udf_subr.c revision 1.23.2.5 1 /* $NetBSD: udf_subr.c,v 1.23.2.5 2007/11/04 01:19:50 xtraeme Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.23.2.5 2007/11/04 01:19:50 xtraeme Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 #include <dev/clock_subr.h>
68
69 #include <fs/udf/ecma167-udf.h>
70 #include <fs/udf/udf_mount.h>
71
72 #include "udf.h"
73 #include "udf_subr.h"
74 #include "udf_bswap.h"
75
76
77 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
78
79
80 /* predefines */
81
82
83 #if 0
84 {
85 int i, j, dlen;
86 uint8_t *blob;
87
88 blob = (uint8_t *) fid;
89 dlen = file_size - (*offset);
90
91 printf("blob = %p\n", blob);
92 printf("dump of %d bytes\n", dlen);
93
94 for (i = 0; i < dlen; i+ = 16) {
95 printf("%04x ", i);
96 for (j = 0; j < 16; j++) {
97 if (i+j < dlen) {
98 printf("%02x ", blob[i+j]);
99 } else {
100 printf(" ");
101 }
102 }
103 for (j = 0; j < 16; j++) {
104 if (i+j < dlen) {
105 if (blob[i+j]>32 && blob[i+j]! = 127) {
106 printf("%c", blob[i+j]);
107 } else {
108 printf(".");
109 }
110 }
111 }
112 printf("\n");
113 }
114 printf("\n");
115 }
116 Debugger();
117 #endif
118
119
120 /* --------------------------------------------------------------------- */
121
122 /* STUB */
123
124 static int
125 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
126 {
127 int sector_size = ump->discinfo.sector_size;
128 int blks = sector_size / DEV_BSIZE;
129
130 /* NOTE bread() checks if block is in cache or not */
131 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
132 }
133
134
135 /* --------------------------------------------------------------------- */
136
137 /*
138 * Check if the blob starts with a good UDF tag. Tags are protected by a
139 * checksum over the reader except one byte at position 4 that is the checksum
140 * itself.
141 */
142
143 int
144 udf_check_tag(void *blob)
145 {
146 struct desc_tag *tag = blob;
147 uint8_t *pos, sum, cnt;
148
149 /* check TAG header checksum */
150 pos = (uint8_t *) tag;
151 sum = 0;
152
153 for(cnt = 0; cnt < 16; cnt++) {
154 if (cnt != 4)
155 sum += *pos;
156 pos++;
157 }
158 if (sum != tag->cksum) {
159 /* bad tag header checksum; this is not a valid tag */
160 return EINVAL;
161 }
162
163 return 0;
164 }
165
166 /* --------------------------------------------------------------------- */
167
168 /*
169 * check tag payload will check descriptor CRC as specified.
170 * If the descriptor is too short, it will return EIO otherwise EINVAL.
171 */
172
173 int
174 udf_check_tag_payload(void *blob, uint32_t max_length)
175 {
176 struct desc_tag *tag = blob;
177 uint16_t crc, crc_len;
178
179 crc_len = udf_rw16(tag->desc_crc_len);
180
181 /* check payload CRC if applicable */
182 if (crc_len == 0)
183 return 0;
184
185 if (crc_len > max_length)
186 return EIO;
187
188 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
189 if (crc != udf_rw16(tag->desc_crc)) {
190 /* bad payload CRC; this is a broken tag */
191 return EINVAL;
192 }
193
194 return 0;
195 }
196
197 /* --------------------------------------------------------------------- */
198
199 int
200 udf_validate_tag_sum(void *blob)
201 {
202 struct desc_tag *tag = blob;
203 uint8_t *pos, sum, cnt;
204
205 /* calculate TAG header checksum */
206 pos = (uint8_t *) tag;
207 sum = 0;
208
209 for(cnt = 0; cnt < 16; cnt++) {
210 if (cnt != 4) sum += *pos;
211 pos++;
212 }
213 tag->cksum = sum; /* 8 bit */
214
215 return 0;
216 }
217
218 /* --------------------------------------------------------------------- */
219
220 /* assumes sector number of descriptor to be saved already present */
221
222 int
223 udf_validate_tag_and_crc_sums(void *blob)
224 {
225 struct desc_tag *tag = blob;
226 uint8_t *btag = (uint8_t *) tag;
227 uint16_t crc, crc_len;
228
229 crc_len = udf_rw16(tag->desc_crc_len);
230
231 /* check payload CRC if applicable */
232 if (crc_len > 0) {
233 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
234 tag->desc_crc = udf_rw16(crc);
235 }
236
237 /* calculate TAG header checksum */
238 return udf_validate_tag_sum(blob);
239 }
240
241 /* --------------------------------------------------------------------- */
242
243 /*
244 * XXX note the different semantics from udfclient: for FIDs it still rounds
245 * up to sectors. Use udf_fidsize() for a correct length.
246 */
247
248 int
249 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
250 {
251 uint32_t size, tag_id, num_secs, elmsz;
252
253 tag_id = udf_rw16(dscr->tag.id);
254
255 switch (tag_id) {
256 case TAGID_LOGVOL :
257 size = sizeof(struct logvol_desc) - 1;
258 size += udf_rw32(dscr->lvd.mt_l);
259 break;
260 case TAGID_UNALLOC_SPACE :
261 elmsz = sizeof(struct extent_ad);
262 size = sizeof(struct unalloc_sp_desc) - elmsz;
263 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
264 break;
265 case TAGID_FID :
266 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
267 size = (size + 3) & ~3;
268 break;
269 case TAGID_LOGVOL_INTEGRITY :
270 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
271 size += udf_rw32(dscr->lvid.l_iu);
272 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
273 break;
274 case TAGID_SPACE_BITMAP :
275 size = sizeof(struct space_bitmap_desc) - 1;
276 size += udf_rw32(dscr->sbd.num_bytes);
277 break;
278 case TAGID_SPARING_TABLE :
279 elmsz = sizeof(struct spare_map_entry);
280 size = sizeof(struct udf_sparing_table) - elmsz;
281 size += udf_rw16(dscr->spt.rt_l) * elmsz;
282 break;
283 case TAGID_FENTRY :
284 size = sizeof(struct file_entry);
285 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
286 break;
287 case TAGID_EXTFENTRY :
288 size = sizeof(struct extfile_entry);
289 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
290 break;
291 case TAGID_FSD :
292 size = sizeof(struct fileset_desc);
293 break;
294 default :
295 size = sizeof(union dscrptr);
296 break;
297 }
298
299 if ((size == 0) || (udf_sector_size == 0)) return 0;
300
301 /* round up in sectors */
302 num_secs = (size + udf_sector_size -1) / udf_sector_size;
303 return num_secs * udf_sector_size;
304 }
305
306
307 static int
308 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
309 {
310 uint32_t size;
311
312 if (udf_rw16(fid->tag.id) != TAGID_FID)
313 panic("got udf_fidsize on non FID\n");
314
315 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
316 size = (size + 3) & ~3;
317
318 return size;
319 }
320
321 /* --------------------------------------------------------------------- */
322
323 /*
324 * Problem with read_descriptor are long descriptors spanning more than one
325 * sector. Luckily long descriptors can't be in `logical space'.
326 *
327 * Size of allocated piece is returned in multiple of sector size due to
328 * udf_calc_udf_malloc_size().
329 */
330
331 int
332 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
333 struct malloc_type *mtype, union dscrptr **dstp)
334 {
335 union dscrptr *src, *dst;
336 struct buf *bp;
337 uint8_t *pos;
338 int blks, blk, dscrlen;
339 int i, error, sector_size;
340
341 sector_size = ump->discinfo.sector_size;
342
343 *dstp = dst = NULL;
344 dscrlen = sector_size;
345
346 /* read initial piece */
347 error = udf_bread(ump, sector, &bp);
348 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
349
350 if (!error) {
351 /* check if its a valid tag */
352 error = udf_check_tag(bp->b_data);
353 if (error) {
354 /* check if its an empty block */
355 pos = bp->b_data;
356 for (i = 0; i < sector_size; i++, pos++) {
357 if (*pos) break;
358 }
359 if (i == sector_size) {
360 /* return no error but with no dscrptr */
361 /* dispose first block */
362 brelse(bp);
363 return 0;
364 }
365 }
366 }
367 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
368 if (!error) {
369 src = (union dscrptr *) bp->b_data;
370 dscrlen = udf_tagsize(src, sector_size);
371 dst = malloc(dscrlen, mtype, M_WAITOK);
372 memcpy(dst, src, sector_size);
373 }
374 /* dispose first block */
375 bp->b_flags |= B_AGE;
376 brelse(bp);
377
378 if (!error && (dscrlen > sector_size)) {
379 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
380 /*
381 * Read the rest of descriptor. Since it is only used at mount
382 * time its overdone to define and use a specific udf_breadn
383 * for this alone.
