Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.42
      1 /* $NetBSD: udf_subr.c,v 1.42 2007/11/27 18:10:42 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  */
     35 
     36 
     37 #include <sys/cdefs.h>
     38 #ifndef lint
     39 __RCSID("$NetBSD: udf_subr.c,v 1.42 2007/11/27 18:10:42 reinoud Exp $");
     40 #endif /* not lint */
     41 
     42 
     43 #if defined(_KERNEL_OPT)
     44 #include "opt_quota.h"
     45 #include "opt_compat_netbsd.h"
     46 #endif
     47 
     48 #include <sys/param.h>
     49 #include <sys/systm.h>
     50 #include <sys/sysctl.h>
     51 #include <sys/namei.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/vnode.h>
     55 #include <miscfs/genfs/genfs_node.h>
     56 #include <sys/mount.h>
     57 #include <sys/buf.h>
     58 #include <sys/file.h>
     59 #include <sys/device.h>
     60 #include <sys/disklabel.h>
     61 #include <sys/ioctl.h>
     62 #include <sys/malloc.h>
     63 #include <sys/dirent.h>
     64 #include <sys/stat.h>
     65 #include <sys/conf.h>
     66 #include <sys/kauth.h>
     67 #include <dev/clock_subr.h>
     68 
     69 #include <fs/udf/ecma167-udf.h>
     70 #include <fs/udf/udf_mount.h>
     71 
     72 #include "udf.h"
     73 #include "udf_subr.h"
     74 #include "udf_bswap.h"
     75 
     76 
     77 #define VTOI(vnode) ((struct udf_node *) vnode->v_data)
     78 
     79 
     80 /* predefines */
     81 
     82 
     83 #if 0
     84 {
     85 	int i, j, dlen;
     86 	uint8_t *blob;
     87 
     88 	blob = (uint8_t *) fid;
     89 	dlen = file_size - (*offset);
     90 
     91 	printf("blob = %p\n", blob);
     92 	printf("dump of %d bytes\n", dlen);
     93 
     94 	for (i = 0; i < dlen; i+ = 16) {
     95 		printf("%04x ", i);
     96 		for (j = 0; j < 16; j++) {
     97 			if (i+j < dlen) {
     98 				printf("%02x ", blob[i+j]);
     99 			} else {
    100 				printf("   ");
    101 			}
    102 		}
    103 		for (j = 0; j < 16; j++) {
    104 			if (i+j < dlen) {
    105 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    106 					printf("%c", blob[i+j]);
    107 				} else {
    108 					printf(".");
    109 				}
    110 			}
    111 		}
    112 		printf("\n");
    113 	}
    114 	printf("\n");
    115 }
    116 Debugger();
    117 #endif
    118 
    119 
    120 /* --------------------------------------------------------------------- */
    121 
    122 /* STUB */
    123 
    124 static int
    125 udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
    126 {
    127 	int sector_size = ump->discinfo.sector_size;
    128 	int blks = sector_size / DEV_BSIZE;
    129 
    130 	/* NOTE bread() checks if block is in cache or not */
    131 	return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
    132 }
    133 
    134 
    135 /* --------------------------------------------------------------------- */
    136 
    137 /*
    138  * Check if the blob starts with a good UDF tag. Tags are protected by a
    139  * checksum over the reader except one byte at position 4 that is the checksum
    140  * itself.
    141  */
    142 
    143 int
    144 udf_check_tag(void *blob)
    145 {
    146 	struct desc_tag *tag = blob;
    147 	uint8_t *pos, sum, cnt;
    148 
    149 	/* check TAG header checksum */
    150 	pos = (uint8_t *) tag;
    151 	sum = 0;
    152 
    153 	for(cnt = 0; cnt < 16; cnt++) {
    154 		if (cnt != 4)
    155 			sum += *pos;
    156 		pos++;
    157 	}
    158 	if (sum != tag->cksum) {
    159 		/* bad tag header checksum; this is not a valid tag */
    160 		return EINVAL;
    161 	}
    162 
    163 	return 0;
    164 }
    165 
    166 /* --------------------------------------------------------------------- */
    167 
    168 /*
    169  * check tag payload will check descriptor CRC as specified.
    170  * If the descriptor is too short, it will return EIO otherwise EINVAL.
    171  */
    172 
    173 int
    174 udf_check_tag_payload(void *blob, uint32_t max_length)
    175 {
    176 	struct desc_tag *tag = blob;
    177 	uint16_t crc, crc_len;
    178 
    179 	crc_len = udf_rw16(tag->desc_crc_len);
    180 
    181 	/* check payload CRC if applicable */
    182 	if (crc_len == 0)
    183 		return 0;
    184 
    185 	if (crc_len > max_length)
    186 		return EIO;
    187 
    188 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    189 	if (crc != udf_rw16(tag->desc_crc)) {
    190 		/* bad payload CRC; this is a broken tag */
    191 		return EINVAL;
    192 	}
    193 
    194 	return 0;
    195 }
    196 
    197 /* --------------------------------------------------------------------- */
    198 
    199 int
    200 udf_validate_tag_sum(void *blob)
    201 {
    202 	struct desc_tag *tag = blob;
    203 	uint8_t *pos, sum, cnt;
    204 
    205 	/* calculate TAG header checksum */
    206 	pos = (uint8_t *) tag;
    207 	sum = 0;
    208 
    209 	for(cnt = 0; cnt < 16; cnt++) {
    210 		if (cnt != 4) sum += *pos;
    211 		pos++;
    212 	}
    213 	tag->cksum = sum;	/* 8 bit */
    214 
    215 	return 0;
    216 }
    217 
    218 /* --------------------------------------------------------------------- */
    219 
    220 /* assumes sector number of descriptor to be saved already present */
    221 
    222 int
    223 udf_validate_tag_and_crc_sums(void *blob)
    224 {
    225 	struct desc_tag *tag  = blob;
    226 	uint8_t         *btag = (uint8_t *) tag;
    227 	uint16_t crc, crc_len;
    228 
    229 	crc_len = udf_rw16(tag->desc_crc_len);
    230 
    231 	/* check payload CRC if applicable */
    232 	if (crc_len > 0) {
    233 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    234 		tag->desc_crc = udf_rw16(crc);
    235 	}
    236 
    237 	/* calculate TAG header checksum */
    238 	return udf_validate_tag_sum(blob);
    239 }
    240 
    241 /* --------------------------------------------------------------------- */
    242 
    243 /*
    244  * XXX note the different semantics from udfclient: for FIDs it still rounds
    245  * up to sectors. Use udf_fidsize() for a correct length.
    246  */
    247 
    248 int
    249 udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
    250 {
    251 	uint32_t size, tag_id, num_secs, elmsz;
    252 
    253 	tag_id = udf_rw16(dscr->tag.id);
    254 
    255 	switch (tag_id) {
    256 	case TAGID_LOGVOL :
    257 		size  = sizeof(struct logvol_desc) - 1;
    258 		size += udf_rw32(dscr->lvd.mt_l);
    259 		break;
    260 	case TAGID_UNALLOC_SPACE :
    261 		elmsz = sizeof(struct extent_ad);
    262 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    263 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    264 		break;
    265 	case TAGID_FID :
    266 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    267 		size = (size + 3) & ~3;
    268 		break;
    269 	case TAGID_LOGVOL_INTEGRITY :
    270 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    271 		size += udf_rw32(dscr->lvid.l_iu);
    272 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    273 		break;
    274 	case TAGID_SPACE_BITMAP :
    275 		size  = sizeof(struct space_bitmap_desc) - 1;
    276 		size += udf_rw32(dscr->sbd.num_bytes);
    277 		break;
    278 	case TAGID_SPARING_TABLE :
    279 		elmsz = sizeof(struct spare_map_entry);
    280 		size  = sizeof(struct udf_sparing_table) - elmsz;
    281 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    282 		break;
    283 	case TAGID_FENTRY :
    284 		size  = sizeof(struct file_entry);
    285 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    286 		break;
    287 	case TAGID_EXTFENTRY :
    288 		size  = sizeof(struct extfile_entry);
    289 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    290 		break;
    291 	case TAGID_FSD :
    292 		size  = sizeof(struct fileset_desc);
    293 		break;
    294 	default :
    295 		size = sizeof(union dscrptr);
    296 		break;
    297 	}
    298 
    299 	if ((size == 0) || (udf_sector_size == 0)) return 0;
    300 
    301 	/* round up in sectors */
    302 	num_secs = (size + udf_sector_size -1) / udf_sector_size;
    303 	return num_secs * udf_sector_size;
    304 }
    305 
    306 
    307 static int
    308 udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
    309 {
    310 	uint32_t size;
    311 
    312 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    313 		panic("got udf_fidsize on non FID\n");
    314 
    315 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    316 	size = (size + 3) & ~3;
    317 
    318 	return size;
    319 }
    320 
    321 /* --------------------------------------------------------------------- */
    322 
    323 /*
    324  * Problem with read_descriptor are long descriptors spanning more than one
    325  * sector. Luckily long descriptors can't be in `logical space'.
    326  *
    327  * Size of allocated piece is returned in multiple of sector size due to
    328  * udf_calc_udf_malloc_size().
    329  */
    330 
    331 int
    332 udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
    333 		    struct malloc_type *mtype, union dscrptr **dstp)
    334 {
    335 	union dscrptr *src, *dst;
    336 	struct buf *bp;
    337 	uint8_t *pos;
    338 	int blks, blk, dscrlen;
    339 	int i, error, sector_size;
    340 
    341 	sector_size = ump->discinfo.sector_size;
    342 
    343 	*dstp = dst = NULL;
    344 	dscrlen = sector_size;
    345 
    346 	/* read initial piece */
    347 	error = udf_bread(ump, sector, &bp);
    348 	DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
    349 
    350 	if (!error) {
    351 		/* check if its a valid tag */
    352 		error = udf_check_tag(bp->b_data);
    353 		if (error) {
    354 			/* check if its an empty block */
    355 			pos = bp->b_data;
    356 			for (i = 0; i < sector_size; i++, pos++) {
    357 				if (*pos) break;
    358 			}
    359 			if (i == sector_size) {
    360 				/* return no error but with no dscrptr */
    361 				/* dispose first block */
    362 				brelse(bp, 0);
    363 				return 0;
    364 			}
    365 		}
    366 	}
    367 	DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
    368 	if (!error) {
    369 		src = (union dscrptr *) bp->b_data;
    370 		dscrlen = udf_tagsize(src, sector_size);
    371 		dst = malloc(dscrlen, mtype, M_WAITOK);
    372 		memcpy(dst, src, sector_size);
    373 	}
    374 	/* dispose first block */
    375 	brelse(bp, BC_AGE);
    376 
    377 	if (!error && (dscrlen > sector_size)) {
    378 		DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
    379 		/*
    380 		 * Read the rest of descriptor. Since it is only used at mount
    381 		 * time its overdone to define and use a specific udf_breadn
    382 		 * for this alone.
