1557 if (lb_num > udf_rw32(pdesc->part_len))
1558 return EINVAL;
1559 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1560
1561 /* just one logical block */
1562 *extres = 1;
1563 return 0;
1564 case UDF_VTOP_TYPE_SPARABLE :
1565 /* check if the packet containing the lb_num is remapped */
1566 lb_packet = lb_num / ump->sparable_packet_len;
1567 lb_rel = lb_num % ump->sparable_packet_len;
1568
1569 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1570 sme = &ump->sparing_table->entries[rel];
1571 if (lb_packet == udf_rw32(sme->org)) {
1572 /* NOTE maps to absolute disc logical block! */
1573 *lb_numres = udf_rw32(sme->map) + lb_rel;
1574 *extres = ump->sparable_packet_len - lb_rel;
1575 return 0;
1576 }
1577 }
1578
1579 /* transform into its disc logical block */
1580 part = ump->vtop[vpart];
1581 pdesc = ump->partitions[part];
1582 if (lb_num > udf_rw32(pdesc->part_len))
1583 return EINVAL;
1584 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1585
1586 /* rest of block */
1587 *extres = ump->sparable_packet_len - lb_rel;
1588 return 0;
1589 case UDF_VTOP_TYPE_META :
1590 default:
1591 printf("UDF vtop translation scheme %d unimplemented yet\n",
1592 ump->vtop_tp[vpart]);
1593 }
1594
1595 return EINVAL;
1596 }
1597
1598 /* --------------------------------------------------------------------- */
1599
1600 /* To make absolutely sure we are NOT returning zero, add one :) */
1601
1602 long
1603 udf_calchash(struct long_ad *icbptr)
1604 {
1605 /* ought to be enough since each mountpoint has its own chain */
1606 return udf_rw32(icbptr->loc.lb_num) + 1;
1607 }
1608
1609 /* --------------------------------------------------------------------- */
1610
1611 static struct udf_node *
1612 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1613 {
1614 struct udf_node *unp;
1615 struct vnode *vp;
1616 uint32_t hashline;
1617
1618 loop:
1619 simple_lock(&ump->ihash_slock);
1620
1621 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1622 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1623 assert(unp);
1624 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1625 unp->loc.loc.part_num == icbptr->loc.part_num) {
1626 vp = unp->vnode;
1627 assert(vp);
1628 simple_lock(&vp->v_interlock);
1629 simple_unlock(&ump->ihash_slock);
1630 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1631 goto loop;
1632 return unp;
1633 }
1634 }
1635 simple_unlock(&ump->ihash_slock);
1636
1637 return NULL;
1638 }
1639
1640 /* --------------------------------------------------------------------- */
1641
1642 static void
1643 udf_hashins(struct udf_node *unp)
1644 {
1645 struct udf_mount *ump;
1646 uint32_t hashline;
1647
1648 ump = unp->ump;
1649 simple_lock(&ump->ihash_slock);
1650
1651 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1652 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1653
1654 simple_unlock(&ump->ihash_slock);
1655 }
1656
1657 /* --------------------------------------------------------------------- */
1658
1659 static void
1660 udf_hashrem(struct udf_node *unp)
1661 {
1662 struct udf_mount *ump;
1663
1664 ump = unp->ump;
1665 simple_lock(&ump->ihash_slock);
1666
1667 LIST_REMOVE(unp, hashchain);
1668
1669 simple_unlock(&ump->ihash_slock);
1670 }
1671
1672 /* --------------------------------------------------------------------- */
1673
1674 int
1675 udf_dispose_locked_node(struct udf_node *node)
1676 {
1677 if (!node)
1678 return 0;
1679 if (node->vnode)
1680 VOP_UNLOCK(node->vnode, 0);
1681 return udf_dispose_node(node);
1682 }
1683
1684 /* --------------------------------------------------------------------- */
1685
1686 int
1687 udf_dispose_node(struct udf_node *node)
1688 {
1689 struct vnode *vp;
1690
1691 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1692 if (!node) {
1693 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1694 return 0;
1695 }
1696
1697 vp = node->vnode;
1698
1699 /* TODO extended attributes and streamdir */
1700
1701 /* remove from our hash lookup table */
1702 udf_hashrem(node);
1703
1704 /* dissociate our udf_node from the vnode */
1705 vp->v_data = NULL;
1706
1707 /* free associated memory and the node itself */
1708 if (node->fe)
1709 pool_put(node->ump->desc_pool, node->fe);
1710 if (node->efe)
1711 pool_put(node->ump->desc_pool, node->efe);
1712 pool_put(&udf_node_pool, node);
1713
1714 return 0;
1715 }
1716
1717 /* --------------------------------------------------------------------- */
1718
1719 /*
1720 * Genfs interfacing
1721 *
1722 * static const struct genfs_ops udffs_genfsops = {
1723 * .gop_size = genfs_size,
1724 * size of transfers
1725 * .gop_alloc = udf_gop_alloc,
1726 * unknown
1727 * .gop_write = genfs_gop_write,
1728 * putpages interface code
1729 * .gop_markupdate = udf_gop_markupdate,
1730 * set update/modify flags etc.