384 */
385 blks = (dscrlen + sector_size -1) / sector_size;
386 for (blk = 1; blk < blks; blk++) {
387 error = udf_bread(ump, sector + blk, &bp);
388 if (error) {
389 brelse(bp);
390 break;
391 }
392 pos = (uint8_t *) dst + blk*sector_size;
393 memcpy(pos, bp->b_data, sector_size);
394
395 /* dispose block */
396 bp->b_flags |= B_AGE;
397 brelse(bp);
398 }
399 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
400 error));
401 }
402 if (!error) {
403 error = udf_check_tag_payload(dst, dscrlen);
404 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
405 }
406 if (error && dst) {
407 free(dst, mtype);
408 dst = NULL;
409 }
410 *dstp = dst;
411
412 return error;
413 }
414
415 /* --------------------------------------------------------------------- */
416 #ifdef DEBUG
417 static void
418 udf_dump_discinfo(struct udf_mount *ump)
419 {
420 char bits[128];
421 struct mmc_discinfo *di = &ump->discinfo;
422
423 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
424 return;
425
426 printf("Device/media info :\n");
427 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
428 printf("\tderived class %d\n", di->mmc_class);
429 printf("\tsector size %d\n", di->sector_size);
430 printf("\tdisc state %d\n", di->disc_state);
431 printf("\tlast ses state %d\n", di->last_session_state);
432 printf("\tbg format state %d\n", di->bg_format_state);
433 printf("\tfrst track %d\n", di->first_track);
434 printf("\tfst on last ses %d\n", di->first_track_last_session);
435 printf("\tlst on last ses %d\n", di->last_track_last_session);
436 printf("\tlink block penalty %d\n", di->link_block_penalty);
437 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
438 sizeof(bits));
439 printf("\tdisc flags %s\n", bits);
440 printf("\tdisc id %x\n", di->disc_id);
441 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
442
443 printf("\tnum sessions %d\n", di->num_sessions);
444 printf("\tnum tracks %d\n", di->num_tracks);
445
446 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
447 printf("\tcapabilities cur %s\n", bits);
448 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
449 printf("\tcapabilities cap %s\n", bits);
450 }
451 #else
452 #define udf_dump_discinfo(a);
453 #endif
454
455 /* not called often */
456 int
457 udf_update_discinfo(struct udf_mount *ump)
458 {
459 struct vnode *devvp = ump->devvp;
460 struct partinfo dpart;
461 struct mmc_discinfo *di;
462 int error;
463
464 DPRINTF(VOLUMES, ("read/update disc info\n"));
465 di = &ump->discinfo;
466 memset(di, 0, sizeof(struct mmc_discinfo));
467
468 /* check if we're on a MMC capable device, i.e. CD/DVD */
469 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
470 if (error == 0) {
471 udf_dump_discinfo(ump);
472 return 0;
473 }
474
475 /* disc partition support */
476 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
477 if (error)
478 return ENODEV;
479
480 /* set up a disc info profile for partitions */
481 di->mmc_profile = 0x01; /* disc type */
482 di->mmc_class = MMC_CLASS_DISC;
483 di->disc_state = MMC_STATE_CLOSED;
484 di->last_session_state = MMC_STATE_CLOSED;
485 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
486 di->link_block_penalty = 0;
487
488 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
489 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
490 di->mmc_cap = di->mmc_cur;
491 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
492
493 /* TODO problem with last_possible_lba on resizable VND; request */
494 di->last_possible_lba = dpart.part->p_size;
495 di->sector_size = dpart.disklab->d_secsize;
496 di->blockingnr = 1;
497
498 di->num_sessions = 1;
499 di->num_tracks = 1;
500
501 di->first_track = 1;
502 di->first_track_last_session = di->last_track_last_session = 1;
503
504 udf_dump_discinfo(ump);
505 return 0;
506 }
507
508 /* --------------------------------------------------------------------- */
509
510 int
511 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_discinfo *di = &ump->discinfo;
515 int error, class;
516
517 DPRINTF(VOLUMES, ("read track info\n"));
518
519 class = di->mmc_class;
520 if (class != MMC_CLASS_DISC) {
521 /* tracknr specified in struct ti */
522 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
523 NOCRED, NULL);
524 return error;
525 }
526
527 /* disc partition support */
528 if (ti->tracknr != 1)
529 return EIO;
530
531 /* create fake ti (TODO check for resized vnds) */
532 ti->sessionnr = 1;
533
534 ti->track_mode = 0; /* XXX */
535 ti->data_mode = 0; /* XXX */
536 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
537
538 ti->track_start = 0;
539 ti->packet_size = 1;
540
541 /* TODO support for resizable vnd */
542 ti->track_size = di->last_possible_lba;
543 ti->next_writable = di->last_possible_lba;
544 ti->last_recorded = ti->next_writable;
545 ti->free_blocks = 0;
546
547 return 0;
548 }
549
550 /* --------------------------------------------------------------------- */
551
552 /* track/session searching for mounting */
553
554 static int
555 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
556 int *first_tracknr, int *last_tracknr)
557 {
558 struct mmc_trackinfo trackinfo;
559 uint32_t tracknr, start_track, num_tracks;
560 int error;
561
562 /* if negative, sessionnr is relative to last session */
563 if (args->sessionnr < 0) {
564 args->sessionnr += ump->discinfo.num_sessions;
565 /* sanity */
566 if (args->sessionnr < 0)
567 args->sessionnr = 0;
568 }
569
570 /* sanity */
571 if (args->sessionnr > ump->discinfo.num_sessions)
572 args->sessionnr = ump->discinfo.num_sessions;
573
574 /* search the tracks for this session, zero session nr indicates last */
575 if (args->sessionnr == 0) {
576 args->sessionnr = ump->discinfo.num_sessions;
577 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
578 args->sessionnr--;
579 }
580 }
581
582 /* search the first and last track of the specified session */
583 num_tracks = ump->discinfo.num_tracks;
584 start_track = ump->discinfo.first_track;
585
586 /* search for first track of this session */
587 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
588 /* get track info */
589 trackinfo.tracknr = tracknr;
590 error = udf_update_trackinfo(ump, &trackinfo);
591 if (error)
592 return error;
593
594 if (trackinfo.sessionnr == args->sessionnr)
595 break;
596 }
597 *first_tracknr = tracknr;
598
599 /* search for last track of this session */
600 for (;tracknr <= num_tracks; tracknr++) {
601 /* get track info */
602 trackinfo.tracknr = tracknr;
603 error = udf_update_trackinfo(ump, &trackinfo);
604 if (error || (trackinfo.sessionnr != args->sessionnr)) {
605 tracknr--;
606 break;
607 }
608 }
609 if (tracknr > num_tracks)
610 tracknr--;
611
612 *last_tracknr = tracknr;
613
614 assert(*last_tracknr >= *first_tracknr);
615 return 0;
616 }
617
618 /* --------------------------------------------------------------------- */
619
620 static int
621 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
622 {
623 int error;
624
625 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
626 (union dscrptr **) dst);
627 if (!error) {
628 /* blank terminator blocks are not allowed here */
629 if (*dst == NULL)
630 return ENOENT;
631 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
632 error = ENOENT;
633 free(*dst, M_UDFVOLD);
634 *dst = NULL;
635 DPRINTF(VOLUMES, ("Not an anchor\n"));
636 }
637 }
638
639 return error;
640 }
641
642
643 int
644 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
645 {
646 struct mmc_trackinfo first_track;
647 struct mmc_trackinfo last_track;
648 struct anchor_vdp **anchorsp;
649 uint32_t track_start;
650 uint32_t track_end;
651 uint32_t positions[4];
652 int first_tracknr, last_tracknr;
653 int error, anch, ok, first_anchor;
654
655 /* search the first and last track of the specified session */
656 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
657 if (!error) {
658 first_track.tracknr = first_tracknr;
659 error = udf_update_trackinfo(ump, &first_track);
660 }
661 if (!error) {
662 last_track.tracknr = last_tracknr;
663 error = udf_update_trackinfo(ump, &last_track);
664 }
665 if (error) {
666 printf("UDF mount: reading disc geometry failed\n");
667 return 0;
668 }
669
670 track_start = first_track.track_start;
671
672 /* `end' is not as straitforward as start. */
673 track_end = last_track.track_start
674 + last_track.track_size - last_track.free_blocks - 1;
675
676 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
677 /* end of track is not straitforward here */
678 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
679 track_end = last_track.last_recorded;
680 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
681 track_end = last_track.next_writable
682 - ump->discinfo.link_block_penalty;
683 }
684
685 /* its no use reading a blank track */
686 first_anchor = 0;
687 if (first_track.flags & MMC_TRACKINFO_BLANK)
688 first_anchor = 1;
689
690 /* read anchors start+256, start+512, end-256, end */
691 positions[0] = track_start+256;
692 positions[1] = track_end-256;
693 positions[2] = track_end;
694 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
695 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
696
697 ok = 0;
698 anchorsp = ump->anchors;
699 for (anch = first_anchor; anch < 4; anch++) {
700 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
701 positions[anch]));
702 error = udf_read_anchor(ump, positions[anch], anchorsp);
703 if (!error) {
704 anchorsp++;
705 ok++;
706 }
707 }
708
709 /* VATs are only recorded on sequential media, but initialise */
710 ump->first_possible_vat_location = track_start + 256 + 1;
711 ump->last_possible_vat_location = track_end
712 + ump->discinfo.blockingnr;
713
714 return ok;
715 }
716
717 /* --------------------------------------------------------------------- */
718
719 /* we dont try to be smart; we just record the parts */
720 #define UDF_UPDATE_DSCR(name, dscr) \
721 if (name) \
722 free(name, M_UDFVOLD); \
723 name = dscr;
724
725 static int
726 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
727 {
728 struct part_desc *part;
729 uint16_t phys_part, raw_phys_part;
730
731 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
732 udf_rw16(dscr->tag.id)));
733 switch (udf_rw16(dscr->tag.id)) {
734 case TAGID_PRI_VOL : /* primary partition */
735 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
736 break;
737 case TAGID_LOGVOL : /* logical volume */
738 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
739 break;
740 case TAGID_UNALLOC_SPACE : /* unallocated space */
741 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
742 break;
743 case TAGID_IMP_VOL : /* implementation */
744 /* XXX do we care about multiple impl. descr ? */
745 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
746 break;
747 case TAGID_PARTITION : /* physical partition */
748 /* not much use if its not allocated */
749 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
750 free(dscr, M_UDFVOLD);
751 break;
752 }
753
754 /*
755 * BUGALERT: some rogue implementations use random physical
756 * partion numbers to break other implementations so lookup
757 * the number.
758 */
759 raw_phys_part = udf_rw16(dscr->pd.part_num);
760 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
761 part = ump->partitions[phys_part];
762 if (part == NULL)
763 break;
764 if (udf_rw16(part->part_num) == raw_phys_part)
765 break;
766 }
767 if (phys_part == UDF_PARTITIONS) {
768 free(dscr, M_UDFVOLD);
769 return EINVAL;
770 }
771
772 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
773 break;
774 case TAGID_VOL : /* volume space extender; rare */
775 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
776 free(dscr, M_UDFVOLD);
777 break;
778 default :
779 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
780 udf_rw16(dscr->tag.id)));
781 free(dscr, M_UDFVOLD);
782 }
783
784 return 0;
785 }
786 #undef UDF_UPDATE_DSCR
787
788 /* --------------------------------------------------------------------- */
789
790 static int
791 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
792 {
793 union dscrptr *dscr;
794 uint32_t sector_size, dscr_size;
795 int error;
796
797 sector_size = ump->discinfo.sector_size;
798
799 /* loc is sectornr, len is in bytes */
800 error = EIO;
801 while (len) {
802 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
803 if (error)
804 return error;
805
806 /* blank block is a terminator */
807 if (dscr == NULL)
808 return 0;
809
810 /* TERM descriptor is a terminator */
811 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
812 free(dscr, M_UDFVOLD);
813 return 0;
814 }
815
816 /* process all others */
817 dscr_size = udf_tagsize(dscr, sector_size);
818 error = udf_process_vds_descriptor(ump, dscr);
819 if (error) {
820 free(dscr, M_UDFVOLD);
821 break;
822 }
823 assert((dscr_size % sector_size) == 0);
824
825 len -= dscr_size;
826 loc += dscr_size / sector_size;
827 }
828
829 return error;
830 }
831
832
833 int
834 udf_read_vds_space(struct udf_mount *ump)
835 {
836 struct anchor_vdp *anchor, *anchor2;
837 size_t size;
838 uint32_t main_loc, main_len;
839 uint32_t reserve_loc, reserve_len;
840 int error;
841
842 /*
843 * read in VDS space provided by the anchors; if one descriptor read
844 * fails, try the mirror sector.
845 *
846 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
847 * avoids the `compatibility features' of DirectCD that may confuse
848 * stuff completely.
