udf_subr.c revision 1.49.2.5 1 /* $NetBSD: udf_subr.c,v 1.49.2.5 2008/07/31 04:51:02 simonb Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.49.2.5 2008/07/31 04:51:02 simonb Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_udf.h"
68 #endif
69
70 #include "udf.h"
71 #include "udf_subr.h"
72 #include "udf_bswap.h"
73
74
75 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
76
77 #define UDF_SET_SYSTEMFILE(vp) \
78 /* XXXAD Is the vnode locked? */ \
79 (vp)->v_vflag |= VV_SYSTEM; \
80 vref(vp); \
81 vput(vp); \
82
83 extern int syncer_maxdelay; /* maximum delay time */
84 extern int (**udf_vnodeop_p)(void *);
85
86 /* --------------------------------------------------------------------- */
87
88 //#ifdef DEBUG
89 #if 1
90
91 #if 0
92 static void
93 udf_dumpblob(boid *blob, uint32_t dlen)
94 {
95 int i, j;
96
97 printf("blob = %p\n", blob);
98 printf("dump of %d bytes\n", dlen);
99
100 for (i = 0; i < dlen; i+ = 16) {
101 printf("%04x ", i);
102 for (j = 0; j < 16; j++) {
103 if (i+j < dlen) {
104 printf("%02x ", blob[i+j]);
105 } else {
106 printf(" ");
107 }
108 }
109 for (j = 0; j < 16; j++) {
110 if (i+j < dlen) {
111 if (blob[i+j]>32 && blob[i+j]! = 127) {
112 printf("%c", blob[i+j]);
113 } else {
114 printf(".");
115 }
116 }
117 }
118 printf("\n");
119 }
120 printf("\n");
121 Debugger();
122 }
123 #endif
124
125 static void
126 udf_dump_discinfo(struct udf_mount *ump)
127 {
128 char bits[128];
129 struct mmc_discinfo *di = &ump->discinfo;
130
131 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
132 return;
133
134 printf("Device/media info :\n");
135 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
136 printf("\tderived class %d\n", di->mmc_class);
137 printf("\tsector size %d\n", di->sector_size);
138 printf("\tdisc state %d\n", di->disc_state);
139 printf("\tlast ses state %d\n", di->last_session_state);
140 printf("\tbg format state %d\n", di->bg_format_state);
141 printf("\tfrst track %d\n", di->first_track);
142 printf("\tfst on last ses %d\n", di->first_track_last_session);
143 printf("\tlst on last ses %d\n", di->last_track_last_session);
144 printf("\tlink block penalty %d\n", di->link_block_penalty);
145 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
146 sizeof(bits));
147 printf("\tdisc flags %s\n", bits);
148 printf("\tdisc id %x\n", di->disc_id);
149 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
150
151 printf("\tnum sessions %d\n", di->num_sessions);
152 printf("\tnum tracks %d\n", di->num_tracks);
153
154 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
155 printf("\tcapabilities cur %s\n", bits);
156 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
157 printf("\tcapabilities cap %s\n", bits);
158 }
159 #else
160 #define udf_dump_discinfo(a);
161 #endif
162
163
164 /* --------------------------------------------------------------------- */
165
166 /* not called often */
167 int
168 udf_update_discinfo(struct udf_mount *ump)
169 {
170 struct vnode *devvp = ump->devvp;
171 struct partinfo dpart;
172 struct mmc_discinfo *di;
173 int error;
174
175 DPRINTF(VOLUMES, ("read/update disc info\n"));
176 di = &ump->discinfo;
177 memset(di, 0, sizeof(struct mmc_discinfo));
178
179 /* check if we're on a MMC capable device, i.e. CD/DVD */
180 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
181 if (error == 0) {
182 udf_dump_discinfo(ump);
183 return 0;
184 }
185
186 /* disc partition support */
187 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
188 if (error)
189 return ENODEV;
190
191 /* set up a disc info profile for partitions */
192 di->mmc_profile = 0x01; /* disc type */
193 di->mmc_class = MMC_CLASS_DISC;
194 di->disc_state = MMC_STATE_CLOSED;
195 di->last_session_state = MMC_STATE_CLOSED;
196 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
197 di->link_block_penalty = 0;
198
199 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
200 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
201 di->mmc_cap = di->mmc_cur;
202 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
203
204 /* TODO problem with last_possible_lba on resizable VND; request */
205 di->last_possible_lba = dpart.part->p_size;
206 di->sector_size = dpart.disklab->d_secsize;
207
208 di->num_sessions = 1;
209 di->num_tracks = 1;
210
211 di->first_track = 1;
212 di->first_track_last_session = di->last_track_last_session = 1;
213
214 udf_dump_discinfo(ump);
215 return 0;
216 }
217
218
219 int
220 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
221 {
222 struct vnode *devvp = ump->devvp;
223 struct mmc_discinfo *di = &ump->discinfo;
224 int error, class;
225
226 DPRINTF(VOLUMES, ("read track info\n"));
227
228 class = di->mmc_class;
229 if (class != MMC_CLASS_DISC) {
230 /* tracknr specified in struct ti */
231 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
232 return error;
233 }
234
235 /* disc partition support */
236 if (ti->tracknr != 1)
237 return EIO;
238
239 /* create fake ti (TODO check for resized vnds) */
240 ti->sessionnr = 1;
241
242 ti->track_mode = 0; /* XXX */
243 ti->data_mode = 0; /* XXX */
244 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
245
246 ti->track_start = 0;
247 ti->packet_size = 1;
248
249 /* TODO support for resizable vnd */
250 ti->track_size = di->last_possible_lba;
251 ti->next_writable = di->last_possible_lba;
252 ti->last_recorded = ti->next_writable;
253 ti->free_blocks = 0;
254
255 return 0;
256 }
257
258
259 int
260 udf_setup_writeparams(struct udf_mount *ump)
261 {
262 struct mmc_writeparams mmc_writeparams;
263 int error;
264
265 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
266 return 0;
267
268 /*
269 * only CD burning normally needs setting up, but other disc types
270 * might need other settings to be made. The MMC framework will set up
271 * the nessisary recording parameters according to the disc
272 * characteristics read in. Modifications can be made in the discinfo
273 * structure passed to change the nature of the disc.
274 */
275
276 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
277 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
278 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
279
280 /*
281 * UDF dictates first track to determine track mode for the whole
282 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
283 * To prevent problems with a `reserved' track in front we start with
284 * the 2nd track and if that is not valid, go for the 1st.
285 */
286 mmc_writeparams.tracknr = 2;
287 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
288 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
289
290 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
291 FKIOCTL, NOCRED);
292 if (error) {
293 mmc_writeparams.tracknr = 1;
294 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
295 &mmc_writeparams, FKIOCTL, NOCRED);
296 }
297 return error;
298 }
299
300
301 int
302 udf_synchronise_caches(struct udf_mount *ump)
303 {
304 struct mmc_op mmc_op;
305
306 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
307
308 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
309 return 0;
310
311 /* discs are done now */
312 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
313 return 0;
314
315 bzero(&mmc_op, sizeof(struct mmc_op));
316 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
317
318 /* ignore return code */
319 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
320
321 return 0;
322 }
323
324 /* --------------------------------------------------------------------- */
325
326 /* track/session searching for mounting */
327 int
328 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
329 int *first_tracknr, int *last_tracknr)
330 {
331 struct mmc_trackinfo trackinfo;
332 uint32_t tracknr, start_track, num_tracks;
333 int error;
334
335 /* if negative, sessionnr is relative to last session */
336 if (args->sessionnr < 0) {
337 args->sessionnr += ump->discinfo.num_sessions;
338 }
339
340 /* sanity */
341 if (args->sessionnr < 0)
342 args->sessionnr = 0;
343 if (args->sessionnr > ump->discinfo.num_sessions)
344 args->sessionnr = ump->discinfo.num_sessions;
345
346 /* search the tracks for this session, zero session nr indicates last */
347 if (args->sessionnr == 0)
348 args->sessionnr = ump->discinfo.num_sessions;
349 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
350 args->sessionnr--;
351
352 /* sanity again */
353 if (args->sessionnr < 0)
354 args->sessionnr = 0;
355
356 /* search the first and last track of the specified session */
357 num_tracks = ump->discinfo.num_tracks;
358 start_track = ump->discinfo.first_track;
359
360 /* search for first track of this session */
361 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
362 /* get track info */
363 trackinfo.tracknr = tracknr;
364 error = udf_update_trackinfo(ump, &trackinfo);
365 if (error)
366 return error;
367
368 if (trackinfo.sessionnr == args->sessionnr)
369 break;
370 }
371 *first_tracknr = tracknr;
372
373 /* search for last track of this session */
374 for (;tracknr <= num_tracks; tracknr++) {
375 /* get track info */
376 trackinfo.tracknr = tracknr;
377 error = udf_update_trackinfo(ump, &trackinfo);
378 if (error || (trackinfo.sessionnr != args->sessionnr)) {
379 tracknr--;
380 break;
381 }
382 }
383 if (tracknr > num_tracks)
384 tracknr--;
385
386 *last_tracknr = tracknr;
387
388 if (*last_tracknr < *first_tracknr) {
389 printf( "udf_search_tracks: sanity check on drive+disc failed, "
390 "drive returned garbage\n");
391 return EINVAL;
392 }
393
394 assert(*last_tracknr >= *first_tracknr);
395 return 0;
396 }
397
398
399 /*
400 * NOTE: this is the only routine in this file that directly peeks into the
401 * metadata file but since its at a larval state of the mount it can't hurt.
402 *
403 * XXX candidate for udf_allocation.c
404 * XXX clean me up!, change to new node reading code.
405 */
406
407 static void
408 udf_check_track_metadata_overlap(struct udf_mount *ump,
409 struct mmc_trackinfo *trackinfo)
410 {
411 struct part_desc *part;
412 struct file_entry *fe;
413 struct extfile_entry *efe;
414 struct short_ad *s_ad;
415 struct long_ad *l_ad;
416 uint32_t track_start, track_end;
417 uint32_t phys_part_start, phys_part_end, part_start, part_end;
418 uint32_t sector_size, len, alloclen, plb_num;
419 uint8_t *pos;
420 int addr_type, icblen, icbflags, flags;
421
422 /* get our track extents */
423 track_start = trackinfo->track_start;
424 track_end = track_start + trackinfo->track_size;
425
426 /* get our base partition extent */
427 part = ump->partitions[ump->metadata_part];
428 phys_part_start = udf_rw32(part->start_loc);
429 phys_part_end = phys_part_start + udf_rw32(part->part_len);
430
431 /* no use if its outside the physical partition */
432 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
433 return;
434
435 /*
436 * now follow all extents in the fe/efe to see if they refer to this
437 * track
438 */
439
440 sector_size = ump->discinfo.sector_size;
441
442 /* XXX should we claim exclusive access to the metafile ? */
443 /* TODO: move to new node read code */
444 fe = ump->metadata_node->fe;
445 efe = ump->metadata_node->efe;
446 if (fe) {
447 alloclen = udf_rw32(fe->l_ad);
448 pos = &fe->data[0] + udf_rw32(fe->l_ea);
449 icbflags = udf_rw16(fe->icbtag.flags);
450 } else {
451 assert(efe);
452 alloclen = udf_rw32(efe->l_ad);
453 pos = &efe->data[0] + udf_rw32(efe->l_ea);
454 icbflags = udf_rw16(efe->icbtag.flags);
455 }
456 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
457
458 while (alloclen) {
459 if (addr_type == UDF_ICB_SHORT_ALLOC) {
460 icblen = sizeof(struct short_ad);
461 s_ad = (struct short_ad *) pos;
462 len = udf_rw32(s_ad->len);
463 plb_num = udf_rw32(s_ad->lb_num);
464 } else {
465 /* should not be present, but why not */
466 icblen = sizeof(struct long_ad);
467 l_ad = (struct long_ad *) pos;
468 len = udf_rw32(l_ad->len);
469 plb_num = udf_rw32(l_ad->loc.lb_num);
470 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
471 }
472 /* process extent */
473 flags = UDF_EXT_FLAGS(len);
474 len = UDF_EXT_LEN(len);
475
476 part_start = phys_part_start + plb_num;
477 part_end = part_start + (len / sector_size);
478
479 if ((part_start >= track_start) && (part_end <= track_end)) {
480 /* extent is enclosed within this track */
481 ump->metadata_track = *trackinfo;
482 return;
483 }
484
485 pos += icblen;
486 alloclen -= icblen;
487 }
488 }
489
490
491 int
492 udf_search_writing_tracks(struct udf_mount *ump)
493 {
494 struct mmc_trackinfo trackinfo;
495 struct part_desc *part;
496 uint32_t tracknr, start_track, num_tracks;
497 uint32_t track_start, track_end, part_start, part_end;
498 int error;
499
500 /*
501 * in the CD/(HD)DVD/BD recordable device model a few tracks within
502 * the last session might be open but in the UDF device model at most
503 * three tracks can be open: a reserved track for delayed ISO VRS
504 * writing, a data track and a metadata track. We search here for the
505 * data track and the metadata track. Note that the reserved track is
506 * troublesome but can be detected by its small size of < 512 sectors.
507 */
508
509 num_tracks = ump->discinfo.num_tracks;
510 start_track = ump->discinfo.first_track;
511
512 /* fetch info on first and possibly only track */
513 trackinfo.tracknr = start_track;
514 error = udf_update_trackinfo(ump, &trackinfo);
515 if (error)
516 return error;
517
518 /* copy results to our mount point */
519 ump->data_track = trackinfo;
520 ump->metadata_track = trackinfo;
521
522 /* if not sequential, we're done */
523 if (num_tracks == 1)
524 return 0;
525
526 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
527 /* get track info */
528 trackinfo.tracknr = tracknr;
529 error = udf_update_trackinfo(ump, &trackinfo);
530 if (error)
531 return error;
532
533 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
534 continue;
535
536 track_start = trackinfo.track_start;
537 track_end = track_start + trackinfo.track_size;
538
539 /* check for overlap on data partition */
540 part = ump->partitions[ump->data_part];
541 part_start = udf_rw32(part->start_loc);
542 part_end = part_start + udf_rw32(part->part_len);
543 if ((part_start < track_end) && (part_end > track_start)) {
544 ump->data_track = trackinfo;
545 /* TODO check if UDF partition data_part is writable */
546 }
547
548 /* check for overlap on metadata partition */
549 if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) ||
550 (ump->meta_alloc == UDF_ALLOC_METABITMAP)) {
551 udf_check_track_metadata_overlap(ump, &trackinfo);
552 } else {
553 ump->metadata_track = trackinfo;
554 }
555 }
556
557 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
558 return EROFS;
559
560 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
561 return EROFS;
562
563 return 0;
564 }
565
566 /* --------------------------------------------------------------------- */
567
568 /*
569 * Check if the blob starts with a good UDF tag. Tags are protected by a
570 * checksum over the reader except one byte at position 4 that is the checksum
571 * itself.
572 */
573
574 int
575 udf_check_tag(void *blob)
576 {
577 struct desc_tag *tag = blob;
578 uint8_t *pos, sum, cnt;
579
580 /* check TAG header checksum */
581 pos = (uint8_t *) tag;
582 sum = 0;
583
584 for(cnt = 0; cnt < 16; cnt++) {
585 if (cnt != 4)
586 sum += *pos;
587 pos++;
588 }
589 if (sum != tag->cksum) {
590 /* bad tag header checksum; this is not a valid tag */
591 return EINVAL;
592 }
593
594 return 0;
595 }
596
597
598 /*
599 * check tag payload will check descriptor CRC as specified.
600 * If the descriptor is too long, it will return EIO otherwise EINVAL.
601 */
602
603 int
604 udf_check_tag_payload(void *blob, uint32_t max_length)
605 {
606 struct desc_tag *tag = blob;
607 uint16_t crc, crc_len;
608
609 crc_len = udf_rw16(tag->desc_crc_len);
610
611 /* check payload CRC if applicable */
612 if (crc_len == 0)
613 return 0;
614
615 if (crc_len > max_length)
616 return EIO;
617
618 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
619 if (crc != udf_rw16(tag->desc_crc)) {
620 /* bad payload CRC; this is a broken tag */
621 return EINVAL;
622 }
623
624 return 0;
625 }
626
627
628 void
629 udf_validate_tag_sum(void *blob)
630 {
631 struct desc_tag *tag = blob;
632 uint8_t *pos, sum, cnt;
633
634 /* calculate TAG header checksum */
635 pos = (uint8_t *) tag;
636 sum = 0;
637
638 for(cnt = 0; cnt < 16; cnt++) {
639 if (cnt != 4) sum += *pos;
640 pos++;
641 }
642 tag->cksum = sum; /* 8 bit */
643 }
644
645
646 /* assumes sector number of descriptor to be saved already present */
647 void
648 udf_validate_tag_and_crc_sums(void *blob)
649 {
650 struct desc_tag *tag = blob;
651 uint8_t *btag = (uint8_t *) tag;
652 uint16_t crc, crc_len;
653
654 crc_len = udf_rw16(tag->desc_crc_len);
655
656 /* check payload CRC if applicable */
657 if (crc_len > 0) {
658 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
659 tag->desc_crc = udf_rw16(crc);
660 }
661
662 /* calculate TAG header checksum */
663 udf_validate_tag_sum(blob);
664 }
665
666 /* --------------------------------------------------------------------- */
667
668 /*
669 * XXX note the different semantics from udfclient: for FIDs it still rounds
670 * up to sectors. Use udf_fidsize() for a correct length.
671 */
672
673 int
674 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
675 {
676 uint32_t size, tag_id, num_lb, elmsz;
677
678 tag_id = udf_rw16(dscr->tag.id);
679
680 switch (tag_id) {
681 case TAGID_LOGVOL :
682 size = sizeof(struct logvol_desc) - 1;
683 size += udf_rw32(dscr->lvd.mt_l);
684 break;
685 case TAGID_UNALLOC_SPACE :
686 elmsz = sizeof(struct extent_ad);
687 size = sizeof(struct unalloc_sp_desc) - elmsz;
688 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
689 break;
690 case TAGID_FID :
691 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
692 size = (size + 3) & ~3;
693 break;
694 case TAGID_LOGVOL_INTEGRITY :
695 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
696 size += udf_rw32(dscr->lvid.l_iu);
697 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
698 break;
699 case TAGID_SPACE_BITMAP :
700 size = sizeof(struct space_bitmap_desc) - 1;
701 size += udf_rw32(dscr->sbd.num_bytes);
702 break;
703 case TAGID_SPARING_TABLE :
704 elmsz = sizeof(struct spare_map_entry);
705 size = sizeof(struct udf_sparing_table) - elmsz;
706 size += udf_rw16(dscr->spt.rt_l) * elmsz;
707 break;
708 case TAGID_FENTRY :
709 size = sizeof(struct file_entry);
710 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
711 break;
712 case TAGID_EXTFENTRY :
713 size = sizeof(struct extfile_entry);
714 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
715 break;
716 case TAGID_FSD :
717 size = sizeof(struct fileset_desc);
718 break;
719 default :
720 size = sizeof(union dscrptr);
721 break;
722 }
723
724 if ((size == 0) || (lb_size == 0))
725 return 0;
726
727 if (lb_size == 1)
728 return size;
729
730 /* round up in sectors */
731 num_lb = (size + lb_size -1) / lb_size;
732 return num_lb * lb_size;
733 }
734
735
736 int
737 udf_fidsize(struct fileid_desc *fid)
738 {
739 uint32_t size;
740
741 if (udf_rw16(fid->tag.id) != TAGID_FID)
742 panic("got udf_fidsize on non FID\n");
743
744 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
745 size = (size + 3) & ~3;
746
747 return size;
748 }
749
750 /* --------------------------------------------------------------------- */
751
752 void
753 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
754 {
755 int ret;
756
757 mutex_enter(&udf_node->node_mutex);
758 /* wait until free */
759 while (udf_node->i_flags & IN_LOCKED) {
760 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
761 /* TODO check if we should return error; abort */
762 if (ret == EWOULDBLOCK) {
763 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
764 "wanted at %s:%d, previously locked at %s:%d\n",
765 udf_node, fname, lineno,
766 udf_node->lock_fname, udf_node->lock_lineno));
767 }
768 }
769 /* grab */
770 udf_node->i_flags |= IN_LOCKED | flag;
771 /* debug */
772 udf_node->lock_fname = fname;
773 udf_node->lock_lineno = lineno;
774
775 mutex_exit(&udf_node->node_mutex);
776 }
777
778
779 void
780 udf_unlock_node(struct udf_node *udf_node, int flag)
781 {
782 mutex_enter(&udf_node->node_mutex);
783 udf_node->i_flags &= ~(IN_LOCKED | flag);
784 cv_broadcast(&udf_node->node_lock);
785 mutex_exit(&udf_node->node_mutex);
786 }
787
788
789 /* --------------------------------------------------------------------- */
790
791 static int
792 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
793 {
794 int error;
795
796 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
797 (union dscrptr **) dst);
798 if (!error) {
799 /* blank terminator blocks are not allowed here */
800 if (*dst == NULL)
801 return ENOENT;
802 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
803 error = ENOENT;
804 free(*dst, M_UDFVOLD);
805 *dst = NULL;
806 DPRINTF(VOLUMES, ("Not an anchor\n"));
807 }
808 }
809
810 return error;
811 }
812
813
814 int
815 udf_read_anchors(struct udf_mount *ump)
816 {
817 struct udf_args *args = &ump->mount_args;
818 struct mmc_trackinfo first_track;
819 struct mmc_trackinfo second_track;
820 struct mmc_trackinfo last_track;
821 struct anchor_vdp **anchorsp;
822 uint32_t track_start;
823 uint32_t track_end;
824 uint32_t positions[4];
825 int first_tracknr, last_tracknr;
826 int error, anch, ok, first_anchor;
827
828 /* search the first and last track of the specified session */
829 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
830 if (!error) {
831 first_track.tracknr = first_tracknr;
832 error = udf_update_trackinfo(ump, &first_track);
833 }
834 if (!error) {
835 last_track.tracknr = last_tracknr;
836 error = udf_update_trackinfo(ump, &last_track);
837 }
838 if ((!error) && (first_tracknr != last_tracknr)) {
839 second_track.tracknr = first_tracknr+1;
840 error = udf_update_trackinfo(ump, &second_track);
841 }
842 if (error) {
843 printf("UDF mount: reading disc geometry failed\n");
844 return 0;
845 }
846
847 track_start = first_track.track_start;
848
849 /* `end' is not as straitforward as start. */
850 track_end = last_track.track_start
851 + last_track.track_size - last_track.free_blocks - 1;
852
853 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
854 /* end of track is not straitforward here */
855 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
856 track_end = last_track.last_recorded;
857 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
858 track_end = last_track.next_writable
859 - ump->discinfo.link_block_penalty;
860 }
861
862 /* its no use reading a blank track */
863 first_anchor = 0;
864 if (first_track.flags & MMC_TRACKINFO_BLANK)
865 first_anchor = 1;
866
867 /* get our packet size */
868 ump->packet_size = first_track.packet_size;
869 if (first_track.flags & MMC_TRACKINFO_BLANK)
870 ump->packet_size = second_track.packet_size;
871
872 if (ump->packet_size <= 1) {
873 /* take max, but not bigger than 64 */
874 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
875 ump->packet_size = MIN(ump->packet_size, 64);
876 }
877 KASSERT(ump->packet_size >= 1);
878
879 /* read anchors start+256, start+512, end-256, end */
880 positions[0] = track_start+256;
881 positions[1] = track_end-256;
882 positions[2] = track_end;
883 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
884 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
885
886 ok = 0;
887 anchorsp = ump->anchors;
888 for (anch = first_anchor; anch < 4; anch++) {
889 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
890 positions[anch]));
891 error = udf_read_anchor(ump, positions[anch], anchorsp);
892 if (!error) {
893 anchorsp++;
894 ok++;
895 }
896 }
897
898 /* VATs are only recorded on sequential media, but initialise */
899 ump->first_possible_vat_location = track_start + 2;
900 ump->last_possible_vat_location = track_end + last_track.packet_size;
901
902 return ok;
903 }
904
905 /* --------------------------------------------------------------------- */
906
907 /* we dont try to be smart; we just record the parts */
908 #define UDF_UPDATE_DSCR(name, dscr) \
909 if (name) \
910 free(name, M_UDFVOLD); \
911 name = dscr;
912
913 static int
914 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
915 {
916 struct part_desc *part;
917 uint16_t phys_part, raw_phys_part;
918
919 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
920 udf_rw16(dscr->tag.id)));
921 switch (udf_rw16(dscr->tag.id)) {
922 case TAGID_PRI_VOL : /* primary partition */
923 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
924 break;
925 case TAGID_LOGVOL : /* logical volume */
926 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
927 break;
928 case TAGID_UNALLOC_SPACE : /* unallocated space */
929 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
930 break;
931 case TAGID_IMP_VOL : /* implementation */
932 /* XXX do we care about multiple impl. descr ? */
933 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
934 break;
935 case TAGID_PARTITION : /* physical partition */
936 /* not much use if its not allocated */
937 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
938 free(dscr, M_UDFVOLD);
939 break;
940 }
941
942 /*
943 * BUGALERT: some rogue implementations use random physical
944 * partion numbers to break other implementations so lookup
945 * the number.
