udf_subr.c revision 1.31 1 /* $NetBSD: udf_subr.c,v 1.31 2007/01/17 13:02:44 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.31 2007/01/17 13:02:44 reinoud Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66 #include <sys/kauth.h>
67 #include <dev/clock_subr.h>
68
69 #include <fs/udf/ecma167-udf.h>
70 #include <fs/udf/udf_mount.h>
71
72 #include "udf.h"
73 #include "udf_subr.h"
74 #include "udf_bswap.h"
75
76
77 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
78
79
80 /* predefines */
81
82
83 #if 0
84 {
85 int i, j, dlen;
86 uint8_t *blob;
87
88 blob = (uint8_t *) fid;
89 dlen = file_size - (*offset);
90
91 printf("blob = %p\n", blob);
92 printf("dump of %d bytes\n", dlen);
93
94 for (i = 0; i < dlen; i+ = 16) {
95 printf("%04x ", i);
96 for (j = 0; j < 16; j++) {
97 if (i+j < dlen) {
98 printf("%02x ", blob[i+j]);
99 } else {
100 printf(" ");
101 }
102 }
103 for (j = 0; j < 16; j++) {
104 if (i+j < dlen) {
105 if (blob[i+j]>32 && blob[i+j]! = 127) {
106 printf("%c", blob[i+j]);
107 } else {
108 printf(".");
109 }
110 }
111 }
112 printf("\n");
113 }
114 printf("\n");
115 }
116 Debugger();
117 #endif
118
119
120 /* --------------------------------------------------------------------- */
121
122 /* STUB */
123
124 static int
125 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
126 {
127 int sector_size = ump->discinfo.sector_size;
128 int blks = sector_size / DEV_BSIZE;
129
130 /* NOTE bread() checks if block is in cache or not */
131 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
132 }
133
134
135 /* --------------------------------------------------------------------- */
136
137 /*
138 * Check if the blob starts with a good UDF tag. Tags are protected by a
139 * checksum over the reader except one byte at position 4 that is the checksum
140 * itself.
141 */
142
143 int
144 udf_check_tag(void *blob)
145 {
146 struct desc_tag *tag = blob;
147 uint8_t *pos, sum, cnt;
148
149 /* check TAG header checksum */
150 pos = (uint8_t *) tag;
151 sum = 0;
152
153 for(cnt = 0; cnt < 16; cnt++) {
154 if (cnt != 4)
155 sum += *pos;
156 pos++;
157 }
158 if (sum != tag->cksum) {
159 /* bad tag header checksum; this is not a valid tag */
160 return EINVAL;
161 }
162
163 return 0;
164 }
165
166 /* --------------------------------------------------------------------- */
167
168 /*
169 * check tag payload will check descriptor CRC as specified.
170 * If the descriptor is too short, it will return EIO otherwise EINVAL.
171 */
172
173 int
174 udf_check_tag_payload(void *blob, uint32_t max_length)
175 {
176 struct desc_tag *tag = blob;
177 uint16_t crc, crc_len;
178
179 crc_len = udf_rw16(tag->desc_crc_len);
180
181 /* check payload CRC if applicable */
182 if (crc_len == 0)
183 return 0;
184
185 if (crc_len > max_length)
186 return EIO;
187
188 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
189 if (crc != udf_rw16(tag->desc_crc)) {
190 /* bad payload CRC; this is a broken tag */
191 return EINVAL;
192 }
193
194 return 0;
195 }
196
197 /* --------------------------------------------------------------------- */
198
199 int
200 udf_validate_tag_sum(void *blob)
201 {
202 struct desc_tag *tag = blob;
203 uint8_t *pos, sum, cnt;
204
205 /* calculate TAG header checksum */
206 pos = (uint8_t *) tag;
207 sum = 0;
208
209 for(cnt = 0; cnt < 16; cnt++) {
210 if (cnt != 4) sum += *pos;
211 pos++;
212 }
213 tag->cksum = sum; /* 8 bit */
214
215 return 0;
216 }
217
218 /* --------------------------------------------------------------------- */
219
220 /* assumes sector number of descriptor to be saved already present */
221
222 int
223 udf_validate_tag_and_crc_sums(void *blob)
224 {
225 struct desc_tag *tag = blob;
226 uint8_t *btag = (uint8_t *) tag;
227 uint16_t crc, crc_len;
228
229 crc_len = udf_rw16(tag->desc_crc_len);
230
231 /* check payload CRC if applicable */
232 if (crc_len > 0) {
233 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
234 tag->desc_crc = udf_rw16(crc);
235 }
236
237 /* calculate TAG header checksum */
238 return udf_validate_tag_sum(blob);
239 }
240
241 /* --------------------------------------------------------------------- */
242
243 /*
244 * XXX note the different semantics from udfclient: for FIDs it still rounds
245 * up to sectors. Use udf_fidsize() for a correct length.
246 */
247
248 int
249 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
250 {
251 uint32_t size, tag_id, num_secs, elmsz;
252
253 tag_id = udf_rw16(dscr->tag.id);
254
255 switch (tag_id) {
256 case TAGID_LOGVOL :
257 size = sizeof(struct logvol_desc) - 1;
258 size += udf_rw32(dscr->lvd.mt_l);
259 break;
260 case TAGID_UNALLOC_SPACE :
261 elmsz = sizeof(struct extent_ad);
262 size = sizeof(struct unalloc_sp_desc) - elmsz;
263 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
264 break;
265 case TAGID_FID :
266 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
267 size = (size + 3) & ~3;
268 break;
269 case TAGID_LOGVOL_INTEGRITY :
270 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
271 size += udf_rw32(dscr->lvid.l_iu);
272 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
273 break;
274 case TAGID_SPACE_BITMAP :
275 size = sizeof(struct space_bitmap_desc) - 1;
276 size += udf_rw32(dscr->sbd.num_bytes);
277 break;
278 case TAGID_SPARING_TABLE :
279 elmsz = sizeof(struct spare_map_entry);
280 size = sizeof(struct udf_sparing_table) - elmsz;
281 size += udf_rw16(dscr->spt.rt_l) * elmsz;
282 break;
283 case TAGID_FENTRY :
284 size = sizeof(struct file_entry);
285 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
286 break;
287 case TAGID_EXTFENTRY :
288 size = sizeof(struct extfile_entry);
289 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
290 break;
291 case TAGID_FSD :
292 size = sizeof(struct fileset_desc);
293 break;
294 default :
295 size = sizeof(union dscrptr);
296 break;
297 }
298
299 if ((size == 0) || (udf_sector_size == 0)) return 0;
300
301 /* round up in sectors */
302 num_secs = (size + udf_sector_size -1) / udf_sector_size;
303 return num_secs * udf_sector_size;
304 }
305
306
307 static int
308 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
309 {
310 uint32_t size;
311
312 if (udf_rw16(fid->tag.id) != TAGID_FID)
313 panic("got udf_fidsize on non FID\n");
314
315 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
316 size = (size + 3) & ~3;
317
318 return size;
319 }
320
321 /* --------------------------------------------------------------------- */
322
323 /*
324 * Problem with read_descriptor are long descriptors spanning more than one
325 * sector. Luckily long descriptors can't be in `logical space'.
326 *
327 * Size of allocated piece is returned in multiple of sector size due to
328 * udf_calc_udf_malloc_size().
329 */
330
331 int
332 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
333 struct malloc_type *mtype, union dscrptr **dstp)
334 {
335 union dscrptr *src, *dst;
336 struct buf *bp;
337 uint8_t *pos;
338 int blks, blk, dscrlen;
339 int i, error, sector_size;
340
341 sector_size = ump->discinfo.sector_size;
342
343 *dstp = dst = NULL;
344 dscrlen = sector_size;
345
346 /* read initial piece */
347 error = udf_bread(ump, sector, &bp);
348 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
349
350 if (!error) {
351 /* check if its a valid tag */
352 error = udf_check_tag(bp->b_data);
353 if (error) {
354 /* check if its an empty block */
355 pos = bp->b_data;
356 for (i = 0; i < sector_size; i++, pos++) {
357 if (*pos) break;
358 }
359 if (i == sector_size) {
360 /* return no error but with no dscrptr */
361 /* dispose first block */
362 brelse(bp);
363 return 0;
364 }
365 }
366 }
367 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
368 if (!error) {
369 src = (union dscrptr *) bp->b_data;
370 dscrlen = udf_tagsize(src, sector_size);
371 dst = malloc(dscrlen, mtype, M_WAITOK);
372 memcpy(dst, src, sector_size);
373 }
374 /* dispose first block */
375 bp->b_flags |= B_AGE;
376 brelse(bp);
377
378 if (!error && (dscrlen > sector_size)) {
379 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
380 /*
381 * Read the rest of descriptor. Since it is only used at mount
382 * time its overdone to define and use a specific udf_breadn
383 * for this alone.
