udf_subr.c revision 1.44.6.3 1 /* $NetBSD: udf_subr.c,v 1.44.6.3 2008/09/28 10:40:51 mjf Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.44.6.3 2008/09/28 10:40:51 mjf Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65
66 #include "udf.h"
67 #include "udf_subr.h"
68 #include "udf_bswap.h"
69
70
71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
72
73 #define UDF_SET_SYSTEMFILE(vp) \
74 /* XXXAD Is the vnode locked? */ \
75 (vp)->v_vflag |= VV_SYSTEM; \
76 vref(vp); \
77 vput(vp); \
78
79 extern int syncer_maxdelay; /* maximum delay time */
80 extern int (**udf_vnodeop_p)(void *);
81
82 /* --------------------------------------------------------------------- */
83
84 //#ifdef DEBUG
85 #if 1
86
87 #if 0
88 static void
89 udf_dumpblob(boid *blob, uint32_t dlen)
90 {
91 int i, j;
92
93 printf("blob = %p\n", blob);
94 printf("dump of %d bytes\n", dlen);
95
96 for (i = 0; i < dlen; i+ = 16) {
97 printf("%04x ", i);
98 for (j = 0; j < 16; j++) {
99 if (i+j < dlen) {
100 printf("%02x ", blob[i+j]);
101 } else {
102 printf(" ");
103 }
104 }
105 for (j = 0; j < 16; j++) {
106 if (i+j < dlen) {
107 if (blob[i+j]>32 && blob[i+j]! = 127) {
108 printf("%c", blob[i+j]);
109 } else {
110 printf(".");
111 }
112 }
113 }
114 printf("\n");
115 }
116 printf("\n");
117 Debugger();
118 }
119 #endif
120
121 static void
122 udf_dump_discinfo(struct udf_mount *ump)
123 {
124 char bits[128];
125 struct mmc_discinfo *di = &ump->discinfo;
126
127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
128 return;
129
130 printf("Device/media info :\n");
131 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
132 printf("\tderived class %d\n", di->mmc_class);
133 printf("\tsector size %d\n", di->sector_size);
134 printf("\tdisc state %d\n", di->disc_state);
135 printf("\tlast ses state %d\n", di->last_session_state);
136 printf("\tbg format state %d\n", di->bg_format_state);
137 printf("\tfrst track %d\n", di->first_track);
138 printf("\tfst on last ses %d\n", di->first_track_last_session);
139 printf("\tlst on last ses %d\n", di->last_track_last_session);
140 printf("\tlink block penalty %d\n", di->link_block_penalty);
141 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
142 sizeof(bits));
143 printf("\tdisc flags %s\n", bits);
144 printf("\tdisc id %x\n", di->disc_id);
145 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
146
147 printf("\tnum sessions %d\n", di->num_sessions);
148 printf("\tnum tracks %d\n", di->num_tracks);
149
150 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
151 printf("\tcapabilities cur %s\n", bits);
152 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
153 printf("\tcapabilities cap %s\n", bits);
154 }
155 #else
156 #define udf_dump_discinfo(a);
157 #endif
158
159
160 /* --------------------------------------------------------------------- */
161
162 /* not called often */
163 int
164 udf_update_discinfo(struct udf_mount *ump)
165 {
166 struct vnode *devvp = ump->devvp;
167 struct partinfo dpart;
168 struct mmc_discinfo *di;
169 int error;
170
171 DPRINTF(VOLUMES, ("read/update disc info\n"));
172 di = &ump->discinfo;
173 memset(di, 0, sizeof(struct mmc_discinfo));
174
175 /* check if we're on a MMC capable device, i.e. CD/DVD */
176 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
177 if (error == 0) {
178 udf_dump_discinfo(ump);
179 return 0;
180 }
181
182 /* disc partition support */
183 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
184 if (error)
185 return ENODEV;
186
187 /* set up a disc info profile for partitions */
188 di->mmc_profile = 0x01; /* disc type */
189 di->mmc_class = MMC_CLASS_DISC;
190 di->disc_state = MMC_STATE_CLOSED;
191 di->last_session_state = MMC_STATE_CLOSED;
192 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
193 di->link_block_penalty = 0;
194
195 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
196 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
197 di->mmc_cap = di->mmc_cur;
198 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
199
200 /* TODO problem with last_possible_lba on resizable VND; request */
201 di->last_possible_lba = dpart.part->p_size;
202 di->sector_size = dpart.disklab->d_secsize;
203
204 di->num_sessions = 1;
205 di->num_tracks = 1;
206
207 di->first_track = 1;
208 di->first_track_last_session = di->last_track_last_session = 1;
209
210 udf_dump_discinfo(ump);
211 return 0;
212 }
213
214
215 int
216 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
217 {
218 struct vnode *devvp = ump->devvp;
219 struct mmc_discinfo *di = &ump->discinfo;
220 int error, class;
221
222 DPRINTF(VOLUMES, ("read track info\n"));
223
224 class = di->mmc_class;
225 if (class != MMC_CLASS_DISC) {
226 /* tracknr specified in struct ti */
227 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
228 return error;
229 }
230
231 /* disc partition support */
232 if (ti->tracknr != 1)
233 return EIO;
234
235 /* create fake ti (TODO check for resized vnds) */
236 ti->sessionnr = 1;
237
238 ti->track_mode = 0; /* XXX */
239 ti->data_mode = 0; /* XXX */
240 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
241
242 ti->track_start = 0;
243 ti->packet_size = 1;
244
245 /* TODO support for resizable vnd */
246 ti->track_size = di->last_possible_lba;
247 ti->next_writable = di->last_possible_lba;
248 ti->last_recorded = ti->next_writable;
249 ti->free_blocks = 0;
250
251 return 0;
252 }
253
254
255 int
256 udf_setup_writeparams(struct udf_mount *ump)
257 {
258 struct mmc_writeparams mmc_writeparams;
259 int error;
260
261 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
262 return 0;
263
264 /*
265 * only CD burning normally needs setting up, but other disc types
266 * might need other settings to be made. The MMC framework will set up
267 * the nessisary recording parameters according to the disc
268 * characteristics read in. Modifications can be made in the discinfo
269 * structure passed to change the nature of the disc.
270 */
271
272 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
273 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
274 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
275
276 /*
277 * UDF dictates first track to determine track mode for the whole
278 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
279 * To prevent problems with a `reserved' track in front we start with
280 * the 2nd track and if that is not valid, go for the 1st.
281 */
282 mmc_writeparams.tracknr = 2;
283 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
284 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
285
286 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
287 FKIOCTL, NOCRED);
288 if (error) {
289 mmc_writeparams.tracknr = 1;
290 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
291 &mmc_writeparams, FKIOCTL, NOCRED);
292 }
293 return error;
294 }
295
296
297 int
298 udf_synchronise_caches(struct udf_mount *ump)
299 {
300 struct mmc_op mmc_op;
301
302 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
303
304 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
305 return 0;
306
307 /* discs are done now */
308 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
309 return 0;
310
311 bzero(&mmc_op, sizeof(struct mmc_op));
312 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
313
314 /* ignore return code */
315 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
316
317 return 0;
318 }
319
320 /* --------------------------------------------------------------------- */
321
322 /* track/session searching for mounting */
323 int
324 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
325 int *first_tracknr, int *last_tracknr)
326 {
327 struct mmc_trackinfo trackinfo;
328 uint32_t tracknr, start_track, num_tracks;
329 int error;
330
331 /* if negative, sessionnr is relative to last session */
332 if (args->sessionnr < 0) {
333 args->sessionnr += ump->discinfo.num_sessions;
334 }
335
336 /* sanity */
337 if (args->sessionnr < 0)
338 args->sessionnr = 0;
339 if (args->sessionnr > ump->discinfo.num_sessions)
340 args->sessionnr = ump->discinfo.num_sessions;
341
342 /* search the tracks for this session, zero session nr indicates last */
343 if (args->sessionnr == 0)
344 args->sessionnr = ump->discinfo.num_sessions;
345 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
346 args->sessionnr--;
347
348 /* sanity again */
349 if (args->sessionnr < 0)
350 args->sessionnr = 0;
351
352 /* search the first and last track of the specified session */
353 num_tracks = ump->discinfo.num_tracks;
354 start_track = ump->discinfo.first_track;
355
356 /* search for first track of this session */
357 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
358 /* get track info */
359 trackinfo.tracknr = tracknr;
360 error = udf_update_trackinfo(ump, &trackinfo);
361 if (error)
362 return error;
363
364 if (trackinfo.sessionnr == args->sessionnr)
365 break;
366 }
367 *first_tracknr = tracknr;
368
369 /* search for last track of this session */
370 for (;tracknr <= num_tracks; tracknr++) {
371 /* get track info */
372 trackinfo.tracknr = tracknr;
373 error = udf_update_trackinfo(ump, &trackinfo);
374 if (error || (trackinfo.sessionnr != args->sessionnr)) {
375 tracknr--;
376 break;
377 }
378 }
379 if (tracknr > num_tracks)
380 tracknr--;
381
382 *last_tracknr = tracknr;
383
384 if (*last_tracknr < *first_tracknr) {
385 printf( "udf_search_tracks: sanity check on drive+disc failed, "
386 "drive returned garbage\n");
387 return EINVAL;
388 }
389
390 assert(*last_tracknr >= *first_tracknr);
391 return 0;
392 }
393
394
395 /*
396 * NOTE: this is the only routine in this file that directly peeks into the
397 * metadata file but since its at a larval state of the mount it can't hurt.
398 *
399 * XXX candidate for udf_allocation.c
400 * XXX clean me up!, change to new node reading code.
401 */
402
403 static void
404 udf_check_track_metadata_overlap(struct udf_mount *ump,
405 struct mmc_trackinfo *trackinfo)
406 {
407 struct part_desc *part;
408 struct file_entry *fe;
409 struct extfile_entry *efe;
410 struct short_ad *s_ad;
411 struct long_ad *l_ad;
412 uint32_t track_start, track_end;
413 uint32_t phys_part_start, phys_part_end, part_start, part_end;
414 uint32_t sector_size, len, alloclen, plb_num;
415 uint8_t *pos;
416 int addr_type, icblen, icbflags, flags;
417
418 /* get our track extents */
419 track_start = trackinfo->track_start;
420 track_end = track_start + trackinfo->track_size;
421
422 /* get our base partition extent */
423 KASSERT(ump->node_part == ump->fids_part);
424 part = ump->partitions[ump->node_part];
425 phys_part_start = udf_rw32(part->start_loc);
426 phys_part_end = phys_part_start + udf_rw32(part->part_len);
427
428 /* no use if its outside the physical partition */
429 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
430 return;
431
432 /*
433 * now follow all extents in the fe/efe to see if they refer to this
434 * track
435 */
436
437 sector_size = ump->discinfo.sector_size;
438
439 /* XXX should we claim exclusive access to the metafile ? */
440 /* TODO: move to new node read code */
441 fe = ump->metadata_node->fe;
442 efe = ump->metadata_node->efe;
443 if (fe) {
444 alloclen = udf_rw32(fe->l_ad);
445 pos = &fe->data[0] + udf_rw32(fe->l_ea);
446 icbflags = udf_rw16(fe->icbtag.flags);
447 } else {
448 assert(efe);
449 alloclen = udf_rw32(efe->l_ad);
450 pos = &efe->data[0] + udf_rw32(efe->l_ea);
451 icbflags = udf_rw16(efe->icbtag.flags);
452 }
453 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
454
455 while (alloclen) {
456 if (addr_type == UDF_ICB_SHORT_ALLOC) {
457 icblen = sizeof(struct short_ad);
458 s_ad = (struct short_ad *) pos;
459 len = udf_rw32(s_ad->len);
460 plb_num = udf_rw32(s_ad->lb_num);
461 } else {
462 /* should not be present, but why not */
463 icblen = sizeof(struct long_ad);
464 l_ad = (struct long_ad *) pos;
465 len = udf_rw32(l_ad->len);
466 plb_num = udf_rw32(l_ad->loc.lb_num);
467 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
468 }
469 /* process extent */
470 flags = UDF_EXT_FLAGS(len);
471 len = UDF_EXT_LEN(len);
472
473 part_start = phys_part_start + plb_num;
474 part_end = part_start + (len / sector_size);
475
476 if ((part_start >= track_start) && (part_end <= track_end)) {
477 /* extent is enclosed within this track */
478 ump->metadata_track = *trackinfo;
479 return;
480 }
481
482 pos += icblen;
483 alloclen -= icblen;
484 }
485 }
486
487
488 int
489 udf_search_writing_tracks(struct udf_mount *ump)
490 {
491 struct mmc_trackinfo trackinfo;
492 struct part_desc *part;
493 uint32_t tracknr, start_track, num_tracks;
494 uint32_t track_start, track_end, part_start, part_end;
495 int node_alloc, error;
496
497 /*
498 * in the CD/(HD)DVD/BD recordable device model a few tracks within
499 * the last session might be open but in the UDF device model at most
500 * three tracks can be open: a reserved track for delayed ISO VRS
501 * writing, a data track and a metadata track. We search here for the
502 * data track and the metadata track. Note that the reserved track is
503 * troublesome but can be detected by its small size of < 512 sectors.
504 */
505
506 num_tracks = ump->discinfo.num_tracks;
507 start_track = ump->discinfo.first_track;
508
509 /* fetch info on first and possibly only track */
510 trackinfo.tracknr = start_track;
511 error = udf_update_trackinfo(ump, &trackinfo);
512 if (error)
513 return error;
514
515 /* copy results to our mount point */
516 ump->data_track = trackinfo;
517 ump->metadata_track = trackinfo;
518
519 /* if not sequential, we're done */
520 if (num_tracks == 1)
521 return 0;
522
523 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
524 /* get track info */
525 trackinfo.tracknr = tracknr;
526 error = udf_update_trackinfo(ump, &trackinfo);
527 if (error)
528 return error;
529
530 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
531 continue;
532
533 track_start = trackinfo.track_start;
534 track_end = track_start + trackinfo.track_size;
535
536 /* check for overlap on data partition */
537 part = ump->partitions[ump->data_part];
538 part_start = udf_rw32(part->start_loc);
539 part_end = part_start + udf_rw32(part->part_len);
540 if ((part_start < track_end) && (part_end > track_start)) {
541 ump->data_track = trackinfo;
542 /* TODO check if UDF partition data_part is writable */
543 }
544
545 /* check for overlap on metadata partition */
546 node_alloc = ump->vtop_alloc[ump->node_part];
547 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
548 (node_alloc == UDF_ALLOC_METABITMAP)) {
549 udf_check_track_metadata_overlap(ump, &trackinfo);
550 } else {
551 ump->metadata_track = trackinfo;
552 }
553 }
554
555 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
556 return EROFS;
557
558 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
559 return EROFS;
560
561 return 0;
562 }
563
564 /* --------------------------------------------------------------------- */
565
566 /*
567 * Check if the blob starts with a good UDF tag. Tags are protected by a
568 * checksum over the reader except one byte at position 4 that is the checksum
569 * itself.
570 */
571
572 int
573 udf_check_tag(void *blob)
574 {
575 struct desc_tag *tag = blob;
576 uint8_t *pos, sum, cnt;
577
578 /* check TAG header checksum */
579 pos = (uint8_t *) tag;
580 sum = 0;
581
582 for(cnt = 0; cnt < 16; cnt++) {
583 if (cnt != 4)
584 sum += *pos;
585 pos++;
586 }
587 if (sum != tag->cksum) {
588 /* bad tag header checksum; this is not a valid tag */
589 return EINVAL;
590 }
591
592 return 0;
593 }
594
595
596 /*
597 * check tag payload will check descriptor CRC as specified.
598 * If the descriptor is too long, it will return EIO otherwise EINVAL.
599 */
600
601 int
602 udf_check_tag_payload(void *blob, uint32_t max_length)
603 {
604 struct desc_tag *tag = blob;
605 uint16_t crc, crc_len;
606
607 crc_len = udf_rw16(tag->desc_crc_len);
608
609 /* check payload CRC if applicable */
610 if (crc_len == 0)
611 return 0;
612
613 if (crc_len > max_length)
614 return EIO;
615
616 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
617 if (crc != udf_rw16(tag->desc_crc)) {
618 /* bad payload CRC; this is a broken tag */
619 return EINVAL;
620 }
621
622 return 0;
623 }
624
625
626 void
627 udf_validate_tag_sum(void *blob)
628 {
629 struct desc_tag *tag = blob;
630 uint8_t *pos, sum, cnt;
631
632 /* calculate TAG header checksum */
633 pos = (uint8_t *) tag;
634 sum = 0;
635
636 for(cnt = 0; cnt < 16; cnt++) {
637 if (cnt != 4) sum += *pos;
638 pos++;
639 }
640 tag->cksum = sum; /* 8 bit */
641 }
642
643
644 /* assumes sector number of descriptor to be saved already present */
645 void
646 udf_validate_tag_and_crc_sums(void *blob)
647 {
648 struct desc_tag *tag = blob;
649 uint8_t *btag = (uint8_t *) tag;
650 uint16_t crc, crc_len;
651
652 crc_len = udf_rw16(tag->desc_crc_len);
653
654 /* check payload CRC if applicable */
655 if (crc_len > 0) {
656 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
657 tag->desc_crc = udf_rw16(crc);
658 }
659
660 /* calculate TAG header checksum */
661 udf_validate_tag_sum(blob);
662 }
663
664 /* --------------------------------------------------------------------- */
665
666 /*
667 * XXX note the different semantics from udfclient: for FIDs it still rounds
668 * up to sectors. Use udf_fidsize() for a correct length.
669 */
670
671 int
672 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
673 {
674 uint32_t size, tag_id, num_lb, elmsz;
675
676 tag_id = udf_rw16(dscr->tag.id);
677
678 switch (tag_id) {
679 case TAGID_LOGVOL :
680 size = sizeof(struct logvol_desc) - 1;
681 size += udf_rw32(dscr->lvd.mt_l);
682 break;
683 case TAGID_UNALLOC_SPACE :
684 elmsz = sizeof(struct extent_ad);
685 size = sizeof(struct unalloc_sp_desc) - elmsz;
686 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
687 break;
688 case TAGID_FID :
689 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
690 size = (size + 3) & ~3;
691 break;
692 case TAGID_LOGVOL_INTEGRITY :
693 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
694 size += udf_rw32(dscr->lvid.l_iu);
695 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
696 break;
697 case TAGID_SPACE_BITMAP :
698 size = sizeof(struct space_bitmap_desc) - 1;
699 size += udf_rw32(dscr->sbd.num_bytes);
700 break;
701 case TAGID_SPARING_TABLE :
702 elmsz = sizeof(struct spare_map_entry);
703 size = sizeof(struct udf_sparing_table) - elmsz;
704 size += udf_rw16(dscr->spt.rt_l) * elmsz;
705 break;
706 case TAGID_FENTRY :
707 size = sizeof(struct file_entry);
708 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
709 break;
710 case TAGID_EXTFENTRY :
711 size = sizeof(struct extfile_entry);
712 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
713 break;
714 case TAGID_FSD :
715 size = sizeof(struct fileset_desc);
716 break;
717 default :
718 size = sizeof(union dscrptr);
719 break;
720 }
721
722 if ((size == 0) || (lb_size == 0))
723 return 0;
724
725 if (lb_size == 1)
726 return size;
727
728 /* round up in sectors */
729 num_lb = (size + lb_size -1) / lb_size;
730 return num_lb * lb_size;
731 }
732
733
734 int
735 udf_fidsize(struct fileid_desc *fid)
736 {
737 uint32_t size;
738
739 if (udf_rw16(fid->tag.id) != TAGID_FID)
740 panic("got udf_fidsize on non FID\n");
741
742 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
743 size = (size + 3) & ~3;
744
745 return size;
746 }
747
748 /* --------------------------------------------------------------------- */
749
750 void
751 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
752 {
753 int ret;
754
755 mutex_enter(&udf_node->node_mutex);
756 /* wait until free */
757 while (udf_node->i_flags & IN_LOCKED) {
758 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
759 /* TODO check if we should return error; abort */
760 if (ret == EWOULDBLOCK) {
761 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
762 "wanted at %s:%d, previously locked at %s:%d\n",
763 udf_node, fname, lineno,
764 udf_node->lock_fname, udf_node->lock_lineno));
765 }
766 }
767 /* grab */
768 udf_node->i_flags |= IN_LOCKED | flag;
769 /* debug */
770 udf_node->lock_fname = fname;
771 udf_node->lock_lineno = lineno;
772
773 mutex_exit(&udf_node->node_mutex);
774 }
775
776
777 void
778 udf_unlock_node(struct udf_node *udf_node, int flag)
779 {
780 mutex_enter(&udf_node->node_mutex);
781 udf_node->i_flags &= ~(IN_LOCKED | flag);
782 cv_broadcast(&udf_node->node_lock);
783 mutex_exit(&udf_node->node_mutex);
784 }
785
786
787 /* --------------------------------------------------------------------- */
788
789 static int
790 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
791 {
792 int error;
793
794 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
795 (union dscrptr **) dst);
796 if (!error) {
797 /* blank terminator blocks are not allowed here */
798 if (*dst == NULL)
799 return ENOENT;
800 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
801 error = ENOENT;
802 free(*dst, M_UDFVOLD);
803 *dst = NULL;
804 DPRINTF(VOLUMES, ("Not an anchor\n"));
805 }
806 }
807
808 return error;
809 }
810
811
812 int
813 udf_read_anchors(struct udf_mount *ump)
814 {
815 struct udf_args *args = &ump->mount_args;
816 struct mmc_trackinfo first_track;
817 struct mmc_trackinfo second_track;
818 struct mmc_trackinfo last_track;
819 struct anchor_vdp **anchorsp;
820 uint32_t track_start;
821 uint32_t track_end;
822 uint32_t positions[4];
823 int first_tracknr, last_tracknr;
824 int error, anch, ok, first_anchor;
825
826 /* search the first and last track of the specified session */
827 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
828 if (!error) {
829 first_track.tracknr = first_tracknr;
830 error = udf_update_trackinfo(ump, &first_track);
831 }
832 if (!error) {
833 last_track.tracknr = last_tracknr;
834 error = udf_update_trackinfo(ump, &last_track);
835 }
836 if ((!error) && (first_tracknr != last_tracknr)) {
837 second_track.tracknr = first_tracknr+1;
838 error = udf_update_trackinfo(ump, &second_track);
839 }
840 if (error) {
841 printf("UDF mount: reading disc geometry failed\n");
842 return 0;
843 }
844
845 track_start = first_track.track_start;
846
847 /* `end' is not as straitforward as start. */
848 track_end = last_track.track_start
849 + last_track.track_size - last_track.free_blocks - 1;
850
851 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
852 /* end of track is not straitforward here */
853 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
854 track_end = last_track.last_recorded;
855 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
856 track_end = last_track.next_writable
857 - ump->discinfo.link_block_penalty;
858 }
859
860 /* its no use reading a blank track */
861 first_anchor = 0;
862 if (first_track.flags & MMC_TRACKINFO_BLANK)
863 first_anchor = 1;
864
865 /* get our packet size */
866 ump->packet_size = first_track.packet_size;
867 if (first_track.flags & MMC_TRACKINFO_BLANK)
868 ump->packet_size = second_track.packet_size;
869
870 if (ump->packet_size <= 1) {
871 /* take max, but not bigger than 64 */
872 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
873 ump->packet_size = MIN(ump->packet_size, 64);
874 }
875 KASSERT(ump->packet_size >= 1);
876
877 /* read anchors start+256, start+512, end-256, end */
878 positions[0] = track_start+256;
879 positions[1] = track_end-256;
880 positions[2] = track_end;
881 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
882 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
883
884 ok = 0;
885 anchorsp = ump->anchors;
886 for (anch = first_anchor; anch < 4; anch++) {
887 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
888 positions[anch]));
889 error = udf_read_anchor(ump, positions[anch], anchorsp);
890 if (!error) {
891 anchorsp++;
892 ok++;
893 }
894 }
895
896 /* VATs are only recorded on sequential media, but initialise */
897 ump->first_possible_vat_location = track_start + 2;
898 ump->last_possible_vat_location = track_end + last_track.packet_size;
899
900 return ok;
901 }
902
903 /* --------------------------------------------------------------------- */
904
905 /* we dont try to be smart; we just record the parts */
906 #define UDF_UPDATE_DSCR(name, dscr) \
907 if (name) \
908 free(name, M_UDFVOLD); \
909 name = dscr;
910
911 static int
912 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
913 {
914 struct part_desc *part;
915 uint16_t phys_part, raw_phys_part;
916
917 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
918 udf_rw16(dscr->tag.id)));
919 switch (udf_rw16(dscr->tag.id)) {
920 case TAGID_PRI_VOL : /* primary partition */
921 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
922 break;
923 case TAGID_LOGVOL : /* logical volume */
924 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
925 break;
926 case TAGID_UNALLOC_SPACE : /* unallocated space */
927 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
928 break;
929 case TAGID_IMP_VOL : /* implementation */
930 /* XXX do we care about multiple impl. descr ? */
931 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
932 break;
933 case TAGID_PARTITION : /* physical partition */
934 /* not much use if its not allocated */
935 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
936 free(dscr, M_UDFVOLD);
937 break;
938 }
939
940 /*
941 * BUGALERT: some rogue implementations use random physical
942 * partion numbers to break other implementations so lookup
943 * the number.