849 */
850
851 anchor = ump->anchors[0];
852 anchor2 = ump->anchors[1];
853 assert(anchor);
854
855 if (anchor2) {
856 size = sizeof(struct extent_ad);
857 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
858 anchor = anchor2;
859 /* reserve is specified to be a literal copy of main */
860 }
861
862 main_loc = udf_rw32(anchor->main_vds_ex.loc);
863 main_len = udf_rw32(anchor->main_vds_ex.len);
864
865 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
866 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
867
868 error = udf_read_vds_extent(ump, main_loc, main_len);
869 if (error) {
870 printf("UDF mount: reading in reserve VDS extent\n");
871 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
872 }
873
874 return error;
875 }
876
877 /* --------------------------------------------------------------------- */
878
879 /*
880 * Read in the logical volume integrity sequence pointed to by our logical
881 * volume descriptor. Its a sequence that can be extended using fields in the
882 * integrity descriptor itself. On sequential media only one is found, on
883 * rewritable media a sequence of descriptors can be found as a form of
884 * history keeping and on non sequential write-once media the chain is vital
885 * to allow more and more descriptors to be written. The last descriptor
886 * written in an extent needs to claim space for a new extent.
887 */
888
889 static int
890 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
891 {
892 union dscrptr *dscr;
893 struct logvol_int_desc *lvint;
894 uint32_t sector_size, sector, len;
895 int dscr_type, error;
896
897 sector_size = ump->discinfo.sector_size;
898 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
899 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
900
901 lvint = NULL;
902 dscr = NULL;
903 error = 0;
904 while (len) {
905 /* read in our integrity descriptor */
906 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
907 if (!error) {
908 if (dscr == NULL)
909 break; /* empty terminates */
910 dscr_type = udf_rw16(dscr->tag.id);
911 if (dscr_type == TAGID_TERM) {
912 break; /* clean terminator */
913 }
914 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
915 /* fatal... corrupt disc */
916 error = ENOENT;
917 break;
918 }
919 if (lvint)
920 free(lvint, M_UDFVOLD);
921 lvint = &dscr->lvid;
922 dscr = NULL;
923 } /* else hope for the best... maybe the next is ok */
924
925 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
926 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
927
928 /* proceed sequential */
929 sector += 1;
930 len -= sector_size;
931
932 /* are we linking to a new piece? */
933 if (lvint->next_extent.len) {
934 len = udf_rw32(lvint->next_extent.len);
935 sector = udf_rw32(lvint->next_extent.loc);
936 }
937 }
938
939 /* clean up the mess, esp. when there is an error */
940 if (dscr)
941 free(dscr, M_UDFVOLD);
942
943 if (error && lvint) {
944 free(lvint, M_UDFVOLD);
945 lvint = NULL;
946 }
947
948 if (!lvint)
949 error = ENOENT;
950
951 *lvintp = lvint;
952 return error;
953 }
954
955 /* --------------------------------------------------------------------- */
956
957 /*
958 * Checks if ump's vds information is correct and complete
959 */
960
961 int
962 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
963 {
964 union udf_pmap *mapping;
965 struct logvol_int_desc *lvint;
966 struct udf_logvol_info *lvinfo;
967 struct part_desc *part;
968 uint32_t n_pm, mt_l;
969 uint8_t *pmap_pos;
970 char *domain_name, *map_name;
971 const char *check_name;
972 int pmap_stype, pmap_size;
973 int pmap_type, log_part, phys_part, raw_phys_part;
974 int n_phys, n_virt, n_spar, n_meta;
975 int len, error;
976
977 if (ump == NULL)
978 return ENOENT;
979
980 /* we need at least an anchor (trivial, but for safety) */
981 if (ump->anchors[0] == NULL)
982 return EINVAL;
983
984 /* we need at least one primary and one logical volume descriptor */
985 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
986 return EINVAL;
987
988 /* we need at least one partition descriptor */
989 if (ump->partitions[0] == NULL)
990 return EINVAL;
991
992 /* check logical volume sector size verses device sector size */
993 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
994 printf("UDF mount: format violation, lb_size != sector size\n");
995 return EINVAL;
996 }
997
998 domain_name = ump->logical_vol->domain_id.id;
999 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1000 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1001 return EINVAL;
1002 }
1003
1004 /* retrieve logical volume integrity sequence */
1005 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
1006
1007 /*
1008 * We need at least one logvol integrity descriptor recorded. Note
1009 * that its OK to have an open logical volume integrity here. The VAT
1010 * will close/update the integrity.
1011 */
1012 if (ump->logvol_integrity == NULL)
1013 return EINVAL;
1014
1015 /* process derived structures */
1016 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1017 lvint = ump->logvol_integrity;
1018 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1019 ump->logvol_info = lvinfo;
1020
1021 /* TODO check udf versions? */
1022
1023 /*
1024 * check logvol mappings: effective virt->log partmap translation
1025 * check and recording of the mapping results. Saves expensive
1026 * strncmp() in tight places.
1027 */
1028 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1029 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1030 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1031 pmap_pos = ump->logical_vol->maps;
1032
1033 if (n_pm > UDF_PMAPS) {
1034 printf("UDF mount: too many mappings\n");
1035 return EINVAL;
1036 }
1037
1038 n_phys = n_virt = n_spar = n_meta = 0;
1039 for (log_part = 0; log_part < n_pm; log_part++) {
1040 mapping = (union udf_pmap *) pmap_pos;
1041 pmap_stype = pmap_pos[0];
1042 pmap_size = pmap_pos[1];
1043 switch (pmap_stype) {
1044 case 1: /* physical mapping */
1045 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1046 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1047 pmap_type = UDF_VTOP_TYPE_PHYS;
1048 n_phys++;
1049 break;
1050 case 2: /* virtual/sparable/meta mapping */
1051 map_name = mapping->pm2.part_id.id;
1052 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1053 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1054 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1055 len = UDF_REGID_ID_SIZE;
1056
1057 check_name = "*UDF Virtual Partition";
1058 if (strncmp(map_name, check_name, len) == 0) {
1059 pmap_type = UDF_VTOP_TYPE_VIRT;
1060 n_virt++;
1061 break;
1062 }
1063 check_name = "*UDF Sparable Partition";
1064 if (strncmp(map_name, check_name, len) == 0) {
1065 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1066 n_spar++;
1067 break;
1068 }
1069 check_name = "*UDF Metadata Partition";
1070 if (strncmp(map_name, check_name, len) == 0) {
1071 pmap_type = UDF_VTOP_TYPE_META;
1072 n_meta++;
1073 break;
1074 }
1075 break;
1076 default:
1077 return EINVAL;
1078 }
1079
1080 /*
1081 * BUGALERT: some rogue implementations use random physical
1082 * partion numbers to break other implementations so lookup
1083 * the number.
1084 */
1085 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1086 part = ump->partitions[phys_part];
1087 if (part == NULL)
1088 continue;
1089 if (udf_rw16(part->part_num) == raw_phys_part)
1090 break;
1091 }
1092
1093 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1094 raw_phys_part, phys_part, pmap_type));
1095
1096 if (phys_part == UDF_PARTITIONS)
1097 return EINVAL;
1098 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1099 return EINVAL;
1100
1101 ump->vtop [log_part] = phys_part;
1102 ump->vtop_tp[log_part] = pmap_type;
1103
1104 pmap_pos += pmap_size;
1105 }
1106 /* not winning the beauty contest */
1107 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1108
1109 /* test some basic UDF assertions/requirements */
1110 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1111 return EINVAL;
1112
1113 if (n_virt) {
1114 if ((n_phys == 0) || n_spar || n_meta)
1115 return EINVAL;
1116 }
1117 if (n_spar + n_phys == 0)
1118 return EINVAL;
1119
1120 /* vat's can only be on a sequential media */
1121 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1122 if (n_virt)
1123 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1124
1125 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1126 if (n_virt)
1127 ump->meta_alloc = UDF_ALLOC_VAT;
1128 if (n_meta)
1129 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1130
1131 /* special cases for pseudo-overwrite */
1132 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1133 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1134 if (n_meta) {
1135 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1136 } else {
1137 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1138 }
1139 }
1140
1141 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1142 ump->data_alloc, ump->meta_alloc));
1143 /* TODO determine partitions to write data and metadata ? */
1144
1145 /* signal its OK for now */
1146 return 0;
1147 }
1148
1149 /* --------------------------------------------------------------------- */
1150
1151 /*
1152 * Read in complete VAT file and check if its indeed a VAT file descriptor
1153 */
1154
1155 static int
1156 udf_check_for_vat(struct udf_node *vat_node)
1157 {
1158 struct udf_mount *ump;
1159 struct icb_tag *icbtag;
1160 struct timestamp *mtime;
1161 struct regid *regid;
1162 struct udf_vat *vat;
1163 struct udf_logvol_info *lvinfo;
1164 uint32_t vat_length, alloc_length;
1165 uint32_t vat_offset, vat_entries;
1166 uint32_t sector_size;
1167 uint32_t sectors;
1168 uint32_t *raw_vat;
1169 char *regid_name;
1170 int filetype;
1171 int error;
1172
1173 /* vat_length is really 64 bits though impossible */
1174
1175 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1176 if (!vat_node)
1177 return ENOENT;
1178
1179 /* get mount info */
1180 ump = vat_node->ump;
1181
1182 /* check assertions */
1183 assert(vat_node->fe || vat_node->efe);
1184 assert(ump->logvol_integrity);
1185
1186 /* get information from fe/efe */
1187 if (vat_node->fe) {
1188 vat_length = udf_rw64(vat_node->fe->inf_len);
1189 icbtag = &vat_node->fe->icbtag;
1190 mtime = &vat_node->fe->mtime;
1191 } else {
1192 vat_length = udf_rw64(vat_node->efe->inf_len);
1193 icbtag = &vat_node->efe->icbtag;
1194 mtime = &vat_node->efe->mtime;
1195 }
1196
1197 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1198 filetype = icbtag->file_type;
1199 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1200 return ENOENT;
1201
1202 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1203 /* place a sanity check on the length; currently 1Mb in size */
1204 if (vat_length > 1*1024*1024)
1205 return ENOENT;
1206
1207 /* get sector size */
1208 sector_size = vat_node->ump->discinfo.sector_size;
1209
1210 /* calculate how many sectors to read in and how much to allocate */
1211 sectors = (vat_length + sector_size -1) / sector_size;
1212 alloc_length = (sectors + 2) * sector_size;
1213
1214 /* try to allocate the space */
1215 ump->vat_table_alloc_length = alloc_length;
1216 ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1217 if (!ump->vat_table)
1218 return ENOMEM; /* impossible to allocate */
1219 DPRINTF(VOLUMES, ("\talloced fine\n"));
1220
1221 /* read it in! */
1222 raw_vat = (uint32_t *) ump->vat_table;
1223 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1224 if (error) {
1225 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1226 /* not completely readable... :( bomb out */
1227 free(ump->vat_table, M_UDFVOLD);
1228 ump->vat_table = NULL;
1229 return error;
1230 }
1231 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1232
1233 /*
1234 * check contents of the file if its the old 1.50 VAT table format.
1235 * Its notoriously broken and allthough some implementations support an
1236 * extention as defined in the UDF 1.50 errata document, its doubtfull
1237 * to be useable since a lot of implementations don't maintain it.