    383 		 */
    384 		blks = (dscrlen + sector_size -1) / sector_size;
    385 		for (blk = 1; blk < blks; blk++) {
    386 			error = udf_bread(ump, sector + blk, &bp);
    387 			if (error) {
    388 				brelse(bp, 0);
    389 				break;
    390 			}
    391 			pos = (uint8_t *) dst + blk*sector_size;
    392 			memcpy(pos, bp->b_data, sector_size);
    393 
    394 			/* dispose block */
    395 			brelse(bp, BC_AGE);
    396 		}
    397 		DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
    398 		    error));
    399 	}
    400 	if (!error) {
    401 		error = udf_check_tag_payload(dst, dscrlen);
    402 		DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
    403 	}
    404 	if (error && dst) {
    405 		free(dst, mtype);
    406 		dst = NULL;
    407 	}
    408 	*dstp = dst;
    409 
    410 	return error;
    411 }
    412 
    413 /* --------------------------------------------------------------------- */
    414 #ifdef DEBUG
    415 static void
    416 udf_dump_discinfo(struct udf_mount *ump)
    417 {
    418 	char   bits[128];
    419 	struct mmc_discinfo *di = &ump->discinfo;
    420 
    421 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    422 		return;
    423 
    424 	printf("Device/media info  :\n");
    425 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    426 	printf("\tderived class      %d\n", di->mmc_class);
    427 	printf("\tsector size        %d\n", di->sector_size);
    428 	printf("\tdisc state         %d\n", di->disc_state);
    429 	printf("\tlast ses state     %d\n", di->last_session_state);
    430 	printf("\tbg format state    %d\n", di->bg_format_state);
    431 	printf("\tfrst track         %d\n", di->first_track);
    432 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    433 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    434 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    435 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    436 		sizeof(bits));
    437 	printf("\tdisc flags         %s\n", bits);
    438 	printf("\tdisc id            %x\n", di->disc_id);
    439 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    440 
    441 	printf("\tnum sessions       %d\n", di->num_sessions);
    442 	printf("\tnum tracks         %d\n", di->num_tracks);
    443 
    444 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    445 	printf("\tcapabilities cur   %s\n", bits);
    446 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    447 	printf("\tcapabilities cap   %s\n", bits);
    448 }
    449 #else
    450 #define udf_dump_discinfo(a);
    451 #endif
    452 
    453 /* not called often */
    454 int
    455 udf_update_discinfo(struct udf_mount *ump)
    456 {
    457 	struct vnode *devvp = ump->devvp;
    458 	struct partinfo dpart;
    459 	struct mmc_discinfo *di;
    460 	int error;
    461 
    462 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    463 	di = &ump->discinfo;
    464 	memset(di, 0, sizeof(struct mmc_discinfo));
    465 
    466 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    467 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    468 	if (error == 0) {
    469 		udf_dump_discinfo(ump);
    470 		return 0;
    471 	}
    472 
    473 	/* disc partition support */
    474 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    475 	if (error)
    476 		return ENODEV;
    477 
    478 	/* set up a disc info profile for partitions */
    479 	di->mmc_profile		= 0x01;	/* disc type */
    480 	di->mmc_class		= MMC_CLASS_DISC;
    481 	di->disc_state		= MMC_STATE_CLOSED;
    482 	di->last_session_state	= MMC_STATE_CLOSED;
    483 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    484 	di->link_block_penalty	= 0;
    485 
    486 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    487 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    488 	di->mmc_cap    = di->mmc_cur;
    489 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    490 
    491 	/* TODO problem with last_possible_lba on resizable VND; request */
    492 	di->last_possible_lba = dpart.part->p_size;
    493 	di->sector_size       = dpart.disklab->d_secsize;
    494 
    495 	di->num_sessions = 1;
    496 	di->num_tracks   = 1;
    497 
    498 	di->first_track  = 1;
    499 	di->first_track_last_session = di->last_track_last_session = 1;
    500 
    501 	udf_dump_discinfo(ump);
    502 	return 0;
    503 }
    504 
    505 /* --------------------------------------------------------------------- */
    506 
    507 int
    508 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    509 {
    510 	struct vnode *devvp = ump->devvp;
    511 	struct mmc_discinfo *di = &ump->discinfo;
    512 	int error, class;
    513 
    514 	DPRINTF(VOLUMES, ("read track info\n"));
    515 
    516 	class = di->mmc_class;
    517 	if (class != MMC_CLASS_DISC) {
    518 		/* tracknr specified in struct ti */
    519 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    520 		return error;
    521 	}
    522 
    523 	/* disc partition support */
    524 	if (ti->tracknr != 1)
    525 		return EIO;
    526 
    527 	/* create fake ti (TODO check for resized vnds) */
    528 	ti->sessionnr  = 1;
    529 
    530 	ti->track_mode = 0;	/* XXX */
    531 	ti->data_mode  = 0;	/* XXX */
    532 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    533 
    534 	ti->track_start    = 0;
    535 	ti->packet_size    = 1;
    536 
    537 	/* TODO support for resizable vnd */
    538 	ti->track_size    = di->last_possible_lba;
    539 	ti->next_writable = di->last_possible_lba;
    540 	ti->last_recorded = ti->next_writable;
    541 	ti->free_blocks   = 0;
    542 
    543 	return 0;
    544 }
    545 
    546 /* --------------------------------------------------------------------- */
    547 
    548 /* track/session searching for mounting */
    549 
    550 static int
    551 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    552 		  int *first_tracknr, int *last_tracknr)
    553 {
    554 	struct mmc_trackinfo trackinfo;
    555 	uint32_t tracknr, start_track, num_tracks;
    556 	int error;
    557 
    558 	/* if negative, sessionnr is relative to last session */
    559 	if (args->sessionnr < 0) {
    560 		args->sessionnr += ump->discinfo.num_sessions;
    561 		/* sanity */
    562 		if (args->sessionnr < 0)
    563 			args->sessionnr = 0;
    564 	}
    565 
    566 	/* sanity */
    567 	if (args->sessionnr > ump->discinfo.num_sessions)
    568 		args->sessionnr = ump->discinfo.num_sessions;
    569 
    570 	/* search the tracks for this session, zero session nr indicates last */
    571 	if (args->sessionnr == 0)
    572 		args->sessionnr = ump->discinfo.num_sessions;
    573 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    574 		args->sessionnr--;
    575 
    576 	/* sanity */
    577 	if (args->sessionnr == 0)
    578 		args->sessionnr = 1;
    579 
    580 	/* search the first and last track of the specified session */
    581 	num_tracks  = ump->discinfo.num_tracks;
    582 	start_track = ump->discinfo.first_track;
    583 
    584 	/* search for first track of this session */
    585 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    586 		/* get track info */
    587 		trackinfo.tracknr = tracknr;
    588 		error = udf_update_trackinfo(ump, &trackinfo);
    589 		if (error)
    590 			return error;
    591 
    592 		if (trackinfo.sessionnr == args->sessionnr)
    593 			break;
    594 	}
    595 	*first_tracknr = tracknr;
    596 
    597 	/* search for last track of this session */
    598 	for (;tracknr <= num_tracks; tracknr++) {
    599 		/* get track info */
    600 		trackinfo.tracknr = tracknr;
    601 		error = udf_update_trackinfo(ump, &trackinfo);
    602 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    603 			tracknr--;
    604 			break;
    605 		}
    606 	}
    607 	if (tracknr > num_tracks)
    608 		tracknr--;
    609 
    610 	*last_tracknr = tracknr;
    611 
    612 	assert(*last_tracknr >= *first_tracknr);
    613 	return 0;
    614 }
    615 
    616 /* --------------------------------------------------------------------- */
    617 
    618 static int
    619 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    620 {
    621 	int error;
    622 
    623 	error = udf_read_descriptor(ump, sector, M_UDFVOLD,
    624 			(union dscrptr **) dst);
    625 	if (!error) {
    626 		/* blank terminator blocks are not allowed here */
    627 		if (*dst == NULL)
    628 			return ENOENT;
    629 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    630 			error = ENOENT;
    631 			free(*dst, M_UDFVOLD);
    632 			*dst = NULL;
    633 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    634 		}
    635 	}
    636 
    637 	return error;
    638 }
    639 
    640 
    641 int
    642 udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
    643 {
    644 	struct mmc_trackinfo first_track;
    645 	struct mmc_trackinfo last_track;
    646 	struct anchor_vdp **anchorsp;
    647 	uint32_t track_start;
    648 	uint32_t track_end;
    649 	uint32_t positions[4];
    650 	int first_tracknr, last_tracknr;
    651 	int error, anch, ok, first_anchor;
    652 
    653 	/* search the first and last track of the specified session */
    654 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    655 	if (!error) {
    656 		first_track.tracknr = first_tracknr;
    657 		error = udf_update_trackinfo(ump, &first_track);
    658 	}
    659 	if (!error) {
    660 		last_track.tracknr = last_tracknr;
    661 		error = udf_update_trackinfo(ump, &last_track);
    662 	}
    663 	if (error) {
    664 		printf("UDF mount: reading disc geometry failed\n");
    665 		return 0;
    666 	}
    667 
    668 	track_start = first_track.track_start;
    669 
    670 	/* `end' is not as straitforward as start. */
    671 	track_end =   last_track.track_start
    672 		    + last_track.track_size - last_track.free_blocks - 1;
    673 
    674 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    675 		/* end of track is not straitforward here */
    676 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    677 			track_end = last_track.last_recorded;
    678 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    679 			track_end = last_track.next_writable
    680 				    - ump->discinfo.link_block_penalty;
    681 	}
    682 
    683 	/* its no use reading a blank track */
    684 	first_anchor = 0;
    685 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    686 		first_anchor = 1;
    687 
    688 	/* read anchors start+256, start+512, end-256, end */
    689 	positions[0] = track_start+256;
    690 	positions[1] =   track_end-256;
    691 	positions[2] =   track_end;
    692 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    693 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    694 
    695 	ok = 0;
    696 	anchorsp = ump->anchors;
    697 	for (anch = first_anchor; anch < 4; anch++) {
    698 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    699 		    positions[anch]));
    700 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    701 		if (!error) {
    702 			anchorsp++;
    703 			ok++;
    704 		}
    705 	}
    706 
    707 	/* VATs are only recorded on sequential media, but initialise */
    708 	ump->first_possible_vat_location = track_start + 2;
    709 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    710 
    711 	return ok;
    712 }
    713 
    714 /* --------------------------------------------------------------------- */
    715 
    716 /* we dont try to be smart; we just record the parts */
    717 #define UDF_UPDATE_DSCR(name, dscr) \
    718 	if (name) \
    719 		free(name, M_UDFVOLD); \
    720 	name = dscr;
    721 
    722 static int
    723 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    724 {
    725 	struct part_desc *part;
    726 	uint16_t phys_part, raw_phys_part;
    727 
    728 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    729 	    udf_rw16(dscr->tag.id)));
    730 	switch (udf_rw16(dscr->tag.id)) {
    731 	case TAGID_PRI_VOL :		/* primary partition		*/
    732 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    733 		break;
    734 	case TAGID_LOGVOL :		/* logical volume		*/
    735 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    736 		break;
    737 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    738 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    739 		break;
    740 	case TAGID_IMP_VOL :		/* implementation		*/
    741 		/* XXX do we care about multiple impl. descr ? */
    742 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    743 		break;
    744 	case TAGID_PARTITION :		/* physical partition		*/
    745 		/* not much use if its not allocated */
    746 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    747 			free(dscr, M_UDFVOLD);
    748 			break;
    749 		}
    750 
    751 		/*
    752 		 * BUGALERT: some rogue implementations use random physical
    753 		 * partion numbers to break other implementations so lookup
    754 		 * the number.
    755 		 */
    756 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    757 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    758 			part = ump->partitions[phys_part];
    759 			if (part == NULL)
    760 				break;
    761 			if (udf_rw16(part->part_num) == raw_phys_part)
    762 				break;
    763 		}
    764 		if (phys_part == UDF_PARTITIONS) {
    765 			free(dscr, M_UDFVOLD);
    766 			return EINVAL;
    767 		}
    768 
    769 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
    770 		break;
    771 	case TAGID_VOL :		/* volume space extender; rare	*/
    772 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    773 		free(dscr, M_UDFVOLD);
    774 		break;
    775 	default :
    776 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    777 		    udf_rw16(dscr->tag.id)));
    778 		free(dscr, M_UDFVOLD);
    779 	}
    780 
    781 	return 0;
    782 }
    783 #undef UDF_UPDATE_DSCR
    784 
    785 /* --------------------------------------------------------------------- */
    786 
    787 static int
    788 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    789 {
    790 	union dscrptr *dscr;
    791 	uint32_t sector_size, dscr_size;
    792 	int error;
    793 
    794 	sector_size = ump->discinfo.sector_size;
    795 
    796 	/* loc is sectornr, len is in bytes */
    797 	error = EIO;
    798 	while (len) {
    799 		error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
    800 		if (error)
    801 			return error;
    802 
    803 		/* blank block is a terminator */
    804 		if (dscr == NULL)
    805 			return 0;
    806 
    807 		/* TERM descriptor is a terminator */
    808 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
    809 			free(dscr, M_UDFVOLD);
    810 			return 0;
    811 		}
    812 
    813 		/* process all others */
    814 		dscr_size = udf_tagsize(dscr, sector_size);
    815 		error = udf_process_vds_descriptor(ump, dscr);
    816 		if (error) {
    817 			free(dscr, M_UDFVOLD);
    818 			break;
    819 		}
    820 		assert((dscr_size % sector_size) == 0);
    821 
    822 		len -= dscr_size;
    823 		loc += dscr_size / sector_size;
    824 	}
    825 
    826 	return error;
    827 }
    828 
    829 
    830 int
    831 udf_read_vds_space(struct udf_mount *ump)
    832 {
    833 	struct anchor_vdp *anchor, *anchor2;
    834 	size_t size;
    835 	uint32_t main_loc, main_len;
    836 	uint32_t reserve_loc, reserve_len;
    837 	int error;
    838 
    839 	/*
    840 	 * read in VDS space provided by the anchors; if one descriptor read
    841 	 * fails, try the mirror sector.
    842 	 *
    843 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
    844 	 * avoids the `compatibility features' of DirectCD that may confuse
    845 	 * stuff completely.
