udf_subr.c revision 1.4 1 /* $NetBSD: udf_subr.c,v 1.4 2006/02/04 23:21:43 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 2006 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 */
35
36
37 #include <sys/cdefs.h>
38 #ifndef lint
39 __RCSID("$NetBSD: udf_subr.c,v 1.4 2006/02/04 23:21:43 reinoud Exp $");
40 #endif /* not lint */
41
42
43 #if defined(_KERNEL_OPT)
44 #include "opt_quota.h"
45 #include "opt_compat_netbsd.h"
46 #endif
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/sysctl.h>
51 #include <sys/namei.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/vnode.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <sys/mount.h>
57 #include <sys/buf.h>
58 #include <sys/file.h>
59 #include <sys/device.h>
60 #include <sys/disklabel.h>
61 #include <sys/ioctl.h>
62 #include <sys/malloc.h>
63 #include <sys/dirent.h>
64 #include <sys/stat.h>
65 #include <sys/conf.h>
66
67 #include <fs/udf/ecma167-udf.h>
68 #include <fs/udf/udf_mount.h>
69
70 #include "udf.h"
71 #include "udf_subr.h"
72 #include "udf_bswap.h"
73
74
75 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
76
77
78 /* predefines */
79
80
81 #if 0
82 {
83 int i, j, dlen;
84 uint8_t *blob;
85
86 blob = (uint8_t *) fid;
87 dlen = file_size - (*offset);
88
89 printf("blob = %p\n", blob);
90 printf("dump of %d bytes\n", dlen);
91
92 for (i = 0; i < dlen; i+ = 16) {
93 printf("%04x ", i);
94 for (j = 0; j < 16; j++) {
95 if (i+j < dlen) {
96 printf("%02x ", blob[i+j]);
97 } else {
98 printf(" ");
99 };
100 };
101 for (j = 0; j < 16; j++) {
102 if (i+j < dlen) {
103 if (blob[i+j]>32 && blob[i+j]! = 127) {
104 printf("%c", blob[i+j]);
105 } else {
106 printf(".");
107 };
108 };
109 };
110 printf("\n");
111 };
112 printf("\n");
113 };
114 Debugger();
115 #endif
116
117
118 /* --------------------------------------------------------------------- */
119
120 /* STUB */
121
122 static int
123 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
124 {
125 int sector_size = ump->discinfo.sector_size;
126 int blks = sector_size / DEV_BSIZE;
127
128 /* NOTE bread() checks if block is in cache or not */
129 return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
130 }
131
132
133 /* --------------------------------------------------------------------- */
134
135 /*
136 * Check if the blob starts with a good UDF tag. Tags are protected by a
137 * checksum over the reader except one byte at position 4 that is the checksum
138 * itself.
139 */
140
141 int
142 udf_check_tag(void *blob)
143 {
144 struct desc_tag *tag = blob;
145 uint8_t *pos, sum, cnt;
146
147 /* check TAG header checksum */
148 pos = (uint8_t *) tag;
149 sum = 0;
150
151 for(cnt = 0; cnt < 16; cnt++) {
152 if (cnt != 4)
153 sum += *pos;
154 pos++;
155 }
156 if (sum != tag->cksum) {
157 /* bad tag header checksum; this is not a valid tag */
158 return EINVAL;
159 }
160
161 return 0;
162 }
163
164 /* --------------------------------------------------------------------- */
165
166 /*
167 * check tag payload will check descriptor CRC as specified.
168 * If the descriptor is too short, it will return EIO otherwise EINVAL.
169 */
170
171 int
172 udf_check_tag_payload(void *blob, uint32_t max_length)
173 {
174 struct desc_tag *tag = blob;
175 uint16_t crc, crc_len;
176
177 crc_len = udf_rw16(tag->desc_crc_len);
178
179 /* check payload CRC if applicable */
180 if (crc_len == 0)
181 return 0;
182
183 if (crc_len > max_length)
184 return EIO;
185
186 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
187 if (crc != udf_rw16(tag->desc_crc)) {
188 /* bad payload CRC; this is a broken tag */
189 return EINVAL;
190 };
191
192 return 0;
193 }
194
195 /* --------------------------------------------------------------------- */
196
197 int
198 udf_validate_tag_sum(void *blob)
199 {
200 struct desc_tag *tag = blob;
201 uint8_t *pos, sum, cnt;
202
203 /* calculate TAG header checksum */
204 pos = (uint8_t *) tag;
205 sum = 0;
206
207 for(cnt = 0; cnt < 16; cnt++) {
208 if (cnt != 4) sum += *pos;
209 pos++;
210 };
211 tag->cksum = sum; /* 8 bit */
212
213 return 0;
214 }
215
216 /* --------------------------------------------------------------------- */
217
218 /* assumes sector number of descriptor to be saved allready present */
219
220 int
221 udf_validate_tag_and_crc_sums(void *blob)
222 {
223 struct desc_tag *tag = blob;
224 uint8_t *btag = (uint8_t *) tag;
225 uint16_t crc, crc_len;
226
227 crc_len = udf_rw16(tag->desc_crc_len);
228
229 /* check payload CRC if applicable */
230 if (crc_len > 0) {
231 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
232 tag->desc_crc = udf_rw16(crc);
233 };
234
235 /* calculate TAG header checksum */
236 return udf_validate_tag_sum(blob);
237 }
238
239 /* --------------------------------------------------------------------- */
240
241 /*
242 * XXX note the different semantics from udfclient: for FIDs it still rounds
243 * up to sectors. Use udf_fidsize() for a correct length.
244 */
245
246 int
247 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
248 {
249 uint32_t size, tag_id, num_secs, elmsz;
250
251 tag_id = udf_rw16(dscr->tag.id);
252
253 switch (tag_id) {
254 case TAGID_LOGVOL :
255 size = sizeof(struct logvol_desc) - 1;
256 size += udf_rw32(dscr->lvd.mt_l);
257 break;
258 case TAGID_UNALLOC_SPACE :
259 elmsz = sizeof(struct extent_ad);
260 size = sizeof(struct unalloc_sp_desc) - elmsz;
261 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
262 break;
263 case TAGID_FID :
264 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
265 size = (size + 3) & ~3;
266 break;
267 case TAGID_LOGVOL_INTEGRITY :
268 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
269 size += udf_rw32(dscr->lvid.l_iu);
270 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
271 break;
272 case TAGID_SPACE_BITMAP :
273 size = sizeof(struct space_bitmap_desc) - 1;
274 size += udf_rw32(dscr->sbd.num_bytes);
275 break;
276 case TAGID_SPARING_TABLE :
277 elmsz = sizeof(struct spare_map_entry);
278 size = sizeof(struct udf_sparing_table) - elmsz;
279 size += udf_rw16(dscr->spt.rt_l) * elmsz;
280 break;
281 case TAGID_FENTRY :
282 size = sizeof(struct file_entry);
283 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
284 break;
285 case TAGID_EXTFENTRY :
286 size = sizeof(struct extfile_entry);
287 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
288 break;
289 case TAGID_FSD :
290 size = sizeof(struct fileset_desc);
291 break;
292 default :
293 size = sizeof(union dscrptr);
294 break;
295 };
296
297 if ((size == 0) || (udf_sector_size == 0)) return 0;
298
299 /* round up in sectors */
300 num_secs = (size + udf_sector_size -1) / udf_sector_size;
301 return num_secs * udf_sector_size;
302 }
303
304
305 static int
306 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
307 {
308 uint32_t size;
309
310 if (udf_rw16(fid->tag.id) != TAGID_FID)
311 panic("got udf_fidsize on non FID\n");
312
313 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
314 size = (size + 3) & ~3;
315
316 return size;
317 }
318
319 /* --------------------------------------------------------------------- */
320
321 /*
322 * Problem with read_descriptor are long descriptors spanning more than one
323 * sector. Luckily long descriptors can't be in `logical space'.
324 *
325 * Size of allocated piece is returned in multiple of sector size due to
326 * udf_calc_udf_malloc_size().
327 */
328
329 int
330 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
331 struct malloc_type *mtype, union dscrptr **dstp)
332 {
333 union dscrptr *src, *dst;
334 struct buf *bp;
335 uint8_t *pos;
336 int blks, blk, dscrlen;
337 int i, error, sector_size;
338
339 sector_size = ump->discinfo.sector_size;
340
341 *dstp = dst = NULL;
342 dscrlen = sector_size;
343
344 /* read initial piece */
345 error = udf_bread(ump, sector, &bp);
346 DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
347
348 if (!error) {
349 /* check if its a valid tag */
350 error = udf_check_tag(bp->b_data);
351 if (error) {
352 /* check if its an empty block */
353 pos = bp->b_data;
354 for (i = 0; i < sector_size; i++, pos++) {
355 if (*pos) break;
356 };
357 if (i == sector_size) {
358 /* return no error but with no dscrptr */
359 /* dispose first block */
360 brelse(bp);
361 return 0;
362 };
363 };
364 };
365 DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
366 if (!error) {
367 src = (union dscrptr *) bp->b_data;
368 dscrlen = udf_tagsize(src, sector_size);
369 dst = malloc(dscrlen, mtype, M_WAITOK);
370 memcpy(dst, src, dscrlen);
371 };
372 /* dispose first block */
373 bp->b_flags |= B_AGE;
374 brelse(bp);
375
376 if (!error && (dscrlen > sector_size)) {
377 DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
378 /*
379 * Read the rest of descriptor. Since it is only used at mount
380 * time its overdone to define and use a specific udf_breadn
381 * for this alone.