946 */
947 raw_phys_part = udf_rw16(dscr->pd.part_num);
948 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
949 part = ump->partitions[phys_part];
950 if (part == NULL)
951 break;
952 if (udf_rw16(part->part_num) == raw_phys_part)
953 break;
954 }
955 if (phys_part == UDF_PARTITIONS) {
956 free(dscr, M_UDFVOLD);
957 return EINVAL;
958 }
959
960 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
961 break;
962 case TAGID_VOL : /* volume space extender; rare */
963 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
964 free(dscr, M_UDFVOLD);
965 break;
966 default :
967 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
968 udf_rw16(dscr->tag.id)));
969 free(dscr, M_UDFVOLD);
970 }
971
972 return 0;
973 }
974 #undef UDF_UPDATE_DSCR
975
976 /* --------------------------------------------------------------------- */
977
978 static int
979 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
980 {
981 union dscrptr *dscr;
982 uint32_t sector_size, dscr_size;
983 int error;
984
985 sector_size = ump->discinfo.sector_size;
986
987 /* loc is sectornr, len is in bytes */
988 error = EIO;
989 while (len) {
990 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
991 if (error)
992 return error;
993
994 /* blank block is a terminator */
995 if (dscr == NULL)
996 return 0;
997
998 /* TERM descriptor is a terminator */
999 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1000 free(dscr, M_UDFVOLD);
1001 return 0;
1002 }
1003
1004 /* process all others */
1005 dscr_size = udf_tagsize(dscr, sector_size);
1006 error = udf_process_vds_descriptor(ump, dscr);
1007 if (error) {
1008 free(dscr, M_UDFVOLD);
1009 break;
1010 }
1011 assert((dscr_size % sector_size) == 0);
1012
1013 len -= dscr_size;
1014 loc += dscr_size / sector_size;
1015 }
1016
1017 return error;
1018 }
1019
1020
1021 int
1022 udf_read_vds_space(struct udf_mount *ump)
1023 {
1024 /* struct udf_args *args = &ump->mount_args; */
1025 struct anchor_vdp *anchor, *anchor2;
1026 size_t size;
1027 uint32_t main_loc, main_len;
1028 uint32_t reserve_loc, reserve_len;
1029 int error;
1030
1031 /*
1032 * read in VDS space provided by the anchors; if one descriptor read
1033 * fails, try the mirror sector.
1034 *
1035 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1036 * avoids the `compatibility features' of DirectCD that may confuse
1037 * stuff completely.
1038 */
1039
1040 anchor = ump->anchors[0];
1041 anchor2 = ump->anchors[1];
1042 assert(anchor);
1043
1044 if (anchor2) {
1045 size = sizeof(struct extent_ad);
1046 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1047 anchor = anchor2;
1048 /* reserve is specified to be a literal copy of main */
1049 }
1050
1051 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1052 main_len = udf_rw32(anchor->main_vds_ex.len);
1053
1054 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1055 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1056
1057 error = udf_read_vds_extent(ump, main_loc, main_len);
1058 if (error) {
1059 printf("UDF mount: reading in reserve VDS extent\n");
1060 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1061 }
1062
1063 return error;
1064 }
1065
1066 /* --------------------------------------------------------------------- */
1067
1068 /*
1069 * Read in the logical volume integrity sequence pointed to by our logical
1070 * volume descriptor. Its a sequence that can be extended using fields in the
1071 * integrity descriptor itself. On sequential media only one is found, on
1072 * rewritable media a sequence of descriptors can be found as a form of
1073 * history keeping and on non sequential write-once media the chain is vital
1074 * to allow more and more descriptors to be written. The last descriptor
1075 * written in an extent needs to claim space for a new extent.
1076 */
1077
1078 static int
1079 udf_retrieve_lvint(struct udf_mount *ump)
1080 {
1081 union dscrptr *dscr;
1082 struct logvol_int_desc *lvint;
1083 struct udf_lvintq *trace;
1084 uint32_t lb_size, lbnum, len;
1085 int dscr_type, error, trace_len;
1086
1087 lb_size = udf_rw32(ump->logical_vol->lb_size);
1088 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1089 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1090
1091 /* clean trace */
1092 memset(ump->lvint_trace, 0,
1093 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1094
1095 trace_len = 0;
1096 trace = ump->lvint_trace;
1097 trace->start = lbnum;
1098 trace->end = lbnum + len/lb_size;
1099 trace->pos = 0;
1100 trace->wpos = 0;
1101
1102 lvint = NULL;
1103 dscr = NULL;
1104 error = 0;
1105 while (len) {
1106 trace->pos = lbnum - trace->start;
1107 trace->wpos = trace->pos + 1;
1108
1109 /* read in our integrity descriptor */
1110 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1111 if (!error) {
1112 if (dscr == NULL) {
1113 trace->wpos = trace->pos;
1114 break; /* empty terminates */
1115 }
1116 dscr_type = udf_rw16(dscr->tag.id);
1117 if (dscr_type == TAGID_TERM) {
1118 trace->wpos = trace->pos;
1119 break; /* clean terminator */
1120 }
1121 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1122 /* fatal... corrupt disc */
1123 error = ENOENT;
1124 break;
1125 }
1126 if (lvint)
1127 free(lvint, M_UDFVOLD);
1128 lvint = &dscr->lvid;
1129 dscr = NULL;
1130 } /* else hope for the best... maybe the next is ok */
1131
1132 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1133 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1134
1135 /* proceed sequential */
1136 lbnum += 1;
1137 len -= lb_size;
1138
1139 /* are we linking to a new piece? */
1140 if (dscr && lvint->next_extent.len) {
1141 len = udf_rw32(lvint->next_extent.len);
1142 lbnum = udf_rw32(lvint->next_extent.loc);
1143
1144 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1145 /* IEK! segment link full... */
1146 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1147 error = EINVAL;
1148 } else {
1149 trace++;
1150 trace_len++;
1151
1152 trace->start = lbnum;
1153 trace->end = lbnum + len/lb_size;
1154 trace->pos = 0;
1155 trace->wpos = 0;
1156 }
1157 }
1158 }
1159
1160 /* clean up the mess, esp. when there is an error */
1161 if (dscr)
1162 free(dscr, M_UDFVOLD);
1163
1164 if (error && lvint) {
1165 free(lvint, M_UDFVOLD);
1166 lvint = NULL;
1167 }
1168
1169 if (!lvint)
1170 error = ENOENT;
1171
1172 ump->logvol_integrity = lvint;
1173 return error;
1174 }
1175
1176
1177 static int
1178 udf_loose_lvint_history(struct udf_mount *ump)
1179 {
1180 union dscrptr **bufs, *dscr, *last_dscr;
1181 struct udf_lvintq *trace, *in_trace, *out_trace;
1182 struct logvol_int_desc *lvint;
1183 uint32_t in_ext, in_pos, in_len;
1184 uint32_t out_ext, out_wpos, out_len;
1185 uint32_t lb_size, packet_size, lb_num;
1186 uint32_t len, start;
1187 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1188 int losing;
1189 int error;
1190
1191 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1192
1193 lb_size = udf_rw32(ump->logical_vol->lb_size);
1194 packet_size = ump->data_track.packet_size; /* XXX data track */
1195
1196 /* search smallest extent */
1197 trace = &ump->lvint_trace[0];
1198 minext = trace->end - trace->start;
1199 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1200 trace = &ump->lvint_trace[ext];
1201 extlen = trace->end - trace->start;
1202 if (extlen == 0)
1203 break;
1204 minext = MIN(minext, extlen);
1205 }
1206 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1207 /* no sense wiping all */
1208 if (losing == minext)
1209 losing--;
1210
1211 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1212
1213 /* get buffer for pieces */
1214 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1215
1216 in_ext = 0;
1217 in_pos = losing;
1218 in_trace = &ump->lvint_trace[in_ext];
1219 in_len = in_trace->end - in_trace->start;
1220 out_ext = 0;
1221 out_wpos = 0;
1222 out_trace = &ump->lvint_trace[out_ext];
1223 out_len = out_trace->end - out_trace->start;
1224
1225 last_dscr = NULL;
1226 for(;;) {
1227 out_trace->pos = out_wpos;
1228 out_trace->wpos = out_trace->pos;
1229 if (in_pos >= in_len) {
1230 in_ext++;
1231 in_pos = 0;
1232 in_trace = &ump->lvint_trace[in_ext];
1233 in_len = in_trace->end - in_trace->start;
1234 }
1235 if (out_wpos >= out_len) {
1236 out_ext++;
1237 out_wpos = 0;
1238 out_trace = &ump->lvint_trace[out_ext];
1239 out_len = out_trace->end - out_trace->start;
1240 }
1241 /* copy overlap contents */
1242 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1243 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1244 if (cpy_len == 0)
1245 break;
1246
1247 /* copy */
1248 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1249 for (cnt = 0; cnt < cpy_len; cnt++) {
1250 /* read in our integrity descriptor */
1251 lb_num = in_trace->start + in_pos + cnt;
1252 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1253 &dscr);
1254 if (error) {
1255 /* copy last one */
1256 dscr = last_dscr;
1257 }
1258 bufs[cnt] = dscr;
1259 if (!error) {
1260 if (dscr == NULL) {
1261 out_trace->pos = out_wpos + cnt;
1262 out_trace->wpos = out_trace->pos;
1263 break; /* empty terminates */
1264 }
1265 dscr_type = udf_rw16(dscr->tag.id);
1266 if (dscr_type == TAGID_TERM) {
1267 out_trace->pos = out_wpos + cnt;
1268 out_trace->wpos = out_trace->pos;
1269 break; /* clean terminator */
1270 }
1271 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1272 panic( "UDF integrity sequence "
1273 "corrupted while mounted!\n");
1274 }
1275 last_dscr = dscr;
1276 }
1277 }
1278
1279 /* patch up if first entry was on error */
1280 if (bufs[0] == NULL) {
1281 for (cnt = 0; cnt < cpy_len; cnt++)
1282 if (bufs[cnt] != NULL)
1283 break;
1284 last_dscr = bufs[cnt];
1285 for (; cnt > 0; cnt--) {
1286 bufs[cnt] = last_dscr;
1287 }
1288 }
1289
1290 /* glue + write out */
1291 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1292 for (cnt = 0; cnt < cpy_len; cnt++) {
1293 lb_num = out_trace->start + out_wpos + cnt;
1294 lvint = &bufs[cnt]->lvid;
1295
1296 /* set continuation */
1297 len = 0;
1298 start = 0;
1299 if (out_wpos + cnt == out_len) {
1300 /* get continuation */
1301 trace = &ump->lvint_trace[out_ext+1];
1302 len = trace->end - trace->start;
1303 start = trace->start;
1304 }
1305 lvint->next_extent.len = udf_rw32(len);
1306 lvint->next_extent.loc = udf_rw32(start);
1307
1308 lb_num = trace->start + trace->wpos;
1309 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1310 bufs[cnt], lb_num, lb_num);
1311 DPRINTFIF(VOLUMES, error,
1312 ("error writing lvint lb_num\n"));
1313 }
1314
1315 /* free non repeating descriptors */
1316 last_dscr = NULL;
1317 for (cnt = 0; cnt < cpy_len; cnt++) {
1318 if (bufs[cnt] != last_dscr)
1319 free(bufs[cnt], M_UDFVOLD);
1320 last_dscr = bufs[cnt];
1321 }
1322
1323 /* advance */
1324 in_pos += cpy_len;
1325 out_wpos += cpy_len;
1326 }
1327
1328 free(bufs, M_TEMP);
1329
1330 return 0;
1331 }
1332
1333
1334 static int
1335 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1336 {
1337 struct udf_lvintq *trace;
1338 struct timeval now_v;
1339 struct timespec now_s;
1340 uint32_t sector;
1341 int logvol_integrity;
1342 int space, error;
1343
1344 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1345
1346 again:
1347 /* get free space in last chunk */
1348 trace = ump->lvint_trace;
1349 while (trace->wpos > (trace->end - trace->start)) {
1350 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1351 "wpos = %d\n", trace->start, trace->end,
1352 trace->pos, trace->wpos));
1353 trace++;
1354 }
1355
1356 /* check if there is space to append */
1357 space = (trace->end - trace->start) - trace->wpos;
1358 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1359 "space = %d\n", trace->start, trace->end, trace->pos,
1360 trace->wpos, space));
1361
1362 /* get state */
1363 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1364 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1365 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1366 /* don't allow this logvol to be opened */
1367 /* TODO extent LVINT space if possible */
1368 return EROFS;
1369 }
1370 }
1371
1372 if (space < 1) {
1373 if (lvflag & UDF_APPENDONLY_LVINT)
1374 return EROFS;
1375 /* loose history by re-writing extents */
1376 error = udf_loose_lvint_history(ump);
1377 if (error)
1378 return error;
1379 goto again;
1380 }
1381
1382 /* update our integrity descriptor to identify us and timestamp it */
1383 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1384 microtime(&now_v);
1385 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1386 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1387 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1388 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1389
1390 /* writeout integrity descriptor */
1391 sector = trace->start + trace->wpos;
1392 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1393 (union dscrptr *) ump->logvol_integrity,
1394 sector, sector);
1395 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1396 if (error)
1397 return error;
1398
1399 /* advance write position */
1400 trace->wpos++; space--;
1401 if (space >= 1) {
1402 /* append terminator */
1403 sector = trace->start + trace->wpos;
1404 error = udf_write_terminator(ump, sector);
1405
1406 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1407 }
1408
1409 space = (trace->end - trace->start) - trace->wpos;
1410 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1411 "space = %d\n", trace->start, trace->end, trace->pos,
1412 trace->wpos, space));
1413 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1414 "successfull\n"));
1415
1416 return error;
1417 }
1418
1419 /* --------------------------------------------------------------------- */
1420
1421 static int
1422 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1423 {
1424 union dscrptr *dscr;
1425 /* struct udf_args *args = &ump->mount_args; */
1426 struct part_desc *partd;
1427 struct part_hdr_desc *parthdr;
1428 struct udf_bitmap *bitmap;
1429 uint32_t phys_part;
1430 uint32_t lb_num, len;
1431 int error, dscr_type;
1432
1433 /* unallocated space map */
1434 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1435 partd = ump->partitions[phys_part];
1436 if (partd == NULL)
1437 continue;
1438 parthdr = &partd->_impl_use.part_hdr;
1439
1440 lb_num = udf_rw32(partd->start_loc);
1441 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1442 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1443 if (len == 0)
1444 continue;
1445
1446 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1447 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1448 if (!error && dscr) {
1449 /* analyse */
1450 dscr_type = udf_rw16(dscr->tag.id);
1451 if (dscr_type == TAGID_SPACE_BITMAP) {
1452 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1453 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1454
1455 /* fill in ump->part_unalloc_bits */
1456 bitmap = &ump->part_unalloc_bits[phys_part];
1457 bitmap->blob = (uint8_t *) dscr;
1458 bitmap->bits = dscr->sbd.data;
1459 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1460 bitmap->pages = NULL; /* TODO */
1461 bitmap->data_pos = 0;
1462 bitmap->metadata_pos = 0;
1463 } else {
1464 free(dscr, M_UDFVOLD);
1465
1466 printf( "UDF mount: error reading unallocated "
1467 "space bitmap\n");
1468 return EROFS;
1469 }
1470 } else {
1471 /* blank not allowed */
1472 printf("UDF mount: blank unallocated space bitmap\n");
1473 return EROFS;
1474 }
1475 }
1476
1477 /* unallocated space table (not supported) */
1478 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1479 partd = ump->partitions[phys_part];
1480 if (partd == NULL)
1481 continue;
1482 parthdr = &partd->_impl_use.part_hdr;
1483
1484 len = udf_rw32(parthdr->unalloc_space_table.len);
1485 if (len) {
1486 printf("UDF mount: space tables not supported\n");
1487 return EROFS;
1488 }
1489 }
1490
1491 /* freed space map */
1492 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1493 partd = ump->partitions[phys_part];
1494 if (partd == NULL)
1495 continue;
1496 parthdr = &partd->_impl_use.part_hdr;
1497
1498 /* freed space map */
1499 lb_num = udf_rw32(partd->start_loc);
1500 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1501 len = udf_rw32(parthdr->freed_space_bitmap.len);
1502 if (len == 0)
1503 continue;
1504
1505 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1506 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1507 if (!error && dscr) {
1508 /* analyse */
1509 dscr_type = udf_rw16(dscr->tag.id);
1510 if (dscr_type == TAGID_SPACE_BITMAP) {
1511 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1512 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1513
1514 /* fill in ump->part_freed_bits */
1515 bitmap = &ump->part_unalloc_bits[phys_part];
1516 bitmap->blob = (uint8_t *) dscr;
1517 bitmap->bits = dscr->sbd.data;
1518 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1519 bitmap->pages = NULL; /* TODO */
1520 bitmap->data_pos = 0;
1521 bitmap->metadata_pos = 0;
1522 } else {
1523 free(dscr, M_UDFVOLD);
1524
1525 printf( "UDF mount: error reading freed "
1526 "space bitmap\n");
1527 return EROFS;
1528 }
1529 } else {
1530 /* blank not allowed */
1531 printf("UDF mount: blank freed space bitmap\n");
1532 return EROFS;
1533 }
1534 }
1535
1536 /* freed space table (not supported) */
1537 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1538 partd = ump->partitions[phys_part];
1539 if (partd == NULL)
1540 continue;
1541 parthdr = &partd->_impl_use.part_hdr;
1542
1543 len = udf_rw32(parthdr->freed_space_table.len);
1544 if (len) {
1545 printf("UDF mount: space tables not supported\n");
1546 return EROFS;
1547 }
1548 }
1549
1550 return 0;
1551 }
1552
1553
1554 /* TODO implement async writeout */
1555 int
1556 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1557 {
1558 union dscrptr *dscr;
1559 /* struct udf_args *args = &ump->mount_args; */
1560 struct part_desc *partd;
1561 struct part_hdr_desc *parthdr;
1562 uint32_t phys_part;
1563 uint32_t lb_num, len, ptov;
1564 int error_all, error;
1565
1566 error_all = 0;
1567 /* unallocated space map */
1568 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1569 partd = ump->partitions[phys_part];
1570 if (partd == NULL)
1571 continue;
1572 parthdr = &partd->_impl_use.part_hdr;
1573
1574 ptov = udf_rw32(partd->start_loc);
1575 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1576 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1577 if (len == 0)
1578 continue;
1579
1580 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1581 lb_num + ptov));
1582 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1583 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1584 (union dscrptr *) dscr,
1585 ptov + lb_num, lb_num);
1586 if (error) {
1587 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1588 error_all = error;