    846 	 */
    847 
    848 	anchor  = ump->anchors[0];
    849 	anchor2 = ump->anchors[1];
    850 	assert(anchor);
    851 
    852 	if (anchor2) {
    853 		size = sizeof(struct extent_ad);
    854 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
    855 			anchor = anchor2;
    856 		/* reserve is specified to be a literal copy of main */
    857 	}
    858 
    859 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
    860 	main_len    = udf_rw32(anchor->main_vds_ex.len);
    861 
    862 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
    863 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
    864 
    865 	error = udf_read_vds_extent(ump, main_loc, main_len);
    866 	if (error) {
    867 		printf("UDF mount: reading in reserve VDS extent\n");
    868 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
    869 	}
    870 
    871 	return error;
    872 }
    873 
    874 /* --------------------------------------------------------------------- */
    875 
    876 /*
    877  * Read in the logical volume integrity sequence pointed to by our logical
    878  * volume descriptor. Its a sequence that can be extended using fields in the
    879  * integrity descriptor itself. On sequential media only one is found, on
    880  * rewritable media a sequence of descriptors can be found as a form of
    881  * history keeping and on non sequential write-once media the chain is vital
    882  * to allow more and more descriptors to be written. The last descriptor
    883  * written in an extent needs to claim space for a new extent.
    884  */
    885 
    886 static int
    887 udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
    888 {
    889 	union dscrptr *dscr;
    890 	struct logvol_int_desc *lvint;
    891 	uint32_t sector_size, sector, len;
    892 	int dscr_type, error;
    893 
    894 	sector_size = ump->discinfo.sector_size;
    895 	len    = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
    896 	sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
    897 
    898 	lvint = NULL;
    899 	dscr  = NULL;
    900 	error = 0;
    901 	while (len) {
    902 		/* read in our integrity descriptor */
    903 		error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
    904 		if (!error) {
    905 			if (dscr == NULL)
    906 				break;		/* empty terminates */
    907 			dscr_type = udf_rw16(dscr->tag.id);
    908 			if (dscr_type == TAGID_TERM) {
    909 				break;		/* clean terminator */
    910 			}
    911 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
    912 				/* fatal... corrupt disc */
    913 				error = ENOENT;
    914 				break;
    915 			}
    916 			if (lvint)
    917 				free(lvint, M_UDFVOLD);
    918 			lvint = &dscr->lvid;
    919 			dscr = NULL;
    920 		} /* else hope for the best... maybe the next is ok */
    921 
    922 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
    923 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
    924 
    925 		/* proceed sequential */
    926 		sector += 1;
    927 		len    -= sector_size;
    928 
    929 		/* are we linking to a new piece? */
    930 		if (lvint->next_extent.len) {
    931 			len    = udf_rw32(lvint->next_extent.len);
    932 			sector = udf_rw32(lvint->next_extent.loc);
    933 		}
    934 	}
    935 
    936 	/* clean up the mess, esp. when there is an error */
    937 	if (dscr)
    938 		free(dscr, M_UDFVOLD);
    939 
    940 	if (error && lvint) {
    941 		free(lvint, M_UDFVOLD);
    942 		lvint = NULL;
    943 	}
    944 
    945 	if (!lvint)
    946 		error = ENOENT;
    947 
    948 	*lvintp = lvint;
    949 	return error;
    950 }
    951 
    952 /* --------------------------------------------------------------------- */
    953 
    954 /*
    955  * Checks if ump's vds information is correct and complete
    956  */
    957 
    958 int
    959 udf_process_vds(struct udf_mount *ump, struct udf_args *args)
    960 {
    961 	union udf_pmap *mapping;
    962 	struct logvol_int_desc *lvint;
    963 	struct udf_logvol_info *lvinfo;
    964 	struct part_desc *part;
    965 	uint32_t n_pm, mt_l;
    966 	uint8_t *pmap_pos;
    967 	char *domain_name, *map_name;
    968 	const char *check_name;
    969 	int pmap_stype, pmap_size;
    970 	int pmap_type, log_part, phys_part, raw_phys_part;
    971 	int n_phys, n_virt, n_spar, n_meta;
    972 	int len, error;
    973 
    974 	if (ump == NULL)
    975 		return ENOENT;
    976 
    977 	/* we need at least an anchor (trivial, but for safety) */
    978 	if (ump->anchors[0] == NULL)
    979 		return EINVAL;
    980 
    981 	/* we need at least one primary and one logical volume descriptor */
    982 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
    983 		return EINVAL;
    984 
    985 	/* we need at least one partition descriptor */
    986 	if (ump->partitions[0] == NULL)
    987 		return EINVAL;
    988 
    989 	/* check logical volume sector size verses device sector size */
    990 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
    991 		printf("UDF mount: format violation, lb_size != sector size\n");
    992 		return EINVAL;
    993 	}
    994 
    995 	domain_name = ump->logical_vol->domain_id.id;
    996 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
    997 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
    998 		return EINVAL;
    999 	}
   1000 
   1001 	/* retrieve logical volume integrity sequence */
   1002 	error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
   1003 
   1004 	/*
   1005 	 * We need at least one logvol integrity descriptor recorded.  Note
   1006 	 * that its OK to have an open logical volume integrity here. The VAT
   1007 	 * will close/update the integrity.
   1008 	 */
   1009 	if (ump->logvol_integrity == NULL)
   1010 		return EINVAL;
   1011 
   1012 	/* process derived structures */
   1013 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1014 	lvint  = ump->logvol_integrity;
   1015 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1016 	ump->logvol_info = lvinfo;
   1017 
   1018 	/* TODO check udf versions? */
   1019 
   1020 	/*
   1021 	 * check logvol mappings: effective virt->log partmap translation
   1022 	 * check and recording of the mapping results. Saves expensive
   1023 	 * strncmp() in tight places.
   1024 	 */
   1025 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1026 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1027 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1028 	pmap_pos =  ump->logical_vol->maps;
   1029 
   1030 	if (n_pm > UDF_PMAPS) {
   1031 		printf("UDF mount: too many mappings\n");
   1032 		return EINVAL;
   1033 	}
   1034 
   1035 	n_phys = n_virt = n_spar = n_meta = 0;
   1036 	for (log_part = 0; log_part < n_pm; log_part++) {
   1037 		mapping = (union udf_pmap *) pmap_pos;
   1038 		pmap_stype = pmap_pos[0];
   1039 		pmap_size  = pmap_pos[1];
   1040 		switch (pmap_stype) {
   1041 		case 1:	/* physical mapping */
   1042 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1043 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1044 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1045 			n_phys++;
   1046 			break;
   1047 		case 2: /* virtual/sparable/meta mapping */
   1048 			map_name  = mapping->pm2.part_id.id;
   1049 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1050 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1051 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1052 			len = UDF_REGID_ID_SIZE;
   1053 
   1054 			check_name = "*UDF Virtual Partition";
   1055 			if (strncmp(map_name, check_name, len) == 0) {
   1056 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1057 				n_virt++;
   1058 				break;
   1059 			}
   1060 			check_name = "*UDF Sparable Partition";
   1061 			if (strncmp(map_name, check_name, len) == 0) {
   1062 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1063 				n_spar++;
   1064 				break;
   1065 			}
   1066 			check_name = "*UDF Metadata Partition";
   1067 			if (strncmp(map_name, check_name, len) == 0) {
   1068 				pmap_type = UDF_VTOP_TYPE_META;
   1069 				n_meta++;
   1070 				break;
   1071 			}
   1072 			break;
   1073 		default:
   1074 			return EINVAL;
   1075 		}
   1076 
   1077 		/*
   1078 		 * BUGALERT: some rogue implementations use random physical
   1079 		 * partion numbers to break other implementations so lookup
   1080 		 * the number.
   1081 		 */
   1082 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1083 			part = ump->partitions[phys_part];
   1084 			if (part == NULL)
   1085 				continue;
   1086 			if (udf_rw16(part->part_num) == raw_phys_part)
   1087 				break;
   1088 		}
   1089 
   1090 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1091 		    raw_phys_part, phys_part, pmap_type));
   1092 
   1093 		if (phys_part == UDF_PARTITIONS)
   1094 			return EINVAL;
   1095 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1096 			return EINVAL;
   1097 
   1098 		ump->vtop   [log_part] = phys_part;
   1099 		ump->vtop_tp[log_part] = pmap_type;
   1100 
   1101 		pmap_pos += pmap_size;
   1102 	}
   1103 	/* not winning the beauty contest */
   1104 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1105 
   1106 	/* test some basic UDF assertions/requirements */
   1107 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1108 		return EINVAL;
   1109 
   1110 	if (n_virt) {
   1111 		if ((n_phys == 0) || n_spar || n_meta)
   1112 			return EINVAL;
   1113 	}
   1114 	if (n_spar + n_phys == 0)
   1115 		return EINVAL;
   1116 
   1117 	/* vat's can only be on a sequential media */
   1118 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
   1119 	if (n_virt)
   1120 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1121 
   1122 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
   1123 	if (n_virt)
   1124 		ump->meta_alloc = UDF_ALLOC_VAT;
   1125 	if (n_meta)
   1126 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
   1127 
   1128 	/* special cases for pseudo-overwrite */
   1129 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1130 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1131 		if (n_meta) {
   1132 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
   1133 		} else {
   1134 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
   1135 		}
   1136 	}
   1137 
   1138 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
   1139 	    ump->data_alloc, ump->meta_alloc));
   1140 	/* TODO determine partitions to write data and metadata ? */
   1141 
   1142 	/* signal its OK for now */
   1143 	return 0;
   1144 }
   1145 
   1146 /* --------------------------------------------------------------------- */
   1147 
   1148 /*
   1149  * Read in complete VAT file and check if its indeed a VAT file descriptor
   1150  */
   1151 
   1152 static int
   1153 udf_check_for_vat(struct udf_node *vat_node)
   1154 {
   1155 	struct udf_mount *ump;
   1156 	struct icb_tag   *icbtag;
   1157 	struct timestamp *mtime;
   1158 	struct regid     *regid;
   1159 	struct udf_vat   *vat;
   1160 	struct udf_logvol_info *lvinfo;
   1161 	uint32_t  vat_length, alloc_length;
   1162 	uint32_t  vat_offset, vat_entries;
   1163 	uint32_t  sector_size;
   1164 	uint32_t  sectors;
   1165 	uint32_t *raw_vat;
   1166 	char     *regid_name;
   1167 	int filetype;
   1168 	int error;
   1169 
   1170 	/* vat_length is really 64 bits though impossible */
   1171 
   1172 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   1173 	if (!vat_node)
   1174 		return ENOENT;
   1175 
   1176 	/* get mount info */
   1177 	ump = vat_node->ump;
   1178 
   1179 	/* check assertions */
   1180 	assert(vat_node->fe || vat_node->efe);
   1181 	assert(ump->logvol_integrity);
   1182 
   1183 	/* get information from fe/efe */
   1184 	if (vat_node->fe) {
   1185 		vat_length = udf_rw64(vat_node->fe->inf_len);
   1186 		icbtag = &vat_node->fe->icbtag;
   1187 		mtime  = &vat_node->fe->mtime;
   1188 	} else {
   1189 		vat_length = udf_rw64(vat_node->efe->inf_len);
   1190 		icbtag = &vat_node->efe->icbtag;
   1191 		mtime  = &vat_node->efe->mtime;
   1192 	}
   1193 
   1194 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   1195 	filetype = icbtag->file_type;
   1196 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   1197 		return ENOENT;
   1198 
   1199 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   1200 	/* place a sanity check on the length; currently 1Mb in size */
   1201 	if (vat_length > 1*1024*1024)
   1202 		return ENOENT;
   1203 
   1204 	/* get sector size */
   1205 	sector_size = vat_node->ump->discinfo.sector_size;
   1206 
   1207 	/* calculate how many sectors to read in and how much to allocate */
   1208 	sectors = (vat_length + sector_size -1) / sector_size;
   1209 	alloc_length = (sectors + 2) * sector_size;
   1210 
   1211 	/* try to allocate the space */
   1212 	ump->vat_table_alloc_length = alloc_length;
   1213 	ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1214 	if (!ump->vat_table)
   1215 		return ENOMEM;		/* impossible to allocate */
   1216 	DPRINTF(VOLUMES, ("\talloced fine\n"));
   1217 
   1218 	/* read it in! */
   1219 	raw_vat = (uint32_t *) ump->vat_table;
   1220 	error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
   1221 	if (error) {
   1222 		DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
   1223 		/* not completely readable... :( bomb out */
   1224 		free(ump->vat_table, M_UDFVOLD);
   1225 		ump->vat_table = NULL;
   1226 		return error;
   1227 	}
   1228 	DPRINTF(VOLUMES, ("VAT read in fine!\n"));
   1229 
   1230 	/*
   1231 	 * check contents of the file if its the old 1.50 VAT table format.