1731 * }
1732 */
1733
1734 /*
1735 * Genfs interface. These four functions are the only ones defined though not
1736 * documented... great.... why is chosen for the `.' initialisers i dont know
1737 * but other filingsystems seem to use it this way.
1738 */
1739
1740 static int
1741 udf_gop_alloc(struct vnode *vp, off_t off,
1742 off_t len, int flags, kauth_cred_t cred)
1743 {
1744 return 0;
1745 }
1746
1747
1748 static void
1749 udf_gop_markupdate(struct vnode *vp, int flags)
1750 {
1751 struct udf_node *udf_node = VTOI(vp);
1752 u_long mask;
1753
1754 udf_node = udf_node; /* shut up gcc */
1755
1756 mask = 0;
1757 #ifdef notyet
1758 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1759 mask = UDF_SET_ACCESS;
1760 }
1761 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1762 mask |= UDF_SET_UPDATE;
1763 }
1764 if (mask) {
1765 udf_node->update_flag |= mask;
1766 }
1767 #endif
1768 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1769 }
1770
1771
1772 static const struct genfs_ops udf_genfsops = {
1773 .gop_size = genfs_size,
1774 .gop_alloc = udf_gop_alloc,
1775 .gop_write = genfs_gop_write,
1776 .gop_markupdate = udf_gop_markupdate,
1777 };
1778
1779 /* --------------------------------------------------------------------- */
1780
1781 /*
1782 * Each node can have an attached streamdir node though not
1783 * recursively. These are otherwise known as named substreams/named
1784 * extended attributes that have no size limitations.
1785 *
1786 * `Normal' extended attributes are indicated with a number and are recorded
1787 * in either the fe/efe descriptor itself for small descriptors or recorded in
1788 * the attached extended attribute file. Since this file can get fragmented,
1789 * care ought to be taken.
1790 */
1791
1792 int
1793 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1794 struct udf_node **noderes)
1795 {
1796 union dscrptr *dscr, *tmpdscr;
1797 struct udf_node *node;
1798 struct vnode *nvp;
1799 struct long_ad icb_loc;
1800 extern int (**udf_vnodeop_p)(void *);
1801 uint64_t file_size;
1802 uint32_t lb_size, sector, dummy;
1803 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1804 int error;
1805
1806 DPRINTF(NODE, ("udf_get_node called\n"));
1807 *noderes = node = NULL;
1808
1809 /* lock to disallow simultanious creation of same node */
1810 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1811
1812 DPRINTF(NODE, ("\tlookup in hash table\n"));
1813 /* lookup in hash table */
1814 assert(ump);
1815 assert(node_icb_loc);
1816 node = udf_hashget(ump, node_icb_loc);
1817 if (node) {
1818 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1819 /* vnode is returned locked */
1820 *noderes = node;
1821 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1822 return 0;
1823 }
1824
1825 /* garbage check: translate node_icb_loc to sectornr */
1826 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1827 if (error) {
1828 /* no use, this will fail anyway */
1829 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1830 return EINVAL;
1831 }
1832
1833 /* build node (do initialise!) */
1834 node = pool_get(&udf_node_pool, PR_WAITOK);
1835 memset(node, 0, sizeof(struct udf_node));
1836
1837 DPRINTF(NODE, ("\tget new vnode\n"));
1838 /* give it a vnode */
1839 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1840 if (error) {
1841 pool_put(&udf_node_pool, node);
1842 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1843 return error;
1844 }
1845
1846 /* allways return locked vnode */
1847 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1848 /* recycle vnode and unlock; simultanious will fail too */
1849 ungetnewvnode(nvp);
1850 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1851 return error;
1852 }
1853
1854 /* initialise crosslinks, note location of fe/efe for hashing */
1855 node->ump = ump;
1856 node->vnode = nvp;
1857 nvp->v_data = node;
1858 node->loc = *node_icb_loc;
1859 node->lockf = 0;
1860
1861 /* insert into the hash lookup */
1862 udf_hashins(node);
1863
1864 /* safe to unlock, the entry is in the hash table, vnode is locked */
1865 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1866
1867 icb_loc = *node_icb_loc;
1868 needs_indirect = 0;
1869 strat4096 = 0;
1870 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1871 file_size = 0;
1872 lb_size = udf_rw32(ump->logical_vol->lb_size);
1873
1874 do {
1875 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
1876 if (error)
1877 break;
1878
1879 /* try to read in fe/efe */
1880 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1881
1882 /* blank sector marks end of sequence, check this */
1883 if ((tmpdscr == NULL) && (!strat4096))
1884 error = ENOENT;