1238 */
1239 lvinfo = ump->logvol_info;
1240
1241 if (filetype == 0) {
1242 /* definition */
1243 vat_offset = 0;
1244 vat_entries = (vat_length-36)/4;
1245
1246 /* check 1.50 VAT */
1247 regid = (struct regid *) (raw_vat + vat_entries);
1248 regid_name = (char *) regid->id;
1249 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1250 if (error) {
1251 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1252 free(ump->vat_table, M_UDFVOLD);
1253 ump->vat_table = NULL;
1254 return ENOENT;
1255 }
1256 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1257 } else {
1258 vat = (struct udf_vat *) raw_vat;
1259
1260 /* definition */
1261 vat_offset = vat->header_len;
1262 vat_entries = (vat_length - vat_offset)/4;
1263
1264 assert(lvinfo);
1265 lvinfo->num_files = vat->num_files;
1266 lvinfo->num_directories = vat->num_directories;
1267 lvinfo->min_udf_readver = vat->min_udf_readver;
1268 lvinfo->min_udf_writever = vat->min_udf_writever;
1269 lvinfo->max_udf_writever = vat->max_udf_writever;
1270 }
1271
1272 ump->vat_offset = vat_offset;
1273 ump->vat_entries = vat_entries;
1274
1275 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1276 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1277 ump->logvol_integrity->time = *mtime;
1278
1279 return 0; /* success! */
1280 }
1281
1282 /* --------------------------------------------------------------------- */
1283
1284 static int
1285 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1286 {
1287 struct udf_node *vat_node;
1288 struct long_ad icb_loc;
1289 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1290 int error;
1291
1292 /* mapping info not needed */
1293 mapping = mapping;
1294
1295 vat_loc = ump->last_possible_vat_location;
1296 early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1297 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1298 late_vat_loc = vat_loc + 1024;
1299
1300 /* TODO first search last sector? */
1301 do {
1302 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1303 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1304 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1305
1306 error = udf_get_node(ump, &icb_loc, &vat_node);
1307 if (!error) error = udf_check_for_vat(vat_node);
1308 if (!error) break;
1309 if (vat_node) {
1310 vput(vat_node->vnode);
1311 udf_dispose_node(vat_node);
1312 vat_node = NULL;
1313 }
1314 vat_loc--; /* walk backwards */
1315 } while (vat_loc >= early_vat_loc);
1316
1317 /* we don't need our VAT node anymore */
1318 if (vat_node) {
1319 vput(vat_node->vnode);
1320 udf_dispose_node(vat_node);
1321 }
1322
1323 return error;
1324 }
1325
1326 /* --------------------------------------------------------------------- */
1327
1328 static int
1329 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1330 {
1331 union dscrptr *dscr;
1332 struct part_map_spare *pms = &mapping->pms;
1333 uint32_t lb_num;
1334 int spar, error;
1335
1336 /*
1337 * The partition mapping passed on to us specifies the information we
1338 * need to locate and initialise the sparable partition mapping
1339 * information we need.
1340 */
1341
1342 DPRINTF(VOLUMES, ("Read sparable table\n"));
1343 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1344 for (spar = 0; spar < pms->n_st; spar++) {
1345 lb_num = pms->st_loc[spar];
1346 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1347 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1348 if (!error && dscr) {
1349 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1350 if (ump->sparing_table)
1351 free(ump->sparing_table, M_UDFVOLD);
1352 ump->sparing_table = &dscr->spt;
1353 dscr = NULL;
1354 DPRINTF(VOLUMES,
1355 ("Sparing table accepted (%d entries)\n",
1356 udf_rw16(ump->sparing_table->rt_l)));
1357 break; /* we're done */
1358 }
1359 }
1360 if (dscr)
1361 free(dscr, M_UDFVOLD);
1362 }
1363
1364 if (ump->sparing_table)
1365 return 0;
1366
1367 return ENOENT;
1368 }
1369
1370 /* --------------------------------------------------------------------- */
1371
1372 #define UDF_SET_SYSTEMFILE(vp) \
1373 simple_lock(&(vp)->v_interlock); \
1374 (vp)->v_flag |= VSYSTEM; \
1375 simple_unlock(&(vp)->v_interlock);\
1376 vref(vp); \
1377 vput(vp); \
1378
1379 static int
1380 udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
1381 {
1382 struct part_map_meta *pmm = &mapping->pmm;
1383 struct long_ad icb_loc;
1384 struct vnode *vp;
1385 int error;
1386
1387 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
1388 icb_loc.loc.part_num = pmm->part_num;
1389 icb_loc.loc.lb_num = pmm->meta_file_lbn;
1390 DPRINTF(VOLUMES, ("Metadata file\n"));
1391 error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
1392 if (ump->metadata_file) {
1393 vp = ump->metadata_file->vnode;
1394 UDF_SET_SYSTEMFILE(vp);
1395 }
1396
1397 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
1398 if (icb_loc.loc.lb_num != -1) {
1399 DPRINTF(VOLUMES, ("Metadata copy file\n"));
1400 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
1401 if (ump->metadatamirror_file) {
1402 vp = ump->metadatamirror_file->vnode;
1403 UDF_SET_SYSTEMFILE(vp);
1404 }
1405 }
1406
1407 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
1408 if (icb_loc.loc.lb_num != -1) {
1409 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
1410 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
1411 if (ump->metadatabitmap_file) {
1412 vp = ump->metadatabitmap_file->vnode;
1413 UDF_SET_SYSTEMFILE(vp);
1414 }
1415 }
1416
1417 /* if we're mounting read-only we relax the requirements */
1418 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
1419 error = EFAULT;
1420 if (ump->metadata_file)
1421 error = 0;
1422 if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
1423 printf( "udf mount: Metadata file not readable, "
1424 "substituting Metadata copy file\n");
1425 ump->metadata_file = ump->metadatamirror_file;
1426 ump->metadatamirror_file = NULL;
1427 error = 0;
1428 }
1429 } else {
1430 /* mounting read/write */
1431 DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
1432 error = EROFS;
1433 }
1434 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
1435 "metadata files\n"));
1436 return error;
1437 }
1438 #undef UDF_SET_SYSTEMFILE
1439
1440 /* --------------------------------------------------------------------- */
1441
1442 int
1443 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1444 {
1445 union udf_pmap *mapping;
1446 uint32_t n_pm, mt_l;
1447 uint32_t log_part;
1448 uint8_t *pmap_pos;
1449 int pmap_size;
1450 int error;
1451
1452 /* We have to iterate again over the part mappings for locations */
1453 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1454 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1455 pmap_pos = ump->logical_vol->maps;
1456
1457 for (log_part = 0; log_part < n_pm; log_part++) {
1458 mapping = (union udf_pmap *) pmap_pos;
1459 switch (ump->vtop_tp[log_part]) {
1460 case UDF_VTOP_TYPE_PHYS :
1461 /* nothing */
1462 break;
1463 case UDF_VTOP_TYPE_VIRT :
1464 /* search and load VAT */
1465 error = udf_search_vat(ump, mapping);
1466 if (error)
1467 return ENOENT;
1468 break;
1469 case UDF_VTOP_TYPE_SPARABLE :
1470 /* load one of the sparable tables */
1471 error = udf_read_sparables(ump, mapping);
1472 if (error)
1473 return ENOENT;
1474 break;
1475 case UDF_VTOP_TYPE_META :
1476 /* load the associated file descriptors */
1477 error = udf_read_metadata_files(ump, mapping);
1478 if (error)
1479 return ENOENT;
1480 break;
1481 default:
1482 break;
1483 }
1484 pmap_size = pmap_pos[1];
1485 pmap_pos += pmap_size;
1486 }
1487
1488 return 0;
1489 }
1490
1491 /* --------------------------------------------------------------------- */
1492
1493 int
1494 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1495 {
1496 struct udf_node *rootdir_node, *streamdir_node;
1497 union dscrptr *dscr;
1498 struct long_ad fsd_loc, *dir_loc;
1499 uint32_t lb_num, dummy;
1500 uint32_t fsd_len;
1501 int dscr_type;
1502 int error;
1503
1504 /* TODO implement FSD reading in seperate function like integrity? */
1505 /* get fileset descriptor sequence */
1506 fsd_loc = ump->logical_vol->lv_fsd_loc;
1507 fsd_len = udf_rw32(fsd_loc.len);
1508
1509 dscr = NULL;
1510 error = 0;
1511 while (fsd_len || error) {
1512 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1513 /* translate fsd_loc to lb_num */
1514 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1515 if (error)
1516 break;
1517 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1518 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1519 /* end markers */
1520 if (error || (dscr == NULL))
1521 break;
1522
1523 /* analyse */
1524 dscr_type = udf_rw16(dscr->tag.id);
1525 if (dscr_type == TAGID_TERM)
1526 break;
1527 if (dscr_type != TAGID_FSD) {
1528 free(dscr, M_UDFVOLD);
1529 return ENOENT;
1530 }
1531
1532 /*
1533 * TODO check for multiple fileset descriptors; its only
1534 * picking the last now. Also check for FSD
1535 * correctness/interpretability
1536 */
1537
1538 /* update */
1539 if (ump->fileset_desc) {
1540 free(ump->fileset_desc, M_UDFVOLD);
1541 }
1542 ump->fileset_desc = &dscr->fsd;
1543 dscr = NULL;
1544
1545 /* continue to the next fsd */
1546 fsd_len -= ump->discinfo.sector_size;
1547 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1548
1549 /* follow up to fsd->next_ex (long_ad) if its not null */
1550 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1551 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1552 fsd_loc = ump->fileset_desc->next_ex;
1553 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1554 }
1555 }
1556 if (dscr)
1557 free(dscr, M_UDFVOLD);
1558
1559 /* there has to be one */
1560 if (ump->fileset_desc == NULL)
1561 return ENOENT;
1562
1563 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1564
1565 /*
1566 * Now the FSD is known, read in the rootdirectory and if one exists,
1567 * the system stream dir. Some files in the system streamdir are not
1568 * wanted in this implementation since they are not maintained. If
1569 * writing is enabled we'll delete these files if they exist.
1570 */
1571
1572 rootdir_node = streamdir_node = NULL;
1573 dir_loc = NULL;
1574
1575 /* try to read in the rootdir */
1576 dir_loc = &ump->fileset_desc->rootdir_icb;
1577 error = udf_get_node(ump, dir_loc, &rootdir_node);
1578 if (error)
1579 return ENOENT;
1580
1581 /* aparently it read in fine */
1582
1583 /*
1584 * Try the system stream directory; not very likely in the ones we
1585 * test, but for completeness.