384 */
385 blks = (dscrlen + sector_size -1) / sector_size;
386 for (blk = 1; blk < blks; blk++) {
387 error = udf_bread(ump, sector + blk, &bp);
388 if (error) {
389 brelse(bp);
390 break;
391 }
392 pos = (uint8_t *) dst + blk*sector_size;
393 memcpy(pos, bp->b_data, sector_size);
394
395 /* dispose block */
396 bp->b_flags |= B_AGE;
397 brelse(bp);
398 }
399 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
400 error));
401 }
402 if (!error) {
403 error = udf_check_tag_payload(dst, dscrlen);
404 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
405 }
406 if (error && dst) {
407 free(dst, mtype);
408 dst = NULL;
409 }
410 *dstp = dst;
411
412 return error;
413 }
414
415 /* --------------------------------------------------------------------- */
416 #ifdef DEBUG
417 static void
418 udf_dump_discinfo(struct udf_mount *ump)
419 {
420 char bits[128];
421 struct mmc_discinfo *di = &ump->discinfo;
422
423 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
424 return;
425
426 printf("Device/media info :\n");
427 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
428 printf("\tderived class %d\n", di->mmc_class);
429 printf("\tsector size %d\n", di->sector_size);
430 printf("\tdisc state %d\n", di->disc_state);
431 printf("\tlast ses state %d\n", di->last_session_state);
432 printf("\tbg format state %d\n", di->bg_format_state);
433 printf("\tfrst track %d\n", di->first_track);
434 printf("\tfst on last ses %d\n", di->first_track_last_session);
435 printf("\tlst on last ses %d\n", di->last_track_last_session);
436 printf("\tlink block penalty %d\n", di->link_block_penalty);
437 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
438 sizeof(bits));
439 printf("\tdisc flags %s\n", bits);
440 printf("\tdisc id %x\n", di->disc_id);
441 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
442
443 printf("\tnum sessions %d\n", di->num_sessions);
444 printf("\tnum tracks %d\n", di->num_tracks);
445
446 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
447 printf("\tcapabilities cur %s\n", bits);
448 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
449 printf("\tcapabilities cap %s\n", bits);
450 }
451 #else
452 #define udf_dump_discinfo(a);
453 #endif
454
455 /* not called often */
456 int
457 udf_update_discinfo(struct udf_mount *ump)
458 {
459 struct vnode *devvp = ump->devvp;
460 struct partinfo dpart;
461 struct mmc_discinfo *di;
462 int error;
463
464 DPRINTF(VOLUMES, ("read/update disc info\n"));
465 di = &ump->discinfo;
466 memset(di, 0, sizeof(struct mmc_discinfo));
467
468 /* check if we're on a MMC capable device, i.e. CD/DVD */
469 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
470 if (error == 0) {
471 udf_dump_discinfo(ump);
472 return 0;
473 }
474
475 /* disc partition support */
476 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
477 if (error)
478 return ENODEV;
479
480 /* set up a disc info profile for partitions */
481 di->mmc_profile = 0x01; /* disc type */
482 di->mmc_class = MMC_CLASS_DISC;
483 di->disc_state = MMC_STATE_CLOSED;
484 di->last_session_state = MMC_STATE_CLOSED;
485 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
486 di->link_block_penalty = 0;
487
488 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
489 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
490 di->mmc_cap = di->mmc_cur;
491 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
492
493 /* TODO problem with last_possible_lba on resizable VND; request */
494 di->last_possible_lba = dpart.part->p_size;
495 di->sector_size = dpart.disklab->d_secsize;
496 di->blockingnr = 1;
497
498 di->num_sessions = 1;
499 di->num_tracks = 1;
500
501 di->first_track = 1;
502 di->first_track_last_session = di->last_track_last_session = 1;
503
504 udf_dump_discinfo(ump);
505 return 0;
506 }
507
508 /* --------------------------------------------------------------------- */
509
510 int
511 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
512 {
513 struct vnode *devvp = ump->devvp;
514 struct mmc_discinfo *di = &ump->discinfo;
515 int error, class;
516
517 DPRINTF(VOLUMES, ("read track info\n"));
518
519 class = di->mmc_class;
520 if (class != MMC_CLASS_DISC) {
521 /* tracknr specified in struct ti */
522 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
523 NOCRED, NULL);
524 return error;
525 }
526
527 /* disc partition support */
528 if (ti->tracknr != 1)
529 return EIO;
530
531 /* create fake ti (TODO check for resized vnds) */
532 ti->sessionnr = 1;
533
534 ti->track_mode = 0; /* XXX */
535 ti->data_mode = 0; /* XXX */
536 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
537
538 ti->track_start = 0;
539 ti->packet_size = 1;
540
541 /* TODO support for resizable vnd */
542 ti->track_size = di->last_possible_lba;
543 ti->next_writable = di->last_possible_lba;
544 ti->last_recorded = ti->next_writable;
545 ti->free_blocks = 0;
546
547 return 0;
548 }
549
550 /* --------------------------------------------------------------------- */
551
552 /* track/session searching for mounting */
553
554 static int
555 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
556 int *first_tracknr, int *last_tracknr)
557 {
558 struct mmc_trackinfo trackinfo;
559 uint32_t tracknr, start_track, num_tracks;
560 int error;
561
562 /* if negative, sessionnr is relative to last session */
563 if (args->sessionnr < 0) {
564 args->sessionnr += ump->discinfo.num_sessions;
565 /* sanity */
566 if (args->sessionnr < 0)
567 args->sessionnr = 0;
568 }
569
570 /* sanity */
571 if (args->sessionnr > ump->discinfo.num_sessions)
572 args->sessionnr = ump->discinfo.num_sessions;
573
574 /* search the tracks for this session, zero session nr indicates last */
575 if (args->sessionnr == 0) {
576 args->sessionnr = ump->discinfo.num_sessions;
577 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
578 args->sessionnr--;
579 }
580 }
581
582 /* search the first and last track of the specified session */
583 num_tracks = ump->discinfo.num_tracks;
584 start_track = ump->discinfo.first_track;
585
586 /* search for first track of this session */
587 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
588 /* get track info */
589 trackinfo.tracknr = tracknr;
590 error = udf_update_trackinfo(ump, &trackinfo);
591 if (error)
592 return error;
593
594 if (trackinfo.sessionnr == args->sessionnr)
595 break;
596 }
597 *first_tracknr = tracknr;
598
599 /* search for last track of this session */
600 for (;tracknr <= num_tracks; tracknr++) {
601 /* get track info */
602 trackinfo.tracknr = tracknr;
603 error = udf_update_trackinfo(ump, &trackinfo);
604 if (error || (trackinfo.sessionnr != args->sessionnr)) {
605 tracknr--;
606 break;
607 }
608 }
609 if (tracknr > num_tracks)
610 tracknr--;
611
612 *last_tracknr = tracknr;
613
614 assert(*last_tracknr >= *first_tracknr);
615 return 0;
616 }
617
618 /* --------------------------------------------------------------------- */
619
620 static int
621 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
622 {
623 int error;
624
625 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
626 (union dscrptr **) dst);
627 if (!error) {
628 /* blank terminator blocks are not allowed here */
629 if (*dst == NULL)
630 return ENOENT;
631 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
632 error = ENOENT;
633 free(*dst, M_UDFVOLD);
634 *dst = NULL;
635 DPRINTF(VOLUMES, ("Not an anchor\n"));
636 }
637 }
638
639 return error;
640 }
641
642
643 int
644 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
645 {
646 struct mmc_trackinfo first_track;
647 struct mmc_trackinfo last_track;
648 struct anchor_vdp **anchorsp;
649 uint32_t track_start;
650 uint32_t track_end;
651 uint32_t positions[4];
652 int first_tracknr, last_tracknr;
653 int error, anch, ok, first_anchor;
654
655 /* search the first and last track of the specified session */
656 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
657 if (!error) {
658 first_track.tracknr = first_tracknr;
659 error = udf_update_trackinfo(ump, &first_track);
660 }
661 if (!error) {
662 last_track.tracknr = last_tracknr;
663 error = udf_update_trackinfo(ump, &last_track);
664 }
665 if (error) {
666 printf("UDF mount: reading disc geometry failed\n");
667 return 0;
668 }
669
670 track_start = first_track.track_start;
671
672 /* `end' is not as straitforward as start. */
673 track_end = last_track.track_start
674 + last_track.track_size - last_track.free_blocks - 1;
675
676 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
677 /* end of track is not straitforward here */
678 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
679 track_end = last_track.last_recorded;
680 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
681 track_end = last_track.next_writable
682 - ump->discinfo.link_block_penalty;
683 }
684
685 /* its no use reading a blank track */
686 first_anchor = 0;
687 if (first_track.flags & MMC_TRACKINFO_BLANK)
688 first_anchor = 1;
689
690 /* read anchors start+256, start+512, end-256, end */
691 positions[0] = track_start+256;
692 positions[1] = track_end-256;
693 positions[2] = track_end;
694 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
695 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
696
697 ok = 0;
698 anchorsp = ump->anchors;
699 for (anch = first_anchor; anch < 4; anch++) {
700 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
701 positions[anch]));
702 error = udf_read_anchor(ump, positions[anch], anchorsp);
703 if (!error) {
704 anchorsp++;
705 ok++;
706 }
707 }
708
709 /* VATs are only recorded on sequential media, but initialise */
710 ump->first_possible_vat_location = track_start + 256 + 1;
711 ump->last_possible_vat_location = track_end
712 + ump->discinfo.blockingnr;
713
714 return ok;
715 }
716
717 /* --------------------------------------------------------------------- */
718
719 /* we dont try to be smart; we just record the parts */
720 #define UDF_UPDATE_DSCR(name, dscr) \
721 if (name) \
722 free(name, M_UDFVOLD); \
723 name = dscr;
724
725 static int
726 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
727 {
728 uint16_t partnr;
729
730 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
731 udf_rw16(dscr->tag.id)));
732 switch (udf_rw16(dscr->tag.id)) {
733 case TAGID_PRI_VOL : /* primary partition */
734 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
735 break;
736 case TAGID_LOGVOL : /* logical volume */
737 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
738 break;
739 case TAGID_UNALLOC_SPACE : /* unallocated space */
740 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
741 break;
742 case TAGID_IMP_VOL : /* implementation */
743 /* XXX do we care about multiple impl. descr ? */
744 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
745 break;
746 case TAGID_PARTITION : /* physical partition */
747 /* not much use if its not allocated */
748 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
749 free(dscr, M_UDFVOLD);
750 break;
751 }
752
753 /* check partnr boundaries */
754 partnr = udf_rw16(dscr->pd.part_num);
755 if (partnr >= UDF_PARTITIONS) {
756 free(dscr, M_UDFVOLD);
757 return EINVAL;
758 }
759
760 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
761 break;
762 case TAGID_VOL : /* volume space extender; rare */
763 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
764 free(dscr, M_UDFVOLD);
765 break;
766 default :
767 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
768 udf_rw16(dscr->tag.id)));
769 free(dscr, M_UDFVOLD);
770 }
771
772 return 0;
773 }
774 #undef UDF_UPDATE_DSCR
775
776 /* --------------------------------------------------------------------- */
777
778 static int
779 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
780 {
781 union dscrptr *dscr;
782 uint32_t sector_size, dscr_size;
783 int error;
784
785 sector_size = ump->discinfo.sector_size;
786
787 /* loc is sectornr, len is in bytes */
788 error = EIO;
789 while (len) {
790 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
791 if (error)
792 return error;
793
794 /* blank block is a terminator */
795 if (dscr == NULL)
796 return 0;
797
798 /* TERM descriptor is a terminator */
799 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
800 free(dscr, M_UDFVOLD);
801 return 0;
802 }
803
804 /* process all others */
805 dscr_size = udf_tagsize(dscr, sector_size);
806 error = udf_process_vds_descriptor(ump, dscr);
807 if (error) {
808 free(dscr, M_UDFVOLD);
809 break;
810 }
811 assert((dscr_size % sector_size) == 0);
812
813 len -= dscr_size;
814 loc += dscr_size / sector_size;
815 }
816
817 return error;
818 }
819
820
821 int
822 udf_read_vds_space(struct udf_mount *ump)
823 {
824 struct anchor_vdp *anchor, *anchor2;
825 size_t size;
826 uint32_t main_loc, main_len;
827 uint32_t reserve_loc, reserve_len;
828 int error;
829
830 /*
831 * read in VDS space provided by the anchors; if one descriptor read
832 * fails, try the mirror sector.
833 *
834 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
835 * avoids the `compatibility features' of DirectCD that may confuse
836 * stuff completely.