1885
1886 /* break if read error or blank sector */
1887 if (error || (tmpdscr == NULL))
1888 break;
1889
1890 /* process descriptor based on the descriptor type */
1891 dscr_type = udf_rw16(tmpdscr->tag.id);
1892
1893 /* if dealing with an indirect entry, follow the link */
1894 if (dscr_type == TAGID_INDIRECT_ENTRY) {
1895 needs_indirect = 0;
1896 icb_loc = tmpdscr->inde.indirect_icb;
1897 free(tmpdscr, M_UDFTEMP);
1898 continue;
1899 }
1900
1901 /* only file entries and extended file entries allowed here */
1902 if ((dscr_type != TAGID_FENTRY) &&
1903 (dscr_type != TAGID_EXTFENTRY)) {
1904 free(tmpdscr, M_UDFTEMP);
1905 error = ENOENT;
1906 break;
1907 }
1908
1909 /* get descriptor space from our pool */
1910 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1911
1912 dscr = pool_get(ump->desc_pool, PR_WAITOK);
1913 memcpy(dscr, tmpdscr, lb_size);
1914 free(tmpdscr, M_UDFTEMP);
1915
1916 /* record and process/update (ext)fentry */
1917 if (dscr_type == TAGID_FENTRY) {
1918 if (node->fe)
1919 pool_put(ump->desc_pool, node->fe);
1920 node->fe = &dscr->fe;
1921 strat = udf_rw16(node->fe->icbtag.strat_type);
1922 udf_file_type = node->fe->icbtag.file_type;
1923 file_size = udf_rw64(node->fe->inf_len);
1924 } else {
1925 if (node->efe)
1926 pool_put(ump->desc_pool, node->efe);
1927 node->efe = &dscr->efe;
1928 strat = udf_rw16(node->efe->icbtag.strat_type);
1929 udf_file_type = node->efe->icbtag.file_type;
1930 file_size = udf_rw64(node->efe->inf_len);
1931 }
1932
1933 /* check recording strategy (structure) */
1934
1935 /*
1936 * Strategy 4096 is a daisy linked chain terminating with an
1937 * unrecorded sector or a TERM descriptor. The next
1938 * descriptor is to be found in the sector that follows the
1939 * current sector.
1940 */
1941 if (strat == 4096) {
1942 strat4096 = 1;
1943 needs_indirect = 1;
1944
1945 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1946 }
1947
1948 /*
1949 * Strategy 4 is the normal strategy and terminates, but if
1950 * we're in strategy 4096, we can't have strategy 4 mixed in
1951 */
1952
1953 if (strat == 4) {
1954 if (strat4096) {
1955 error = EINVAL;
1956 break;
1957 }
1958 break; /* done */
1959 }
1960 } while (!error);
1961
1962 if (error) {
1963 /* recycle udf_node */
1964 udf_dispose_node(node);
1965
1966 /* recycle vnode */
1967 nvp->v_data = NULL;
1968 ungetnewvnode(nvp);
1969
1970 return EINVAL; /* error code ok? */
1971 }
1972
1973 /* post process and initialise node */
1974
1975 /* assert no references to dscr anymore beyong this point */
1976 assert((node->fe) || (node->efe));
1977 dscr = NULL;
1978
1979 /*
1980 * Record where to record an updated version of the descriptor. If
1981 * there is a sequence of indirect entries, icb_loc will have been
1982 * updated. Its the write disipline to allocate new space and to make
1983 * sure the chain is maintained.
1984 *
1985 * `needs_indirect' flags if the next location is to be filled with
1986 * with an indirect entry.
1987 */
1988 node->next_loc = icb_loc;
1989 node->needs_indirect = needs_indirect;
1990
1991 /*
1992 * Translate UDF filetypes into vnode types.
1993 *
1994 * Systemfiles like the meta main and mirror files are not treated as
1995 * normal files, so we type them as having no type. UDF dictates that
1996 * they are not allowed to be visible.
1997 */
1998
1999 /* TODO specfs, fifofs etc etc. vnops setting */
2000 switch (udf_file_type) {
2001 case UDF_ICB_FILETYPE_DIRECTORY :
2002 case UDF_ICB_FILETYPE_STREAMDIR :
2003 nvp->v_type = VDIR;
2004 break;
2005 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2006 nvp->v_type = VBLK;
2007 break;
2008 case UDF_ICB_FILETYPE_CHARDEVICE :
2009 nvp->v_type = VCHR;
2010 break;
2011 case UDF_ICB_FILETYPE_SYMLINK :
2012 nvp->v_type = VLNK;
2013 break;
2014 case UDF_ICB_FILETYPE_META_MAIN :
2015 case UDF_ICB_FILETYPE_META_MIRROR :
2016 nvp->v_type = VNON;
2017 break;
2018 case UDF_ICB_FILETYPE_RANDOMACCESS :
2019 nvp->v_type = VREG;
2020 break;
2021 default:
2022 /* YIKES, either a block/char device, fifo or something else */
2023 nvp->v_type = VNON;
2024 }
2025
2026 /* initialise genfs */
2027 genfs_node_init(nvp, &udf_genfsops);
2028
2029 /* don't forget to set vnode's v_size */
2030 nvp->v_size = file_size;
2031
2032 /* TODO ext attr and streamdir nodes */
2033
2034 *noderes = node;
2035
2036 return 0;
2037 }
2038
2039 /* --------------------------------------------------------------------- */
2040
2041 /* UDF<->unix converters */
2042
2043 /* --------------------------------------------------------------------- */
2044
2045 static mode_t
2046 udf_perm_to_unix_mode(uint32_t perm)
2047 {
2048 mode_t mode;
2049