382 */
383 blks = (dscrlen + sector_size -1) / sector_size;
384 for (blk = 1; blk < blks; blk++) {
385 error = udf_bread(ump, sector + blk, &bp);
386 if (error) {
387 brelse(bp);
388 break;
389 };
390 pos = (uint8_t *) dst + blk*sector_size;
391 memcpy(pos, bp->b_data, sector_size);
392
393 /* dispose block */
394 bp->b_flags |= B_AGE;
395 brelse(bp);
396 };
397 DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
398 error));
399 };
400 if (!error) {
401 error = udf_check_tag_payload(dst, dscrlen);
402 DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
403 };
404 if (error && dst) {
405 free(dst, mtype);
406 dst = NULL;
407 };
408 *dstp = dst;
409
410 return error;
411 }
412
413 /* --------------------------------------------------------------------- */
414 #ifdef DEBUG
415 static void
416 udf_dump_discinfo(struct udf_mount *ump)
417 {
418 char bits[128];
419 struct mmc_discinfo *di = &ump->discinfo;
420
421 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
422 return;
423
424 printf("Device/media info :\n");
425 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
426 printf("\tderived class %d\n", di->mmc_class);
427 printf("\tsector size %d\n", di->sector_size);
428 printf("\tdisc state %d\n", di->disc_state);
429 printf("\tlast ses state %d\n", di->last_session_state);
430 printf("\tbg format state %d\n", di->bg_format_state);
431 printf("\tfrst track %d\n", di->first_track);
432 printf("\tfst on last ses %d\n", di->first_track_last_session);
433 printf("\tlst on last ses %d\n", di->last_track_last_session);
434 printf("\tlink block penalty %d\n", di->link_block_penalty);
435 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
436 sizeof(bits));
437 printf("\tdisc flags %s\n", bits);
438 printf("\tdisc id %x\n", di->disc_id);
439 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
440
441 printf("\tnum sessions %d\n", di->num_sessions);
442 printf("\tnum tracks %d\n", di->num_tracks);
443
444 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
445 printf("\tcapabilities cur %s\n", bits);
446 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
447 printf("\tcapabilities cap %s\n", bits);
448 }
449 #else
450 #define udf_dump_discinfo(a);
451 #endif
452
453 /* not called often */
454 int
455 udf_update_discinfo(struct udf_mount *ump)
456 {
457 struct vnode *devvp = ump->devvp;
458 struct partinfo dpart;
459 struct mmc_discinfo *di;
460 int error;
461
462 DPRINTF(VOLUMES, ("read/update disc info\n"));
463 di = &ump->discinfo;
464 memset(di, 0, sizeof(struct mmc_discinfo));
465
466 /* check if we're on a MMC capable device, i.e. CD/DVD */
467 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
468 if (error == 0) {
469 udf_dump_discinfo(ump);
470 return 0;
471 };
472
473 /* disc partition support */
474 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
475 if (error)
476 return ENODEV;
477
478 /* set up a disc info profile for partitions */
479 di->mmc_profile = 0x01; /* disc type */
480 di->mmc_class = MMC_CLASS_DISC;
481 di->disc_state = MMC_STATE_CLOSED;
482 di->last_session_state = MMC_STATE_CLOSED;
483 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
484 di->link_block_penalty = 0;
485
486 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
487 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
488 di->mmc_cap = di->mmc_cur;
489 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
490
491 /* TODO problem with last_possible_lba on resizable VND; request */
492 di->last_possible_lba = dpart.part->p_size;
493 di->sector_size = dpart.disklab->d_secsize;
494 di->blockingnr = 1;
495
496 di->num_sessions = 1;
497 di->num_tracks = 1;
498
499 di->first_track = 1;
500 di->first_track_last_session = di->last_track_last_session = 1;
501
502 udf_dump_discinfo(ump);
503 return 0;
504 }
505
506 /* --------------------------------------------------------------------- */
507
508 int
509 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
510 {
511 struct vnode *devvp = ump->devvp;
512 struct mmc_discinfo *di = &ump->discinfo;
513 int error, class;
514
515 DPRINTF(VOLUMES, ("read track info\n"));
516
517 class = di->mmc_class;
518 if (class != MMC_CLASS_DISC) {
519 /* tracknr specified in struct ti */
520 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
521 NOCRED, NULL);
522 return error;
523 };
524
525 /* disc partition support */
526 if (ti->tracknr != 1)
527 return EIO;
528
529 /* create fake ti (TODO check for resized vnds) */
530 ti->sessionnr = 1;
531
532 ti->track_mode = 0; /* XXX */
533 ti->data_mode = 0; /* XXX */
534 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
535
536 ti->track_start = 0;
537 ti->packet_size = 1;
538
539 /* TODO support for resizable vnd */
540 ti->track_size = di->last_possible_lba;
541 ti->next_writable = di->last_possible_lba;
542 ti->last_recorded = ti->next_writable;
543 ti->free_blocks = 0;
544
545 return 0;
546 }
547
548 /* --------------------------------------------------------------------- */
549
550 /* track/session searching for mounting */
551
552 static int
553 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
554 int *first_tracknr, int *last_tracknr)
555 {
556 struct mmc_trackinfo trackinfo;
557 uint32_t tracknr, start_track, num_tracks;
558 int error;
559
560 /* if negative, sessionnr is relative to last session */
561 if (args->sessionnr < 0) {
562 args->sessionnr += ump->discinfo.num_sessions;
563 /* sanity */
564 if (args->sessionnr < 0)
565 args->sessionnr = 0;
566 };
567
568 /* sanity */
569 if (args->sessionnr > ump->discinfo.num_sessions)
570 args->sessionnr = ump->discinfo.num_sessions;
571
572 /* search the tracks for this session, zero session nr indicates last */
573 if (args->sessionnr == 0) {
574 args->sessionnr = ump->discinfo.num_sessions;
575 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
576 args->sessionnr--;
577 }
578 };
579
580 /* search the first and last track of the specified session */
581 num_tracks = ump->discinfo.num_tracks;
582 start_track = ump->discinfo.first_track;
583
584 /* search for first track of this session */
585 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
586 /* get track info */
587 trackinfo.tracknr = tracknr;
588 error = udf_update_trackinfo(ump, &trackinfo);
589 if (error)
590 return error;
591
592 if (trackinfo.sessionnr == args->sessionnr)
593 break;
594 }
595 *first_tracknr = tracknr;
596
597 /* search for last track of this session */
598 for (;tracknr <= num_tracks; tracknr++) {
599 /* get track info */
600 trackinfo.tracknr = tracknr;
601 error = udf_update_trackinfo(ump, &trackinfo);
602 if (error || (trackinfo.sessionnr != args->sessionnr)) {
603 tracknr--;
604 break;
605 };
606 };
607 if (tracknr > num_tracks)
608 tracknr--;
609
610 *last_tracknr = tracknr;
611
612 assert(*last_tracknr >= *first_tracknr);
613 return 0;
614 }
615
616 /* --------------------------------------------------------------------- */
617
618 static int
619 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
620 {
621 int error;
622
623 error = udf_read_descriptor(ump, sector, M_UDFVOLD,
624 (union dscrptr **) dst);
625 if (!error) {
626 /* blank terminator blocks are not allowed here */
627 if (*dst == NULL)
628 return ENOENT;
629 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
630 error = ENOENT;
631 free(*dst, M_UDFVOLD);
632 *dst = NULL;
633 DPRINTF(VOLUMES, ("Not an anchor\n"));
634 };
635 };
636
637 return error;
638 }
639
640
641 int
642 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
643 {
644 struct mmc_trackinfo first_track;
645 struct mmc_trackinfo last_track;
646 struct anchor_vdp **anchorsp;
647 uint32_t track_start;
648 uint32_t track_end;
649 uint32_t positions[4];
650 int first_tracknr, last_tracknr;
651 int error, anch, ok, first_anchor;
652
653 /* search the first and last track of the specified session */
654 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
655 if (!error) {
656 first_track.tracknr = first_tracknr;
657 error = udf_update_trackinfo(ump, &first_track);
658 };
659 if (!error) {
660 last_track.tracknr = last_tracknr;
661 error = udf_update_trackinfo(ump, &last_track);
662 };
663 if (error) {
664 printf("UDF mount: reading disc geometry failed\n");
665 return 0;
666 };
667
668 track_start = first_track.track_start;
669
670 /* `end' is not as straitforward as start. */
671 track_end = last_track.track_start
672 + last_track.track_size - last_track.free_blocks - 1;
673
674 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
675 /* end of track is not straitforward here */
676 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
677 track_end = last_track.last_recorded;
678 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
679 track_end = last_track.next_writable
680 - ump->discinfo.link_block_penalty;
681 };
682 /* VATs are only recorded on sequential media, but initialise */
683 ump->possible_vat_location = track_end;
684
685 /* its no use reading a blank track */
686 first_anchor = 0;
687 if (first_track.flags & MMC_TRACKINFO_BLANK)
688 first_anchor = 1;
689
690 /* read anchors start+256, start+512, end-256, end */
691 positions[0] = track_start+256;
692 positions[1] = track_end-256;
693 positions[2] = track_end;
694 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
695 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
696
697 ok = 0;
698 anchorsp = ump->anchors;
699 for (anch = first_anchor; anch < 4; anch++) {
700 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
701 positions[anch]));
702 error = udf_read_anchor(ump, positions[anch], anchorsp);
703 if (!error) {
704 anchorsp++;
705 ok++;
706 };
707 };
708
709 return ok;
710 }
711
712 /* --------------------------------------------------------------------- */
713
714 /* we dont try to be smart; we just record the parts */
715 #define UDF_UPDATE_DSCR(name, dscr) \
716 if (name) \
717 free(name, M_UDFVOLD); \
718 name = dscr;
719
720 static int
721 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
722 {
723 uint16_t partnr;
724
725 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
726 udf_rw16(dscr->tag.id)));
727 switch (udf_rw16(dscr->tag.id)) {
728 case TAGID_PRI_VOL : /* primary partition */
729 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
730 break;
731 case TAGID_LOGVOL : /* logical volume */
732 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
733 break;
734 case TAGID_UNALLOC_SPACE : /* unallocated space */
735 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
736 break;
737 case TAGID_IMP_VOL : /* implementation */
738 /* XXX do we care about multiple impl. descr ? */
739 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
740 break;
741 case TAGID_PARTITION : /* physical partition */
742 /* not much use if its not allocated */
743 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
744 free(dscr, M_UDFVOLD);
745 break;
746 };
747
748 /* check partnr boundaries */
749 partnr = udf_rw16(dscr->pd.part_num);
750 if (partnr >= UDF_PARTITIONS)
751 return EINVAL;
752
753 UDF_UPDATE_DSCR(ump->partitions[partnr], &dscr->pd);
754 break;
755 case TAGID_VOL : /* volume space extender; rare */
756 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
757 free(dscr, M_UDFVOLD);
758 break;
759 default :
760 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
761 udf_rw16(dscr->tag.id)));
762 free(dscr, M_UDFVOLD);
763 };
764
765 return 0;
766 }
767 #undef UDF_UPDATE_DSCR
768
769 /* --------------------------------------------------------------------- */
770
771 static int
772 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
773 {
774 union dscrptr *dscr;
775 uint32_t sector_size, dscr_size;
776 int error;
777
778 sector_size = ump->discinfo.sector_size;
779
780 /* loc is sectornr, len is in bytes */
781 error = EIO;
782 while (len) {
783 error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
784 if (error)
785 return error;
786
787 /* blank block is a terminator */
788 if (dscr == NULL)
789 return 0;
790
791 /* TERM descriptor is a terminator */
792 if (udf_rw16(dscr->tag.id) == TAGID_TERM)
793 return 0;
794
795 /* process all others */
796 dscr_size = udf_tagsize(dscr, sector_size);
797 error = udf_process_vds_descriptor(ump, dscr);
798 if (error) {
799 free(dscr, M_UDFVOLD);
800 break;
801 };
802 assert((dscr_size % sector_size) == 0);
803
804 len -= dscr_size;
805 loc += dscr_size / sector_size;
806 };
807
808 return error;
809 }
810
811
812 int
813 udf_read_vds_space(struct udf_mount *ump)
814 {
815 struct anchor_vdp *anchor, *anchor2;
816 size_t size;
817 uint32_t main_loc, main_len;
818 uint32_t reserve_loc, reserve_len;
819 int error;
820
821 /*
822 * read in VDS space provided by the anchors; if one descriptor read
823 * fails, try the mirror sector.