   1232 	 * Its notoriously broken and allthough some implementations support an
   1233 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   1234 	 * to be useable since a lot of implementations don't maintain it.
   1235 	 */
   1236 	lvinfo = ump->logvol_info;
   1237 
   1238 	if (filetype == 0) {
   1239 		/* definition */
   1240 		vat_offset  = 0;
   1241 		vat_entries = (vat_length-36)/4;
   1242 
   1243 		/* check 1.50 VAT */
   1244 		regid = (struct regid *) (raw_vat + vat_entries);
   1245 		regid_name = (char *) regid->id;
   1246 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   1247 		if (error) {
   1248 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   1249 			free(ump->vat_table, M_UDFVOLD);
   1250 			ump->vat_table = NULL;
   1251 			return ENOENT;
   1252 		}
   1253 		/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
   1254 	} else {
   1255 		vat = (struct udf_vat *) raw_vat;
   1256 
   1257 		/* definition */
   1258 		vat_offset  = vat->header_len;
   1259 		vat_entries = (vat_length - vat_offset)/4;
   1260 
   1261 		assert(lvinfo);
   1262 		lvinfo->num_files        = vat->num_files;
   1263 		lvinfo->num_directories  = vat->num_directories;
   1264 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   1265 		lvinfo->min_udf_writever = vat->min_udf_writever;
   1266 		lvinfo->max_udf_writever = vat->max_udf_writever;
   1267 	}
   1268 
   1269 	ump->vat_offset  = vat_offset;
   1270 	ump->vat_entries = vat_entries;
   1271 
   1272 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   1273 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   1274 	ump->logvol_integrity->time           = *mtime;
   1275 
   1276 	return 0;	/* success! */
   1277 }
   1278 
   1279 /* --------------------------------------------------------------------- */
   1280 
   1281 static int
   1282 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   1283 {
   1284 	struct udf_node *vat_node;
   1285 	struct long_ad	 icb_loc;
   1286 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   1287 	int error;
   1288 
   1289 	/* mapping info not needed */
   1290 	mapping = mapping;
   1291 
   1292 	vat_loc = ump->last_possible_vat_location;
   1293 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   1294 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   1295 	late_vat_loc  = vat_loc + 1024;
   1296 
   1297 	/* TODO first search last sector? */
   1298 	do {
   1299 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   1300 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   1301 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   1302 
   1303 		error = udf_get_node(ump, &icb_loc, &vat_node);
   1304 		if (!error) error = udf_check_for_vat(vat_node);
   1305 		if (!error) break;
   1306 		if (vat_node) {
   1307 			vput(vat_node->vnode);
   1308 			vat_node = NULL;
   1309 		}
   1310 		vat_loc--;	/* walk backwards */
   1311 	} while (vat_loc >= early_vat_loc);
   1312 
   1313 	/* we don't need our VAT node anymore */
   1314 	if (vat_node) {
   1315 		vput(vat_node->vnode);
   1316 		udf_dispose_node(vat_node);
   1317 	}
   1318 
   1319 	return error;
   1320 }
   1321 
   1322 /* --------------------------------------------------------------------- */
   1323 
   1324 static int
   1325 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   1326 {
   1327 	union dscrptr *dscr;
   1328 	struct part_map_spare *pms = &mapping->pms;
   1329 	uint32_t lb_num;
   1330 	int spar, error;
   1331 
   1332 	/*
   1333 	 * The partition mapping passed on to us specifies the information we
   1334 	 * need to locate and initialise the sparable partition mapping
   1335 	 * information we need.
   1336 	 */
   1337 
   1338 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   1339 	ump->sparable_packet_len = udf_rw16(pms->packet_len);
   1340 	for (spar = 0; spar < pms->n_st; spar++) {
   1341 		lb_num = pms->st_loc[spar];
   1342 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   1343 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1344 		if (!error && dscr) {
   1345 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   1346 				if (ump->sparing_table)
   1347 					free(ump->sparing_table, M_UDFVOLD);
   1348 				ump->sparing_table = &dscr->spt;
   1349 				dscr = NULL;
   1350 				DPRINTF(VOLUMES,
   1351 				    ("Sparing table accepted (%d entries)\n",
   1352 				     udf_rw16(ump->sparing_table->rt_l)));
   1353 				break;	/* we're done */
   1354 			}
   1355 		}
   1356 		if (dscr)
   1357 			free(dscr, M_UDFVOLD);
   1358 	}
   1359 
   1360 	if (ump->sparing_table)
   1361 		return 0;
   1362 
   1363 	return ENOENT;
   1364 }
   1365 
   1366 /* --------------------------------------------------------------------- */
   1367 
   1368 #define UDF_SET_SYSTEMFILE(vp) \
   1369 	/* XXXAD Is the vnode locked? */	\
   1370 	(vp)->v_vflag |= VV_SYSTEM;		\
   1371 	vref(vp);			\
   1372 	vput(vp);			\
   1373 
   1374 static int
   1375 udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
   1376 {
   1377 	struct part_map_meta *pmm = &mapping->pmm;
   1378 	struct long_ad	 icb_loc;
   1379 	struct vnode *vp;
   1380 	int error;
   1381 
   1382 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   1383 	icb_loc.loc.part_num = pmm->part_num;
   1384 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   1385 	DPRINTF(VOLUMES, ("Metadata file\n"));
   1386 	error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
   1387 	if (ump->metadata_file) {
   1388 		vp = ump->metadata_file->vnode;
   1389 		UDF_SET_SYSTEMFILE(vp);
   1390 	}
   1391 
   1392 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   1393 	if (icb_loc.loc.lb_num != -1) {
   1394 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   1395 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
   1396 		if (ump->metadatamirror_file) {
   1397 			vp = ump->metadatamirror_file->vnode;
   1398 			UDF_SET_SYSTEMFILE(vp);
   1399 		}
   1400 	}
   1401 
   1402 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   1403 	if (icb_loc.loc.lb_num != -1) {
   1404 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   1405 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
   1406 		if (ump->metadatabitmap_file) {
   1407 			vp = ump->metadatabitmap_file->vnode;
   1408 			UDF_SET_SYSTEMFILE(vp);
   1409 		}
   1410 	}
   1411 
   1412 	/* if we're mounting read-only we relax the requirements */
   1413 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   1414 		error = EFAULT;
   1415 		if (ump->metadata_file)
   1416 			error = 0;
   1417 		if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
   1418 			printf( "udf mount: Metadata file not readable, "
   1419 				"substituting Metadata copy file\n");
   1420 			ump->metadata_file = ump->metadatamirror_file;
   1421 			ump->metadatamirror_file = NULL;
   1422 			error = 0;
   1423 		}
   1424 	} else {
   1425 		/* mounting read/write */
   1426 		DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
   1427 		error = EROFS;
   1428 	}
   1429 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   1430 				   "metadata files\n"));
   1431 	return error;
   1432 }
   1433 #undef UDF_SET_SYSTEMFILE
   1434 
   1435 /* --------------------------------------------------------------------- */
   1436 
   1437 int
   1438 udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
   1439 {
   1440 	union udf_pmap *mapping;
   1441 	uint32_t n_pm, mt_l;
   1442 	uint32_t log_part;
   1443 	uint8_t *pmap_pos;
   1444 	int pmap_size;
   1445 	int error;
   1446 
   1447 	/* We have to iterate again over the part mappings for locations   */
   1448 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1449 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1450 	pmap_pos =  ump->logical_vol->maps;
   1451 
   1452 	for (log_part = 0; log_part < n_pm; log_part++) {
   1453 		mapping = (union udf_pmap *) pmap_pos;
   1454 		switch (ump->vtop_tp[log_part]) {
   1455 		case UDF_VTOP_TYPE_PHYS :
   1456 			/* nothing */
   1457 			break;
   1458 		case UDF_VTOP_TYPE_VIRT :
   1459 			/* search and load VAT */
   1460 			error = udf_search_vat(ump, mapping);
   1461 			if (error)
   1462 				return ENOENT;
   1463 			break;
   1464 		case UDF_VTOP_TYPE_SPARABLE :
   1465 			/* load one of the sparable tables */
   1466 			error = udf_read_sparables(ump, mapping);
   1467 			if (error)
   1468 				return ENOENT;
   1469 			break;
   1470 		case UDF_VTOP_TYPE_META :
   1471 			/* load the associated file descriptors */
   1472 			error = udf_read_metadata_files(ump, mapping);
   1473 			if (error)
   1474 				return ENOENT;
   1475 			break;
   1476 		default:
   1477 			break;
   1478 		}
   1479 		pmap_size  = pmap_pos[1];
   1480 		pmap_pos  += pmap_size;
   1481 	}
   1482 
   1483 	return 0;
   1484 }
   1485 
   1486 /* --------------------------------------------------------------------- */
   1487 
   1488 int
   1489 udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
   1490 {
   1491 	struct udf_node *rootdir_node, *streamdir_node;
   1492 	union dscrptr *dscr;
   1493 	struct long_ad  fsd_loc, *dir_loc;
   1494 	uint32_t lb_num, dummy;
   1495 	uint32_t fsd_len;
   1496 	int dscr_type;
   1497 	int error;
   1498 
   1499 	/* TODO implement FSD reading in separate function like integrity? */
   1500 	/* get fileset descriptor sequence */
   1501 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   1502 	fsd_len = udf_rw32(fsd_loc.len);
   1503 
   1504 	dscr  = NULL;
   1505 	error = 0;
   1506 	while (fsd_len || error) {
   1507 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   1508 		/* translate fsd_loc to lb_num */
   1509 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   1510 		if (error)
   1511 			break;
   1512 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   1513 		error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
   1514 		/* end markers */
   1515 		if (error || (dscr == NULL))
   1516 			break;
   1517 
   1518 		/* analyse */
   1519 		dscr_type = udf_rw16(dscr->tag.id);
   1520 		if (dscr_type == TAGID_TERM)
   1521 			break;
   1522 		if (dscr_type != TAGID_FSD) {
   1523 			free(dscr, M_UDFVOLD);
   1524 			return ENOENT;
   1525 		}
   1526 
   1527 		/*
   1528 		 * TODO check for multiple fileset descriptors; its only
   1529 		 * picking the last now. Also check for FSD
   1530 		 * correctness/interpretability
   1531 		 */
   1532 
   1533 		/* update */
   1534 		if (ump->fileset_desc) {
   1535 			free(ump->fileset_desc, M_UDFVOLD);
   1536 		}
   1537 		ump->fileset_desc = &dscr->fsd;
   1538 		dscr = NULL;
   1539 
   1540 		/* continue to the next fsd */
   1541 		fsd_len -= ump->discinfo.sector_size;
   1542 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   1543 
   1544 		/* follow up to fsd->next_ex (long_ad) if its not null */
   1545 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   1546 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   1547 			fsd_loc = ump->fileset_desc->next_ex;
   1548 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   1549 		}
   1550 	}
   1551 	if (dscr)
   1552 		free(dscr, M_UDFVOLD);
   1553 
   1554 	/* there has to be one */
   1555 	if (ump->fileset_desc == NULL)
   1556 		return ENOENT;
   1557 
   1558 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   1559 
   1560 	/*
   1561 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   1562 	 * the system stream dir. Some files in the system streamdir are not
   1563 	 * wanted in this implementation since they are not maintained. If
   1564 	 * writing is enabled we'll delete these files if they exist.
   1565 	 */
   1566 
   1567 	rootdir_node = streamdir_node = NULL;
   1568 	dir_loc = NULL;
   1569 
   1570 	/* try to read in the rootdir */
   1571 	dir_loc = &ump->fileset_desc->rootdir_icb;
   1572 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   1573 	if (error)
   1574 		return ENOENT;
   1575 
   1576 	/* aparently it read in fine */
   1577 
   1578 	/*
   1579 	 * Try the system stream directory; not very likely in the ones we
   1580 	 * test, but for completeness.