2050 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2051 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2052 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2053
2054 return mode;
2055 }
2056
2057 /* --------------------------------------------------------------------- */
2058
2059 #ifdef notyet
2060 static uint32_t
2061 unix_mode_to_udf_perm(mode_t mode)
2062 {
2063 uint32_t perm;
2064
2065 perm = ((mode & S_IRWXO) );
2066 perm |= ((mode & S_IRWXG) << 2);
2067 perm |= ((mode & S_IRWXU) << 4);
2068 perm |= ((mode & S_IWOTH) << 3);
2069 perm |= ((mode & S_IWGRP) << 5);
2070 perm |= ((mode & S_IWUSR) << 7);
2071
2072 return perm;
2073 }
2074 #endif
2075
2076 /* --------------------------------------------------------------------- */
2077
2078 static uint32_t
2079 udf_icb_to_unix_filetype(uint32_t icbftype)
2080 {
2081 switch (icbftype) {
2082 case UDF_ICB_FILETYPE_DIRECTORY :
2083 case UDF_ICB_FILETYPE_STREAMDIR :
2084 return S_IFDIR;
2085 case UDF_ICB_FILETYPE_FIFO :
2086 return S_IFIFO;
2087 case UDF_ICB_FILETYPE_CHARDEVICE :
2088 return S_IFCHR;
2089 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2090 return S_IFBLK;
2091 case UDF_ICB_FILETYPE_RANDOMACCESS :
2092 return S_IFREG;
2093 case UDF_ICB_FILETYPE_SYMLINK :
2094 return S_IFLNK;
2095 case UDF_ICB_FILETYPE_SOCKET :
2096 return S_IFSOCK;
2097 }
2098 /* no idea what this is */
2099 return 0;
2100 }
2101
2102 /* --------------------------------------------------------------------- */
2103
2104 /* TODO KNF-ify */
2105
2106 void
2107 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2108 {
2109 uint16_t *raw_name, *unix_name;
2110 uint16_t *inchp, ch;
2111 uint8_t *outchp;
2112 int ucode_chars, nice_uchars;
2113
2114 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2115 unix_name = raw_name + 1024; /* split space in half */
2116 assert(sizeof(char) == sizeof(uint8_t));
2117 outchp = (uint8_t *) result;
2118 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2119 *raw_name = *unix_name = 0;
2120 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2121 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2122 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2123 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2124 ch = *inchp;
2125 /* XXX sloppy unicode -> latin */
2126 *outchp++ = ch & 255;
2127 if (!ch) break;
2128 }
2129 *outchp++ = 0;
2130 } else {
2131 /* assume 8bit char length byte latin-1 */
2132 assert(*id == 8);
2133 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2134 }
2135 free(raw_name, M_UDFTEMP);
2136 }
2137
2138 /* --------------------------------------------------------------------- */
2139
2140 /* TODO KNF-ify */
2141
2142 void
2143 unix_to_udf_name(char *result, char *name,
2144 uint8_t *result_len, struct charspec *chsp)
2145 {
2146 uint16_t *raw_name;
2147 int udf_chars, name_len;
2148 char *inchp;
2149 uint16_t *outchp;
2150
2151 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2152 /* convert latin-1 or whatever to unicode-16 */
2153 *raw_name = 0;
2154 name_len = 0;
2155 inchp = name;
2156 outchp = raw_name;
2157 while (*inchp) {
2158 *outchp++ = (uint16_t) (*inchp++);
2159 name_len++;
2160 }
2161
2162 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2163 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2164 } else {
2165 /* XXX assume 8bit char length byte latin-1 */
2166 *result++ = 8; udf_chars = 1;
2167 strncpy(result, name + 1, strlen(name+1));
2168 udf_chars += strlen(name);
2169 }
2170 *result_len = udf_chars;
2171 free(raw_name, M_UDFTEMP);
2172 }
2173
2174 /* --------------------------------------------------------------------- */
2175
2176 /*
2177 * Timestamp to timespec conversion code is taken with small modifications
2178 * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
2179 * permission from Scott.
2180 */
2181
2182 static int mon_lens[2][12] = {
2183 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2184 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2185 };
2186
2187
2188 static int
2189 udf_isaleapyear(int year)
2190 {
2191 int i;
2192
2193 i = (year % 4) ? 0 : 1;
2194 i &= (year % 100) ? 1 : 0;
2195 i |= (year % 400) ? 0 : 1;
2196
2197 return i;
2198 }
2199
2200
2201 void
2202 udf_timestamp_to_timespec(struct udf_mount *ump,
2203 struct timestamp *timestamp,
2204 struct timespec *timespec)
2205 {
2206 uint32_t usecs, secs, nsecs;
2207 uint16_t tz;
2208 int i, lpyear, daysinyear, year;
2209
2210 timespec->tv_sec = secs = 0;
2211 timespec->tv_nsec = nsecs = 0;
2212
2213 /*
2214 * DirectCD seems to like using bogus year values.
2215 *
2216 * Distrust time->month especially, since it will be used for an array
2217 * index.