1586 */
1587 dir_loc = &ump->fileset_desc->streamdir_icb;
1588 if (udf_rw32(dir_loc->len)) {
1589 error = udf_get_node(ump, dir_loc, &streamdir_node);
1590 if (error)
1591 printf("udf mount: streamdir defined but ignored\n");
1592 if (!error) {
1593 /*
1594 * TODO process streamdir `baddies' i.e. files we dont
1595 * want if R/W
1596 */
1597 }
1598 }
1599
1600 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1601
1602 /* release the vnodes again; they'll be auto-recycled later */
1603 if (streamdir_node) {
1604 vput(streamdir_node->vnode);
1605 }
1606 if (rootdir_node) {
1607 vput(rootdir_node->vnode);
1608 }
1609
1610 return 0;
1611 }
1612
1613 /* --------------------------------------------------------------------- */
1614
1615 int
1616 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1617 uint32_t *lb_numres, uint32_t *extres)
1618 {
1619 struct part_desc *pdesc;
1620 struct spare_map_entry *sme;
1621 struct file_entry *fe;
1622 struct extfile_entry *efe;
1623 struct short_ad *s_ad;
1624 struct long_ad *l_ad;
1625 uint64_t cur_offset;
1626 uint32_t *trans;
1627 uint32_t lb_num, plb_num, lb_rel, lb_packet;
1628 uint32_t sector_size, len, alloclen;
1629 uint8_t *pos;
1630 int rel, vpart, part, addr_type, icblen, icbflags, flags;
1631
1632 assert(ump && icb_loc && lb_numres);
1633
1634 vpart = udf_rw16(icb_loc->loc.part_num);
1635 lb_num = udf_rw32(icb_loc->loc.lb_num);
1636 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1637 return EINVAL;
1638
1639 part = ump->vtop[vpart];
1640 pdesc = ump->partitions[part];
1641
1642 switch (ump->vtop_tp[vpart]) {
1643 case UDF_VTOP_TYPE_RAW :
1644 /* 1:1 to the end of the device */
1645 *lb_numres = lb_num;
1646 *extres = INT_MAX;
1647 return 0;
1648 case UDF_VTOP_TYPE_PHYS :
1649 /* transform into its disc logical block */
1650 if (lb_num > udf_rw32(pdesc->part_len))
1651 return EINVAL;
1652 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1653
1654 /* extent from here to the end of the partition */
1655 *extres = udf_rw32(pdesc->part_len) - lb_num;
1656 return 0;
1657 case UDF_VTOP_TYPE_VIRT :
1658 /* only maps one sector, lookup in VAT */
1659 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1660 return EINVAL;
1661
1662 /* lookup in virtual allocation table */
1663 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1664 lb_num = udf_rw32(trans[lb_num]);
1665
1666 /* transform into its disc logical block */
1667 if (lb_num > udf_rw32(pdesc->part_len))
1668 return EINVAL;
1669 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1670
1671 /* just one logical block */
1672 *extres = 1;
1673 return 0;
1674 case UDF_VTOP_TYPE_SPARABLE :
1675 /* check if the packet containing the lb_num is remapped */
1676 lb_packet = lb_num / ump->sparable_packet_len;
1677 lb_rel = lb_num % ump->sparable_packet_len;
1678
1679 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1680 sme = &ump->sparing_table->entries[rel];
1681 if (lb_packet == udf_rw32(sme->org)) {
1682 /* NOTE maps to absolute disc logical block! */
1683 *lb_numres = udf_rw32(sme->map) + lb_rel;
1684 *extres = ump->sparable_packet_len - lb_rel;
1685 return 0;
1686 }
1687 }
1688
1689 /* transform into its disc logical block */
1690 if (lb_num > udf_rw32(pdesc->part_len))
1691 return EINVAL;
1692 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1693
1694 /* rest of block */
1695 *extres = ump->sparable_packet_len - lb_rel;
1696 return 0;
1697 case UDF_VTOP_TYPE_META :
1698 /* we have to look into the file's allocation descriptors */
1699 /* free after udf_translate_file_extent() */
1700 /* XXX sector size or lb_size? */
1701 sector_size = ump->discinfo.sector_size;
1702 /* XXX should we claim exclusive access to the metafile ? */
1703 fe = ump->metadata_file->fe;
1704 efe = ump->metadata_file->efe;
1705 if (fe) {
1706 alloclen = udf_rw32(fe->l_ad);
1707 pos = &fe->data[0] + udf_rw32(fe->l_ea);
1708 icbflags = udf_rw16(fe->icbtag.flags);
1709 } else {
1710 assert(efe);
1711 alloclen = udf_rw32(efe->l_ad);
1712 pos = &efe->data[0] + udf_rw32(efe->l_ea);
1713 icbflags = udf_rw16(efe->icbtag.flags);
1714 }
1715 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1716
1717 cur_offset = 0;
1718 while (alloclen) {
1719 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1720 icblen = sizeof(struct short_ad);
1721 s_ad = (struct short_ad *) pos;
1722 len = udf_rw32(s_ad->len);
1723 plb_num = udf_rw32(s_ad->lb_num);
1724 } else {
1725 /* should not be present, but why not */
1726 icblen = sizeof(struct long_ad);
1727 l_ad = (struct long_ad *) pos;
1728 len = udf_rw32(l_ad->len);
1729 plb_num = udf_rw32(l_ad->loc.lb_num);
1730 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
1731 }
1732 /* process extent */
1733 flags = UDF_EXT_FLAGS(len);
1734 len = UDF_EXT_LEN(len);
1735
1736 if (cur_offset + len > lb_num * sector_size) {
1737 if (flags != UDF_EXT_ALLOCATED)
1738 return EINVAL;
1739 lb_rel = lb_num - cur_offset / sector_size;
1740 /* remainder of this extent */
1741 *lb_numres = plb_num + lb_rel +
1742 udf_rw32(pdesc->start_loc);
1743 *extres = (len / sector_size) - lb_rel;
1744 return 0;
1745 }
1746 cur_offset += len;
1747 pos += icblen;
1748 alloclen -= icblen;
1749 }
1750 /* not found */
1751 DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
1752 return EINVAL;
1753 default:
1754 printf("UDF vtop translation scheme %d unimplemented yet\n",
1755 ump->vtop_tp[vpart]);
1756 }
1757
1758 return EINVAL;
1759 }
1760
1761 /* --------------------------------------------------------------------- */
1762
1763 /* To make absolutely sure we are NOT returning zero, add one :) */
1764
1765 long
1766 udf_calchash(struct long_ad *icbptr)
1767 {
1768 /* ought to be enough since each mountpoint has its own chain */
1769 return udf_rw32(icbptr->loc.lb_num) + 1;
1770 }
1771
1772 /* --------------------------------------------------------------------- */
1773
1774 static struct udf_node *
1775 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1776 {
1777 struct udf_node *unp;
1778 struct vnode *vp;
1779 uint32_t hashline;
1780
1781 loop:
1782 simple_lock(&ump->ihash_slock);
1783
1784 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1785 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1786 assert(unp);
1787 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1788 unp->loc.loc.part_num == icbptr->loc.part_num) {
1789 vp = unp->vnode;
1790 assert(vp);
1791 simple_lock(&vp->v_interlock);
1792 simple_unlock(&ump->ihash_slock);
1793 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1794 goto loop;
1795 return unp;
1796 }
1797 }
1798 simple_unlock(&ump->ihash_slock);
1799
1800 return NULL;
1801 }
1802
1803 /* --------------------------------------------------------------------- */
1804
1805 static void
1806 udf_hashins(struct udf_node *unp)
1807 {
1808 struct udf_mount *ump;
1809 uint32_t hashline;
1810
1811 ump = unp->ump;
1812 simple_lock(&ump->ihash_slock);
1813
1814 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1815 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1816
1817 simple_unlock(&ump->ihash_slock);
1818 }
1819
1820 /* --------------------------------------------------------------------- */
1821
1822 static void
1823 udf_hashrem(struct udf_node *unp)
1824 {
1825 struct udf_mount *ump;
1826
1827 ump = unp->ump;
1828 simple_lock(&ump->ihash_slock);
1829
1830 LIST_REMOVE(unp, hashchain);
1831
1832 simple_unlock(&ump->ihash_slock);
1833 }
1834
1835 /* --------------------------------------------------------------------- */
1836
1837 int
1838 udf_dispose_locked_node(struct udf_node *node)
1839 {
1840 if (!node)
1841 return 0;
1842 if (node->vnode)
1843 VOP_UNLOCK(node->vnode, 0);
1844 return udf_dispose_node(node);
1845 }
1846
1847 /* --------------------------------------------------------------------- */
1848
1849 int
1850 udf_dispose_node(struct udf_node *node)
1851 {
1852 struct vnode *vp;
1853
1854 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1855 if (!node) {
1856 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1857 return 0;
1858 }
1859
1860 vp = node->vnode;
1861
1862 /* TODO extended attributes and streamdir */
1863
1864 /* remove from our hash lookup table */
1865 udf_hashrem(node);
1866
1867 /* dissociate our udf_node from the vnode */
1868 vp->v_data = NULL;
1869
1870 /* free associated memory and the node itself */
1871 if (node->fe)
1872 pool_put(node->ump->desc_pool, node->fe);
1873 if (node->efe)
1874 pool_put(node->ump->desc_pool, node->efe);
1875 pool_put(&udf_node_pool, node);
1876
1877 return 0;
1878 }
1879
1880 /* --------------------------------------------------------------------- */
1881
1882 /*
1883 * Genfs interfacing
1884 *
1885 * static const struct genfs_ops udffs_genfsops = {
1886 * .gop_size = genfs_size,
1887 * size of transfers
1888 * .gop_alloc = udf_gop_alloc,
1889 * unknown
1890 * .gop_write = genfs_gop_write,
1891 * putpages interface code
1892 * .gop_markupdate = udf_gop_markupdate,
1893 * set update/modify flags etc.
1894 * }
1895 */
1896
1897 /*
1898 * Genfs interface. These four functions are the only ones defined though not
1899 * documented... great.... why is chosen for the `.' initialisers i dont know
1900 * but other filingsystems seem to use it this way.
1901 */
1902
1903 static int
1904 udf_gop_alloc(struct vnode *vp, off_t off,
1905 off_t len, int flags, kauth_cred_t cred)
1906 {
1907 return 0;
1908 }
1909
1910
1911 static void
1912 udf_gop_markupdate(struct vnode *vp, int flags)
1913 {
1914 struct udf_node *udf_node = VTOI(vp);
1915 u_long mask;
1916
1917 udf_node = udf_node; /* shut up gcc */
1918
1919 mask = 0;
1920 #ifdef notyet
1921 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1922 mask = UDF_SET_ACCESS;
1923 }
1924 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1925 mask |= UDF_SET_UPDATE;
1926 }
1927 if (mask) {
1928 udf_node->update_flag |= mask;
1929 }
1930 #endif
1931 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1932 }
1933
1934
1935 static const struct genfs_ops udf_genfsops = {
1936 .gop_size = genfs_size,
1937 .gop_alloc = udf_gop_alloc,
1938 .gop_write = genfs_gop_write,
1939 .gop_markupdate = udf_gop_markupdate,
1940 };
1941
1942 /* --------------------------------------------------------------------- */
1943
1944 /*
1945 * Each node can have an attached streamdir node though not
1946 * recursively. These are otherwise known as named substreams/named
1947 * extended attributes that have no size limitations.
1948 *
1949 * `Normal' extended attributes are indicated with a number and are recorded
1950 * in either the fe/efe descriptor itself for small descriptors or recorded in
1951 * the attached extended attribute file. Since this file can get fragmented,
1952 * care ought to be taken.