1589 }
1590 }
1591
1592 /* freed space map */
1593 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1594 partd = ump->partitions[phys_part];
1595 if (partd == NULL)
1596 continue;
1597 parthdr = &partd->_impl_use.part_hdr;
1598
1599 /* freed space map */
1600 ptov = udf_rw32(partd->start_loc);
1601 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1602 len = udf_rw32(parthdr->freed_space_bitmap.len);
1603 if (len == 0)
1604 continue;
1605
1606 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1607 lb_num + ptov));
1608 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1609 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1610 (union dscrptr *) dscr,
1611 ptov + lb_num, lb_num);
1612 if (error) {
1613 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1614 error_all = error;
1615 }
1616 }
1617
1618 return error_all;
1619 }
1620
1621
1622 static int
1623 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1624 {
1625 struct udf_node *bitmap_node;
1626 union dscrptr *dscr;
1627 struct udf_bitmap *bitmap;
1628 uint64_t inflen;
1629 int error, dscr_type;
1630
1631 bitmap_node = ump->metadatabitmap_node;
1632
1633 /* only read in when metadata bitmap node is read in */
1634 if (bitmap_node == NULL)
1635 return 0;
1636
1637 if (bitmap_node->fe) {
1638 inflen = udf_rw64(bitmap_node->fe->inf_len);
1639 } else {
1640 KASSERT(bitmap_node->efe);
1641 inflen = udf_rw64(bitmap_node->efe->inf_len);
1642 }
1643
1644 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1645 "%"PRIu64" bytes\n", inflen));
1646
1647 /* allocate space for bitmap */
1648 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1649 if (!dscr)
1650 return ENOMEM;
1651
1652 /* set vnode type to regular file or we can't read from it! */
1653 bitmap_node->vnode->v_type = VREG;
1654
1655 /* read in complete metadata bitmap file */
1656 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1657 dscr,
1658 inflen, 0,
1659 UIO_SYSSPACE,
1660 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1661 NULL, NULL);
1662 if (error) {
1663 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1664 goto errorout;
1665 }
1666
1667 /* analyse */
1668 dscr_type = udf_rw16(dscr->tag.id);
1669 if (dscr_type == TAGID_SPACE_BITMAP) {
1670 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1671 ump->metadata_unalloc_dscr = &dscr->sbd;
1672
1673 /* fill in bitmap bits */
1674 bitmap = &ump->metadata_unalloc_bits;
1675 bitmap->blob = (uint8_t *) dscr;
1676 bitmap->bits = dscr->sbd.data;
1677 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1678 bitmap->pages = NULL; /* TODO */
1679 bitmap->data_pos = 0;
1680 bitmap->metadata_pos = 0;
1681 } else {
1682 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1683 goto errorout;
1684 }
1685
1686 return 0;
1687
1688 errorout:
1689 free(dscr, M_UDFVOLD);
1690 printf( "UDF mount: error reading unallocated "
1691 "space bitmap for metadata partition\n");
1692 return EROFS;
1693 }
1694
1695
1696 int
1697 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1698 {
1699 struct udf_node *bitmap_node;
1700 union dscrptr *dscr;
1701 uint64_t inflen, new_inflen;
1702 int dummy, error;
1703
1704 bitmap_node = ump->metadatabitmap_node;
1705
1706 /* only write out when metadata bitmap node is known */
1707 if (bitmap_node == NULL)
1708 return 0;
1709
1710 if (bitmap_node->fe) {
1711 inflen = udf_rw64(bitmap_node->fe->inf_len);
1712 } else {
1713 KASSERT(bitmap_node->efe);
1714 inflen = udf_rw64(bitmap_node->efe->inf_len);
1715 }
1716
1717 /* reduce length to zero */
1718 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1719 new_inflen = udf_tagsize(dscr, 1);
1720
1721 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1722 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1723
1724 error = udf_resize_node(bitmap_node, 0, &dummy);
1725 if (error)
1726 printf("Error resizing metadata space bitmap\n");
1727
1728 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1729 dscr,
1730 new_inflen, 0,
1731 UIO_SYSSPACE,
1732 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1733 NULL, NULL);
1734
1735 bitmap_node->i_flags |= IN_MODIFIED;
1736 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1737 error = VOP_FSYNC(bitmap_node->vnode,
1738 FSCRED, FSYNC_WAIT, 0, 0);
1739
1740 if (error)
1741 printf( "Error writing out metadata partition unalloced "
1742 "space bitmap!\n");
1743
1744 return error;
1745 }
1746
1747
1748 /* --------------------------------------------------------------------- */
1749
1750 /*
1751 * Checks if ump's vds information is correct and complete
1752 */
1753
1754 int
1755 udf_process_vds(struct udf_mount *ump) {
1756 union udf_pmap *mapping;
1757 /* struct udf_args *args = &ump->mount_args; */
1758 struct logvol_int_desc *lvint;
1759 struct udf_logvol_info *lvinfo;
1760 struct part_desc *part;
1761 uint32_t n_pm, mt_l;
1762 uint8_t *pmap_pos;
1763 char *domain_name, *map_name;
1764 const char *check_name;
1765 char bits[128];
1766 int pmap_stype, pmap_size;
1767 int pmap_type, log_part, phys_part, raw_phys_part;
1768 int n_phys, n_virt, n_spar, n_meta;
1769 int len, error;
1770
1771 if (ump == NULL)
1772 return ENOENT;
1773
1774 /* we need at least an anchor (trivial, but for safety) */
1775 if (ump->anchors[0] == NULL)
1776 return EINVAL;
1777
1778 /* we need at least one primary and one logical volume descriptor */
1779 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1780 return EINVAL;
1781
1782 /* we need at least one partition descriptor */
1783 if (ump->partitions[0] == NULL)
1784 return EINVAL;
1785
1786 /* check logical volume sector size verses device sector size */
1787 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1788 printf("UDF mount: format violation, lb_size != sector size\n");
1789 return EINVAL;
1790 }
1791
1792 /* check domain name */
1793 domain_name = ump->logical_vol->domain_id.id;
1794 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1795 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1796 return EINVAL;
1797 }
1798
1799 /* retrieve logical volume integrity sequence */
1800 error = udf_retrieve_lvint(ump);
1801
1802 /*
1803 * We need at least one logvol integrity descriptor recorded. Note
1804 * that its OK to have an open logical volume integrity here. The VAT
1805 * will close/update the integrity.
1806 */
1807 if (ump->logvol_integrity == NULL)
1808 return EINVAL;
1809
1810 /* process derived structures */
1811 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1812 lvint = ump->logvol_integrity;
1813 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1814 ump->logvol_info = lvinfo;
1815
1816 /* TODO check udf versions? */
1817
1818 /*
1819 * check logvol mappings: effective virt->log partmap translation
1820 * check and recording of the mapping results. Saves expensive
1821 * strncmp() in tight places.
1822 */
1823 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1824 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1825 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1826 pmap_pos = ump->logical_vol->maps;
1827
1828 if (n_pm > UDF_PMAPS) {
1829 printf("UDF mount: too many mappings\n");
1830 return EINVAL;
1831 }
1832
1833 ump->data_part = ump->metadata_part = 0;
1834 n_phys = n_virt = n_spar = n_meta = 0;
1835 for (log_part = 0; log_part < n_pm; log_part++) {
1836 mapping = (union udf_pmap *) pmap_pos;
1837 pmap_stype = pmap_pos[0];
1838 pmap_size = pmap_pos[1];
1839 switch (pmap_stype) {
1840 case 1: /* physical mapping */
1841 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1842 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1843 pmap_type = UDF_VTOP_TYPE_PHYS;
1844 n_phys++;
1845 ump->data_part = log_part;
1846 ump->metadata_part = log_part;
1847 break;
1848 case 2: /* virtual/sparable/meta mapping */
1849 map_name = mapping->pm2.part_id.id;
1850 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1851 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1852 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1853 len = UDF_REGID_ID_SIZE;
1854
1855 check_name = "*UDF Virtual Partition";
1856 if (strncmp(map_name, check_name, len) == 0) {
1857 pmap_type = UDF_VTOP_TYPE_VIRT;
1858 n_virt++;
1859 ump->metadata_part = log_part;
1860 break;
1861 }
1862 check_name = "*UDF Sparable Partition";
1863 if (strncmp(map_name, check_name, len) == 0) {
1864 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1865 n_spar++;
1866 ump->data_part = log_part;
1867 ump->metadata_part = log_part;
1868 break;
1869 }
1870 check_name = "*UDF Metadata Partition";
1871 if (strncmp(map_name, check_name, len) == 0) {
1872 pmap_type = UDF_VTOP_TYPE_META;
1873 n_meta++;
1874 ump->metadata_part = log_part;
1875 break;
1876 }
1877 break;
1878 default:
1879 return EINVAL;
1880 }
1881
1882 /*
1883 * BUGALERT: some rogue implementations use random physical
1884 * partion numbers to break other implementations so lookup
1885 * the number.
1886 */
1887 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1888 part = ump->partitions[phys_part];
1889 if (part == NULL)
1890 continue;
1891 if (udf_rw16(part->part_num) == raw_phys_part)
1892 break;
1893 }
1894
1895 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1896 raw_phys_part, phys_part, pmap_type));
1897
1898 if (phys_part == UDF_PARTITIONS)
1899 return EINVAL;
1900 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1901 return EINVAL;
1902
1903 ump->vtop [log_part] = phys_part;
1904 ump->vtop_tp[log_part] = pmap_type;
1905
1906 pmap_pos += pmap_size;
1907 }
1908 /* not winning the beauty contest */
1909 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1910
1911 /* test some basic UDF assertions/requirements */
1912 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1913 return EINVAL;
1914
1915 if (n_virt) {
1916 if ((n_phys == 0) || n_spar || n_meta)
1917 return EINVAL;
1918 }
1919 if (n_spar + n_phys == 0)
1920 return EINVAL;
1921
1922 /* determine allocation scheme's based on disc format */
1923 /* VAT's can only be on a sequential media */
1924 ump->data_alloc = UDF_ALLOC_SPACEMAP;
1925 if (n_virt)
1926 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1927
1928 ump->meta_alloc = UDF_ALLOC_SPACEMAP;
1929 if (n_virt)
1930 ump->meta_alloc = UDF_ALLOC_VAT;
1931 if (n_meta)
1932 ump->meta_alloc = UDF_ALLOC_METABITMAP;
1933
1934 /* special cases for pseudo-overwrite */
1935 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1936 ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
1937 if (n_meta) {
1938 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
1939 } else {
1940 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
1941 }
1942 }
1943
1944 /* determine default allocation descriptors to use */
1945 ump->data_allocdscr = UDF_ICB_SHORT_ALLOC;
1946 ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
1947 if (n_pm > 1) {
1948 ump->data_allocdscr = UDF_ICB_LONG_ALLOC;
1949 ump->meta_allocdscr = UDF_ICB_LONG_ALLOC;
1950 /* metadata partitions are forced to have short */
1951 if (n_meta)
1952 ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
1953 }
1954
1955 /* determine logical volume open/closure actions */
1956 if (n_virt) {
1957 ump->lvopen = 0;
1958 if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
1959 ump->lvopen |= UDF_OPEN_SESSION ;
1960 ump->lvclose = UDF_WRITE_VAT;
1961 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
1962 ump->lvclose |= UDF_CLOSE_SESSION;
1963 } else {
1964 /* `normal' rewritable or non sequential media */
1965 ump->lvopen = UDF_WRITE_LVINT;
1966 ump->lvclose = UDF_WRITE_LVINT;
1967 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
1968 ump->lvopen |= UDF_APPENDONLY_LVINT;
1969 }
1970
1971 /*
1972 * Determine sheduler error behaviour. For virtual partions, update
1973 * the trackinfo; for sparable partitions replace a whole block on the
1974 * sparable table. Allways requeue.
1975 */
1976 ump->lvreadwrite = 0;
1977 if (n_virt)
1978 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
1979 if (n_spar)
1980 ump->lvreadwrite = UDF_REMAP_BLOCK;
1981
1982 /*
1983 * Select our sheduler
1984 */
1985 ump->strategy = &udf_strat_rmw;
1986 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
1987 ump->strategy = &udf_strat_sequential;
1988 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
1989 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
1990 ump->strategy = &udf_strat_direct;
1991 if (n_spar)
1992 ump->strategy = &udf_strat_rmw;
1993
1994 /* print results */
1995 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
1996 ump->data_alloc, ump->meta_alloc));
1997 DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n",
1998 ump->data_part, ump->metadata_part));
1999
2000 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
2001 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2002 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2003 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2004 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2005 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2006
2007 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2008 (ump->strategy == &udf_strat_direct) ? "Direct" :
2009 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2010 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2011
2012 /* signal its OK for now */
2013 return 0;
2014 }
2015
2016 /* --------------------------------------------------------------------- */
2017
2018 /*
2019 * Update logical volume name in all structures that keep a record of it. We
2020 * use memmove since each of them might be specified as a source.
2021 *
2022 * Note that it doesn't update the VAT structure!
2023 */
2024
2025 static void
2026 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2027 {
2028 struct logvol_desc *lvd = NULL;
2029 struct fileset_desc *fsd = NULL;
2030 struct udf_lv_info *lvi = NULL;
2031
2032 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2033 lvd = ump->logical_vol;
2034 fsd = ump->fileset_desc;
2035 if (ump->implementation)
2036 lvi = &ump->implementation->_impl_use.lv_info;
2037
2038 /* logvol's id might be specified as origional so use memmove here */
2039 memmove(lvd->logvol_id, logvol_id, 128);
2040 if (fsd)
2041 memmove(fsd->logvol_id, logvol_id, 128);
2042 if (lvi)
2043 memmove(lvi->logvol_id, logvol_id, 128);
2044 }
2045
2046 /* --------------------------------------------------------------------- */
2047
2048 void
2049 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2050 uint32_t sector)
2051 {
2052 assert(ump->logical_vol);
2053
2054 tag->id = udf_rw16(tagid);
2055 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2056 tag->cksum = 0;
2057 tag->reserved = 0;
2058 tag->serial_num = ump->logical_vol->tag.serial_num;
2059 tag->tag_loc = udf_rw32(sector);
2060 }
2061
2062
2063 uint64_t
2064 udf_advance_uniqueid(struct udf_mount *ump)
2065 {
2066 uint64_t unique_id;
2067
2068 mutex_enter(&ump->logvol_mutex);
2069 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2070 if (unique_id < 0x10)
2071 unique_id = 0x10;
2072 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2073 mutex_exit(&ump->logvol_mutex);
2074
2075 return unique_id;
2076 }
2077
2078
2079 static void
2080 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2081 {
2082 struct udf_mount *ump = udf_node->ump;
2083 uint32_t num_dirs, num_files;
2084 int udf_file_type;
2085
2086 /* get file type */
2087 if (udf_node->fe) {
2088 udf_file_type = udf_node->fe->icbtag.file_type;
2089 } else {
2090 udf_file_type = udf_node->efe->icbtag.file_type;
2091 }
2092
2093 /* adjust file count */
2094 mutex_enter(&ump->allocate_mutex);
2095 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2096 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2097 ump->logvol_info->num_directories =
2098 udf_rw32((num_dirs + sign));
2099 } else {
2100 num_files = udf_rw32(ump->logvol_info->num_files);
2101 ump->logvol_info->num_files =
2102 udf_rw32((num_files + sign));
2103 }
2104 mutex_exit(&ump->allocate_mutex);
2105 }
2106
2107
2108 void
2109 udf_osta_charset(struct charspec *charspec)
2110 {
2111 bzero(charspec, sizeof(struct charspec));
2112 charspec->type = 0;
2113 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2114 }
2115
2116
2117 /* first call udf_set_regid and then the suffix */
2118 void
2119 udf_set_regid(struct regid *regid, char const *name)
2120 {
2121 bzero(regid, sizeof(struct regid));
2122 regid->flags = 0; /* not dirty and not protected */
2123 strcpy((char *) regid->id, name);
2124 }
2125
2126
2127 void
2128 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2129 {
2130 uint16_t *ver;
2131
2132 ver = (uint16_t *) regid->id_suffix;
2133 *ver = ump->logvol_info->min_udf_readver;
2134 }
2135
2136
2137 void
2138 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2139 {
2140 uint16_t *ver;
2141
2142 ver = (uint16_t *) regid->id_suffix;
2143 *ver = ump->logvol_info->min_udf_readver;
2144
2145 regid->id_suffix[2] = 4; /* unix */
2146 regid->id_suffix[3] = 8; /* NetBSD */
2147 }
2148
2149
2150 void
2151 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2152 {
2153 regid->id_suffix[0] = 4; /* unix */
2154 regid->id_suffix[1] = 8; /* NetBSD */
2155 }
2156
2157
2158 void
2159 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2160 {
2161 regid->id_suffix[0] = APP_VERSION_MAIN;
2162 regid->id_suffix[1] = APP_VERSION_SUB;
2163 }
2164
2165 static int
2166 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2167 struct long_ad *parent, uint64_t unique_id)
2168 {
2169 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2170 int fidsize = 40;
2171
2172 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2173 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2174 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2175 fid->icb = *parent;
2176 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2177 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
2178 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2179
2180 return fidsize;
2181 }
2182
2183 /* --------------------------------------------------------------------- */
2184
2185 /*
2186 * Extended attribute support. UDF knows of 3 places for extended attributes:
2187 *
2188 * (a) inside the file's (e)fe in the length of the extended attribute area
2189 * before the allocation descriptors/filedata
2190 *
2191 * (b) in a file referenced by (e)fe->ext_attr_icb and
2192 *
2193 * (c) in the e(fe)'s associated stream directory that can hold various
2194 * sub-files. In the stream directory a few fixed named subfiles are reserved
2195 * for NT/Unix ACL's and OS/2 attributes.
2196 *
2197 * NOTE: Extended attributes are read randomly but allways written
2198 * *atomicaly*. For ACL's this interface is propably different but not known
2199 * to me yet.