944 */
945 raw_phys_part = udf_rw16(dscr->pd.part_num);
946 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
947 part = ump->partitions[phys_part];
948 if (part == NULL)
949 break;
950 if (udf_rw16(part->part_num) == raw_phys_part)
951 break;
952 }
953 if (phys_part == UDF_PARTITIONS) {
954 free(dscr, M_UDFVOLD);
955 return EINVAL;
956 }
957
958 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
959 break;
960 case TAGID_VOL : /* volume space extender; rare */
961 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
962 free(dscr, M_UDFVOLD);
963 break;
964 default :
965 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
966 udf_rw16(dscr->tag.id)));
967 free(dscr, M_UDFVOLD);
968 }
969
970 return 0;
971 }
972 #undef UDF_UPDATE_DSCR
973
974 /* --------------------------------------------------------------------- */
975
976 static int
977 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
978 {
979 union dscrptr *dscr;
980 uint32_t sector_size, dscr_size;
981 int error;
982
983 sector_size = ump->discinfo.sector_size;
984
985 /* loc is sectornr, len is in bytes */
986 error = EIO;
987 while (len) {
988 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
989 if (error)
990 return error;
991
992 /* blank block is a terminator */
993 if (dscr == NULL)
994 return 0;
995
996 /* TERM descriptor is a terminator */
997 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
998 free(dscr, M_UDFVOLD);
999 return 0;
1000 }
1001
1002 /* process all others */
1003 dscr_size = udf_tagsize(dscr, sector_size);
1004 error = udf_process_vds_descriptor(ump, dscr);
1005 if (error) {
1006 free(dscr, M_UDFVOLD);
1007 break;
1008 }
1009 assert((dscr_size % sector_size) == 0);
1010
1011 len -= dscr_size;
1012 loc += dscr_size / sector_size;
1013 }
1014
1015 return error;
1016 }
1017
1018
1019 int
1020 udf_read_vds_space(struct udf_mount *ump)
1021 {
1022 /* struct udf_args *args = &ump->mount_args; */
1023 struct anchor_vdp *anchor, *anchor2;
1024 size_t size;
1025 uint32_t main_loc, main_len;
1026 uint32_t reserve_loc, reserve_len;
1027 int error;
1028
1029 /*
1030 * read in VDS space provided by the anchors; if one descriptor read
1031 * fails, try the mirror sector.
1032 *
1033 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1034 * avoids the `compatibility features' of DirectCD that may confuse
1035 * stuff completely.
1036 */
1037
1038 anchor = ump->anchors[0];
1039 anchor2 = ump->anchors[1];
1040 assert(anchor);
1041
1042 if (anchor2) {
1043 size = sizeof(struct extent_ad);
1044 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1045 anchor = anchor2;
1046 /* reserve is specified to be a literal copy of main */
1047 }
1048
1049 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1050 main_len = udf_rw32(anchor->main_vds_ex.len);
1051
1052 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1053 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1054
1055 error = udf_read_vds_extent(ump, main_loc, main_len);
1056 if (error) {
1057 printf("UDF mount: reading in reserve VDS extent\n");
1058 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1059 }
1060
1061 return error;
1062 }
1063
1064 /* --------------------------------------------------------------------- */
1065
1066 /*
1067 * Read in the logical volume integrity sequence pointed to by our logical
1068 * volume descriptor. Its a sequence that can be extended using fields in the
1069 * integrity descriptor itself. On sequential media only one is found, on
1070 * rewritable media a sequence of descriptors can be found as a form of
1071 * history keeping and on non sequential write-once media the chain is vital
1072 * to allow more and more descriptors to be written. The last descriptor
1073 * written in an extent needs to claim space for a new extent.
1074 */
1075
1076 static int
1077 udf_retrieve_lvint(struct udf_mount *ump)
1078 {
1079 union dscrptr *dscr;
1080 struct logvol_int_desc *lvint;
1081 struct udf_lvintq *trace;
1082 uint32_t lb_size, lbnum, len;
1083 int dscr_type, error, trace_len;
1084
1085 lb_size = udf_rw32(ump->logical_vol->lb_size);
1086 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1087 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1088
1089 /* clean trace */
1090 memset(ump->lvint_trace, 0,
1091 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1092
1093 trace_len = 0;
1094 trace = ump->lvint_trace;
1095 trace->start = lbnum;
1096 trace->end = lbnum + len/lb_size;
1097 trace->pos = 0;
1098 trace->wpos = 0;
1099
1100 lvint = NULL;
1101 dscr = NULL;
1102 error = 0;
1103 while (len) {
1104 trace->pos = lbnum - trace->start;
1105 trace->wpos = trace->pos + 1;
1106
1107 /* read in our integrity descriptor */
1108 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1109 if (!error) {
1110 if (dscr == NULL) {
1111 trace->wpos = trace->pos;
1112 break; /* empty terminates */
1113 }
1114 dscr_type = udf_rw16(dscr->tag.id);
1115 if (dscr_type == TAGID_TERM) {
1116 trace->wpos = trace->pos;
1117 break; /* clean terminator */
1118 }
1119 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1120 /* fatal... corrupt disc */
1121 error = ENOENT;
1122 break;
1123 }
1124 if (lvint)
1125 free(lvint, M_UDFVOLD);
1126 lvint = &dscr->lvid;
1127 dscr = NULL;
1128 } /* else hope for the best... maybe the next is ok */
1129
1130 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1131 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1132
1133 /* proceed sequential */
1134 lbnum += 1;
1135 len -= lb_size;
1136
1137 /* are we linking to a new piece? */
1138 if (dscr && lvint->next_extent.len) {
1139 len = udf_rw32(lvint->next_extent.len);
1140 lbnum = udf_rw32(lvint->next_extent.loc);
1141
1142 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1143 /* IEK! segment link full... */
1144 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1145 error = EINVAL;
1146 } else {
1147 trace++;
1148 trace_len++;
1149
1150 trace->start = lbnum;
1151 trace->end = lbnum + len/lb_size;
1152 trace->pos = 0;
1153 trace->wpos = 0;
1154 }
1155 }
1156 }
1157
1158 /* clean up the mess, esp. when there is an error */
1159 if (dscr)
1160 free(dscr, M_UDFVOLD);
1161
1162 if (error && lvint) {
1163 free(lvint, M_UDFVOLD);
1164 lvint = NULL;
1165 }
1166
1167 if (!lvint)
1168 error = ENOENT;
1169
1170 ump->logvol_integrity = lvint;
1171 return error;
1172 }
1173
1174
1175 static int
1176 udf_loose_lvint_history(struct udf_mount *ump)
1177 {
1178 union dscrptr **bufs, *dscr, *last_dscr;
1179 struct udf_lvintq *trace, *in_trace, *out_trace;
1180 struct logvol_int_desc *lvint;
1181 uint32_t in_ext, in_pos, in_len;
1182 uint32_t out_ext, out_wpos, out_len;
1183 uint32_t lb_size, packet_size, lb_num;
1184 uint32_t len, start;
1185 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1186 int losing;
1187 int error;
1188
1189 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1190
1191 lb_size = udf_rw32(ump->logical_vol->lb_size);
1192 packet_size = ump->data_track.packet_size; /* XXX data track */
1193
1194 /* search smallest extent */
1195 trace = &ump->lvint_trace[0];
1196 minext = trace->end - trace->start;
1197 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1198 trace = &ump->lvint_trace[ext];
1199 extlen = trace->end - trace->start;
1200 if (extlen == 0)
1201 break;
1202 minext = MIN(minext, extlen);
1203 }
1204 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1205 /* no sense wiping all */
1206 if (losing == minext)
1207 losing--;
1208
1209 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1210
1211 /* get buffer for pieces */
1212 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1213
1214 in_ext = 0;
1215 in_pos = losing;
1216 in_trace = &ump->lvint_trace[in_ext];
1217 in_len = in_trace->end - in_trace->start;
1218 out_ext = 0;
1219 out_wpos = 0;
1220 out_trace = &ump->lvint_trace[out_ext];
1221 out_len = out_trace->end - out_trace->start;
1222
1223 last_dscr = NULL;
1224 for(;;) {
1225 out_trace->pos = out_wpos;
1226 out_trace->wpos = out_trace->pos;
1227 if (in_pos >= in_len) {
1228 in_ext++;
1229 in_pos = 0;
1230 in_trace = &ump->lvint_trace[in_ext];
1231 in_len = in_trace->end - in_trace->start;
1232 }
1233 if (out_wpos >= out_len) {
1234 out_ext++;
1235 out_wpos = 0;
1236 out_trace = &ump->lvint_trace[out_ext];
1237 out_len = out_trace->end - out_trace->start;
1238 }
1239 /* copy overlap contents */
1240 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1241 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1242 if (cpy_len == 0)
1243 break;
1244
1245 /* copy */
1246 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1247 for (cnt = 0; cnt < cpy_len; cnt++) {
1248 /* read in our integrity descriptor */
1249 lb_num = in_trace->start + in_pos + cnt;
1250 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1251 &dscr);
1252 if (error) {
1253 /* copy last one */
1254 dscr = last_dscr;
1255 }
1256 bufs[cnt] = dscr;
1257 if (!error) {
1258 if (dscr == NULL) {
1259 out_trace->pos = out_wpos + cnt;
1260 out_trace->wpos = out_trace->pos;
1261 break; /* empty terminates */
1262 }
1263 dscr_type = udf_rw16(dscr->tag.id);
1264 if (dscr_type == TAGID_TERM) {
1265 out_trace->pos = out_wpos + cnt;
1266 out_trace->wpos = out_trace->pos;
1267 break; /* clean terminator */
1268 }
1269 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1270 panic( "UDF integrity sequence "
1271 "corrupted while mounted!\n");
1272 }
1273 last_dscr = dscr;
1274 }
1275 }
1276
1277 /* patch up if first entry was on error */
1278 if (bufs[0] == NULL) {
1279 for (cnt = 0; cnt < cpy_len; cnt++)
1280 if (bufs[cnt] != NULL)
1281 break;
1282 last_dscr = bufs[cnt];
1283 for (; cnt > 0; cnt--) {
1284 bufs[cnt] = last_dscr;
1285 }
1286 }
1287
1288 /* glue + write out */
1289 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1290 for (cnt = 0; cnt < cpy_len; cnt++) {
1291 lb_num = out_trace->start + out_wpos + cnt;
1292 lvint = &bufs[cnt]->lvid;
1293
1294 /* set continuation */
1295 len = 0;
1296 start = 0;
1297 if (out_wpos + cnt == out_len) {
1298 /* get continuation */
1299 trace = &ump->lvint_trace[out_ext+1];
1300 len = trace->end - trace->start;
1301 start = trace->start;
1302 }
1303 lvint->next_extent.len = udf_rw32(len);
1304 lvint->next_extent.loc = udf_rw32(start);
1305
1306 lb_num = trace->start + trace->wpos;
1307 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1308 bufs[cnt], lb_num, lb_num);
1309 DPRINTFIF(VOLUMES, error,
1310 ("error writing lvint lb_num\n"));
1311 }
1312
1313 /* free non repeating descriptors */
1314 last_dscr = NULL;
1315 for (cnt = 0; cnt < cpy_len; cnt++) {
1316 if (bufs[cnt] != last_dscr)
1317 free(bufs[cnt], M_UDFVOLD);
1318 last_dscr = bufs[cnt];
1319 }
1320
1321 /* advance */
1322 in_pos += cpy_len;
1323 out_wpos += cpy_len;
1324 }
1325
1326 free(bufs, M_TEMP);
1327
1328 return 0;
1329 }
1330
1331
1332 static int
1333 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1334 {
1335 struct udf_lvintq *trace;
1336 struct timeval now_v;
1337 struct timespec now_s;
1338 uint32_t sector;
1339 int logvol_integrity;
1340 int space, error;
1341
1342 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1343
1344 again:
1345 /* get free space in last chunk */
1346 trace = ump->lvint_trace;
1347 while (trace->wpos > (trace->end - trace->start)) {
1348 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1349 "wpos = %d\n", trace->start, trace->end,
1350 trace->pos, trace->wpos));
1351 trace++;
1352 }
1353
1354 /* check if there is space to append */
1355 space = (trace->end - trace->start) - trace->wpos;
1356 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1357 "space = %d\n", trace->start, trace->end, trace->pos,
1358 trace->wpos, space));
1359
1360 /* get state */
1361 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1362 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1363 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1364 /* don't allow this logvol to be opened */
1365 /* TODO extent LVINT space if possible */
1366 return EROFS;
1367 }
1368 }
1369
1370 if (space < 1) {
1371 if (lvflag & UDF_APPENDONLY_LVINT)
1372 return EROFS;
1373 /* loose history by re-writing extents */
1374 error = udf_loose_lvint_history(ump);
1375 if (error)
1376 return error;
1377 goto again;
1378 }
1379
1380 /* update our integrity descriptor to identify us and timestamp it */
1381 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1382 microtime(&now_v);
1383 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1384 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1385 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1386 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1387
1388 /* writeout integrity descriptor */
1389 sector = trace->start + trace->wpos;
1390 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1391 (union dscrptr *) ump->logvol_integrity,
1392 sector, sector);
1393 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1394 if (error)
1395 return error;
1396
1397 /* advance write position */
1398 trace->wpos++; space--;
1399 if (space >= 1) {
1400 /* append terminator */
1401 sector = trace->start + trace->wpos;
1402 error = udf_write_terminator(ump, sector);
1403
1404 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1405 }
1406
1407 space = (trace->end - trace->start) - trace->wpos;
1408 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1409 "space = %d\n", trace->start, trace->end, trace->pos,
1410 trace->wpos, space));
1411 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1412 "successfull\n"));
1413
1414 return error;
1415 }
1416
1417 /* --------------------------------------------------------------------- */
1418
1419 static int
1420 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1421 {
1422 union dscrptr *dscr;
1423 /* struct udf_args *args = &ump->mount_args; */
1424 struct part_desc *partd;
1425 struct part_hdr_desc *parthdr;
1426 struct udf_bitmap *bitmap;
1427 uint32_t phys_part;
1428 uint32_t lb_num, len;
1429 int error, dscr_type;
1430
1431 /* unallocated space map */
1432 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1433 partd = ump->partitions[phys_part];
1434 if (partd == NULL)
1435 continue;
1436 parthdr = &partd->_impl_use.part_hdr;
1437
1438 lb_num = udf_rw32(partd->start_loc);
1439 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1440 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1441 if (len == 0)
1442 continue;
1443
1444 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1445 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1446 if (!error && dscr) {
1447 /* analyse */
1448 dscr_type = udf_rw16(dscr->tag.id);
1449 if (dscr_type == TAGID_SPACE_BITMAP) {
1450 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1451 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1452
1453 /* fill in ump->part_unalloc_bits */
1454 bitmap = &ump->part_unalloc_bits[phys_part];
1455 bitmap->blob = (uint8_t *) dscr;
1456 bitmap->bits = dscr->sbd.data;
1457 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1458 bitmap->pages = NULL; /* TODO */
1459 bitmap->data_pos = 0;
1460 bitmap->metadata_pos = 0;
1461 } else {
1462 free(dscr, M_UDFVOLD);
1463
1464 printf( "UDF mount: error reading unallocated "
1465 "space bitmap\n");
1466 return EROFS;
1467 }
1468 } else {
1469 /* blank not allowed */
1470 printf("UDF mount: blank unallocated space bitmap\n");
1471 return EROFS;
1472 }
1473 }
1474
1475 /* unallocated space table (not supported) */
1476 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1477 partd = ump->partitions[phys_part];
1478 if (partd == NULL)
1479 continue;
1480 parthdr = &partd->_impl_use.part_hdr;
1481
1482 len = udf_rw32(parthdr->unalloc_space_table.len);
1483 if (len) {
1484 printf("UDF mount: space tables not supported\n");
1485 return EROFS;
1486 }
1487 }
1488
1489 /* freed space map */
1490 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1491 partd = ump->partitions[phys_part];
1492 if (partd == NULL)
1493 continue;
1494 parthdr = &partd->_impl_use.part_hdr;
1495
1496 /* freed space map */
1497 lb_num = udf_rw32(partd->start_loc);
1498 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1499 len = udf_rw32(parthdr->freed_space_bitmap.len);
1500 if (len == 0)
1501 continue;
1502
1503 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1504 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1505 if (!error && dscr) {
1506 /* analyse */
1507 dscr_type = udf_rw16(dscr->tag.id);
1508 if (dscr_type == TAGID_SPACE_BITMAP) {
1509 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1510 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1511
1512 /* fill in ump->part_freed_bits */
1513 bitmap = &ump->part_unalloc_bits[phys_part];
1514 bitmap->blob = (uint8_t *) dscr;
1515 bitmap->bits = dscr->sbd.data;
1516 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1517 bitmap->pages = NULL; /* TODO */
1518 bitmap->data_pos = 0;
1519 bitmap->metadata_pos = 0;
1520 } else {
1521 free(dscr, M_UDFVOLD);
1522
1523 printf( "UDF mount: error reading freed "
1524 "space bitmap\n");
1525 return EROFS;
1526 }
1527 } else {
1528 /* blank not allowed */
1529 printf("UDF mount: blank freed space bitmap\n");
1530 return EROFS;
1531 }
1532 }
1533
1534 /* freed space table (not supported) */
1535 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1536 partd = ump->partitions[phys_part];
1537 if (partd == NULL)
1538 continue;
1539 parthdr = &partd->_impl_use.part_hdr;
1540
1541 len = udf_rw32(parthdr->freed_space_table.len);
1542 if (len) {
1543 printf("UDF mount: space tables not supported\n");
1544 return EROFS;
1545 }
1546 }
1547
1548 return 0;
1549 }
1550
1551
1552 /* TODO implement async writeout */
1553 int
1554 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1555 {
1556 union dscrptr *dscr;
1557 /* struct udf_args *args = &ump->mount_args; */
1558 struct part_desc *partd;
1559 struct part_hdr_desc *parthdr;
1560 uint32_t phys_part;
1561 uint32_t lb_num, len, ptov;
1562 int error_all, error;
1563
1564 error_all = 0;
1565 /* unallocated space map */
1566 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1567 partd = ump->partitions[phys_part];
1568 if (partd == NULL)
1569 continue;
1570 parthdr = &partd->_impl_use.part_hdr;
1571
1572 ptov = udf_rw32(partd->start_loc);
1573 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1574 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1575 if (len == 0)
1576 continue;
1577
1578 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1579 lb_num + ptov));
1580 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1581 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1582 (union dscrptr *) dscr,
1583 ptov + lb_num, lb_num);
1584 if (error) {
1585 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1586 error_all = error;
1587 }
1588 }
1589
1590 /* freed space map */
1591 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1592 partd = ump->partitions[phys_part];
1593 if (partd == NULL)
1594 continue;
1595 parthdr = &partd->_impl_use.part_hdr;
1596
1597 /* freed space map */
1598 ptov = udf_rw32(partd->start_loc);
1599 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1600 len = udf_rw32(parthdr->freed_space_bitmap.len);
1601 if (len == 0)
1602 continue;
1603
1604 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1605 lb_num + ptov));
1606 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1607 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1608 (union dscrptr *) dscr,
1609 ptov + lb_num, lb_num);
1610 if (error) {
1611 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1612 error_all = error;
1613 }
1614 }
1615
1616 return error_all;
1617 }
1618
1619
1620 static int
1621 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1622 {
1623 struct udf_node *bitmap_node;
1624 union dscrptr *dscr;
1625 struct udf_bitmap *bitmap;
1626 uint64_t inflen;
1627 int error, dscr_type;
1628
1629 bitmap_node = ump->metadatabitmap_node;
1630
1631 /* only read in when metadata bitmap node is read in */
1632 if (bitmap_node == NULL)
1633 return 0;
1634
1635 if (bitmap_node->fe) {
1636 inflen = udf_rw64(bitmap_node->fe->inf_len);
1637 } else {
1638 KASSERT(bitmap_node->efe);
1639 inflen = udf_rw64(bitmap_node->efe->inf_len);
1640 }
1641
1642 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1643 "%"PRIu64" bytes\n", inflen));
1644
1645 /* allocate space for bitmap */
1646 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1647 if (!dscr)
1648 return ENOMEM;
1649
1650 /* set vnode type to regular file or we can't read from it! */
1651 bitmap_node->vnode->v_type = VREG;
1652
1653 /* read in complete metadata bitmap file */
1654 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1655 dscr,
1656 inflen, 0,
1657 UIO_SYSSPACE,
1658 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1659 NULL, NULL);
1660 if (error) {
1661 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1662 goto errorout;
1663 }
1664
1665 /* analyse */
1666 dscr_type = udf_rw16(dscr->tag.id);
1667 if (dscr_type == TAGID_SPACE_BITMAP) {
1668 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1669 ump->metadata_unalloc_dscr = &dscr->sbd;
1670
1671 /* fill in bitmap bits */
1672 bitmap = &ump->metadata_unalloc_bits;
1673 bitmap->blob = (uint8_t *) dscr;
1674 bitmap->bits = dscr->sbd.data;
1675 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1676 bitmap->pages = NULL; /* TODO */
1677 bitmap->data_pos = 0;
1678 bitmap->metadata_pos = 0;
1679 } else {
1680 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1681 goto errorout;
1682 }
1683
1684 return 0;
1685
1686 errorout:
1687 free(dscr, M_UDFVOLD);
1688 printf( "UDF mount: error reading unallocated "
1689 "space bitmap for metadata partition\n");
1690 return EROFS;
1691 }
1692
1693
1694 int
1695 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1696 {
1697 struct udf_node *bitmap_node;
1698 union dscrptr *dscr;
1699 uint64_t inflen, new_inflen;
1700 int dummy, error;
1701
1702 bitmap_node = ump->metadatabitmap_node;
1703
1704 /* only write out when metadata bitmap node is known */
1705 if (bitmap_node == NULL)
1706 return 0;
1707
1708 if (bitmap_node->fe) {
1709 inflen = udf_rw64(bitmap_node->fe->inf_len);
1710 } else {
1711 KASSERT(bitmap_node->efe);
1712 inflen = udf_rw64(bitmap_node->efe->inf_len);
1713 }
1714
1715 /* reduce length to zero */
1716 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1717 new_inflen = udf_tagsize(dscr, 1);
1718
1719 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1720 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1721
1722 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1723 if (error)
1724 printf("Error resizing metadata space bitmap\n");
1725
1726 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1727 dscr,
1728 new_inflen, 0,
1729 UIO_SYSSPACE,
1730 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1731 NULL, NULL);
1732
1733 bitmap_node->i_flags |= IN_MODIFIED;
1734 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1735
1736 error = VOP_FSYNC(bitmap_node->vnode,
1737 FSCRED, FSYNC_WAIT, 0, 0);
1738
1739 if (error)
1740 printf( "Error writing out metadata partition unalloced "
1741 "space bitmap!\n");
1742
1743 return error;
1744 }
1745
1746
1747 /* --------------------------------------------------------------------- */
1748
1749 /*
1750 * Checks if ump's vds information is correct and complete
1751 */
1752
1753 int
1754 udf_process_vds(struct udf_mount *ump) {
1755 union udf_pmap *mapping;
1756 /* struct udf_args *args = &ump->mount_args; */
1757 struct logvol_int_desc *lvint;
1758 struct udf_logvol_info *lvinfo;
1759 struct part_desc *part;
1760 uint32_t n_pm, mt_l;
1761 uint8_t *pmap_pos;
1762 char *domain_name, *map_name;
1763 const char *check_name;
1764 char bits[128];
1765 int pmap_stype, pmap_size;
1766 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1767 int n_phys, n_virt, n_spar, n_meta;
1768 int len, error;
1769
1770 if (ump == NULL)
1771 return ENOENT;
1772
1773 /* we need at least an anchor (trivial, but for safety) */
1774 if (ump->anchors[0] == NULL)
1775 return EINVAL;
1776
1777 /* we need at least one primary and one logical volume descriptor */
1778 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1779 return EINVAL;
1780
1781 /* we need at least one partition descriptor */
1782 if (ump->partitions[0] == NULL)
1783 return EINVAL;
1784
1785 /* check logical volume sector size verses device sector size */
1786 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1787 printf("UDF mount: format violation, lb_size != sector size\n");
1788 return EINVAL;
1789 }
1790
1791 /* check domain name */
1792 domain_name = ump->logical_vol->domain_id.id;
1793 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1794 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1795 return EINVAL;
1796 }
1797
1798 /* retrieve logical volume integrity sequence */
1799 error = udf_retrieve_lvint(ump);
1800
1801 /*
1802 * We need at least one logvol integrity descriptor recorded. Note
1803 * that its OK to have an open logical volume integrity here. The VAT
1804 * will close/update the integrity.