2218 */
2219 year = udf_rw16(timestamp->year);
2220 if ((year < 1970) || (timestamp->month > 12)) {
2221 return;
2222 }
2223
2224 /* Calculate the time and day
2225 * Day is 1-31, Month is 1-12
2226 */
2227
2228 usecs = timestamp->usec +
2229 100*timestamp->hund_usec + 10000*timestamp->centisec;
2230 nsecs = usecs * 1000;
2231 secs = timestamp->second;
2232 secs += timestamp->minute * 60;
2233 secs += timestamp->hour * 3600;
2234 secs += (timestamp->day-1) * 3600 * 24;
2235
2236 /* Calclulate the month */
2237 lpyear = udf_isaleapyear(year);
2238 for (i = 1; i < timestamp->month; i++)
2239 secs += mon_lens[lpyear][i-1] * 3600 * 24;
2240
2241 for (i = 1970; i < year; i++) {
2242 daysinyear = udf_isaleapyear(i) + 365 ;
2243 secs += daysinyear * 3600 * 24;
2244 }
2245
2246 /*
2247 * Calculate the time zone. The timezone is 12 bit signed 2's
2248 * compliment, so we gotta do some extra magic to handle it right.
2249 */
2250 tz = udf_rw16(timestamp->type_tz);
2251 tz &= 0x0fff; /* only lower 12 bits are significant */
2252 if (tz & 0x0800) /* sign extention */
2253 tz |= 0xf000;
2254
2255 /* TODO check timezone conversion */
2256 /* check if we are specified a timezone to convert */
2257 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2258 if ((int16_t) tz != -2047)
2259 secs -= (int16_t) tz * 60;
2260 } else {
2261 secs -= ump->mount_args.gmtoff;
2262 }
2263
2264 timespec->tv_sec = secs;
2265 timespec->tv_nsec = nsecs;
2266 }
2267
2268 /* --------------------------------------------------------------------- */
2269
2270 /*
2271 * Attribute and filetypes converters with get/set pairs
2272 */
2273
2274 uint32_t
2275 udf_getaccessmode(struct udf_node *udf_node)
2276 {
2277 struct file_entry *fe;
2278 struct extfile_entry *efe;
2279 uint32_t udf_perm, icbftype;
2280 uint32_t mode, ftype;
2281 uint16_t icbflags;
2282
2283 if (udf_node->fe) {
2284 fe = udf_node->fe;
2285 udf_perm = udf_rw32(fe->perm);
2286 icbftype = fe->icbtag.file_type;
2287 icbflags = udf_rw16(fe->icbtag.flags);
2288 } else {
2289 assert(udf_node->efe);
2290 efe = udf_node->efe;
2291 udf_perm = udf_rw32(efe->perm);
2292 icbftype = efe->icbtag.file_type;
2293 icbflags = udf_rw16(efe->icbtag.flags);
2294 }
2295
2296 mode = udf_perm_to_unix_mode(udf_perm);
2297 ftype = udf_icb_to_unix_filetype(icbftype);
2298
2299 /* set suid, sgid, sticky from flags in fe/efe */
2300 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2301 mode |= S_ISUID;
2302 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2303 mode |= S_ISGID;
2304 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2305 mode |= S_ISVTX;
2306
2307 return mode | ftype;
2308 }
2309
2310 /* --------------------------------------------------------------------- */
2311
2312 /*
2313 * Directory read and manipulation functions
2314 */
2315
2316 int
2317 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2318 struct long_ad *icb_loc)
2319 {
2320 struct udf_node *dir_node = VTOI(vp);
2321 struct file_entry *fe;
2322 struct extfile_entry *efe;
2323 struct fileid_desc *fid;
2324 struct dirent dirent;
2325 uint64_t file_size, diroffset;
2326 uint32_t lb_size;
2327 int found, error;
2328
2329 /* get directory filesize */
2330 if (dir_node->fe) {
2331 fe = dir_node->fe;
2332 file_size = udf_rw64(fe->inf_len);
2333 } else {
2334 assert(dir_node->efe);
2335 efe = dir_node->efe;
2336 file_size = udf_rw64(efe->inf_len);
2337 }
2338
2339 /* allocate temporary space for fid */
2340 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2341 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2342
2343 found = 0;
2344 diroffset = dir_node->last_diroffset;
2345 while (!found) {
2346 /* if not found in this track, turn trough zero */
2347 if (diroffset >= file_size)
2348 diroffset = 0;
2349
2350 /* transfer a new fid/dirent */
2351 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2352 if (error)
2353 break;
2354
2355 /* skip deleted entries */
2356 if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2357 if ((strlen(dirent.d_name) == namelen) &&
2358 (strncmp(dirent.d_name, name, namelen) == 0)) {
2359 found = 1;
2360 *icb_loc = fid->icb;
2361 }
2362 }
2363
2364 if (diroffset == dir_node->last_diroffset) {
2365 /* we have cycled */
2366 break;
2367 }
2368 }
2369 free(fid, M_TEMP);
2370 dir_node->last_diroffset = diroffset;
2371
2372 return found;
2373 }
2374
2375 /* --------------------------------------------------------------------- */
2376
2377 /*
2378 * Read one fid and process it into a dirent and advance to the next (*fid)
2379 * has to be allocated a logical block in size, (*dirent) struct dirent length
2380 */
2381
2382 int
2383 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2384 struct fileid_desc *fid, struct dirent *dirent)
2385 {
2386 struct udf_node *dir_node = VTOI(vp);
2387 struct udf_mount *ump = dir_node->ump;
2388 struct file_entry *fe;
2389 struct extfile_entry *efe;
2390 struct uio dir_uio;
2391 struct iovec dir_iovec;
2392 uint32_t entry_length, lb_size;
2393 uint64_t file_size;
2394 char *fid_name;
2395 int enough, error;
2396
2397 assert(fid);
2398 assert(dirent);