1953 */
1954
1955 int
1956 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1957 struct udf_node **noderes)
1958 {
1959 union dscrptr *dscr, *tmpdscr;
1960 struct udf_node *node;
1961 struct vnode *nvp;
1962 struct long_ad icb_loc;
1963 extern int (**udf_vnodeop_p)(void *);
1964 uint64_t file_size;
1965 uint32_t lb_size, sector, dummy;
1966 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1967 int error;
1968
1969 DPRINTF(NODE, ("udf_get_node called\n"));
1970 *noderes = node = NULL;
1971
1972 /* lock to disallow simultanious creation of same node */
1973 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1974
1975 DPRINTF(NODE, ("\tlookup in hash table\n"));
1976 /* lookup in hash table */
1977 assert(ump);
1978 assert(node_icb_loc);
1979 node = udf_hashget(ump, node_icb_loc);
1980 if (node) {
1981 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1982 /* vnode is returned locked */
1983 *noderes = node;
1984 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1985 return 0;
1986 }
1987
1988 /* garbage check: translate node_icb_loc to sectornr */
1989 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1990 if (error) {
1991 /* no use, this will fail anyway */
1992 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1993 return EINVAL;
1994 }
1995
1996 /* build node (do initialise!) */
1997 node = pool_get(&udf_node_pool, PR_WAITOK);
1998 memset(node, 0, sizeof(struct udf_node));
1999
2000 DPRINTF(NODE, ("\tget new vnode\n"));
2001 /* give it a vnode */
2002 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
2003 if (error) {
2004 pool_put(&udf_node_pool, node);
2005 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2006 return error;
2007 }
2008
2009 /* allways return locked vnode */
2010 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
2011 /* recycle vnode and unlock; simultanious will fail too */
2012 ungetnewvnode(nvp);
2013 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2014 return error;
2015 }
2016
2017 /* initialise crosslinks, note location of fe/efe for hashing */
2018 node->ump = ump;
2019 node->vnode = nvp;
2020 nvp->v_data = node;
2021 node->loc = *node_icb_loc;
2022 node->lockf = 0;
2023
2024 /* insert into the hash lookup */
2025 udf_hashins(node);
2026
2027 /* safe to unlock, the entry is in the hash table, vnode is locked */
2028 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
2029
2030 icb_loc = *node_icb_loc;
2031 needs_indirect = 0;
2032 strat4096 = 0;
2033 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
2034 file_size = 0;
2035 lb_size = udf_rw32(ump->logical_vol->lb_size);
2036
2037 do {
2038 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
2039 if (error)
2040 break;
2041
2042 /* try to read in fe/efe */
2043 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
2044
2045 /* blank sector marks end of sequence, check this */
2046 if ((tmpdscr == NULL) && (!strat4096))
2047 error = ENOENT;
2048
2049 /* break if read error or blank sector */
2050 if (error || (tmpdscr == NULL))
2051 break;
2052
2053 /* process descriptor based on the descriptor type */
2054 dscr_type = udf_rw16(tmpdscr->tag.id);
2055
2056 /* if dealing with an indirect entry, follow the link */
2057 if (dscr_type == TAGID_INDIRECT_ENTRY) {
2058 needs_indirect = 0;
2059 icb_loc = tmpdscr->inde.indirect_icb;
2060 free(tmpdscr, M_UDFTEMP);
2061 continue;
2062 }
2063
2064 /* only file entries and extended file entries allowed here */
2065 if ((dscr_type != TAGID_FENTRY) &&
2066 (dscr_type != TAGID_EXTFENTRY)) {
2067 free(tmpdscr, M_UDFTEMP);
2068 error = ENOENT;
2069 break;
2070 }
2071
2072 /* get descriptor space from our pool */
2073 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
2074
2075 dscr = pool_get(ump->desc_pool, PR_WAITOK);
2076 memcpy(dscr, tmpdscr, lb_size);
2077 free(tmpdscr, M_UDFTEMP);
2078
2079 /* record and process/update (ext)fentry */
2080 if (dscr_type == TAGID_FENTRY) {
2081 if (node->fe)
2082 pool_put(ump->desc_pool, node->fe);
2083 node->fe = &dscr->fe;
2084 strat = udf_rw16(node->fe->icbtag.strat_type);
2085 udf_file_type = node->fe->icbtag.file_type;
2086 file_size = udf_rw64(node->fe->inf_len);
2087 } else {
2088 if (node->efe)
2089 pool_put(ump->desc_pool, node->efe);
2090 node->efe = &dscr->efe;
2091 strat = udf_rw16(node->efe->icbtag.strat_type);
2092 udf_file_type = node->efe->icbtag.file_type;
2093 file_size = udf_rw64(node->efe->inf_len);
2094 }
2095
2096 /* check recording strategy (structure) */
2097
2098 /*
2099 * Strategy 4096 is a daisy linked chain terminating with an
2100 * unrecorded sector or a TERM descriptor. The next
2101 * descriptor is to be found in the sector that follows the
2102 * current sector.
2103 */
2104 if (strat == 4096) {
2105 strat4096 = 1;
2106 needs_indirect = 1;
2107
2108 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
2109 }
2110
2111 /*
2112 * Strategy 4 is the normal strategy and terminates, but if
2113 * we're in strategy 4096, we can't have strategy 4 mixed in
2114 */
2115
2116 if (strat == 4) {
2117 if (strat4096) {
2118 error = EINVAL;
2119 break;
2120 }
2121 break; /* done */
2122 }
2123 } while (!error);
2124
2125 if (error) {
2126 /* recycle udf_node */
2127 udf_dispose_node(node);
2128
2129 /* recycle vnode */
2130 nvp->v_data = NULL;
2131 ungetnewvnode(nvp);
2132
2133 return EINVAL; /* error code ok? */
2134 }
2135
2136 /* post process and initialise node */
2137
2138 /* assert no references to dscr anymore beyong this point */
2139 assert((node->fe) || (node->efe));
2140 dscr = NULL;
2141
2142 /*
2143 * Record where to record an updated version of the descriptor. If
2144 * there is a sequence of indirect entries, icb_loc will have been
2145 * updated. Its the write disipline to allocate new space and to make
2146 * sure the chain is maintained.
2147 *
2148 * `needs_indirect' flags if the next location is to be filled with
2149 * with an indirect entry.
2150 */
2151 node->next_loc = icb_loc;
2152 node->needs_indirect = needs_indirect;
2153
2154 /*
2155 * Translate UDF filetypes into vnode types.
2156 *
2157 * Systemfiles like the meta main and mirror files are not treated as
2158 * normal files, so we type them as having no type. UDF dictates that
2159 * they are not allowed to be visible.
2160 */
2161
2162 /* TODO specfs, fifofs etc etc. vnops setting */
2163 switch (udf_file_type) {
2164 case UDF_ICB_FILETYPE_DIRECTORY :
2165 case UDF_ICB_FILETYPE_STREAMDIR :
2166 nvp->v_type = VDIR;
2167 break;
2168 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2169 nvp->v_type = VBLK;
2170 break;
2171 case UDF_ICB_FILETYPE_CHARDEVICE :
2172 nvp->v_type = VCHR;
2173 break;
2174 case UDF_ICB_FILETYPE_SYMLINK :
2175 nvp->v_type = VLNK;
2176 break;
2177 case UDF_ICB_FILETYPE_VAT :
2178 case UDF_ICB_FILETYPE_META_MAIN :
2179 case UDF_ICB_FILETYPE_META_MIRROR :
2180 nvp->v_type = VNON;
2181 break;
2182 case UDF_ICB_FILETYPE_RANDOMACCESS :
2183 case UDF_ICB_FILETYPE_REALTIME :
2184 nvp->v_type = VREG;
2185 break;
2186 default:
2187 /* YIKES, either a block/char device, fifo or something else */
2188 nvp->v_type = VNON;
2189 }
2190
2191 /* initialise genfs */
2192 genfs_node_init(nvp, &udf_genfsops);
2193
2194 /* don't forget to set vnode's v_size */
2195 nvp->v_size = file_size;
2196
2197 /* TODO ext attr and streamdir nodes */
2198
2199 *noderes = node;
2200
2201 return 0;
2202 }
2203
2204 /* --------------------------------------------------------------------- */
2205
2206 /* UDF<->unix converters */
2207
2208 /* --------------------------------------------------------------------- */
2209
2210 static mode_t
2211 udf_perm_to_unix_mode(uint32_t perm)
2212 {
2213 mode_t mode;
2214
2215 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2216 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2217 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2218
2219 return mode;
2220 }
2221
2222 /* --------------------------------------------------------------------- */
2223
2224 #ifdef notyet
2225 static uint32_t
2226 unix_mode_to_udf_perm(mode_t mode)
2227 {
2228 uint32_t perm;
2229
2230 perm = ((mode & S_IRWXO) );
2231 perm |= ((mode & S_IRWXG) << 2);
2232 perm |= ((mode & S_IRWXU) << 4);
2233 perm |= ((mode & S_IWOTH) << 3);
2234 perm |= ((mode & S_IWGRP) << 5);
2235 perm |= ((mode & S_IWUSR) << 7);
2236
2237 return perm;
2238 }
2239 #endif
2240
2241 /* --------------------------------------------------------------------- */
2242
2243 static uint32_t
2244 udf_icb_to_unix_filetype(uint32_t icbftype)
2245 {
2246 switch (icbftype) {
2247 case UDF_ICB_FILETYPE_DIRECTORY :
2248 case UDF_ICB_FILETYPE_STREAMDIR :
2249 return S_IFDIR;
2250 case UDF_ICB_FILETYPE_FIFO :
2251 return S_IFIFO;
2252 case UDF_ICB_FILETYPE_CHARDEVICE :
2253 return S_IFCHR;
2254 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2255 return S_IFBLK;
2256 case UDF_ICB_FILETYPE_RANDOMACCESS :
2257 case UDF_ICB_FILETYPE_REALTIME :
2258 return S_IFREG;
2259 case UDF_ICB_FILETYPE_SYMLINK :
2260 return S_IFLNK;
2261 case UDF_ICB_FILETYPE_SOCKET :
2262 return S_IFSOCK;
2263 }
2264 /* no idea what this is */
2265 return 0;
2266 }
2267
2268 /* --------------------------------------------------------------------- */
2269
2270 /* TODO KNF-ify */
2271
2272 void
2273 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2274 {
2275 uint16_t *raw_name, *unix_name;
2276 uint16_t *inchp, ch;
2277 uint8_t *outchp;
2278 int ucode_chars, nice_uchars;
2279
2280 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2281 unix_name = raw_name + 1024; /* split space in half */
2282 assert(sizeof(char) == sizeof(uint8_t));
2283 outchp = (uint8_t *) result;
2284 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2285 *raw_name = *unix_name = 0;
2286 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2287 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2288 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2289 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2290 ch = *inchp;
2291 /* XXX sloppy unicode -> latin */
2292 *outchp++ = ch & 255;
2293 if (!ch) break;
2294 }
2295 *outchp++ = 0;
2296 } else {
2297 /* assume 8bit char length byte latin-1 */
2298 assert(*id == 8);
2299 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2300 }
2301 free(raw_name, M_UDFTEMP);
2302 }
2303
2304 /* --------------------------------------------------------------------- */
2305
2306 /* TODO KNF-ify */
2307
2308 void
2309 unix_to_udf_name(char *result, char *name,
2310 uint8_t *result_len, struct charspec *chsp)
2311 {
2312 uint16_t *raw_name;
2313 int udf_chars, name_len;
2314 char *inchp;
2315 uint16_t *outchp;
2316
2317 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2318 /* convert latin-1 or whatever to unicode-16 */
2319 *raw_name = 0;
2320 name_len = 0;
2321 inchp = name;
2322 outchp = raw_name;
2323 while (*inchp) {
2324 *outchp++ = (uint16_t) (*inchp++);
2325 name_len++;
2326 }
2327
2328 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2329 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2330 } else {
2331 /* XXX assume 8bit char length byte latin-1 */
2332 *result++ = 8; udf_chars = 1;
2333 strncpy(result, name + 1, strlen(name+1));
2334 udf_chars += strlen(name);
2335 }
2336 *result_len = udf_chars;
2337 free(raw_name, M_UDFTEMP);
2338 }
2339
2340 /* --------------------------------------------------------------------- */
2341
2342 void
2343 udf_timestamp_to_timespec(struct udf_mount *ump,
2344 struct timestamp *timestamp,
2345 struct timespec *timespec)
2346 {
2347 struct clock_ymdhms ymdhms;
2348 uint32_t usecs, secs, nsecs;
2349 uint16_t tz;
2350
2351 /* fill in ymdhms structure from timestamp */
2352 memset(&ymdhms, 0, sizeof(ymdhms));
2353 ymdhms.dt_year = udf_rw16(timestamp->year);
2354 ymdhms.dt_mon = timestamp->month;
2355 ymdhms.dt_day = timestamp->day;
2356 ymdhms.dt_wday = 0; /* ? */
2357 ymdhms.dt_hour = timestamp->hour;
2358 ymdhms.dt_min = timestamp->minute;
2359 ymdhms.dt_sec = timestamp->second;
2360
2361 secs = clock_ymdhms_to_secs(&ymdhms);
2362 usecs = timestamp->usec +
2363 100*timestamp->hund_usec + 10000*timestamp->centisec;
2364 nsecs = usecs * 1000;
2365
2366 /*
2367 * Calculate the time zone. The timezone is 12 bit signed 2's
2368 * compliment, so we gotta do some extra magic to handle it right.