1805 */
1806 if (ump->logvol_integrity == NULL)
1807 return EINVAL;
1808
1809 /* process derived structures */
1810 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1811 lvint = ump->logvol_integrity;
1812 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1813 ump->logvol_info = lvinfo;
1814
1815 /* TODO check udf versions? */
1816
1817 /*
1818 * check logvol mappings: effective virt->log partmap translation
1819 * check and recording of the mapping results. Saves expensive
1820 * strncmp() in tight places.
1821 */
1822 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1823 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1824 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1825 pmap_pos = ump->logical_vol->maps;
1826
1827 if (n_pm > UDF_PMAPS) {
1828 printf("UDF mount: too many mappings\n");
1829 return EINVAL;
1830 }
1831
1832 /* count types and set partition numbers */
1833 ump->data_part = ump->node_part = ump->fids_part = 0;
1834 n_phys = n_virt = n_spar = n_meta = 0;
1835 for (log_part = 0; log_part < n_pm; log_part++) {
1836 mapping = (union udf_pmap *) pmap_pos;
1837 pmap_stype = pmap_pos[0];
1838 pmap_size = pmap_pos[1];
1839 switch (pmap_stype) {
1840 case 1: /* physical mapping */
1841 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1842 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1843 pmap_type = UDF_VTOP_TYPE_PHYS;
1844 n_phys++;
1845 ump->data_part = log_part;
1846 ump->node_part = log_part;
1847 ump->fids_part = log_part;
1848 break;
1849 case 2: /* virtual/sparable/meta mapping */
1850 map_name = mapping->pm2.part_id.id;
1851 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1852 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1853 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1854 len = UDF_REGID_ID_SIZE;
1855
1856 check_name = "*UDF Virtual Partition";
1857 if (strncmp(map_name, check_name, len) == 0) {
1858 pmap_type = UDF_VTOP_TYPE_VIRT;
1859 n_virt++;
1860 ump->node_part = log_part;
1861 break;
1862 }
1863 check_name = "*UDF Sparable Partition";
1864 if (strncmp(map_name, check_name, len) == 0) {
1865 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1866 n_spar++;
1867 ump->data_part = log_part;
1868 ump->node_part = log_part;
1869 ump->fids_part = log_part;
1870 break;
1871 }
1872 check_name = "*UDF Metadata Partition";
1873 if (strncmp(map_name, check_name, len) == 0) {
1874 pmap_type = UDF_VTOP_TYPE_META;
1875 n_meta++;
1876 ump->node_part = log_part;
1877 ump->fids_part = log_part;
1878 break;
1879 }
1880 break;
1881 default:
1882 return EINVAL;
1883 }
1884
1885 /*
1886 * BUGALERT: some rogue implementations use random physical
1887 * partion numbers to break other implementations so lookup
1888 * the number.
1889 */
1890 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1891 part = ump->partitions[phys_part];
1892 if (part == NULL)
1893 continue;
1894 if (udf_rw16(part->part_num) == raw_phys_part)
1895 break;
1896 }
1897
1898 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1899 raw_phys_part, phys_part, pmap_type));
1900
1901 if (phys_part == UDF_PARTITIONS)
1902 return EINVAL;
1903 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1904 return EINVAL;
1905
1906 ump->vtop [log_part] = phys_part;
1907 ump->vtop_tp[log_part] = pmap_type;
1908
1909 pmap_pos += pmap_size;
1910 }
1911 /* not winning the beauty contest */
1912 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1913
1914 /* test some basic UDF assertions/requirements */
1915 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1916 return EINVAL;
1917
1918 if (n_virt) {
1919 if ((n_phys == 0) || n_spar || n_meta)
1920 return EINVAL;
1921 }
1922 if (n_spar + n_phys == 0)
1923 return EINVAL;
1924
1925 /* select allocation type for each logical partition */
1926 for (log_part = 0; log_part < n_pm; log_part++) {
1927 maps_on = ump->vtop[log_part];
1928 switch (ump->vtop_tp[log_part]) {
1929 case UDF_VTOP_TYPE_PHYS :
1930 assert(maps_on == log_part);
1931 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1932 break;
1933 case UDF_VTOP_TYPE_VIRT :
1934 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
1935 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
1936 break;
1937 case UDF_VTOP_TYPE_SPARABLE :
1938 assert(maps_on == log_part);
1939 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1940 break;
1941 case UDF_VTOP_TYPE_META :
1942 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
1943 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1944 /* special case for UDF 2.60 */
1945 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
1946 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
1947 }
1948 break;
1949 default:
1950 panic("bad alloction type in udf's ump->vtop\n");
1951 }
1952 }
1953
1954 /* determine logical volume open/closure actions */
1955 if (n_virt) {
1956 ump->lvopen = 0;
1957 if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
1958 ump->lvopen |= UDF_OPEN_SESSION ;
1959 ump->lvclose = UDF_WRITE_VAT;
1960 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
1961 ump->lvclose |= UDF_CLOSE_SESSION;
1962 } else {
1963 /* `normal' rewritable or non sequential media */
1964 ump->lvopen = UDF_WRITE_LVINT;
1965 ump->lvclose = UDF_WRITE_LVINT;
1966 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
1967 ump->lvopen |= UDF_APPENDONLY_LVINT;
1968 }
1969
1970 /*
1971 * Determine sheduler error behaviour. For virtual partions, update
1972 * the trackinfo; for sparable partitions replace a whole block on the
1973 * sparable table. Allways requeue.
1974 */
1975 ump->lvreadwrite = 0;
1976 if (n_virt)
1977 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
1978 if (n_spar)
1979 ump->lvreadwrite = UDF_REMAP_BLOCK;
1980
1981 /*
1982 * Select our sheduler
1983 */
1984 ump->strategy = &udf_strat_rmw;
1985 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
1986 ump->strategy = &udf_strat_sequential;
1987 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
1988 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
1989 ump->strategy = &udf_strat_direct;
1990 if (n_spar)
1991 ump->strategy = &udf_strat_rmw;
1992
1993 /* print results */
1994 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
1995 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
1996 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
1997 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
1998 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
1999 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2000
2001 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
2002 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2003 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2004 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2005 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2006 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2007
2008 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2009 (ump->strategy == &udf_strat_direct) ? "Direct" :
2010 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2011 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2012
2013 /* signal its OK for now */
2014 return 0;
2015 }
2016
2017 /* --------------------------------------------------------------------- */
2018
2019 /*
2020 * Update logical volume name in all structures that keep a record of it. We
2021 * use memmove since each of them might be specified as a source.
2022 *
2023 * Note that it doesn't update the VAT structure!
2024 */
2025
2026 static void
2027 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2028 {
2029 struct logvol_desc *lvd = NULL;
2030 struct fileset_desc *fsd = NULL;
2031 struct udf_lv_info *lvi = NULL;
2032
2033 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2034 lvd = ump->logical_vol;
2035 fsd = ump->fileset_desc;
2036 if (ump->implementation)
2037 lvi = &ump->implementation->_impl_use.lv_info;
2038
2039 /* logvol's id might be specified as origional so use memmove here */
2040 memmove(lvd->logvol_id, logvol_id, 128);
2041 if (fsd)
2042 memmove(fsd->logvol_id, logvol_id, 128);
2043 if (lvi)
2044 memmove(lvi->logvol_id, logvol_id, 128);
2045 }
2046
2047 /* --------------------------------------------------------------------- */
2048
2049 void
2050 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2051 uint32_t sector)
2052 {
2053 assert(ump->logical_vol);
2054
2055 tag->id = udf_rw16(tagid);
2056 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2057 tag->cksum = 0;
2058 tag->reserved = 0;
2059 tag->serial_num = ump->logical_vol->tag.serial_num;
2060 tag->tag_loc = udf_rw32(sector);
2061 }
2062
2063
2064 uint64_t
2065 udf_advance_uniqueid(struct udf_mount *ump)
2066 {
2067 uint64_t unique_id;
2068
2069 mutex_enter(&ump->logvol_mutex);
2070 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2071 if (unique_id < 0x10)
2072 unique_id = 0x10;
2073 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2074 mutex_exit(&ump->logvol_mutex);
2075
2076 return unique_id;
2077 }
2078
2079
2080 static void
2081 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2082 {
2083 struct udf_mount *ump = udf_node->ump;
2084 uint32_t num_dirs, num_files;
2085 int udf_file_type;
2086
2087 /* get file type */
2088 if (udf_node->fe) {
2089 udf_file_type = udf_node->fe->icbtag.file_type;
2090 } else {
2091 udf_file_type = udf_node->efe->icbtag.file_type;
2092 }
2093
2094 /* adjust file count */
2095 mutex_enter(&ump->allocate_mutex);
2096 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2097 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2098 ump->logvol_info->num_directories =
2099 udf_rw32((num_dirs + sign));
2100 } else {
2101 num_files = udf_rw32(ump->logvol_info->num_files);
2102 ump->logvol_info->num_files =
2103 udf_rw32((num_files + sign));
2104 }
2105 mutex_exit(&ump->allocate_mutex);
2106 }
2107
2108
2109 void
2110 udf_osta_charset(struct charspec *charspec)
2111 {
2112 bzero(charspec, sizeof(struct charspec));
2113 charspec->type = 0;
2114 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2115 }
2116
2117
2118 /* first call udf_set_regid and then the suffix */
2119 void
2120 udf_set_regid(struct regid *regid, char const *name)
2121 {
2122 bzero(regid, sizeof(struct regid));
2123 regid->flags = 0; /* not dirty and not protected */
2124 strcpy((char *) regid->id, name);
2125 }
2126
2127
2128 void
2129 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2130 {
2131 uint16_t *ver;
2132
2133 ver = (uint16_t *) regid->id_suffix;
2134 *ver = ump->logvol_info->min_udf_readver;
2135 }
2136
2137
2138 void
2139 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2140 {
2141 uint16_t *ver;
2142
2143 ver = (uint16_t *) regid->id_suffix;
2144 *ver = ump->logvol_info->min_udf_readver;
2145
2146 regid->id_suffix[2] = 4; /* unix */
2147 regid->id_suffix[3] = 8; /* NetBSD */
2148 }
2149
2150
2151 void
2152 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2153 {
2154 regid->id_suffix[0] = 4; /* unix */
2155 regid->id_suffix[1] = 8; /* NetBSD */
2156 }
2157
2158
2159 void
2160 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2161 {
2162 regid->id_suffix[0] = APP_VERSION_MAIN;
2163 regid->id_suffix[1] = APP_VERSION_SUB;
2164 }
2165
2166 static int
2167 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2168 struct long_ad *parent, uint64_t unique_id)
2169 {
2170 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2171 int fidsize = 40;
2172
2173 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2174 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2175 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2176 fid->icb = *parent;
2177 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2178 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
2179 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2180
2181 return fidsize;
2182 }
2183
2184 /* --------------------------------------------------------------------- */
2185
2186 /*
2187 * Extended attribute support. UDF knows of 3 places for extended attributes:
2188 *
2189 * (a) inside the file's (e)fe in the length of the extended attribute area
2190 * before the allocation descriptors/filedata
2191 *
2192 * (b) in a file referenced by (e)fe->ext_attr_icb and
2193 *
2194 * (c) in the e(fe)'s associated stream directory that can hold various
2195 * sub-files. In the stream directory a few fixed named subfiles are reserved
2196 * for NT/Unix ACL's and OS/2 attributes.
2197 *
2198 * NOTE: Extended attributes are read randomly but allways written
2199 * *atomicaly*. For ACL's this interface is propably different but not known
2200 * to me yet.
2201 *
2202 * Order of extended attributes in a space :
2203 * ECMA 167 EAs
2204 * Non block aligned Implementation Use EAs
2205 * Block aligned Implementation Use EAs
2206 * Application Use EAs
2207 */
2208
2209 static int
2210 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2211 {
2212 uint16_t *spos;
2213
2214 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2215 /* checksum valid? */
2216 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2217 spos = (uint16_t *) implext->data;
2218 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2219 return EINVAL;
2220 }
2221 return 0;
2222 }
2223
2224 static void
2225 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2226 {
2227 uint16_t *spos;
2228
2229 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2230 /* set checksum */
2231 spos = (uint16_t *) implext->data;
2232 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2233 }
2234 }
2235
2236
2237 int
2238 udf_extattr_search_intern(struct udf_node *node,
2239 uint32_t sattr, char const *sattrname,
2240 uint32_t *offsetp, uint32_t *lengthp)
2241 {
2242 struct extattrhdr_desc *eahdr;
2243 struct extattr_entry *attrhdr;
2244 struct impl_extattr_entry *implext;
2245 uint32_t offset, a_l, sector_size;
2246 int32_t l_ea;
2247 uint8_t *pos;
2248 int error;
2249
2250 /* get mountpoint */
2251 sector_size = node->ump->discinfo.sector_size;
2252
2253 /* get information from fe/efe */
2254 if (node->fe) {
2255 l_ea = udf_rw32(node->fe->l_ea);
2256 eahdr = (struct extattrhdr_desc *) node->fe->data;
2257 } else {
2258 assert(node->efe);
2259 l_ea = udf_rw32(node->efe->l_ea);
2260 eahdr = (struct extattrhdr_desc *) node->efe->data;
2261 }
2262
2263 /* something recorded here? */
2264 if (l_ea == 0)
2265 return ENOENT;
2266
2267 /* check extended attribute tag; what to do if it fails? */
2268 error = udf_check_tag(eahdr);
2269 if (error)
2270 return EINVAL;
2271 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2272 return EINVAL;
2273 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2274 if (error)
2275 return EINVAL;
2276
2277 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2278
2279 /* looking for Ecma-167 attributes? */
2280 offset = sizeof(struct extattrhdr_desc);
2281
2282 /* looking for either implemenation use or application use */
2283 if (sattr == 2048) { /* [4/48.10.8] */
2284 offset = udf_rw32(eahdr->impl_attr_loc);
2285 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2286 return ENOENT;
2287 }
2288 if (sattr == 65536) { /* [4/48.10.9] */
2289 offset = udf_rw32(eahdr->appl_attr_loc);
2290 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2291 return ENOENT;
2292 }
2293
2294 /* paranoia check offset and l_ea */
2295 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2296 return EINVAL;
2297
2298 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2299
2300 /* find our extended attribute */
2301 l_ea -= offset;
2302 pos = (uint8_t *) eahdr + offset;
2303
2304 while (l_ea >= sizeof(struct extattr_entry)) {
2305 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2306 attrhdr = (struct extattr_entry *) pos;
2307 implext = (struct impl_extattr_entry *) pos;
2308
2309 /* get complete attribute length and check for roque values */
2310 a_l = udf_rw32(attrhdr->a_l);
2311 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2312 udf_rw32(attrhdr->type),
2313 attrhdr->subtype, a_l, l_ea));
2314 if ((a_l == 0) || (a_l > l_ea))
2315 return EINVAL;
2316
2317 if (attrhdr->type != sattr)
2318 goto next_attribute;
2319
2320 /* we might have found it! */
2321 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2322 *offsetp = offset;
2323 *lengthp = a_l;
2324 return 0; /* success */
2325 }
2326
2327 /*
2328 * Implementation use and application use extended attributes
2329 * have a name to identify. They share the same structure only
2330 * UDF implementation use extended attributes have a checksum
2331 * we need to check
2332 */
2333
2334 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2335 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2336 /* we have found our appl/implementation attribute */
2337 *offsetp = offset;
2338 *lengthp = a_l;
2339 return 0; /* success */
2340 }
2341
2342 next_attribute:
2343 /* next attribute */
2344 pos += a_l;
2345 l_ea -= a_l;
2346 offset += a_l;
2347 }
2348 /* not found */
2349 return ENOENT;
2350 }
2351
2352
2353 static void
2354 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2355 struct extattr_entry *extattr)
2356 {
2357 struct file_entry *fe;
2358 struct extfile_entry *efe;
2359 struct extattrhdr_desc *extattrhdr;
2360 struct impl_extattr_entry *implext;
2361 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2362 uint32_t *l_eap, l_ad;
2363 uint16_t *spos;
2364 uint8_t *bpos, *data;
2365
2366 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2367 fe = &dscr->fe;
2368 data = fe->data;
2369 l_eap = &fe->l_ea;
2370 l_ad = udf_rw32(fe->l_ad);
2371 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2372 efe = &dscr->efe;
2373 data = efe->data;
2374 l_eap = &efe->l_ea;
2375 l_ad = udf_rw32(efe->l_ad);
2376 } else {
2377 panic("Bad tag passed to udf_extattr_insert_internal");
2378 }
2379
2380 /* can't append already written to file descriptors yet */
2381 assert(l_ad == 0);
2382
2383 /* should have a header! */
2384 extattrhdr = (struct extattrhdr_desc *) data;
2385 l_ea = udf_rw32(*l_eap);
2386 if (l_ea == 0) {
2387 /* create empty extended attribute header */
2388 exthdr_len = sizeof(struct extattrhdr_desc);
2389
2390 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2391 /* loc */ 0);
2392 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2393 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2394 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2395
2396 /* record extended attribute header length */
2397 l_ea = exthdr_len;
2398 *l_eap = udf_rw32(l_ea);
2399 }
2400
2401 /* extract locations */
2402 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2403 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2404 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2405 impl_attr_loc = l_ea;
2406 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2407 appl_attr_loc = l_ea;
2408
2409 /* Ecma 167 EAs */
2410 if (udf_rw32(extattr->type) < 2048) {
2411 assert(impl_attr_loc == l_ea);
2412 assert(appl_attr_loc == l_ea);
2413 }
2414
2415 /* implementation use extended attributes */
2416 if (udf_rw32(extattr->type) == 2048) {
2417 assert(appl_attr_loc == l_ea);
2418
2419 /* calculate and write extended attribute header checksum */
2420 implext = (struct impl_extattr_entry *) extattr;
2421 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2422 spos = (uint16_t *) implext->data;
2423 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2424 }
2425
2426 /* application use extended attributes */
2427 assert(udf_rw32(extattr->type) != 65536);
2428 assert(appl_attr_loc == l_ea);
2429
2430 /* append the attribute at the end of the current space */
2431 bpos = data + udf_rw32(*l_eap);
2432 a_l = udf_rw32(extattr->a_l);
2433
2434 /* update impl. attribute locations */
2435 if (udf_rw32(extattr->type) < 2048) {
2436 impl_attr_loc = l_ea + a_l;
2437 appl_attr_loc = l_ea + a_l;
2438 }
2439 if (udf_rw32(extattr->type) == 2048) {
2440 appl_attr_loc = l_ea + a_l;
2441 }
2442
2443 /* copy and advance */
2444 memcpy(bpos, extattr, a_l);
2445 l_ea += a_l;
2446 *l_eap = udf_rw32(l_ea);
2447
2448 /* do the `dance` again backwards */
2449 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2450 if (impl_attr_loc == l_ea)
2451 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2452 if (appl_attr_loc == l_ea)
2453 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2454 }
2455
2456 /* store offsets */
2457 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2458 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2459 }
2460
2461
2462 /* --------------------------------------------------------------------- */
2463
2464 static int
2465 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2466 {
2467 struct udf_mount *ump;
2468 struct udf_logvol_info *lvinfo;
2469 struct impl_extattr_entry *implext;
2470 struct vatlvext_extattr_entry lvext;
2471 const char *extstr = "*UDF VAT LVExtension";
2472 uint64_t vat_uniqueid;
2473 uint32_t offset, a_l;
2474 uint8_t *ea_start, *lvextpos;
2475 int error;
2476
2477 /* get mountpoint and lvinfo */
2478 ump = vat_node->ump;
2479 lvinfo = ump->logvol_info;
2480
2481 /* get information from fe/efe */
2482 if (vat_node->fe) {
2483 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2484 ea_start = vat_node->fe->data;
2485 } else {
2486 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2487 ea_start = vat_node->efe->data;
2488 }
2489
2490 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2491 if (error)
2492 return error;
2493
2494 implext = (struct impl_extattr_entry *) (ea_start + offset);
2495 error = udf_impl_extattr_check(implext);
2496 if (error)
2497 return error;
2498
2499 /* paranoia */
2500 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2501 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2502 return EINVAL;
2503 }
2504
2505 /*
2506 * we have found our "VAT LVExtension attribute. BUT due to a
2507 * bug in the specification it might not be word aligned so
2508 * copy first to avoid panics on some machines (!!)
2509 */
2510 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2511 lvextpos = implext->data + udf_rw32(implext->iu_l);
2512 memcpy(&lvext, lvextpos, sizeof(lvext));
2513
2514 /* check if it was updated the last time */
2515 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2516 lvinfo->num_files = lvext.num_files;
2517 lvinfo->num_directories = lvext.num_directories;
2518 udf_update_logvolname(ump, lvext.logvol_id);
2519 } else {
2520 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2521 /* replace VAT LVExt by free space EA */
2522 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2523 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2524 udf_calc_impl_extattr_checksum(implext);
2525 }
2526
2527 return 0;
2528 }
2529
2530
2531 static int
2532 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2533 {
2534 struct udf_mount *ump;
2535 struct udf_logvol_info *lvinfo;
2536 struct impl_extattr_entry *implext;
2537 struct vatlvext_extattr_entry lvext;
2538 const char *extstr = "*UDF VAT LVExtension";
2539 uint64_t vat_uniqueid;
2540 uint32_t offset, a_l;
2541 uint8_t *ea_start, *lvextpos;
2542 int error;
2543
2544 /* get mountpoint and lvinfo */
2545 ump = vat_node->ump;
2546 lvinfo = ump->logvol_info;
2547
2548 /* get information from fe/efe */
2549 if (vat_node->fe) {
2550 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2551 ea_start = vat_node->fe->data;
2552 } else {
2553 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2554 ea_start = vat_node->efe->data;
2555 }
2556
2557 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2558 if (error)
2559 return error;
2560 /* found, it existed */
2561
2562 /* paranoia */
2563 implext = (struct impl_extattr_entry *) (ea_start + offset);
2564 error = udf_impl_extattr_check(implext);
2565 if (error) {
2566 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2567 return error;
2568 }
2569 /* it is correct */
2570
2571 /*
2572 * we have found our "VAT LVExtension attribute. BUT due to a
2573 * bug in the specification it might not be word aligned so
2574 * copy first to avoid panics on some machines (!!)