   1581 	 */
   1582 	dir_loc = &ump->fileset_desc->streamdir_icb;
   1583 	if (udf_rw32(dir_loc->len)) {
   1584 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   1585 		if (error)
   1586 			printf("udf mount: streamdir defined but ignored\n");
   1587 		if (!error) {
   1588 			/*
   1589 			 * TODO process streamdir `baddies' i.e. files we dont
   1590 			 * want if R/W
   1591 			 */
   1592 		}
   1593 	}
   1594 
   1595 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   1596 
   1597 	/* release the vnodes again; they'll be auto-recycled later */
   1598 	if (streamdir_node) {
   1599 		vput(streamdir_node->vnode);
   1600 	}
   1601 	if (rootdir_node) {
   1602 		vput(rootdir_node->vnode);
   1603 	}
   1604 
   1605 	return 0;
   1606 }
   1607 
   1608 /* --------------------------------------------------------------------- */
   1609 
   1610 int
   1611 udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
   1612 		   uint32_t *lb_numres, uint32_t *extres)
   1613 {
   1614 	struct part_desc       *pdesc;
   1615 	struct spare_map_entry *sme;
   1616 	struct file_entry      *fe;
   1617 	struct extfile_entry   *efe;
   1618 	struct short_ad        *s_ad;
   1619 	struct long_ad         *l_ad;
   1620 	uint64_t  cur_offset;
   1621 	uint32_t *trans;
   1622 	uint32_t  lb_num, plb_num, lb_rel, lb_packet;
   1623 	uint32_t  sector_size, len, alloclen;
   1624 	uint8_t *pos;
   1625 	int rel, vpart, part, addr_type, icblen, icbflags, flags;
   1626 
   1627 	assert(ump && icb_loc && lb_numres);
   1628 
   1629 	vpart  = udf_rw16(icb_loc->loc.part_num);
   1630 	lb_num = udf_rw32(icb_loc->loc.lb_num);
   1631 	if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
   1632 		return EINVAL;
   1633 
   1634 	part = ump->vtop[vpart];
   1635 	pdesc = ump->partitions[part];
   1636 
   1637 	switch (ump->vtop_tp[vpart]) {
   1638 	case UDF_VTOP_TYPE_RAW :
   1639 		/* 1:1 to the end of the device */
   1640 		*lb_numres = lb_num;
   1641 		*extres = INT_MAX;
   1642 		return 0;
   1643 	case UDF_VTOP_TYPE_PHYS :
   1644 		/* transform into its disc logical block */
   1645 		if (lb_num > udf_rw32(pdesc->part_len))
   1646 			return EINVAL;
   1647 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1648 
   1649 		/* extent from here to the end of the partition */
   1650 		*extres = udf_rw32(pdesc->part_len) - lb_num;
   1651 		return 0;
   1652 	case UDF_VTOP_TYPE_VIRT :
   1653 		/* only maps one sector, lookup in VAT */
   1654 		if (lb_num >= ump->vat_entries)		/* XXX > or >= ? */
   1655 			return EINVAL;
   1656 
   1657 		/* lookup in virtual allocation table */
   1658 		trans  = (uint32_t *) (ump->vat_table + ump->vat_offset);
   1659 		lb_num = udf_rw32(trans[lb_num]);
   1660 
   1661 		/* transform into its disc logical block */
   1662 		if (lb_num > udf_rw32(pdesc->part_len))
   1663 			return EINVAL;
   1664 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1665 
   1666 		/* just one logical block */
   1667 		*extres = 1;
   1668 		return 0;
   1669 	case UDF_VTOP_TYPE_SPARABLE :
   1670 		/* check if the packet containing the lb_num is remapped */
   1671 		lb_packet = lb_num / ump->sparable_packet_len;
   1672 		lb_rel    = lb_num % ump->sparable_packet_len;
   1673 
   1674 		for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
   1675 			sme = &ump->sparing_table->entries[rel];
   1676 			if (lb_packet == udf_rw32(sme->org)) {
   1677 				/* NOTE maps to absolute disc logical block! */
   1678 				*lb_numres = udf_rw32(sme->map) + lb_rel;
   1679 				*extres    = ump->sparable_packet_len - lb_rel;
   1680 				return 0;
   1681 			}
   1682 		}
   1683 
   1684 		/* transform into its disc logical block */
   1685 		if (lb_num > udf_rw32(pdesc->part_len))
   1686 			return EINVAL;
   1687 		*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
   1688 
   1689 		/* rest of block */
   1690 		*extres = ump->sparable_packet_len - lb_rel;
   1691 		return 0;
   1692 	case UDF_VTOP_TYPE_META :
   1693 		/* we have to look into the file's allocation descriptors */
   1694 		/* free after udf_translate_file_extent() */
   1695 		/* XXX sector size or lb_size? */
   1696 		sector_size = ump->discinfo.sector_size;
   1697 		/* XXX should we claim exclusive access to the metafile ? */
   1698 		fe  = ump->metadata_file->fe;
   1699 		efe = ump->metadata_file->efe;
   1700 		if (fe) {
   1701 			alloclen = udf_rw32(fe->l_ad);
   1702 			pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   1703 			icbflags = udf_rw16(fe->icbtag.flags);
   1704 		} else {
   1705 			assert(efe);
   1706 			alloclen = udf_rw32(efe->l_ad);
   1707 			pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   1708 			icbflags = udf_rw16(efe->icbtag.flags);
   1709 		}
   1710 		addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   1711 
   1712 		cur_offset = 0;
   1713 		while (alloclen) {
   1714 			if (addr_type == UDF_ICB_SHORT_ALLOC) {
   1715 				icblen = sizeof(struct short_ad);
   1716 				s_ad   = (struct short_ad *) pos;
   1717 				len        = udf_rw32(s_ad->len);
   1718 				plb_num    = udf_rw32(s_ad->lb_num);
   1719 			} else {
   1720 				/* should not be present, but why not */
   1721 				icblen = sizeof(struct long_ad);
   1722 				l_ad   = (struct long_ad *) pos;
   1723 				len        = udf_rw32(l_ad->len);
   1724 				plb_num    = udf_rw32(l_ad->loc.lb_num);
   1725 				/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
   1726 			}
   1727 			/* process extent */
   1728 			flags   = UDF_EXT_FLAGS(len);
   1729 			len     = UDF_EXT_LEN(len);
   1730 
   1731 			if (cur_offset + len > lb_num * sector_size) {
   1732 				if (flags != UDF_EXT_ALLOCATED)
   1733 					return EINVAL;
   1734 				lb_rel = lb_num - cur_offset / sector_size;
   1735 				/* remainder of this extent */
   1736 				*lb_numres = plb_num + lb_rel +
   1737 					udf_rw32(pdesc->start_loc);
   1738 				*extres = (len / sector_size) - lb_rel;
   1739 				return 0;
   1740 			}
   1741 			cur_offset += len;
   1742 			pos        += icblen;
   1743 			alloclen   -= icblen;
   1744 		}
   1745 		/* not found */
   1746 		DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
   1747 		return EINVAL;
   1748 	default:
   1749 		printf("UDF vtop translation scheme %d unimplemented yet\n",
   1750 			ump->vtop_tp[vpart]);
   1751 	}
   1752 
   1753 	return EINVAL;
   1754 }
   1755 
   1756 /* --------------------------------------------------------------------- */
   1757 
   1758 /* To make absolutely sure we are NOT returning zero, add one :) */
   1759 
   1760 long
   1761 udf_calchash(struct long_ad *icbptr)
   1762 {
   1763 	/* ought to be enough since each mountpoint has its own chain */
   1764 	return udf_rw32(icbptr->loc.lb_num) + 1;
   1765 }
   1766 
   1767 /* --------------------------------------------------------------------- */
   1768 
   1769 static struct udf_node *
   1770 udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
   1771 {
   1772 	struct udf_node *unp;
   1773 	struct vnode *vp;
   1774 	uint32_t hashline;
   1775 
   1776 loop:
   1777 	mutex_enter(&ump->ihash_lock);
   1778 
   1779 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   1780 	LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
   1781 		assert(unp);
   1782 		if (unp->loc.loc.lb_num   == icbptr->loc.lb_num &&
   1783 		    unp->loc.loc.part_num == icbptr->loc.part_num) {
   1784 			vp = unp->vnode;
   1785 			assert(vp);
   1786 			simple_lock(&vp->v_interlock);
   1787 			mutex_exit(&ump->ihash_lock);
   1788 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   1789 				goto loop;
   1790 			return unp;
   1791 		}
   1792 	}
   1793 	mutex_exit(&ump->ihash_lock);
   1794 
   1795 	return NULL;
   1796 }
   1797 
   1798 /* --------------------------------------------------------------------- */
   1799 
   1800 static void
   1801 udf_hashins(struct udf_node *unp)
   1802 {
   1803 	struct udf_mount *ump;
   1804 	uint32_t hashline;
   1805 
   1806 	ump = unp->ump;
   1807 	mutex_enter(&ump->ihash_lock);
   1808 
   1809 	hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
   1810 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
   1811 
   1812 	mutex_exit(&ump->ihash_lock);
   1813 }
   1814 
   1815 /* --------------------------------------------------------------------- */
   1816 
   1817 static void
   1818 udf_hashrem(struct udf_node *unp)
   1819 {
   1820 	struct udf_mount *ump;
   1821 
   1822 	ump = unp->ump;
   1823 	mutex_enter(&ump->ihash_lock);
   1824 
   1825 	LIST_REMOVE(unp, hashchain);
   1826 
   1827 	mutex_exit(&ump->ihash_lock);
   1828 }
   1829 
   1830 /* --------------------------------------------------------------------- */
   1831 
   1832 int
   1833 udf_dispose_locked_node(struct udf_node *node)
   1834 {
   1835 	if (!node)
   1836 		return 0;
   1837 	if (node->vnode)
   1838 		VOP_UNLOCK(node->vnode, 0);
   1839 	return udf_dispose_node(node);
   1840 }
   1841 
   1842 /* --------------------------------------------------------------------- */
   1843 
   1844 int
   1845 udf_dispose_node(struct udf_node *node)
   1846 {
   1847 	struct vnode *vp;
   1848 
   1849 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
   1850 	if (!node) {
   1851 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   1852 		return 0;
   1853 	}
   1854 
   1855 	vp  = node->vnode;
   1856 
   1857 	/* TODO extended attributes and streamdir */
   1858 
   1859 	/* remove from our hash lookup table */
   1860 	udf_hashrem(node);
   1861 
   1862 	/* destroy genfs structures */
   1863 	genfs_node_destroy(vp);
   1864 
   1865 	/* dissociate our udf_node from the vnode */
   1866 	vp->v_data = NULL;
   1867 
   1868 	/* free associated memory and the node itself */
   1869 	if (node->fe)
   1870 		pool_put(node->ump->desc_pool, node->fe);
   1871 	if (node->efe)
   1872 		pool_put(node->ump->desc_pool, node->efe);
   1873 	pool_put(&udf_node_pool, node);
   1874 
   1875 	return 0;
   1876 }
   1877 
   1878 /* --------------------------------------------------------------------- */
   1879 
   1880 /*
   1881  * Genfs interfacing
   1882  *
   1883  * static const struct genfs_ops udffs_genfsops = {
   1884  * 	.gop_size = genfs_size,
   1885  * 		size of transfers
   1886  * 	.gop_alloc = udf_gop_alloc,
   1887  * 		unknown
   1888  * 	.gop_write = genfs_gop_write,
   1889  * 		putpages interface code
   1890  * 	.gop_markupdate = udf_gop_markupdate,
   1891  * 		set update/modify flags etc.
   1892  * }
   1893  */
   1894 
   1895 /*
   1896  * Genfs interface. These four functions are the only ones defined though not
   1897  * documented... great.... why is chosen for the `.' initialisers i dont know
   1898  * but other filingsystems seem to use it this way.
   1899  */
   1900 
   1901 static int
   1902 udf_gop_alloc(struct vnode *vp, off_t off,
   1903     off_t len, int flags, kauth_cred_t cred)
   1904 {
   1905 	return 0;
   1906 }
   1907 
   1908 
   1909 static void
   1910 udf_gop_markupdate(struct vnode *vp, int flags)
   1911 {
   1912 	struct udf_node *udf_node = VTOI(vp);
   1913 	u_long mask;
   1914 
   1915 	udf_node = udf_node;	/* shut up gcc */
   1916 
   1917 	mask = 0;
   1918 #ifdef notyet
   1919 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   1920 		mask = UDF_SET_ACCESS;
   1921 	}
   1922 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   1923 		mask |= UDF_SET_UPDATE;
   1924 	}
   1925 	if (mask) {
   1926 		udf_node->update_flag |= mask;
   1927 	}
   1928 #endif
   1929 	/* msdosfs doesn't do it, but shouldn't we update the times here? */
   1930 }
   1931 
   1932 
   1933 static const struct genfs_ops udf_genfsops = {
   1934 	.gop_size = genfs_size,
   1935 	.gop_alloc = udf_gop_alloc,
   1936 	.gop_write = genfs_gop_write,
   1937 	.gop_markupdate = udf_gop_markupdate,
   1938 };
   1939 
   1940 /* --------------------------------------------------------------------- */
   1941 
   1942 /*
   1943  * Each node can have an attached streamdir node though not
   1944  * recursively. These are otherwise known as named substreams/named
   1945  * extended attributes that have no size limitations.
   1946  *
   1947  * `Normal' extended attributes are indicated with a number and are recorded
   1948  * in either the fe/efe descriptor itself for small descriptors or recorded in
   1949  * the attached extended attribute file. Since this file can get fragmented,
   1950  * care ought to be taken.