2399 assert(dir_node);
2400 assert(offset);
2401 assert(*offset != 1);
2402
2403 DPRINTF(FIDS, ("read_fid_stream called\n"));
2404 /* check if we're past the end of the directory */
2405 if (dir_node->fe) {
2406 fe = dir_node->fe;
2407 file_size = udf_rw64(fe->inf_len);
2408 } else {
2409 assert(dir_node->efe);
2410 efe = dir_node->efe;
2411 file_size = udf_rw64(efe->inf_len);
2412 }
2413 if (*offset >= file_size)
2414 return EINVAL;
2415
2416 /* get maximum length of FID descriptor */
2417 lb_size = udf_rw32(ump->logical_vol->lb_size);
2418
2419 /* initialise return values */
2420 entry_length = 0;
2421 memset(dirent, 0, sizeof(struct dirent));
2422 memset(fid, 0, lb_size);
2423
2424 /* TODO use vn_rdwr instead of creating our own uio */
2425 /* read part of the directory */
2426 memset(&dir_uio, 0, sizeof(struct uio));
2427 dir_uio.uio_rw = UIO_READ; /* read into this space */
2428 dir_uio.uio_iovcnt = 1;
2429 dir_uio.uio_iov = &dir_iovec;
2430 UIO_SETUP_SYSSPACE(&dir_uio);
2431 dir_iovec.iov_base = fid;
2432 dir_iovec.iov_len = lb_size;
2433 dir_uio.uio_offset = *offset;
2434
2435 /* limit length of read in piece */
2436 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2437
2438 /* read the part into the fid space */
2439 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2440 if (error)
2441 return error;
2442
2443 /*
2444 * Check if we got a whole descriptor.
2445 * XXX Try to `resync' directory stream when something is very wrong.
2446 *
2447 */
2448 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2449 if (!enough) {
2450 /* short dir ... */
2451 return EIO;
2452 }
2453
2454 /* check if our FID header is OK */
2455 error = udf_check_tag(fid);
2456 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2457 if (!error) {
2458 if (udf_rw16(fid->tag.id) != TAGID_FID)
2459 error = ENOENT;
2460 }
2461 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2462
2463 /* check for length */
2464 if (!error) {
2465 entry_length = udf_fidsize(fid, lb_size);
2466 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2467 }
2468 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2469 entry_length, enough?"yes":"no"));
2470
2471 if (!enough) {
2472 /* short dir ... bomb out */
2473 return EIO;
2474 }
2475
2476 /* check FID contents */
2477 if (!error) {
2478 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2479 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2480 }
2481 if (error) {
2482 /* note that is sometimes a bit quick to report */
2483 printf("BROKEN DIRECTORY ENTRY\n");
2484 /* RESYNC? */
2485 /* TODO: use udf_resync_fid_stream */
2486 return EIO;
2487 }
2488 DPRINTF(FIDS, ("\tinterpret FID\n"));
2489
2490 /* we got a whole and valid descriptor! */
2491
2492 /* create resulting dirent structure */
2493 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2494 udf_to_unix_name(dirent->d_name,
2495 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2496
2497 /* '..' has no name, so provide one */
2498 if (fid->file_char & UDF_FILE_CHAR_PAR)
2499 strcpy(dirent->d_name, "..");
2500
2501 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2502 dirent->d_namlen = strlen(dirent->d_name);
2503 dirent->d_reclen = _DIRENT_SIZE(dirent);
2504
2505 /*
2506 * Note that its not worth trying to go for the filetypes now... its
2507 * too expensive too
2508 */
2509 dirent->d_type = DT_UNKNOWN;
2510
2511 /* initial guess for filetype we can make */
2512 if (fid->file_char & UDF_FILE_CHAR_DIR)
2513 dirent->d_type = DT_DIR;
2514
2515 /* advance */
2516 *offset += entry_length;
2517
2518 return error;
2519 }
2520
2521 /* --------------------------------------------------------------------- */
2522
2523 /*
2524 * block based file reading and writing
2525 */
2526
2527 static int
2528 udf_read_internal(struct udf_node *node, uint8_t *blob)
2529 {
2530 struct udf_mount *ump;
2531 struct file_entry *fe;
2532 struct extfile_entry *efe;
2533 uint64_t inflen;
2534 uint32_t sector_size;
2535 uint8_t *pos;
2536 int icbflags, addr_type;
2537
2538 /* shut up gcc */
2539 inflen = addr_type = icbflags = 0;
2540 pos = NULL;
2541
2542 /* get extent and do some paranoia checks */
2543 ump = node->ump;
2544 sector_size = ump->discinfo.sector_size;
2545
2546 fe = node->fe;
2547 efe = node->efe;
2548 if (fe) {
2549 inflen = udf_rw64(fe->inf_len);
2550 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2551 icbflags = udf_rw16(fe->icbtag.flags);
2552 }
2553 if (efe) {
2554 inflen = udf_rw64(efe->inf_len);
2555 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2556 icbflags = udf_rw16(efe->icbtag.flags);
2557 }
2558 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2559
2560 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2561 assert(inflen < sector_size);
2562
2563 /* copy out info */
2564 memset(blob, 0, sector_size);
2565 memcpy(blob, pos, inflen);
2566
2567 return 0;
2568 }
2569
2570 /* --------------------------------------------------------------------- */
2571
2572 /*
2573 * Read file extent reads an extent specified in sectors from the file. It is
2574 * sector based; i.e. no `fancy' offsets.