2575 */
2576 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2577 lvextpos = implext->data + udf_rw32(implext->iu_l);
2578
2579 lvext.unique_id_chk = vat_uniqueid;
2580 lvext.num_files = lvinfo->num_files;
2581 lvext.num_directories = lvinfo->num_directories;
2582 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2583
2584 memcpy(lvextpos, &lvext, sizeof(lvext));
2585
2586 return 0;
2587 }
2588
2589 /* --------------------------------------------------------------------- */
2590
2591 int
2592 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2593 {
2594 struct udf_mount *ump = vat_node->ump;
2595
2596 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2597 return EINVAL;
2598
2599 memcpy(blob, ump->vat_table + offset, size);
2600 return 0;
2601 }
2602
2603 int
2604 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2605 {
2606 struct udf_mount *ump = vat_node->ump;
2607 uint32_t offset_high;
2608 uint8_t *new_vat_table;
2609
2610 /* extent VAT allocation if needed */
2611 offset_high = offset + size;
2612 if (offset_high >= ump->vat_table_alloc_len) {
2613 /* realloc */
2614 new_vat_table = realloc(ump->vat_table,
2615 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2616 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2617 if (!new_vat_table) {
2618 printf("udf_vat_write: can't extent VAT, out of mem\n");
2619 return ENOMEM;
2620 }
2621 ump->vat_table = new_vat_table;
2622 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2623 }
2624 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2625
2626 memcpy(ump->vat_table + offset, blob, size);
2627 return 0;
2628 }
2629
2630 /* --------------------------------------------------------------------- */
2631
2632 /* TODO support previous VAT location writeout */
2633 static int
2634 udf_update_vat_descriptor(struct udf_mount *ump)
2635 {
2636 struct udf_node *vat_node = ump->vat_node;
2637 struct udf_logvol_info *lvinfo = ump->logvol_info;
2638 struct icb_tag *icbtag;
2639 struct udf_oldvat_tail *oldvat_tl;
2640 struct udf_vat *vat;
2641 uint64_t unique_id;
2642 uint32_t lb_size;
2643 uint8_t *raw_vat;
2644 int filetype, error;
2645
2646 KASSERT(vat_node);
2647 KASSERT(lvinfo);
2648 lb_size = udf_rw32(ump->logical_vol->lb_size);
2649
2650 /* get our new unique_id */
2651 unique_id = udf_advance_uniqueid(ump);
2652
2653 /* get information from fe/efe */
2654 if (vat_node->fe) {
2655 icbtag = &vat_node->fe->icbtag;
2656 vat_node->fe->unique_id = udf_rw64(unique_id);
2657 } else {
2658 icbtag = &vat_node->efe->icbtag;
2659 vat_node->efe->unique_id = udf_rw64(unique_id);
2660 }
2661
2662 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2663 filetype = icbtag->file_type;
2664 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2665
2666 /* allocate piece to process head or tail of VAT file */
2667 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2668
2669 if (filetype == 0) {
2670 /*
2671 * Update "*UDF VAT LVExtension" extended attribute from the
2672 * lvint if present.
2673 */
2674 udf_update_vat_extattr_from_lvid(vat_node);
2675
2676 /* setup identifying regid */
2677 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2678 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2679
2680 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2681 udf_add_udf_regid(ump, &oldvat_tl->id);
2682 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2683
2684 /* write out new tail of virtual allocation table file */
2685 error = udf_vat_write(vat_node, raw_vat,
2686 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2687 } else {
2688 /* compose the VAT2 header */
2689 vat = (struct udf_vat *) raw_vat;
2690 memset(vat, 0, sizeof(struct udf_vat));
2691
2692 vat->header_len = udf_rw16(152); /* as per spec */
2693 vat->impl_use_len = udf_rw16(0);
2694 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2695 vat->prev_vat = udf_rw32(0xffffffff);
2696 vat->num_files = lvinfo->num_files;
2697 vat->num_directories = lvinfo->num_directories;
2698 vat->min_udf_readver = lvinfo->min_udf_readver;
2699 vat->min_udf_writever = lvinfo->min_udf_writever;
2700 vat->max_udf_writever = lvinfo->max_udf_writever;
2701
2702 error = udf_vat_write(vat_node, raw_vat,
2703 sizeof(struct udf_vat), 0);
2704 }
2705 free(raw_vat, M_TEMP);
2706
2707 return error; /* success! */
2708 }
2709
2710
2711 int
2712 udf_writeout_vat(struct udf_mount *ump)
2713 {
2714 struct udf_node *vat_node = ump->vat_node;
2715 uint32_t vat_length;
2716 int error;
2717
2718 KASSERT(vat_node);
2719
2720 DPRINTF(CALL, ("udf_writeout_vat\n"));
2721
2722 mutex_enter(&ump->allocate_mutex);
2723 udf_update_vat_descriptor(ump);
2724
2725 /* write out the VAT contents ; TODO intelligent writing */
2726 vat_length = ump->vat_table_len;
2727 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2728 ump->vat_table, ump->vat_table_len, 0,
2729 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2730 if (error) {
2731 printf("udf_writeout_vat: failed to write out VAT contents\n");
2732 goto out;
2733 }
2734
2735 mutex_exit(&ump->allocate_mutex);
2736
2737 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2738 error = VOP_FSYNC(ump->vat_node->vnode,
2739 FSCRED, FSYNC_WAIT, 0, 0);
2740 if (error)
2741 printf("udf_writeout_vat: error writing VAT node!\n");
2742 out:
2743
2744 return error;
2745 }
2746
2747 /* --------------------------------------------------------------------- */
2748
2749 /*
2750 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2751 * descriptor. If OK, read in complete VAT file.
2752 */
2753
2754 static int
2755 udf_check_for_vat(struct udf_node *vat_node)
2756 {
2757 struct udf_mount *ump;
2758 struct icb_tag *icbtag;
2759 struct timestamp *mtime;
2760 struct udf_vat *vat;
2761 struct udf_oldvat_tail *oldvat_tl;
2762 struct udf_logvol_info *lvinfo;
2763 uint64_t unique_id;
2764 uint32_t vat_length;
2765 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2766 uint32_t sector_size;
2767 uint32_t *raw_vat;
2768 uint8_t *vat_table;
2769 char *regid_name;
2770 int filetype;
2771 int error;
2772
2773 /* vat_length is really 64 bits though impossible */
2774
2775 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2776 if (!vat_node)
2777 return ENOENT;
2778
2779 /* get mount info */
2780 ump = vat_node->ump;
2781 sector_size = udf_rw32(ump->logical_vol->lb_size);
2782
2783 /* check assertions */
2784 assert(vat_node->fe || vat_node->efe);
2785 assert(ump->logvol_integrity);
2786
2787 /* set vnode type to regular file or we can't read from it! */
2788 vat_node->vnode->v_type = VREG;
2789
2790 /* get information from fe/efe */
2791 if (vat_node->fe) {
2792 vat_length = udf_rw64(vat_node->fe->inf_len);
2793 icbtag = &vat_node->fe->icbtag;
2794 mtime = &vat_node->fe->mtime;
2795 unique_id = udf_rw64(vat_node->fe->unique_id);
2796 } else {
2797 vat_length = udf_rw64(vat_node->efe->inf_len);
2798 icbtag = &vat_node->efe->icbtag;
2799 mtime = &vat_node->efe->mtime;
2800 unique_id = udf_rw64(vat_node->efe->unique_id);
2801 }
2802
2803 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2804 filetype = icbtag->file_type;
2805 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2806 return ENOENT;
2807
2808 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2809
2810 vat_table_alloc_len =
2811 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2812 * UDF_VAT_CHUNKSIZE;
2813
2814 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2815 M_CANFAIL | M_WAITOK);
2816 if (vat_table == NULL) {
2817 printf("allocation of %d bytes failed for VAT\n",
2818 vat_table_alloc_len);
2819 return ENOMEM;
2820 }
2821
2822 /* allocate piece to read in head or tail of VAT file */
2823 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2824
2825 /*
2826 * check contents of the file if its the old 1.50 VAT table format.
2827 * Its notoriously broken and allthough some implementations support an
2828 * extention as defined in the UDF 1.50 errata document, its doubtfull
2829 * to be useable since a lot of implementations don't maintain it.
2830 */
2831 lvinfo = ump->logvol_info;
2832
2833 if (filetype == 0) {
2834 /* definition */
2835 vat_offset = 0;
2836 vat_entries = (vat_length-36)/4;
2837
2838 /* read in tail of virtual allocation table file */
2839 error = vn_rdwr(UIO_READ, vat_node->vnode,
2840 (uint8_t *) raw_vat,
2841 sizeof(struct udf_oldvat_tail),
2842 vat_entries * 4,
2843 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2844 NULL, NULL);
2845 if (error)
2846 goto out;
2847
2848 /* check 1.50 VAT */
2849 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2850 regid_name = (char *) oldvat_tl->id.id;
2851 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2852 if (error) {
2853 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2854 error = ENOENT;
2855 goto out;
2856 }
2857
2858 /*
2859 * update LVID from "*UDF VAT LVExtension" extended attribute
2860 * if present.
2861 */
2862 udf_update_lvid_from_vat_extattr(vat_node);
2863 } else {
2864 /* read in head of virtual allocation table file */
2865 error = vn_rdwr(UIO_READ, vat_node->vnode,
2866 (uint8_t *) raw_vat,
2867 sizeof(struct udf_vat), 0,
2868 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2869 NULL, NULL);
2870 if (error)
2871 goto out;
2872
2873 /* definition */
2874 vat = (struct udf_vat *) raw_vat;
2875 vat_offset = vat->header_len;
2876 vat_entries = (vat_length - vat_offset)/4;
2877
2878 assert(lvinfo);
2879 lvinfo->num_files = vat->num_files;
2880 lvinfo->num_directories = vat->num_directories;
2881 lvinfo->min_udf_readver = vat->min_udf_readver;
2882 lvinfo->min_udf_writever = vat->min_udf_writever;
2883 lvinfo->max_udf_writever = vat->max_udf_writever;
2884
2885 udf_update_logvolname(ump, vat->logvol_id);
2886 }
2887
2888 /* read in complete VAT file */
2889 error = vn_rdwr(UIO_READ, vat_node->vnode,
2890 vat_table,
2891 vat_length, 0,
2892 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2893 NULL, NULL);
2894 if (error)
2895 printf("read in of complete VAT file failed (error %d)\n",
2896 error);
2897 if (error)
2898 goto out;
2899
2900 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2901 ump->logvol_integrity->lvint_next_unique_id = unique_id;
2902 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2903 ump->logvol_integrity->time = *mtime;
2904
2905 ump->vat_table_len = vat_length;
2906 ump->vat_table_alloc_len = vat_table_alloc_len;
2907 ump->vat_table = vat_table;
2908 ump->vat_offset = vat_offset;
2909 ump->vat_entries = vat_entries;
2910 ump->vat_last_free_lb = 0; /* start at beginning */
2911
2912 out:
2913 if (error) {
2914 if (vat_table)
2915 free(vat_table, M_UDFVOLD);
2916 }
2917 free(raw_vat, M_TEMP);
2918
2919 return error;
2920 }
2921
2922 /* --------------------------------------------------------------------- */
2923
2924 static int
2925 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2926 {
2927 struct udf_node *vat_node;
2928 struct long_ad icb_loc;
2929 uint32_t early_vat_loc, late_vat_loc, vat_loc;
2930 int error;
2931
2932 /* mapping info not needed */
2933 mapping = mapping;
2934
2935 vat_loc = ump->last_possible_vat_location;
2936 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
2937
2938 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2939 vat_loc, early_vat_loc));
2940 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
2941 late_vat_loc = vat_loc + 1024;
2942
2943 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
2944 vat_loc, early_vat_loc));
2945
2946 /* start looking from the end of the range */
2947 do {
2948 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
2949 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
2950 icb_loc.loc.lb_num = udf_rw32(vat_loc);
2951
2952 error = udf_get_node(ump, &icb_loc, &vat_node);
2953 if (!error) {
2954 error = udf_check_for_vat(vat_node);
2955 DPRINTFIF(VOLUMES, !error,
2956 ("VAT accepted at %d\n", vat_loc));
2957 if (!error)
2958 break;
2959 }
2960 if (vat_node) {
2961 vput(vat_node->vnode);
2962 vat_node = NULL;
2963 }
2964 vat_loc--; /* walk backwards */
2965 } while (vat_loc >= early_vat_loc);
2966
2967 /* keep our VAT node around */
2968 if (vat_node) {
2969 UDF_SET_SYSTEMFILE(vat_node->vnode);
2970 ump->vat_node = vat_node;
2971 }
2972
2973 return error;
2974 }
2975
2976 /* --------------------------------------------------------------------- */
2977
2978 static int
2979 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
2980 {
2981 union dscrptr *dscr;
2982 struct part_map_spare *pms = &mapping->pms;
2983 uint32_t lb_num;
2984 int spar, error;
2985
2986 /*
2987 * The partition mapping passed on to us specifies the information we
2988 * need to locate and initialise the sparable partition mapping
2989 * information we need.
2990 */
2991
2992 DPRINTF(VOLUMES, ("Read sparable table\n"));
2993 ump->sparable_packet_size = udf_rw16(pms->packet_len);
2994 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
2995
2996 for (spar = 0; spar < pms->n_st; spar++) {
2997 lb_num = pms->st_loc[spar];
2998 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
2999 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3000 if (!error && dscr) {
3001 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3002 if (ump->sparing_table)
3003 free(ump->sparing_table, M_UDFVOLD);
3004 ump->sparing_table = &dscr->spt;
3005 dscr = NULL;
3006 DPRINTF(VOLUMES,
3007 ("Sparing table accepted (%d entries)\n",
3008 udf_rw16(ump->sparing_table->rt_l)));
3009 break; /* we're done */
3010 }
3011 }
3012 if (dscr)
3013 free(dscr, M_UDFVOLD);
3014 }
3015
3016 if (ump->sparing_table)
3017 return 0;
3018
3019 return ENOENT;
3020 }
3021
3022 /* --------------------------------------------------------------------- */
3023
3024 static int
3025 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3026 {
3027 struct part_map_meta *pmm = &mapping->pmm;
3028 struct long_ad icb_loc;
3029 struct vnode *vp;
3030 int error;
3031
3032 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3033 icb_loc.loc.part_num = pmm->part_num;
3034 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3035 DPRINTF(VOLUMES, ("Metadata file\n"));
3036 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3037 if (ump->metadata_node) {
3038 vp = ump->metadata_node->vnode;
3039 UDF_SET_SYSTEMFILE(vp);
3040 }
3041
3042 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3043 if (icb_loc.loc.lb_num != -1) {
3044 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3045 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3046 if (ump->metadatamirror_node) {
3047 vp = ump->metadatamirror_node->vnode;
3048 UDF_SET_SYSTEMFILE(vp);
3049 }
3050 }
3051
3052 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3053 if (icb_loc.loc.lb_num != -1) {
3054 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3055 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3056 if (ump->metadatabitmap_node) {
3057 vp = ump->metadatabitmap_node->vnode;
3058 UDF_SET_SYSTEMFILE(vp);
3059 }
3060 }
3061
3062 /* if we're mounting read-only we relax the requirements */
3063 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3064 error = EFAULT;
3065 if (ump->metadata_node)
3066 error = 0;
3067 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3068 printf( "udf mount: Metadata file not readable, "
3069 "substituting Metadata copy file\n");
3070 ump->metadata_node = ump->metadatamirror_node;
3071 ump->metadatamirror_node = NULL;
3072 error = 0;
3073 }
3074 } else {
3075 /* mounting read/write */
3076 /* XXX DISABLED! metadata writing is not working yet XXX */
3077 if (error)
3078 error = EROFS;
3079 }
3080 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3081 "metadata files\n"));
3082 return error;
3083 }
3084
3085 /* --------------------------------------------------------------------- */
3086
3087 int
3088 udf_read_vds_tables(struct udf_mount *ump)
3089 {
3090 union udf_pmap *mapping;
3091 /* struct udf_args *args = &ump->mount_args; */
3092 uint32_t n_pm, mt_l;
3093 uint32_t log_part;
3094 uint8_t *pmap_pos;
3095 int pmap_size;
3096 int error;
3097
3098 /* Iterate (again) over the part mappings for locations */
3099 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3100 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3101 pmap_pos = ump->logical_vol->maps;
3102
3103 for (log_part = 0; log_part < n_pm; log_part++) {
3104 mapping = (union udf_pmap *) pmap_pos;
3105 switch (ump->vtop_tp[log_part]) {
3106 case UDF_VTOP_TYPE_PHYS :
3107 /* nothing */
3108 break;
3109 case UDF_VTOP_TYPE_VIRT :
3110 /* search and load VAT */
3111 error = udf_search_vat(ump, mapping);
3112 if (error)
3113 return ENOENT;
3114 break;
3115 case UDF_VTOP_TYPE_SPARABLE :
3116 /* load one of the sparable tables */
3117 error = udf_read_sparables(ump, mapping);
3118 if (error)
3119 return ENOENT;
3120 break;
3121 case UDF_VTOP_TYPE_META :
3122 /* load the associated file descriptors */
3123 error = udf_read_metadata_nodes(ump, mapping);
3124 if (error)
3125 return ENOENT;
3126 break;
3127 default:
3128 break;
3129 }
3130 pmap_size = pmap_pos[1];
3131 pmap_pos += pmap_size;
3132 }
3133
3134 /* read in and check unallocated and free space info if writing */
3135 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3136 error = udf_read_physical_partition_spacetables(ump);
3137 if (error)
3138 return error;
3139
3140 /* also read in metadata partion spacebitmap if defined */
3141 error = udf_read_metadata_partition_spacetable(ump);
3142 return error;
3143 }
3144
3145 return 0;
3146 }
3147
3148 /* --------------------------------------------------------------------- */
3149
3150 int
3151 udf_read_rootdirs(struct udf_mount *ump)
3152 {
3153 union dscrptr *dscr;
3154 /* struct udf_args *args = &ump->mount_args; */
3155 struct udf_node *rootdir_node, *streamdir_node;
3156 struct long_ad fsd_loc, *dir_loc;
3157 uint32_t lb_num, dummy;
3158 uint32_t fsd_len;
3159 int dscr_type;
3160 int error;
3161
3162 /* TODO implement FSD reading in separate function like integrity? */
3163 /* get fileset descriptor sequence */
3164 fsd_loc = ump->logical_vol->lv_fsd_loc;
3165 fsd_len = udf_rw32(fsd_loc.len);
3166
3167 dscr = NULL;
3168 error = 0;
3169 while (fsd_len || error) {
3170 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3171 /* translate fsd_loc to lb_num */
3172 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3173 if (error)
3174 break;
3175 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3176 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3177 /* end markers */
3178 if (error || (dscr == NULL))
3179 break;
3180
3181 /* analyse */
3182 dscr_type = udf_rw16(dscr->tag.id);
3183 if (dscr_type == TAGID_TERM)
3184 break;
3185 if (dscr_type != TAGID_FSD) {
3186 free(dscr, M_UDFVOLD);
3187 return ENOENT;
3188 }
3189
3190 /*
3191 * TODO check for multiple fileset descriptors; its only
3192 * picking the last now. Also check for FSD
3193 * correctness/interpretability
3194 */
3195
3196 /* update */
3197 if (ump->fileset_desc) {
3198 free(ump->fileset_desc, M_UDFVOLD);
3199 }
3200 ump->fileset_desc = &dscr->fsd;
3201 dscr = NULL;
3202
3203 /* continue to the next fsd */
3204 fsd_len -= ump->discinfo.sector_size;
3205 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3206
3207 /* follow up to fsd->next_ex (long_ad) if its not null */
3208 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3209 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3210 fsd_loc = ump->fileset_desc->next_ex;
3211 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3212 }
3213 }
3214 if (dscr)
3215 free(dscr, M_UDFVOLD);
3216
3217 /* there has to be one */
3218 if (ump->fileset_desc == NULL)
3219 return ENOENT;
3220
3221 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3222 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3223 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3224
3225 /*
3226 * Now the FSD is known, read in the rootdirectory and if one exists,
3227 * the system stream dir. Some files in the system streamdir are not
3228 * wanted in this implementation since they are not maintained. If
3229 * writing is enabled we'll delete these files if they exist.
3230 */
3231
3232 rootdir_node = streamdir_node = NULL;
3233 dir_loc = NULL;
3234
3235 /* try to read in the rootdir */
3236 dir_loc = &ump->fileset_desc->rootdir_icb;
3237 error = udf_get_node(ump, dir_loc, &rootdir_node);
3238 if (error)
3239 return ENOENT;
3240
3241 /* aparently it read in fine */
3242
3243 /*
3244 * Try the system stream directory; not very likely in the ones we
3245 * test, but for completeness.
3246 */
3247 dir_loc = &ump->fileset_desc->streamdir_icb;
3248 if (udf_rw32(dir_loc->len)) {
3249 printf("udf_read_rootdirs: streamdir defined ");
3250 error = udf_get_node(ump, dir_loc, &streamdir_node);
3251 if (error) {
3252 printf("but error in streamdir reading\n");
3253 } else {
3254 printf("but ignored\n");
3255 /*
3256 * TODO process streamdir `baddies' i.e. files we dont
3257 * want if R/W
3258 */
3259 }
3260 }
3261
3262 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3263
3264 /* release the vnodes again; they'll be auto-recycled later */
3265 if (streamdir_node) {
3266 vput(streamdir_node->vnode);
3267 }
3268 if (rootdir_node) {
3269 vput(rootdir_node->vnode);
3270 }
3271
3272 return 0;
3273 }
3274
3275 /* --------------------------------------------------------------------- */
3276
3277 /* To make absolutely sure we are NOT returning zero, add one :) */
3278
3279 long
3280 udf_calchash(struct long_ad *icbptr)
3281 {
3282 /* ought to be enough since each mountpoint has its own chain */
3283 return udf_rw32(icbptr->loc.lb_num) + 1;
3284 }
3285
3286
3287 static struct udf_node *
3288 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3289 {
3290 struct udf_node *node;
3291 struct vnode *vp;
3292 uint32_t hashline;
3293
3294 loop:
3295 mutex_enter(&ump->ihash_lock);
3296
3297 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3298 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3299 assert(node);
3300 if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
3301 node->loc.loc.part_num == icbptr->loc.part_num) {
3302 vp = node->vnode;
3303 assert(vp);
3304 mutex_enter(&vp->v_interlock);
3305 mutex_exit(&ump->ihash_lock);
3306 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3307 goto loop;
3308 return node;
3309 }
3310 }
3311 mutex_exit(&ump->ihash_lock);
3312
3313 return NULL;
3314 }
3315
3316
3317 static void
3318 udf_sorted_list_insert(struct udf_node *node)
3319 {
3320 struct udf_mount *ump;
3321 struct udf_node *s_node, *last_node;
3322 uint32_t loc, s_loc;
3323
3324 ump = node->ump;
3325 last_node = NULL; /* XXX gcc */
3326
3327 if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3328 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3329 return;
3330 }
3331
3332 /*
3333 * We sort on logical block number here and not on physical block
3334 * number here. Ideally we should go for the physical block nr to get
3335 * better sync performance though this sort will ensure that packets
3336 * won't get spit up unnessisarily.