824 *
825 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
826 * avoids the `compatibility features' of DirectCD that may confuse
827 * stuff completely.
828 */
829
830 anchor = ump->anchors[0];
831 anchor2 = ump->anchors[1];
832 assert(anchor);
833
834 if (anchor2) {
835 size = sizeof(struct extent_ad);
836 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
837 anchor = anchor2;
838 /* reserve is specified to be a literal copy of main */
839 };
840
841 main_loc = udf_rw32(anchor->main_vds_ex.loc);
842 main_len = udf_rw32(anchor->main_vds_ex.len);
843
844 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
845 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
846
847 error = udf_read_vds_extent(ump, main_loc, main_len);
848 if (error) {
849 printf("UDF mount: reading in reserve VDS extent\n");
850 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
851 };
852
853 return error;
854 }
855
856 /* --------------------------------------------------------------------- */
857
858 /*
859 * Read in the logical volume integrity sequence pointed to by our logical
860 * volume descriptor. Its a sequence that can be extended using fields in the
861 * integrity descriptor itself. On sequential media only one is found, on
862 * rewritable media a sequence of descriptors can be found as a form of
863 * history keeping and on non sequential write-once media the chain is vital
864 * to allow more and more descriptors to be written. The last descriptor
865 * written in an extent needs to claim space for a new extent.
866 */
867
868 static int
869 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
870 {
871 union dscrptr *dscr;
872 struct logvol_int_desc *lvint;
873 uint32_t sector_size, sector, len;
874 int dscr_type, error;
875
876 sector_size = ump->discinfo.sector_size;
877 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
878 sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
879
880 lvint = NULL;
881 dscr = NULL;
882 error = 0;
883 while (len) {
884 /* read in our integrity descriptor */
885 error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
886 if (!error) {
887 if (dscr == NULL)
888 break; /* empty terminates */
889 dscr_type = udf_rw16(dscr->tag.id);
890 if (dscr_type == TAGID_TERM) {
891 break; /* clean terminator */
892 };
893 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
894 /* fatal... corrupt disc */
895 error = ENOENT;
896 break;
897 };
898 if (lvint)
899 free(lvint, M_UDFVOLD);
900 lvint = &dscr->lvid;
901 dscr = NULL;
902 }; /* else hope for the best... maybe the next is ok */
903
904 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
905 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
906
907 /* proceed sequential */
908 sector += 1;
909 len -= sector_size;
910
911 /* are we linking to a new piece? */
912 if (lvint->next_extent.len) {
913 len = udf_rw32(lvint->next_extent.len);
914 sector = udf_rw32(lvint->next_extent.loc);
915 };
916 };
917
918 /* clean up the mess, esp. when there is an error */
919 if (dscr)
920 free(dscr, M_UDFVOLD);
921
922 if (error && lvint) {
923 free(lvint, M_UDFVOLD);
924 lvint = NULL;
925 };
926
927 if (!lvint)
928 error = ENOENT;
929
930 *lvintp = lvint;
931 return error;
932 }
933
934 /* --------------------------------------------------------------------- */
935
936 /*
937 * Checks if ump's vds information is correct and complete
938 */
939
940 int
941 udf_process_vds(struct udf_mount *ump, struct udf_args *args) {
942 union udf_pmap *mapping;
943 struct logvol_int_desc *lvint;
944 struct udf_logvol_info *lvinfo;
945 uint32_t n_pm, mt_l;
946 uint8_t *pmap_pos;
947 char *domain_name, *map_name;
948 const char *check_name;
949 int pmap_stype, pmap_size;
950 int pmap_type, log_part, phys_part;
951 int n_phys, n_virt, n_spar, n_meta;
952 int len, error;
953
954 if (ump == NULL)
955 return ENOENT;
956
957 /* we need at least an anchor (trivial, but for safety) */
958 if (ump->anchors[0] == NULL)
959 return EINVAL;
960
961 /* we need at least one primary and one logical volume descriptor */
962 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
963 return EINVAL;
964
965 /* we need at least one partition descriptor */
966 if (ump->partitions[0] == NULL)
967 return EINVAL;
968
969 /* check logical volume sector size verses device sector size */
970 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
971 printf("UDF mount: format violation, lb_size != sector size\n");
972 return EINVAL;
973 };
974
975 domain_name = ump->logical_vol->domain_id.id;
976 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
977 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
978 return EINVAL;
979 };
980
981 /* retrieve logical volume integrity sequence */
982 error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
983
984 /*
985 * We need at least one logvol integrity descriptor recorded. Note
986 * that its OK to have an open logical volume integrity here. The VAT
987 * will close/update the integrity.
988 */
989 if (ump->logvol_integrity == NULL)
990 return EINVAL;
991
992 /* process derived structures */
993 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
994 lvint = ump->logvol_integrity;
995 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
996 ump->logvol_info = lvinfo;
997
998 /* TODO check udf versions? */
999
1000 /*
1001 * check logvol mappings: effective virt->log partmap translation
1002 * check and recording of the mapping results. Saves expensive
1003 * strncmp() in tight places.
1004 */
1005 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1006 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1007 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1008 pmap_pos = ump->logical_vol->maps;
1009
1010 if (n_pm > UDF_PMAPS) {
1011 printf("UDF mount: too many mappings\n");
1012 return EINVAL;
1013 };
1014
1015 n_phys = n_virt = n_spar = n_meta = 0;
1016 for (log_part = 0; log_part < n_pm; log_part++) {
1017 mapping = (union udf_pmap *) pmap_pos;
1018 pmap_stype = pmap_pos[0];
1019 pmap_size = pmap_pos[1];
1020 switch (pmap_stype) {
1021 case 1: /* physical mapping */
1022 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1023 phys_part = udf_rw16(mapping->pm1.part_num);
1024 pmap_type = UDF_VTOP_TYPE_PHYS;
1025 n_phys++;
1026 break;
1027 case 2: /* virtual/sparable/meta mapping */
1028 map_name = mapping->pm2.part_id.id;
1029 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1030 phys_part = udf_rw16(mapping->pm2.part_num);
1031 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1032 len = UDF_REGID_ID_SIZE;
1033
1034 check_name = "*UDF Virtual Partition";
1035 if (strncmp(map_name, check_name, len) == 0) {
1036 pmap_type = UDF_VTOP_TYPE_VIRT;
1037 n_virt++;
1038 break;
1039 };
1040 check_name = "*UDF Sparable Partition";
1041 if (strncmp(map_name, check_name, len) == 0) {
1042 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1043 n_spar++;
1044 break;
1045 };
1046 check_name = "*UDF Metadata Partition";
1047 if (strncmp(map_name, check_name, len) == 0) {
1048 pmap_type = UDF_VTOP_TYPE_META;
1049 n_meta++;
1050 break;
1051 };
1052 break;
1053 default:
1054 return EINVAL;
1055 };
1056
1057 DPRINTF(VOLUMES, ("\t%d -> %d type %d\n", log_part, phys_part,
1058 pmap_type));
1059 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1060 return EINVAL;
1061
1062 ump->vtop [log_part] = phys_part;
1063 ump->vtop_tp[log_part] = pmap_type;
1064
1065 pmap_pos += pmap_size;
1066 };
1067 /* not winning the beauty contest */
1068 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1069
1070 /* test some basic UDF assertions/requirements */
1071 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1072 return EINVAL;
1073
1074 if (n_virt) {
1075 if ((n_phys == 0) || n_spar || n_meta)
1076 return EINVAL;
1077 };
1078 if (n_spar + n_phys == 0)
1079 return EINVAL;
1080
1081 /* vat's can only be on a sequential media */
1082 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1083 if (n_virt)
1084 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1085
1086 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1087 if (n_virt)
1088 ump->meta_alloc = UDF_ALLOC_VAT;
1089 if (n_meta)
1090 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1091
1092 /* special cases for pseudo-overwrite */
1093 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1094 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1095 if (n_meta) {
1096 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1097 } else {
1098 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1099 };
1100 };
1101
1102 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1103 ump->data_alloc, ump->meta_alloc));
1104 /* TODO determine partitions to write data and metadata ? */
1105
1106 /* signal its OK for now */
1107 return 0;
1108 }
1109
1110 /* --------------------------------------------------------------------- */
1111
1112 /*
1113 * Read in complete VAT file and check if its indeed a VAT file descriptor
1114 */
1115
1116 static int
1117 udf_check_for_vat(struct udf_node *vat_node)
1118 {
1119 struct udf_mount *ump;
1120 struct icb_tag *icbtag;
1121 struct timestamp *mtime;
1122 struct regid *regid;
1123 struct udf_vat *vat;
1124 struct udf_logvol_info *lvinfo;
1125 uint32_t vat_length, alloc_length;
1126 uint32_t vat_offset, vat_entries;
1127 uint32_t sector_size;
1128 uint32_t sectors;
1129 uint32_t *raw_vat;
1130 char *regid_name;
1131 int filetype;
1132 int error;
1133
1134 /* vat_length is really 64 bits though impossible */
1135
1136 DPRINTF(VOLUMES, ("Checking for VAT\n"));
1137 if (!vat_node)
1138 return ENOENT;
1139
1140 /* get mount info */
1141 ump = vat_node->ump;
1142
1143 /* check assertions */
1144 assert(vat_node->fe || vat_node->efe);
1145 assert(ump->logvol_integrity);
1146
1147 /* get information from fe/efe */
1148 if (vat_node->fe) {
1149 vat_length = udf_rw64(vat_node->fe->inf_len);
1150 icbtag = &vat_node->fe->icbtag;
1151 mtime = &vat_node->fe->mtime;
1152 } else {
1153 vat_length = udf_rw64(vat_node->efe->inf_len);
1154 icbtag = &vat_node->efe->icbtag;
1155 mtime = &vat_node->efe->mtime;
1156 };
1157
1158 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
1159 filetype = icbtag->file_type;
1160 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
1161 return ENOENT;
1162
1163 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
1164 /* place a sanity check on the length; currently 1Mb in size */
1165 if (vat_length > 1*1024*1024)
1166 return ENOENT;
1167
1168 /* get sector size */
1169 sector_size = vat_node->ump->discinfo.sector_size;
1170
1171 /* calculate how many sectors to read in and how much to allocate */
1172 sectors = (vat_length + sector_size -1) / sector_size;
1173 alloc_length = (sectors + 2) * sector_size;
1174
1175 /* try to allocate the space */
1176 ump->vat_table_alloc_length = alloc_length;
1177 ump->vat_table = malloc(alloc_length, M_UDFMNT, M_CANFAIL | M_WAITOK);
1178 if (!ump->vat_table)
1179 return ENOMEM; /* impossible to allocate */
1180 DPRINTF(VOLUMES, ("\talloced fine\n"));
1181
1182 /* read it in! */
1183 raw_vat = (uint32_t *) ump->vat_table;
1184 error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
1185 if (error) {
1186 DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
1187 /* not completely readable... :( bomb out */
1188 free(ump->vat_table, M_UDFMNT);
1189 ump->vat_table = NULL;
1190 return error;
1191 };
1192 DPRINTF(VOLUMES, ("VAT read in fine!\n"));
1193
1194 /*
1195 * check contents of the file if its the old 1.50 VAT table format.