2575 */
2576
2577 int
2578 udf_read_file_extent(struct udf_node *node,
2579 uint32_t from, uint32_t sectors,
2580 uint8_t *blob)
2581 {
2582 struct buf buf;
2583 uint32_t sector_size;
2584
2585 BUF_INIT(&buf);
2586
2587 sector_size = node->ump->discinfo.sector_size;
2588
2589 buf.b_bufsize = sectors * sector_size;
2590 buf.b_data = blob;
2591 buf.b_bcount = buf.b_bufsize;
2592 buf.b_resid = buf.b_bcount;
2593 buf.b_flags = B_BUSY | B_READ;
2594 buf.b_vp = node->vnode;
2595 buf.b_proc = NULL;
2596
2597 buf.b_blkno = from;
2598 buf.b_lblkno = 0;
2599 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2600
2601 udf_read_filebuf(node, &buf);
2602 return biowait(&buf);
2603 }
2604
2605
2606 /* --------------------------------------------------------------------- */
2607
2608 /*
2609 * Read file extent in the buffer.
2610 *
2611 * The splitup of the extent into seperate request-buffers is to minimise
2612 * copying around as much as possible.
2613 */
2614
2615
2616 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2617 #define FILEBUFSECT 128
2618
2619 void
2620 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2621 {
2622 struct buf *nestbuf;
2623 uint64_t *mapping;
2624 uint64_t run_start;
2625 uint32_t sector_size;
2626 uint32_t buf_offset, sector, rbuflen, rblk;
2627 uint8_t *buf_pos;
2628 int error, run_length;
2629
2630 uint32_t from;
2631 uint32_t sectors;
2632
2633 sector_size = node->ump->discinfo.sector_size;
2634
2635 from = buf->b_blkno;
2636 sectors = buf->b_bcount / sector_size;
2637
2638 /* assure we have enough translation slots */
2639 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2640 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2641
2642 if (sectors > FILEBUFSECT) {
2643 printf("udf_read_filebuf: implementation limit on bufsize\n");
2644 buf->b_error = EIO;
2645 buf->b_flags |= B_ERROR;
2646 biodone(buf);
2647 return;
2648 }
2649
2650 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2651
2652 error = 0;
2653 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2654 error = udf_translate_file_extent(node, from, sectors, mapping);
2655 if (error) {
2656 buf->b_error = error;
2657 buf->b_flags |= B_ERROR;
2658 biodone(buf);
2659 goto out;
2660 }
2661 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2662
2663 /* pre-check if internal or parts are zero */
2664 if (*mapping == UDF_TRANS_INTERN) {
2665 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2666 if (error) {
2667 buf->b_error = error;
2668 buf->b_flags |= B_ERROR;
2669 }
2670 biodone(buf);
2671 goto out;
2672 }
2673 DPRINTF(READ, ("\tnot intern\n"));
2674
2675 /* request read-in of data from disc sheduler */
2676 buf->b_resid = buf->b_bcount;
2677 for (sector = 0; sector < sectors; sector++) {
2678 buf_offset = sector * sector_size;
2679 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2680 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2681
2682 switch (mapping[sector]) {
2683 case UDF_TRANS_UNMAPPED:
2684 case UDF_TRANS_ZERO:
2685 /* copy zero sector */
2686 memset(buf_pos, 0, sector_size);
2687 DPRINTF(READ, ("\treturning zero sector\n"));
2688 nestiobuf_done(buf, sector_size, 0);
2689 break;
2690 default :
2691 DPRINTF(READ, ("\tread sector "
2692 "%"PRIu64"\n", mapping[sector]));
2693
2694 run_start = mapping[sector];
2695 run_length = 1;
2696 while (sector < sectors-1) {
2697 if (mapping[sector+1] != mapping[sector]+1)
2698 break;
2699 run_length++;
2700 sector++;
2701 }
2702
2703 /*
2704 * nest an iobuf and mark it for async reading. Since
2705 * we're using nested buffers, they can't be cached by
2706 * design.