2200 *
2201 * Order of extended attributes in a space :
2202 * ECMA 167 EAs
2203 * Non block aligned Implementation Use EAs
2204 * Block aligned Implementation Use EAs
2205 * Application Use EAs
2206 */
2207
2208 static int
2209 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2210 {
2211 uint16_t *spos;
2212
2213 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2214 /* checksum valid? */
2215 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2216 spos = (uint16_t *) implext->data;
2217 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2218 return EINVAL;
2219 }
2220 return 0;
2221 }
2222
2223 static void
2224 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2225 {
2226 uint16_t *spos;
2227
2228 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2229 /* set checksum */
2230 spos = (uint16_t *) implext->data;
2231 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2232 }
2233 }
2234
2235
2236 int
2237 udf_extattr_search_intern(struct udf_node *node,
2238 uint32_t sattr, char const *sattrname,
2239 uint32_t *offsetp, uint32_t *lengthp)
2240 {
2241 struct extattrhdr_desc *eahdr;
2242 struct extattr_entry *attrhdr;
2243 struct impl_extattr_entry *implext;
2244 uint32_t offset, a_l, sector_size;
2245 int32_t l_ea;
2246 uint8_t *pos;
2247 int error;
2248
2249 /* get mountpoint */
2250 sector_size = node->ump->discinfo.sector_size;
2251
2252 /* get information from fe/efe */
2253 if (node->fe) {
2254 l_ea = udf_rw32(node->fe->l_ea);
2255 eahdr = (struct extattrhdr_desc *) node->fe->data;
2256 } else {
2257 assert(node->efe);
2258 l_ea = udf_rw32(node->efe->l_ea);
2259 eahdr = (struct extattrhdr_desc *) node->efe->data;
2260 }
2261
2262 /* something recorded here? */
2263 if (l_ea == 0)
2264 return ENOENT;
2265
2266 /* check extended attribute tag; what to do if it fails? */
2267 error = udf_check_tag(eahdr);
2268 if (error)
2269 return EINVAL;
2270 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2271 return EINVAL;
2272 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2273 if (error)
2274 return EINVAL;
2275
2276 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2277
2278 /* looking for Ecma-167 attributes? */
2279 offset = sizeof(struct extattrhdr_desc);
2280
2281 /* looking for either implemenation use or application use */
2282 if (sattr == 2048) { /* [4/48.10.8] */
2283 offset = udf_rw32(eahdr->impl_attr_loc);
2284 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2285 return ENOENT;
2286 }
2287 if (sattr == 65536) { /* [4/48.10.9] */
2288 offset = udf_rw32(eahdr->appl_attr_loc);
2289 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2290 return ENOENT;
2291 }
2292
2293 /* paranoia check offset and l_ea */
2294 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2295 return EINVAL;
2296
2297 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2298
2299 /* find our extended attribute */
2300 l_ea -= offset;
2301 pos = (uint8_t *) eahdr + offset;
2302
2303 while (l_ea >= sizeof(struct extattr_entry)) {
2304 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2305 attrhdr = (struct extattr_entry *) pos;
2306 implext = (struct impl_extattr_entry *) pos;
2307
2308 /* get complete attribute length and check for roque values */
2309 a_l = udf_rw32(attrhdr->a_l);
2310 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2311 udf_rw32(attrhdr->type),
2312 attrhdr->subtype, a_l, l_ea));
2313 if ((a_l == 0) || (a_l > l_ea))
2314 return EINVAL;
2315
2316 if (attrhdr->type != sattr)
2317 goto next_attribute;
2318
2319 /* we might have found it! */
2320 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2321 *offsetp = offset;
2322 *lengthp = a_l;
2323 return 0; /* success */
2324 }
2325
2326 /*
2327 * Implementation use and application use extended attributes
2328 * have a name to identify. They share the same structure only
2329 * UDF implementation use extended attributes have a checksum
2330 * we need to check
2331 */
2332
2333 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2334 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2335 /* we have found our appl/implementation attribute */
2336 *offsetp = offset;
2337 *lengthp = a_l;
2338 return 0; /* success */
2339 }
2340
2341 next_attribute:
2342 /* next attribute */
2343 pos += a_l;
2344 l_ea -= a_l;
2345 offset += a_l;
2346 }
2347 /* not found */
2348 return ENOENT;
2349 }
2350
2351
2352 static void
2353 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2354 struct extattr_entry *extattr)
2355 {
2356 struct file_entry *fe;
2357 struct extfile_entry *efe;
2358 struct extattrhdr_desc *extattrhdr;
2359 struct impl_extattr_entry *implext;
2360 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2361 uint32_t *l_eap, l_ad;
2362 uint16_t *spos;
2363 uint8_t *bpos, *data;
2364
2365 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2366 fe = &dscr->fe;
2367 data = fe->data;
2368 l_eap = &fe->l_ea;
2369 l_ad = udf_rw32(fe->l_ad);
2370 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2371 efe = &dscr->efe;
2372 data = efe->data;
2373 l_eap = &efe->l_ea;
2374 l_ad = udf_rw32(efe->l_ad);
2375 } else {
2376 panic("Bad tag passed to udf_extattr_insert_internal");
2377 }
2378
2379 /* can't append already written to file descriptors yet */
2380 assert(l_ad == 0);
2381
2382 /* should have a header! */
2383 extattrhdr = (struct extattrhdr_desc *) data;
2384 l_ea = udf_rw32(*l_eap);
2385 if (l_ea == 0) {
2386 /* create empty extended attribute header */
2387 exthdr_len = sizeof(struct extattrhdr_desc);
2388
2389 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2390 /* loc */ 0);
2391 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2392 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2393 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2394
2395 /* record extended attribute header length */
2396 l_ea = exthdr_len;
2397 *l_eap = udf_rw32(l_ea);
2398 }
2399
2400 /* extract locations */
2401 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2402 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2403 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2404 impl_attr_loc = l_ea;
2405 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2406 appl_attr_loc = l_ea;
2407
2408 /* Ecma 167 EAs */
2409 if (udf_rw32(extattr->type) < 2048) {
2410 assert(impl_attr_loc == l_ea);
2411 assert(appl_attr_loc == l_ea);
2412 }
2413
2414 /* implementation use extended attributes */
2415 if (udf_rw32(extattr->type) == 2048) {
2416 assert(appl_attr_loc == l_ea);
2417
2418 /* calculate and write extended attribute header checksum */
2419 implext = (struct impl_extattr_entry *) extattr;
2420 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2421 spos = (uint16_t *) implext->data;
2422 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2423 }
2424
2425 /* application use extended attributes */
2426 assert(udf_rw32(extattr->type) != 65536);
2427 assert(appl_attr_loc == l_ea);
2428
2429 /* append the attribute at the end of the current space */
2430 bpos = data + udf_rw32(*l_eap);
2431 a_l = udf_rw32(extattr->a_l);
2432
2433 /* update impl. attribute locations */
2434 if (udf_rw32(extattr->type) < 2048) {
2435 impl_attr_loc = l_ea + a_l;
2436 appl_attr_loc = l_ea + a_l;
2437 }
2438 if (udf_rw32(extattr->type) == 2048) {
2439 appl_attr_loc = l_ea + a_l;
2440 }
2441
2442 /* copy and advance */
2443 memcpy(bpos, extattr, a_l);
2444 l_ea += a_l;
2445 *l_eap = udf_rw32(l_ea);
2446
2447 /* do the `dance` again backwards */
2448 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2449 if (impl_attr_loc == l_ea)
2450 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2451 if (appl_attr_loc == l_ea)
2452 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2453 }
2454
2455 /* store offsets */
2456 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2457 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2458 }
2459
2460
2461 /* --------------------------------------------------------------------- */
2462
2463 static int
2464 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2465 {
2466 struct udf_mount *ump;
2467 struct udf_logvol_info *lvinfo;
2468 struct impl_extattr_entry *implext;
2469 struct vatlvext_extattr_entry lvext;
2470 const char *extstr = "*UDF VAT LVExtension";
2471 uint64_t vat_uniqueid;
2472 uint32_t offset, a_l;
2473 uint8_t *ea_start, *lvextpos;
2474 int error;
2475
2476 /* get mountpoint and lvinfo */
2477 ump = vat_node->ump;
2478 lvinfo = ump->logvol_info;
2479
2480 /* get information from fe/efe */
2481 if (vat_node->fe) {
2482 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2483 ea_start = vat_node->fe->data;
2484 } else {
2485 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2486 ea_start = vat_node->efe->data;
2487 }
2488
2489 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2490 if (error)
2491 return error;
2492
2493 implext = (struct impl_extattr_entry *) (ea_start + offset);
2494 error = udf_impl_extattr_check(implext);
2495 if (error)
2496 return error;
2497
2498 /* paranoia */
2499 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2500 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2501 return EINVAL;
2502 }
2503
2504 /*
2505 * we have found our "VAT LVExtension attribute. BUT due to a
2506 * bug in the specification it might not be word aligned so
2507 * copy first to avoid panics on some machines (!!)
2508 */
2509 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2510 lvextpos = implext->data + udf_rw32(implext->iu_l);
2511 memcpy(&lvext, lvextpos, sizeof(lvext));
2512
2513 /* check if it was updated the last time */
2514 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2515 lvinfo->num_files = lvext.num_files;
2516 lvinfo->num_directories = lvext.num_directories;
2517 udf_update_logvolname(ump, lvext.logvol_id);
2518 } else {
2519 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2520 /* replace VAT LVExt by free space EA */
2521 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2522 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2523 udf_calc_impl_extattr_checksum(implext);
2524 }
2525
2526 return 0;
2527 }
2528
2529
2530 static int
2531 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2532 {
2533 struct udf_mount *ump;
2534 struct udf_logvol_info *lvinfo;
2535 struct impl_extattr_entry *implext;
2536 struct vatlvext_extattr_entry lvext;
2537 const char *extstr = "*UDF VAT LVExtension";
2538 uint64_t vat_uniqueid;
2539 uint32_t offset, a_l;
2540 uint8_t *ea_start, *lvextpos;
2541 int error;
2542
2543 /* get mountpoint and lvinfo */
2544 ump = vat_node->ump;
2545 lvinfo = ump->logvol_info;
2546
2547 /* get information from fe/efe */
2548 if (vat_node->fe) {
2549 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2550 ea_start = vat_node->fe->data;
2551 } else {
2552 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2553 ea_start = vat_node->efe->data;
2554 }
2555
2556 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2557 if (error)
2558 return error;
2559 /* found, it existed */
2560
2561 /* paranoia */
2562 implext = (struct impl_extattr_entry *) (ea_start + offset);
2563 error = udf_impl_extattr_check(implext);
2564 if (error) {
2565 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2566 return error;
2567 }
2568 /* it is correct */
2569
2570 /*
2571 * we have found our "VAT LVExtension attribute. BUT due to a
2572 * bug in the specification it might not be word aligned so
2573 * copy first to avoid panics on some machines (!!)
2574 */
2575 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2576 lvextpos = implext->data + udf_rw32(implext->iu_l);
2577
2578 lvext.unique_id_chk = vat_uniqueid;
2579 lvext.num_files = lvinfo->num_files;
2580 lvext.num_directories = lvinfo->num_directories;
2581 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2582
2583 memcpy(lvextpos, &lvext, sizeof(lvext));
2584
2585 return 0;
2586 }
2587
2588 /* --------------------------------------------------------------------- */
2589
2590 int
2591 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2592 {
2593 struct udf_mount *ump = vat_node->ump;
2594
2595 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2596 return EINVAL;
2597
2598 memcpy(blob, ump->vat_table + offset, size);
2599 return 0;
2600 }
2601
2602 int
2603 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2604 {
2605 struct udf_mount *ump = vat_node->ump;
2606 uint32_t offset_high;
2607 uint8_t *new_vat_table;
2608
2609 /* extent VAT allocation if needed */
2610 offset_high = offset + size;
2611 if (offset_high >= ump->vat_table_alloc_len) {
2612 /* realloc */
2613 new_vat_table = realloc(ump->vat_table,
2614 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2615 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2616 if (!new_vat_table) {
2617 printf("udf_vat_write: can't extent VAT, out of mem\n");
2618 return ENOMEM;
2619 }
2620 ump->vat_table = new_vat_table;
2621 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2622 }
2623 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2624
2625 memcpy(ump->vat_table + offset, blob, size);
2626 return 0;
2627 }
2628
2629 /* --------------------------------------------------------------------- */
2630
2631 /* TODO support previous VAT location writeout */
2632 static int
2633 udf_update_vat_descriptor(struct udf_mount *ump)
2634 {
2635 struct udf_node *vat_node = ump->vat_node;
2636 struct udf_logvol_info *lvinfo = ump->logvol_info;
2637 struct icb_tag *icbtag;
2638 struct udf_oldvat_tail *oldvat_tl;
2639 struct udf_vat *vat;
2640 uint64_t unique_id;
2641 uint32_t lb_size;
2642 uint8_t *raw_vat;
2643 int filetype, error;
2644
2645 KASSERT(vat_node);
2646 KASSERT(lvinfo);
2647 lb_size = udf_rw32(ump->logical_vol->lb_size);
2648
2649 /* get our new unique_id */
2650 unique_id = udf_advance_uniqueid(ump);
2651
2652 /* get information from fe/efe */
2653 if (vat_node->fe) {
2654 icbtag = &vat_node->fe->icbtag;
2655 vat_node->fe->unique_id = udf_rw64(unique_id);
2656 } else {
2657 icbtag = &vat_node->efe->icbtag;
2658 vat_node->efe->unique_id = udf_rw64(unique_id);
2659 }
2660
2661 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2662 filetype = icbtag->file_type;
2663 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2664
2665 /* allocate piece to process head or tail of VAT file */
2666 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2667
2668 if (filetype == 0) {
2669 /*
2670 * Update "*UDF VAT LVExtension" extended attribute from the
2671 * lvint if present.
2672 */
2673 udf_update_vat_extattr_from_lvid(vat_node);
2674
2675 /* setup identifying regid */
2676 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2677 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2678
2679 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2680 udf_add_udf_regid(ump, &oldvat_tl->id);
2681 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2682
2683 /* write out new tail of virtual allocation table file */
2684 error = udf_vat_write(vat_node, raw_vat,
2685 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2686 } else {
2687 /* compose the VAT2 header */
2688 vat = (struct udf_vat *) raw_vat;
2689 memset(vat, 0, sizeof(struct udf_vat));
2690
2691 vat->header_len = udf_rw16(152); /* as per spec */
2692 vat->impl_use_len = udf_rw16(0);
2693 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2694 vat->prev_vat = udf_rw32(0xffffffff);
2695 vat->num_files = lvinfo->num_files;
2696 vat->num_directories = lvinfo->num_directories;
2697 vat->min_udf_readver = lvinfo->min_udf_readver;
2698 vat->min_udf_writever = lvinfo->min_udf_writever;
2699 vat->max_udf_writever = lvinfo->max_udf_writever;
2700
2701 error = udf_vat_write(vat_node, raw_vat,
2702 sizeof(struct udf_vat), 0);
2703 }
2704 free(raw_vat, M_TEMP);
2705
2706 return error; /* success! */
2707 }
2708
2709
2710 int
2711 udf_writeout_vat(struct udf_mount *ump)
2712 {
2713 struct udf_node *vat_node = ump->vat_node;
2714 uint32_t vat_length;
2715 int error;
2716
2717 KASSERT(vat_node);
2718
2719 DPRINTF(CALL, ("udf_writeout_vat\n"));
2720
2721 mutex_enter(&ump->allocate_mutex);
2722 udf_update_vat_descriptor(ump);
2723
2724 /* write out the VAT contents ; TODO intelligent writing */
2725 vat_length = ump->vat_table_len;
2726 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2727 ump->vat_table, ump->vat_table_len, 0,
2728 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2729 if (error) {
2730 printf("udf_writeout_vat: failed to write out VAT contents\n");
2731 goto out;
2732 }
2733
2734 mutex_exit(&ump->allocate_mutex);
2735
2736 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2737 error = VOP_FSYNC(ump->vat_node->vnode,
2738 FSCRED, FSYNC_WAIT, 0, 0);
2739 if (error)
2740 printf("udf_writeout_vat: error writing VAT node!\n");
2741 out:
2742
2743 return error;
2744 }
2745
2746 /* --------------------------------------------------------------------- */
2747
2748 /*
2749 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2750 * descriptor. If OK, read in complete VAT file.
2751 */
2752
2753 static int
2754 udf_check_for_vat(struct udf_node *vat_node)
2755 {
2756 struct udf_mount *ump;
2757 struct icb_tag *icbtag;
2758 struct timestamp *mtime;
2759 struct udf_vat *vat;
2760 struct udf_oldvat_tail *oldvat_tl;
2761 struct udf_logvol_info *lvinfo;
2762 uint64_t unique_id;
2763 uint32_t vat_length;
2764 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2765 uint32_t sector_size;
2766 uint32_t *raw_vat;
2767 uint8_t *vat_table;
2768 char *regid_name;
2769 int filetype;
2770 int error;
2771
2772 /* vat_length is really 64 bits though impossible */
2773
2774 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2775 if (!vat_node)
2776 return ENOENT;
2777
2778 /* get mount info */
2779 ump = vat_node->ump;
2780 sector_size = udf_rw32(ump->logical_vol->lb_size);
2781
2782 /* check assertions */
2783 assert(vat_node->fe || vat_node->efe);
2784 assert(ump->logvol_integrity);
2785
2786 /* set vnode type to regular file or we can't read from it! */
2787 vat_node->vnode->v_type = VREG;
2788
2789 /* get information from fe/efe */
2790 if (vat_node->fe) {
2791 vat_length = udf_rw64(vat_node->fe->inf_len);
2792 icbtag = &vat_node->fe->icbtag;
2793 mtime = &vat_node->fe->mtime;
2794 unique_id = udf_rw64(vat_node->fe->unique_id);
2795 } else {
2796 vat_length = udf_rw64(vat_node->efe->inf_len);
2797 icbtag = &vat_node->efe->icbtag;
2798 mtime = &vat_node->efe->mtime;
2799 unique_id = udf_rw64(vat_node->efe->unique_id);
2800 }
2801
2802 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2803 filetype = icbtag->file_type;
2804 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2805 return ENOENT;
2806
2807 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2808
2809 vat_table_alloc_len =
2810 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2811 * UDF_VAT_CHUNKSIZE;
2812
2813 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2814 M_CANFAIL | M_WAITOK);
2815 if (vat_table == NULL) {
2816 printf("allocation of %d bytes failed for VAT\n",
2817 vat_table_alloc_len);
2818 return ENOMEM;
2819 }
2820
2821 /* allocate piece to read in head or tail of VAT file */
2822 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2823
2824 /*
2825 * check contents of the file if its the old 1.50 VAT table format.
2826 * Its notoriously broken and allthough some implementations support an
2827 * extention as defined in the UDF 1.50 errata document, its doubtfull
2828 * to be useable since a lot of implementations don't maintain it.
2829 */
2830 lvinfo = ump->logvol_info;
2831
2832 if (filetype == 0) {
2833 /* definition */
2834 vat_offset = 0;
2835 vat_entries = (vat_length-36)/4;
2836
2837 /* read in tail of virtual allocation table file */
2838 error = vn_rdwr(UIO_READ, vat_node->vnode,
2839 (uint8_t *) raw_vat,
2840 sizeof(struct udf_oldvat_tail),
2841 vat_entries * 4,
2842 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2843 NULL, NULL);
2844 if (error)
2845 goto out;
2846
2847 /* check 1.50 VAT */
2848 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2849 regid_name = (char *) oldvat_tl->id.id;
2850 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2851 if (error) {
2852 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2853 error = ENOENT;
2854 goto out;
2855 }
2856
2857 /*
2858 * update LVID from "*UDF VAT LVExtension" extended attribute
2859 * if present.
2860 */
2861 udf_update_lvid_from_vat_extattr(vat_node);
2862 } else {
2863 /* read in head of virtual allocation table file */
2864 error = vn_rdwr(UIO_READ, vat_node->vnode,
2865 (uint8_t *) raw_vat,
2866 sizeof(struct udf_vat), 0,
2867 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2868 NULL, NULL);
2869 if (error)
2870 goto out;
2871
2872 /* definition */
2873 vat = (struct udf_vat *) raw_vat;
2874 vat_offset = vat->header_len;
2875 vat_entries = (vat_length - vat_offset)/4;
2876
2877 assert(lvinfo);
2878 lvinfo->num_files = vat->num_files;
2879 lvinfo->num_directories = vat->num_directories;
2880 lvinfo->min_udf_readver = vat->min_udf_readver;
2881 lvinfo->min_udf_writever = vat->min_udf_writever;
2882 lvinfo->max_udf_writever = vat->max_udf_writever;
2883
2884 udf_update_logvolname(ump, vat->logvol_id);
2885 }
2886
2887 /* read in complete VAT file */
2888 error = vn_rdwr(UIO_READ, vat_node->vnode,
2889 vat_table,
2890 vat_length, 0,
2891 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2892 NULL, NULL);
2893 if (error)
2894 printf("read in of complete VAT file failed (error %d)\n",
2895 error);
2896 if (error)
2897 goto out;
2898
2899 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2900 ump->logvol_integrity->lvint_next_unique_id = unique_id;
2901 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2902 ump->logvol_integrity->time = *mtime;
2903
2904 ump->vat_table_len = vat_length;
2905 ump->vat_table_alloc_len = vat_table_alloc_len;
2906 ump->vat_table = vat_table;
2907 ump->vat_offset = vat_offset;
2908 ump->vat_entries = vat_entries;
2909 ump->vat_last_free_lb = 0; /* start at beginning */
2910
2911 out:
2912 if (error) {
2913 if (vat_table)
2914 free(vat_table, M_UDFVOLD);
2915 }
2916 free(raw_vat, M_TEMP);
2917
2918 return error;
2919 }
2920
2921 /* --------------------------------------------------------------------- */
2922
2923 static int
2924 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2925 {
2926 struct udf_node *vat_node;
2927 struct long_ad icb_loc;
2928 uint32_t early_vat_loc, late_vat_loc, vat_loc;
2929 int error;
2930
2931 /* mapping info not needed */
2932 mapping = mapping;
2933
2934 vat_loc = ump->last_possible_vat_location;
2935 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
2936
2937 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2938 vat_loc, early_vat_loc));
2939 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
2940 late_vat_loc = vat_loc + 1024;
2941
2942 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
2943 vat_loc, early_vat_loc));
2944
2945 /* start looking from the end of the range */
2946 do {
2947 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
2948 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
2949 icb_loc.loc.lb_num = udf_rw32(vat_loc);
2950
2951 error = udf_get_node(ump, &icb_loc, &vat_node);
2952 if (!error) {
2953 error = udf_check_for_vat(vat_node);
2954 DPRINTFIF(VOLUMES, !error,
2955 ("VAT accepted at %d\n", vat_loc));
2956 if (!error)
2957 break;
2958 }
2959 if (vat_node) {
2960 vput(vat_node->vnode);
2961 vat_node = NULL;
2962 }
2963 vat_loc--; /* walk backwards */
2964 } while (vat_loc >= early_vat_loc);
2965
2966 /* keep our VAT node around */
2967 if (vat_node) {
2968 UDF_SET_SYSTEMFILE(vat_node->vnode);
2969 ump->vat_node = vat_node;
2970 }
2971
2972 return error;
2973 }
2974
2975 /* --------------------------------------------------------------------- */
2976
2977 static int
2978 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
2979 {
2980 union dscrptr *dscr;
2981 struct part_map_spare *pms = &mapping->pms;
2982 uint32_t lb_num;
2983 int spar, error;
2984
2985 /*
2986 * The partition mapping passed on to us specifies the information we
2987 * need to locate and initialise the sparable partition mapping
2988 * information we need.