3337 */
3338
3339 loc = udf_rw32(node->loc.loc.lb_num);
3340 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3341 s_loc = udf_rw32(s_node->loc.loc.lb_num);
3342 if (s_loc > loc) {
3343 LIST_INSERT_BEFORE(s_node, node, sortchain);
3344 return;
3345 }
3346 last_node = s_node;
3347 }
3348 LIST_INSERT_AFTER(last_node, node, sortchain);
3349 }
3350
3351
3352 static void
3353 udf_register_node(struct udf_node *node)
3354 {
3355 struct udf_mount *ump;
3356 struct udf_node *chk;
3357 uint32_t hashline;
3358
3359 ump = node->ump;
3360 mutex_enter(&ump->ihash_lock);
3361
3362 /* add to our hash table */
3363 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3364 #ifdef DEBUG
3365 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3366 assert(chk);
3367 if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
3368 chk->loc.loc.part_num == node->loc.loc.part_num)
3369 panic("Double node entered\n");
3370 }
3371 #else
3372 chk = NULL;
3373 #endif
3374 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3375
3376 /* add to our sorted list */
3377 udf_sorted_list_insert(node);
3378
3379 mutex_exit(&ump->ihash_lock);
3380 }
3381
3382
3383 static void
3384 udf_deregister_node(struct udf_node *node)
3385 {
3386 struct udf_mount *ump;
3387
3388 ump = node->ump;
3389 mutex_enter(&ump->ihash_lock);
3390
3391 /* from hash and sorted list */
3392 LIST_REMOVE(node, hashchain);
3393 LIST_REMOVE(node, sortchain);
3394
3395 mutex_exit(&ump->ihash_lock);
3396 }
3397
3398 /* --------------------------------------------------------------------- */
3399
3400 int
3401 udf_open_logvol(struct udf_mount *ump)
3402 {
3403 int logvol_integrity;
3404 int error;
3405
3406 /* already/still open? */
3407 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3408 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3409 return 0;
3410
3411 /* can we open it ? */
3412 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3413 return EROFS;
3414
3415 /* setup write parameters */
3416 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3417 if ((error = udf_setup_writeparams(ump)) != 0)
3418 return error;
3419
3420 /* determine data and metadata tracks (most likely same) */
3421 error = udf_search_writing_tracks(ump);
3422 if (error) {
3423 /* most likely lack of space */
3424 printf("udf_open_logvol: error searching writing tracks\n");
3425 return EROFS;
3426 }
3427
3428 /* writeout/update lvint on disc or only in memory */
3429 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3430 if (ump->lvopen & UDF_OPEN_SESSION) {
3431 /* TODO implement writeout of VRS + VDS */
3432 printf( "udf_open_logvol:Opening a closed session not yet "
3433 "implemented\n");
3434 return EROFS;
3435
3436 /* determine data and metadata tracks again */
3437 error = udf_search_writing_tracks(ump);
3438 }
3439
3440 /* mark it open */
3441 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3442
3443 /* do we need to write it out? */
3444 if (ump->lvopen & UDF_WRITE_LVINT) {
3445 error = udf_writeout_lvint(ump, ump->lvopen);
3446 /* if we couldn't write it mark it closed again */
3447 if (error) {
3448 ump->logvol_integrity->integrity_type =
3449 udf_rw32(UDF_INTEGRITY_CLOSED);
3450 return error;
3451 }
3452 }
3453
3454 return 0;
3455 }
3456
3457
3458 int
3459 udf_close_logvol(struct udf_mount *ump, int mntflags)
3460 {
3461 int logvol_integrity;
3462 int error = 0, error1 = 0, error2 = 0;
3463 int n;
3464
3465 /* already/still closed? */
3466 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3467 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3468 return 0;
3469
3470 /* writeout/update lvint or write out VAT */
3471 DPRINTF(VOLUMES, ("Closing logical volume\n"));
3472 if (ump->lvclose & UDF_WRITE_VAT) {
3473 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3474
3475 /* write out the VAT node */
3476 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3477 udf_writeout_vat(ump);
3478
3479 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3480 for (n = 0; n < 16; n++) {
3481 ump->vat_node->i_flags |= IN_MODIFIED;
3482 error = VOP_FSYNC(ump->vat_node->vnode,
3483 FSCRED, FSYNC_WAIT, 0, 0);
3484 }
3485 if (error) {
3486 printf("udf_close_logvol: writeout of VAT failed\n");
3487 return error;
3488 }
3489 }
3490
3491 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3492 /* sync writeout metadata spacetable if existing */
3493 error1 = udf_write_metadata_partition_spacetable(ump, true);
3494 if (error1)
3495 printf( "udf_close_logvol: writeout of metadata space "
3496 "bitmap failed\n");
3497
3498 /* sync writeout partition spacetables */
3499 error2 = udf_write_physical_partition_spacetables(ump, true);
3500 if (error2)
3501 printf( "udf_close_logvol: writeout of space tables "
3502 "failed\n");
3503
3504 if (error1 || error2)
3505 return (error1 | error2);
3506
3507 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3508 }
3509
3510 if (ump->lvclose & UDF_CLOSE_SESSION) {
3511 printf("TODO: Closing a session is not yet implemented\n");
3512 return EROFS;
3513 ump->lvopen |= UDF_OPEN_SESSION;
3514 }
3515
3516 /* mark it closed */
3517 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3518
3519 /* do we need to write out the logical volume integrity */
3520 if (ump->lvclose & UDF_WRITE_LVINT)
3521 error = udf_writeout_lvint(ump, ump->lvopen);
3522 if (error) {
3523 /* HELP now what? mark it open again for now */
3524 ump->logvol_integrity->integrity_type =
3525 udf_rw32(UDF_INTEGRITY_OPEN);
3526 return error;
3527 }
3528
3529 (void) udf_synchronise_caches(ump);
3530
3531 return 0;
3532 }
3533
3534 /* --------------------------------------------------------------------- */
3535
3536 /*
3537 * Genfs interfacing
3538 *
3539 * static const struct genfs_ops udf_genfsops = {
3540 * .gop_size = genfs_size,
3541 * size of transfers
3542 * .gop_alloc = udf_gop_alloc,
3543 * allocate len bytes at offset
3544 * .gop_write = genfs_gop_write,
3545 * putpages interface code
3546 * .gop_markupdate = udf_gop_markupdate,
3547 * set update/modify flags etc.
3548 * }
3549 */
3550
3551 /*
3552 * Genfs interface. These four functions are the only ones defined though not
3553 * documented... great....
3554 */
3555
3556 /*
3557 * Callback from genfs to allocate len bytes at offset off; only called when
3558 * filling up gaps in the allocation.
3559 */
3560 /* XXX should we check if there is space enough in udf_gop_alloc? */
3561 static int
3562 udf_gop_alloc(struct vnode *vp, off_t off,
3563 off_t len, int flags, kauth_cred_t cred)
3564 {
3565 #if 0
3566 struct udf_node *udf_node = VTOI(vp);
3567 struct udf_mount *ump = udf_node->ump;
3568 uint32_t lb_size, num_lb;
3569 #endif
3570
3571 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3572 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3573
3574 return 0;
3575 }
3576
3577
3578 /*
3579 * callback from genfs to update our flags
3580 */
3581 static void
3582 udf_gop_markupdate(struct vnode *vp, int flags)
3583 {
3584 struct udf_node *udf_node = VTOI(vp);
3585 u_long mask = 0;
3586
3587 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3588 mask = IN_ACCESS;
3589 }
3590 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3591 if (vp->v_type == VREG) {
3592 mask |= IN_CHANGE | IN_UPDATE;
3593 } else {
3594 mask |= IN_MODIFY;
3595 }
3596 }
3597 if (mask) {
3598 udf_node->i_flags |= mask;
3599 }
3600 }
3601
3602
3603 static const struct genfs_ops udf_genfsops = {
3604 .gop_size = genfs_size,
3605 .gop_alloc = udf_gop_alloc,
3606 .gop_write = genfs_gop_write_rwmap,
3607 .gop_markupdate = udf_gop_markupdate,
3608 };
3609
3610
3611 /* --------------------------------------------------------------------- */
3612
3613 int
3614 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3615 {
3616 union dscrptr *dscr;
3617 int error;
3618
3619 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3620 bzero(dscr, ump->discinfo.sector_size);
3621 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3622
3623 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3624 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3625 (void) udf_validate_tag_and_crc_sums(dscr);
3626
3627 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3628 dscr, sector, sector);
3629
3630 free(dscr, M_TEMP);
3631
3632 return error;
3633 }
3634
3635
3636 /* --------------------------------------------------------------------- */
3637
3638 /* UDF<->unix converters */
3639
3640 /* --------------------------------------------------------------------- */
3641
3642 static mode_t
3643 udf_perm_to_unix_mode(uint32_t perm)
3644 {
3645 mode_t mode;
3646
3647 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
3648 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
3649 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3650
3651 return mode;
3652 }
3653
3654 /* --------------------------------------------------------------------- */
3655
3656 static uint32_t
3657 unix_mode_to_udf_perm(mode_t mode)
3658 {
3659 uint32_t perm;
3660
3661 perm = ((mode & S_IRWXO) );
3662 perm |= ((mode & S_IRWXG) << 2);
3663 perm |= ((mode & S_IRWXU) << 4);
3664 perm |= ((mode & S_IWOTH) << 3);
3665 perm |= ((mode & S_IWGRP) << 5);
3666 perm |= ((mode & S_IWUSR) << 7);
3667
3668 return perm;
3669 }
3670
3671 /* --------------------------------------------------------------------- */
3672
3673 static uint32_t
3674 udf_icb_to_unix_filetype(uint32_t icbftype)
3675 {
3676 switch (icbftype) {
3677 case UDF_ICB_FILETYPE_DIRECTORY :
3678 case UDF_ICB_FILETYPE_STREAMDIR :
3679 return S_IFDIR;
3680 case UDF_ICB_FILETYPE_FIFO :
3681 return S_IFIFO;
3682 case UDF_ICB_FILETYPE_CHARDEVICE :
3683 return S_IFCHR;
3684 case UDF_ICB_FILETYPE_BLOCKDEVICE :
3685 return S_IFBLK;
3686 case UDF_ICB_FILETYPE_RANDOMACCESS :
3687 case UDF_ICB_FILETYPE_REALTIME :
3688 return S_IFREG;
3689 case UDF_ICB_FILETYPE_SYMLINK :
3690 return S_IFLNK;
3691 case UDF_ICB_FILETYPE_SOCKET :
3692 return S_IFSOCK;
3693 }
3694 /* no idea what this is */
3695 return 0;
3696 }
3697
3698 /* --------------------------------------------------------------------- */
3699
3700 void
3701 udf_to_unix_name(char *result, int result_len, char *id, int len,
3702 struct charspec *chsp)
3703 {
3704 uint16_t *raw_name, *unix_name;
3705 uint16_t *inchp, ch;
3706 uint8_t *outchp;
3707 const char *osta_id = "OSTA Compressed Unicode";
3708 int ucode_chars, nice_uchars, is_osta_typ0, nout;
3709
3710 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
3711 unix_name = raw_name + 1024; /* split space in half */
3712 assert(sizeof(char) == sizeof(uint8_t));
3713 outchp = (uint8_t *) result;
3714
3715 is_osta_typ0 = (chsp->type == 0);
3716 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3717 if (is_osta_typ0) {
3718 /* TODO clean up */
3719 *raw_name = *unix_name = 0;
3720 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
3721 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
3722 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
3723 /* output UTF8 */
3724 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
3725 ch = *inchp;
3726 nout = wput_utf8(outchp, result_len, ch);
3727 outchp += nout; result_len -= nout;
3728 if (!ch) break;
3729 }
3730 *outchp++ = 0;
3731 } else {
3732 /* assume 8bit char length byte latin-1 */
3733 assert(*id == 8);
3734 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
3735 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
3736 }
3737 free(raw_name, M_UDFTEMP);
3738 }
3739
3740 /* --------------------------------------------------------------------- */
3741
3742 void
3743 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
3744 struct charspec *chsp)
3745 {
3746 uint16_t *raw_name;
3747 uint16_t *outchp;
3748 const char *inchp;
3749 const char *osta_id = "OSTA Compressed Unicode";
3750 int udf_chars, is_osta_typ0, bits;
3751 size_t cnt;
3752
3753 /* allocate temporary unicode-16 buffer */
3754 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
3755
3756 /* convert utf8 to unicode-16 */
3757 *raw_name = 0;
3758 inchp = name;
3759 outchp = raw_name;
3760 bits = 8;
3761 for (cnt = name_len, udf_chars = 0; cnt;) {
3762 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
3763 *outchp = wget_utf8(&inchp, &cnt);
3764 if (*outchp > 0xff)
3765 bits=16;
3766 outchp++;
3767 udf_chars++;
3768 }
3769 /* null terminate just in case */
3770 *outchp++ = 0;
3771
3772 is_osta_typ0 = (chsp->type == 0);
3773 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3774 if (is_osta_typ0) {
3775 udf_chars = udf_CompressUnicode(udf_chars, bits,
3776 (unicode_t *) raw_name,
3777 (byte *) result);
3778 } else {
3779 printf("unix to udf name: no CHSP0 ?\n");
3780 /* XXX assume 8bit char length byte latin-1 */
3781 *result++ = 8; udf_chars = 1;
3782 strncpy(result, name + 1, name_len);
3783 udf_chars += name_len;
3784 }
3785 *result_len = udf_chars;
3786 free(raw_name, M_UDFTEMP);
3787 }
3788
3789 /* --------------------------------------------------------------------- */
3790
3791 void
3792 udf_timestamp_to_timespec(struct udf_mount *ump,
3793 struct timestamp *timestamp,
3794 struct timespec *timespec)
3795 {
3796 struct clock_ymdhms ymdhms;
3797 uint32_t usecs, secs, nsecs;
3798 uint16_t tz;
3799
3800 /* fill in ymdhms structure from timestamp */
3801 memset(&ymdhms, 0, sizeof(ymdhms));
3802 ymdhms.dt_year = udf_rw16(timestamp->year);
3803 ymdhms.dt_mon = timestamp->month;
3804 ymdhms.dt_day = timestamp->day;
3805 ymdhms.dt_wday = 0; /* ? */
3806 ymdhms.dt_hour = timestamp->hour;
3807 ymdhms.dt_min = timestamp->minute;
3808 ymdhms.dt_sec = timestamp->second;
3809
3810 secs = clock_ymdhms_to_secs(&ymdhms);
3811 usecs = timestamp->usec +
3812 100*timestamp->hund_usec + 10000*timestamp->centisec;
3813 nsecs = usecs * 1000;
3814
3815 /*
3816 * Calculate the time zone. The timezone is 12 bit signed 2's
3817 * compliment, so we gotta do some extra magic to handle it right.
3818 */
3819 tz = udf_rw16(timestamp->type_tz);
3820 tz &= 0x0fff; /* only lower 12 bits are significant */
3821 if (tz & 0x0800) /* sign extention */
3822 tz |= 0xf000;
3823
3824 /* TODO check timezone conversion */
3825 /* check if we are specified a timezone to convert */
3826 if (udf_rw16(timestamp->type_tz) & 0x1000) {
3827 if ((int16_t) tz != -2047)
3828 secs -= (int16_t) tz * 60;
3829 } else {
3830 secs -= ump->mount_args.gmtoff;
3831 }
3832
3833 timespec->tv_sec = secs;
3834 timespec->tv_nsec = nsecs;
3835 }
3836
3837
3838 void
3839 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
3840 {
3841 struct clock_ymdhms ymdhms;
3842 uint32_t husec, usec, csec;
3843
3844 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
3845
3846 usec = timespec->tv_nsec / 1000;
3847 husec = usec / 100;
3848 usec -= husec * 100; /* only 0-99 in usec */
3849 csec = husec / 100; /* only 0-99 in csec */
3850 husec -= csec * 100; /* only 0-99 in husec */
3851
3852 /* set method 1 for CUT/GMT */
3853 timestamp->type_tz = udf_rw16((1<<12) + 0);
3854 timestamp->year = udf_rw16(ymdhms.dt_year);
3855 timestamp->month = ymdhms.dt_mon;
3856 timestamp->day = ymdhms.dt_day;
3857 timestamp->hour = ymdhms.dt_hour;
3858 timestamp->minute = ymdhms.dt_min;
3859 timestamp->second = ymdhms.dt_sec;
3860 timestamp->centisec = csec;
3861 timestamp->hund_usec = husec;
3862 timestamp->usec = usec;
3863 }
3864
3865 /* --------------------------------------------------------------------- */
3866
3867 /*
3868 * Attribute and filetypes converters with get/set pairs
3869 */
3870
3871 uint32_t
3872 udf_getaccessmode(struct udf_node *udf_node)
3873 {
3874 struct file_entry *fe = udf_node->fe;;
3875 struct extfile_entry *efe = udf_node->efe;
3876 uint32_t udf_perm, icbftype;
3877 uint32_t mode, ftype;
3878 uint16_t icbflags;
3879
3880 UDF_LOCK_NODE(udf_node, 0);
3881 if (fe) {
3882 udf_perm = udf_rw32(fe->perm);
3883 icbftype = fe->icbtag.file_type;
3884 icbflags = udf_rw16(fe->icbtag.flags);
3885 } else {
3886 assert(udf_node->efe);
3887 udf_perm = udf_rw32(efe->perm);
3888 icbftype = efe->icbtag.file_type;
3889 icbflags = udf_rw16(efe->icbtag.flags);
3890 }
3891
3892 mode = udf_perm_to_unix_mode(udf_perm);
3893 ftype = udf_icb_to_unix_filetype(icbftype);
3894
3895 /* set suid, sgid, sticky from flags in fe/efe */
3896 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
3897 mode |= S_ISUID;
3898 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
3899 mode |= S_ISGID;
3900 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
3901 mode |= S_ISVTX;
3902
3903 UDF_UNLOCK_NODE(udf_node, 0);
3904
3905 return mode | ftype;
3906 }
3907
3908
3909 void
3910 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
3911 {
3912 struct file_entry *fe = udf_node->fe;
3913 struct extfile_entry *efe = udf_node->efe;
3914 uint32_t udf_perm;
3915 uint16_t icbflags;
3916
3917 UDF_LOCK_NODE(udf_node, 0);
3918 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
3919 if (fe) {
3920 icbflags = udf_rw16(fe->icbtag.flags);
3921 } else {
3922 icbflags = udf_rw16(efe->icbtag.flags);
3923 }
3924
3925 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
3926 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
3927 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
3928 if (mode & S_ISUID)
3929 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
3930 if (mode & S_ISGID)
3931 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
3932 if (mode & S_ISVTX)
3933 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
3934
3935 if (fe) {
3936 fe->perm = udf_rw32(udf_perm);
3937 fe->icbtag.flags = udf_rw16(icbflags);
3938 } else {
3939 efe->perm = udf_rw32(udf_perm);
3940 efe->icbtag.flags = udf_rw16(icbflags);
3941 }
3942
3943 UDF_UNLOCK_NODE(udf_node, 0);
3944 }
3945
3946
3947 void
3948 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
3949 {
3950 struct udf_mount *ump = udf_node->ump;
3951 struct file_entry *fe = udf_node->fe;
3952 struct extfile_entry *efe = udf_node->efe;
3953 uid_t uid;
3954 gid_t gid;
3955
3956 UDF_LOCK_NODE(udf_node, 0);
3957 if (fe) {
3958 uid = (uid_t)udf_rw32(fe->uid);
3959 gid = (gid_t)udf_rw32(fe->gid);
3960 } else {
3961 assert(udf_node->efe);
3962 uid = (uid_t)udf_rw32(efe->uid);
3963 gid = (gid_t)udf_rw32(efe->gid);
3964 }
3965
3966 /* do the uid/gid translation game */
3967 if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
3968 uid = ump->mount_args.anon_uid;
3969 gid = ump->mount_args.anon_gid;
3970 }
3971 *uidp = uid;
3972 *gidp = gid;
3973
3974 UDF_UNLOCK_NODE(udf_node, 0);
3975 }
3976
3977
3978 void
3979 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
3980 {
3981 struct udf_mount *ump = udf_node->ump;
3982 struct file_entry *fe = udf_node->fe;
3983 struct extfile_entry *efe = udf_node->efe;
3984 uid_t nobody_uid;
3985 gid_t nobody_gid;
3986
3987 UDF_LOCK_NODE(udf_node, 0);
3988
3989 /* do the uid/gid translation game */
3990 nobody_uid = ump->mount_args.nobody_uid;
3991 nobody_gid = ump->mount_args.nobody_gid;
3992 if ((uid == nobody_uid) && (gid == nobody_gid)) {
3993 uid = (uid_t) -1;
3994 gid = (gid_t) -1;
3995 }
3996
3997 if (fe) {
3998 fe->uid = udf_rw32((uint32_t) uid);
3999 fe->gid = udf_rw32((uint32_t) gid);
4000 } else {
4001 efe->uid = udf_rw32((uint32_t) uid);
4002 efe->gid = udf_rw32((uint32_t) gid);
4003 }
4004
4005 UDF_UNLOCK_NODE(udf_node, 0);
4006 }
4007
4008
4009 /* --------------------------------------------------------------------- */
4010
4011 /*
4012 * UDF dirhash implementation
4013 */
4014
4015 static uint32_t
4016 udf_dirhash_hash(const char *str, int namelen)
4017 {
4018 uint32_t hash = 5381;
4019 int i, c;
4020
4021 for (i = 0; i < namelen; i++) {
4022 c = *str++;
4023 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
4024 }
4025 return hash;
4026 }
4027
4028
4029 static void
4030 udf_dirhash_purge(struct udf_dirhash *dirh)
4031 {
4032 struct udf_dirhash_entry *dirh_e;
4033 uint32_t hashline;
4034
4035 if (dirh == NULL)
4036 return;
4037
4038 if (dirh->size == 0)
4039 return;
4040
4041 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
4042 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4043 while (dirh_e) {
4044 LIST_REMOVE(dirh_e, next);
4045 pool_put(&udf_dirhash_entry_pool, dirh_e);
4046 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4047 }
4048 }
4049 dirh_e = LIST_FIRST(&dirh->free_entries);
4050
4051 while (dirh_e) {
4052 LIST_REMOVE(dirh_e, next);
4053 pool_put(&udf_dirhash_entry_pool, dirh_e);
4054 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4055 }
4056
4057 dirh->flags &= ~UDF_DIRH_COMPLETE;
4058 dirh->flags |= UDF_DIRH_PURGED;
4059
4060 udf_dirhashsize -= dirh->size;
4061 dirh->size = 0;
4062 }
4063
4064
4065 static void
4066 udf_dirhash_destroy(struct udf_dirhash **dirhp)
4067 {
4068 struct udf_dirhash *dirh = *dirhp;
4069
4070 if (dirh == NULL)
4071 return;
4072
4073 mutex_enter(&udf_dirhashmutex);
4074
4075 udf_dirhash_purge(dirh);
4076 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4077 pool_put(&udf_dirhash_pool, dirh);
4078
4079 *dirhp = NULL;
4080
4081 mutex_exit(&udf_dirhashmutex);
4082 }
4083
4084
4085 static void
4086 udf_dirhash_get(struct udf_dirhash **dirhp)
4087 {
4088 struct udf_dirhash *dirh;
4089 uint32_t hashline;
4090
4091 mutex_enter(&udf_dirhashmutex);
4092
4093 dirh = *dirhp;
4094 if (*dirhp == NULL) {
4095 dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
4096 *dirhp = dirh;
4097 memset(dirh, 0, sizeof(struct udf_dirhash));
4098 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
4099 LIST_INIT(&dirh->entries[hashline]);
4100 dirh->size = 0;
4101 dirh->refcnt = 0;
4102 dirh->flags = 0;
4103 } else {
4104 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4105 }
4106
4107 dirh->refcnt++;
4108 TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
4109
4110 mutex_exit(&udf_dirhashmutex);
4111 }
4112
4113
4114 static void
4115 udf_dirhash_put(struct udf_dirhash *dirh)
4116 {
4117 mutex_enter(&udf_dirhashmutex);
4118 dirh->refcnt--;
4119 mutex_exit(&udf_dirhashmutex);
4120 }
4121
4122
4123 static void
4124 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
4125 struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
4126 {
4127 struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
4128 struct udf_dirhash_entry *dirh_e;
4129 uint32_t hashvalue, hashline;
4130 int entrysize;
4131
4132 /* make sure we have a dirhash to work on */
4133 dirh = dir_node->dir_hash;
4134 KASSERT(dirh);
4135 KASSERT(dirh->refcnt > 0);
4136
4137 /* are we trying to re-enter an entry? */
4138 if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
4139 return;
4140
4141 /* calculate our hash */
4142 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4143 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4144
4145 /* lookup and insert entry if not there yet */
4146 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4147 /* check for hash collision */
4148 if (dirh_e->hashvalue != hashvalue)
4149 continue;
4150 if (dirh_e->offset != offset)
4151 continue;
4152 /* got it already */
4153 KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4154 KASSERT(dirh_e->fid_size == fid_size);
4155 return;
4156 }
4157
4158 DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
4159 offset, fid_size, dirent->d_namlen,
4160 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4161
4162 /* check if entry is in free space list */
4163 LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
4164 if (dirh_e->offset == offset) {
4165 DPRINTF(DIRHASH, ("\tremoving free entry\n"));
4166 LIST_REMOVE(dirh_e, next);
4167 break;
4168 }
4169 }
4170
4171 /* ensure we are not passing the dirhash limit */
4172 entrysize = sizeof(struct udf_dirhash_entry);
4173 if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4174 del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
4175 KASSERT(del_dirh);
4176 while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4177 /* no use trying to delete myself */
4178 if (del_dirh == dirh)
4179 break;
4180 prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
4181 if (del_dirh->refcnt == 0)
4182 udf_dirhash_purge(del_dirh);
4183 del_dirh = prev_dirh;
4184 }
4185 }
4186
4187 /* add to the hashline */
4188 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4189 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4190
4191 dirh_e->hashvalue = hashvalue;
4192 dirh_e->offset = offset;
4193 dirh_e->d_namlen = dirent->d_namlen;
4194 dirh_e->fid_size = fid_size;
4195
4196 dirh->size += sizeof(struct udf_dirhash_entry);
4197 udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4198 LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
4199 }
4200
4201
4202 static void
4203 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
4204 uint32_t fid_size)
4205 {
4206 struct udf_dirhash *dirh;
4207 struct udf_dirhash_entry *dirh_e;
4208
4209 /* make sure we have a dirhash to work on */
4210 dirh = dir_node->dir_hash;
4211 KASSERT(dirh);
4212 KASSERT(dirh->refcnt > 0);
4213
4214 #ifdef DEBUG
4215 /* check for double entry of free space */
4216 LIST_FOREACH(dirh_e, &dirh->free_entries, next)
4217 KASSERT(dirh_e->offset != offset);
4218 #endif
4219
4220 DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
4221 offset, fid_size));
4222 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4223 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4224
4225 dirh_e->hashvalue = 0; /* not relevant */
4226 dirh_e->offset = offset;
4227 dirh_e->d_namlen = 0; /* not relevant */
4228 dirh_e->fid_size = fid_size;
4229
4230 /* XXX it might be preferable to append them at the tail */
4231 LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
4232 dirh->size += sizeof(struct udf_dirhash_entry);
4233 udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4234 }
4235
4236
4237 static void
4238 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
4239 uint64_t offset, uint32_t fid_size)
4240 {
4241 struct udf_dirhash *dirh;
4242 struct udf_dirhash_entry *dirh_e;
4243 uint32_t hashvalue, hashline;
4244
4245 DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
4246 offset, fid_size,
4247 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4248
4249 /* make sure we have a dirhash to work on */
4250 dirh = dir_node->dir_hash;
4251 KASSERT(dirh);
4252 KASSERT(dirh->refcnt > 0);
4253
4254 /* calculate our hash */
4255 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4256 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4257
4258 /* lookup entry */
4259 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4260 /* check for hash collision */
4261 if (dirh_e->hashvalue != hashvalue)
4262 continue;
4263 if (dirh_e->offset != offset)
4264 continue;
4265
4266 /* got it! */
4267 KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4268 KASSERT(dirh_e->fid_size == fid_size);
4269 LIST_REMOVE(dirh_e, next);
4270 dirh->size -= sizeof(struct udf_dirhash_entry);
4271 udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
4272
4273 udf_dirhash_enter_freed(dir_node, offset, fid_size);
4274 return;
4275 }
4276
4277 /* not found! */
4278 panic("dirhash_remove couldn't find entry in hash table\n");
4279 }
4280
4281
4282 /* BUGALERT: don't use result longer than needed, never past the node lock */
4283 /* call with NULL *result initially and it will return nonzero if again */
4284 static int
4285 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
4286 struct udf_dirhash_entry **result)
4287 {
4288 struct udf_dirhash *dirh;
4289 struct udf_dirhash_entry *dirh_e;
4290 uint32_t hashvalue, hashline;
4291
4292 KASSERT(VOP_ISLOCKED(dir_node->vnode));
4293
4294 /* make sure we have a dirhash to work on */
4295 dirh = dir_node->dir_hash;
4296 KASSERT(dirh);
4297 KASSERT(dirh->refcnt > 0);
4298
4299 /* start where we were */
4300 if (*result) {
4301 KASSERT(dir_node->dir_hash);
4302 dirh_e = *result;
4303
4304 /* retrieve information to avoid recalculation and advance */
4305 hashvalue = dirh_e->hashvalue;
4306 dirh_e = LIST_NEXT(*result, next);
4307 } else {
4308 /* calculate our hash and lookup all entries in hashline */
4309 hashvalue = udf_dirhash_hash(d_name, d_namlen);
4310 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4311 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4312 }
4313
4314 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4315 /* check for hash collision */
4316 if (dirh_e->hashvalue != hashvalue)
4317 continue;
4318 if (dirh_e->d_namlen != d_namlen)
4319 continue;
4320 /* might have an entry in the cache */
4321 *result = dirh_e;
4322 return 1;
4323 }
4324
4325 *result = NULL;
4326 return 0;
4327 }
4328
4329
4330 /* BUGALERT: don't use result longer than needed, never past the node lock */
4331 /* call with NULL *result initially and it will return nonzero if again */
4332 static int
4333 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
4334 struct udf_dirhash_entry **result)
4335 {
4336 struct udf_dirhash *dirh;
4337 struct udf_dirhash_entry *dirh_e;
4338
4339 KASSERT(VOP_ISLOCKED(dir_node->vnode));
4340
4341 /* make sure we have a dirhash to work on */
4342 dirh = dir_node->dir_hash;
4343 KASSERT(dirh);
4344 KASSERT(dirh->refcnt > 0);
4345
4346 /* start where we were */
4347 if (*result) {
4348 KASSERT(dir_node->dir_hash);
4349 dirh_e = LIST_NEXT(*result, next);
4350 } else {
4351 /* lookup all entries that match */
4352 dirh_e = LIST_FIRST(&dirh->free_entries);
4353 }
4354
4355 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4356 /* check for minimum size */
4357 if (dirh_e->fid_size < min_fidsize)
4358 continue;
4359 /* might be a candidate */
4360 *result = dirh_e;
4361 return 1;
4362 }
4363
4364 *result = NULL;
4365 return 0;
4366 }
4367
4368
4369 static int
4370 udf_dirhash_fill(struct udf_node *dir_node)
4371 {
4372 struct vnode *dvp = dir_node->vnode;
4373 struct udf_dirhash *dirh;
4374 struct file_entry *fe = dir_node->fe;
4375 struct extfile_entry *efe = dir_node->efe;
4376 struct fileid_desc *fid;
4377 struct dirent *dirent;
4378 uint64_t file_size, pre_diroffset, diroffset;
4379 uint32_t lb_size;
4380 int error;
4381
4382 /* make sure we have a dirhash to work on */
4383 dirh = dir_node->dir_hash;
4384 KASSERT(dirh);
4385 KASSERT(dirh->refcnt > 0);
4386
4387 if (dirh->flags & UDF_DIRH_BROKEN)
4388 return EIO;
4389 if (dirh->flags & UDF_DIRH_COMPLETE)
4390 return 0;
4391
4392 /* make sure we have a clean dirhash to add to */
4393 udf_dirhash_purge(dirh);
4394
4395 /* get directory filesize */
4396 if (fe) {
4397 file_size = udf_rw64(fe->inf_len);
4398 } else {
4399 assert(efe);
4400 file_size = udf_rw64(efe->inf_len);
4401 }
4402
4403 /* allocate temporary space for fid */
4404 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4405 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4406
4407 /* allocate temporary space for dirent */
4408 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4409
4410 error = 0;
4411 diroffset = 0;
4412 while (diroffset < file_size) {
4413 /* transfer a new fid/dirent */
4414 pre_diroffset = diroffset;
4415 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4416 if (error) {
4417 /* TODO what to do? continue but not add? */
4418 dirh->flags |= UDF_DIRH_BROKEN;
4419 udf_dirhash_purge(dirh);
4420 break;
4421 }
4422
4423 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4424 /* register deleted extent for reuse */
4425 udf_dirhash_enter_freed(dir_node, pre_diroffset,
4426 udf_fidsize(fid));
4427 } else {
4428 /* append to the dirhash */
4429 udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
4430 udf_fidsize(fid), 0);
4431 }
4432 }
4433 dirh->flags |= UDF_DIRH_COMPLETE;
4434
4435 free(fid, M_UDFTEMP);
4436 free(dirent, M_UDFTEMP);
4437
4438 return error;
4439 }
4440
4441
4442 /* --------------------------------------------------------------------- */
4443
4444 /*
4445 * Directory read and manipulation functions.