1196 * Its notoriously broken and allthough some implementations support an
1197 * extention as defined in the UDF 1.50 errata document, its doubtfull
1198 * to be useable since a lot of implementations don't maintain it.
1199 */
1200 lvinfo = ump->logvol_info;
1201
1202 if (filetype == 0) {
1203 /* definition */
1204 vat_offset = 0;
1205 vat_entries = (vat_length-36)/4;
1206
1207 /* check 1.50 VAT */
1208 regid = (struct regid *) (raw_vat + vat_entries);
1209 regid_name = (char *) regid->id;
1210 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
1211 if (error) {
1212 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
1213 free(ump->vat_table, M_UDFMNT);
1214 ump->vat_table = NULL;
1215 return ENOENT;
1216 };
1217 /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
1218 } else {
1219 vat = (struct udf_vat *) raw_vat;
1220
1221 /* definition */
1222 vat_offset = vat->header_len;
1223 vat_entries = (vat_length - vat_offset)/4;
1224
1225 assert(lvinfo);
1226 lvinfo->num_files = vat->num_files;
1227 lvinfo->num_directories = vat->num_directories;
1228 lvinfo->min_udf_readver = vat->min_udf_readver;
1229 lvinfo->min_udf_writever = vat->min_udf_writever;
1230 lvinfo->max_udf_writever = vat->max_udf_writever;
1231 };
1232
1233 ump->vat_offset = vat_offset;
1234 ump->vat_entries = vat_entries;
1235
1236 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
1237 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
1238 ump->logvol_integrity->time = *mtime;
1239
1240 return 0; /* success! */
1241 }
1242
1243 /* --------------------------------------------------------------------- */
1244
1245 static int
1246 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
1247 {
1248 struct udf_node *vat_node;
1249 struct long_ad icb_loc;
1250 uint32_t early_vat_loc, late_vat_loc, vat_loc;
1251 int error;
1252
1253 /* mapping info not needed */
1254 mapping = mapping;
1255
1256 vat_loc = ump->possible_vat_location;
1257 early_vat_loc = vat_loc - 20;
1258 late_vat_loc = vat_loc + 1024;
1259
1260 /* TODO first search last sector? */
1261 do {
1262 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
1263 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
1264 icb_loc.loc.lb_num = udf_rw32(vat_loc);
1265
1266 error = udf_get_node(ump, &icb_loc, &vat_node);
1267 if (!error) error = udf_check_for_vat(vat_node);
1268 if (!error) break;
1269 if (vat_node) {
1270 vput(vat_node->vnode);
1271 udf_dispose_node(vat_node);
1272 };
1273 vat_loc--; /* walk backwards */
1274 } while (vat_loc >= early_vat_loc);
1275
1276 /* we don't need our VAT node anymore */
1277 if (vat_node) {
1278 vput(vat_node->vnode);
1279 udf_dispose_node(vat_node);
1280 };
1281
1282 return error;
1283 }
1284
1285 /* --------------------------------------------------------------------- */
1286
1287 static int
1288 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
1289 {
1290 union dscrptr *dscr;
1291 struct part_map_spare *pms = (struct part_map_spare *) mapping;
1292 uint32_t lb_num;
1293 int spar, error;
1294
1295 /*
1296 * The partition mapping passed on to us specifies the information we
1297 * need to locate and initialise the sparable partition mapping
1298 * information we need.
1299 */
1300
1301 DPRINTF(VOLUMES, ("Read sparable table\n"));
1302 ump->sparable_packet_len = udf_rw16(pms->packet_len);
1303 for (spar = 0; spar < pms->n_st; spar++) {
1304 lb_num = pms->st_loc[spar];
1305 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
1306 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1307 if (!error && dscr) {
1308 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
1309 if (ump->sparing_table)
1310 free(ump->sparing_table, M_UDFVOLD);
1311 ump->sparing_table = &dscr->spt;
1312 dscr = NULL;
1313 DPRINTF(VOLUMES,
1314 ("Sparing table accepted (%d entries)\n",
1315 udf_rw16(ump->sparing_table->rt_l)));
1316 break; /* we're done */
1317 };
1318 };
1319 if (dscr)
1320 free(dscr, M_UDFVOLD);
1321 };
1322
1323 if (ump->sparing_table)
1324 return 0;
1325
1326 return ENOENT;
1327 }
1328
1329 /* --------------------------------------------------------------------- */
1330
1331 int
1332 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
1333 {
1334 union udf_pmap *mapping;
1335 uint32_t n_pm, mt_l;
1336 uint32_t log_part;
1337 uint8_t *pmap_pos;
1338 int pmap_size;
1339 int error;
1340
1341 /* We have to iterate again over the part mappings for locations */
1342 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1343 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1344 pmap_pos = ump->logical_vol->maps;
1345
1346 for (log_part = 0; log_part < n_pm; log_part++) {
1347 mapping = (union udf_pmap *) pmap_pos;
1348 switch (ump->vtop_tp[log_part]) {
1349 case UDF_VTOP_TYPE_PHYS :
1350 /* nothing */
1351 break;
1352 case UDF_VTOP_TYPE_VIRT :
1353 /* search and load VAT */
1354 error = udf_search_vat(ump, mapping);
1355 if (error)
1356 return ENOENT;
1357 break;
1358 case UDF_VTOP_TYPE_SPARABLE :
1359 /* load one of the sparable tables */
1360 error = udf_read_sparables(ump, mapping);
1361 break;
1362 case UDF_VTOP_TYPE_META :
1363 /* TODO load metafile and metabitmapfile FE/EFEs */
1364 break;
1365 default:
1366 break;
1367 };
1368 pmap_size = pmap_pos[1];
1369 pmap_pos += pmap_size;
1370 };
1371
1372 return 0;
1373 }
1374
1375 /* --------------------------------------------------------------------- */
1376
1377 int
1378 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
1379 {
1380 struct udf_node *rootdir_node, *streamdir_node;
1381 union dscrptr *dscr;
1382 struct long_ad fsd_loc, *dir_loc;
1383 uint32_t lb_num, dummy;
1384 uint32_t fsd_len;
1385 int dscr_type;
1386 int error;
1387
1388 /* TODO implement FSD reading in seperate function like integrity? */
1389 /* get fileset descriptor sequence */
1390 fsd_loc = ump->logical_vol->lv_fsd_loc;
1391 fsd_len = udf_rw32(fsd_loc.len);
1392
1393 dscr = NULL;
1394 error = 0;
1395 while (fsd_len || error) {
1396 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
1397 /* translate fsd_loc to lb_num */
1398 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
1399 if (error)
1400 break;
1401 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
1402 error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
1403 /* end markers */
1404 if (error || (dscr == NULL))
1405 break;
1406
1407 /* analyse */
1408 dscr_type = udf_rw16(dscr->tag.id);
1409 if (dscr_type == TAGID_TERM)
1410 break;
1411 if (dscr_type != TAGID_FSD) {
1412 free(dscr, M_UDFVOLD);
1413 return ENOENT;
1414 };
1415
1416 /*
1417 * TODO check for multiple fileset descriptors; its only
1418 * picking the last now. Also check for FSD
1419 * correctness/interpretability
1420 */
1421
1422 /* update */
1423 if (ump->fileset_desc) {
1424 free(ump->fileset_desc, M_UDFVOLD);
1425 };
1426 ump->fileset_desc = &dscr->fsd;
1427 dscr = NULL;
1428
1429 /* continue to the next fsd */
1430 fsd_len -= ump->discinfo.sector_size;
1431 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
1432
1433 /* follow up to fsd->next_ex (long_ad) if its not null */
1434 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
1435 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
1436 fsd_loc = ump->fileset_desc->next_ex;
1437 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
1438 };
1439 };
1440 if (dscr)
1441 free(dscr, M_UDFVOLD);
1442
1443 /* there has to be one */
1444 if (ump->fileset_desc == NULL)
1445 return ENOENT;
1446
1447 DPRINTF(VOLUMES, ("FSD read in fine\n"));
1448
1449 /*
1450 * Now the FSD is known, read in the rootdirectory and if one exists,
1451 * the system stream dir. Some files in the system streamdir are not
1452 * wanted in this implementation since they are not maintained. If
1453 * writing is enabled we'll delete these files if they exist.
1454 */
1455
1456 rootdir_node = streamdir_node = NULL;
1457 dir_loc = NULL;
1458
1459 /* try to read in the rootdir */
1460 dir_loc = &ump->fileset_desc->rootdir_icb;
1461 error = udf_get_node(ump, dir_loc, &rootdir_node);
1462 if (error)
1463 return ENOENT;
1464
1465 /* aparently it read in fine */
1466
1467 /*
1468 * Try the system stream directory; not very likely in the ones we
1469 * test, but for completeness.