2989 */
2990
2991 DPRINTF(VOLUMES, ("Read sparable table\n"));
2992 ump->sparable_packet_size = udf_rw16(pms->packet_len);
2993 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
2994
2995 for (spar = 0; spar < pms->n_st; spar++) {
2996 lb_num = pms->st_loc[spar];
2997 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
2998 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
2999 if (!error && dscr) {
3000 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3001 if (ump->sparing_table)
3002 free(ump->sparing_table, M_UDFVOLD);
3003 ump->sparing_table = &dscr->spt;
3004 dscr = NULL;
3005 DPRINTF(VOLUMES,
3006 ("Sparing table accepted (%d entries)\n",
3007 udf_rw16(ump->sparing_table->rt_l)));
3008 break; /* we're done */
3009 }
3010 }
3011 if (dscr)
3012 free(dscr, M_UDFVOLD);
3013 }
3014
3015 if (ump->sparing_table)
3016 return 0;
3017
3018 return ENOENT;
3019 }
3020
3021 /* --------------------------------------------------------------------- */
3022
3023 static int
3024 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3025 {
3026 struct part_map_meta *pmm = &mapping->pmm;
3027 struct long_ad icb_loc;
3028 struct vnode *vp;
3029 int error;
3030
3031 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3032 icb_loc.loc.part_num = pmm->part_num;
3033 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3034 DPRINTF(VOLUMES, ("Metadata file\n"));
3035 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3036 if (ump->metadata_node) {
3037 vp = ump->metadata_node->vnode;
3038 UDF_SET_SYSTEMFILE(vp);
3039 }
3040
3041 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3042 if (icb_loc.loc.lb_num != -1) {
3043 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3044 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3045 if (ump->metadatamirror_node) {
3046 vp = ump->metadatamirror_node->vnode;
3047 UDF_SET_SYSTEMFILE(vp);
3048 }
3049 }
3050
3051 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3052 if (icb_loc.loc.lb_num != -1) {
3053 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3054 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3055 if (ump->metadatabitmap_node) {
3056 vp = ump->metadatabitmap_node->vnode;
3057 UDF_SET_SYSTEMFILE(vp);
3058 }
3059 }
3060
3061 /* if we're mounting read-only we relax the requirements */
3062 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3063 error = EFAULT;
3064 if (ump->metadata_node)
3065 error = 0;
3066 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3067 printf( "udf mount: Metadata file not readable, "
3068 "substituting Metadata copy file\n");
3069 ump->metadata_node = ump->metadatamirror_node;
3070 ump->metadatamirror_node = NULL;
3071 error = 0;
3072 }
3073 } else {
3074 /* mounting read/write */
3075 /* XXX DISABLED! metadata writing is not working yet XXX */
3076 /* if (error) */
3077 error = EROFS;
3078 }
3079 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3080 "metadata files\n"));
3081 return error;
3082 }
3083
3084 /* --------------------------------------------------------------------- */
3085
3086 int
3087 udf_read_vds_tables(struct udf_mount *ump)
3088 {
3089 union udf_pmap *mapping;
3090 /* struct udf_args *args = &ump->mount_args; */
3091 uint32_t n_pm, mt_l;
3092 uint32_t log_part;
3093 uint8_t *pmap_pos;
3094 int pmap_size;
3095 int error;
3096
3097 /* Iterate (again) over the part mappings for locations */
3098 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3099 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3100 pmap_pos = ump->logical_vol->maps;
3101
3102 for (log_part = 0; log_part < n_pm; log_part++) {
3103 mapping = (union udf_pmap *) pmap_pos;
3104 switch (ump->vtop_tp[log_part]) {
3105 case UDF_VTOP_TYPE_PHYS :
3106 /* nothing */
3107 break;
3108 case UDF_VTOP_TYPE_VIRT :
3109 /* search and load VAT */
3110 error = udf_search_vat(ump, mapping);
3111 if (error)
3112 return ENOENT;
3113 break;
3114 case UDF_VTOP_TYPE_SPARABLE :
3115 /* load one of the sparable tables */
3116 error = udf_read_sparables(ump, mapping);
3117 if (error)
3118 return ENOENT;
3119 break;
3120 case UDF_VTOP_TYPE_META :
3121 /* load the associated file descriptors */
3122 error = udf_read_metadata_nodes(ump, mapping);
3123 if (error)
3124 return ENOENT;
3125 break;
3126 default:
3127 break;
3128 }
3129 pmap_size = pmap_pos[1];
3130 pmap_pos += pmap_size;
3131 }
3132
3133 /* read in and check unallocated and free space info if writing */
3134 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3135 error = udf_read_physical_partition_spacetables(ump);
3136 if (error)
3137 return error;
3138
3139 /* also read in metadata partion spacebitmap if defined */
3140 error = udf_read_metadata_partition_spacetable(ump);
3141 return error;
3142 }
3143
3144 return 0;
3145 }
3146
3147 /* --------------------------------------------------------------------- */
3148
3149 int
3150 udf_read_rootdirs(struct udf_mount *ump)
3151 {
3152 union dscrptr *dscr;
3153 /* struct udf_args *args = &ump->mount_args; */
3154 struct udf_node *rootdir_node, *streamdir_node;
3155 struct long_ad fsd_loc, *dir_loc;
3156 uint32_t lb_num, dummy;
3157 uint32_t fsd_len;
3158 int dscr_type;
3159 int error;
3160
3161 /* TODO implement FSD reading in separate function like integrity? */
3162 /* get fileset descriptor sequence */
3163 fsd_loc = ump->logical_vol->lv_fsd_loc;
3164 fsd_len = udf_rw32(fsd_loc.len);
3165
3166 dscr = NULL;
3167 error = 0;
3168 while (fsd_len || error) {
3169 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3170 /* translate fsd_loc to lb_num */
3171 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3172 if (error)
3173 break;
3174 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3175 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3176 /* end markers */
3177 if (error || (dscr == NULL))
3178 break;
3179
3180 /* analyse */
3181 dscr_type = udf_rw16(dscr->tag.id);
3182 if (dscr_type == TAGID_TERM)
3183 break;
3184 if (dscr_type != TAGID_FSD) {
3185 free(dscr, M_UDFVOLD);
3186 return ENOENT;
3187 }
3188
3189 /*
3190 * TODO check for multiple fileset descriptors; its only
3191 * picking the last now. Also check for FSD
3192 * correctness/interpretability
3193 */
3194
3195 /* update */
3196 if (ump->fileset_desc) {
3197 free(ump->fileset_desc, M_UDFVOLD);
3198 }
3199 ump->fileset_desc = &dscr->fsd;
3200 dscr = NULL;
3201
3202 /* continue to the next fsd */
3203 fsd_len -= ump->discinfo.sector_size;
3204 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3205
3206 /* follow up to fsd->next_ex (long_ad) if its not null */
3207 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3208 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3209 fsd_loc = ump->fileset_desc->next_ex;
3210 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3211 }
3212 }
3213 if (dscr)
3214 free(dscr, M_UDFVOLD);
3215
3216 /* there has to be one */
3217 if (ump->fileset_desc == NULL)
3218 return ENOENT;
3219
3220 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3221 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3222 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3223
3224 /*
3225 * Now the FSD is known, read in the rootdirectory and if one exists,
3226 * the system stream dir. Some files in the system streamdir are not
3227 * wanted in this implementation since they are not maintained. If
3228 * writing is enabled we'll delete these files if they exist.
3229 */
3230
3231 rootdir_node = streamdir_node = NULL;
3232 dir_loc = NULL;
3233
3234 /* try to read in the rootdir */
3235 dir_loc = &ump->fileset_desc->rootdir_icb;
3236 error = udf_get_node(ump, dir_loc, &rootdir_node);
3237 if (error)
3238 return ENOENT;
3239
3240 /* aparently it read in fine */
3241
3242 /*
3243 * Try the system stream directory; not very likely in the ones we
3244 * test, but for completeness.
3245 */
3246 dir_loc = &ump->fileset_desc->streamdir_icb;
3247 if (udf_rw32(dir_loc->len)) {
3248 printf("udf_read_rootdirs: streamdir defined ");
3249 error = udf_get_node(ump, dir_loc, &streamdir_node);
3250 if (error) {
3251 printf("but error in streamdir reading\n");
3252 } else {
3253 printf("but ignored\n");
3254 /*
3255 * TODO process streamdir `baddies' i.e. files we dont
3256 * want if R/W
3257 */
3258 }
3259 }
3260
3261 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3262
3263 /* release the vnodes again; they'll be auto-recycled later */
3264 if (streamdir_node) {
3265 vput(streamdir_node->vnode);
3266 }
3267 if (rootdir_node) {
3268 vput(rootdir_node->vnode);
3269 }
3270
3271 return 0;
3272 }
3273
3274 /* --------------------------------------------------------------------- */
3275
3276 /* To make absolutely sure we are NOT returning zero, add one :) */
3277
3278 long
3279 udf_calchash(struct long_ad *icbptr)
3280 {
3281 /* ought to be enough since each mountpoint has its own chain */
3282 return udf_rw32(icbptr->loc.lb_num) + 1;
3283 }
3284
3285
3286 static struct udf_node *
3287 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3288 {
3289 struct udf_node *node;
3290 struct vnode *vp;
3291 uint32_t hashline;
3292
3293 loop:
3294 mutex_enter(&ump->ihash_lock);
3295
3296 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3297 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3298 assert(node);
3299 if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
3300 node->loc.loc.part_num == icbptr->loc.part_num) {
3301 vp = node->vnode;
3302 assert(vp);
3303 mutex_enter(&vp->v_interlock);
3304 mutex_exit(&ump->ihash_lock);
3305 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3306 goto loop;
3307 return node;
3308 }
3309 }
3310 mutex_exit(&ump->ihash_lock);
3311
3312 return NULL;
3313 }
3314
3315
3316 static void
3317 udf_sorted_list_insert(struct udf_node *node)
3318 {
3319 struct udf_mount *ump;
3320 struct udf_node *s_node, *last_node;
3321 uint32_t loc, s_loc;
3322
3323 ump = node->ump;
3324 last_node = NULL; /* XXX gcc */
3325
3326 if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3327 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3328 return;
3329 }
3330
3331 /*
3332 * We sort on logical block number here and not on physical block
3333 * number here. Ideally we should go for the physical block nr to get
3334 * better sync performance though this sort will ensure that packets
3335 * won't get spit up unnessisarily.
3336 */
3337
3338 loc = udf_rw32(node->loc.loc.lb_num);
3339 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3340 s_loc = udf_rw32(s_node->loc.loc.lb_num);
3341 if (s_loc > loc) {
3342 LIST_INSERT_BEFORE(s_node, node, sortchain);
3343 return;
3344 }
3345 last_node = s_node;
3346 }
3347 LIST_INSERT_AFTER(last_node, node, sortchain);
3348 }
3349
3350
3351 static void
3352 udf_register_node(struct udf_node *node)
3353 {
3354 struct udf_mount *ump;
3355 struct udf_node *chk;
3356 uint32_t hashline;
3357
3358 ump = node->ump;
3359 mutex_enter(&ump->ihash_lock);
3360
3361 /* add to our hash table */
3362 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3363 #ifdef DEBUG
3364 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3365 assert(chk);
3366 if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
3367 chk->loc.loc.part_num == node->loc.loc.part_num)
3368 panic("Double node entered\n");
3369 }
3370 #else
3371 chk = NULL;
3372 #endif
3373 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3374
3375 /* add to our sorted list */
3376 udf_sorted_list_insert(node);
3377
3378 mutex_exit(&ump->ihash_lock);
3379 }
3380
3381
3382 static void
3383 udf_deregister_node(struct udf_node *node)
3384 {
3385 struct udf_mount *ump;
3386
3387 ump = node->ump;
3388 mutex_enter(&ump->ihash_lock);
3389
3390 /* from hash and sorted list */
3391 LIST_REMOVE(node, hashchain);
3392 LIST_REMOVE(node, sortchain);
3393
3394 mutex_exit(&ump->ihash_lock);
3395 }
3396
3397 /* --------------------------------------------------------------------- */
3398
3399 int
3400 udf_open_logvol(struct udf_mount *ump)
3401 {
3402 int logvol_integrity;
3403 int error;
3404
3405 /* already/still open? */
3406 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3407 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3408 return 0;
3409
3410 /* can we open it ? */
3411 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3412 return EROFS;
3413
3414 /* setup write parameters */
3415 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3416 if ((error = udf_setup_writeparams(ump)) != 0)
3417 return error;
3418
3419 /* determine data and metadata tracks (most likely same) */
3420 error = udf_search_writing_tracks(ump);
3421 if (error) {
3422 /* most likely lack of space */
3423 printf("udf_open_logvol: error searching writing tracks\n");
3424 return EROFS;
3425 }
3426
3427 /* writeout/update lvint on disc or only in memory */
3428 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3429 if (ump->lvopen & UDF_OPEN_SESSION) {
3430 /* TODO implement writeout of VRS + VDS */
3431 printf( "udf_open_logvol:Opening a closed session not yet "
3432 "implemented\n");
3433 return EROFS;
3434
3435 /* determine data and metadata tracks again */
3436 error = udf_search_writing_tracks(ump);
3437 }
3438
3439 /* mark it open */
3440 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3441
3442 /* do we need to write it out? */
3443 if (ump->lvopen & UDF_WRITE_LVINT) {
3444 error = udf_writeout_lvint(ump, ump->lvopen);
3445 /* if we couldn't write it mark it closed again */
3446 if (error) {
3447 ump->logvol_integrity->integrity_type =
3448 udf_rw32(UDF_INTEGRITY_CLOSED);
3449 return error;
3450 }
3451 }
3452
3453 return 0;
3454 }
3455
3456
3457 int
3458 udf_close_logvol(struct udf_mount *ump, int mntflags)
3459 {
3460 int logvol_integrity;
3461 int error = 0, error1 = 0, error2 = 0;
3462 int n;
3463
3464 /* already/still closed? */
3465 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3466 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3467 return 0;
3468
3469 /* writeout/update lvint or write out VAT */
3470 DPRINTF(VOLUMES, ("Closing logical volume\n"));
3471 if (ump->lvclose & UDF_WRITE_VAT) {
3472 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3473
3474 /* preprocess the VAT node; its modified on every writeout */
3475 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3476 udf_update_vat_descriptor(ump->vat_node->ump);
3477
3478 /* write out the VAT node */
3479 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3480 for (n = 0; n < 16; n++) {
3481 ump->vat_node->i_flags |= IN_MODIFIED;
3482 error = VOP_FSYNC(ump->vat_node->vnode,
3483 FSCRED, FSYNC_WAIT, 0, 0);
3484 }
3485 if (error) {
3486 printf("udf_close_logvol: writeout of VAT failed\n");
3487 return error;
3488 }
3489 }
3490
3491 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3492 /* sync writeout metadata spacetable if existing */
3493 error1 = udf_write_metadata_partition_spacetable(ump, true);
3494 if (error1)
3495 printf( "udf_close_logvol: writeout of metadata space "
3496 "bitmap failed\n");
3497
3498 /* sync writeout partition spacetables */
3499 error2 = udf_write_physical_partition_spacetables(ump, true);
3500 if (error2)
3501 printf( "udf_close_logvol: writeout of space tables "
3502 "failed\n");
3503
3504 if (error1 || error2)
3505 return (error1 | error2);
3506
3507 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3508 }
3509
3510 if (ump->lvclose & UDF_CLOSE_SESSION) {
3511 printf("TODO: Closing a session is not yet implemented\n");
3512 return EROFS;
3513 ump->lvopen |= UDF_OPEN_SESSION;
3514 }
3515
3516 /* mark it closed */
3517 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3518
3519 /* do we need to write out the logical volume integrity */
3520 if (ump->lvclose & UDF_WRITE_LVINT)
3521 error = udf_writeout_lvint(ump, ump->lvopen);
3522 if (error) {
3523 /* HELP now what? mark it open again for now */
3524 ump->logvol_integrity->integrity_type =
3525 udf_rw32(UDF_INTEGRITY_OPEN);
3526 return error;
3527 }
3528
3529 (void) udf_synchronise_caches(ump);
3530
3531 return 0;
3532 }
3533
3534 /* --------------------------------------------------------------------- */
3535
3536 /*
3537 * Genfs interfacing
3538 *
3539 * static const struct genfs_ops udf_genfsops = {
3540 * .gop_size = genfs_size,
3541 * size of transfers
3542 * .gop_alloc = udf_gop_alloc,
3543 * allocate len bytes at offset
3544 * .gop_write = genfs_gop_write,
3545 * putpages interface code
3546 * .gop_markupdate = udf_gop_markupdate,
3547 * set update/modify flags etc.
3548 * }
3549 */
3550
3551 /*
3552 * Genfs interface. These four functions are the only ones defined though not
3553 * documented... great....
3554 */
3555
3556 /*
3557 * Callback from genfs to allocate len bytes at offset off; only called when
3558 * filling up gaps in the allocation.
3559 */
3560 /* XXX should we check if there is space enough in udf_gop_alloc? */
3561 static int
3562 udf_gop_alloc(struct vnode *vp, off_t off,
3563 off_t len, int flags, kauth_cred_t cred)
3564 {
3565 #if 0
3566 struct udf_node *udf_node = VTOI(vp);
3567 struct udf_mount *ump = udf_node->ump;
3568 uint32_t lb_size, num_lb;
3569 #endif
3570
3571 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3572 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3573
3574 return 0;
3575 }
3576
3577
3578 /*
3579 * callback from genfs to update our flags
3580 */
3581 static void
3582 udf_gop_markupdate(struct vnode *vp, int flags)
3583 {
3584 struct udf_node *udf_node = VTOI(vp);
3585 u_long mask = 0;
3586
3587 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3588 mask = IN_ACCESS;
3589 }
3590 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3591 if (vp->v_type == VREG) {
3592 mask |= IN_CHANGE | IN_UPDATE;
3593 } else {
3594 mask |= IN_MODIFY;
3595 }
3596 }
3597 if (mask) {
3598 udf_node->i_flags |= mask;
3599 }
3600 }
3601
3602
3603 static const struct genfs_ops udf_genfsops = {
3604 .gop_size = genfs_size,
3605 .gop_alloc = udf_gop_alloc,
3606 .gop_write = genfs_gop_write_rwmap,
3607 .gop_markupdate = udf_gop_markupdate,
3608 };
3609
3610
3611 /* --------------------------------------------------------------------- */
3612
3613 int
3614 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3615 {
3616 union dscrptr *dscr;
3617 int error;
3618
3619 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3620 bzero(dscr, ump->discinfo.sector_size);
3621 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3622
3623 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3624 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3625 (void) udf_validate_tag_and_crc_sums(dscr);
3626
3627 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3628 dscr, sector, sector);
3629
3630 free(dscr, M_TEMP);
3631
3632 return error;
3633 }
3634
3635
3636 /* --------------------------------------------------------------------- */
3637
3638 /* UDF<->unix converters */
3639
3640 /* --------------------------------------------------------------------- */
3641
3642 static mode_t
3643 udf_perm_to_unix_mode(uint32_t perm)
3644 {
3645 mode_t mode;
3646
3647 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
3648 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
3649 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3650
3651 return mode;
3652 }
3653
3654 /* --------------------------------------------------------------------- */
3655
3656 static uint32_t
3657 unix_mode_to_udf_perm(mode_t mode)
3658 {
3659 uint32_t perm;
3660
3661 perm = ((mode & S_IRWXO) );
3662 perm |= ((mode & S_IRWXG) << 2);
3663 perm |= ((mode & S_IRWXU) << 4);
3664 perm |= ((mode & S_IWOTH) << 3);
3665 perm |= ((mode & S_IWGRP) << 5);
3666 perm |= ((mode & S_IWUSR) << 7);
3667
3668 return perm;
3669 }
3670
3671 /* --------------------------------------------------------------------- */
3672
3673 static uint32_t
3674 udf_icb_to_unix_filetype(uint32_t icbftype)
3675 {
3676 switch (icbftype) {
3677 case UDF_ICB_FILETYPE_DIRECTORY :
3678 case UDF_ICB_FILETYPE_STREAMDIR :
3679 return S_IFDIR;
3680 case UDF_ICB_FILETYPE_FIFO :
3681 return S_IFIFO;
3682 case UDF_ICB_FILETYPE_CHARDEVICE :
3683 return S_IFCHR;
3684 case UDF_ICB_FILETYPE_BLOCKDEVICE :
3685 return S_IFBLK;
3686 case UDF_ICB_FILETYPE_RANDOMACCESS :
3687 case UDF_ICB_FILETYPE_REALTIME :
3688 return S_IFREG;
3689 case UDF_ICB_FILETYPE_SYMLINK :
3690 return S_IFLNK;
3691 case UDF_ICB_FILETYPE_SOCKET :
3692 return S_IFSOCK;
3693 }
3694 /* no idea what this is */
3695 return 0;
3696 }
3697
3698 /* --------------------------------------------------------------------- */
3699
3700 void
3701 udf_to_unix_name(char *result, int result_len, char *id, int len,
3702 struct charspec *chsp)
3703 {
3704 uint16_t *raw_name, *unix_name;
3705 uint16_t *inchp, ch;
3706 uint8_t *outchp;
3707 const char *osta_id = "OSTA Compressed Unicode";
3708 int ucode_chars, nice_uchars, is_osta_typ0, nout;
3709
3710 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
3711 unix_name = raw_name + 1024; /* split space in half */
3712 assert(sizeof(char) == sizeof(uint8_t));
3713 outchp = (uint8_t *) result;
3714
3715 is_osta_typ0 = (chsp->type == 0);
3716 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3717 if (is_osta_typ0) {
3718 /* TODO clean up */
3719 *raw_name = *unix_name = 0;
3720 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
3721 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
3722 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
3723 /* output UTF8 */
3724 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
3725 ch = *inchp;
3726 nout = wput_utf8(outchp, result_len, ch);
3727 outchp += nout; result_len -= nout;
3728 if (!ch) break;
3729 }
3730 *outchp++ = 0;
3731 } else {
3732 /* assume 8bit char length byte latin-1 */
3733 assert(*id == 8);
3734 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
3735 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
3736 }
3737 free(raw_name, M_UDFTEMP);
3738 }
3739
3740 /* --------------------------------------------------------------------- */
3741
3742 void
3743 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
3744 struct charspec *chsp)
3745 {
3746 uint16_t *raw_name;
3747 uint16_t *outchp;
3748 const char *inchp;
3749 const char *osta_id = "OSTA Compressed Unicode";
3750 int udf_chars, is_osta_typ0, bits;
3751 size_t cnt;
3752
3753 /* allocate temporary unicode-16 buffer */
3754 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
3755
3756 /* convert utf8 to unicode-16 */
3757 *raw_name = 0;
3758 inchp = name;
3759 outchp = raw_name;
3760 bits = 8;
3761 for (cnt = name_len, udf_chars = 0; cnt;) {
3762 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
3763 *outchp = wget_utf8(&inchp, &cnt);
3764 if (*outchp > 0xff)
3765 bits=16;
3766 outchp++;
3767 udf_chars++;
3768 }
3769 /* null terminate just in case */
3770 *outchp++ = 0;
3771
3772 is_osta_typ0 = (chsp->type == 0);
3773 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
3774 if (is_osta_typ0) {
3775 udf_chars = udf_CompressUnicode(udf_chars, bits,
3776 (unicode_t *) raw_name,
3777 (byte *) result);
3778 } else {
3779 printf("unix to udf name: no CHSP0 ?\n");
3780 /* XXX assume 8bit char length byte latin-1 */
3781 *result++ = 8; udf_chars = 1;
3782 strncpy(result, name + 1, name_len);
3783 udf_chars += name_len;
3784 }
3785 *result_len = udf_chars;
3786 free(raw_name, M_UDFTEMP);
3787 }
3788
3789 /* --------------------------------------------------------------------- */
3790
3791 void
3792 udf_timestamp_to_timespec(struct udf_mount *ump,
3793 struct timestamp *timestamp,
3794 struct timespec *timespec)
3795 {
3796 struct clock_ymdhms ymdhms;
3797 uint32_t usecs, secs, nsecs;
3798 uint16_t tz;
3799
3800 /* fill in ymdhms structure from timestamp */
3801 memset(&ymdhms, 0, sizeof(ymdhms));
3802 ymdhms.dt_year = udf_rw16(timestamp->year);
3803 ymdhms.dt_mon = timestamp->month;
3804 ymdhms.dt_day = timestamp->day;
3805 ymdhms.dt_wday = 0; /* ? */
3806 ymdhms.dt_hour = timestamp->hour;
3807 ymdhms.dt_min = timestamp->minute;
3808 ymdhms.dt_sec = timestamp->second;
3809
3810 secs = clock_ymdhms_to_secs(&ymdhms);
3811 usecs = timestamp->usec +
3812 100*timestamp->hund_usec + 10000*timestamp->centisec;
3813 nsecs = usecs * 1000;
3814
3815 /*
3816 * Calculate the time zone. The timezone is 12 bit signed 2's
3817 * compliment, so we gotta do some extra magic to handle it right.