2369 */
2370 tz = udf_rw16(timestamp->type_tz);
2371 tz &= 0x0fff; /* only lower 12 bits are significant */
2372 if (tz & 0x0800) /* sign extention */
2373 tz |= 0xf000;
2374
2375 /* TODO check timezone conversion */
2376 /* check if we are specified a timezone to convert */
2377 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2378 if ((int16_t) tz != -2047)
2379 secs -= (int16_t) tz * 60;
2380 } else {
2381 secs -= ump->mount_args.gmtoff;
2382 }
2383
2384 timespec->tv_sec = secs;
2385 timespec->tv_nsec = nsecs;
2386 }
2387
2388 /* --------------------------------------------------------------------- */
2389
2390 /*
2391 * Attribute and filetypes converters with get/set pairs
2392 */
2393
2394 uint32_t
2395 udf_getaccessmode(struct udf_node *udf_node)
2396 {
2397 struct file_entry *fe;
2398 struct extfile_entry *efe;
2399 uint32_t udf_perm, icbftype;
2400 uint32_t mode, ftype;
2401 uint16_t icbflags;
2402
2403 if (udf_node->fe) {
2404 fe = udf_node->fe;
2405 udf_perm = udf_rw32(fe->perm);
2406 icbftype = fe->icbtag.file_type;
2407 icbflags = udf_rw16(fe->icbtag.flags);
2408 } else {
2409 assert(udf_node->efe);
2410 efe = udf_node->efe;
2411 udf_perm = udf_rw32(efe->perm);
2412 icbftype = efe->icbtag.file_type;
2413 icbflags = udf_rw16(efe->icbtag.flags);
2414 }
2415
2416 mode = udf_perm_to_unix_mode(udf_perm);
2417 ftype = udf_icb_to_unix_filetype(icbftype);
2418
2419 /* set suid, sgid, sticky from flags in fe/efe */
2420 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2421 mode |= S_ISUID;
2422 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2423 mode |= S_ISGID;
2424 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2425 mode |= S_ISVTX;
2426
2427 return mode | ftype;
2428 }
2429
2430 /* --------------------------------------------------------------------- */
2431
2432 /*
2433 * Directory read and manipulation functions
2434 */
2435
2436 int
2437 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2438 struct long_ad *icb_loc)
2439 {
2440 struct udf_node *dir_node = VTOI(vp);
2441 struct file_entry *fe;
2442 struct extfile_entry *efe;
2443 struct fileid_desc *fid;
2444 struct dirent dirent;
2445 uint64_t file_size, diroffset;
2446 uint32_t lb_size;
2447 int found, error;
2448
2449 /* get directory filesize */
2450 if (dir_node->fe) {
2451 fe = dir_node->fe;
2452 file_size = udf_rw64(fe->inf_len);
2453 } else {
2454 assert(dir_node->efe);
2455 efe = dir_node->efe;
2456 file_size = udf_rw64(efe->inf_len);
2457 }
2458
2459 /* allocate temporary space for fid */
2460 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2461 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2462
2463 found = 0;
2464 diroffset = dir_node->last_diroffset;
2465
2466 /*
2467 * if the directory is trunced or if we have never visited it yet,
2468 * start at the end.
2469 */
2470 if ((diroffset >= file_size) || (diroffset == 0)) {
2471 diroffset = dir_node->last_diroffset = file_size;
2472 }
2473
2474 while (!found) {
2475 /* if at the end, go trough zero */
2476 if (diroffset >= file_size)
2477 diroffset = 0;
2478
2479 /* transfer a new fid/dirent */
2480 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2481 if (error)
2482 break;
2483
2484 /* skip deleted entries */
2485 if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2486 if ((strlen(dirent.d_name) == namelen) &&
2487 (strncmp(dirent.d_name, name, namelen) == 0)) {
2488 found = 1;
2489 *icb_loc = fid->icb;
2490 }
2491 }
2492
2493 if (diroffset == dir_node->last_diroffset) {
2494 /* we have cycled */
2495 break;
2496 }
2497 }
2498 free(fid, M_TEMP);
2499 dir_node->last_diroffset = diroffset;
2500
2501 return found;
2502 }
2503
2504 /* --------------------------------------------------------------------- */
2505
2506 /*
2507 * Read one fid and process it into a dirent and advance to the next (*fid)
2508 * has to be allocated a logical block in size, (*dirent) struct dirent length
2509 */
2510
2511 int
2512 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2513 struct fileid_desc *fid, struct dirent *dirent)
2514 {
2515 struct udf_node *dir_node = VTOI(vp);
2516 struct udf_mount *ump = dir_node->ump;
2517 struct file_entry *fe;
2518 struct extfile_entry *efe;
2519 struct uio dir_uio;
2520 struct iovec dir_iovec;
2521 uint32_t entry_length, lb_size;
2522 uint64_t file_size;
2523 char *fid_name;
2524 int enough, error;
2525
2526 assert(fid);
2527 assert(dirent);
2528 assert(dir_node);
2529 assert(offset);
2530 assert(*offset != 1);
2531
2532 DPRINTF(FIDS, ("read_fid_stream called\n"));
2533 /* check if we're past the end of the directory */
2534 if (dir_node->fe) {
2535 fe = dir_node->fe;
2536 file_size = udf_rw64(fe->inf_len);
2537 } else {
2538 assert(dir_node->efe);
2539 efe = dir_node->efe;
2540 file_size = udf_rw64(efe->inf_len);
2541 }
2542 if (*offset >= file_size)
2543 return EINVAL;
2544
2545 /* get maximum length of FID descriptor */
2546 lb_size = udf_rw32(ump->logical_vol->lb_size);
2547
2548 /* initialise return values */
2549 entry_length = 0;
2550 memset(dirent, 0, sizeof(struct dirent));
2551 memset(fid, 0, lb_size);
2552
2553 /* TODO use vn_rdwr instead of creating our own uio */
2554 /* read part of the directory */
2555 memset(&dir_uio, 0, sizeof(struct uio));
2556 dir_uio.uio_rw = UIO_READ; /* read into this space */
2557 dir_uio.uio_iovcnt = 1;
2558 dir_uio.uio_iov = &dir_iovec;
2559 UIO_SETUP_SYSSPACE(&dir_uio);
2560 dir_iovec.iov_base = fid;
2561 dir_iovec.iov_len = lb_size;
2562 dir_uio.uio_offset = *offset;
2563
2564 /* limit length of read in piece */
2565 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2566
2567 /* read the part into the fid space */
2568 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2569 if (error)
2570 return error;
2571
2572 /*
2573 * Check if we got a whole descriptor.
2574 * XXX Try to `resync' directory stream when something is very wrong.
2575 *
2576 */
2577 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2578 if (!enough) {
2579 /* short dir ... */
2580 return EIO;
2581 }
2582
2583 /* check if our FID header is OK */
2584 error = udf_check_tag(fid);
2585 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2586 if (!error) {
2587 if (udf_rw16(fid->tag.id) != TAGID_FID)
2588 error = ENOENT;
2589 }
2590 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2591
2592 /* check for length */
2593 if (!error) {
2594 entry_length = udf_fidsize(fid, lb_size);
2595 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2596 }
2597 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2598 entry_length, enough?"yes":"no"));
2599
2600 if (!enough) {
2601 /* short dir ... bomb out */
2602 return EIO;
2603 }
2604
2605 /* check FID contents */
2606 if (!error) {
2607 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2608 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2609 }
2610 if (error) {
2611 /* note that is sometimes a bit quick to report */
2612 printf("BROKEN DIRECTORY ENTRY\n");
2613 /* RESYNC? */
2614 /* TODO: use udf_resync_fid_stream */
2615 return EIO;
2616 }
2617 DPRINTF(FIDS, ("\tinterpret FID\n"));
2618
2619 /* we got a whole and valid descriptor! */
2620
2621 /* create resulting dirent structure */
2622 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2623 udf_to_unix_name(dirent->d_name,
2624 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2625
2626 /* '..' has no name, so provide one */
2627 if (fid->file_char & UDF_FILE_CHAR_PAR)
2628 strcpy(dirent->d_name, "..");
2629
2630 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2631 dirent->d_namlen = strlen(dirent->d_name);
2632 dirent->d_reclen = _DIRENT_SIZE(dirent);
2633
2634 /*
2635 * Note that its not worth trying to go for the filetypes now... its
2636 * too expensive too
2637 */
2638 dirent->d_type = DT_UNKNOWN;
2639
2640 /* initial guess for filetype we can make */
2641 if (fid->file_char & UDF_FILE_CHAR_DIR)
2642 dirent->d_type = DT_DIR;
2643
2644 /* advance */
2645 *offset += entry_length;
2646
2647 return error;
2648 }
2649
2650 /* --------------------------------------------------------------------- */
2651
2652 /*
2653 * block based file reading and writing
2654 */
2655
2656 static int
2657 udf_read_internal(struct udf_node *node, uint8_t *blob)
2658 {
2659 struct udf_mount *ump;
2660 struct file_entry *fe;
2661 struct extfile_entry *efe;
2662 uint64_t inflen;
2663 uint32_t sector_size;
2664 uint8_t *pos;
2665 int icbflags, addr_type;
2666
2667 /* shut up gcc */
2668 inflen = addr_type = icbflags = 0;
2669 pos = NULL;
2670
2671 /* get extent and do some paranoia checks */
2672 ump = node->ump;
2673 sector_size = ump->discinfo.sector_size;
2674
2675 fe = node->fe;
2676 efe = node->efe;
2677 if (fe) {
2678 inflen = udf_rw64(fe->inf_len);
2679 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2680 icbflags = udf_rw16(fe->icbtag.flags);
2681 }
2682 if (efe) {
2683 inflen = udf_rw64(efe->inf_len);
2684 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2685 icbflags = udf_rw16(efe->icbtag.flags);
2686 }
2687 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2688
2689 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2690 assert(inflen < sector_size);
2691
2692 /* copy out info */
2693 memset(blob, 0, sector_size);
2694 memcpy(blob, pos, inflen);
2695
2696 return 0;
2697 }
2698
2699 /* --------------------------------------------------------------------- */
2700
2701 /*
2702 * Read file extent reads an extent specified in sectors from the file. It is
2703 * sector based; i.e. no `fancy' offsets.