1470 */
1471 dir_loc = &ump->fileset_desc->streamdir_icb;
1472 if (udf_rw32(dir_loc->len)) {
1473 error = udf_get_node(ump, dir_loc, &streamdir_node);
1474 if (error)
1475 printf("udf mount: streamdir defined but ignored\n");
1476 if (!error) {
1477 /*
1478 * TODO process streamdir `baddies' i.e. files we dont
1479 * want if R/W
1480 */
1481 };
1482 };
1483
1484 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
1485
1486 /* release the vnodes again; they'll be auto-recycled later */
1487 if (streamdir_node) {
1488 vput(streamdir_node->vnode);
1489 };
1490 if (rootdir_node) {
1491 vput(rootdir_node->vnode);
1492 };
1493
1494 return 0;
1495 }
1496
1497 /* --------------------------------------------------------------------- */
1498
1499 int
1500 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
1501 uint32_t *lb_numres, uint32_t *extres)
1502 {
1503 struct part_desc *pdesc;
1504 struct spare_map_entry *sme;
1505 uint32_t *trans;
1506 uint32_t lb_num, lb_rel, lb_packet;
1507 int rel, vpart, part;
1508
1509 assert(ump && icb_loc && lb_numres);
1510
1511 vpart = udf_rw16(icb_loc->loc.part_num);
1512 lb_num = udf_rw32(icb_loc->loc.lb_num);
1513 if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
1514 return EINVAL;
1515
1516 switch (ump->vtop_tp[vpart]) {
1517 case UDF_VTOP_TYPE_RAW :
1518 /* 1:1 to the end of the device */
1519 *lb_numres = lb_num;
1520 *extres = INT_MAX;
1521 return 0;
1522 case UDF_VTOP_TYPE_PHYS :
1523 /* transform into its disc logical block */
1524 part = ump->vtop[vpart];
1525 pdesc = ump->partitions[part];
1526 if (lb_num > udf_rw32(pdesc->part_len))
1527 return EINVAL;
1528 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1529
1530 /* extent from here to the end of the partition */
1531 *extres = udf_rw32(pdesc->part_len) - lb_num;
1532 return 0;
1533 case UDF_VTOP_TYPE_VIRT :
1534 /* only maps one sector, lookup in VAT */
1535 if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
1536 return EINVAL;
1537
1538 /* lookup in virtual allocation table */
1539 trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
1540 lb_num = udf_rw32(trans[lb_num]);
1541
1542 /* transform into its disc logical block */
1543 part = ump->vtop[vpart];
1544 pdesc = ump->partitions[part];
1545 if (lb_num > udf_rw32(pdesc->part_len))
1546 return EINVAL;
1547 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1548
1549 /* just one logical block */
1550 *extres = 1;
1551 return 0;
1552 case UDF_VTOP_TYPE_SPARABLE :
1553 /* check if the packet containing the lb_num is remapped */
1554 lb_packet = lb_num / ump->sparable_packet_len;
1555 lb_rel = lb_num % ump->sparable_packet_len;
1556
1557 for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
1558 sme = &ump->sparing_table->entries[rel];
1559 if (lb_packet == udf_rw32(sme->org)) {
1560 /* NOTE maps to absolute disc logical block! */
1561 *lb_numres = udf_rw32(sme->map) + lb_rel;
1562 *extres = ump->sparable_packet_len - lb_rel;
1563 return 0;
1564 };
1565 };
1566
1567 /* transform into its disc logical block */
1568 part = ump->vtop[vpart];
1569 pdesc = ump->partitions[part];
1570 if (lb_num > udf_rw32(pdesc->part_len))
1571 return EINVAL;
1572 *lb_numres = lb_num + udf_rw32(pdesc->start_loc);
1573
1574 /* rest of block */
1575 *extres = ump->sparable_packet_len - lb_rel;
1576 return 0;
1577 case UDF_VTOP_TYPE_META :
1578 default:
1579 printf("UDF vtop translation scheme %d unimplemented yet\n",
1580 ump->vtop_tp[vpart]);
1581 };
1582
1583 return EINVAL;
1584 }
1585
1586 /* --------------------------------------------------------------------- */
1587
1588 /* To make absolutely sure we are NOT returning zero, add one :) */
1589
1590 long
1591 udf_calchash(struct long_ad *icbptr)
1592 {
1593 /* ought to be enough since each mountpoint has its own chain */
1594 return udf_rw32(icbptr->loc.lb_num) + 1;
1595 }
1596
1597 /* --------------------------------------------------------------------- */
1598
1599 static struct udf_node *
1600 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
1601 {
1602 struct udf_node *unp;
1603 struct vnode *vp;
1604 uint32_t hashline;
1605
1606 loop:
1607 simple_lock(&ump->ihash_slock);
1608
1609 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
1610 LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
1611 assert(unp);
1612 if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
1613 unp->loc.loc.part_num == icbptr->loc.part_num) {
1614 vp = unp->vnode;
1615 assert(vp);
1616 simple_lock(&vp->v_interlock);
1617 simple_unlock(&ump->ihash_slock);
1618 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
1619 goto loop;
1620 return unp;
1621 };
1622 };
1623 simple_unlock(&ump->ihash_slock);
1624
1625 return NULL;
1626 };
1627
1628 /* --------------------------------------------------------------------- */
1629
1630 static void
1631 udf_hashins(struct udf_node *unp)
1632 {
1633 struct udf_mount *ump;
1634 uint32_t hashline;
1635
1636 ump = unp->ump;
1637 simple_lock(&ump->ihash_slock);
1638
1639 hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
1640 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
1641
1642 simple_unlock(&ump->ihash_slock);
1643 }
1644
1645 /* --------------------------------------------------------------------- */
1646
1647 static void
1648 udf_hashrem(struct udf_node *unp)
1649 {
1650 struct udf_mount *ump;
1651
1652 ump = unp->ump;
1653 simple_lock(&ump->ihash_slock);
1654
1655 LIST_REMOVE(unp, hashchain);
1656
1657 simple_unlock(&ump->ihash_slock);
1658 }
1659
1660 /* --------------------------------------------------------------------- */
1661
1662 int
1663 udf_dispose_locked_node(struct udf_node *node)
1664 {
1665 if (!node)
1666 return 0;
1667 if (node->vnode)
1668 VOP_UNLOCK(node->vnode, 0);
1669 return udf_dispose_node(node);
1670 }
1671
1672 /* --------------------------------------------------------------------- */
1673
1674 int
1675 udf_dispose_node(struct udf_node *node)
1676 {
1677 struct vnode *vp;
1678
1679 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
1680 if (!node) {
1681 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
1682 return 0;
1683 };
1684
1685 vp = node->vnode;
1686
1687 /* TODO extended attributes and streamdir */
1688
1689 /* remove from our hash lookup table */
1690 udf_hashrem(node);
1691
1692 /* dissociate our udf_node from the vnode */
1693 vp->v_data = NULL;
1694
1695 /* free associated memory and the node itself */
1696 if (node->fe)
1697 pool_put(&node->ump->desc_pool, node->fe);
1698 if (node->efe)
1699 pool_put(&node->ump->desc_pool, node->efe);
1700 pool_put(&udf_node_pool, node);
1701
1702 return 0;
1703 }
1704
1705 /* --------------------------------------------------------------------- */
1706
1707 /*
1708 * Genfs interfacing
1709 *
1710 * static const struct genfs_ops udffs_genfsops = {
1711 * .gop_size = genfs_size,
1712 * size of transfers
1713 * .gop_alloc = udf_gop_alloc,
1714 * unknown
1715 * .gop_write = genfs_gop_write,
1716 * putpages interface code
1717 * .gop_markupdate = udf_gop_markupdate,
1718 * set update/modify flags etc.
1719 * };
1720 */
1721
1722 /*
1723 * Genfs interface. These four functions are the only ones defined though not
1724 * documented... great.... why is chosen for the `.' initialisers i dont know
1725 * but other filingsystems seem to use it this way.
1726 */
1727
1728 static int
1729 udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags,
1730 struct ucred *cred)
1731 {
1732 return 0;
1733 }
1734
1735
1736 static void
1737 udf_gop_markupdate(struct vnode *vp, int flags)
1738 {
1739 struct udf_node *udf_node = VTOI(vp);
1740 u_long mask;
1741
1742 udf_node = udf_node; /* shut up gcc */
1743
1744 mask = 0;
1745 #ifdef notyet
1746 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
1747 mask = UDF_SET_ACCESS;
1748 }
1749 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
1750 mask |= UDF_SET_UPDATE;
1751 }
1752 if (mask) {
1753 udf_node->update_flag |= mask;
1754 }
1755 #endif
1756 /* msdosfs doesn't do it, but shouldn't we update the times here? */
1757 }
1758
1759
1760 static const struct genfs_ops udf_genfsops = {
1761 .gop_size = genfs_size,
1762 .gop_alloc = udf_gop_alloc,
1763 .gop_write = genfs_gop_write,
1764 .gop_markupdate = udf_gop_markupdate,
1765 };
1766
1767 /* --------------------------------------------------------------------- */
1768
1769 /*
1770 * Each node can have an attached streamdir node though not
1771 * recursively. These are otherwise known as named substreams/named
1772 * extended attributes that have no size limitations.
1773 *
1774 * `Normal' extended attributes are indicated with a number and are recorded
1775 * in either the fe/efe descriptor itself for small descriptors or recorded in
1776 * the attached extended attribute file. Since this file can get fragmented,
1777 * care ought to be taken.