3818 */
3819 tz = udf_rw16(timestamp->type_tz);
3820 tz &= 0x0fff; /* only lower 12 bits are significant */
3821 if (tz & 0x0800) /* sign extention */
3822 tz |= 0xf000;
3823
3824 /* TODO check timezone conversion */
3825 /* check if we are specified a timezone to convert */
3826 if (udf_rw16(timestamp->type_tz) & 0x1000) {
3827 if ((int16_t) tz != -2047)
3828 secs -= (int16_t) tz * 60;
3829 } else {
3830 secs -= ump->mount_args.gmtoff;
3831 }
3832
3833 timespec->tv_sec = secs;
3834 timespec->tv_nsec = nsecs;
3835 }
3836
3837
3838 void
3839 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
3840 {
3841 struct clock_ymdhms ymdhms;
3842 uint32_t husec, usec, csec;
3843
3844 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
3845
3846 usec = timespec->tv_nsec / 1000;
3847 husec = usec / 100;
3848 usec -= husec * 100; /* only 0-99 in usec */
3849 csec = husec / 100; /* only 0-99 in csec */
3850 husec -= csec * 100; /* only 0-99 in husec */
3851
3852 /* set method 1 for CUT/GMT */
3853 timestamp->type_tz = udf_rw16((1<<12) + 0);
3854 timestamp->year = udf_rw16(ymdhms.dt_year);
3855 timestamp->month = ymdhms.dt_mon;
3856 timestamp->day = ymdhms.dt_day;
3857 timestamp->hour = ymdhms.dt_hour;
3858 timestamp->minute = ymdhms.dt_min;
3859 timestamp->second = ymdhms.dt_sec;
3860 timestamp->centisec = csec;
3861 timestamp->hund_usec = husec;
3862 timestamp->usec = usec;
3863 }
3864
3865 /* --------------------------------------------------------------------- */
3866
3867 /*
3868 * Attribute and filetypes converters with get/set pairs
3869 */
3870
3871 uint32_t
3872 udf_getaccessmode(struct udf_node *udf_node)
3873 {
3874 struct file_entry *fe = udf_node->fe;;
3875 struct extfile_entry *efe = udf_node->efe;
3876 uint32_t udf_perm, icbftype;
3877 uint32_t mode, ftype;
3878 uint16_t icbflags;
3879
3880 UDF_LOCK_NODE(udf_node, 0);
3881 if (fe) {
3882 udf_perm = udf_rw32(fe->perm);
3883 icbftype = fe->icbtag.file_type;
3884 icbflags = udf_rw16(fe->icbtag.flags);
3885 } else {
3886 assert(udf_node->efe);
3887 udf_perm = udf_rw32(efe->perm);
3888 icbftype = efe->icbtag.file_type;
3889 icbflags = udf_rw16(efe->icbtag.flags);
3890 }
3891
3892 mode = udf_perm_to_unix_mode(udf_perm);
3893 ftype = udf_icb_to_unix_filetype(icbftype);
3894
3895 /* set suid, sgid, sticky from flags in fe/efe */
3896 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
3897 mode |= S_ISUID;
3898 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
3899 mode |= S_ISGID;
3900 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
3901 mode |= S_ISVTX;
3902
3903 UDF_UNLOCK_NODE(udf_node, 0);
3904
3905 return mode | ftype;
3906 }
3907
3908
3909 void
3910 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
3911 {
3912 struct file_entry *fe = udf_node->fe;
3913 struct extfile_entry *efe = udf_node->efe;
3914 uint32_t udf_perm;
3915 uint16_t icbflags;
3916
3917 UDF_LOCK_NODE(udf_node, 0);
3918 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
3919 if (fe) {
3920 icbflags = udf_rw16(fe->icbtag.flags);
3921 } else {
3922 icbflags = udf_rw16(efe->icbtag.flags);
3923 }
3924
3925 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
3926 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
3927 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
3928 if (mode & S_ISUID)
3929 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
3930 if (mode & S_ISGID)
3931 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
3932 if (mode & S_ISVTX)
3933 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
3934
3935 if (fe) {
3936 fe->perm = udf_rw32(udf_perm);
3937 fe->icbtag.flags = udf_rw16(icbflags);
3938 } else {
3939 efe->perm = udf_rw32(udf_perm);
3940 efe->icbtag.flags = udf_rw16(icbflags);
3941 }
3942
3943 UDF_UNLOCK_NODE(udf_node, 0);
3944 }
3945
3946
3947 void
3948 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
3949 {
3950 struct udf_mount *ump = udf_node->ump;
3951 struct file_entry *fe = udf_node->fe;
3952 struct extfile_entry *efe = udf_node->efe;
3953 uid_t uid;
3954 gid_t gid;
3955
3956 UDF_LOCK_NODE(udf_node, 0);
3957 if (fe) {
3958 uid = (uid_t)udf_rw32(fe->uid);
3959 gid = (gid_t)udf_rw32(fe->gid);
3960 } else {
3961 assert(udf_node->efe);
3962 uid = (uid_t)udf_rw32(efe->uid);
3963 gid = (gid_t)udf_rw32(efe->gid);
3964 }
3965
3966 /* do the uid/gid translation game */
3967 if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
3968 uid = ump->mount_args.anon_uid;
3969 gid = ump->mount_args.anon_gid;
3970 }
3971 *uidp = uid;
3972 *gidp = gid;
3973
3974 UDF_UNLOCK_NODE(udf_node, 0);
3975 }
3976
3977
3978 void
3979 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
3980 {
3981 struct udf_mount *ump = udf_node->ump;
3982 struct file_entry *fe = udf_node->fe;
3983 struct extfile_entry *efe = udf_node->efe;
3984 uid_t nobody_uid;
3985 gid_t nobody_gid;
3986
3987 UDF_LOCK_NODE(udf_node, 0);
3988
3989 /* do the uid/gid translation game */
3990 nobody_uid = ump->mount_args.nobody_uid;
3991 nobody_gid = ump->mount_args.nobody_gid;
3992 if ((uid == nobody_uid) && (gid == nobody_gid)) {
3993 uid = (uid_t) -1;
3994 gid = (gid_t) -1;
3995 }
3996
3997 if (fe) {
3998 fe->uid = udf_rw32((uint32_t) uid);
3999 fe->gid = udf_rw32((uint32_t) gid);
4000 } else {
4001 efe->uid = udf_rw32((uint32_t) uid);
4002 efe->gid = udf_rw32((uint32_t) gid);
4003 }
4004
4005 UDF_UNLOCK_NODE(udf_node, 0);
4006 }
4007
4008
4009 /* --------------------------------------------------------------------- */
4010
4011 /*
4012 * UDF dirhash implementation
4013 */
4014
4015 static uint32_t
4016 udf_dirhash_hash(const char *str, int namelen)
4017 {
4018 uint32_t hash = 5381;
4019 int i, c;
4020
4021 for (i = 0; i < namelen; i++) {
4022 c = *str++;
4023 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
4024 }
4025 return hash;
4026 }
4027
4028
4029 static void
4030 udf_dirhash_purge(struct udf_dirhash *dirh)
4031 {
4032 struct udf_dirhash_entry *dirh_e;
4033 uint32_t hashline;
4034
4035 if (dirh == NULL)
4036 return;
4037
4038 if (dirh->size == 0)
4039 return;
4040
4041 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
4042 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4043 while (dirh_e) {
4044 LIST_REMOVE(dirh_e, next);
4045 pool_put(&udf_dirhash_entry_pool, dirh_e);
4046 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4047 }
4048 }
4049 dirh_e = LIST_FIRST(&dirh->free_entries);
4050
4051 while (dirh_e) {
4052 LIST_REMOVE(dirh_e, next);
4053 pool_put(&udf_dirhash_entry_pool, dirh_e);
4054 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4055 }
4056
4057 dirh->flags &= ~UDF_DIRH_COMPLETE;
4058 dirh->flags |= UDF_DIRH_PURGED;
4059
4060 udf_dirhashsize -= dirh->size;
4061 dirh->size = 0;
4062 }
4063
4064
4065 static void
4066 udf_dirhash_destroy(struct udf_dirhash **dirhp)
4067 {
4068 struct udf_dirhash *dirh = *dirhp;
4069
4070 if (dirh == NULL)
4071 return;
4072
4073 mutex_enter(&udf_dirhashmutex);
4074
4075 udf_dirhash_purge(dirh);
4076 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4077 pool_put(&udf_dirhash_pool, dirh);
4078
4079 *dirhp = NULL;
4080
4081 mutex_exit(&udf_dirhashmutex);
4082 }
4083
4084
4085 static void
4086 udf_dirhash_get(struct udf_dirhash **dirhp)
4087 {
4088 struct udf_dirhash *dirh;
4089 uint32_t hashline;
4090
4091 mutex_enter(&udf_dirhashmutex);
4092
4093 dirh = *dirhp;
4094 if (*dirhp == NULL) {
4095 dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
4096 *dirhp = dirh;
4097 memset(dirh, 0, sizeof(struct udf_dirhash));
4098 for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
4099 LIST_INIT(&dirh->entries[hashline]);
4100 dirh->size = 0;
4101 dirh->refcnt = 0;
4102 dirh->flags = 0;
4103 } else {
4104 TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
4105 }
4106
4107 dirh->refcnt++;
4108 TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
4109
4110 mutex_exit(&udf_dirhashmutex);
4111 }
4112
4113
4114 static void
4115 udf_dirhash_put(struct udf_dirhash *dirh)
4116 {
4117 mutex_enter(&udf_dirhashmutex);
4118 dirh->refcnt--;
4119 mutex_exit(&udf_dirhashmutex);
4120 }
4121
4122
4123 static void
4124 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
4125 struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
4126 {
4127 struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
4128 struct udf_dirhash_entry *dirh_e;
4129 uint32_t hashvalue, hashline;
4130 int entrysize;
4131
4132 /* make sure we have a dirhash to work on */
4133 dirh = dir_node->dir_hash;
4134 KASSERT(dirh);
4135 KASSERT(dirh->refcnt > 0);
4136
4137 /* are we trying to re-enter an entry? */
4138 if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
4139 return;
4140
4141 /* calculate our hash */
4142 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4143 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4144
4145 /* lookup and insert entry if not there yet */
4146 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4147 /* check for hash collision */
4148 if (dirh_e->hashvalue != hashvalue)
4149 continue;
4150 if (dirh_e->offset != offset)
4151 continue;
4152 /* got it already */
4153 KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4154 KASSERT(dirh_e->fid_size == fid_size);
4155 return;
4156 }
4157
4158 DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
4159 offset, fid_size, dirent->d_namlen,
4160 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4161
4162 /* check if entry is in free space list */
4163 LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
4164 if (dirh_e->offset == offset) {
4165 DPRINTF(DIRHASH, ("\tremoving free entry\n"));
4166 LIST_REMOVE(dirh_e, next);
4167 break;
4168 }
4169 }
4170
4171 /* ensure we are not passing the dirhash limit */
4172 entrysize = sizeof(struct udf_dirhash_entry);
4173 if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4174 del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
4175 KASSERT(del_dirh);
4176 while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
4177 /* no use trying to delete myself */
4178 if (del_dirh == dirh)
4179 break;
4180 prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
4181 if (del_dirh->refcnt == 0)
4182 udf_dirhash_purge(del_dirh);
4183 del_dirh = prev_dirh;
4184 }
4185 }
4186
4187 /* add to the hashline */
4188 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4189 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4190
4191 dirh_e->hashvalue = hashvalue;
4192 dirh_e->offset = offset;
4193 dirh_e->d_namlen = dirent->d_namlen;
4194 dirh_e->fid_size = fid_size;
4195
4196 dirh->size += sizeof(struct udf_dirhash_entry);
4197 udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4198 LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
4199 }
4200
4201
4202 static void
4203 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
4204 uint32_t fid_size)
4205 {
4206 struct udf_dirhash *dirh;
4207 struct udf_dirhash_entry *dirh_e;
4208
4209 /* make sure we have a dirhash to work on */
4210 dirh = dir_node->dir_hash;
4211 KASSERT(dirh);
4212 KASSERT(dirh->refcnt > 0);
4213
4214 #ifdef DEBUG
4215 /* check for double entry of free space */
4216 LIST_FOREACH(dirh_e, &dirh->free_entries, next)
4217 KASSERT(dirh_e->offset != offset);
4218 #endif
4219
4220 DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
4221 offset, fid_size));
4222 dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
4223 memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
4224
4225 dirh_e->hashvalue = 0; /* not relevant */
4226 dirh_e->offset = offset;
4227 dirh_e->d_namlen = 0; /* not relevant */
4228 dirh_e->fid_size = fid_size;
4229
4230 /* XXX it might be preferable to append them at the tail */
4231 LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
4232 dirh->size += sizeof(struct udf_dirhash_entry);
4233 udf_dirhashsize += sizeof(struct udf_dirhash_entry);
4234 }
4235
4236
4237 static void
4238 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
4239 uint64_t offset, uint32_t fid_size)
4240 {
4241 struct udf_dirhash *dirh;
4242 struct udf_dirhash_entry *dirh_e;
4243 uint32_t hashvalue, hashline;
4244
4245 DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
4246 offset, fid_size,
4247 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4248
4249 /* make sure we have a dirhash to work on */
4250 dirh = dir_node->dir_hash;
4251 KASSERT(dirh);
4252 KASSERT(dirh->refcnt > 0);
4253
4254 /* calculate our hash */
4255 hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
4256 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4257
4258 /* lookup entry */
4259 LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
4260 /* check for hash collision */
4261 if (dirh_e->hashvalue != hashvalue)
4262 continue;
4263 if (dirh_e->offset != offset)
4264 continue;
4265
4266 /* got it! */
4267 KASSERT(dirh_e->d_namlen == dirent->d_namlen);
4268 KASSERT(dirh_e->fid_size == fid_size);
4269 LIST_REMOVE(dirh_e, next);
4270 dirh->size -= sizeof(struct udf_dirhash_entry);
4271 udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
4272
4273 udf_dirhash_enter_freed(dir_node, offset, fid_size);
4274 return;
4275 }
4276
4277 /* not found! */
4278 panic("dirhash_remove couldn't find entry in hash table\n");
4279 }
4280
4281
4282 /* BUGALERT: don't use result longer than needed, never past the node lock */
4283 /* call with NULL *result initially and it will return nonzero if again */
4284 static int
4285 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
4286 struct udf_dirhash_entry **result)
4287 {
4288 struct udf_dirhash *dirh;
4289 struct udf_dirhash_entry *dirh_e;
4290 uint32_t hashvalue, hashline;
4291
4292 KASSERT(VOP_ISLOCKED(dir_node->vnode));
4293
4294 /* make sure we have a dirhash to work on */
4295 dirh = dir_node->dir_hash;
4296 KASSERT(dirh);
4297 KASSERT(dirh->refcnt > 0);
4298
4299 /* start where we were */
4300 if (*result) {
4301 KASSERT(dir_node->dir_hash);
4302 dirh_e = *result;
4303
4304 /* retrieve information to avoid recalculation and advance */
4305 hashvalue = dirh_e->hashvalue;
4306 dirh_e = LIST_NEXT(*result, next);
4307 } else {
4308 /* calculate our hash and lookup all entries in hashline */
4309 hashvalue = udf_dirhash_hash(d_name, d_namlen);
4310 hashline = hashvalue & UDF_DIRHASH_HASHMASK;
4311 dirh_e = LIST_FIRST(&dirh->entries[hashline]);
4312 }
4313
4314 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4315 /* check for hash collision */
4316 if (dirh_e->hashvalue != hashvalue)
4317 continue;
4318 if (dirh_e->d_namlen != d_namlen)
4319 continue;
4320 /* might have an entry in the cache */
4321 *result = dirh_e;
4322 return 1;
4323 }
4324
4325 *result = NULL;
4326 return 0;
4327 }
4328
4329
4330 /* BUGALERT: don't use result longer than needed, never past the node lock */
4331 /* call with NULL *result initially and it will return nonzero if again */
4332 static int
4333 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
4334 struct udf_dirhash_entry **result)
4335 {
4336 struct udf_dirhash *dirh;
4337 struct udf_dirhash_entry *dirh_e;
4338
4339 KASSERT(VOP_ISLOCKED(dir_node->vnode));
4340
4341 /* make sure we have a dirhash to work on */
4342 dirh = dir_node->dir_hash;
4343 KASSERT(dirh);
4344 KASSERT(dirh->refcnt > 0);
4345
4346 /* start where we were */
4347 if (*result) {
4348 KASSERT(dir_node->dir_hash);
4349 dirh_e = LIST_NEXT(*result, next);
4350 } else {
4351 /* lookup all entries that match */
4352 dirh_e = LIST_FIRST(&dirh->free_entries);
4353 }
4354
4355 for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
4356 /* check for minimum size */
4357 if (dirh_e->fid_size < min_fidsize)
4358 continue;
4359 /* might be a candidate */
4360 *result = dirh_e;
4361 return 1;
4362 }
4363
4364 *result = NULL;
4365 return 0;
4366 }
4367
4368
4369 static int
4370 udf_dirhash_fill(struct udf_node *dir_node)
4371 {
4372 struct vnode *dvp = dir_node->vnode;
4373 struct udf_dirhash *dirh;
4374 struct file_entry *fe = dir_node->fe;
4375 struct extfile_entry *efe = dir_node->efe;
4376 struct fileid_desc *fid;
4377 struct dirent *dirent;
4378 uint64_t file_size, pre_diroffset, diroffset;
4379 uint32_t lb_size;
4380 int error;
4381
4382 /* make sure we have a dirhash to work on */
4383 dirh = dir_node->dir_hash;
4384 KASSERT(dirh);
4385 KASSERT(dirh->refcnt > 0);
4386
4387 if (dirh->flags & UDF_DIRH_BROKEN)
4388 return EIO;
4389 if (dirh->flags & UDF_DIRH_COMPLETE)
4390 return 0;
4391
4392 /* make sure we have a clean dirhash to add to */
4393 udf_dirhash_purge(dirh);
4394
4395 /* get directory filesize */
4396 if (fe) {
4397 file_size = udf_rw64(fe->inf_len);
4398 } else {
4399 assert(efe);
4400 file_size = udf_rw64(efe->inf_len);
4401 }
4402
4403 /* allocate temporary space for fid */
4404 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4405 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4406
4407 /* allocate temporary space for dirent */
4408 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4409
4410 error = 0;
4411 diroffset = 0;
4412 while (diroffset < file_size) {
4413 /* transfer a new fid/dirent */
4414 pre_diroffset = diroffset;
4415 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4416 if (error) {
4417 /* TODO what to do? continue but not add? */
4418 dirh->flags |= UDF_DIRH_BROKEN;
4419 udf_dirhash_purge(dirh);
4420 break;
4421 }
4422
4423 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4424 /* register deleted extent for reuse */
4425 udf_dirhash_enter_freed(dir_node, pre_diroffset,
4426 udf_fidsize(fid));
4427 } else {
4428 /* append to the dirhash */
4429 udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
4430 udf_fidsize(fid), 0);
4431 }
4432 }
4433 dirh->flags |= UDF_DIRH_COMPLETE;
4434
4435 free(fid, M_UDFTEMP);
4436 free(dirent, M_UDFTEMP);
4437
4438 return error;
4439 }
4440
4441
4442 /* --------------------------------------------------------------------- */
4443
4444 /*
4445 * Directory read and manipulation functions.