4446 *
4447 * Note that if the file is found, the cached diroffset position *before* the
4448 * advance is remembered. Thus if the same filename is lookup again just after
4449 * this lookup its immediately found.
4450 */
4451
4452 int
4453 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4454 struct long_ad *icb_loc, int *found)
4455 {
4456 struct udf_node *dir_node = VTOI(vp);
4457 struct udf_dirhash_entry *dirh_ep;
4458 struct fileid_desc *fid;
4459 struct dirent *dirent;
4460 uint64_t diroffset;
4461 uint32_t lb_size;
4462 int hit, error;
4463
4464 /* set default return */
4465 *found = 0;
4466
4467 /* get our dirhash and make sure its read in */
4468 udf_dirhash_get(&dir_node->dir_hash);
4469 error = udf_dirhash_fill(dir_node);
4470 if (error) {
4471 udf_dirhash_put(dir_node->dir_hash);
4472 return error;
4473 }
4474
4475 /* allocate temporary space for fid */
4476 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4477 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4478 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4479
4480 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4481 namelen, namelen, name));
4482
4483 /* search our dirhash hits */
4484 memset(icb_loc, 0, sizeof(*icb_loc));
4485 dirh_ep = NULL;
4486 for (;;) {
4487 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4488 /* if no hit, abort the search */
4489 if (!hit)
4490 break;
4491
4492 /* check this hit */
4493 diroffset = dirh_ep->offset;
4494
4495 /* transfer a new fid/dirent */
4496 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4497 if (error)
4498 break;
4499
4500 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4501 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4502
4503 /* see if its our entry */
4504 KASSERT(dirent->d_namlen == namelen);
4505 if (strncmp(dirent->d_name, name, namelen) == 0) {
4506 *found = 1;
4507 *icb_loc = fid->icb;
4508 break;
4509 }
4510 }
4511 free(fid, M_UDFTEMP);
4512 free(dirent, M_UDFTEMP);
4513
4514 udf_dirhash_put(dir_node->dir_hash);
4515
4516 return error;
4517 }
4518
4519 /* --------------------------------------------------------------------- */
4520
4521 static int
4522 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4523 struct long_ad *node_icb, struct long_ad *parent_icb,
4524 uint64_t parent_unique_id)
4525 {
4526 struct timespec now;
4527 struct icb_tag *icb;
4528 struct filetimes_extattr_entry *ft_extattr;
4529 uint64_t unique_id;
4530 uint32_t fidsize, lb_num;
4531 uint8_t *bpos;
4532 int crclen, attrlen;
4533
4534 lb_num = udf_rw32(node_icb->loc.lb_num);
4535 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4536 icb = &fe->icbtag;
4537
4538 /*
4539 * Always use strategy type 4 unless on WORM wich we don't support
4540 * (yet). Fill in defaults and set for internal allocation of data.
4541 */
4542 icb->strat_type = udf_rw16(4);
4543 icb->max_num_entries = udf_rw16(1);
4544 icb->file_type = file_type; /* 8 bit */
4545 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4546
4547 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4548 fe->link_cnt = udf_rw16(0); /* explicit setting */
4549
4550 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4551
4552 vfs_timestamp(&now);
4553 udf_timespec_to_timestamp(&now, &fe->atime);
4554 udf_timespec_to_timestamp(&now, &fe->attrtime);
4555 udf_timespec_to_timestamp(&now, &fe->mtime);
4556
4557 udf_set_regid(&fe->imp_id, IMPL_NAME);
4558 udf_add_impl_regid(ump, &fe->imp_id);
4559
4560 unique_id = udf_advance_uniqueid(ump);
4561 fe->unique_id = udf_rw64(unique_id);
4562 fe->l_ea = udf_rw32(0);
4563
4564 /* create extended attribute to record our creation time */
4565 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4566 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4567 memset(ft_extattr, 0, attrlen);
4568 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4569 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4570 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4571 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4572 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4573 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4574
4575 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4576 (struct extattr_entry *) ft_extattr);
4577 free(ft_extattr, M_UDFTEMP);
4578
4579 /* if its a directory, create '..' */
4580 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4581 fidsize = 0;
4582 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4583 fidsize = udf_create_parentfid(ump,
4584 (struct fileid_desc *) bpos, parent_icb,
4585 parent_unique_id);
4586 }
4587
4588 /* record fidlength information */
4589 fe->inf_len = udf_rw64(fidsize);
4590 fe->l_ad = udf_rw32(fidsize);
4591 fe->logblks_rec = udf_rw64(0); /* intern */
4592
4593 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4594 crclen += udf_rw32(fe->l_ea) + fidsize;
4595 fe->tag.desc_crc_len = udf_rw16(crclen);
4596
4597 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4598
4599 return fidsize;
4600 }
4601
4602 /* --------------------------------------------------------------------- */
4603
4604 static int
4605 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4606 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4607 uint64_t parent_unique_id)
4608 {
4609 struct timespec now;
4610 struct icb_tag *icb;
4611 uint64_t unique_id;
4612 uint32_t fidsize, lb_num;
4613 uint8_t *bpos;
4614 int crclen;
4615
4616 lb_num = udf_rw32(node_icb->loc.lb_num);
4617 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4618 icb = &efe->icbtag;
4619
4620 /*
4621 * Always use strategy type 4 unless on WORM wich we don't support
4622 * (yet). Fill in defaults and set for internal allocation of data.
4623 */
4624 icb->strat_type = udf_rw16(4);
4625 icb->max_num_entries = udf_rw16(1);
4626 icb->file_type = file_type; /* 8 bit */
4627 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4628
4629 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4630 efe->link_cnt = udf_rw16(0); /* explicit setting */
4631
4632 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4633
4634 vfs_timestamp(&now);
4635 udf_timespec_to_timestamp(&now, &efe->ctime);
4636 udf_timespec_to_timestamp(&now, &efe->atime);
4637 udf_timespec_to_timestamp(&now, &efe->attrtime);
4638 udf_timespec_to_timestamp(&now, &efe->mtime);
4639
4640 udf_set_regid(&efe->imp_id, IMPL_NAME);
4641 udf_add_impl_regid(ump, &efe->imp_id);
4642
4643 unique_id = udf_advance_uniqueid(ump);
4644 efe->unique_id = udf_rw64(unique_id);
4645 efe->l_ea = udf_rw32(0);
4646
4647 /* if its a directory, create '..' */
4648 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4649 fidsize = 0;
4650 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4651 fidsize = udf_create_parentfid(ump,
4652 (struct fileid_desc *) bpos, parent_icb,
4653 parent_unique_id);
4654 }
4655
4656 /* record fidlength information */
4657 efe->obj_size = udf_rw64(fidsize);
4658 efe->inf_len = udf_rw64(fidsize);
4659 efe->l_ad = udf_rw32(fidsize);
4660 efe->logblks_rec = udf_rw64(0); /* intern */
4661
4662 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4663 crclen += udf_rw32(efe->l_ea) + fidsize;
4664 efe->tag.desc_crc_len = udf_rw16(crclen);
4665
4666 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4667
4668 return fidsize;
4669 }
4670
4671 /* --------------------------------------------------------------------- */
4672
4673 int
4674 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4675 struct udf_node *udf_node, struct componentname *cnp)
4676 {
4677 struct vnode *dvp = dir_node->vnode;
4678 struct udf_dirhash_entry *dirh_ep;
4679 struct file_entry *fe = dir_node->fe;
4680 struct extfile_entry *efe = dir_node->efe;
4681 struct fileid_desc *fid;
4682 struct dirent *dirent;
4683 uint64_t file_size, diroffset;
4684 uint32_t lb_size, fidsize;
4685 int found, error;
4686 char const *name = cnp->cn_nameptr;
4687 int namelen = cnp->cn_namelen;
4688 int hit, refcnt;
4689
4690 /* get our dirhash and make sure its read in */
4691 udf_dirhash_get(&dir_node->dir_hash);
4692 error = udf_dirhash_fill(dir_node);
4693 if (error) {
4694 udf_dirhash_put(dir_node->dir_hash);
4695 return error;
4696 }
4697
4698 /* get directory filesize */
4699 if (fe) {
4700 file_size = udf_rw64(fe->inf_len);
4701 } else {
4702 assert(efe);
4703 file_size = udf_rw64(efe->inf_len);
4704 }
4705
4706 /* allocate temporary space for fid */
4707 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4708 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4709 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4710
4711 /* search our dirhash hits */
4712 found = 0;
4713 dirh_ep = NULL;
4714 for (;;) {
4715 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4716 /* if no hit, abort the search */
4717 if (!hit)
4718 break;
4719
4720 /* check this hit */
4721 diroffset = dirh_ep->offset;
4722
4723 /* transfer a new fid/dirent */
4724 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4725 if (error)
4726 break;
4727
4728 /* see if its our entry */
4729 KASSERT(dirent->d_namlen == namelen);
4730 if (strncmp(dirent->d_name, name, namelen) == 0) {
4731 found = 1;
4732 break;
4733 }
4734 }
4735
4736 if (!found)
4737 error = ENOENT;
4738 if (error)
4739 goto error_out;
4740
4741 /* mark deleted */
4742 fid->file_char |= UDF_FILE_CHAR_DEL;
4743 #ifdef UDF_COMPLETE_DELETE
4744 memset(&fid->icb, 0, sizeof(fid->icb));
4745 #endif
4746 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4747
4748 /* get size of fid and compensate for the read_fid_stream advance */
4749 fidsize = udf_fidsize(fid);
4750 diroffset -= fidsize;
4751
4752 /* write out */
4753 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4754 fid, fidsize, diroffset,
4755 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4756 FSCRED, NULL, NULL);
4757 if (error)
4758 goto error_out;
4759
4760 /* get reference count of attached node */
4761 if (udf_node->fe) {
4762 refcnt = udf_rw16(udf_node->fe->link_cnt);
4763 } else {
4764 KASSERT(udf_node->efe);
4765 refcnt = udf_rw16(udf_node->efe->link_cnt);
4766 }
4767 #ifdef UDF_COMPLETE_DELETE
4768 /* substract reference counter in attached node */
4769 refcnt -= 1;
4770 if (udf_node->fe) {
4771 udf_node->fe->link_cnt = udf_rw16(refcnt);
4772 } else {
4773 udf_node->efe->link_cnt = udf_rw16(refcnt);
4774 }
4775
4776 /* prevent writeout when refcnt == 0 */
4777 if (refcnt == 0)
4778 udf_node->i_flags |= IN_DELETED;
4779
4780 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4781 int drefcnt;
4782
4783 /* substract reference counter in directory node */
4784 /* note subtract 2 (?) for its was also backreferenced */
4785 if (dir_node->fe) {
4786 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4787 drefcnt -= 1;
4788 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4789 } else {
4790 KASSERT(dir_node->efe);
4791 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4792 drefcnt -= 1;
4793 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4794 }
4795 }
4796
4797 udf_node->i_flags |= IN_MODIFIED;
4798 dir_node->i_flags |= IN_MODIFIED;
4799 #endif
4800 /* if it is/was a hardlink adjust the file count */
4801 if (refcnt > 0)
4802 udf_adjust_filecount(udf_node, -1);
4803
4804 /* remove from the dirhash */
4805 udf_dirhash_remove(dir_node, dirent, diroffset,
4806 udf_fidsize(fid));
4807
4808 error_out:
4809 free(fid, M_UDFTEMP);
4810 free(dirent, M_UDFTEMP);
4811
4812 udf_dirhash_put(dir_node->dir_hash);
4813
4814 return error;
4815 }
4816
4817 /* --------------------------------------------------------------------- */
4818
4819 /*
4820 * We are not allowed to split the fid tag itself over an logical block so
4821 * check the space remaining in the logical block.
4822 *
4823 * We try to select the smallest candidate for recycling or when none is
4824 * found, append a new one at the end of the directory.
4825 */
4826
4827 int
4828 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4829 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4830 {
4831 struct vnode *dvp = dir_node->vnode;
4832 struct udf_dirhash_entry *dirh_ep;
4833 struct fileid_desc *fid;
4834 struct icb_tag *icbtag;
4835 struct charspec osta_charspec;
4836 struct dirent dirent;
4837 uint64_t unique_id, dir_size, diroffset;
4838 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4839 uint32_t chosen_size, chosen_size_diff;
4840 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4841 int file_char, refcnt, icbflags, addr_type, hit, error;
4842
4843 /* get our dirhash and make sure its read in */
4844 udf_dirhash_get(&dir_node->dir_hash);
4845 error = udf_dirhash_fill(dir_node);
4846 if (error) {
4847 udf_dirhash_put(dir_node->dir_hash);
4848 return error;
4849 }
4850
4851 /* get info */
4852 lb_size = udf_rw32(ump->logical_vol->lb_size);
4853 udf_osta_charset(&osta_charspec);
4854
4855 if (dir_node->fe) {
4856 dir_size = udf_rw64(dir_node->fe->inf_len);
4857 icbtag = &dir_node->fe->icbtag;
4858 } else {
4859 dir_size = udf_rw64(dir_node->efe->inf_len);
4860 icbtag = &dir_node->efe->icbtag;
4861 }
4862
4863 icbflags = udf_rw16(icbtag->flags);
4864 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4865
4866 if (udf_node->fe) {
4867 unique_id = udf_rw64(udf_node->fe->unique_id);
4868 refcnt = udf_rw16(udf_node->fe->link_cnt);
4869 } else {
4870 unique_id = udf_rw64(udf_node->efe->unique_id);
4871 refcnt = udf_rw16(udf_node->efe->link_cnt);
4872 }
4873
4874 if (refcnt > 0) {
4875 unique_id = udf_advance_uniqueid(ump);
4876 udf_adjust_filecount(udf_node, 1);
4877 }
4878
4879 /* determine file characteristics */
4880 file_char = 0; /* visible non deleted file and not stream metadata */
4881 if (vap->va_type == VDIR)
4882 file_char = UDF_FILE_CHAR_DIR;
4883
4884 /* malloc scrap buffer */
4885 fid = malloc(lb_size, M_TEMP, M_WAITOK);
4886 bzero(fid, lb_size);
4887
4888 /* calculate _minimum_ fid size */
4889 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4890 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4891 fidsize = UDF_FID_SIZE + fid->l_fi;
4892 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
4893
4894 /* find position that will fit the FID */
4895 chosen_fid_pos = dir_size;
4896 chosen_size = 0;
4897 chosen_size_diff = UINT_MAX;
4898
4899 /* shut up gcc */
4900 dirent.d_namlen = 0;
4901
4902 /* search our dirhash hits */
4903 error = 0;
4904 dirh_ep = NULL;
4905 for (;;) {
4906 hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
4907 /* if no hit, abort the search */
4908 if (!hit)
4909 break;
4910
4911 /* check this hit for size */
4912 this_fidsize = dirh_ep->fid_size;
4913
4914 /* check this hit */
4915 fid_pos = dirh_ep->offset;
4916 end_fid_pos = fid_pos + this_fidsize;
4917 size_diff = this_fidsize - fidsize;
4918 lb_rest = lb_size - (end_fid_pos % lb_size);
4919
4920 #ifndef UDF_COMPLETE_DELETE
4921 /* transfer a new fid/dirent */
4922 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4923 if (error)
4924 goto error_out;
4925
4926 /* only reuse entries that are wiped */
4927 /* check if the len + loc are marked zero */
4928 if (udf_rw32(fid->icb.len != 0))
4929 continue;
4930 if (udf_rw32(fid->icb.loc.lb_num) != 0)
4931 continue;
4932 if (udf_rw16(fid->icb.loc.part_num != 0))
4933 continue;
4934 #endif /* UDF_COMPLETE_DELETE */
4935
4936 /* select if not splitting the tag and its smaller */
4937 if ((size_diff >= 0) &&
4938 (size_diff < chosen_size_diff) &&
4939 (lb_rest >= sizeof(struct desc_tag)))
4940 {
4941 /* UDF 2.3.4.2+3 specifies rules for iu size */
4942 if ((size_diff == 0) || (size_diff >= 32)) {
4943 chosen_fid_pos = fid_pos;
4944 chosen_size = this_fidsize;
4945 chosen_size_diff = size_diff;
4946 }
4947 }
4948 }
4949
4950
4951 /* extend directory if no other candidate found */
4952 if (chosen_size == 0) {
4953 chosen_fid_pos = dir_size;
4954 chosen_size = fidsize;
4955 chosen_size_diff = 0;
4956
4957 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4958 if (addr_type == UDF_ICB_INTERN_ALLOC) {
4959 /* pre-grow directory to see if we're to switch */
4960 udf_grow_node(dir_node, dir_size + chosen_size);
4961
4962 icbflags = udf_rw16(icbtag->flags);
4963 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4964 }
4965
4966 /* make sure the next fid desc_tag won't be splitted */
4967 if (addr_type != UDF_ICB_INTERN_ALLOC) {
4968 end_fid_pos = chosen_fid_pos + chosen_size;
4969 lb_rest = lb_size - (end_fid_pos % lb_size);
4970
4971 /* pad with implementation use regid if needed */
4972 if (lb_rest < sizeof(struct desc_tag))
4973 chosen_size += 32;
4974 }
4975 }
4976 chosen_size_diff = chosen_size - fidsize;
4977 diroffset = chosen_fid_pos + chosen_size;
4978
4979 /* populate the FID */
4980 memset(fid, 0, lb_size);
4981 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4982 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
4983 fid->file_char = file_char;
4984 fid->icb = udf_node->loc;
4985 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4986 fid->l_iu = udf_rw16(0);
4987
4988 if (chosen_size > fidsize) {
4989 /* insert implementation-use regid to space it correctly */
4990 fid->l_iu = udf_rw16(chosen_size_diff);
4991
4992 /* set implementation use */
4993 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4994 udf_add_impl_regid(ump, (struct regid *) fid->data);
4995 }
4996
4997 /* fill in name */
4998 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4999 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5000
5001 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
5002 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5003
5004 /* writeout FID/update parent directory */
5005 error = vn_rdwr(UIO_WRITE, dvp,
5006 fid, chosen_size, chosen_fid_pos,
5007 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5008 FSCRED, NULL, NULL);
5009
5010 if (error)
5011 goto error_out;
5012
5013 /* add reference counter in attached node */
5014 if (udf_node->fe) {
5015 refcnt = udf_rw16(udf_node->fe->link_cnt);
5016 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5017 } else {
5018 KASSERT(udf_node->efe);
5019 refcnt = udf_rw16(udf_node->efe->link_cnt);
5020 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5021 }
5022
5023 /* mark not deleted if it was... just in case, but do warn */
5024 if (udf_node->i_flags & IN_DELETED) {
5025 printf("udf: warning, marking a file undeleted\n");
5026 udf_node->i_flags &= ~IN_DELETED;
5027 }
5028
5029 if (file_char & UDF_FILE_CHAR_DIR) {
5030 /* add reference counter in directory node for '..' */
5031 if (dir_node->fe) {
5032 refcnt = udf_rw16(dir_node->fe->link_cnt);
5033 refcnt++;
5034 dir_node->fe->link_cnt = udf_rw16(refcnt);
5035 } else {
5036 KASSERT(dir_node->efe);
5037 refcnt = udf_rw16(dir_node->efe->link_cnt);
5038 refcnt++;
5039 dir_node->efe->link_cnt = udf_rw16(refcnt);
5040 }
5041 }
5042
5043 /* append to the dirhash */
5044 dirent.d_namlen = cnp->cn_namelen;
5045 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5046 udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
5047 udf_fidsize(fid), 1);
5048
5049 /* note updates */
5050 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5051 /* VN_KNOTE(udf_node, ...) */
5052 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5053
5054 error_out:
5055 free(fid, M_TEMP);
5056
5057 udf_dirhash_put(dir_node->dir_hash);
5058
5059 return error;
5060 }
5061
5062 /* --------------------------------------------------------------------- */
5063
5064 /*
5065 * Each node can have an attached streamdir node though not recursively. These
5066 * are otherwise known as named substreams/named extended attributes that have
5067 * no size limitations.