1778 */
1779
1780 int
1781 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
1782 struct udf_node **noderes)
1783 {
1784 union dscrptr *dscr, *tmpdscr;
1785 struct udf_node *node;
1786 struct vnode *nvp;
1787 struct long_ad icb_loc;
1788 extern int (**udf_vnodeop_p)(void *);
1789 uint64_t file_size;
1790 uint32_t lb_size, sector, dummy;
1791 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
1792 int error;
1793
1794 DPRINTF(NODE, ("udf_get_node called\n"));
1795 *noderes = node = NULL;
1796
1797 /* lock to disallow simultanious creation of same node */
1798 lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
1799
1800 DPRINTF(NODE, ("\tlookup in hash table\n"));
1801 /* lookup in hash table */
1802 assert(ump);
1803 assert(node_icb_loc);
1804 node = udf_hashget(ump, node_icb_loc);
1805 if (node) {
1806 DPRINTF(NODE, ("\tgot it from the hash!\n"));
1807 /* vnode is returned locked */
1808 *noderes = node;
1809 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1810 return 0;
1811 };
1812
1813 /* garbage check: translate node_icb_loc to sectornr */
1814 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
1815 if (error) {
1816 /* no use, this will fail anyway */
1817 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1818 return EINVAL;
1819 };
1820
1821 /* build node (do initialise!) */
1822 node = pool_get(&udf_node_pool, PR_WAITOK);
1823 memset(node, 0, sizeof(struct udf_node));
1824
1825 DPRINTF(NODE, ("\tget new vnode\n"));
1826 /* give it a vnode */
1827 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
1828 if (error) {
1829 pool_put(&udf_node_pool, node);
1830 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1831 return error;
1832 };
1833
1834 /* allways return locked vnode */
1835 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
1836 /* recycle vnode and unlock; simultanious will fail too */
1837 ungetnewvnode(nvp);
1838 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1839 return error;
1840 };
1841
1842 /* initialise crosslinks, note location of fe/efe for hashing */
1843 node->ump = ump;
1844 node->vnode = nvp;
1845 nvp->v_data = node;
1846 node->loc = *node_icb_loc;
1847 node->lockf = 0;
1848
1849 /* insert into the hash lookup */
1850 udf_hashins(node);
1851
1852 /* safe to unlock, the entry is in the hash table, vnode is locked */
1853 lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
1854
1855 icb_loc = *node_icb_loc;
1856 needs_indirect = 0;
1857 strat4096 = 0;
1858 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
1859 file_size = 0;
1860 lb_size = udf_rw32(ump->logical_vol->lb_size);
1861
1862 do {
1863 error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
1864 if (error)
1865 break;
1866
1867 /* try to read in fe/efe */
1868 error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
1869
1870 /* blank sector marks end of sequence, check this */
1871 if ((tmpdscr == NULL) && (!strat4096))
1872 error = ENOENT;
1873
1874 /* break if read error or blank sector */
1875 if (error || (tmpdscr == NULL))
1876 break;
1877
1878 /* process descriptor based on the descriptor type */
1879 dscr_type = udf_rw16(tmpdscr->tag.id);
1880
1881 /* if dealing with an indirect entry, follow the link */
1882 if (dscr_type == TAGID_INDIRECT_ENTRY) {
1883 needs_indirect = 0;
1884 icb_loc = tmpdscr->inde.indirect_icb;
1885 free(tmpdscr, M_UDFTEMP);
1886 continue;
1887 };
1888
1889 /* only file entries and extended file entries allowed here */
1890 if ((dscr_type != TAGID_FENTRY) &&
1891 (dscr_type != TAGID_EXTFENTRY)) {
1892 free(tmpdscr, M_UDFTEMP);
1893 error = ENOENT;
1894 break;
1895 };
1896
1897 /* get descriptor space from our pool */
1898 KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
1899
1900 dscr = pool_get(&ump->desc_pool, PR_WAITOK);
1901 memcpy(dscr, tmpdscr, lb_size);
1902 free(tmpdscr, M_UDFTEMP);
1903
1904 /* record and process/update (ext)fentry */
1905 if (dscr_type == TAGID_FENTRY) {
1906 if (node->fe)
1907 pool_put(&ump->desc_pool, node->fe);
1908 node->fe = &dscr->fe;
1909 strat = udf_rw16(node->fe->icbtag.strat_type);
1910 udf_file_type = node->fe->icbtag.file_type;
1911 file_size = udf_rw64(node->fe->inf_len);
1912 } else {
1913 if (node->efe)
1914 pool_put(&ump->desc_pool, node->efe);
1915 node->efe = &dscr->efe;
1916 strat = udf_rw16(node->efe->icbtag.strat_type);
1917 udf_file_type = node->efe->icbtag.file_type;
1918 file_size = udf_rw64(node->efe->inf_len);
1919 };
1920
1921 /* check recording strategy (structure) */
1922
1923 /*
1924 * Strategy 4096 is a daisy linked chain terminating with an
1925 * unrecorded sector or a TERM descriptor. The next
1926 * descriptor is to be found in the sector that follows the
1927 * current sector.
1928 */
1929 if (strat == 4096) {
1930 strat4096 = 1;
1931 needs_indirect = 1;
1932
1933 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
1934 };
1935
1936 /*
1937 * Strategy 4 is the normal strategy and terminates, but if
1938 * we're in strategy 4096, we can't have strategy 4 mixed in
1939 */
1940
1941 if (strat == 4) {
1942 if (strat4096) {
1943 error = EINVAL;
1944 break;
1945 };
1946 break; /* done */
1947 };
1948 } while (!error);
1949
1950 if (error) {
1951 /* recycle udf_node */
1952 udf_dispose_node(node);
1953
1954 /* recycle vnode */
1955 nvp->v_data = NULL;
1956 ungetnewvnode(nvp);
1957
1958 return EINVAL; /* error code ok? */
1959 };
1960
1961 /* post process and initialise node */
1962
1963 /* assert no references to dscr anymore beyong this point */
1964 assert((node->fe) || (node->efe));
1965 dscr = NULL;
1966
1967 /*
1968 * Record where to record an updated version of the descriptor. If
1969 * there is a sequence of indirect entries, icb_loc will have been
1970 * updated. Its the write disipline to allocate new space and to make
1971 * sure the chain is maintained.
1972 *
1973 * `needs_indirect' flags if the next location is to be filled with
1974 * with an indirect entry.
1975 */
1976 node->next_loc = icb_loc;
1977 node->needs_indirect = needs_indirect;
1978
1979 /*
1980 * Translate UDF filetypes into vnode types.
1981 *
1982 * Systemfiles like the meta main and mirror files are not treated as
1983 * normal files, so we type them as having no type. UDF dictates that
1984 * they are not allowed to be visible.
1985 */
1986
1987 /* TODO specfs, fifofs etc etc. vnops setting */
1988 switch (udf_file_type) {
1989 case UDF_ICB_FILETYPE_DIRECTORY :
1990 case UDF_ICB_FILETYPE_STREAMDIR :
1991 nvp->v_type = VDIR;
1992 break;
1993 case UDF_ICB_FILETYPE_BLOCKDEVICE :
1994 nvp->v_type = VBLK;
1995 break;
1996 case UDF_ICB_FILETYPE_CHARDEVICE :
1997 nvp->v_type = VCHR;
1998 break;
1999 case UDF_ICB_FILETYPE_SYMLINK :
2000 nvp->v_type = VLNK;
2001 break;
2002 case UDF_ICB_FILETYPE_META_MAIN :
2003 case UDF_ICB_FILETYPE_META_MIRROR :
2004 nvp->v_type = VNON;
2005 break;
2006 case UDF_ICB_FILETYPE_RANDOMACCESS :
2007 nvp->v_type = VREG;
2008 break;
2009 default:
2010 /* YIKES, either a block/char device, fifo or something else */
2011 nvp->v_type = VNON;
2012 };
2013
2014 /* initialise genfs */
2015 genfs_node_init(nvp, &udf_genfsops);
2016
2017 /* don't forget to set vnode's v_size */
2018 nvp->v_size = file_size;
2019
2020 /* TODO ext attr and streamdir nodes */
2021
2022 *noderes = node;
2023
2024 return 0;
2025 }
2026
2027 /* --------------------------------------------------------------------- */
2028
2029 /* UDF<->unix converters */
2030
2031 /* --------------------------------------------------------------------- */
2032
2033 static mode_t
2034 udf_perm_to_unix_mode(uint32_t perm)
2035 {
2036 mode_t mode;
2037
2038 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
2039 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
2040 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
2041
2042 return mode;
2043 }
2044
2045 /* --------------------------------------------------------------------- */
2046
2047 #ifdef notyet
2048 static uint32_t
2049 unix_mode_to_udf_perm(mode_t mode)
2050 {
2051 uint32_t perm;
2052
2053 perm = ((mode & S_IRWXO) );
2054 perm |= ((mode & S_IRWXG) << 2);
2055 perm |= ((mode & S_IRWXU) << 4);
2056 perm |= ((mode & S_IWOTH) << 3);
2057 perm |= ((mode & S_IWGRP) << 5);
2058 perm |= ((mode & S_IWUSR) << 7);
2059
2060 return perm;
2061 }
2062 #endif
2063
2064 /* --------------------------------------------------------------------- */
2065
2066 static uint32_t
2067 udf_icb_to_unix_filetype(uint32_t icbftype)
2068 {
2069 switch (icbftype) {
2070 case UDF_ICB_FILETYPE_DIRECTORY :
2071 case UDF_ICB_FILETYPE_STREAMDIR :
2072 return S_IFDIR;
2073 case UDF_ICB_FILETYPE_FIFO :
2074 return S_IFIFO;
2075 case UDF_ICB_FILETYPE_CHARDEVICE :
2076 return S_IFCHR;
2077 case UDF_ICB_FILETYPE_BLOCKDEVICE :
2078 return S_IFBLK;
2079 case UDF_ICB_FILETYPE_RANDOMACCESS :
2080 return S_IFREG;
2081 case UDF_ICB_FILETYPE_SYMLINK :
2082 return S_IFLNK;
2083 case UDF_ICB_FILETYPE_SOCKET :
2084 return S_IFSOCK;
2085 };
2086 /* no idea what this is */
2087 return 0;
2088 }
2089
2090 /* --------------------------------------------------------------------- */
2091
2092 /* TODO KNF-ify */
2093
2094 void
2095 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
2096 {
2097 uint16_t raw_name[1024], unix_name[1024];
2098 uint16_t *inchp, ch;
2099 uint8_t *outchp;
2100 int ucode_chars, nice_uchars;
2101
2102 assert(sizeof(char) == sizeof(uint8_t));
2103 outchp = (uint8_t *) result;
2104 if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2105 *raw_name = *unix_name = 0;
2106 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
2107 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
2108 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
2109 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
2110 ch = *inchp;
2111 /* XXX sloppy unicode -> latin */
2112 *outchp++ = ch & 255;
2113 if (!ch) break;
2114 };
2115 *outchp++ = 0;
2116 } else {
2117 /* assume 8bit char length byte latin-1 */
2118 assert(*id == 8);
2119 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
2120 };
2121 }
2122
2123 /* --------------------------------------------------------------------- */
2124
2125 /* TODO KNF-ify */
2126
2127 void
2128 unix_to_udf_name(char *result, char *name,
2129 uint8_t *result_len, struct charspec *chsp)
2130 {
2131 uint16_t raw_name[1024];
2132 int udf_chars, name_len;
2133 char *inchp;
2134 uint16_t *outchp;
2135
2136 /* convert latin-1 or whatever to unicode-16 */
2137 *raw_name = 0;
2138 name_len = 0;
2139 inchp = name;
2140 outchp = raw_name;
2141 while (*inchp) {
2142 *outchp++ = (uint16_t) (*inchp++);
2143 name_len++;
2144 };
2145
2146 if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
2147 udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
2148 } else {
2149 /* XXX assume 8bit char length byte latin-1 */
2150 *result++ = 8; udf_chars = 1;
2151 strncpy(result, name + 1, strlen(name+1));
2152 udf_chars += strlen(name);
2153 };
2154 *result_len = udf_chars;
2155 }
2156
2157 /* --------------------------------------------------------------------- */
2158
2159 /*
2160 * Timestamp to timespec conversion code is taken with small modifications
2161 * from FreeBSDs /sys/fs/udf by Scott Long <scottl (at) freebsd.org>. Added with
2162 * permission from Scott.
2163 */
2164
2165 static int mon_lens[2][12] = {
2166 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
2167 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
2168 };
2169
2170
2171 static int
2172 udf_isaleapyear(int year)
2173 {
2174 int i;
2175
2176 i = (year % 4) ? 0 : 1;
2177 i &= (year % 100) ? 1 : 0;
2178 i |= (year % 400) ? 0 : 1;
2179
2180 return i;
2181 }
2182
2183
2184 void
2185 udf_timestamp_to_timespec(struct udf_mount *ump,
2186 struct timestamp *timestamp,
2187 struct timespec *timespec)
2188 {
2189 uint32_t usecs, secs, nsecs;
2190 uint16_t tz;
2191 int i, lpyear, daysinyear, year;
2192
2193 timespec->tv_sec = secs = 0;
2194 timespec->tv_nsec = nsecs = 0;
2195
2196 /*
2197 * DirectCD seems to like using bogus year values.