837 */
838
839 anchor = ump->anchors[0];
840 anchor2 = ump->anchors[1];
841 assert(anchor);
842
843 if (anchor2) {
844 size = sizeof(struct extent_ad);
845 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
846 anchor = anchor2;
847 /* reserve is specified to be a literal copy of main */
848 }
849
850 main_loc = udf_rw32(anchor->main_vds_ex.loc);
851 main_len = udf_rw32(anchor->main_vds_ex.len);
852
853 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
854 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
855
856 error = udf_read_vds_extent(ump, main_loc, main_len);
857 if (error) {
858 printf("UDF mount: reading in reserve VDS extent\n");
859 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
860 }
861
862 return error;
863 }
864
865 /* --------------------------------------------------------------------- */
866
867 /*
868 * Read in the logical volume integrity sequence pointed to by our logical
869 * volume descriptor. Its a sequence that can be extended using fields in the
870 * integrity descriptor itself. On sequential media only one is found, on
871 * rewritable media a sequence of descriptors can be found as a form of
872 * history keeping and on non sequential write-once media the chain is vital
873 * to allow more and more descriptors to be written. The last descriptor
874 * written in an extent needs to claim space for a new extent.
875 */
876
877 static int
878 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
879 {
880 union dscrptr *dscr;
881 struct logvol_int_desc *lvint;
882 uint32_t sector_size, sector, len;
883 int dscr_type, error;
884
885 sector_size = ump->discinfo.sector_size;
886 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
887 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
888
889 lvint = NULL;
890 dscr = NULL;
891 error = 0;
892 while (len) {
893 /* read in our integrity descriptor */
894 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
895 if (!error) {
896 if (dscr == NULL)
897 break; /* empty terminates */
898 dscr_type = udf_rw16(dscr->tag.id);
899 if (dscr_type == TAGID_TERM) {
900 break; /* clean terminator */
901 }
902 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
903 /* fatal... corrupt disc */
904 error = ENOENT;
905 break;
906 }
907 if (lvint)
908 free(lvint, M_UDFVOLD);
909 lvint = &dscr->lvid;
910 dscr = NULL;
911 } /* else hope for the best... maybe the next is ok */
912
913 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
914 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
915
916 /* proceed sequential */
917 sector += 1;
918 len -= sector_size;
919
920 /* are we linking to a new piece? */
921 if (lvint->next_extent.len) {
922 len = udf_rw32(lvint->next_extent.len);
923 sector = udf_rw32(lvint->next_extent.loc);
924 }
925 }
926
927 /* clean up the mess, esp. when there is an error */
928 if (dscr)
929 free(dscr, M_UDFVOLD);
930
931 if (error && lvint) {
932 free(lvint, M_UDFVOLD);
933 lvint = NULL;
934 }
935
936 if (!lvint)
937 error = ENOENT;
938
939 *lvintp = lvint;
940 return error;
941 }
942
943 /* --------------------------------------------------------------------- */
944
945 /*
946 * Checks if ump's vds information is correct and complete
947 */
948
949 int
950 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
951 {
952 union udf_pmap *mapping;
953 struct logvol_int_desc *lvint;
954 struct udf_logvol_info *lvinfo;
955 uint32_t n_pm, mt_l;
956 uint8_t *pmap_pos;
957 char *domain_name, *map_name;
958 const char *check_name;
959 int pmap_stype, pmap_size;
960 int pmap_type, log_part, phys_part;
961 int n_phys, n_virt, n_spar, n_meta;
962 int len, error;
963
964 if (ump == NULL)
965 return ENOENT;
966
967 /* we need at least an anchor (trivial, but for safety) */
968 if (ump->anchors[0] == NULL)
969 return EINVAL;
970
971 /* we need at least one primary and one logical volume descriptor */
972 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
973 return EINVAL;
974
975 /* we need at least one partition descriptor */
976 if (ump->partitions[0] == NULL)
977 return EINVAL;
978
979 /* check logical volume sector size verses device sector size */
980 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
981 printf("UDF mount: format violation, lb_size != sector size\n");
982 return EINVAL;
983 }
984
985 domain_name = ump->logical_vol->domain_id.id;
986 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
987 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
988 return EINVAL;
989 }
990
991 /* retrieve logical volume integrity sequence */
992 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
993
994 /*
995 * We need at least one logvol integrity descriptor recorded. Note
996 * that its OK to have an open logical volume integrity here. The VAT
997 * will close/update the integrity.
998 */
999 if (ump->logvol_integrity == NULL)
1000 return EINVAL;
1001
1002 /* process derived structures */
1003 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1004 lvint = ump->logvol_integrity;
1005 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1006 ump->logvol_info = lvinfo;
1007
1008 /* TODO check udf versions? */
1009
1010 /*
1011 * check logvol mappings: effective virt->log partmap translation
1012 * check and recording of the mapping results. Saves expensive
1013 * strncmp() in tight places.
1014 */
1015 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1016 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1017 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1018 pmap_pos = ump->logical_vol->maps;
1019
1020 if (n_pm > UDF_PMAPS) {
1021 printf("UDF mount: too many mappings\n");
1022 return EINVAL;
1023 }
1024
1025 n_phys = n_virt = n_spar = n_meta = 0;
1026 for (log_part = 0; log_part < n_pm; log_part++) {
1027 mapping = (union udf_pmap *) pmap_pos;
1028 pmap_stype = pmap_pos[0];
1029 pmap_size = pmap_pos[1];
1030 switch (pmap_stype) {
1031 case 1: /* physical mapping */
1032 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1033 phys_part = udf_rw16(mapping->pm1.part_num);
1034 pmap_type = UDF_VTOP_TYPE_PHYS;
1035 n_phys++;
1036 break;
1037 case 2: /* virtual/sparable/meta mapping */
1038 map_name = mapping->pm2.part_id.id;
1039 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1040 phys_part = udf_rw16(mapping->pm2.part_num);
1041 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1042 len = UDF_REGID_ID_SIZE;
1043
1044 check_name = "*UDF Virtual Partition";
1045 if (strncmp(map_name, check_name, len) == 0) {
1046 pmap_type = UDF_VTOP_TYPE_VIRT;
1047 n_virt++;
1048 break;
1049 }
1050 check_name = "*UDF Sparable Partition";
1051 if (strncmp(map_name, check_name, len) == 0) {
1052 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1053 n_spar++;
1054 break;
1055 }
1056 check_name = "*UDF Metadata Partition";
1057 if (strncmp(map_name, check_name, len) == 0) {
1058 pmap_type = UDF_VTOP_TYPE_META;
1059 n_meta++;
1060 break;
1061 }
1062 break;
1063 default:
1064 return EINVAL;
1065 }
1066
1067 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1068 pmap_type));
1069 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1070 return EINVAL;
1071
1072 ump->vtop [log_part] = phys_part;
1073 ump->vtop_tp[log_part] = pmap_type;
1074
1075 pmap_pos += pmap_size;
1076 }
1077 /* not winning the beauty contest */
1078 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1079
1080 /* test some basic UDF assertions/requirements */
1081 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1082 return EINVAL;
1083
1084 if (n_virt) {
1085 if ((n_phys == 0) || n_spar || n_meta)
1086 return EINVAL;
1087 }
1088 if (n_spar + n_phys == 0)
1089 return EINVAL;
1090
1091 /* vat's can only be on a sequential media */
1092 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1093 if (n_virt)
1094 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1095
1096 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1097 if (n_virt)
1098 ump->meta_alloc = UDF_ALLOC_VAT;
1099 if (n_meta)
1100 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1101
1102 /* special cases for pseudo-overwrite */
1103 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1104 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1105 if (n_meta) {
1106 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1107 } else {
1108 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1109 }
1110 }
1111
1112 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1113 ump->data_alloc, ump->meta_alloc));
1114 /* TODO determine partitions to write data and metadata ? */
1115
1116 /* signal its OK for now */
1117 return 0;
1118 }
1119
1120 /* --------------------------------------------------------------------- */
1121
1122 /*
1123 * Read in complete VAT file and check if its indeed a VAT file descriptor
1124 */
1125
1126 static int
1127 udf_check_for_vat(struct udf_node *vat_node)
1128 {
1129 struct udf_mount *ump;
1130 struct icb_tag *icbtag;
1131 struct timestamp *mtime;
1132 struct regid *regid;
1133 struct udf_vat *vat;
1134 struct udf_logvol_info *lvinfo;
1135 uint32_t vat_length, alloc_length;
1136 uint32_t vat_offset, vat_entries;
1137 uint32_t sector_size;
1138 uint32_t sectors;
1139 uint32_t *raw_vat;
1140 char *regid_name;
1141 int filetype;
1142 int error;
1143
1144 /* vat_length is really 64 bits though impossible */
1145
1146 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1147 if (!vat_node)
1148 return ENOENT;
1149
1150 /* get mount info */
1151 ump = vat_node->ump;
1152
1153 /* check assertions */
1154 assert(vat_node->fe || vat_node->efe);
1155 assert(ump->logvol_integrity);
1156
1157 /* get information from fe/efe */
1158 if (vat_node->fe) {
1159 vat_length = udf_rw64(vat_node->fe->inf_len);
1160 icbtag = &vat_node->fe->icbtag;
1161 mtime = &vat_node->fe->mtime;
1162 } else {
1163 vat_length = udf_rw64(vat_node->efe->inf_len);
1164 icbtag = &vat_node->efe->icbtag;
1165 mtime = &vat_node->efe->mtime;
1166 }
1167
1168 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1169 filetype = icbtag->file_type;
1170 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1171 return ENOENT;
1172
1173 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1174 /* place a sanity check on the length; currently 1Mb in size */
1175 if (vat_length > 1*1024*1024)
1176 return ENOENT;
1177
1178 /* get sector size */
1179 sector_size = vat_node->ump->discinfo.sector_size;
1180
1181 /* calculate how many sectors to read in and how much to allocate */
1182 sectors = (vat_length + sector_size -1) / sector_size;
1183 alloc_length = (sectors + 2) * sector_size;
1184
1185 /* try to allocate the space */
1186 ump->vat_table_alloc_length = alloc_length;
1187 ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1188 if (!ump->vat_table)
1189 return ENOMEM; /* impossible to allocate */
1190 DPRINTF(VOLUMES, ("\talloced fine\n"));
1191
1192 /* read it in! */
1193 raw_vat = (uint32_t *) ump->vat_table;
1194 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1195 if (error) {
1196 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1197 /* not completely readable... :( bomb out */
1198 free(ump->vat_table, M_UDFVOLD);
1199 ump->vat_table = NULL;
1200 return error;
1201 }
1202 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1203
1204 /*
1205 * check contents of the file if its the old 1.50 VAT table format.
1206 * Its notoriously broken and allthough some implementations support an
1207 * extention as defined in the UDF 1.50 errata document, its doubtfull
1208 * to be useable since a lot of implementations don't maintain it.