5068 *
5069 * `Normal' extended attributes are indicated with a number and are recorded
5070 * in either the fe/efe descriptor itself for small descriptors or recorded in
5071 * the attached extended attribute file. Since these spaces can get
5072 * fragmented, care ought to be taken.
5073 *
5074 * Since the size of the space reserved for allocation descriptors is limited,
5075 * there is a mechanim provided for extending this space; this is done by a
5076 * special extent to allow schrinking of the allocations without breaking the
5077 * linkage to the allocation extent descriptor.
5078 */
5079
5080 int
5081 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5082 struct udf_node **udf_noderes)
5083 {
5084 union dscrptr *dscr;
5085 struct udf_node *udf_node;
5086 struct vnode *nvp;
5087 struct long_ad icb_loc, last_fe_icb_loc;
5088 uint64_t file_size;
5089 uint32_t lb_size, sector, dummy;
5090 uint8_t *file_data;
5091 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5092 int slot, eof, error;
5093
5094 DPRINTF(NODE, ("udf_get_node called\n"));
5095 *udf_noderes = udf_node = NULL;
5096
5097 /* lock to disallow simultanious creation of same udf_node */
5098 mutex_enter(&ump->get_node_lock);
5099
5100 DPRINTF(NODE, ("\tlookup in hash table\n"));
5101 /* lookup in hash table */
5102 assert(ump);
5103 assert(node_icb_loc);
5104 udf_node = udf_hash_lookup(ump, node_icb_loc);
5105 if (udf_node) {
5106 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5107 /* vnode is returned locked */
5108 *udf_noderes = udf_node;
5109 mutex_exit(&ump->get_node_lock);
5110 return 0;
5111 }
5112
5113 /* garbage check: translate udf_node_icb_loc to sectornr */
5114 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5115 if (error) {
5116 /* no use, this will fail anyway */
5117 mutex_exit(&ump->get_node_lock);
5118 return EINVAL;
5119 }
5120
5121 /* build udf_node (do initialise!) */
5122 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5123 memset(udf_node, 0, sizeof(struct udf_node));
5124
5125 DPRINTF(NODE, ("\tget new vnode\n"));
5126 /* give it a vnode */
5127 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5128 if (error) {
5129 pool_put(&udf_node_pool, udf_node);
5130 mutex_exit(&ump->get_node_lock);
5131 return error;
5132 }
5133
5134 /* always return locked vnode */
5135 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5136 /* recycle vnode and unlock; simultanious will fail too */
5137 ungetnewvnode(nvp);
5138 mutex_exit(&ump->get_node_lock);
5139 return error;
5140 }
5141
5142 /* initialise crosslinks, note location of fe/efe for hashing */
5143 udf_node->ump = ump;
5144 udf_node->vnode = nvp;
5145 nvp->v_data = udf_node;
5146 udf_node->loc = *node_icb_loc;
5147 udf_node->lockf = 0;
5148 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5149 cv_init(&udf_node->node_lock, "udf_nlk");
5150 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5151 udf_node->outstanding_bufs = 0;
5152 udf_node->outstanding_nodedscr = 0;
5153
5154 /* insert into the hash lookup */
5155 udf_register_node(udf_node);
5156
5157 /* safe to unlock, the entry is in the hash table, vnode is locked */
5158 mutex_exit(&ump->get_node_lock);
5159
5160 icb_loc = *node_icb_loc;
5161 needs_indirect = 0;
5162 strat4096 = 0;
5163 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5164 file_size = 0;
5165 file_data = NULL;
5166 lb_size = udf_rw32(ump->logical_vol->lb_size);
5167
5168 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5169 do {
5170 /* try to read in fe/efe */
5171 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5172
5173 /* blank sector marks end of sequence, check this */
5174 if ((dscr == NULL) && (!strat4096))
5175 error = ENOENT;
5176
5177 /* break if read error or blank sector */
5178 if (error || (dscr == NULL))
5179 break;
5180
5181 /* process descriptor based on the descriptor type */
5182 dscr_type = udf_rw16(dscr->tag.id);
5183 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5184
5185 /* if dealing with an indirect entry, follow the link */
5186 if (dscr_type == TAGID_INDIRECTENTRY) {
5187 needs_indirect = 0;
5188 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5189 icb_loc = dscr->inde.indirect_icb;
5190 continue;
5191 }
5192
5193 /* only file entries and extended file entries allowed here */
5194 if ((dscr_type != TAGID_FENTRY) &&
5195 (dscr_type != TAGID_EXTFENTRY)) {
5196 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5197 error = ENOENT;
5198 break;
5199 }
5200
5201 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5202
5203 /* choose this one */
5204 last_fe_icb_loc = icb_loc;
5205
5206 /* record and process/update (ext)fentry */
5207 file_data = NULL;
5208 if (dscr_type == TAGID_FENTRY) {
5209 if (udf_node->fe)
5210 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5211 udf_node->fe);
5212 udf_node->fe = &dscr->fe;
5213 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5214 udf_file_type = udf_node->fe->icbtag.file_type;
5215 file_size = udf_rw64(udf_node->fe->inf_len);
5216 file_data = udf_node->fe->data;
5217 } else {
5218 if (udf_node->efe)
5219 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5220 udf_node->efe);
5221 udf_node->efe = &dscr->efe;
5222 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5223 udf_file_type = udf_node->efe->icbtag.file_type;
5224 file_size = udf_rw64(udf_node->efe->inf_len);
5225 file_data = udf_node->efe->data;
5226 }
5227
5228 /* check recording strategy (structure) */
5229
5230 /*
5231 * Strategy 4096 is a daisy linked chain terminating with an
5232 * unrecorded sector or a TERM descriptor. The next
5233 * descriptor is to be found in the sector that follows the
5234 * current sector.
5235 */
5236 if (strat == 4096) {
5237 strat4096 = 1;
5238 needs_indirect = 1;
5239
5240 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5241 }
5242
5243 /*
5244 * Strategy 4 is the normal strategy and terminates, but if
5245 * we're in strategy 4096, we can't have strategy 4 mixed in
5246 */
5247
5248 if (strat == 4) {
5249 if (strat4096) {
5250 error = EINVAL;
5251 break;
5252 }
5253 break; /* done */
5254 }
5255 } while (!error);
5256
5257 /* first round of cleanup code */
5258 if (error) {
5259 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5260 /* recycle udf_node */
5261 udf_dispose_node(udf_node);
5262
5263 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5264 nvp->v_data = NULL;
5265 ungetnewvnode(nvp);
5266
5267 return EINVAL; /* error code ok? */
5268 }
5269 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5270
5271 /* assert no references to dscr anymore beyong this point */
5272 assert((udf_node->fe) || (udf_node->efe));
5273 dscr = NULL;
5274
5275 /*
5276 * Remember where to record an updated version of the descriptor. If
5277 * there is a sequence of indirect entries, icb_loc will have been
5278 * updated. Its the write disipline to allocate new space and to make
5279 * sure the chain is maintained.
5280 *
5281 * `needs_indirect' flags if the next location is to be filled with
5282 * with an indirect entry.
5283 */
5284 udf_node->write_loc = icb_loc;
5285 udf_node->needs_indirect = needs_indirect;
5286
5287 /*
5288 * Go trough all allocations extents of this descriptor and when
5289 * encountering a redirect read in the allocation extension. These are
5290 * daisy-chained.
5291 */
5292 UDF_LOCK_NODE(udf_node, 0);
5293 udf_node->num_extensions = 0;
5294
5295 error = 0;
5296 slot = 0;
5297 for (;;) {
5298 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5299 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5300 "lb_num = %d, part = %d\n", slot, eof,
5301 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5302 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5303 udf_rw32(icb_loc.loc.lb_num),
5304 udf_rw16(icb_loc.loc.part_num)));
5305 if (eof)
5306 break;
5307 slot++;
5308
5309 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5310 continue;
5311
5312 DPRINTF(NODE, ("\tgot redirect extent\n"));
5313 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5314 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5315 "too many allocation extensions on "
5316 "udf_node\n"));
5317 error = EINVAL;
5318 break;
5319 }
5320
5321 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5322 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5323 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5324 "extension size in udf_node\n"));
5325 error = EINVAL;
5326 break;
5327 }
5328
5329 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5330 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5331 /* load in allocation extent */
5332 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5333 if (error || (dscr == NULL))
5334 break;
5335
5336 /* process read-in descriptor */
5337 dscr_type = udf_rw16(dscr->tag.id);
5338
5339 if (dscr_type != TAGID_ALLOCEXTENT) {
5340 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5341 error = ENOENT;
5342 break;
5343 }
5344
5345 DPRINTF(NODE, ("\trecording redirect extent\n"));
5346 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5347 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5348
5349 udf_node->num_extensions++;
5350
5351 } /* while */
5352 UDF_UNLOCK_NODE(udf_node, 0);
5353
5354 /* second round of cleanup code */
5355 if (error) {
5356 /* recycle udf_node */
5357 udf_dispose_node(udf_node);
5358
5359 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5360 nvp->v_data = NULL;
5361 ungetnewvnode(nvp);
5362
5363 return EINVAL; /* error code ok? */
5364 }
5365
5366 DPRINTF(NODE, ("\tnode read in fine\n"));
5367
5368 /*
5369 * Translate UDF filetypes into vnode types.
5370 *
5371 * Systemfiles like the meta main and mirror files are not treated as
5372 * normal files, so we type them as having no type. UDF dictates that
5373 * they are not allowed to be visible.
5374 */
5375
5376 switch (udf_file_type) {
5377 case UDF_ICB_FILETYPE_DIRECTORY :
5378 case UDF_ICB_FILETYPE_STREAMDIR :
5379 nvp->v_type = VDIR;
5380 break;
5381 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5382 nvp->v_type = VBLK;
5383 break;
5384 case UDF_ICB_FILETYPE_CHARDEVICE :
5385 nvp->v_type = VCHR;
5386 break;
5387 case UDF_ICB_FILETYPE_SOCKET :
5388 nvp->v_type = VSOCK;
5389 break;
5390 case UDF_ICB_FILETYPE_FIFO :
5391 nvp->v_type = VFIFO;
5392 break;
5393 case UDF_ICB_FILETYPE_SYMLINK :
5394 nvp->v_type = VLNK;
5395 break;
5396 case UDF_ICB_FILETYPE_VAT :
5397 case UDF_ICB_FILETYPE_META_MAIN :
5398 case UDF_ICB_FILETYPE_META_MIRROR :
5399 nvp->v_type = VNON;
5400 break;
5401 case UDF_ICB_FILETYPE_RANDOMACCESS :
5402 case UDF_ICB_FILETYPE_REALTIME :
5403 nvp->v_type = VREG;
5404 break;
5405 default:
5406 /* YIKES, something else */
5407 nvp->v_type = VNON;
5408 }
5409
5410 /* TODO specfs, fifofs etc etc. vnops setting */
5411
5412 /* don't forget to set vnode's v_size */
5413 uvm_vnp_setsize(nvp, file_size);
5414
5415 /* TODO ext attr and streamdir udf_nodes */
5416
5417 *udf_noderes = udf_node;
5418
5419 return 0;
5420 }
5421
5422 /* --------------------------------------------------------------------- */
5423
5424 int
5425 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5426 {
5427 union dscrptr *dscr;
5428 struct long_ad *loc;
5429 int extnr, flags, error;
5430
5431 DPRINTF(NODE, ("udf_writeout_node called\n"));
5432
5433 KASSERT(udf_node->outstanding_bufs == 0);
5434 KASSERT(udf_node->outstanding_nodedscr == 0);
5435
5436 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5437
5438 if (udf_node->i_flags & IN_DELETED) {
5439 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5440 return 0;
5441 }
5442
5443 /* lock node */
5444 flags = waitfor ? 0 : IN_CALLBACK_ULK;
5445 UDF_LOCK_NODE(udf_node, flags);
5446
5447 /* at least one descriptor writeout */
5448 udf_node->outstanding_nodedscr = 1;
5449
5450 /* we're going to write out the descriptor so clear the flags */
5451 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5452
5453 /* if we were rebuild, write out the allocation extents */
5454 if (udf_node->i_flags & IN_NODE_REBUILD) {
5455 /* mark outstanding node descriptors and issue them */
5456 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5457 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5458 loc = &udf_node->ext_loc[extnr];
5459 dscr = (union dscrptr *) udf_node->ext[extnr];
5460 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5461 if (error)
5462 return error;
5463 }
5464 /* mark allocation extents written out */
5465 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5466 }
5467
5468 if (udf_node->fe) {
5469 KASSERT(udf_node->efe == NULL);
5470 dscr = (union dscrptr *) udf_node->fe;
5471 } else {
5472 KASSERT(udf_node->efe);
5473 KASSERT(udf_node->fe == NULL);
5474 dscr = (union dscrptr *) udf_node->efe;
5475 }
5476 KASSERT(dscr);
5477
5478 loc = &udf_node->write_loc;
5479 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5480 return error;
5481 }
5482
5483 /* --------------------------------------------------------------------- */
5484
5485 int
5486 udf_dispose_node(struct udf_node *udf_node)
5487 {
5488 struct vnode *vp;
5489 int extnr;
5490
5491 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5492 if (!udf_node) {
5493 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5494 return 0;
5495 }
5496
5497 vp = udf_node->vnode;
5498 #ifdef DIAGNOSTIC
5499 if (vp->v_numoutput)
5500 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5501 "v_numoutput = %d", udf_node, vp->v_numoutput);
5502 #endif
5503
5504 /* wait until out of sync (just in case we happen to stumble over one */
5505 KASSERT(!mutex_owned(&mntvnode_lock));
5506 mutex_enter(&mntvnode_lock);
5507 while (udf_node->i_flags & IN_SYNCED) {
5508 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5509 hz/16);
5510 }
5511 mutex_exit(&mntvnode_lock);
5512
5513 /* TODO extended attributes and streamdir */
5514
5515 /* remove dirhash if present */
5516 udf_dirhash_destroy(&udf_node->dir_hash);
5517
5518 /* remove from our hash lookup table */
5519 udf_deregister_node(udf_node);
5520
5521 /* destroy our lock */
5522 mutex_destroy(&udf_node->node_mutex);
5523 cv_destroy(&udf_node->node_lock);
5524
5525 /* dissociate our udf_node from the vnode */
5526 genfs_node_destroy(udf_node->vnode);
5527 vp->v_data = NULL;
5528
5529 /* free associated memory and the node itself */
5530 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5531 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5532 udf_node->ext[extnr]);
5533 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5534 }
5535
5536 if (udf_node->fe)
5537 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5538 udf_node->fe);
5539 if (udf_node->efe)
5540 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5541 udf_node->efe);
5542
5543 udf_node->fe = (void *) 0xdeadaaaa;
5544 udf_node->efe = (void *) 0xdeadbbbb;
5545 udf_node->ump = (void *) 0xdeadbeef;
5546 pool_put(&udf_node_pool, udf_node);
5547
5548 return 0;
5549 }
5550
5551
5552
5553 /*
5554 * create a new node using the specified vnodeops, vap and cnp but with the
5555 * udf_file_type. This allows special files to be created. Use with care.
5556 */
5557
5558 static int
5559 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5560 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5561 {
5562 union dscrptr *dscr;
5563 struct udf_node *dir_node = VTOI(dvp);;
5564 struct udf_node *udf_node;
5565 struct udf_mount *ump = dir_node->ump;
5566 struct vnode *nvp;
5567 struct long_ad node_icb_loc;
5568 uint64_t parent_unique_id;
5569 uint64_t lmapping;
5570 uint32_t lb_size, lb_num;
5571 uint16_t vpart_num;
5572 uid_t uid;
5573 gid_t gid, parent_gid;
5574 int fid_size, error;
5575
5576 lb_size = udf_rw32(ump->logical_vol->lb_size);
5577 *vpp = NULL;
5578
5579 /* allocate vnode */
5580 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5581 if (error)
5582 return error;
5583
5584 /* lock node */
5585 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5586 if (error) {
5587 nvp->v_data = NULL;
5588 ungetnewvnode(nvp);
5589 return error;
5590 }
5591
5592 /* get disc allocation for one logical block */
5593 vpart_num = ump->node_part;
5594 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5595 vpart_num, &lmapping);
5596 lb_num = lmapping;
5597 if (error) {
5598 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5599 ungetnewvnode(nvp);
5600 return error;
5601 }
5602
5603 /* initialise pointer to location */
5604 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5605 node_icb_loc.len = lb_size;
5606 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5607 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5608
5609 /* build udf_node (do initialise!) */
5610 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5611 memset(udf_node, 0, sizeof(struct udf_node));
5612
5613 /* initialise crosslinks, note location of fe/efe for hashing */
5614 /* bugalert: synchronise with udf_get_node() */
5615 udf_node->ump = ump;
5616 udf_node->vnode = nvp;
5617 nvp->v_data = udf_node;
5618 udf_node->loc = node_icb_loc;
5619 udf_node->write_loc = node_icb_loc;
5620 udf_node->lockf = 0;
5621 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5622 cv_init(&udf_node->node_lock, "udf_nlk");
5623 udf_node->outstanding_bufs = 0;
5624 udf_node->outstanding_nodedscr = 0;
5625
5626 /* initialise genfs */
5627 genfs_node_init(nvp, &udf_genfsops);
5628
5629 /* insert into the hash lookup */
5630 udf_register_node(udf_node);
5631
5632 /* get parent's unique ID for refering '..' if its a directory */
5633 if (dir_node->fe) {
5634 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5635 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5636 } else {
5637 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5638 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5639 }
5640
5641 /* get descriptor */
5642 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5643
5644 /* choose a fe or an efe for it */
5645 if (ump->logical_vol->tag.descriptor_ver == 2) {
5646 udf_node->fe = &dscr->fe;
5647 fid_size = udf_create_new_fe(ump, udf_node->fe,
5648 udf_file_type, &udf_node->loc,
5649 &dir_node->loc, parent_unique_id);
5650 /* TODO add extended attribute for creation time */
5651 } else {
5652 udf_node->efe = &dscr->efe;
5653 fid_size = udf_create_new_efe(ump, udf_node->efe,
5654 udf_file_type, &udf_node->loc,
5655 &dir_node->loc, parent_unique_id);
5656 }
5657 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5658
5659 /* update vnode's size and type */
5660 nvp->v_type = vap->va_type;
5661 uvm_vnp_setsize(nvp, fid_size);
5662
5663 /* set access mode */
5664 udf_setaccessmode(udf_node, vap->va_mode);
5665
5666 /* set ownership */
5667 uid = kauth_cred_geteuid(cnp->cn_cred);
5668 gid = parent_gid;
5669 udf_setownership(udf_node, uid, gid);
5670
5671 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5672 if (error) {
5673 /* free disc allocation for node */
5674 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5675
5676 /* recycle udf_node */
5677 udf_dispose_node(udf_node);
5678 vput(nvp);
5679
5680 *vpp = NULL;
5681 return error;
5682 }
5683
5684 /* adjust file count */
5685 udf_adjust_filecount(udf_node, 1);
5686
5687 /* return result */
5688 *vpp = nvp;
5689
5690 return 0;
5691 }
5692
5693
5694 int
5695 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5696 struct componentname *cnp)
5697 {
5698 int (**vnodeops)(void *);
5699 int udf_file_type;
5700
5701 DPRINTF(NODE, ("udf_create_node called\n"));
5702
5703 /* what type are we creating ? */
5704 vnodeops = udf_vnodeop_p;
5705 /* start with a default */
5706 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5707
5708 *vpp = NULL;
5709
5710 switch (vap->va_type) {
5711 case VREG :
5712 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5713 break;
5714 case VDIR :
5715 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5716 break;
5717 case VLNK :
5718 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5719 break;
5720 case VBLK :
5721 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5722 /* specfs */
5723 return ENOTSUP;
5724 break;
5725 case VCHR :
5726 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5727 /* specfs */
5728 return ENOTSUP;
5729 break;
5730 case VFIFO :
5731 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5732 /* specfs */
5733 return ENOTSUP;
5734 break;
5735 case VSOCK :
5736 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5737 /* specfs */
5738 return ENOTSUP;
5739 break;
5740 case VNON :
5741 case VBAD :
5742 default :
5743 /* nothing; can we even create these? */
5744 return EINVAL;
5745 }
5746
5747 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5748 }
5749
5750 /* --------------------------------------------------------------------- */
5751
5752 static void
5753 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5754 {
5755 struct udf_mount *ump = udf_node->ump;
5756 uint32_t lb_size, lb_num, len, num_lb;
5757 uint16_t vpart_num;
5758
5759 /* is there really one? */
5760 if (mem == NULL)
5761 return;
5762
5763 /* got a descriptor here */
5764 len = UDF_EXT_LEN(udf_rw32(loc->len));
5765 lb_num = udf_rw32(loc->loc.lb_num);
5766 vpart_num = udf_rw16(loc->loc.part_num);
5767
5768 lb_size = udf_rw32(ump->logical_vol->lb_size);
5769 num_lb = (len + lb_size -1) / lb_size;
5770
5771 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5772 }
5773
5774 void
5775 udf_delete_node(struct udf_node *udf_node)
5776 {
5777 void *dscr;
5778 struct udf_mount *ump;
5779 struct long_ad *loc;
5780 int extnr, lvint, dummy;
5781
5782 ump = udf_node->ump;
5783
5784 /* paranoia check on integrity; should be open!; we could panic */
5785 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5786 if (lvint == UDF_INTEGRITY_CLOSED)
5787 printf("\tIntegrity was CLOSED!\n");
5788
5789 /* whatever the node type, change its size to zero */
5790 (void) udf_resize_node(udf_node, 0, &dummy);
5791
5792 /* force it to be `clean'; no use writing it out */
5793 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5794 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5795
5796 /* adjust file count */
5797 udf_adjust_filecount(udf_node, -1);
5798
5799 /*
5800 * Free its allocated descriptors; memory will be released when
5801 * vop_reclaim() is called.