2198 *
2199 * Distrust time->month especially, since it will be used for an array
2200 * index.
2201 */
2202 year = udf_rw16(timestamp->year);
2203 if ((year < 1970) || (timestamp->month > 12)) {
2204 return;
2205 }
2206
2207 /* Calculate the time and day
2208 * Day is 1-31, Month is 1-12
2209 */
2210
2211 usecs = timestamp->usec +
2212 100*timestamp->hund_usec + 10000*timestamp->centisec;
2213 nsecs = usecs * 1000;
2214 secs = timestamp->second;
2215 secs += timestamp->minute * 60;
2216 secs += timestamp->hour * 3600;
2217 secs += (timestamp->day-1) * 3600 * 24;
2218
2219 /* Calclulate the month */
2220 lpyear = udf_isaleapyear(year);
2221 for (i = 1; i < timestamp->month; i++)
2222 secs += mon_lens[lpyear][i-1] * 3600 * 24;
2223
2224 for (i = 1970; i < year; i++) {
2225 daysinyear = udf_isaleapyear(i) + 365 ;
2226 secs += daysinyear * 3600 * 24;
2227 }
2228
2229 /*
2230 * Calculate the time zone. The timezone is 12 bit signed 2's
2231 * compliment, so we gotta do some extra magic to handle it right.
2232 */
2233 tz = udf_rw16(timestamp->type_tz);
2234 tz &= 0x0fff; /* only lower 12 bits are significant */
2235 if (tz & 0x0800) /* sign extention */
2236 tz |= 0xf000;
2237
2238 /* TODO check timezone conversion */
2239 /* check if we are specified a timezone to convert */
2240 if (udf_rw16(timestamp->type_tz) & 0x1000) {
2241 if ((int16_t) tz != -2047)
2242 secs -= (int16_t) tz * 60;
2243 } else {
2244 secs -= ump->mount_args.gmtoff;
2245 };
2246
2247 timespec->tv_sec = secs;
2248 timespec->tv_nsec = nsecs;
2249 }
2250
2251 /* --------------------------------------------------------------------- */
2252
2253 /*
2254 * Attribute and filetypes converters with get/set pairs
2255 */
2256
2257 uint32_t
2258 udf_getaccessmode(struct udf_node *udf_node)
2259 {
2260 struct file_entry *fe;
2261 struct extfile_entry *efe;
2262 uint32_t udf_perm, icbftype;
2263 uint32_t mode, ftype;
2264 uint16_t icbflags;
2265
2266 if (udf_node->fe) {
2267 fe = udf_node->fe;
2268 udf_perm = udf_rw32(fe->perm);
2269 icbftype = fe->icbtag.file_type;
2270 icbflags = udf_rw16(fe->icbtag.flags);
2271 } else {
2272 assert(udf_node->efe);
2273 efe = udf_node->efe;
2274 udf_perm = udf_rw32(efe->perm);
2275 icbftype = efe->icbtag.file_type;
2276 icbflags = udf_rw16(efe->icbtag.flags);
2277 };
2278
2279 mode = udf_perm_to_unix_mode(udf_perm);
2280 ftype = udf_icb_to_unix_filetype(icbftype);
2281
2282 /* set suid, sgid, sticky from flags in fe/efe */
2283 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
2284 mode |= S_ISUID;
2285 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
2286 mode |= S_ISGID;
2287 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
2288 mode |= S_ISVTX;
2289
2290 return mode | ftype;
2291 }
2292
2293 /* --------------------------------------------------------------------- */
2294
2295 /*
2296 * Directory read and manipulation functions
2297 */
2298
2299 int
2300 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
2301 struct long_ad *icb_loc)
2302 {
2303 struct udf_node *dir_node = VTOI(vp);
2304 struct file_entry *fe;
2305 struct extfile_entry *efe;
2306 struct fileid_desc *fid;
2307 struct dirent dirent;
2308 uint64_t file_size, diroffset;
2309 uint32_t lb_size;
2310 int found, error;
2311
2312 /* get directory filesize */
2313 if (dir_node->fe) {
2314 fe = dir_node->fe;
2315 file_size = udf_rw64(fe->inf_len);
2316 } else {
2317 assert(dir_node->efe);
2318 efe = dir_node->efe;
2319 file_size = udf_rw64(efe->inf_len);
2320 };
2321
2322 /* allocate temporary space for fid */
2323 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
2324 fid = malloc(lb_size, M_TEMP, M_WAITOK);
2325
2326 found = 0;
2327 diroffset = 0;
2328 while (!found && (diroffset < file_size)) {
2329 /* transfer a new fid/dirent */
2330 error = udf_read_fid_stream(vp, &diroffset, fid, &dirent);
2331 if (error)
2332 break;
2333
2334 /* skip deleted entries */
2335 if (fid->file_char & UDF_FILE_CHAR_DEL)
2336 continue;
2337
2338 if ((strlen(dirent.d_name) == namelen) &&
2339 (strncmp(dirent.d_name, name, namelen) == 0)) {
2340 found = 1;
2341 *icb_loc = fid->icb;
2342 };
2343 };
2344 free(fid, M_TEMP);
2345
2346 return found;
2347 }
2348
2349 /* --------------------------------------------------------------------- */
2350
2351 /*
2352 * Read one fid and process it into a dirent and advance to the next (*fid)
2353 * has to be allocated a logical block in size, (*dirent) struct dirent length
2354 */
2355
2356 int
2357 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
2358 struct fileid_desc *fid, struct dirent *dirent)
2359 {
2360 struct udf_node *dir_node = VTOI(vp);
2361 struct udf_mount *ump = dir_node->ump;
2362 struct file_entry *fe;
2363 struct extfile_entry *efe;
2364 struct uio dir_uio;
2365 struct iovec dir_iovec;
2366 uint32_t entry_length, lb_size;
2367 uint64_t file_size;
2368 char *fid_name;
2369 int enough, error;
2370
2371 assert(fid);
2372 assert(dirent);
2373 assert(dir_node);
2374 assert(offset);
2375 assert(*offset != 1);
2376
2377 DPRINTF(FIDS, ("read_fid_stream called\n"));
2378 /* check if we're past the end of the directory */
2379 if (dir_node->fe) {
2380 fe = dir_node->fe;
2381 file_size = udf_rw64(fe->inf_len);
2382 } else {
2383 assert(dir_node->efe);
2384 efe = dir_node->efe;
2385 file_size = udf_rw64(efe->inf_len);
2386 };
2387 if (*offset >= file_size)
2388 return EINVAL;
2389
2390 /* get maximum length of FID descriptor */
2391 lb_size = udf_rw32(ump->logical_vol->lb_size);
2392
2393 /* initialise return values */
2394 entry_length = 0;
2395 memset(dirent, 0, sizeof(struct dirent));
2396 memset(fid, 0, lb_size);
2397
2398 /* TODO use vn_rdwr instead of creating our own uio */
2399 /* read part of the directory */
2400 memset(&dir_uio, 0, sizeof(struct uio));
2401 dir_uio.uio_rw = UIO_READ; /* read into this space */
2402 dir_uio.uio_iovcnt = 1;
2403 dir_uio.uio_iov = &dir_iovec;
2404 dir_uio.uio_segflg = UIO_SYSSPACE;
2405 dir_iovec.iov_base = fid;
2406 dir_iovec.iov_len = lb_size;
2407 dir_uio.uio_offset = *offset;
2408
2409 /* limit length of read in piece */
2410 dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
2411
2412 /* read the part into the fid space */
2413 error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
2414 if (error)
2415 return error;
2416
2417 /*
2418 * Check if we got a whole descriptor.
2419 * XXX Try to `resync' directory stream when something is very wrong.
2420 *
2421 */
2422 enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
2423 if (!enough) {
2424 /* short dir ... */
2425 return EIO;
2426 };
2427
2428 /* check if our FID header is OK */
2429 error = udf_check_tag(fid);
2430 DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
2431 if (!error) {
2432 if (udf_rw16(fid->tag.id) != TAGID_FID)
2433 error = ENOENT;
2434 };
2435 DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
2436
2437 /* check for length */
2438 if (!error) {
2439 entry_length = udf_fidsize(fid, lb_size);
2440 enough = (dir_uio.uio_offset - (*offset) >= entry_length);
2441 };
2442 DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
2443 entry_length, enough?"yes":"no"));
2444
2445 if (!enough) {
2446 /* short dir ... bomb out */
2447 return EIO;
2448 };
2449
2450 /* check FID contents */
2451 if (!error) {
2452 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
2453 DPRINTF(FIDS, ("\tpayload checked ok\n"));
2454 };
2455 if (error) {
2456 /* note that is sometimes a bit quick to report */
2457 printf("BROKEN DIRECTORY ENTRY\n");
2458 /* RESYNC? */
2459 /* TODO: use udf_resync_fid_stream */
2460 return EIO;
2461 };
2462 DPRINTF(FIDS, ("\tinterpret FID\n"));
2463
2464 /* we got a whole and valid descriptor! */
2465
2466 /* create resulting dirent structure */
2467 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
2468 udf_to_unix_name(dirent->d_name,
2469 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
2470
2471 /* '..' has no name, so provide one */
2472 if (fid->file_char & UDF_FILE_CHAR_PAR)
2473 strcpy(dirent->d_name, "..");
2474
2475 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
2476 dirent->d_namlen = strlen(dirent->d_name);
2477 dirent->d_reclen = _DIRENT_SIZE(dirent);
2478
2479 /*
2480 * Note that its not worth trying to go for the filetypes now... its
2481 * too expensive too
2482 */
2483 dirent->d_type = DT_UNKNOWN;
2484
2485 /* initial guess for filetype we can make */
2486 if (fid->file_char & UDF_FILE_CHAR_DIR)
2487 dirent->d_type = DT_DIR;
2488
2489 /* advance */
2490 *offset += entry_length;
2491
2492 return error;
2493 }
2494
2495 /* --------------------------------------------------------------------- */
2496
2497 /*
2498 * block based file reading and writing
2499 */
2500
2501 static int
2502 udf_read_internal(struct udf_node *node, uint8_t *blob)
2503 {
2504 struct udf_mount *ump;
2505 struct file_entry *fe;
2506 struct extfile_entry *efe;
2507 uint64_t inflen;
2508 uint32_t sector_size;
2509 uint8_t *pos;
2510 int icbflags, addr_type;
2511
2512 /* shut up gcc */
2513 inflen = addr_type = icbflags = 0;
2514 pos = NULL;
2515
2516 /* get extent and do some paranoia checks */
2517 ump = node->ump;
2518 sector_size = ump->discinfo.sector_size;
2519
2520 fe = node->fe;
2521 efe = node->efe;
2522 if (fe) {
2523 inflen = udf_rw64(fe->inf_len);
2524 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2525 icbflags = udf_rw16(fe->icbtag.flags);
2526 };
2527 if (efe) {
2528 inflen = udf_rw64(efe->inf_len);
2529 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2530 icbflags = udf_rw16(efe->icbtag.flags);
2531 };
2532 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2533
2534 assert(addr_type == UDF_ICB_INTERN_ALLOC);
2535 assert(inflen < sector_size);
2536
2537 /* copy out info */
2538 memset(blob, 0, sector_size);
2539 memcpy(blob, pos, inflen);
2540
2541 return 0;
2542 }
2543
2544 /* --------------------------------------------------------------------- */
2545
2546 /*
2547 * Read file extent reads an extent specified in sectors from the file. It is
2548 * sector based; i.e. no `fancy' offsets.