1209 */
1210 lvinfo = ump->logvol_info;
1211
1212 if (filetype == 0) {
1213 /* definition */
1214 vat_offset = 0;
1215 vat_entries = (vat_length-36)/4;
1216
1217 /* check 1.50 VAT */
1218 regid = (struct regid *) (raw_vat + vat_entries);
1219 regid_name = (char *) regid->id;
1220 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1221 if (error) {
1222 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1223 free(ump->vat_table, M_UDFVOLD);
1224 ump->vat_table = NULL;
1225 return ENOENT;
1226 }
1227 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1228 } else {
1229 vat = (struct udf_vat *) raw_vat;
1230
1231 /* definition */
1232 vat_offset = vat->header_len;
1233 vat_entries = (vat_length - vat_offset)/4;
1234
1235 assert(lvinfo);
1236 lvinfo->num_files = vat->num_files;
1237 lvinfo->num_directories = vat->num_directories;
1238 lvinfo->min_udf_readver = vat->min_udf_readver;
1239 lvinfo->min_udf_writever = vat->min_udf_writever;
1240 lvinfo->max_udf_writever = vat->max_udf_writever;
1241 }
1242
1243 ump->vat_offset = vat_offset;
1244 ump->vat_entries = vat_entries;
1245
1246 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1247 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1248 ump->logvol_integrity->time = *mtime;
1249
1250 return 0; /* success! */
1251 }
1252
1253 /* --------------------------------------------------------------------- */
1254
1255 static int
1256 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1257 {
1258 struct udf_node *vat_node;
1259 struct long_ad icb_loc;
1260 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1261 int error;
1262
1263 /* mapping info not needed */
1264 mapping = mapping;
1265
1266 vat_loc = ump->last_possible_vat_location;
1267 early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
1268 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
1269 late_vat_loc = vat_loc + 1024;
1270
1271 /* TODO first search last sector? */
1272 do {
1273 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1274 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1275 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1276
1277 error = udf_get_node(ump, &icb_loc, &vat_node);
1278 if (!error) error = udf_check_for_vat(vat_node);
1279 if (!error) break;
1280 if (vat_node) {
1281 vput(vat_node->vnode);
1282 udf_dispose_node(vat_node);
1283 }
1284 vat_loc--; /* walk backwards */
1285 } while (vat_loc >= early_vat_loc);
1286
1287 /* we don't need our VAT node anymore */
1288 if (vat_node) {
1289 vput(vat_node->vnode);
1290 udf_dispose_node(vat_node);
1291 }
1292
1293 return error;
1294 }
1295
1296 /* --------------------------------------------------------------------- */
1297
1298 static int
1299 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1300 {
1301 union dscrptr *dscr;
1302 struct part_map_spare *pms = &mapping->pms;
1303 uint32_t lb_num;
1304 int spar, error;
1305
1306 /*
1307 * The partition mapping passed on to us specifies the information we
1308 * need to locate and initialise the sparable partition mapping
1309 * information we need.
1310 */
1311
1312 DPRINTF(VOLUMES, ("Read sparable table\n"));
1313 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1314 for (spar = 0; spar < pms->n_st; spar++) {
1315 lb_num = pms->st_loc[spar];
1316 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1317 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1318 if (!error && dscr) {
1319 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1320 if (ump->sparing_table)
1321 free(ump->sparing_table, M_UDFVOLD);
1322 ump->sparing_table = &dscr->spt;
1323 dscr = NULL;
1324 DPRINTF(VOLUMES,
1325 ("Sparing table accepted (%d entries)\n",
1326 udf_rw16(ump->sparing_table->rt_l)));
1327 break; /* we're done */
1328 }
1329 }
1330 if (dscr)
1331 free(dscr, M_UDFVOLD);
1332 }
1333
1334 if (ump->sparing_table)
1335 return 0;
1336
1337 return ENOENT;
1338 }
1339
1340 /* --------------------------------------------------------------------- */
1341
1342 #define UDF_SET_SYSTEMFILE(vp) \
1343 simple_lock(&(vp)->v_interlock); \
1344 (vp)->v_flag |= VSYSTEM; \
1345 simple_unlock(&(vp)->v_interlock);\
1346 vref(vp); \
1347 vput(vp); \
1348
1349 static int
1350 udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
1351 {
1352 struct part_map_meta *pmm = &mapping->pmm;
1353 struct long_ad icb_loc;
1354 struct vnode *vp;
1355 int error;
1356
1357 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
1358 icb_loc.loc.part_num = pmm->part_num;
1359 icb_loc.loc.lb_num = pmm->meta_file_lbn;
1360 DPRINTF(VOLUMES, ("Metadata file\n"));
1361 error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
1362 if (ump->metadata_file) {
1363 vp = ump->metadata_file->vnode;
1364 UDF_SET_SYSTEMFILE(vp);
1365 }
1366
1367 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
1368 if (icb_loc.loc.lb_num != -1) {
1369 DPRINTF(VOLUMES, ("Metadata copy file\n"));
1370 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
1371 if (ump->metadatamirror_file) {
1372 vp = ump->metadatamirror_file->vnode;
1373 UDF_SET_SYSTEMFILE(vp);
1374 }
1375 }
1376
1377 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
1378 if (icb_loc.loc.lb_num != -1) {
1379 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
1380 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
1381 if (ump->metadatabitmap_file) {
1382 vp = ump->metadatabitmap_file->vnode;
1383 UDF_SET_SYSTEMFILE(vp);
1384 }
1385 }
1386
1387 /* if we're mounting read-only we relax the requirements */
1388 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
1389 error = EFAULT;
1390 if (ump->metadata_file)
1391 error = 0;
1392 if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
1393 printf( "udf mount: Metadata file not readable, "
1394 "substituting Metadata copy file\n");
1395 ump->metadata_file = ump->metadatamirror_file;
1396 ump->metadatamirror_file = NULL;
1397 error = 0;
1398 }
1399 } else {
1400 /* mounting read/write */
1401 DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
1402 error = EROFS;
1403 }
1404 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
1405 "metadata files\n"));
1406 return error;
1407 }
1408 #undef UDF_SET_SYSTEMFILE
1409
1410 /* --------------------------------------------------------------------- */
1411
1412 int
1413 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1414 {
1415 union udf_pmap *mapping;
1416 uint32_t n_pm, mt_l;
1417 uint32_t log_part;
1418 uint8_t *pmap_pos;
1419 int pmap_size;
1420 int error;
1421
1422 /* We have to iterate again over the part mappings for locations */
1423 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1424 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1425 pmap_pos = ump->logical_vol->maps;
1426
1427 for (log_part = 0; log_part < n_pm; log_part++) {
1428 mapping = (union udf_pmap *) pmap_pos;
1429 switch (ump->vtop_tp[log_part]) {
1430 case UDF_VTOP_TYPE_PHYS :
1431 /* nothing */
1432 break;
1433 case UDF_VTOP_TYPE_VIRT :
1434 /* search and load VAT */
1435 error = udf_search_vat(ump, mapping);
1436 if (error)
1437 return ENOENT;
1438 break;
1439 case UDF_VTOP_TYPE_SPARABLE :
1440 /* load one of the sparable tables */
1441 error = udf_read_sparables(ump, mapping);
1442 if (error)
1443 return ENOENT;
1444 break;
1445 case UDF_VTOP_TYPE_META :
1446 /* load the associated file descriptors */
1447 error = udf_read_metadata_files(ump, mapping);
1448 if (error)
1449 return ENOENT;
1450 break;
1451 default:
1452 break;
1453 }
1454 pmap_size = pmap_pos[1];
1455 pmap_pos += pmap_size;
1456 }
1457
1458 return 0;
1459 }
1460
1461 /* --------------------------------------------------------------------- */
1462
1463 int
1464 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1465 {
1466 struct udf_node *rootdir_node, *streamdir_node;
1467 union dscrptr *dscr;
1468 struct long_ad fsd_loc, *dir_loc;
1469 uint32_t lb_num, dummy;
1470 uint32_t fsd_len;
1471 int dscr_type;
1472 int error;
1473
1474 /* TODO implement FSD reading in separate function like integrity? */
1475 /* get fileset descriptor sequence */
1476 fsd_loc = ump->logical_vol->lv_fsd_loc;
1477 fsd_len = udf_rw32(fsd_loc.len);
1478
1479 dscr = NULL;
1480 error = 0;
1481 while (fsd_len || error) {
1482 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1483 /* translate fsd_loc to lb_num */
1484 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1485 if (error)
1486 break;
1487 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1488 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1489 /* end markers */
1490 if (error || (dscr == NULL))
1491 break;
1492
1493 /* analyse */
1494 dscr_type = udf_rw16(dscr->tag.id);
1495 if (dscr_type == TAGID_TERM)
1496 break;
1497 if (dscr_type != TAGID_FSD) {
1498 free(dscr, M_UDFVOLD);
1499 return ENOENT;
1500 }
1501
1502 /*
1503 * TODO check for multiple fileset descriptors; its only
1504 * picking the last now. Also check for FSD
1505 * correctness/interpretability
1506 */
1507
1508 /* update */
1509 if (ump->fileset_desc) {
1510 free(ump->fileset_desc, M_UDFVOLD);
1511 }
1512 ump->fileset_desc = &dscr->fsd;
1513 dscr = NULL;
1514
1515 /* continue to the next fsd */
1516 fsd_len -= ump->discinfo.sector_size;
1517 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1518
1519 /* follow up to fsd->next_ex (long_ad) if its not null */
1520 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1521 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1522 fsd_loc = ump->fileset_desc->next_ex;
1523 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1524 }
1525 }
1526 if (dscr)
1527 free(dscr, M_UDFVOLD);
1528
1529 /* there has to be one */
1530 if (ump->fileset_desc == NULL)
1531 return ENOENT;
1532
1533 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1534
1535 /*
1536 * Now the FSD is known, read in the rootdirectory and if one exists,
1537 * the system stream dir. Some files in the system streamdir are not
1538 * wanted in this implementation since they are not maintained. If
1539 * writing is enabled we'll delete these files if they exist.
1540 */
1541
1542 rootdir_node = streamdir_node = NULL;
1543 dir_loc = NULL;
1544
1545 /* try to read in the rootdir */
1546 dir_loc = &ump->fileset_desc->rootdir_icb;
1547 error = udf_get_node(ump, dir_loc, &rootdir_node);
1548 if (error)
1549 return ENOENT;
1550
1551 /* aparently it read in fine */
1552
1553 /*
1554 * Try the system stream directory; not very likely in the ones we
1555 * test, but for completeness.