2707 */
2708 rbuflen = run_length * sector_size;
2709 rblk = run_start * (sector_size/DEV_BSIZE);
2710
2711 nestbuf = getiobuf();
2712 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2713 /* nestbuf is B_ASYNC */
2714
2715 /* CD shedules on raw blkno */
2716 nestbuf->b_blkno = rblk;
2717 nestbuf->b_proc = NULL;
2718 nestbuf->b_cylinder = 0;
2719 nestbuf->b_rawblkno = rblk;
2720 VOP_STRATEGY(node->ump->devvp, nestbuf);
2721 }
2722 }
2723 out:
2724 DPRINTF(READ, ("\tend of read_filebuf\n"));
2725 free(mapping, M_TEMP);
2726 return;
2727 }
2728 #undef FILEBUFSECT
2729
2730
2731 /* --------------------------------------------------------------------- */
2732
2733 /*
2734 * Translate an extent (in sectors) into sector numbers; used for read and
2735 * write operations. DOESNT't check extents.
2736 */
2737
2738 int
2739 udf_translate_file_extent(struct udf_node *node,
2740 uint32_t from, uint32_t pages,
2741 uint64_t *map)
2742 {
2743 struct udf_mount *ump;
2744 struct file_entry *fe;
2745 struct extfile_entry *efe;
2746 struct short_ad *s_ad;
2747 struct long_ad *l_ad, t_ad;
2748 uint64_t transsec;
2749 uint32_t sector_size, transsec32;
2750 uint32_t overlap, translen;
2751 uint32_t vpart_num, lb_num, len, alloclen;
2752 uint8_t *pos;
2753 int error, flags, addr_type, icblen, icbflags;
2754
2755 if (!node)
2756 return ENOENT;
2757
2758 /* shut up gcc */
2759 alloclen = addr_type = icbflags = 0;
2760 pos = NULL;
2761
2762 /* do the work */
2763 ump = node->ump;
2764 sector_size = ump->discinfo.sector_size;
2765 fe = node->fe;
2766 efe = node->efe;
2767 if (fe) {
2768 alloclen = udf_rw32(fe->l_ad);
2769 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2770 icbflags = udf_rw16(fe->icbtag.flags);
2771 }
2772 if (efe) {
2773 alloclen = udf_rw32(efe->l_ad);
2774 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2775 icbflags = udf_rw16(efe->icbtag.flags);
2776 }
2777 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2778
2779 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2780 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2781
2782 vpart_num = udf_rw16(node->loc.loc.part_num);
2783 lb_num = len = icblen = 0; /* shut up gcc */
2784 while (pages && alloclen) {
2785 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2786 switch (addr_type) {
2787 case UDF_ICB_INTERN_ALLOC :
2788 /* TODO check extents? */
2789 *map = UDF_TRANS_INTERN;
2790 return 0;
2791 case UDF_ICB_SHORT_ALLOC :
2792 icblen = sizeof(struct short_ad);
2793 s_ad = (struct short_ad *) pos;
2794 len = udf_rw32(s_ad->len);
2795 lb_num = udf_rw32(s_ad->lb_num);
2796 break;
2797 case UDF_ICB_LONG_ALLOC :
2798 icblen = sizeof(struct long_ad);
2799 l_ad = (struct long_ad *) pos;
2800 len = udf_rw32(l_ad->len);
2801 lb_num = udf_rw32(l_ad->loc.lb_num);
2802 vpart_num = udf_rw16(l_ad->loc.part_num);
2803 DPRINTFIF(TRANSLATE,
2804 (l_ad->impl.im_used.flags &
2805 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2806 ("UDF: got an `extent erased' flag in long_ad\n"));
2807 break;
2808 default:
2809 /* can't be here */
2810 return EINVAL; /* for sure */
2811 }
2812
2813 /* process extent */
2814 flags = UDF_EXT_FLAGS(len);
2815 len = UDF_EXT_LEN(len);
2816
2817 overlap = (len + sector_size -1) / sector_size;
2818 if (from) {
2819 if (from > overlap) {
2820 from -= overlap;
2821 overlap = 0;
2822 } else {
2823 lb_num += from; /* advance in extent */
2824 overlap -= from;
2825 from = 0;
2826 }
2827 }
2828
2829 overlap = MIN(overlap, pages);
2830 while (overlap) {
2831 switch (flags) {
2832 case UDF_EXT_REDIRECT :
2833 /* no support for allocation extentions yet */
2834 /* TODO support for allocation extention */
2835 return ENOENT;
2836 case UDF_EXT_FREED :
2837 case UDF_EXT_FREE :
2838 transsec = UDF_TRANS_ZERO;
2839 translen = overlap;
2840 while (overlap && pages && translen) {
2841 *map++ = transsec;
2842 lb_num++;
2843 overlap--; pages--; translen--;
2844 }
2845 break;
2846 case UDF_EXT_ALLOCATED :
2847 t_ad.loc.lb_num = udf_rw32(lb_num);
2848 t_ad.loc.part_num = udf_rw16(vpart_num);
2849 error = udf_translate_vtop(ump,
2850 &t_ad, &transsec32, &translen);
2851 transsec = transsec32;
2852 if (error)
2853 return error;
2854 while (overlap && pages && translen) {
2855 *map++ = transsec;
2856 lb_num++; transsec++;
2857 overlap--; pages--; translen--;
2858 }
2859 break;
2860 }
2861 }
2862 pos += icblen;
2863 alloclen -= icblen;
2864 }
2865 return 0;
2866 }
2867
2868 /* --------------------------------------------------------------------- */
2869
2870