   1951  */
   1952 
   1953 int
   1954 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   1955 	     struct udf_node **noderes)
   1956 {
   1957 	union dscrptr   *dscr, *tmpdscr;
   1958 	struct udf_node *node;
   1959 	struct vnode    *nvp;
   1960 	struct long_ad   icb_loc;
   1961 	extern int (**udf_vnodeop_p)(void *);
   1962 	uint64_t file_size;
   1963 	uint32_t lb_size, sector, dummy;
   1964 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   1965 	int error;
   1966 
   1967 	DPRINTF(NODE, ("udf_get_node called\n"));
   1968 	*noderes = node = NULL;
   1969 
   1970 	/* lock to disallow simultanious creation of same node */
   1971 	mutex_enter(&ump->get_node_lock);
   1972 
   1973 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   1974 	/* lookup in hash table */
   1975 	assert(ump);
   1976 	assert(node_icb_loc);
   1977 	node = udf_hashget(ump, node_icb_loc);
   1978 	if (node) {
   1979 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   1980 		/* vnode is returned locked */
   1981 		*noderes = node;
   1982 		mutex_exit(&ump->get_node_lock);
   1983 		return 0;
   1984 	}
   1985 
   1986 	/* garbage check: translate node_icb_loc to sectornr */
   1987 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   1988 	if (error) {
   1989 		/* no use, this will fail anyway */
   1990 		mutex_exit(&ump->get_node_lock);
   1991 		return EINVAL;
   1992 	}
   1993 
   1994 	/* build node (do initialise!) */
   1995 	node = pool_get(&udf_node_pool, PR_WAITOK);
   1996 	memset(node, 0, sizeof(struct udf_node));
   1997 
   1998 	DPRINTF(NODE, ("\tget new vnode\n"));
   1999 	/* give it a vnode */
   2000 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   2001         if (error) {
   2002 		pool_put(&udf_node_pool, node);
   2003 		mutex_exit(&ump->get_node_lock);
   2004 		return error;
   2005 	}
   2006 
   2007 	/* always return locked vnode */
   2008 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   2009 		/* recycle vnode and unlock; simultanious will fail too */
   2010 		ungetnewvnode(nvp);
   2011 		mutex_exit(&ump->get_node_lock);
   2012 		return error;
   2013 	}
   2014 
   2015 	/* initialise crosslinks, note location of fe/efe for hashing */
   2016 	node->ump    =  ump;
   2017 	node->vnode  =  nvp;
   2018 	nvp->v_data  =  node;
   2019 	node->loc    = *node_icb_loc;
   2020 	node->lockf  =  0;
   2021 
   2022 	/* insert into the hash lookup */
   2023 	udf_hashins(node);
   2024 
   2025 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   2026 	mutex_exit(&ump->get_node_lock);
   2027 
   2028 	icb_loc = *node_icb_loc;
   2029 	needs_indirect = 0;
   2030 	strat4096 = 0;
   2031 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   2032 	file_size = 0;
   2033 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2034 
   2035 	do {
   2036 		error = udf_translate_vtop(ump, &icb_loc, &sector, &dummy);
   2037 		if (error)
   2038 			break;
   2039 
   2040 		/* try to read in fe/efe */
   2041 		error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
   2042 
   2043 		/* blank sector marks end of sequence, check this */
   2044 		if ((tmpdscr == NULL) &&  (!strat4096))
   2045 			error = ENOENT;
   2046 
   2047 		/* break if read error or blank sector */
   2048 		if (error || (tmpdscr == NULL))
   2049 			break;
   2050 
   2051 		/* process descriptor based on the descriptor type */
   2052 		dscr_type = udf_rw16(tmpdscr->tag.id);
   2053 
   2054 		/* if dealing with an indirect entry, follow the link */
   2055 		if (dscr_type == TAGID_INDIRECT_ENTRY) {
   2056 			needs_indirect = 0;
   2057 			icb_loc = tmpdscr->inde.indirect_icb;
   2058 			free(tmpdscr, M_UDFTEMP);
   2059 			continue;
   2060 		}
   2061 
   2062 		/* only file entries and extended file entries allowed here */
   2063 		if ((dscr_type != TAGID_FENTRY) &&
   2064 		    (dscr_type != TAGID_EXTFENTRY)) {
   2065 			free(tmpdscr, M_UDFTEMP);
   2066 			error = ENOENT;
   2067 			break;
   2068 		}
   2069 
   2070 		/* get descriptor space from our pool */
   2071 		KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
   2072 
   2073 		dscr = pool_get(ump->desc_pool, PR_WAITOK);
   2074 		memcpy(dscr, tmpdscr, lb_size);
   2075 		free(tmpdscr, M_UDFTEMP);
   2076 
   2077 		/* record and process/update (ext)fentry */
   2078 		if (dscr_type == TAGID_FENTRY) {
   2079 			if (node->fe)
   2080 				pool_put(ump->desc_pool, node->fe);
   2081 			node->fe  = &dscr->fe;
   2082 			strat = udf_rw16(node->fe->icbtag.strat_type);
   2083 			udf_file_type = node->fe->icbtag.file_type;
   2084 			file_size = udf_rw64(node->fe->inf_len);
   2085 		} else {
   2086 			if (node->efe)
   2087 				pool_put(ump->desc_pool, node->efe);
   2088 			node->efe = &dscr->efe;
   2089 			strat = udf_rw16(node->efe->icbtag.strat_type);
   2090 			udf_file_type = node->efe->icbtag.file_type;
   2091 			file_size = udf_rw64(node->efe->inf_len);
   2092 		}
   2093 
   2094 		/* check recording strategy (structure) */
   2095 
   2096 		/*
   2097 		 * Strategy 4096 is a daisy linked chain terminating with an
   2098 		 * unrecorded sector or a TERM descriptor. The next
   2099 		 * descriptor is to be found in the sector that follows the
   2100 		 * current sector.
   2101 		 */
   2102 		if (strat == 4096) {
   2103 			strat4096 = 1;
   2104 			needs_indirect = 1;
   2105 
   2106 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   2107 		}
   2108 
   2109 		/*
   2110 		 * Strategy 4 is the normal strategy and terminates, but if
   2111 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   2112 		 */
   2113 
   2114 		if (strat == 4) {
   2115 			if (strat4096) {
   2116 				error = EINVAL;
   2117 				break;
   2118 			}
   2119 			break;		/* done */
   2120 		}
   2121 	} while (!error);
   2122 
   2123 	if (error) {
   2124 		/* recycle udf_node */
   2125 		udf_dispose_node(node);
   2126 
   2127 		/* recycle vnode */
   2128 		nvp->v_data = NULL;
   2129 		ungetnewvnode(nvp);
   2130 
   2131 		return EINVAL;		/* error code ok? */
   2132 	}
   2133 
   2134 	/* post process and initialise node */
   2135 
   2136 	/* assert no references to dscr anymore beyong this point */
   2137 	assert((node->fe) || (node->efe));
   2138 	dscr = NULL;
   2139 
   2140 	/*
   2141 	 * Record where to record an updated version of the descriptor. If
   2142 	 * there is a sequence of indirect entries, icb_loc will have been
   2143 	 * updated. Its the write disipline to allocate new space and to make
   2144 	 * sure the chain is maintained.
   2145 	 *
   2146 	 * `needs_indirect' flags if the next location is to be filled with
   2147 	 * with an indirect entry.
   2148 	 */
   2149 	node->next_loc = icb_loc;
   2150 	node->needs_indirect = needs_indirect;
   2151 
   2152 	/*
   2153 	 * Translate UDF filetypes into vnode types.
   2154 	 *
   2155 	 * Systemfiles like the meta main and mirror files are not treated as
   2156 	 * normal files, so we type them as having no type. UDF dictates that
   2157 	 * they are not allowed to be visible.
   2158 	 */
   2159 
   2160 	/* TODO specfs, fifofs etc etc. vnops setting */
   2161 	switch (udf_file_type) {
   2162 	case UDF_ICB_FILETYPE_DIRECTORY :
   2163 	case UDF_ICB_FILETYPE_STREAMDIR :
   2164 		nvp->v_type = VDIR;
   2165 		break;
   2166 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   2167 		nvp->v_type = VBLK;
   2168 		break;
   2169 	case UDF_ICB_FILETYPE_CHARDEVICE :
   2170 		nvp->v_type = VCHR;
   2171 		break;
   2172 	case UDF_ICB_FILETYPE_SYMLINK :
   2173 		nvp->v_type = VLNK;
   2174 		break;
   2175 	case UDF_ICB_FILETYPE_VAT :
   2176 	case UDF_ICB_FILETYPE_META_MAIN :
   2177 	case UDF_ICB_FILETYPE_META_MIRROR :
   2178 		nvp->v_type = VNON;
   2179 		break;
   2180 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2181 	case UDF_ICB_FILETYPE_REALTIME :
   2182 		nvp->v_type = VREG;
   2183 		break;
   2184 	default:
   2185 		/* YIKES, either a block/char device, fifo or something else */
   2186 		nvp->v_type = VNON;
   2187 	}
   2188 
   2189 	/* initialise genfs */
   2190 	genfs_node_init(nvp, &udf_genfsops);
   2191 
   2192 	/* don't forget to set vnode's v_size */
   2193 	uvm_vnp_setsize(nvp, file_size);
   2194 
   2195 	/* TODO ext attr and streamdir nodes */
   2196 
   2197 	*noderes = node;
   2198 
   2199 	return 0;
   2200 }
   2201 
   2202 /* --------------------------------------------------------------------- */
   2203 
   2204 /* UDF<->unix converters */
   2205 
   2206 /* --------------------------------------------------------------------- */
   2207 
   2208 static mode_t
   2209 udf_perm_to_unix_mode(uint32_t perm)
   2210 {
   2211 	mode_t mode;
   2212 
   2213 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   2214 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   2215 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   2216 
   2217 	return mode;
   2218 }
   2219 
   2220 /* --------------------------------------------------------------------- */
   2221 
   2222 #ifdef notyet
   2223 static uint32_t
   2224 unix_mode_to_udf_perm(mode_t mode)
   2225 {
   2226 	uint32_t perm;
   2227 
   2228 	perm  = ((mode & S_IRWXO)     );
   2229 	perm |= ((mode & S_IRWXG) << 2);
   2230 	perm |= ((mode & S_IRWXU) << 4);
   2231 	perm |= ((mode & S_IWOTH) << 3);
   2232 	perm |= ((mode & S_IWGRP) << 5);
   2233 	perm |= ((mode & S_IWUSR) << 7);
   2234 
   2235 	return perm;
   2236 }
   2237 #endif
   2238 
   2239 /* --------------------------------------------------------------------- */
   2240 
   2241 static uint32_t
   2242 udf_icb_to_unix_filetype(uint32_t icbftype)
   2243 {
   2244 	switch (icbftype) {
   2245 	case UDF_ICB_FILETYPE_DIRECTORY :
   2246 	case UDF_ICB_FILETYPE_STREAMDIR :
   2247 		return S_IFDIR;
   2248 	case UDF_ICB_FILETYPE_FIFO :
   2249 		return S_IFIFO;
   2250 	case UDF_ICB_FILETYPE_CHARDEVICE :
   2251 		return S_IFCHR;
   2252 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   2253 		return S_IFBLK;
   2254 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   2255 	case UDF_ICB_FILETYPE_REALTIME :
   2256 		return S_IFREG;
   2257 	case UDF_ICB_FILETYPE_SYMLINK :
   2258 		return S_IFLNK;
   2259 	case UDF_ICB_FILETYPE_SOCKET :
   2260 		return S_IFSOCK;
   2261 	}
   2262 	/* no idea what this is */
   2263 	return 0;
   2264 }
   2265 
   2266 /* --------------------------------------------------------------------- */
   2267 
   2268 /* TODO KNF-ify */
   2269 
   2270 void
   2271 udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
   2272 {
   2273 	uint16_t *raw_name, *unix_name;
   2274 	uint16_t *inchp, ch;
   2275 	uint8_t	 *outchp;
   2276 	int       ucode_chars, nice_uchars;
   2277 
   2278 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   2279 	unix_name = raw_name + 1024;			/* split space in half */
   2280 	assert(sizeof(char) == sizeof(uint8_t));
   2281 	outchp = (uint8_t *) result;
   2282 	if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2283 		*raw_name = *unix_name = 0;
   2284 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   2285 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   2286 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   2287 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   2288 			ch = *inchp;
   2289 			/* XXX sloppy unicode -> latin */
   2290 			*outchp++ = ch & 255;
   2291 			if (!ch) break;
   2292 		}
   2293 		*outchp++ = 0;
   2294 	} else {
   2295 		/* assume 8bit char length byte latin-1 */
   2296 		assert(*id == 8);
   2297 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   2298 	}
   2299 	free(raw_name, M_UDFTEMP);
   2300 }
   2301 
   2302 /* --------------------------------------------------------------------- */
   2303 
   2304 /* TODO KNF-ify */
   2305 
   2306 void
   2307 unix_to_udf_name(char *result, char *name,
   2308 		 uint8_t *result_len, struct charspec *chsp)
   2309 {
   2310 	uint16_t *raw_name;
   2311 	int       udf_chars, name_len;
   2312 	char     *inchp;
   2313 	uint16_t *outchp;
   2314 
   2315 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   2316 	/* convert latin-1 or whatever to unicode-16 */
   2317 	*raw_name = 0;
   2318 	name_len  = 0;
   2319 	inchp  = name;
   2320 	outchp = raw_name;
   2321 	while (*inchp) {
   2322 		*outchp++ = (uint16_t) (*inchp++);
   2323 		name_len++;
   2324 	}
   2325 
   2326 	if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
   2327 		udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
   2328 	} else {
   2329 		/* XXX assume 8bit char length byte latin-1 */
   2330 		*result++ = 8; udf_chars = 1;
   2331 		strncpy(result, name + 1, strlen(name+1));
   2332 		udf_chars += strlen(name);
   2333 	}
   2334 	*result_len = udf_chars;
   2335 	free(raw_name, M_UDFTEMP);
   2336 }
   2337 
   2338 /* --------------------------------------------------------------------- */
   2339 
   2340 void
   2341 udf_timestamp_to_timespec(struct udf_mount *ump,
   2342 			  struct timestamp *timestamp,
   2343 			  struct timespec  *timespec)
   2344 {
   2345 	struct clock_ymdhms ymdhms;
   2346 	uint32_t usecs, secs, nsecs;
   2347 	uint16_t tz;
   2348 
   2349 	/* fill in ymdhms structure from timestamp */
   2350 	memset(&ymdhms, 0, sizeof(ymdhms));
   2351 	ymdhms.dt_year = udf_rw16(timestamp->year);
   2352 	ymdhms.dt_mon  = timestamp->month;
   2353 	ymdhms.dt_day  = timestamp->day;
   2354 	ymdhms.dt_wday = 0; /* ? */
   2355 	ymdhms.dt_hour = timestamp->hour;
   2356 	ymdhms.dt_min  = timestamp->minute;
   2357 	ymdhms.dt_sec  = timestamp->second;
   2358 
   2359 	secs = clock_ymdhms_to_secs(&ymdhms);
   2360 	usecs = timestamp->usec +
   2361 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   2362 	nsecs = usecs * 1000;
   2363 
   2364 	/*
   2365 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   2366 	 * compliment, so we gotta do some extra magic to handle it right.