1556 */
1557 dir_loc = &ump->fileset_desc->streamdir_icb;
1558 if (udf_rw32(dir_loc->len)) {
1559 error = udf_get_node(ump, dir_loc, &streamdir_node);
1560 if (error)
1561 printf("udf mount: streamdir defined but ignored\n");
1562 if (!error) {
1563 /*
1564 * TODO process streamdir `baddies' i.e. files we dont
1565 * want if R/W
1566 */
1567 }
1568 }
1569
1570 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1571
1572 /* release the vnodes again; they'll be auto-recycled later */
1573 if (streamdir_node) {
1574 vput(streamdir_node->vnode);
1575 }
1576 if (rootdir_node) {
1577 vput(rootdir_node->vnode);
1578 }
1579
1580 return 0;
1581 }
1582
1583 /* --------------------------------------------------------------------- */
1584
1585 int
1586 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1587 uint32_t *lb_numres, uint32_t *extres)
1588 {
1589 struct part_desc *pdesc;
1590 struct spare_map_entry *sme;
1591 struct file_entry *fe;
1592 struct extfile_entry *efe;
1593 struct short_ad *s_ad;
1594 struct long_ad *l_ad;
1595 uint64_t cur_offset;
1596 uint32_t *trans;
1597 uint32_t lb_num, plb_num, lb_rel, lb_packet;
1598 uint32_t sector_size, len, alloclen;
1599 uint8_t *pos;
1600 int rel, vpart, part, addr_type, icblen, icbflags, flags;
1601
1602 assert(ump && icb_loc && lb_numres);
1603
1604 vpart = udf_rw16(icb_loc->loc.part_num);
1605 lb_num = udf_rw32(icb_loc->loc.lb_num);
1606 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1607 return EINVAL;
1608
1609 part = ump->vtop[vpart];
1610 pdesc = ump->partitions[part];
1611
1612 switch (ump->vtop_tp[vpart]) {
1613 case UDF_VTOP_TYPE_RAW :
1614 /* 1:1 to the end of the device */
1615 *lb_numres = lb_num;
1616 *extres = INT_MAX;
1617 return 0;
1618 case UDF_VTOP_TYPE_PHYS :
1619 /* transform into its disc logical block */
1620 if (lb_num > udf_rw32(pdesc->part_len))
1621 return EINVAL;
1622 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1623
1624 /* extent from here to the end of the partition */
1625 *extres = udf_rw32(pdesc->part_len) - lb_num;
1626 return 0;
1627 case UDF_VTOP_TYPE_VIRT :
1628 /* only maps one sector, lookup in VAT */
1629 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1630 return EINVAL;
1631
1632 /* lookup in virtual allocation table */
1633 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1634 lb_num = udf_rw32(trans[lb_num]);
1635
1636 /* transform into its disc logical block */
1637 if (lb_num > udf_rw32(pdesc->part_len))
1638 return EINVAL;
1639 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1640
1641 /* just one logical block */
1642 *extres = 1;
1643 return 0;
1644 case UDF_VTOP_TYPE_SPARABLE :
1645 /* check if the packet containing the lb_num is remapped */
1646 lb_packet = lb_num / ump->sparable_packet_len;
1647 lb_rel = lb_num % ump->sparable_packet_len;
1648
1649 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1650 sme = &ump->sparing_table->entries[rel];
1651 if (lb_packet == udf_rw32(sme->org)) {
1652 /* NOTE maps to absolute disc logical block! */
1653 *lb_numres = udf_rw32(sme->map) + lb_rel;
1654 *extres = ump->sparable_packet_len - lb_rel;
1655 return 0;
1656 }
1657 }
1658
1659 /* transform into its disc logical block */
1660 if (lb_num > udf_rw32(pdesc->part_len))
1661 return EINVAL;
1662 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1663
1664 /* rest of block */
1665 *extres = ump->sparable_packet_len - lb_rel;
1666 return 0;
1667 case UDF_VTOP_TYPE_META :
1668 /* we have to look into the file's allocation descriptors */
1669 /* free after udf_translate_file_extent() */
1670 /* XXX sector size or lb_size? */
1671 sector_size = ump->discinfo.sector_size;
1672 /* XXX should we claim exclusive access to the metafile ? */
1673 fe = ump->metadata_file->fe;
1674 efe = ump->metadata_file->efe;
1675 if (fe) {
1676 alloclen = udf_rw32(fe->l_ad);
1677 pos = &fe->data[0] + udf_rw32(fe->l_ea);
1678 icbflags = udf_rw16(fe->icbtag.flags);
1679 } else {
1680 assert(efe);
1681 alloclen = udf_rw32(efe->l_ad);
1682 pos = &efe->data[0] + udf_rw32(efe->l_ea);
1683 icbflags = udf_rw16(efe->icbtag.flags);
1684 }
1685 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
1686
1687 cur_offset = 0;
1688 while (alloclen) {
1689 if (addr_type == UDF_ICB_SHORT_ALLOC) {
1690 icblen = sizeof(struct short_ad);
1691 s_ad = (struct short_ad *) pos;
1692 len = udf_rw32(s_ad->len);
1693 plb_num = udf_rw32(s_ad->lb_num);
1694 } else {
1695 /* should not be present, but why not */
1696 icblen = sizeof(struct long_ad);
1697 l_ad = (struct long_ad *) pos;
1698 len = udf_rw32(l_ad->len);
1699 plb_num = udf_rw32(l_ad->loc.lb_num);
1700 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
1701 }
1702 /* process extent */
1703 flags = UDF_EXT_FLAGS(len);
1704 len = UDF_EXT_LEN(len);
1705
1706 if (cur_offset + len > lb_num * sector_size) {
1707 if (flags != UDF_EXT_ALLOCATED)
1708 return EINVAL;
1709 lb_rel = lb_num - cur_offset / sector_size;
1710 /* remainder of this extent */
1711 *lb_numres = plb_num + lb_rel +
1712 udf_rw32(pdesc->start_loc);
1713 *extres = (len / sector_size) - lb_rel;
1714 return 0;
1715 }
1716 cur_offset += len;
1717 pos += icblen;
1718 alloclen -= icblen;
1719 }
1720 /* not found */
1721 DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
1722 return EINVAL;
1723 default:
1724 printf("UDF vtop translation scheme %d unimplemented yet\n",
1725 ump->vtop_tp[vpart]);
1726 }
1727
1728 return EINVAL;
1729 }
1730
1731 /* --------------------------------------------------------------------- */
1732
1733 /* To make absolutely sure we are NOT returning zero, add one :) */
1734
1735 long
1736 udf_calchash(struct long_ad *icbptr)
1737 {
1738 /* ought to be enough since each mountpoint has its own chain */
1739 return udf_rw32(icbptr->loc.lb_num) + 1;
1740 }
1741
1742 /* --------------------------------------------------------------------- */
1743
1744 static struct udf_node *
1745 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1746 {
1747 struct udf_node *unp;
1748 struct vnode *vp;
1749 uint32_t hashline;
1750
1751 loop:
1752 simple_lock(&ump->ihash_slock);
1753
1754 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1755 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1756 assert(unp);
1757 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1758 unp->loc.loc.part_num == icbptr->loc.part_num) {
1759 vp = unp->vnode;
1760 assert(vp);
1761 simple_lock(&vp->v_interlock);
1762 simple_unlock(&ump->ihash_slock);
1763 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1764 goto loop;
1765 return unp;
1766 }
1767 }
1768 simple_unlock(&ump->ihash_slock);
1769
1770 return NULL;
1771 }
1772
1773 /* --------------------------------------------------------------------- */
1774
1775 static void
1776 udf_hashins(struct udf_node *unp)
1777 {
1778 struct udf_mount *ump;
1779 uint32_t hashline;
1780
1781 ump = unp->ump;
1782 simple_lock(&ump->ihash_slock);
1783
1784 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1785 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1786
1787 simple_unlock(&ump->ihash_slock);
1788 }
1789
1790 /* --------------------------------------------------------------------- */
1791
1792 static void
1793 udf_hashrem(struct udf_node *unp)
1794 {
1795 struct udf_mount *ump;
1796
1797 ump = unp->ump;
1798 simple_lock(&ump->ihash_slock);
1799
1800 LIST_REMOVE(unp, hashchain);
1801
1802 simple_unlock(&ump->ihash_slock);
1803 }
1804
1805 /* --------------------------------------------------------------------- */
1806
1807 int
1808 udf_dispose_locked_node(struct udf_node *node)
1809 {
1810 if (!node)
1811 return 0;
1812 if (node->vnode)
1813 VOP_UNLOCK(node->vnode, 0);
1814 return udf_dispose_node(node);
1815 }
1816
1817 /* --------------------------------------------------------------------- */
1818
1819 int
1820 udf_dispose_node(struct udf_node *node)
1821 {
1822 struct vnode *vp;
1823
1824 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1825 if (!node) {
1826 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1827 return 0;
1828 }
1829
1830 vp = node->vnode;
1831
1832 /* TODO extended attributes and streamdir */
1833
1834 /* remove from our hash lookup table */
1835 udf_hashrem(node);
1836
1837 /* dissociate our udf_node from the vnode */
1838 vp->v_data = NULL;
1839
1840 /* free associated memory and the node itself */
1841 if (node->fe)
1842 pool_put(node->ump->desc_pool, node->fe);
1843 if (node->efe)
1844 pool_put(node->ump->desc_pool, node->efe);
1845 pool_put(&udf_node_pool, node);
1846
1847 return 0;
1848 }
1849
1850 /* --------------------------------------------------------------------- */
1851
1852 /*
1853 * Genfs interfacing
1854 *
1855 * static const struct genfs_ops udffs_genfsops = {
1856 * .gop_size = genfs_size,
1857 * size of transfers
1858 * .gop_alloc = udf_gop_alloc,
1859 * unknown
1860 * .gop_write = genfs_gop_write,
1861 * putpages interface code
1862 * .gop_markupdate = udf_gop_markupdate,
1863 * set update/modify flags etc.
1864 * }
1865 */
1866
1867 /*
1868 * Genfs interface. These four functions are the only ones defined though not
1869 * documented... great.... why is chosen for the `.' initialisers i dont know
1870 * but other filingsystems seem to use it this way.
1871 */
1872
1873 static int
1874 udf_gop_alloc(struct vnode *vp, off_t off,
1875 off_t len, int flags, kauth_cred_t cred)
1876 {
1877 return 0;
1878 }
1879
1880
1881 static void
1882 udf_gop_markupdate(struct vnode *vp, int flags)
1883 {
1884 struct udf_node *udf_node = VTOI(vp);
1885 u_long mask;
1886
1887 udf_node = udf_node; /* shut up gcc */
1888
1889 mask = 0;
1890 #ifdef notyet
1891 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1892 mask = UDF_SET_ACCESS;
1893 }
1894 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1895 mask |= UDF_SET_UPDATE;
1896 }
1897 if (mask) {
1898 udf_node->update_flag |= mask;
1899 }
1900 #endif
1901 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1902 }
1903
1904
1905 static const struct genfs_ops udf_genfsops = {
1906 .gop_size = genfs_size,
1907 .gop_alloc = udf_gop_alloc,
1908 .gop_write = genfs_gop_write,
1909 .gop_markupdate = udf_gop_markupdate,
1910 };
1911
1912 /* --------------------------------------------------------------------- */
1913
1914 /*
1915 * Each node can have an attached streamdir node though not
1916 * recursively. These are otherwise known as named substreams/named
1917 * extended attributes that have no size limitations.
1918 *
1919 * `Normal' extended attributes are indicated with a number and are recorded
1920 * in either the fe/efe descriptor itself for small descriptors or recorded in
1921 * the attached extended attribute file. Since this file can get fragmented,
1922 * care ought to be taken.