5802 */
5803 loc = &udf_node->loc;
5804
5805 dscr = udf_node->fe;
5806 udf_free_descriptor_space(udf_node, loc, dscr);
5807 dscr = udf_node->efe;
5808 udf_free_descriptor_space(udf_node, loc, dscr);
5809
5810 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5811 dscr = udf_node->ext[extnr];
5812 loc = &udf_node->ext_loc[extnr];
5813 udf_free_descriptor_space(udf_node, loc, dscr);
5814 }
5815 }
5816
5817 /* --------------------------------------------------------------------- */
5818
5819 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5820 int
5821 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5822 {
5823 struct file_entry *fe = udf_node->fe;
5824 struct extfile_entry *efe = udf_node->efe;
5825 uint64_t file_size;
5826 int error;
5827
5828 if (fe) {
5829 file_size = udf_rw64(fe->inf_len);
5830 } else {
5831 assert(udf_node->efe);
5832 file_size = udf_rw64(efe->inf_len);
5833 }
5834
5835 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5836 file_size, new_size));
5837
5838 /* if not changing, we're done */
5839 if (file_size == new_size)
5840 return 0;
5841
5842 *extended = (new_size > file_size);
5843 if (*extended) {
5844 error = udf_grow_node(udf_node, new_size);
5845 } else {
5846 error = udf_shrink_node(udf_node, new_size);
5847 }
5848
5849 return error;
5850 }
5851
5852
5853 /* --------------------------------------------------------------------- */
5854
5855 void
5856 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5857 struct timespec *mod, struct timespec *birth)
5858 {
5859 struct timespec now;
5860 struct file_entry *fe;
5861 struct extfile_entry *efe;
5862 struct filetimes_extattr_entry *ft_extattr;
5863 struct timestamp *atime, *mtime, *attrtime, *ctime;
5864 struct timestamp fe_ctime;
5865 struct timespec cur_birth;
5866 uint32_t offset, a_l;
5867 uint8_t *filedata;
5868 int error;
5869
5870 /* protect against rogue values */
5871 if (!udf_node)
5872 return;
5873
5874 fe = udf_node->fe;
5875 efe = udf_node->efe;
5876
5877 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5878 return;
5879
5880 /* get descriptor information */
5881 if (fe) {
5882 atime = &fe->atime;
5883 mtime = &fe->mtime;
5884 attrtime = &fe->attrtime;
5885 filedata = fe->data;
5886
5887 /* initial save dummy setting */
5888 ctime = &fe_ctime;
5889
5890 /* check our extended attribute if present */
5891 error = udf_extattr_search_intern(udf_node,
5892 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5893 if (!error) {
5894 ft_extattr = (struct filetimes_extattr_entry *)
5895 (filedata + offset);
5896 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5897 ctime = &ft_extattr->times[0];
5898 }
5899 /* TODO create the extended attribute if not found ? */
5900 } else {
5901 assert(udf_node->efe);
5902 atime = &efe->atime;
5903 mtime = &efe->mtime;
5904 attrtime = &efe->attrtime;
5905 ctime = &efe->ctime;
5906 }
5907
5908 vfs_timestamp(&now);
5909
5910 /* set access time */
5911 if (udf_node->i_flags & IN_ACCESS) {
5912 if (acc == NULL)
5913 acc = &now;
5914 udf_timespec_to_timestamp(acc, atime);
5915 }
5916
5917 /* set modification time */
5918 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5919 if (mod == NULL)
5920 mod = &now;
5921 udf_timespec_to_timestamp(mod, mtime);
5922
5923 /* ensure birthtime is older than set modification! */
5924 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5925 if ((cur_birth.tv_sec > mod->tv_sec) ||
5926 ((cur_birth.tv_sec == mod->tv_sec) &&
5927 (cur_birth.tv_nsec > mod->tv_nsec))) {
5928 udf_timespec_to_timestamp(mod, ctime);
5929 }
5930 }
5931
5932 /* update birthtime if specified */
5933 /* XXX we asume here that given birthtime is older than mod */
5934 if (birth && (birth->tv_sec != VNOVAL)) {
5935 udf_timespec_to_timestamp(birth, ctime);
5936 }
5937
5938 /* set change time */
5939 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5940 udf_timespec_to_timestamp(&now, attrtime);
5941
5942 /* notify updates to the node itself */
5943 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5944 udf_node->i_flags |= IN_ACCESSED;
5945 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5946 udf_node->i_flags |= IN_MODIFIED;
5947
5948 /* clear modification flags */
5949 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5950 }
5951
5952 /* --------------------------------------------------------------------- */
5953
5954 int
5955 udf_update(struct vnode *vp, struct timespec *acc,
5956 struct timespec *mod, struct timespec *birth, int updflags)
5957 {
5958 union dscrptr *dscrptr;
5959 struct udf_node *udf_node = VTOI(vp);
5960 struct udf_mount *ump = udf_node->ump;
5961 struct regid *impl_id;
5962 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5963 int waitfor, flags;
5964
5965 #ifdef DEBUG
5966 char bits[128];
5967 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5968 updflags));
5969 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5970 DPRINTF(CALL, ("\tnode flags %s\n", bits));
5971 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5972 #endif
5973
5974 /* set our times */
5975 udf_itimes(udf_node, acc, mod, birth);
5976
5977 /* set our implementation id */
5978 if (udf_node->fe) {
5979 dscrptr = (union dscrptr *) udf_node->fe;
5980 impl_id = &udf_node->fe->imp_id;
5981 } else {
5982 dscrptr = (union dscrptr *) udf_node->efe;
5983 impl_id = &udf_node->efe->imp_id;
5984 }
5985
5986 /* set our ID */
5987 udf_set_regid(impl_id, IMPL_NAME);
5988 udf_add_impl_regid(ump, impl_id);
5989
5990 /* update our crc! on RMW we are not allowed to change a thing */
5991 udf_validate_tag_and_crc_sums(dscrptr);
5992
5993 /* if called when mounted readonly, never write back */
5994 if (vp->v_mount->mnt_flag & MNT_RDONLY)
5995 return 0;
5996
5997 /* check if the node is dirty 'enough'*/
5998 if (updflags & UPDATE_CLOSE) {
5999 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
6000 } else {
6001 flags = udf_node->i_flags & IN_MODIFIED;
6002 }
6003 if (flags == 0)
6004 return 0;
6005
6006 /* determine if we need to write sync or async */
6007 waitfor = 0;
6008 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6009 /* sync mounted */
6010 waitfor = updflags & UPDATE_WAIT;
6011 if (updflags & UPDATE_DIROP)
6012 waitfor |= UPDATE_WAIT;
6013 }
6014 if (waitfor)
6015 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6016
6017 return 0;
6018 }
6019
6020
6021 /* --------------------------------------------------------------------- */
6022
6023
6024 /*
6025 * Read one fid and process it into a dirent and advance to the next (*fid)
6026 * has to be allocated a logical block in size, (*dirent) struct dirent length
6027 */
6028
6029 int
6030 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6031 struct fileid_desc *fid, struct dirent *dirent)
6032 {
6033 struct udf_node *dir_node = VTOI(vp);
6034 struct udf_mount *ump = dir_node->ump;
6035 struct file_entry *fe = dir_node->fe;
6036 struct extfile_entry *efe = dir_node->efe;
6037 uint32_t fid_size, lb_size;
6038 uint64_t file_size;
6039 char *fid_name;
6040 int enough, error;
6041
6042 assert(fid);
6043 assert(dirent);
6044 assert(dir_node);
6045 assert(offset);
6046 assert(*offset != 1);
6047
6048 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6049 /* check if we're past the end of the directory */
6050 if (fe) {
6051 file_size = udf_rw64(fe->inf_len);
6052 } else {
6053 assert(dir_node->efe);
6054 file_size = udf_rw64(efe->inf_len);
6055 }
6056 if (*offset >= file_size)
6057 return EINVAL;
6058
6059 /* get maximum length of FID descriptor */
6060 lb_size = udf_rw32(ump->logical_vol->lb_size);
6061
6062 /* initialise return values */
6063 fid_size = 0;
6064 memset(dirent, 0, sizeof(struct dirent));
6065 memset(fid, 0, lb_size);
6066
6067 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6068 if (!enough) {
6069 /* short dir ... */
6070 return EIO;
6071 }
6072
6073 error = vn_rdwr(UIO_READ, vp,
6074 fid, MIN(file_size - (*offset), lb_size), *offset,
6075 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6076 NULL, NULL);
6077 if (error)
6078 return error;
6079
6080 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6081 /*
6082 * Check if we got a whole descriptor.
6083 * TODO Try to `resync' directory stream when something is very wrong.
6084 */
6085
6086 /* check if our FID header is OK */
6087 error = udf_check_tag(fid);
6088 if (error) {
6089 goto brokendir;
6090 }
6091 DPRINTF(FIDS, ("\ttag check ok\n"));
6092
6093 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6094 error = EIO;
6095 goto brokendir;
6096 }
6097 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6098
6099 /* check for length */
6100 fid_size = udf_fidsize(fid);
6101 enough = (file_size - (*offset) >= fid_size);
6102 if (!enough) {
6103 error = EIO;
6104 goto brokendir;
6105 }
6106 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6107
6108 /* check FID contents */
6109 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6110 brokendir:
6111 if (error) {
6112 /* note that is sometimes a bit quick to report */
6113 printf("BROKEN DIRECTORY ENTRY\n");
6114 /* RESYNC? */
6115 /* TODO: use udf_resync_fid_stream */
6116 return EIO;
6117 }
6118 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6119
6120 /* we got a whole and valid descriptor! */
6121 DPRINTF(FIDS, ("\tinterpret FID\n"));
6122
6123 /* create resulting dirent structure */
6124 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6125 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6126 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6127
6128 /* '..' has no name, so provide one */
6129 if (fid->file_char & UDF_FILE_CHAR_PAR)
6130 strcpy(dirent->d_name, "..");
6131
6132 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
6133 dirent->d_namlen = strlen(dirent->d_name);
6134 dirent->d_reclen = _DIRENT_SIZE(dirent);
6135
6136 /*
6137 * Note that its not worth trying to go for the filetypes now... its
6138 * too expensive too
6139 */
6140 dirent->d_type = DT_UNKNOWN;
6141
6142 /* initial guess for filetype we can make */
6143 if (fid->file_char & UDF_FILE_CHAR_DIR)
6144 dirent->d_type = DT_DIR;
6145
6146 /* advance */
6147 *offset += fid_size;
6148
6149 return error;
6150 }
6151
6152
6153 /* --------------------------------------------------------------------- */
6154
6155 static void
6156 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6157 int pass, int *ndirty)
6158 {
6159 struct udf_node *udf_node, *n_udf_node;
6160 struct vnode *vp;
6161 int vdirty, error;
6162 int on_type, on_flags, on_vnode;
6163
6164 derailed:
6165 KASSERT(mutex_owned(&mntvnode_lock));
6166
6167 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6168 udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6169 for (;udf_node; udf_node = n_udf_node) {
6170 DPRINTF(SYNC, ("."));
6171
6172 udf_node->i_flags &= ~IN_SYNCED;
6173 vp = udf_node->vnode;
6174
6175 mutex_enter(&vp->v_interlock);
6176 n_udf_node = LIST_NEXT(udf_node, sortchain);
6177 if (n_udf_node)
6178 n_udf_node->i_flags |= IN_SYNCED;
6179
6180 /* system nodes are not synced this way */
6181 if (vp->v_vflag & VV_SYSTEM) {
6182 mutex_exit(&vp->v_interlock);
6183 continue;
6184 }
6185
6186 /* check if its dirty enough to even try */
6187 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6188 on_flags = ((udf_node->i_flags &
6189 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6190 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6191 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6192 if (on_type || (on_flags || on_vnode)) { /* XXX */
6193 /* not dirty (enough?) */
6194 mutex_exit(&vp->v_interlock);
6195 continue;
6196 }
6197
6198 mutex_exit(&mntvnode_lock);
6199 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6200 if (error) {
6201 mutex_enter(&mntvnode_lock);
6202 if (error == ENOENT)
6203 goto derailed;
6204 *ndirty += 1;
6205 continue;
6206 }
6207
6208 switch (pass) {
6209 case 1:
6210 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6211 break;
6212 case 2:
6213 vdirty = vp->v_numoutput;
6214 if (vp->v_tag == VT_UDF)
6215 vdirty += udf_node->outstanding_bufs +
6216 udf_node->outstanding_nodedscr;
6217 if (vdirty == 0)
6218 VOP_FSYNC(vp, cred, 0,0,0);
6219 *ndirty += vdirty;
6220 break;
6221 case 3:
6222 vdirty = vp->v_numoutput;
6223 if (vp->v_tag == VT_UDF)
6224 vdirty += udf_node->outstanding_bufs +
6225 udf_node->outstanding_nodedscr;
6226 *ndirty += vdirty;
6227 break;
6228 }
6229
6230 vput(vp);
6231 mutex_enter(&mntvnode_lock);
6232 }
6233 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6234 }
6235
6236
6237 void
6238 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6239 {
6240 int dummy, ndirty;
6241
6242 mutex_enter(&mntvnode_lock);
6243 recount:
6244 dummy = 0;
6245 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6246 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6247 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6248
6249 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6250 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6251 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6252
6253 if (waitfor == MNT_WAIT) {
6254 ndirty = ump->devvp->v_numoutput;
6255 DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
6256 ndirty));
6257 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6258 DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
6259 ndirty));
6260
6261 if (ndirty) {
6262 /* 1/4 second wait */
6263 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6264 hz/4);
6265 goto recount;
6266 }
6267 }
6268
6269 mutex_exit(&mntvnode_lock);
6270 }
6271
6272 /* --------------------------------------------------------------------- */
6273
6274 /*
6275 * Read and write file extent in/from the buffer.
6276 *
6277 * The splitup of the extent into seperate request-buffers is to minimise
6278 * copying around as much as possible.
6279 *
6280 * block based file reading and writing
6281 */
6282
6283 static int
6284 udf_read_internal(struct udf_node *node, uint8_t *blob)
6285 {
6286 struct udf_mount *ump;
6287 struct file_entry *fe = node->fe;
6288 struct extfile_entry *efe = node->efe;
6289 uint64_t inflen;
6290 uint32_t sector_size;
6291 uint8_t *pos;
6292 int icbflags, addr_type;
6293
6294 /* get extent and do some paranoia checks */
6295 ump = node->ump;
6296 sector_size = ump->discinfo.sector_size;
6297
6298 if (fe) {
6299 inflen = udf_rw64(fe->inf_len);
6300 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6301 icbflags = udf_rw16(fe->icbtag.flags);
6302 } else {
6303 assert(node->efe);
6304 inflen = udf_rw64(efe->inf_len);
6305 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6306 icbflags = udf_rw16(efe->icbtag.flags);
6307 }
6308 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6309
6310 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6311 assert(inflen < sector_size);
6312
6313 /* copy out info */
6314 memset(blob, 0, sector_size);
6315 memcpy(blob, pos, inflen);
6316
6317 return 0;
6318 }
6319
6320
6321 static int
6322 udf_write_internal(struct udf_node *node, uint8_t *blob)
6323 {
6324 struct udf_mount *ump;
6325 struct file_entry *fe = node->fe;
6326 struct extfile_entry *efe = node->efe;
6327 uint64_t inflen;
6328 uint32_t sector_size;
6329 uint8_t *pos;
6330 int icbflags, addr_type;
6331
6332 /* get extent and do some paranoia checks */
6333 ump = node->ump;
6334 sector_size = ump->discinfo.sector_size;
6335
6336 if (fe) {
6337 inflen = udf_rw64(fe->inf_len);
6338 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6339 icbflags = udf_rw16(fe->icbtag.flags);
6340 } else {
6341 assert(node->efe);
6342 inflen = udf_rw64(efe->inf_len);
6343 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6344 icbflags = udf_rw16(efe->icbtag.flags);
6345 }
6346 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6347
6348 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6349 assert(inflen < sector_size);
6350
6351 /* copy in blob */
6352 /* memset(pos, 0, inflen); */
6353 memcpy(pos, blob, inflen);
6354
6355 return 0;
6356 }
6357
6358
6359 void
6360 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6361 {
6362 struct buf *nestbuf;
6363 struct udf_mount *ump = udf_node->ump;
6364 uint64_t *mapping;
6365 uint64_t run_start;
6366 uint32_t sector_size;
6367 uint32_t buf_offset, sector, rbuflen, rblk;
6368 uint32_t from, lblkno;
6369 uint32_t sectors;
6370 uint8_t *buf_pos;
6371 int error, run_length, isdir, what;
6372
6373 sector_size = udf_node->ump->discinfo.sector_size;
6374
6375 from = buf->b_blkno;
6376 sectors = buf->b_bcount / sector_size;
6377
6378 isdir = (udf_node->vnode->v_type == VDIR);
6379 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6380
6381 /* assure we have enough translation slots */
6382 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6383 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6384
6385 if (sectors > UDF_MAX_MAPPINGS) {
6386 printf("udf_read_filebuf: implementation limit on bufsize\n");
6387 buf->b_error = EIO;
6388 biodone(buf);
6389 return;
6390 }
6391
6392 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6393
6394 error = 0;
6395 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6396 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6397 if (error) {
6398 buf->b_error = error;
6399 biodone(buf);
6400 goto out;
6401 }
6402 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6403
6404 /* pre-check if its an internal */
6405 if (*mapping == UDF_TRANS_INTERN) {
6406 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6407 if (error)
6408 buf->b_error = error;
6409 biodone(buf);
6410 goto out;
6411 }
6412 DPRINTF(READ, ("\tnot intern\n"));
6413
6414 #ifdef DEBUG
6415 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6416 printf("Returned translation table:\n");
6417 for (sector = 0; sector < sectors; sector++) {
6418 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6419 }
6420 }
6421 #endif
6422
6423 /* request read-in of data from disc sheduler */
6424 buf->b_resid = buf->b_bcount;
6425 for (sector = 0; sector < sectors; sector++) {
6426 buf_offset = sector * sector_size;
6427 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6428 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6429
6430 /* check if its zero or unmapped to stop reading */
6431 switch (mapping[sector]) {
6432 case UDF_TRANS_UNMAPPED:
6433 case UDF_TRANS_ZERO:
6434 /* copy zero sector TODO runlength like below */
6435 memset(buf_pos, 0, sector_size);
6436 DPRINTF(READ, ("\treturning zero sector\n"));
6437 nestiobuf_done(buf, sector_size, 0);
6438 break;
6439 default :
6440 DPRINTF(READ, ("\tread sector "
6441 "%"PRIu64"\n", mapping[sector]));
6442
6443 lblkno = from + sector;
6444 run_start = mapping[sector];
6445 run_length = 1;
6446 while (sector < sectors-1) {
6447 if (mapping[sector+1] != mapping[sector]+1)
6448 break;
6449 run_length++;
6450 sector++;
6451 }
6452
6453 /*
6454 * nest an iobuf and mark it for async reading. Since
6455 * we're using nested buffers, they can't be cached by
6456 * design.
6457 */
6458 rbuflen = run_length * sector_size;
6459 rblk = run_start * (sector_size/DEV_BSIZE);
6460
6461 nestbuf = getiobuf(NULL, true);
6462 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6463 /* nestbuf is B_ASYNC */
6464
6465 /* identify this nestbuf */
6466 nestbuf->b_lblkno = lblkno;
6467 assert(nestbuf->b_vp == udf_node->vnode);
6468
6469 /* CD shedules on raw blkno */
6470 nestbuf->b_blkno = rblk;
6471 nestbuf->b_proc = NULL;
6472 nestbuf->b_rawblkno = rblk;
6473 nestbuf->b_udf_c_type = what;
6474
6475 udf_discstrat_queuebuf(ump, nestbuf);
6476 }
6477 }
6478 out:
6479 /* if we're synchronously reading, wait for the completion */
6480 if ((buf->b_flags & B_ASYNC) == 0)
6481 biowait(buf);
6482
6483 DPRINTF(READ, ("\tend of read_filebuf\n"));
6484 free(mapping, M_TEMP);
6485 return;
6486 }
6487
6488
6489 void
6490 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6491 {
6492 struct buf *nestbuf;
6493 struct udf_mount *ump = udf_node->ump;
6494 uint64_t *mapping;
6495 uint64_t run_start;
6496 uint32_t lb_size;
6497 uint32_t buf_offset, lb_num, rbuflen, rblk;
6498 uint32_t from, lblkno;
6499 uint32_t num_lb;
6500 uint8_t *buf_pos;
6501 int error, run_length, isdir, what, s;
6502
6503 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6504
6505 from = buf->b_blkno;
6506 num_lb = buf->b_bcount / lb_size;
6507
6508 isdir = (udf_node->vnode->v_type == VDIR);
6509 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6510
6511 if (udf_node == ump->metadatabitmap_node)
6512 what = UDF_C_METADATA_SBM;
6513
6514 /* assure we have enough translation slots */
6515 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6516 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6517
6518 if (num_lb > UDF_MAX_MAPPINGS) {
6519 printf("udf_write_filebuf: implementation limit on bufsize\n");
6520 buf->b_error = EIO;
6521 biodone(buf);
6522 return;
6523 }
6524
6525 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6526
6527 error = 0;
6528 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6529 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6530 if (error) {
6531 buf->b_error = error;
6532 biodone(buf);
6533 goto out;
6534 }
6535 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6536
6537 /* if its internally mapped, we can write it in the descriptor itself */
6538 if (*mapping == UDF_TRANS_INTERN) {
6539 /* TODO paranoia check if we ARE going to have enough space */
6540 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6541 if (error)
6542 buf->b_error = error;
6543 biodone(buf);
6544 goto out;
6545 }
6546 DPRINTF(WRITE, ("\tnot intern\n"));
6547
6548 /* request write out of data to disc sheduler */
6549 buf->b_resid = buf->b_bcount;
6550 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6551 buf_offset = lb_num * lb_size;
6552 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6553 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6554
6555 /*
6556 * Mappings are not that important here. Just before we write
6557 * the lb_num we late-allocate them when needed and update the
6558 * mapping in the udf_node.
6559 */
6560
6561 /* XXX why not ignore the mapping altogether ? */
6562 /* TODO estimate here how much will be late-allocated */
6563 DPRINTF(WRITE, ("\twrite lb_num "
6564 "%"PRIu64, mapping[lb_num]));
6565
6566 lblkno = from + lb_num;
6567 run_start = mapping[lb_num];
6568 run_length = 1;
6569 while (lb_num < num_lb-1) {
6570 if (mapping[lb_num+1] != mapping[lb_num]+1)
6571 if (mapping[lb_num+1] != mapping[lb_num])
6572 break;
6573 run_length++;
6574 lb_num++;
6575 }
6576 DPRINTF(WRITE, ("+ %d\n", run_length));
6577
6578 /* nest an iobuf on the master buffer for the extent */
6579 rbuflen = run_length * lb_size;
6580 rblk = run_start * (lb_size/DEV_BSIZE);
6581
6582 #if 0
6583 /* if its zero or unmapped, our blknr gets -1 for unmapped */
6584 switch (mapping[lb_num]) {
6585 case UDF_TRANS_UNMAPPED:
6586 case UDF_TRANS_ZERO:
6587 rblk = -1;
6588 break;
6589 default:
6590 rblk = run_start * (lb_size/DEV_BSIZE);
6591 break;
6592 }
6593 #endif
6594
6595 nestbuf = getiobuf(NULL, true);
6596 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6597 /* nestbuf is B_ASYNC */
6598
6599 /* identify this nestbuf */
6600 nestbuf->b_lblkno = lblkno;
6601 KASSERT(nestbuf->b_vp == udf_node->vnode);
6602
6603 /* CD shedules on raw blkno */
6604 nestbuf->b_blkno = rblk;
6605 nestbuf->b_proc = NULL;
6606 nestbuf->b_rawblkno = rblk;
6607 nestbuf->b_udf_c_type = what;
6608
6609 /* increment our outstanding bufs counter */
6610 s = splbio();
6611 udf_node->outstanding_bufs++;
6612 splx(s);
6613
6614 udf_discstrat_queuebuf(ump, nestbuf);
6615 }
6616 out:
6617 /* if we're synchronously writing, wait for the completion */
6618 if ((buf->b_flags & B_ASYNC) == 0)
6619 biowait(buf);
6620
6621 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6622 free(mapping, M_TEMP);
6623 return;
6624 }
6625
6626 /* --------------------------------------------------------------------- */
6627
6628
6629