   2367 	 */
   2368 	tz  = udf_rw16(timestamp->type_tz);
   2369 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   2370 	if (tz & 0x0800)		/* sign extention */
   2371 		tz |= 0xf000;
   2372 
   2373 	/* TODO check timezone conversion */
   2374 	/* check if we are specified a timezone to convert */
   2375 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   2376 		if ((int16_t) tz != -2047)
   2377 			secs -= (int16_t) tz * 60;
   2378 	} else {
   2379 		secs -= ump->mount_args.gmtoff;
   2380 	}
   2381 
   2382 	timespec->tv_sec  = secs;
   2383 	timespec->tv_nsec = nsecs;
   2384 }
   2385 
   2386 /* --------------------------------------------------------------------- */
   2387 
   2388 /*
   2389  * Attribute and filetypes converters with get/set pairs
   2390  */
   2391 
   2392 uint32_t
   2393 udf_getaccessmode(struct udf_node *udf_node)
   2394 {
   2395 	struct file_entry *fe;
   2396 	struct extfile_entry *efe;
   2397 	uint32_t udf_perm, icbftype;
   2398 	uint32_t mode, ftype;
   2399 	uint16_t icbflags;
   2400 
   2401 	if (udf_node->fe) {
   2402 		fe = udf_node->fe;
   2403 		udf_perm = udf_rw32(fe->perm);
   2404 		icbftype = fe->icbtag.file_type;
   2405 		icbflags = udf_rw16(fe->icbtag.flags);
   2406 	} else {
   2407 		assert(udf_node->efe);
   2408 		efe = udf_node->efe;
   2409 		udf_perm = udf_rw32(efe->perm);
   2410 		icbftype = efe->icbtag.file_type;
   2411 		icbflags = udf_rw16(efe->icbtag.flags);
   2412 	}
   2413 
   2414 	mode  = udf_perm_to_unix_mode(udf_perm);
   2415 	ftype = udf_icb_to_unix_filetype(icbftype);
   2416 
   2417 	/* set suid, sgid, sticky from flags in fe/efe */
   2418 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   2419 		mode |= S_ISUID;
   2420 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   2421 		mode |= S_ISGID;
   2422 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   2423 		mode |= S_ISVTX;
   2424 
   2425 	return mode | ftype;
   2426 }
   2427 
   2428 /* --------------------------------------------------------------------- */
   2429 
   2430 /*
   2431  * Directory read and manipulation functions
   2432  */
   2433 
   2434 int
   2435 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   2436 		       struct long_ad *icb_loc)
   2437 {
   2438 	struct udf_node  *dir_node = VTOI(vp);
   2439 	struct file_entry    *fe;
   2440 	struct extfile_entry *efe;
   2441 	struct fileid_desc *fid;
   2442 	struct dirent *dirent;
   2443 	uint64_t file_size, diroffset;
   2444 	uint32_t lb_size;
   2445 	int found, error;
   2446 
   2447 	/* get directory filesize */
   2448 	if (dir_node->fe) {
   2449 		fe = dir_node->fe;
   2450 		file_size = udf_rw64(fe->inf_len);
   2451 	} else {
   2452 		assert(dir_node->efe);
   2453 		efe = dir_node->efe;
   2454 		file_size = udf_rw64(efe->inf_len);
   2455 	}
   2456 
   2457 	/* allocate temporary space for fid */
   2458 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   2459 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   2460 
   2461 	found = 0;
   2462 	diroffset = dir_node->last_diroffset;
   2463 
   2464 	/*
   2465 	 * if the directory is trunced or if we have never visited it yet,
   2466 	 * start at the end.
   2467 	 */
   2468 	if ((diroffset >= file_size) || (diroffset == 0)) {
   2469 		diroffset = dir_node->last_diroffset = file_size;
   2470 	}
   2471 
   2472 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   2473 
   2474 	while (!found) {
   2475 		/* if at the end, go trough zero */
   2476 		if (diroffset >= file_size)
   2477 			diroffset = 0;
   2478 
   2479 		/* transfer a new fid/dirent */
   2480 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   2481 		if (error)
   2482 			break;
   2483 
   2484 		/* skip deleted entries */
   2485 		if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
   2486 			if ((strlen(dirent->d_name) == namelen) &&
   2487 			    (strncmp(dirent->d_name, name, namelen) == 0)) {
   2488 				found = 1;
   2489 				*icb_loc = fid->icb;
   2490 			}
   2491 		}
   2492 
   2493 		if (diroffset == dir_node->last_diroffset) {
   2494 			/* we have cycled */
   2495 			break;
   2496 		}
   2497 	}
   2498 	free(fid, M_UDFTEMP);
   2499 	free(dirent, M_UDFTEMP);
   2500 	dir_node->last_diroffset = diroffset;
   2501 
   2502 	return found;
   2503 }
   2504 
   2505 /* --------------------------------------------------------------------- */
   2506 
   2507 /*
   2508  * Read one fid and process it into a dirent and advance to the next (*fid)
   2509  * has to be allocated a logical block in size, (*dirent) struct dirent length
   2510  */
   2511 
   2512 int
   2513 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   2514 		    struct fileid_desc *fid, struct dirent *dirent)
   2515 {
   2516 	struct udf_node  *dir_node = VTOI(vp);
   2517 	struct udf_mount *ump = dir_node->ump;
   2518 	struct file_entry    *fe;
   2519 	struct extfile_entry *efe;
   2520 	struct uio    dir_uio;
   2521 	struct iovec  dir_iovec;
   2522 	uint32_t      entry_length, lb_size;
   2523 	uint64_t      file_size;
   2524 	char         *fid_name;
   2525 	int           enough, error;
   2526 
   2527 	assert(fid);
   2528 	assert(dirent);
   2529 	assert(dir_node);
   2530 	assert(offset);
   2531 	assert(*offset != 1);
   2532 
   2533 	DPRINTF(FIDS, ("read_fid_stream called\n"));
   2534 	/* check if we're past the end of the directory */
   2535 	if (dir_node->fe) {
   2536 		fe = dir_node->fe;
   2537 		file_size = udf_rw64(fe->inf_len);
   2538 	} else {
   2539 		assert(dir_node->efe);
   2540 		efe = dir_node->efe;
   2541 		file_size = udf_rw64(efe->inf_len);
   2542 	}
   2543 	if (*offset >= file_size)
   2544 		return EINVAL;
   2545 
   2546 	/* get maximum length of FID descriptor */
   2547 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2548 
   2549 	/* initialise return values */
   2550 	entry_length = 0;
   2551 	memset(dirent, 0, sizeof(struct dirent));
   2552 	memset(fid, 0, lb_size);
   2553 
   2554 	/* TODO use vn_rdwr instead of creating our own uio */
   2555 	/* read part of the directory */
   2556 	memset(&dir_uio, 0, sizeof(struct uio));
   2557 	dir_uio.uio_rw     = UIO_READ;	/* read into this space */
   2558 	dir_uio.uio_iovcnt = 1;
   2559 	dir_uio.uio_iov    = &dir_iovec;
   2560 	UIO_SETUP_SYSSPACE(&dir_uio);
   2561 	dir_iovec.iov_base = fid;
   2562 	dir_iovec.iov_len  = lb_size;
   2563 	dir_uio.uio_offset = *offset;
   2564 
   2565 	/* limit length of read in piece */
   2566 	dir_uio.uio_resid  = MIN(file_size - (*offset), lb_size);
   2567 
   2568 	/* read the part into the fid space */
   2569 	error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
   2570 	if (error)
   2571 		return error;
   2572 
   2573 	/*
   2574 	 * Check if we got a whole descriptor.
   2575 	 * XXX Try to `resync' directory stream when something is very wrong.
   2576 	 *
   2577 	 */
   2578 	enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
   2579 	if (!enough) {
   2580 		/* short dir ... */
   2581 		return EIO;
   2582 	}
   2583 
   2584 	/* check if our FID header is OK */
   2585 	error = udf_check_tag(fid);
   2586 	DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
   2587 	if (!error) {
   2588 		if (udf_rw16(fid->tag.id) != TAGID_FID)
   2589 			error = ENOENT;
   2590 	}
   2591 	DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
   2592 
   2593 	/* check for length */
   2594 	if (!error) {
   2595 		entry_length = udf_fidsize(fid, lb_size);
   2596 		enough = (dir_uio.uio_offset - (*offset) >= entry_length);
   2597 	}
   2598 	DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
   2599 	    entry_length, enough?"yes":"no"));
   2600 
   2601 	if (!enough) {
   2602 		/* short dir ... bomb out */
   2603 		return EIO;
   2604 	}
   2605 
   2606 	/* check FID contents */
   2607 	if (!error) {
   2608 		error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   2609 		DPRINTF(FIDS, ("\tpayload checked ok\n"));
   2610 	}
   2611 	if (error) {
   2612 		/* note that is sometimes a bit quick to report */
   2613 		printf("BROKEN DIRECTORY ENTRY\n");
   2614 		/* RESYNC? */
   2615 		/* TODO: use udf_resync_fid_stream */
   2616 		return EIO;
   2617 	}
   2618 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   2619 
   2620 	/* we got a whole and valid descriptor! */
   2621 
   2622 	/* create resulting dirent structure */
   2623 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   2624 	udf_to_unix_name(dirent->d_name,
   2625 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   2626 
   2627 	/* '..' has no name, so provide one */
   2628 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   2629 		strcpy(dirent->d_name, "..");
   2630 
   2631 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   2632 	dirent->d_namlen = strlen(dirent->d_name);
   2633 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   2634 
   2635 	/*
   2636 	 * Note that its not worth trying to go for the filetypes now... its
   2637 	 * too expensive too
   2638 	 */
   2639 	dirent->d_type = DT_UNKNOWN;
   2640 
   2641 	/* initial guess for filetype we can make */
   2642 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   2643 		dirent->d_type = DT_DIR;
   2644 
   2645 	/* advance */
   2646 	*offset += entry_length;
   2647 
   2648 	return error;
   2649 }
   2650 
   2651 /* --------------------------------------------------------------------- */
   2652 
   2653 /*
   2654  * block based file reading and writing
   2655  */
   2656 
   2657 static int
   2658 udf_read_internal(struct udf_node *node, uint8_t *blob)
   2659 {
   2660 	struct udf_mount *ump;
   2661 	struct file_entry *fe;
   2662 	struct extfile_entry *efe;
   2663 	uint64_t inflen;
   2664 	uint32_t sector_size;
   2665 	uint8_t  *pos;
   2666 	int icbflags, addr_type;
   2667 
   2668 	/* shut up gcc */
   2669 	inflen = addr_type = icbflags = 0;
   2670 	pos = NULL;
   2671 
   2672 	/* get extent and do some paranoia checks */
   2673 	ump = node->ump;
   2674 	sector_size = ump->discinfo.sector_size;
   2675 
   2676 	fe  = node->fe;
   2677 	efe = node->efe;
   2678 	if (fe) {
   2679 		inflen   = udf_rw64(fe->inf_len);
   2680 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2681 		icbflags = udf_rw16(fe->icbtag.flags);
   2682 	}
   2683 	if (efe) {
   2684 		inflen   = udf_rw64(efe->inf_len);
   2685 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2686 		icbflags = udf_rw16(efe->icbtag.flags);
   2687 	}
   2688 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2689 
   2690 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   2691 	assert(inflen < sector_size);
   2692 
   2693 	/* copy out info */
   2694 	memset(blob, 0, sector_size);
   2695 	memcpy(blob, pos, inflen);
   2696 
   2697 	return 0;
   2698 }
   2699 
   2700 /* --------------------------------------------------------------------- */
   2701 
   2702 /*
   2703  * Read file extent reads an extent specified in sectors from the file. It is
   2704  * sector based; i.e. no `fancy' offsets.