1923 */
1924
1925 int
1926 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1927 struct udf_node **noderes)
1928 {
1929 union dscrptr *dscr, *tmpdscr;
1930 struct udf_node *node;
1931 struct vnode *nvp;
1932 struct long_ad icb_loc;
1933 extern int (**udf_vnodeop_p)(void *);
1934 uint64_t file_size;
1935 uint32_t lb_size, sector, dummy;
1936 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1937 int error;
1938
1939 DPRINTF(NODE, ("udf_get_node called\n"));
1940 *noderes = node = NULL;
1941
1942 /* lock to disallow simultanious creation of same node */
1943 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1944
1945 DPRINTF(NODE, ("\tlookup in hash table\n"));
1946 /* lookup in hash table */
1947 assert(ump);
1948 assert(node_icb_loc);
1949 node = udf_hashget(ump, node_icb_loc);
1950 if (node) {
1951 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1952 /* vnode is returned locked */
1953 *noderes = node;
1954 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1955 return 0;
1956 }
1957
1958 /* garbage check: translate node_icb_loc to sectornr */
1959 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1960 if (error) {
1961 /* no use, this will fail anyway */
1962 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1963 return EINVAL;
1964 }
1965
1966 /* build node (do initialise!) */
1967 node = pool_get(&udf_node_pool, PR_WAITOK);
1968 memset(node, 0, sizeof(struct udf_node));
1969
1970 DPRINTF(NODE, ("\tget new vnode\n"));
1971 /* give it a vnode */
1972 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1973 if (error) {
1974 pool_put(&udf_node_pool, node);
1975 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1976 return error;
1977 }
1978
1979 /* allways return locked vnode */
1980 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1981 /* recycle vnode and unlock; simultanious will fail too */
1982 ungetnewvnode(nvp);
1983 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1984 return error;
1985 }
1986
1987 /* initialise crosslinks, note location of fe/efe for hashing */
1988 node->ump = ump;
1989 node->vnode = nvp;
1990 nvp->v_data = node;
1991 node->loc = *node_icb_loc;
1992 node->lockf = 0;
1993
1994 /* insert into the hash lookup */
1995 udf_hashins(node);
1996
1997 /* safe to unlock, the entry is in the hash table, vnode is locked */
1998 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1999
2000 icb_loc = *node_icb_loc;
2001 needs_indirect = 0;
2002 strat4096 = 0;
2003 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
2004 file_size = 0;
2005 lb_size = udf_rw32(ump->logical_vol->lb_size);
2006
2007 do {
2008 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
2009 if (error)
2010 break;
2011
2012 /* try to read in fe/efe */
2013 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
2014
2015 /* blank sector marks end of sequence, check this */
2016 if ((tmpdscr == NULL) && (!strat4096))
2017 error = ENOENT;
2018
2019 /* break if read error or blank sector */
2020 if (error || (tmpdscr == NULL))
2021 break;
2022
2023 /* process descriptor based on the descriptor type */
2024 dscr_type = udf_rw16(tmpdscr->tag.id);
2025
2026 /* if dealing with an indirect entry, follow the link */
2027 if (dscr_type == TAGID_INDIRECT_ENTRY) {
2028 needs_indirect = 0;
2029 icb_loc = tmpdscr->inde.indirect_icb;
2030 free(tmpdscr, M_UDFTEMP);
2031 continue;
2032 }
2033
2034 /* only file entries and extended file entries allowed here */
2035 if ((dscr_type != TAGID_FENTRY) &&
2036 (dscr_type != TAGID_EXTFENTRY)) {
2037 free(tmpdscr, M_UDFTEMP);
2038 error = ENOENT;
2039 break;
2040 }
2041
2042 /* get descriptor space from our pool */
2043 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
2044
2045 dscr = pool_get(ump->desc_pool, PR_WAITOK);
2046 memcpy(dscr, tmpdscr, lb_size);
2047 free(tmpdscr, M_UDFTEMP);
2048
2049 /* record and process/update (ext)fentry */
2050 if (dscr_type == TAGID_FENTRY) {
2051 if (node->fe)
2052 pool_put(ump->desc_pool, node->fe);
2053 node->fe = &dscr->fe;
2054 strat = udf_rw16(node->fe->icbtag.strat_type);
2055 udf_file_type = node->fe->icbtag.file_type;
2056 file_size = udf_rw64(node->fe->inf_len);
2057 } else {
2058 if (node->efe)
2059 pool_put(ump->desc_pool, node->efe);
2060 node->efe = &dscr->efe;
2061 strat = udf_rw16(node->efe->icbtag.strat_type);
2062 udf_file_type = node->efe->icbtag.file_type;
2063 file_size = udf_rw64(node->efe->inf_len);
2064 }
2065
2066 /* check recording strategy (structure) */
2067
2068 /*
2069 * Strategy 4096 is a daisy linked chain terminating with an
2070 * unrecorded sector or a TERM descriptor. The next
2071 * descriptor is to be found in the sector that follows the
2072 * current sector.
2073 */
2074 if (strat == 4096) {
2075 strat4096 = 1;
2076 needs_indirect = 1;
2077
2078 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
2079 }
2080
2081 /*
2082 * Strategy 4 is the normal strategy and terminates, but if
2083 * we're in strategy 4096, we can't have strategy 4 mixed in
2084 */
2085
2086 if (strat == 4) {
2087 if (strat4096) {
2088 error = EINVAL;
2089 break;
2090 }
2091 break; /* done */
2092 }
2093 } while (!error);
2094
2095 if (error) {
2096 /* recycle udf_node */
2097 udf_dispose_node(node);
2098
2099 /* recycle vnode */
2100 nvp->v_data = NULL;
2101 ungetnewvnode(nvp);
2102
2103 return EINVAL; /* error code ok? */
2104 }
2105
2106 /* post process and initialise node */
2107
2108 /* assert no references to dscr anymore beyong this point */
2109 assert((node->fe) || (node->efe));
2110 dscr = NULL;
2111
2112 /*
2113 * Record where to record an updated version of the descriptor. If
2114 * there is a sequence of indirect entries, icb_loc will have been
2115 * updated. Its the write disipline to allocate new space and to make
2116 * sure the chain is maintained.
2117 *
2118 * `needs_indirect' flags if the next location is to be filled with
2119 * with an indirect entry.
2120 */
2121 node->next_loc = icb_loc;
2122 node->needs_indirect = needs_indirect;
2123
2124 /*
2125 * Translate UDF filetypes into vnode types.
2126 *
2127 * Systemfiles like the meta main and mirror files are not treated as
2128 * normal files, so we type them as having no type. UDF dictates that
2129 * they are not allowed to be visible.
2130 */
2131
2132 /* TODO specfs, fifofs etc etc. vnops setting */
2133 switch (udf_file_type) {
2134 case UDF_ICB_FILETYPE_DIRECTORY :
2135 case UDF_ICB_FILETYPE_STREAMDIR :
2136 nvp->v_type = VDIR;
2137 break;
2138 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2139 nvp->v_type = VBLK;
2140 break;
2141 case UDF_ICB_FILETYPE_CHARDEVICE :
2142 nvp->v_type = VCHR;
2143 break;
2144 case UDF_ICB_FILETYPE_SYMLINK :
2145 nvp->v_type = VLNK;
2146 break;
2147 case UDF_ICB_FILETYPE_VAT :
2148 case UDF_ICB_FILETYPE_META_MAIN :
2149 case UDF_ICB_FILETYPE_META_MIRROR :
2150 nvp->v_type = VNON;
2151 break;
2152 case UDF_ICB_FILETYPE_RANDOMACCESS :
2153 case UDF_ICB_FILETYPE_REALTIME :
2154 nvp->v_type = VREG;
2155 break;
2156 default:
2157 /* YIKES, either a block/char device, fifo or something else */
2158 nvp->v_type = VNON;
2159 }
2160
2161 /* initialise genfs */
2162 genfs_node_init(nvp, &udf_genfsops);
2163
2164 /* don't forget to set vnode's v_size */
2165 nvp->v_size = file_size;
2166
2167 /* TODO ext attr and streamdir nodes */
2168
2169 *noderes = node;
2170
2171 return 0;
2172 }
2173
2174 /* --------------------------------------------------------------------- */
2175
2176 /* UDF<->unix converters */
2177
2178 /* --------------------------------------------------------------------- */
2179
2180 static mode_t
2181 udf_perm_to_unix_mode(uint32_t perm)
2182 {
2183 mode_t mode;
2184
2185 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2186 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2187 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2188
2189 return mode;
2190 }
2191
2192 /* --------------------------------------------------------------------- */
2193
2194 #ifdef notyet
2195 static uint32_t
2196 unix_mode_to_udf_perm(mode_t mode)
2197 {
2198 uint32_t perm;
2199
2200 perm = ((mode & S_IRWXO) );
2201 perm |= ((mode & S_IRWXG) << 2);
2202 perm |= ((mode & S_IRWXU) << 4);
2203 perm |= ((mode & S_IWOTH) << 3);
2204 perm |= ((mode & S_IWGRP) << 5);
2205 perm |= ((mode & S_IWUSR) << 7);
2206
2207 return perm;
2208 }
2209 #endif
2210
2211 /* --------------------------------------------------------------------- */
2212
2213 static uint32_t
2214 udf_icb_to_unix_filetype(uint32_t icbftype)
2215 {
2216 switch (icbftype) {
2217 case UDF_ICB_FILETYPE_DIRECTORY :
2218 case UDF_ICB_FILETYPE_STREAMDIR :
2219 return S_IFDIR;
2220 case UDF_ICB_FILETYPE_FIFO :
2221 return S_IFIFO;
2222 case UDF_ICB_FILETYPE_CHARDEVICE :
2223 return S_IFCHR;
2224 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2225 return S_IFBLK;
2226 case UDF_ICB_FILETYPE_RANDOMACCESS :
2227 case UDF_ICB_FILETYPE_REALTIME :
2228 return S_IFREG;
2229 case UDF_ICB_FILETYPE_SYMLINK :
2230 return S_IFLNK;
2231 case UDF_ICB_FILETYPE_SOCKET :
2232 return S_IFSOCK;
2233 }
2234 /* no idea what this is */
2235 return 0;
2236 }
2237
2238 /* --------------------------------------------------------------------- */
2239
2240 /* TODO KNF-ify */
2241
2242 void
2243 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2244 {
2245 uint16_t *raw_name, *unix_name;
2246 uint16_t *inchp, ch;
2247 uint8_t *outchp;
2248 int ucode_chars, nice_uchars;
2249
2250 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
2251 unix_name = raw_name + 1024; /* split space in half */
2252 assert(sizeof(char) == sizeof(uint8_t));
2253 outchp = (uint8_t *) result;
2254 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2255 *raw_name = *unix_name = 0;
2256 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2257 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2258 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2259 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2260 ch = *inchp;
2261 /* XXX sloppy unicode -> latin */
2262 *outchp++ = ch & 255;
2263 if (!ch) break;
2264 }
2265 *outchp++ = 0;
2266 } else {
2267 /* assume 8bit char length byte latin-1 */
2268 assert(*id == 8);
2269 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2270 }
2271 free(raw_name, M_UDFTEMP);
2272 }
2273
2274 /* --------------------------------------------------------------------- */
2275
2276 /* TODO KNF-ify */
2277
2278 void
2279 unix_to_udf_name(char *result, char *name,
2280 uint8_t *result_len, struct charspec *chsp)
2281 {
2282 uint16_t *raw_name;
2283 int udf_chars, name_len;
2284 char *inchp;
2285 uint16_t *outchp;
2286
2287 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
2288 /* convert latin-1 or whatever to unicode-16 */
2289 *raw_name = 0;
2290 name_len = 0;
2291 inchp = name;
2292 outchp = raw_name;
2293 while (*inchp) {
2294 *outchp++ = (uint16_t) (*inchp++);
2295 name_len++;
2296 }
2297
2298 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2299 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2300 } else {
2301 /* XXX assume 8bit char length byte latin-1 */
2302 *result++ = 8; udf_chars = 1;
2303 strncpy(result, name + 1, strlen(name+1));
2304 udf_chars += strlen(name);
2305 }
2306 *result_len = udf_chars;
2307 free(raw_name, M_UDFTEMP);
2308 }
2309
2310 /* --------------------------------------------------------------------- */
2311
2312 void
2313 udf_timestamp_to_timespec(struct udf_mount *ump,
2314 struct timestamp *timestamp,
2315 struct timespec *timespec)
2316 {
2317 struct clock_ymdhms ymdhms;
2318 uint32_t usecs, secs, nsecs;
2319 uint16_t tz;
2320
2321 /* fill in ymdhms structure from timestamp */
2322 memset(&ymdhms, 0, sizeof(ymdhms));
2323 ymdhms.dt_year = udf_rw16(timestamp->year);
2324 ymdhms.dt_mon = timestamp->month;
2325 ymdhms.dt_day = timestamp->day;
2326 ymdhms.dt_wday = 0; /* ? */
2327 ymdhms.dt_hour = timestamp->hour;
2328 ymdhms.dt_min = timestamp->minute;
2329 ymdhms.dt_sec = timestamp->second;
2330
2331 secs = clock_ymdhms_to_secs(&ymdhms);
2332 usecs = timestamp->usec +
2333 100*timestamp->hund_usec + 10000*timestamp->centisec;
2334 nsecs = usecs * 1000;
2335
2336 /*
2337 * Calculate the time zone. The timezone is 12 bit signed 2's
2338 * compliment, so we gotta do some extra magic to handle it right.