4446 *
4447 * Note that if the file is found, the cached diroffset position *before* the
4448 * advance is remembered. Thus if the same filename is lookup again just after
4449 * this lookup its immediately found.
4450 */
4451
4452 int
4453 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4454 struct long_ad *icb_loc, int *found)
4455 {
4456 struct udf_node *dir_node = VTOI(vp);
4457 struct udf_dirhash_entry *dirh_ep;
4458 struct fileid_desc *fid;
4459 struct dirent *dirent;
4460 uint64_t diroffset;
4461 uint32_t lb_size;
4462 int hit, error;
4463
4464 /* set default return */
4465 *found = 0;
4466
4467 /* get our dirhash and make sure its read in */
4468 udf_dirhash_get(&dir_node->dir_hash);
4469 error = udf_dirhash_fill(dir_node);
4470 if (error) {
4471 udf_dirhash_put(dir_node->dir_hash);
4472 return error;
4473 }
4474
4475 /* allocate temporary space for fid */
4476 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4477 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4478 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4479
4480 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4481 namelen, namelen, name));
4482
4483 /* search our dirhash hits */
4484 memset(icb_loc, 0, sizeof(*icb_loc));
4485 dirh_ep = NULL;
4486 for (;;) {
4487 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4488 /* if no hit, abort the search */
4489 if (!hit)
4490 break;
4491
4492 /* check this hit */
4493 diroffset = dirh_ep->offset;
4494
4495 /* transfer a new fid/dirent */
4496 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4497 if (error)
4498 break;
4499
4500 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4501 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4502
4503 /* see if its our entry */
4504 KASSERT(dirent->d_namlen == namelen);
4505 if (strncmp(dirent->d_name, name, namelen) == 0) {
4506 *found = 1;
4507 *icb_loc = fid->icb;
4508 break;
4509 }
4510 }
4511 free(fid, M_UDFTEMP);
4512 free(dirent, M_UDFTEMP);
4513
4514 udf_dirhash_put(dir_node->dir_hash);
4515
4516 return error;
4517 }
4518
4519 /* --------------------------------------------------------------------- */
4520
4521 static int
4522 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4523 struct long_ad *node_icb, struct long_ad *parent_icb,
4524 uint64_t parent_unique_id)
4525 {
4526 struct timespec now;
4527 struct icb_tag *icb;
4528 struct filetimes_extattr_entry *ft_extattr;
4529 uint64_t unique_id;
4530 uint32_t fidsize, lb_num;
4531 uint8_t *bpos;
4532 int crclen, attrlen;
4533
4534 lb_num = udf_rw32(node_icb->loc.lb_num);
4535 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4536 icb = &fe->icbtag;
4537
4538 /*
4539 * Always use strategy type 4 unless on WORM wich we don't support
4540 * (yet). Fill in defaults and set for internal allocation of data.
4541 */
4542 icb->strat_type = udf_rw16(4);
4543 icb->max_num_entries = udf_rw16(1);
4544 icb->file_type = file_type; /* 8 bit */
4545 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4546
4547 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4548 fe->link_cnt = udf_rw16(0); /* explicit setting */
4549
4550 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4551
4552 vfs_timestamp(&now);
4553 udf_timespec_to_timestamp(&now, &fe->atime);
4554 udf_timespec_to_timestamp(&now, &fe->attrtime);
4555 udf_timespec_to_timestamp(&now, &fe->mtime);
4556
4557 udf_set_regid(&fe->imp_id, IMPL_NAME);
4558 udf_add_impl_regid(ump, &fe->imp_id);
4559
4560 unique_id = udf_advance_uniqueid(ump);
4561 fe->unique_id = udf_rw64(unique_id);
4562 fe->l_ea = udf_rw32(0);
4563
4564 /* create extended attribute to record our creation time */
4565 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4566 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4567 memset(ft_extattr, 0, attrlen);
4568 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4569 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4570 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4571 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4572 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4573 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4574
4575 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4576 (struct extattr_entry *) ft_extattr);
4577 free(ft_extattr, M_UDFTEMP);
4578
4579 /* if its a directory, create '..' */
4580 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4581 fidsize = 0;
4582 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4583 fidsize = udf_create_parentfid(ump,
4584 (struct fileid_desc *) bpos, parent_icb,
4585 parent_unique_id);
4586 }
4587
4588 /* record fidlength information */
4589 fe->inf_len = udf_rw64(fidsize);
4590 fe->l_ad = udf_rw32(fidsize);
4591 fe->logblks_rec = udf_rw64(0); /* intern */
4592
4593 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4594 crclen += udf_rw32(fe->l_ea) + fidsize;
4595 fe->tag.desc_crc_len = udf_rw16(crclen);
4596
4597 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4598
4599 return fidsize;
4600 }
4601
4602 /* --------------------------------------------------------------------- */
4603
4604 static int
4605 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4606 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4607 uint64_t parent_unique_id)
4608 {
4609 struct timespec now;
4610 struct icb_tag *icb;
4611 uint64_t unique_id;
4612 uint32_t fidsize, lb_num;
4613 uint8_t *bpos;
4614 int crclen;
4615
4616 lb_num = udf_rw32(node_icb->loc.lb_num);
4617 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4618 icb = &efe->icbtag;
4619
4620 /*
4621 * Always use strategy type 4 unless on WORM wich we don't support
4622 * (yet). Fill in defaults and set for internal allocation of data.
4623 */
4624 icb->strat_type = udf_rw16(4);
4625 icb->max_num_entries = udf_rw16(1);
4626 icb->file_type = file_type; /* 8 bit */
4627 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4628
4629 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4630 efe->link_cnt = udf_rw16(0); /* explicit setting */
4631
4632 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4633
4634 vfs_timestamp(&now);
4635 udf_timespec_to_timestamp(&now, &efe->ctime);
4636 udf_timespec_to_timestamp(&now, &efe->atime);
4637 udf_timespec_to_timestamp(&now, &efe->attrtime);
4638 udf_timespec_to_timestamp(&now, &efe->mtime);
4639
4640 udf_set_regid(&efe->imp_id, IMPL_NAME);
4641 udf_add_impl_regid(ump, &efe->imp_id);
4642
4643 unique_id = udf_advance_uniqueid(ump);
4644 efe->unique_id = udf_rw64(unique_id);
4645 efe->l_ea = udf_rw32(0);
4646
4647 /* if its a directory, create '..' */
4648 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4649 fidsize = 0;
4650 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4651 fidsize = udf_create_parentfid(ump,
4652 (struct fileid_desc *) bpos, parent_icb,
4653 parent_unique_id);
4654 }
4655
4656 /* record fidlength information */
4657 efe->obj_size = udf_rw64(fidsize);
4658 efe->inf_len = udf_rw64(fidsize);
4659 efe->l_ad = udf_rw32(fidsize);
4660 efe->logblks_rec = udf_rw64(0); /* intern */
4661
4662 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4663 crclen += udf_rw32(efe->l_ea) + fidsize;
4664 efe->tag.desc_crc_len = udf_rw16(crclen);
4665
4666 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4667
4668 return fidsize;
4669 }
4670
4671 /* --------------------------------------------------------------------- */
4672
4673 int
4674 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4675 struct udf_node *udf_node, struct componentname *cnp)
4676 {
4677 struct vnode *dvp = dir_node->vnode;
4678 struct udf_dirhash_entry *dirh_ep;
4679 struct file_entry *fe = dir_node->fe;
4680 struct extfile_entry *efe = dir_node->efe;
4681 struct fileid_desc *fid;
4682 struct dirent *dirent;
4683 uint64_t file_size, diroffset;
4684 uint32_t lb_size, fidsize;
4685 int found, error;
4686 char const *name = cnp->cn_nameptr;
4687 int namelen = cnp->cn_namelen;
4688 int hit, refcnt;
4689
4690 /* get our dirhash and make sure its read in */
4691 udf_dirhash_get(&dir_node->dir_hash);
4692 error = udf_dirhash_fill(dir_node);
4693 if (error) {
4694 udf_dirhash_put(dir_node->dir_hash);
4695 return error;
4696 }
4697
4698 /* get directory filesize */
4699 if (fe) {
4700 file_size = udf_rw64(fe->inf_len);
4701 } else {
4702 assert(efe);
4703 file_size = udf_rw64(efe->inf_len);
4704 }
4705
4706 /* allocate temporary space for fid */
4707 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4708 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4709 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4710
4711 /* search our dirhash hits */
4712 found = 0;
4713 dirh_ep = NULL;
4714 for (;;) {
4715 hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
4716 /* if no hit, abort the search */
4717 if (!hit)
4718 break;
4719
4720 /* check this hit */
4721 diroffset = dirh_ep->offset;
4722
4723 /* transfer a new fid/dirent */
4724 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4725 if (error)
4726 break;
4727
4728 /* see if its our entry */
4729 KASSERT(dirent->d_namlen == namelen);
4730 if (strncmp(dirent->d_name, name, namelen) == 0) {
4731 found = 1;
4732 break;
4733 }
4734 }
4735
4736 if (!found)
4737 error = ENOENT;
4738 if (error)
4739 goto error_out;
4740
4741 /* mark deleted */
4742 fid->file_char |= UDF_FILE_CHAR_DEL;
4743 #ifdef UDF_COMPLETE_DELETE
4744 memset(&fid->icb, 0, sizeof(fid->icb));
4745 #endif
4746 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4747
4748 /* get size of fid and compensate for the read_fid_stream advance */
4749 fidsize = udf_fidsize(fid);
4750 diroffset -= fidsize;
4751
4752 /* write out */
4753 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4754 fid, fidsize, diroffset,
4755 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4756 FSCRED, NULL, NULL);
4757 if (error)
4758 goto error_out;
4759
4760 /* get reference count of attached node */
4761 if (udf_node->fe) {
4762 refcnt = udf_rw16(udf_node->fe->link_cnt);
4763 } else {
4764 KASSERT(udf_node->efe);
4765 refcnt = udf_rw16(udf_node->efe->link_cnt);
4766 }
4767 #ifdef UDF_COMPLETE_DELETE
4768 /* substract reference counter in attached node */
4769 refcnt -= 1;
4770 if (udf_node->fe) {
4771 udf_node->fe->link_cnt = udf_rw16(refcnt);
4772 } else {
4773 udf_node->efe->link_cnt = udf_rw16(refcnt);
4774 }
4775
4776 /* prevent writeout when refcnt == 0 */
4777 if (refcnt == 0)
4778 udf_node->i_flags |= IN_DELETED;
4779
4780 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4781 int drefcnt;
4782
4783 /* substract reference counter in directory node */
4784 /* note subtract 2 (?) for its was also backreferenced */
4785 if (dir_node->fe) {
4786 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4787 drefcnt -= 1;
4788 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4789 } else {
4790 KASSERT(dir_node->efe);
4791 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4792 drefcnt -= 1;
4793 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4794 }
4795 }
4796
4797 udf_node->i_flags |= IN_MODIFIED;
4798 dir_node->i_flags |= IN_MODIFIED;
4799 #endif
4800 /* if it is/was a hardlink adjust the file count */
4801 if (refcnt > 0)
4802 udf_adjust_filecount(udf_node, -1);
4803
4804 /* remove from the dirhash */
4805 udf_dirhash_remove(dir_node, dirent, diroffset,
4806 udf_fidsize(fid));
4807
4808 error_out:
4809 free(fid, M_UDFTEMP);
4810 free(dirent, M_UDFTEMP);
4811
4812 udf_dirhash_put(dir_node->dir_hash);
4813
4814 return error;
4815 }
4816
4817 /* --------------------------------------------------------------------- */
4818
4819 /*
4820 * We are not allowed to split the fid tag itself over an logical block so
4821 * check the space remaining in the logical block.
4822 *
4823 * We try to select the smallest candidate for recycling or when none is
4824 * found, append a new one at the end of the directory.
4825 */
4826
4827 int
4828 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4829 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4830 {
4831 struct vnode *dvp = dir_node->vnode;
4832 struct udf_dirhash_entry *dirh_ep;
4833 struct fileid_desc *fid;
4834 struct icb_tag *icbtag;
4835 struct charspec osta_charspec;
4836 struct dirent dirent;
4837 uint64_t unique_id, dir_size, diroffset;
4838 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4839 uint32_t chosen_size, chosen_size_diff;
4840 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4841 int file_char, refcnt, icbflags, addr_type, hit, error;
4842
4843 /* get our dirhash and make sure its read in */
4844 udf_dirhash_get(&dir_node->dir_hash);
4845 error = udf_dirhash_fill(dir_node);
4846 if (error) {
4847 udf_dirhash_put(dir_node->dir_hash);
4848 return error;
4849 }
4850
4851 /* get info */
4852 lb_size = udf_rw32(ump->logical_vol->lb_size);
4853 udf_osta_charset(&osta_charspec);
4854
4855 if (dir_node->fe) {
4856 dir_size = udf_rw64(dir_node->fe->inf_len);
4857 icbtag = &dir_node->fe->icbtag;
4858 } else {
4859 dir_size = udf_rw64(dir_node->efe->inf_len);
4860 icbtag = &dir_node->efe->icbtag;
4861 }
4862
4863 icbflags = udf_rw16(icbtag->flags);
4864 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4865
4866 if (udf_node->fe) {
4867 unique_id = udf_rw64(udf_node->fe->unique_id);
4868 refcnt = udf_rw16(udf_node->fe->link_cnt);
4869 } else {
4870 unique_id = udf_rw64(udf_node->efe->unique_id);
4871 refcnt = udf_rw16(udf_node->efe->link_cnt);
4872 }
4873
4874 if (refcnt > 0) {
4875 unique_id = udf_advance_uniqueid(ump);
4876 udf_adjust_filecount(udf_node, 1);
4877 }
4878
4879 /* determine file characteristics */
4880 file_char = 0; /* visible non deleted file and not stream metadata */
4881 if (vap->va_type == VDIR)
4882 file_char = UDF_FILE_CHAR_DIR;
4883
4884 /* malloc scrap buffer */
4885 fid = malloc(lb_size, M_TEMP, M_WAITOK);
4886 bzero(fid, lb_size);
4887
4888 /* calculate _minimum_ fid size */
4889 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4890 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4891 fidsize = UDF_FID_SIZE + fid->l_fi;
4892 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
4893
4894 /* find position that will fit the FID */
4895 chosen_fid_pos = dir_size;
4896 chosen_size = 0;
4897 chosen_size_diff = UINT_MAX;
4898
4899 /* shut up gcc */
4900 dirent.d_namlen = 0;
4901
4902 /* search our dirhash hits */
4903 error = 0;
4904 dirh_ep = NULL;
4905 for (;;) {
4906 hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
4907 /* if no hit, abort the search */
4908 if (!hit)
4909 break;
4910
4911 /* check this hit for size */
4912 this_fidsize = dirh_ep->fid_size;
4913
4914 /* check this hit */
4915 fid_pos = dirh_ep->offset;
4916 end_fid_pos = fid_pos + this_fidsize;
4917 size_diff = this_fidsize - fidsize;
4918 lb_rest = lb_size - (end_fid_pos % lb_size);
4919
4920 #ifndef UDF_COMPLETE_DELETE
4921 /* transfer a new fid/dirent */
4922 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4923 if (error)
4924 goto error_out;
4925
4926 /* only reuse entries that are wiped */
4927 /* check if the len + loc are marked zero */
4928 if (udf_rw32(fid->icb.len != 0))
4929 continue;
4930 if (udf_rw32(fid->icb.loc.lb_num) != 0)
4931 continue;
4932 if (udf_rw16(fid->icb.loc.part_num != 0))
4933 continue;
4934 #endif /* UDF_COMPLETE_DELETE */
4935
4936 /* select if not splitting the tag and its smaller */
4937 if ((size_diff >= 0) &&
4938 (size_diff < chosen_size_diff) &&
4939 (lb_rest >= sizeof(struct desc_tag)))
4940 {
4941 /* UDF 2.3.4.2+3 specifies rules for iu size */
4942 if ((size_diff == 0) || (size_diff >= 32)) {
4943 chosen_fid_pos = fid_pos;
4944 chosen_size = this_fidsize;
4945 chosen_size_diff = size_diff;
4946 }
4947 }
4948 }
4949
4950
4951 /* extend directory if no other candidate found */
4952 if (chosen_size == 0) {
4953 chosen_fid_pos = dir_size;
4954 chosen_size = fidsize;
4955 chosen_size_diff = 0;
4956
4957 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4958 if (addr_type == UDF_ICB_INTERN_ALLOC) {
4959 /* pre-grow directory to see if we're to switch */
4960 udf_grow_node(dir_node, dir_size + chosen_size);
4961
4962 icbflags = udf_rw16(icbtag->flags);
4963 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4964 }
4965
4966 /* make sure the next fid desc_tag won't be splitted */
4967 if (addr_type != UDF_ICB_INTERN_ALLOC) {
4968 end_fid_pos = chosen_fid_pos + chosen_size;
4969 lb_rest = lb_size - (end_fid_pos % lb_size);
4970
4971 /* pad with implementation use regid if needed */
4972 if (lb_rest < sizeof(struct desc_tag))
4973 chosen_size += 32;
4974 }
4975 }
4976 chosen_size_diff = chosen_size - fidsize;
4977 diroffset = chosen_fid_pos + chosen_size;
4978
4979 /* populate the FID */
4980 memset(fid, 0, lb_size);
4981 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4982 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
4983 fid->file_char = file_char;
4984 fid->icb = udf_node->loc;
4985 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4986 fid->l_iu = udf_rw16(0);
4987
4988 if (chosen_size > fidsize) {
4989 /* insert implementation-use regid to space it correctly */
4990 fid->l_iu = udf_rw16(chosen_size_diff);
4991
4992 /* set implementation use */
4993 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4994 udf_add_impl_regid(ump, (struct regid *) fid->data);
4995 }
4996
4997 /* fill in name */
4998 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4999 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
5000
5001 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
5002 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
5003
5004 /* writeout FID/update parent directory */
5005 error = vn_rdwr(UIO_WRITE, dvp,
5006 fid, chosen_size, chosen_fid_pos,
5007 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5008 FSCRED, NULL, NULL);
5009
5010 if (error)
5011 goto error_out;
5012
5013 /* add reference counter in attached node */
5014 if (udf_node->fe) {
5015 refcnt = udf_rw16(udf_node->fe->link_cnt);
5016 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5017 } else {
5018 KASSERT(udf_node->efe);
5019 refcnt = udf_rw16(udf_node->efe->link_cnt);
5020 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5021 }
5022
5023 /* mark not deleted if it was... just in case, but do warn */
5024 if (udf_node->i_flags & IN_DELETED) {
5025 printf("udf: warning, marking a file undeleted\n");
5026 udf_node->i_flags &= ~IN_DELETED;
5027 }
5028
5029 if (file_char & UDF_FILE_CHAR_DIR) {
5030 /* add reference counter in directory node for '..' */
5031 if (dir_node->fe) {
5032 refcnt = udf_rw16(dir_node->fe->link_cnt);
5033 refcnt++;
5034 dir_node->fe->link_cnt = udf_rw16(refcnt);
5035 } else {
5036 KASSERT(dir_node->efe);
5037 refcnt = udf_rw16(dir_node->efe->link_cnt);
5038 refcnt++;
5039 dir_node->efe->link_cnt = udf_rw16(refcnt);
5040 }
5041 }
5042
5043 /* append to the dirhash */
5044 dirent.d_namlen = cnp->cn_namelen;
5045 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5046 udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
5047 udf_fidsize(fid), 1);
5048
5049 /* note updates */
5050 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5051 /* VN_KNOTE(udf_node, ...) */
5052 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5053
5054 error_out:
5055 free(fid, M_TEMP);
5056
5057 udf_dirhash_put(dir_node->dir_hash);
5058
5059 return error;
5060 }
5061
5062 /* --------------------------------------------------------------------- */
5063
5064 /*
5065 * Each node can have an attached streamdir node though not recursively. These
5066 * are otherwise known as named substreams/named extended attributes that have
5067 * no size limitations.