   2705  */
   2706 
   2707 int
   2708 udf_read_file_extent(struct udf_node *node,
   2709 		     uint32_t from, uint32_t sectors,
   2710 		     uint8_t *blob)
   2711 {
   2712 	struct buf buf;
   2713 	uint32_t sector_size;
   2714 
   2715 	BUF_INIT(&buf);
   2716 
   2717 	sector_size = node->ump->discinfo.sector_size;
   2718 
   2719 	buf.b_bufsize = sectors * sector_size;
   2720 	buf.b_data    = blob;
   2721 	buf.b_bcount  = buf.b_bufsize;
   2722 	buf.b_resid   = buf.b_bcount;
   2723 	buf.b_flags   = B_BUSY | B_READ;
   2724 	buf.b_vp      = node->vnode;
   2725 	buf.b_proc    = NULL;
   2726 
   2727 	buf.b_blkno  = from;
   2728 	buf.b_lblkno = 0;
   2729 	BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
   2730 
   2731 	udf_read_filebuf(node, &buf);
   2732 	return biowait(&buf);
   2733 }
   2734 
   2735 
   2736 /* --------------------------------------------------------------------- */
   2737 
   2738 /*
   2739  * Read file extent in the buffer.
   2740  *
   2741  * The splitup of the extent into separate request-buffers is to minimise
   2742  * copying around as much as possible.
   2743  */
   2744 
   2745 
   2746 /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
   2747 #define FILEBUFSECT 128
   2748 
   2749 void
   2750 udf_read_filebuf(struct udf_node *node, struct buf *buf)
   2751 {
   2752 	struct buf *nestbuf;
   2753 	uint64_t   *mapping;
   2754 	uint64_t    run_start;
   2755 	uint32_t    sector_size;
   2756 	uint32_t    buf_offset, sector, rbuflen, rblk;
   2757 	uint8_t    *buf_pos;
   2758 	int error, run_length;
   2759 
   2760 	uint32_t  from;
   2761 	uint32_t  sectors;
   2762 
   2763 	sector_size = node->ump->discinfo.sector_size;
   2764 
   2765 	from    = buf->b_blkno;
   2766 	sectors = buf->b_bcount / sector_size;
   2767 
   2768 	/* assure we have enough translation slots */
   2769 	KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
   2770 	KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
   2771 
   2772 	if (sectors > FILEBUFSECT) {
   2773 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   2774 		buf->b_error  = EIO;
   2775 		biodone(buf);
   2776 		return;
   2777 	}
   2778 
   2779 	mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_UDFTEMP, M_WAITOK);
   2780 
   2781 	error = 0;
   2782 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   2783 	error = udf_translate_file_extent(node, from, sectors, mapping);
   2784 	if (error) {
   2785 		buf->b_error  = error;
   2786 		biodone(buf);
   2787 		goto out;
   2788 	}
   2789 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   2790 
   2791 	/* pre-check if internal or parts are zero */
   2792 	if (*mapping == UDF_TRANS_INTERN) {
   2793 		error = udf_read_internal(node, (uint8_t *) buf->b_data);
   2794 		if (error) {
   2795 			buf->b_error  = error;
   2796 		}
   2797 		biodone(buf);
   2798 		goto out;
   2799 	}
   2800 	DPRINTF(READ, ("\tnot intern\n"));
   2801 
   2802 	/* request read-in of data from disc scheduler */
   2803 	buf->b_resid = buf->b_bcount;
   2804 	for (sector = 0; sector < sectors; sector++) {
   2805 		buf_offset = sector * sector_size;
   2806 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   2807 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   2808 
   2809 		switch (mapping[sector]) {
   2810 		case UDF_TRANS_UNMAPPED:
   2811 		case UDF_TRANS_ZERO:
   2812 			/* copy zero sector */
   2813 			memset(buf_pos, 0, sector_size);
   2814 			DPRINTF(READ, ("\treturning zero sector\n"));
   2815 			nestiobuf_done(buf, sector_size, 0);
   2816 			break;
   2817 		default :
   2818 			DPRINTF(READ, ("\tread sector "
   2819 			    "%"PRIu64"\n", mapping[sector]));
   2820 
   2821 			run_start  = mapping[sector];
   2822 			run_length = 1;
   2823 			while (sector < sectors-1) {
   2824 				if (mapping[sector+1] != mapping[sector]+1)
   2825 					break;
   2826 				run_length++;
   2827 				sector++;
   2828 			}
   2829 
   2830 			/*
   2831 			 * nest an iobuf and mark it for async reading. Since
   2832 			 * we're using nested buffers, they can't be cached by
   2833 			 * design.
   2834 			 */
   2835 			rbuflen = run_length * sector_size;
   2836 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   2837 
   2838 			nestbuf = getiobuf();
   2839 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   2840 			/* nestbuf is B_ASYNC */
   2841 
   2842 			/* CD schedules on raw blkno */
   2843 			nestbuf->b_blkno    = rblk;
   2844 			nestbuf->b_proc     = NULL;
   2845 			nestbuf->b_cylinder = 0;
   2846 			nestbuf->b_rawblkno = rblk;
   2847 			VOP_STRATEGY(node->ump->devvp, nestbuf);
   2848 		}
   2849 	}
   2850 out:
   2851 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   2852 	free(mapping, M_UDFTEMP);
   2853 	return;
   2854 }
   2855 #undef FILEBUFSECT
   2856 
   2857 
   2858 /* --------------------------------------------------------------------- */
   2859 
   2860 /*
   2861  * Translate an extent (in sectors) into sector numbers; used for read and
   2862  * write operations. DOESNT't check extents.
   2863  */
   2864 
   2865 int
   2866 udf_translate_file_extent(struct udf_node *node,
   2867 		          uint32_t from, uint32_t pages,
   2868 			  uint64_t *map)
   2869 {
   2870 	struct udf_mount *ump;
   2871 	struct file_entry *fe;
   2872 	struct extfile_entry *efe;
   2873 	struct short_ad *s_ad;
   2874 	struct long_ad  *l_ad, t_ad;
   2875 	uint64_t transsec;
   2876 	uint32_t sector_size, transsec32;
   2877 	uint32_t overlap, translen;
   2878 	uint32_t vpart_num, lb_num, len, alloclen;
   2879 	uint8_t *pos;
   2880 	int error, flags, addr_type, icblen, icbflags;
   2881 
   2882 	if (!node)
   2883 		return ENOENT;
   2884 
   2885 	/* shut up gcc */
   2886 	alloclen = addr_type = icbflags = 0;
   2887 	pos = NULL;
   2888 
   2889 	/* do the work */
   2890 	ump = node->ump;
   2891 	sector_size = ump->discinfo.sector_size;
   2892 	fe  = node->fe;
   2893 	efe = node->efe;
   2894 	if (fe) {
   2895 		alloclen = udf_rw32(fe->l_ad);
   2896 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   2897 		icbflags = udf_rw16(fe->icbtag.flags);
   2898 	}
   2899 	if (efe) {
   2900 		alloclen = udf_rw32(efe->l_ad);
   2901 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   2902 		icbflags = udf_rw16(efe->icbtag.flags);
   2903 	}
   2904 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   2905 
   2906 	DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
   2907 	    "fe %p, efe %p\n", alloclen, addr_type, fe, efe));
   2908 
   2909 	vpart_num = udf_rw16(node->loc.loc.part_num);
   2910 	lb_num = len = icblen = 0;	/* shut up gcc */
   2911 	while (pages && alloclen) {
   2912 		DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
   2913 		switch (addr_type) {
   2914 		case UDF_ICB_INTERN_ALLOC :
   2915 			/* TODO check extents? */
   2916 			*map = UDF_TRANS_INTERN;
   2917 			return 0;
   2918 		case UDF_ICB_SHORT_ALLOC :
   2919 			icblen = sizeof(struct short_ad);
   2920 			s_ad   = (struct short_ad *) pos;
   2921 			len       = udf_rw32(s_ad->len);
   2922 			lb_num    = udf_rw32(s_ad->lb_num);
   2923 			break;
   2924 		case UDF_ICB_LONG_ALLOC  :
   2925 			icblen = sizeof(struct long_ad);
   2926 			l_ad   = (struct long_ad *) pos;
   2927 			len       = udf_rw32(l_ad->len);
   2928 			lb_num    = udf_rw32(l_ad->loc.lb_num);
   2929 			vpart_num = udf_rw16(l_ad->loc.part_num);
   2930 			DPRINTFIF(TRANSLATE,
   2931 			    (l_ad->impl.im_used.flags &
   2932 			     UDF_ADIMP_FLAGS_EXTENT_ERASED),
   2933 			    ("UDF: got an `extent erased' flag in long_ad\n"));
   2934 			break;
   2935 		default:
   2936 			/* can't be here */
   2937 			return EINVAL;	/* for sure */
   2938 		}
   2939 
   2940 		/* process extent */
   2941 		flags   = UDF_EXT_FLAGS(len);
   2942 		len     = UDF_EXT_LEN(len);
   2943 
   2944 		overlap = (len + sector_size -1) / sector_size;
   2945 		if (from) {
   2946 			if (from > overlap) {
   2947 				from -= overlap;
   2948 				overlap = 0;
   2949 			} else {
   2950 				lb_num  += from;	/* advance in extent */
   2951 				overlap -= from;
   2952 				from = 0;
   2953 			}
   2954 		}
   2955 
   2956 		overlap = MIN(overlap, pages);
   2957 		while (overlap) {
   2958 			switch (flags) {
   2959 			case UDF_EXT_REDIRECT :
   2960 				/* no support for allocation extentions yet */
   2961 				/* TODO support for allocation extention */
   2962 				return ENOENT;
   2963 			case UDF_EXT_FREED :
   2964 			case UDF_EXT_FREE :
   2965 				transsec = UDF_TRANS_ZERO;
   2966 				translen = overlap;
   2967 				while (overlap && pages && translen) {
   2968 					*map++ = transsec;
   2969 					lb_num++;
   2970 					overlap--; pages--; translen--;
   2971 				}
   2972 				break;
   2973 			case UDF_EXT_ALLOCATED :
   2974 				t_ad.loc.lb_num   = udf_rw32(lb_num);
   2975 				t_ad.loc.part_num = udf_rw16(vpart_num);
   2976 				error = udf_translate_vtop(ump,
   2977 						&t_ad, &transsec32, &translen);
   2978 				transsec = transsec32;
   2979 				if (error)
   2980 					return error;
   2981 				while (overlap && pages && translen) {
   2982 					*map++ = transsec;
   2983 					lb_num++; transsec++;
   2984 					overlap--; pages--; translen--;
   2985 				}
   2986 				break;
   2987 			}
   2988 		}
   2989 		pos      += icblen;
   2990 		alloclen -= icblen;
   2991 	}
   2992 	return 0;
   2993 }
   2994 
   2995 /* --------------------------------------------------------------------- */
   2996 
   2997