2339 */
2340 tz = udf_rw16(timestamp->type_tz);
2341 tz &= 0x0fff; /* only lower 12 bits are significant */
2342 if (tz & 0x0800) /* sign extention */
2343 tz |= 0xf000;
2344
2345 /* TODO check timezone conversion */
2346 /* check if we are specified a timezone to convert */
2347 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2348 if ((int16_t) tz != -2047)
2349 secs -= (int16_t) tz * 60;
2350 } else {
2351 secs -= ump->mount_args.gmtoff;
2352 }
2353
2354 timespec->tv_sec = secs;
2355 timespec->tv_nsec = nsecs;
2356 }
2357
2358 /* --------------------------------------------------------------------- */
2359
2360 /*
2361 * Attribute and filetypes converters with get/set pairs
2362 */
2363
2364 uint32_t
2365 udf_getaccessmode(struct udf_node *udf_node)
2366 {
2367 struct file_entry *fe;
2368 struct extfile_entry *efe;
2369 uint32_t udf_perm, icbftype;
2370 uint32_t mode, ftype;
2371 uint16_t icbflags;
2372
2373 if (udf_node->fe) {
2374 fe = udf_node->fe;
2375 udf_perm = udf_rw32(fe->perm);
2376 icbftype = fe->icbtag.file_type;
2377 icbflags = udf_rw16(fe->icbtag.flags);
2378 } else {
2379 assert(udf_node->efe);
2380 efe = udf_node->efe;
2381 udf_perm = udf_rw32(efe->perm);
2382 icbftype = efe->icbtag.file_type;
2383 icbflags = udf_rw16(efe->icbtag.flags);
2384 }
2385
2386 mode = udf_perm_to_unix_mode(udf_perm);
2387 ftype = udf_icb_to_unix_filetype(icbftype);
2388
2389 /* set suid, sgid, sticky from flags in fe/efe */
2390 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2391 mode |= S_ISUID;
2392 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2393 mode |= S_ISGID;
2394 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2395 mode |= S_ISVTX;
2396
2397 return mode | ftype;
2398 }
2399
2400 /* --------------------------------------------------------------------- */
2401
2402 /*
2403 * Directory read and manipulation functions
2404 */
2405
2406 int
2407 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2408 struct long_ad *icb_loc)
2409 {
2410 struct udf_node *dir_node = VTOI(vp);
2411 struct file_entry *fe;
2412 struct extfile_entry *efe;
2413 struct fileid_desc *fid;
2414 struct dirent dirent;
2415 uint64_t file_size, diroffset;
2416 uint32_t lb_size;
2417 int found, error;
2418
2419 /* get directory filesize */
2420 if (dir_node->fe) {
2421 fe = dir_node->fe;
2422 file_size = udf_rw64(fe->inf_len);
2423 } else {
2424 assert(dir_node->efe);
2425 efe = dir_node->efe;
2426 file_size = udf_rw64(efe->inf_len);
2427 }
2428
2429 /* allocate temporary space for fid */
2430 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2431 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2432
2433 found = 0;
2434 diroffset = dir_node->last_diroffset;
2435
2436 /*
2437 * if the directory is trunced or if we have never visited it yet,
2438 * start at the end.
2439 */
2440 if ((diroffset >= file_size) || (diroffset == 0)) {
2441 diroffset = dir_node->last_diroffset = file_size;
2442 }
2443
2444 while (!found) {
2445 /* if at the end, go trough zero */
2446 if (diroffset >= file_size)
2447 diroffset = 0;
2448
2449 /* transfer a new fid/dirent */
2450 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2451 if (error)
2452 break;
2453
2454 /* skip deleted entries */
2455 if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
2456 if ((strlen(dirent.d_name) == namelen) &&
2457 (strncmp(dirent.d_name, name, namelen) == 0)) {
2458 found = 1;
2459 *icb_loc = fid->icb;
2460 }
2461 }
2462
2463 if (diroffset == dir_node->last_diroffset) {
2464 /* we have cycled */
2465 break;
2466 }
2467 }
2468 free(fid, M_TEMP);
2469 dir_node->last_diroffset = diroffset;
2470
2471 return found;
2472 }
2473
2474 /* --------------------------------------------------------------------- */
2475
2476 /*
2477 * Read one fid and process it into a dirent and advance to the next (*fid)
2478 * has to be allocated a logical block in size, (*dirent) struct dirent length
2479 */
2480
2481 int
2482 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2483 struct fileid_desc *fid, struct dirent *dirent)
2484 {
2485 struct udf_node *dir_node = VTOI(vp);
2486 struct udf_mount *ump = dir_node->ump;
2487 struct file_entry *fe;
2488 struct extfile_entry *efe;
2489 struct uio dir_uio;
2490 struct iovec dir_iovec;
2491 uint32_t entry_length, lb_size;
2492 uint64_t file_size;
2493 char *fid_name;
2494 int enough, error;
2495
2496 assert(fid);
2497 assert(dirent);
2498 assert(dir_node);
2499 assert(offset);
2500 assert(*offset != 1);
2501
2502 DPRINTF(FIDS, ("read_fid_stream called\n"));
2503 /* check if we're past the end of the directory */
2504 if (dir_node->fe) {
2505 fe = dir_node->fe;
2506 file_size = udf_rw64(fe->inf_len);
2507 } else {
2508 assert(dir_node->efe);
2509 efe = dir_node->efe;
2510 file_size = udf_rw64(efe->inf_len);
2511 }
2512 if (*offset >= file_size)
2513 return EINVAL;
2514
2515 /* get maximum length of FID descriptor */
2516 lb_size = udf_rw32(ump->logical_vol->lb_size);
2517
2518 /* initialise return values */
2519 entry_length = 0;
2520 memset(dirent, 0, sizeof(struct dirent));
2521 memset(fid, 0, lb_size);
2522
2523 /* TODO use vn_rdwr instead of creating our own uio */
2524 /* read part of the directory */
2525 memset(&dir_uio, 0, sizeof(struct uio));
2526 dir_uio.uio_rw = UIO_READ; /* read into this space */
2527 dir_uio.uio_iovcnt = 1;
2528 dir_uio.uio_iov = &dir_iovec;
2529 UIO_SETUP_SYSSPACE(&dir_uio);
2530 dir_iovec.iov_base = fid;
2531 dir_iovec.iov_len = lb_size;
2532 dir_uio.uio_offset = *offset;
2533
2534 /* limit length of read in piece */
2535 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2536
2537 /* read the part into the fid space */
2538 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2539 if (error)
2540 return error;
2541
2542 /*
2543 * Check if we got a whole descriptor.
2544 * XXX Try to `resync' directory stream when something is very wrong.
2545 *
2546 */
2547 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2548 if (!enough) {
2549 /* short dir ... */
2550 return EIO;
2551 }
2552
2553 /* check if our FID header is OK */
2554 error = udf_check_tag(fid);
2555 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2556 if (!error) {
2557 if (udf_rw16(fid->tag.id) != TAGID_FID)
2558 error = ENOENT;
2559 }
2560 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2561
2562 /* check for length */
2563 if (!error) {
2564 entry_length = udf_fidsize(fid, lb_size);
2565 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2566 }
2567 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2568 entry_length, enough?"yes":"no"));
2569
2570 if (!enough) {
2571 /* short dir ... bomb out */
2572 return EIO;
2573 }
2574
2575 /* check FID contents */
2576 if (!error) {
2577 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2578 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2579 }
2580 if (error) {
2581 /* note that is sometimes a bit quick to report */
2582 printf("BROKEN DIRECTORY ENTRY\n");
2583 /* RESYNC? */
2584 /* TODO: use udf_resync_fid_stream */
2585 return EIO;
2586 }
2587 DPRINTF(FIDS, ("\tinterpret FID\n"));
2588
2589 /* we got a whole and valid descriptor! */
2590
2591 /* create resulting dirent structure */
2592 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2593 udf_to_unix_name(dirent->d_name,
2594 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2595
2596 /* '..' has no name, so provide one */
2597 if (fid->file_char & UDF_FILE_CHAR_PAR)
2598 strcpy(dirent->d_name, "..");
2599
2600 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2601 dirent->d_namlen = strlen(dirent->d_name);
2602 dirent->d_reclen = _DIRENT_SIZE(dirent);
2603
2604 /*
2605 * Note that its not worth trying to go for the filetypes now... its
2606 * too expensive too
2607 */
2608 dirent->d_type = DT_UNKNOWN;
2609
2610 /* initial guess for filetype we can make */
2611 if (fid->file_char & UDF_FILE_CHAR_DIR)
2612 dirent->d_type = DT_DIR;
2613
2614 /* advance */
2615 *offset += entry_length;
2616
2617 return error;
2618 }
2619
2620 /* --------------------------------------------------------------------- */
2621
2622 /*
2623 * block based file reading and writing
2624 */
2625
2626 static int
2627 udf_read_internal(struct udf_node *node, uint8_t *blob)
2628 {
2629 struct udf_mount *ump;
2630 struct file_entry *fe;
2631 struct extfile_entry *efe;
2632 uint64_t inflen;
2633 uint32_t sector_size;
2634 uint8_t *pos;
2635 int icbflags, addr_type;
2636
2637 /* shut up gcc */
2638 inflen = addr_type = icbflags = 0;
2639 pos = NULL;
2640
2641 /* get extent and do some paranoia checks */
2642 ump = node->ump;
2643 sector_size = ump->discinfo.sector_size;
2644
2645 fe = node->fe;
2646 efe = node->efe;
2647 if (fe) {
2648 inflen = udf_rw64(fe->inf_len);
2649 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2650 icbflags = udf_rw16(fe->icbtag.flags);
2651 }
2652 if (efe) {
2653 inflen = udf_rw64(efe->inf_len);
2654 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2655 icbflags = udf_rw16(efe->icbtag.flags);
2656 }
2657 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2658
2659 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2660 assert(inflen < sector_size);
2661
2662 /* copy out info */
2663 memset(blob, 0, sector_size);
2664 memcpy(blob, pos, inflen);
2665
2666 return 0;
2667 }
2668
2669 /* --------------------------------------------------------------------- */
2670
2671 /*
2672 * Read file extent reads an extent specified in sectors from the file. It is
2673 * sector based; i.e. no `fancy' offsets.