2704 */
2705
2706 int
2707 udf_read_file_extent(struct udf_node *node,
2708 uint32_t from, uint32_t sectors,
2709 uint8_t *blob)
2710 {
2711 struct buf buf;
2712 uint32_t sector_size;
2713
2714 BUF_INIT(&buf);
2715
2716 sector_size = node->ump->discinfo.sector_size;
2717
2718 buf.b_bufsize = sectors * sector_size;
2719 buf.b_data = blob;
2720 buf.b_bcount = buf.b_bufsize;
2721 buf.b_resid = buf.b_bcount;
2722 buf.b_flags = B_BUSY | B_READ;
2723 buf.b_vp = node->vnode;
2724 buf.b_proc = NULL;
2725
2726 buf.b_blkno = from;
2727 buf.b_lblkno = 0;
2728 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2729
2730 udf_read_filebuf(node, &buf);
2731 return biowait(&buf);
2732 }
2733
2734
2735 /* --------------------------------------------------------------------- */
2736
2737 /*
2738 * Read file extent in the buffer.
2739 *
2740 * The splitup of the extent into seperate request-buffers is to minimise
2741 * copying around as much as possible.
2742 */
2743
2744
2745 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2746 #define FILEBUFSECT 128
2747
2748 void
2749 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2750 {
2751 struct buf *nestbuf;
2752 uint64_t *mapping;
2753 uint64_t run_start;
2754 uint32_t sector_size;
2755 uint32_t buf_offset, sector, rbuflen, rblk;
2756 uint8_t *buf_pos;
2757 int error, run_length;
2758
2759 uint32_t from;
2760 uint32_t sectors;
2761
2762 sector_size = node->ump->discinfo.sector_size;
2763
2764 from = buf->b_blkno;
2765 sectors = buf->b_bcount / sector_size;
2766
2767 /* assure we have enough translation slots */
2768 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2769 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2770
2771 if (sectors > FILEBUFSECT) {
2772 printf("udf_read_filebuf: implementation limit on bufsize\n");
2773 buf->b_error = EIO;
2774 buf->b_flags |= B_ERROR;
2775 biodone(buf);
2776 return;
2777 }
2778
2779 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2780
2781 error = 0;
2782 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2783 error = udf_translate_file_extent(node, from, sectors, mapping);
2784 if (error) {
2785 buf->b_error = error;
2786 buf->b_flags |= B_ERROR;
2787 biodone(buf);
2788 goto out;
2789 }
2790 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2791
2792 /* pre-check if internal or parts are zero */
2793 if (*mapping == UDF_TRANS_INTERN) {
2794 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2795 if (error) {
2796 buf->b_error = error;
2797 buf->b_flags |= B_ERROR;
2798 }
2799 biodone(buf);
2800 goto out;
2801 }
2802 DPRINTF(READ, ("\tnot intern\n"));
2803
2804 /* request read-in of data from disc sheduler */
2805 buf->b_resid = buf->b_bcount;
2806 for (sector = 0; sector < sectors; sector++) {
2807 buf_offset = sector * sector_size;
2808 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2809 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2810
2811 switch (mapping[sector]) {
2812 case UDF_TRANS_UNMAPPED:
2813 case UDF_TRANS_ZERO:
2814 /* copy zero sector */
2815 memset(buf_pos, 0, sector_size);
2816 DPRINTF(READ, ("\treturning zero sector\n"));
2817 nestiobuf_done(buf, sector_size, 0);
2818 break;
2819 default :
2820 DPRINTF(READ, ("\tread sector "
2821 "%"PRIu64"\n", mapping[sector]));
2822
2823 run_start = mapping[sector];
2824 run_length = 1;
2825 while (sector < sectors-1) {
2826 if (mapping[sector+1] != mapping[sector]+1)
2827 break;
2828 run_length++;
2829 sector++;
2830 }
2831
2832 /*
2833 * nest an iobuf and mark it for async reading. Since
2834 * we're using nested buffers, they can't be cached by
2835 * design.
2836 */
2837 rbuflen = run_length * sector_size;
2838 rblk = run_start * (sector_size/DEV_BSIZE);
2839
2840 nestbuf = getiobuf();
2841 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2842 /* nestbuf is B_ASYNC */
2843
2844 /* CD shedules on raw blkno */
2845 nestbuf->b_blkno = rblk;
2846 nestbuf->b_proc = NULL;
2847 nestbuf->b_cylinder = 0;
2848 nestbuf->b_rawblkno = rblk;
2849 VOP_STRATEGY(node->ump->devvp, nestbuf);
2850 }
2851 }
2852 out:
2853 DPRINTF(READ, ("\tend of read_filebuf\n"));
2854 free(mapping, M_TEMP);
2855 return;
2856 }
2857 #undef FILEBUFSECT
2858
2859
2860 /* --------------------------------------------------------------------- */
2861
2862 /*
2863 * Translate an extent (in sectors) into sector numbers; used for read and
2864 * write operations. DOESNT't check extents.
2865 */
2866
2867 int
2868 udf_translate_file_extent(struct udf_node *node,
2869 uint32_t from, uint32_t pages,
2870 uint64_t *map)
2871 {
2872 struct udf_mount *ump;
2873 struct file_entry *fe;
2874 struct extfile_entry *efe;
2875 struct short_ad *s_ad;
2876 struct long_ad *l_ad, t_ad;
2877 uint64_t transsec;
2878 uint32_t sector_size, transsec32;
2879 uint32_t overlap, translen;
2880 uint32_t vpart_num, lb_num, len, alloclen;
2881 uint8_t *pos;
2882 int error, flags, addr_type, icblen, icbflags;
2883
2884 if (!node)
2885 return ENOENT;
2886
2887 /* shut up gcc */
2888 alloclen = addr_type = icbflags = 0;
2889 pos = NULL;
2890
2891 /* do the work */
2892 ump = node->ump;
2893 sector_size = ump->discinfo.sector_size;
2894 fe = node->fe;
2895 efe = node->efe;
2896 if (fe) {
2897 alloclen = udf_rw32(fe->l_ad);
2898 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2899 icbflags = udf_rw16(fe->icbtag.flags);
2900 }
2901 if (efe) {
2902 alloclen = udf_rw32(efe->l_ad);
2903 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2904 icbflags = udf_rw16(efe->icbtag.flags);
2905 }
2906 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2907
2908 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2909 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2910
2911 vpart_num = udf_rw16(node->loc.loc.part_num);
2912 lb_num = len = icblen = 0; /* shut up gcc */
2913 while (pages && alloclen) {
2914 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2915 switch (addr_type) {
2916 case UDF_ICB_INTERN_ALLOC :
2917 /* TODO check extents? */
2918 *map = UDF_TRANS_INTERN;
2919 return 0;
2920 case UDF_ICB_SHORT_ALLOC :
2921 icblen = sizeof(struct short_ad);
2922 s_ad = (struct short_ad *) pos;
2923 len = udf_rw32(s_ad->len);
2924 lb_num = udf_rw32(s_ad->lb_num);
2925 break;
2926 case UDF_ICB_LONG_ALLOC :
2927 icblen = sizeof(struct long_ad);
2928 l_ad = (struct long_ad *) pos;
2929 len = udf_rw32(l_ad->len);
2930 lb_num = udf_rw32(l_ad->loc.lb_num);
2931 vpart_num = udf_rw16(l_ad->loc.part_num);
2932 DPRINTFIF(TRANSLATE,
2933 (l_ad->impl.im_used.flags &
2934 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2935 ("UDF: got an `extent erased' flag in long_ad\n"));
2936 break;
2937 default:
2938 /* can't be here */
2939 return EINVAL; /* for sure */
2940 }
2941
2942 /* process extent */
2943 flags = UDF_EXT_FLAGS(len);
2944 len = UDF_EXT_LEN(len);
2945
2946 overlap = (len + sector_size -1) / sector_size;
2947 if (from) {
2948 if (from > overlap) {
2949 from -= overlap;
2950 overlap = 0;
2951 } else {
2952 lb_num += from; /* advance in extent */
2953 overlap -= from;
2954 from = 0;
2955 }
2956 }
2957
2958 overlap = MIN(overlap, pages);
2959 while (overlap) {
2960 switch (flags) {
2961 case UDF_EXT_REDIRECT :
2962 /* no support for allocation extentions yet */
2963 /* TODO support for allocation extention */
2964 return ENOENT;
2965 case UDF_EXT_FREED :
2966 case UDF_EXT_FREE :
2967 transsec = UDF_TRANS_ZERO;
2968 translen = overlap;
2969 while (overlap && pages && translen) {
2970 *map++ = transsec;
2971 lb_num++;
2972 overlap--; pages--; translen--;
2973 }
2974 break;
2975 case UDF_EXT_ALLOCATED :
2976 t_ad.loc.lb_num = udf_rw32(lb_num);
2977 t_ad.loc.part_num = udf_rw16(vpart_num);
2978 error = udf_translate_vtop(ump,
2979 &t_ad, &transsec32, &translen);
2980 transsec = transsec32;
2981 if (error)
2982 return error;
2983 while (overlap && pages && translen) {
2984 *map++ = transsec;
2985 lb_num++; transsec++;
2986 overlap--; pages--; translen--;
2987 }
2988 break;
2989 }
2990 }
2991 pos += icblen;
2992 alloclen -= icblen;
2993 }
2994 return 0;
2995 }
2996
2997 /* --------------------------------------------------------------------- */
2998
2999