2549 */
2550
2551 int
2552 udf_read_file_extent(struct udf_node *node,
2553 uint32_t from, uint32_t sectors,
2554 uint8_t *blob)
2555 {
2556 struct buf buf;
2557 uint32_t sector_size;
2558
2559 BUF_INIT(&buf);
2560
2561 sector_size = node->ump->discinfo.sector_size;
2562
2563 buf.b_bufsize = sectors * sector_size;
2564 buf.b_data = blob;
2565 buf.b_bcount = buf.b_bufsize;
2566 buf.b_resid = buf.b_bcount;
2567 buf.b_flags = B_BUSY | B_READ;
2568 buf.b_vp = node->vnode;
2569 buf.b_proc = NULL;
2570
2571 buf.b_blkno = from;
2572 buf.b_lblkno = 0;
2573 BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
2574
2575 udf_read_filebuf(node, &buf);
2576 return biowait(&buf);
2577 }
2578
2579
2580 /* --------------------------------------------------------------------- */
2581
2582 /*
2583 * Read file extent in the buffer.
2584 *
2585 * The splitup of the extent into seperate request-buffers is to minimise
2586 * copying around as much as possible.
2587 */
2588
2589
2590 /* mininum of 128 translations (!) (64 kb in 512 byte sectors) */
2591 #define FILEBUFSECT 128
2592
2593 void
2594 udf_read_filebuf(struct udf_node *node, struct buf *buf)
2595 {
2596 struct buf *nestbuf;
2597 uint64_t mapping[FILEBUFSECT];
2598 uint64_t run_start;
2599 uint32_t sector_size;
2600 uint32_t buf_offset, sector, rbuflen, rblk;
2601 uint8_t *buf_pos;
2602 int error, run_length;
2603
2604 uint32_t from;
2605 uint32_t sectors;
2606
2607 sector_size = node->ump->discinfo.sector_size;
2608
2609 from = buf->b_blkno;
2610 sectors = buf->b_bcount / sector_size;
2611
2612 /* assure we have enough translation slots */
2613 KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
2614 KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
2615
2616 if (sectors > FILEBUFSECT) {
2617 printf("udf_read_filebuf: implementation limit on bufsize\n");
2618 buf->b_error = EIO;
2619 buf->b_flags |= B_ERROR;
2620 biodone(buf);
2621 return;
2622 };
2623
2624 error = 0;
2625 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
2626 error = udf_translate_file_extent(node, from, sectors, mapping);
2627 if (error) {
2628 buf->b_error = error;
2629 buf->b_flags |= B_ERROR;
2630 biodone(buf);
2631 return;
2632 };
2633 DPRINTF(READ, ("\ttranslate extent went OK\n"));
2634
2635 /* pre-check if internal or parts are zero */
2636 if (*mapping == UDF_TRANS_INTERN) {
2637 error = udf_read_internal(node, (uint8_t *) buf->b_data);
2638 if (error) {
2639 buf->b_error = error;
2640 buf->b_flags |= B_ERROR;
2641 };
2642 biodone(buf);
2643 return;
2644 };
2645 DPRINTF(READ, ("\tnot intern\n"));
2646
2647 /* request read-in of data from disc sheduler */
2648 buf->b_resid = buf->b_bcount;
2649 for (sector = 0; sector < sectors; sector++) {
2650 buf_offset = sector * sector_size;
2651 buf_pos = (uint8_t *) buf->b_data + buf_offset;
2652 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
2653
2654 switch (mapping[sector]) {
2655 case UDF_TRANS_UNMAPPED:
2656 case UDF_TRANS_ZERO:
2657 /* copy zero sector */
2658 memset(buf_pos, 0, sector_size);
2659 DPRINTF(READ, ("\treturning zero sector\n"));
2660 nestiobuf_done(buf, sector_size, 0);
2661 break;
2662 default :
2663 DPRINTF(READ, ("\tread sector "
2664 "%"PRIu64"\n", mapping[sector]));
2665
2666 run_start = mapping[sector];
2667 run_length = 1;
2668 while (sector < sectors-1) {
2669 if (mapping[sector+1] != mapping[sector]+1)
2670 break;
2671 run_length++;
2672 sector++;
2673 };
2674
2675 /*
2676 * nest an iobuf and mark it for async reading. Since
2677 * we're using nested buffers, they can't be cached by
2678 * design.
2679 */
2680 rbuflen = run_length * sector_size;
2681 rblk = run_start * (sector_size/DEV_BSIZE);
2682
2683 nestbuf = getiobuf();
2684 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
2685 /* nestbuf is B_ASYNC */
2686
2687 /* CD shedules on raw blkno */
2688 nestbuf->b_blkno = rblk;
2689 nestbuf->b_proc = NULL;
2690 nestbuf->b_cylinder = 0;
2691 nestbuf->b_rawblkno = rblk;
2692 VOP_STRATEGY(node->ump->devvp, nestbuf);
2693 };
2694 };
2695 DPRINTF(READ, ("\tend of read_filebuf\n"));
2696 }
2697 #undef FILEBUFSECT
2698
2699
2700 /* --------------------------------------------------------------------- */
2701
2702 /*
2703 * Translate an extent (in sectors) into sector numbers; used for read and
2704 * write operations. DOESNT't check extents.
2705 */
2706
2707 int
2708 udf_translate_file_extent(struct udf_node *node,
2709 uint32_t from, uint32_t pages,
2710 uint64_t *map)
2711 {
2712 struct udf_mount *ump;
2713 struct file_entry *fe;
2714 struct extfile_entry *efe;
2715 struct short_ad *s_ad;
2716 struct long_ad *l_ad, t_ad;
2717 uint64_t transsec;
2718 uint32_t sector_size, transsec32;
2719 uint32_t overlap, translen;
2720 uint32_t vpart_num, lb_num, len, alloclen;
2721 uint8_t *pos;
2722 int error, flags, addr_type, icblen, icbflags;
2723
2724 if (!node)
2725 return ENOENT;
2726
2727 /* shut up gcc */
2728 alloclen = addr_type = icbflags = 0;
2729 pos = NULL;
2730
2731 /* do the work */
2732 ump = node->ump;
2733 sector_size = ump->discinfo.sector_size;
2734 fe = node->fe;
2735 efe = node->efe;
2736 if (fe) {
2737 alloclen = udf_rw32(fe->l_ad);
2738 pos = &fe->data[0] + udf_rw32(fe->l_ea);
2739 icbflags = udf_rw16(fe->icbtag.flags);
2740 };
2741 if (efe) {
2742 alloclen = udf_rw32(efe->l_ad);
2743 pos = &efe->data[0] + udf_rw32(efe->l_ea);
2744 icbflags = udf_rw16(efe->icbtag.flags);
2745 };
2746 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
2747
2748 DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
2749 "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
2750
2751 vpart_num = udf_rw16(node->loc.loc.part_num);
2752 lb_num = len = icblen = 0; /* shut up gcc */
2753 while (pages && alloclen) {
2754 DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
2755 switch (addr_type) {
2756 case UDF_ICB_INTERN_ALLOC :
2757 /* TODO check extents? */
2758 *map = UDF_TRANS_INTERN;
2759 return 0;
2760 case UDF_ICB_SHORT_ALLOC :
2761 icblen = sizeof(struct short_ad);
2762 s_ad = (struct short_ad *) pos;
2763 len = udf_rw32(s_ad->len);
2764 lb_num = udf_rw32(s_ad->lb_num);
2765 break;
2766 case UDF_ICB_LONG_ALLOC :
2767 icblen = sizeof(struct long_ad);
2768 l_ad = (struct long_ad *) pos;
2769 len = udf_rw32(l_ad->len);
2770 lb_num = udf_rw32(l_ad->loc.lb_num);
2771 vpart_num = udf_rw16(l_ad->loc.part_num);
2772 DPRINTFIF(TRANSLATE,
2773 (l_ad->impl.im_used.flags &
2774 UDF_ADIMP_FLAGS_EXTENT_ERASED),
2775 ("UDF: got an `extent erased' flag in long_ad\n"));
2776 break;
2777 default:
2778 /* can't be here */
2779 return EINVAL; /* for sure */
2780 };
2781
2782 /* process extent */
2783 flags = UDF_EXT_FLAGS(len);
2784 len = UDF_EXT_LEN(len);
2785
2786 overlap = (len + sector_size -1) / sector_size;
2787 if (from) {
2788 if (from > overlap) {
2789 from -= overlap;
2790 overlap = 0;
2791 } else {
2792 lb_num += from; /* advance in extent */
2793 overlap -= from;
2794 from = 0;
2795 };
2796 };
2797
2798 overlap = MIN(overlap, pages);
2799 while (overlap) {
2800 switch (flags) {
2801 case UDF_EXT_REDIRECT :
2802 /* no support for allocation extentions yet */
2803 /* TODO support for allocation extention */
2804 return ENOENT;
2805 case UDF_EXT_FREED :
2806 case UDF_EXT_FREE :
2807 transsec = UDF_TRANS_ZERO;
2808 translen = overlap;
2809 while (overlap && pages && translen) {
2810 *map++ = transsec;
2811 overlap--; pages--; translen--;
2812 };
2813 break;
2814 case UDF_EXT_ALLOCATED :
2815 t_ad.loc.lb_num = udf_rw32(lb_num);
2816 t_ad.loc.part_num = udf_rw16(vpart_num);
2817 error = udf_translate_vtop(ump,
2818 &t_ad, &transsec32, &translen);
2819 transsec = transsec32;
2820 if (error)
2821 return error;
2822 while (overlap && pages && translen) {
2823 *map++ = transsec;
2824 transsec++;
2825 overlap--; pages--; translen--;
2826 };
2827 break;
2828 };
2829 };
2830 pos += icblen;
2831 alloclen -= icblen;
2832 };
2833 return 0;
2834 }
2835
2836 /* --------------------------------------------------------------------- */
2837
2838