2674 */
2675
2676 int
2677 udf_read_file_extent(struct udf_node *node,
2678 uint32_t from, uint32_t sectors,
2679 uint8_t *blob)
2680 {
2681 struct buf buf;
2682 uint32_t sector_size;
2683
2684 BUF_INIT(&buf);
2685
2686 sector_size = node->ump->discinfo.sector_size;
2687
2688 buf.b_bufsize = sectors * sector_size;
2689 buf.b_data = blob;
2690 buf.b_bcount = buf.b_bufsize;
2691 buf.b_resid = buf.b_bcount;
2692 buf.b_flags = B_BUSY | B_READ;
2693 buf.b_vp = node->vnode;
2694 buf.b_proc = NULL;
2695
2696 buf.b_blkno = from;
2697 buf.b_lblkno = 0;
2698 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2699
2700 udf_read_filebuf(node, &buf);
2701 return biowait(&buf);
2702 }
2703
2704
2705 /* --------------------------------------------------------------------- */
2706
2707 /*
2708 * Read file extent in the buffer.
2709 *
2710 * The splitup of the extent into separate request-buffers is to minimise
2711 * copying around as much as possible.
2712 */
2713
2714
2715 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
2716 #define FILEBUFSECT 128
2717
2718 void
2719 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2720 {
2721 struct buf *nestbuf;
2722 uint64_t *mapping;
2723 uint64_t run_start;
2724 uint32_t sector_size;
2725 uint32_t buf_offset, sector, rbuflen, rblk;
2726 uint8_t *buf_pos;
2727 int error, run_length;
2728
2729 uint32_t from;
2730 uint32_t sectors;
2731
2732 sector_size = node->ump->discinfo.sector_size;
2733
2734 from = buf->b_blkno;
2735 sectors = buf->b_bcount / sector_size;
2736
2737 /* assure we have enough translation slots */
2738 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2739 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2740
2741 if (sectors > FILEBUFSECT) {
2742 printf("udf_read_filebuf: implementation limit on bufsize\n");
2743 buf->b_error = EIO;
2744 buf->b_flags |= B_ERROR;
2745 biodone(buf);
2746 return;
2747 }
2748
2749 mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_TEMP, M_WAITOK);
2750
2751 error = 0;
2752 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2753 error = udf_translate_file_extent(node, from, sectors, mapping);
2754 if (error) {
2755 buf->b_error = error;
2756 buf->b_flags |= B_ERROR;
2757 biodone(buf);
2758 goto out;
2759 }
2760 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2761
2762 /* pre-check if internal or parts are zero */
2763 if (*mapping == UDF_TRANS_INTERN) {
2764 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2765 if (error) {
2766 buf->b_error = error;
2767 buf->b_flags |= B_ERROR;
2768 }
2769 biodone(buf);
2770 goto out;
2771 }
2772 DPRINTF(READ, ("\tnot intern\n"));
2773
2774 /* request read-in of data from disc scheduler */
2775 buf->b_resid = buf->b_bcount;
2776 for (sector = 0; sector < sectors; sector++) {
2777 buf_offset = sector * sector_size;
2778 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2779 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2780
2781 switch (mapping[sector]) {
2782 case UDF_TRANS_UNMAPPED:
2783 case UDF_TRANS_ZERO:
2784 /* copy zero sector */
2785 memset(buf_pos, 0, sector_size);
2786 DPRINTF(READ, ("\treturning zero sector\n"));
2787 nestiobuf_done(buf, sector_size, 0);
2788 break;
2789 default :
2790 DPRINTF(READ, ("\tread sector "
2791 "%"PRIu64"\n", mapping[sector]));
2792
2793 run_start = mapping[sector];
2794 run_length = 1;
2795 while (sector < sectors-1) {
2796 if (mapping[sector+1] != mapping[sector]+1)
2797 break;
2798 run_length++;
2799 sector++;
2800 }
2801
2802 /*
2803 * nest an iobuf and mark it for async reading. Since
2804 * we're using nested buffers, they can't be cached by
2805 * design.
2806 */
2807 rbuflen = run_length * sector_size;
2808 rblk = run_start * (sector_size/DEV_BSIZE);
2809
2810 nestbuf = getiobuf();
2811 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2812 /* nestbuf is B_ASYNC */
2813
2814 /* CD schedules on raw blkno */
2815 nestbuf->b_blkno = rblk;
2816 nestbuf->b_proc = NULL;
2817 nestbuf->b_cylinder = 0;
2818 nestbuf->b_rawblkno = rblk;
2819 VOP_STRATEGY(node->ump->devvp, nestbuf);
2820 }
2821 }
2822 out:
2823 DPRINTF(READ, ("\tend of read_filebuf\n"));
2824 free(mapping, M_TEMP);
2825 return;
2826 }
2827 #undef FILEBUFSECT
2828
2829
2830 /* --------------------------------------------------------------------- */
2831
2832 /*
2833 * Translate an extent (in sectors) into sector numbers; used for read and
2834 * write operations. DOESNT't check extents.
2835 */
2836
2837 int
2838 udf_translate_file_extent(struct udf_node *node,
2839 uint32_t from, uint32_t pages,
2840 uint64_t *map)
2841 {
2842 struct udf_mount *ump;
2843 struct file_entry *fe;
2844 struct extfile_entry *efe;
2845 struct short_ad *s_ad;
2846 struct long_ad *l_ad, t_ad;
2847 uint64_t transsec;
2848 uint32_t sector_size, transsec32;
2849 uint32_t overlap, translen;
2850 uint32_t vpart_num, lb_num, len, alloclen;
2851 uint8_t *pos;
2852 int error, flags, addr_type, icblen, icbflags;
2853
2854 if (!node)
2855 return ENOENT;
2856
2857 /* shut up gcc */
2858 alloclen = addr_type = icbflags = 0;
2859 pos = NULL;
2860
2861 /* do the work */
2862 ump = node->ump;
2863 sector_size = ump->discinfo.sector_size;
2864 fe = node->fe;
2865 efe = node->efe;
2866 if (fe) {
2867 alloclen = udf_rw32(fe->l_ad);
2868 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2869 icbflags = udf_rw16(fe->icbtag.flags);
2870 }
2871 if (efe) {
2872 alloclen = udf_rw32(efe->l_ad);
2873 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2874 icbflags = udf_rw16(efe->icbtag.flags);
2875 }
2876 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2877
2878 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2879 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2880
2881 vpart_num = udf_rw16(node->loc.loc.part_num);
2882 lb_num = len = icblen = 0; /* shut up gcc */
2883 while (pages && alloclen) {
2884 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2885 switch (addr_type) {
2886 case UDF_ICB_INTERN_ALLOC :
2887 /* TODO check extents? */
2888 *map = UDF_TRANS_INTERN;
2889 return 0;
2890 case UDF_ICB_SHORT_ALLOC :
2891 icblen = sizeof(struct short_ad);
2892 s_ad = (struct short_ad *) pos;
2893 len = udf_rw32(s_ad->len);
2894 lb_num = udf_rw32(s_ad->lb_num);
2895 break;
2896 case UDF_ICB_LONG_ALLOC :
2897 icblen = sizeof(struct long_ad);
2898 l_ad = (struct long_ad *) pos;
2899 len = udf_rw32(l_ad->len);
2900 lb_num = udf_rw32(l_ad->loc.lb_num);
2901 vpart_num = udf_rw16(l_ad->loc.part_num);
2902 DPRINTFIF(TRANSLATE,
2903 (l_ad->impl.im_used.flags &
2904 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2905 ("UDF: got an `extent erased' flag in long_ad\n"));
2906 break;
2907 default:
2908 /* can't be here */
2909 return EINVAL; /* for sure */
2910 }
2911
2912 /* process extent */
2913 flags = UDF_EXT_FLAGS(len);
2914 len = UDF_EXT_LEN(len);
2915
2916 overlap = (len + sector_size -1) / sector_size;
2917 if (from) {
2918 if (from > overlap) {
2919 from -= overlap;
2920 overlap = 0;
2921 } else {
2922 lb_num += from; /* advance in extent */
2923 overlap -= from;
2924 from = 0;
2925 }
2926 }
2927
2928 overlap = MIN(overlap, pages);
2929 while (overlap) {
2930 switch (flags) {
2931 case UDF_EXT_REDIRECT :
2932 /* no support for allocation extentions yet */
2933 /* TODO support for allocation extention */
2934 return ENOENT;
2935 case UDF_EXT_FREED :
2936 case UDF_EXT_FREE :
2937 transsec = UDF_TRANS_ZERO;
2938 translen = overlap;
2939 while (overlap && pages && translen) {
2940 *map++ = transsec;
2941 lb_num++;
2942 overlap--; pages--; translen--;
2943 }
2944 break;
2945 case UDF_EXT_ALLOCATED :
2946 t_ad.loc.lb_num = udf_rw32(lb_num);
2947 t_ad.loc.part_num = udf_rw16(vpart_num);
2948 error = udf_translate_vtop(ump,
2949 &t_ad, &transsec32, &translen);
2950 transsec = transsec32;
2951 if (error)
2952 return error;
2953 while (overlap && pages && translen) {
2954 *map++ = transsec;
2955 lb_num++; transsec++;
2956 overlap--; pages--; translen--;
2957 }
2958 break;
2959 }
2960 }
2961 pos += icblen;
2962 alloclen -= icblen;
2963 }
2964 return 0;
2965 }
2966
2967 /* --------------------------------------------------------------------- */
2968
2969