5068 *
5069 * `Normal' extended attributes are indicated with a number and are recorded
5070 * in either the fe/efe descriptor itself for small descriptors or recorded in
5071 * the attached extended attribute file. Since these spaces can get
5072 * fragmented, care ought to be taken.
5073 *
5074 * Since the size of the space reserved for allocation descriptors is limited,
5075 * there is a mechanim provided for extending this space; this is done by a
5076 * special extent to allow schrinking of the allocations without breaking the
5077 * linkage to the allocation extent descriptor.
5078 */
5079
5080 int
5081 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5082 struct udf_node **udf_noderes)
5083 {
5084 union dscrptr *dscr;
5085 struct udf_node *udf_node;
5086 struct vnode *nvp;
5087 struct long_ad icb_loc, last_fe_icb_loc;
5088 uint64_t file_size;
5089 uint32_t lb_size, sector, dummy;
5090 uint8_t *file_data;
5091 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5092 int slot, eof, error;
5093
5094 DPRINTF(NODE, ("udf_get_node called\n"));
5095 *udf_noderes = udf_node = NULL;
5096
5097 /* lock to disallow simultanious creation of same udf_node */
5098 mutex_enter(&ump->get_node_lock);
5099
5100 DPRINTF(NODE, ("\tlookup in hash table\n"));
5101 /* lookup in hash table */
5102 assert(ump);
5103 assert(node_icb_loc);
5104 udf_node = udf_hash_lookup(ump, node_icb_loc);
5105 if (udf_node) {
5106 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5107 /* vnode is returned locked */
5108 *udf_noderes = udf_node;
5109 mutex_exit(&ump->get_node_lock);
5110 return 0;
5111 }
5112
5113 /* garbage check: translate udf_node_icb_loc to sectornr */
5114 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5115 if (error) {
5116 /* no use, this will fail anyway */
5117 mutex_exit(&ump->get_node_lock);
5118 return EINVAL;
5119 }
5120
5121 /* build udf_node (do initialise!) */
5122 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5123 memset(udf_node, 0, sizeof(struct udf_node));
5124
5125 DPRINTF(NODE, ("\tget new vnode\n"));
5126 /* give it a vnode */
5127 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5128 if (error) {
5129 pool_put(&udf_node_pool, udf_node);
5130 mutex_exit(&ump->get_node_lock);
5131 return error;
5132 }
5133
5134 /* always return locked vnode */
5135 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5136 /* recycle vnode and unlock; simultanious will fail too */
5137 ungetnewvnode(nvp);
5138 mutex_exit(&ump->get_node_lock);
5139 return error;
5140 }
5141
5142 /* initialise crosslinks, note location of fe/efe for hashing */
5143 udf_node->ump = ump;
5144 udf_node->vnode = nvp;
5145 nvp->v_data = udf_node;
5146 udf_node->loc = *node_icb_loc;
5147 udf_node->lockf = 0;
5148 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5149 cv_init(&udf_node->node_lock, "udf_nlk");
5150 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5151 udf_node->outstanding_bufs = 0;
5152 udf_node->outstanding_nodedscr = 0;
5153
5154 /* insert into the hash lookup */
5155 udf_register_node(udf_node);
5156
5157 /* safe to unlock, the entry is in the hash table, vnode is locked */
5158 mutex_exit(&ump->get_node_lock);
5159
5160 icb_loc = *node_icb_loc;
5161 needs_indirect = 0;
5162 strat4096 = 0;
5163 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5164 file_size = 0;
5165 file_data = NULL;
5166 lb_size = udf_rw32(ump->logical_vol->lb_size);
5167
5168 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5169 do {
5170 /* try to read in fe/efe */
5171 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5172
5173 /* blank sector marks end of sequence, check this */
5174 if ((dscr == NULL) && (!strat4096))
5175 error = ENOENT;
5176
5177 /* break if read error or blank sector */
5178 if (error || (dscr == NULL))
5179 break;
5180
5181 /* process descriptor based on the descriptor type */
5182 dscr_type = udf_rw16(dscr->tag.id);
5183 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5184
5185 /* if dealing with an indirect entry, follow the link */
5186 if (dscr_type == TAGID_INDIRECTENTRY) {
5187 needs_indirect = 0;
5188 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5189 icb_loc = dscr->inde.indirect_icb;
5190 continue;
5191 }
5192
5193 /* only file entries and extended file entries allowed here */
5194 if ((dscr_type != TAGID_FENTRY) &&
5195 (dscr_type != TAGID_EXTFENTRY)) {
5196 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5197 error = ENOENT;
5198 break;
5199 }
5200
5201 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5202
5203 /* choose this one */
5204 last_fe_icb_loc = icb_loc;
5205
5206 /* record and process/update (ext)fentry */
5207 file_data = NULL;
5208 if (dscr_type == TAGID_FENTRY) {
5209 if (udf_node->fe)
5210 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5211 udf_node->fe);
5212 udf_node->fe = &dscr->fe;
5213 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5214 udf_file_type = udf_node->fe->icbtag.file_type;
5215 file_size = udf_rw64(udf_node->fe->inf_len);
5216 file_data = udf_node->fe->data;
5217 } else {
5218 if (udf_node->efe)
5219 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5220 udf_node->efe);
5221 udf_node->efe = &dscr->efe;
5222 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5223 udf_file_type = udf_node->efe->icbtag.file_type;
5224 file_size = udf_rw64(udf_node->efe->inf_len);
5225 file_data = udf_node->efe->data;
5226 }
5227
5228 /* check recording strategy (structure) */
5229
5230 /*
5231 * Strategy 4096 is a daisy linked chain terminating with an
5232 * unrecorded sector or a TERM descriptor. The next
5233 * descriptor is to be found in the sector that follows the
5234 * current sector.
5235 */
5236 if (strat == 4096) {
5237 strat4096 = 1;
5238 needs_indirect = 1;
5239
5240 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5241 }
5242
5243 /*
5244 * Strategy 4 is the normal strategy and terminates, but if
5245 * we're in strategy 4096, we can't have strategy 4 mixed in
5246 */
5247
5248 if (strat == 4) {
5249 if (strat4096) {
5250 error = EINVAL;
5251 break;
5252 }
5253 break; /* done */
5254 }
5255 } while (!error);
5256
5257 /* first round of cleanup code */
5258 if (error) {
5259 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5260 /* recycle udf_node */
5261 udf_dispose_node(udf_node);
5262
5263 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5264 nvp->v_data = NULL;
5265 ungetnewvnode(nvp);
5266
5267 return EINVAL; /* error code ok? */
5268 }
5269 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5270
5271 /* assert no references to dscr anymore beyong this point */
5272 assert((udf_node->fe) || (udf_node->efe));
5273 dscr = NULL;
5274
5275 /*
5276 * Remember where to record an updated version of the descriptor. If
5277 * there is a sequence of indirect entries, icb_loc will have been
5278 * updated. Its the write disipline to allocate new space and to make
5279 * sure the chain is maintained.
5280 *
5281 * `needs_indirect' flags if the next location is to be filled with
5282 * with an indirect entry.
5283 */
5284 udf_node->write_loc = icb_loc;
5285 udf_node->needs_indirect = needs_indirect;
5286
5287 /*
5288 * Go trough all allocations extents of this descriptor and when
5289 * encountering a redirect read in the allocation extension. These are
5290 * daisy-chained.
5291 */
5292 UDF_LOCK_NODE(udf_node, 0);
5293 udf_node->num_extensions = 0;
5294
5295 error = 0;
5296 slot = 0;
5297 for (;;) {
5298 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5299 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5300 "lb_num = %d, part = %d\n", slot, eof,
5301 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5302 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5303 udf_rw32(icb_loc.loc.lb_num),
5304 udf_rw16(icb_loc.loc.part_num)));
5305 if (eof)
5306 break;
5307 slot++;
5308
5309 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5310 continue;
5311
5312 DPRINTF(NODE, ("\tgot redirect extent\n"));
5313 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5314 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5315 "too many allocation extensions on "
5316 "udf_node\n"));
5317 error = EINVAL;
5318 break;
5319 }
5320
5321 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5322 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5323 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5324 "extension size in udf_node\n"));
5325 error = EINVAL;
5326 break;
5327 }
5328
5329 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5330 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5331 /* load in allocation extent */
5332 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5333 if (error || (dscr == NULL))
5334 break;
5335
5336 /* process read-in descriptor */
5337 dscr_type = udf_rw16(dscr->tag.id);
5338
5339 if (dscr_type != TAGID_ALLOCEXTENT) {
5340 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5341 error = ENOENT;
5342 break;
5343 }
5344
5345 DPRINTF(NODE, ("\trecording redirect extent\n"));
5346 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5347 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5348
5349 udf_node->num_extensions++;
5350
5351 } /* while */
5352 UDF_UNLOCK_NODE(udf_node, 0);
5353
5354 /* second round of cleanup code */
5355 if (error) {
5356 /* recycle udf_node */
5357 udf_dispose_node(udf_node);
5358
5359 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5360 nvp->v_data = NULL;
5361 ungetnewvnode(nvp);
5362
5363 return EINVAL; /* error code ok? */
5364 }
5365
5366 DPRINTF(NODE, ("\tnode read in fine\n"));
5367
5368 /*
5369 * Translate UDF filetypes into vnode types.
5370 *
5371 * Systemfiles like the meta main and mirror files are not treated as
5372 * normal files, so we type them as having no type. UDF dictates that
5373 * they are not allowed to be visible.
5374 */
5375
5376 switch (udf_file_type) {
5377 case UDF_ICB_FILETYPE_DIRECTORY :
5378 case UDF_ICB_FILETYPE_STREAMDIR :
5379 nvp->v_type = VDIR;
5380 break;
5381 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5382 nvp->v_type = VBLK;
5383 break;
5384 case UDF_ICB_FILETYPE_CHARDEVICE :
5385 nvp->v_type = VCHR;
5386 break;
5387 case UDF_ICB_FILETYPE_SOCKET :
5388 nvp->v_type = VSOCK;
5389 break;
5390 case UDF_ICB_FILETYPE_FIFO :
5391 nvp->v_type = VFIFO;
5392 break;
5393 case UDF_ICB_FILETYPE_SYMLINK :
5394 nvp->v_type = VLNK;
5395 break;
5396 case UDF_ICB_FILETYPE_VAT :
5397 case UDF_ICB_FILETYPE_META_MAIN :
5398 case UDF_ICB_FILETYPE_META_MIRROR :
5399 nvp->v_type = VNON;
5400 break;
5401 case UDF_ICB_FILETYPE_RANDOMACCESS :
5402 case UDF_ICB_FILETYPE_REALTIME :
5403 nvp->v_type = VREG;
5404 break;
5405 default:
5406 /* YIKES, something else */
5407 nvp->v_type = VNON;
5408 }
5409
5410 /* TODO specfs, fifofs etc etc. vnops setting */
5411
5412 /* don't forget to set vnode's v_size */
5413 uvm_vnp_setsize(nvp, file_size);
5414
5415 /* TODO ext attr and streamdir udf_nodes */
5416
5417 *udf_noderes = udf_node;
5418
5419 return 0;
5420 }
5421
5422 /* --------------------------------------------------------------------- */
5423
5424
5425 int
5426 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5427 {
5428 union dscrptr *dscr;
5429 struct long_ad *loc;
5430 int extnr, flags, error;
5431
5432 DPRINTF(NODE, ("udf_writeout_node called\n"));
5433
5434 KASSERT(udf_node->outstanding_bufs == 0);
5435 KASSERT(udf_node->outstanding_nodedscr == 0);
5436
5437 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5438
5439 if (udf_node->i_flags & IN_DELETED) {
5440 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5441 return 0;
5442 }
5443
5444 /* lock node */
5445 flags = waitfor ? 0 : IN_CALLBACK_ULK;
5446 UDF_LOCK_NODE(udf_node, flags);
5447
5448 /* at least one descriptor writeout */
5449 udf_node->outstanding_nodedscr = 1;
5450
5451 /* we're going to write out the descriptor so clear the flags */
5452 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5453
5454 /* if we were rebuild, write out the allocation extents */
5455 if (udf_node->i_flags & IN_NODE_REBUILD) {
5456 /* mark outstanding node dscriptors and issue them */
5457 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5458 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5459 loc = &udf_node->ext_loc[extnr];
5460 dscr = (union dscrptr *) udf_node->ext[extnr];
5461 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5462 if (error)
5463 return error;
5464 }
5465 /* mark allocation extents written out */
5466 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5467 }
5468
5469 if (udf_node->fe) {
5470 dscr = (union dscrptr *) udf_node->fe;
5471 } else {
5472 KASSERT(udf_node->efe);
5473 dscr = (union dscrptr *) udf_node->efe;
5474 }
5475 KASSERT(dscr);
5476
5477 loc = &udf_node->write_loc;
5478 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5479 return error;
5480 }
5481
5482 /* --------------------------------------------------------------------- */
5483
5484 int
5485 udf_dispose_node(struct udf_node *udf_node)
5486 {
5487 struct vnode *vp;
5488 int extnr;
5489
5490 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5491 if (!udf_node) {
5492 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5493 return 0;
5494 }
5495
5496 vp = udf_node->vnode;
5497 #ifdef DIAGNOSTIC
5498 if (vp->v_numoutput)
5499 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5500 "v_numoutput = %d", udf_node, vp->v_numoutput);
5501 #endif
5502
5503 /* wait until out of sync (just in case we happen to stumble over one */
5504 KASSERT(!mutex_owned(&mntvnode_lock));
5505 mutex_enter(&mntvnode_lock);
5506 while (udf_node->i_flags & IN_SYNCED) {
5507 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5508 hz/16);
5509 }
5510 mutex_exit(&mntvnode_lock);
5511
5512 /* TODO extended attributes and streamdir */
5513
5514 /* remove dirhash if present */
5515 udf_dirhash_destroy(&udf_node->dir_hash);
5516
5517 /* remove from our hash lookup table */
5518 udf_deregister_node(udf_node);
5519
5520 /* destroy our lock */
5521 mutex_destroy(&udf_node->node_mutex);
5522 cv_destroy(&udf_node->node_lock);
5523
5524 /* dissociate our udf_node from the vnode */
5525 genfs_node_destroy(udf_node->vnode);
5526 vp->v_data = NULL;
5527
5528 /* free associated memory and the node itself */
5529 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5530 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5531 udf_node->ext[extnr]);
5532 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5533 }
5534
5535 if (udf_node->fe)
5536 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5537 udf_node->fe);
5538 if (udf_node->efe)
5539 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5540 udf_node->efe);
5541
5542 udf_node->fe = (void *) 0xdeadaaaa;
5543 udf_node->efe = (void *) 0xdeadbbbb;
5544 udf_node->ump = (void *) 0xdeadbeef;
5545 pool_put(&udf_node_pool, udf_node);
5546
5547 return 0;
5548 }
5549
5550
5551
5552 /*
5553 * create a new node using the specified vnodeops, vap and cnp but with the
5554 * udf_file_type. This allows special files to be created. Use with care.
5555 */
5556
5557 static int
5558 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5559 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5560 {
5561 union dscrptr *dscr;
5562 struct udf_node *dir_node = VTOI(dvp);;
5563 struct udf_node *udf_node;
5564 struct udf_mount *ump = dir_node->ump;
5565 struct vnode *nvp;
5566 struct long_ad node_icb_loc;
5567 uint64_t parent_unique_id;
5568 uint64_t lmapping;
5569 uint32_t lb_size, lb_num;
5570 uint16_t vpart_num;
5571 uid_t uid;
5572 gid_t gid, parent_gid;
5573 int fid_size, error;
5574
5575 lb_size = udf_rw32(ump->logical_vol->lb_size);
5576 *vpp = NULL;
5577
5578 /* allocate vnode */
5579 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5580 if (error)
5581 return error;
5582
5583 /* lock node */
5584 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5585 if (error) {
5586 nvp->v_data = NULL;
5587 ungetnewvnode(nvp);
5588 return error;
5589 }
5590
5591 /* get disc allocation for one logical block */
5592 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5593 &vpart_num, &lmapping);
5594 lb_num = lmapping;
5595 if (error) {
5596 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5597 ungetnewvnode(nvp);
5598 return error;
5599 }
5600
5601 /* initialise pointer to location */
5602 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5603 node_icb_loc.len = lb_size;
5604 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5605 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5606
5607 /* build udf_node (do initialise!) */
5608 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5609 memset(udf_node, 0, sizeof(struct udf_node));
5610
5611 /* initialise crosslinks, note location of fe/efe for hashing */
5612 /* bugalert: synchronise with udf_get_node() */
5613 udf_node->ump = ump;
5614 udf_node->vnode = nvp;
5615 nvp->v_data = udf_node;
5616 udf_node->loc = node_icb_loc;
5617 udf_node->write_loc = node_icb_loc;
5618 udf_node->lockf = 0;
5619 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5620 cv_init(&udf_node->node_lock, "udf_nlk");
5621 udf_node->outstanding_bufs = 0;
5622 udf_node->outstanding_nodedscr = 0;
5623
5624 /* initialise genfs */
5625 genfs_node_init(nvp, &udf_genfsops);
5626
5627 /* insert into the hash lookup */
5628 udf_register_node(udf_node);
5629
5630 /* get parent's unique ID for refering '..' if its a directory */
5631 if (dir_node->fe) {
5632 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5633 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5634 } else {
5635 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5636 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5637 }
5638
5639 /* get descriptor */
5640 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5641
5642 /* choose a fe or an efe for it */
5643 if (ump->logical_vol->tag.descriptor_ver == 2) {
5644 udf_node->fe = &dscr->fe;
5645 fid_size = udf_create_new_fe(ump, udf_node->fe,
5646 udf_file_type, &udf_node->loc,
5647 &dir_node->loc, parent_unique_id);
5648 /* TODO add extended attribute for creation time */
5649 } else {
5650 udf_node->efe = &dscr->efe;
5651 fid_size = udf_create_new_efe(ump, udf_node->efe,
5652 udf_file_type, &udf_node->loc,
5653 &dir_node->loc, parent_unique_id);
5654 }
5655 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5656
5657 /* update vnode's size and type */
5658 nvp->v_type = vap->va_type;
5659 uvm_vnp_setsize(nvp, fid_size);
5660
5661 /* set access mode */
5662 udf_setaccessmode(udf_node, vap->va_mode);
5663
5664 /* set ownership */
5665 uid = kauth_cred_geteuid(cnp->cn_cred);
5666 gid = parent_gid;
5667 udf_setownership(udf_node, uid, gid);
5668
5669 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5670 if (error) {
5671 /* free disc allocation for node */
5672 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5673
5674 /* recycle udf_node */
5675 udf_dispose_node(udf_node);
5676 vput(nvp);
5677
5678 *vpp = NULL;
5679 return error;
5680 }
5681
5682 /* adjust file count */
5683 udf_adjust_filecount(udf_node, 1);
5684
5685 /* return result */
5686 *vpp = nvp;
5687
5688 return 0;
5689 }
5690
5691
5692 int
5693 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5694 struct componentname *cnp)
5695 {
5696 int (**vnodeops)(void *);
5697 int udf_file_type;
5698
5699 DPRINTF(NODE, ("udf_create_node called\n"));
5700
5701 /* what type are we creating ? */
5702 vnodeops = udf_vnodeop_p;
5703 /* start with a default */
5704 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5705
5706 *vpp = NULL;
5707
5708 switch (vap->va_type) {
5709 case VREG :
5710 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5711 break;
5712 case VDIR :
5713 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5714 break;
5715 case VLNK :
5716 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5717 break;
5718 case VBLK :
5719 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5720 /* specfs */
5721 return ENOTSUP;
5722 break;
5723 case VCHR :
5724 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5725 /* specfs */
5726 return ENOTSUP;
5727 break;
5728 case VFIFO :
5729 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5730 /* specfs */
5731 return ENOTSUP;
5732 break;
5733 case VSOCK :
5734 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5735 /* specfs */
5736 return ENOTSUP;
5737 break;
5738 case VNON :
5739 case VBAD :
5740 default :
5741 /* nothing; can we even create these? */
5742 return EINVAL;
5743 }
5744
5745 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5746 }
5747
5748 /* --------------------------------------------------------------------- */
5749
5750 static void
5751 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5752 {
5753 struct udf_mount *ump = udf_node->ump;
5754 uint32_t lb_size, lb_num, len, num_lb;
5755 uint16_t vpart_num;
5756
5757 /* is there really one? */
5758 if (mem == NULL)
5759 return;
5760
5761 /* got a descriptor here */
5762 len = UDF_EXT_LEN(udf_rw32(loc->len));
5763 lb_num = udf_rw32(loc->loc.lb_num);
5764 vpart_num = udf_rw16(loc->loc.part_num);
5765
5766 lb_size = udf_rw32(ump->logical_vol->lb_size);
5767 num_lb = (len + lb_size -1) / lb_size;
5768
5769 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5770 }
5771
5772 void
5773 udf_delete_node(struct udf_node *udf_node)
5774 {
5775 void *dscr;
5776 struct udf_mount *ump;
5777 struct long_ad *loc;
5778 int extnr, lvint, dummy;
5779
5780 ump = udf_node->ump;
5781
5782 /* paranoia check on integrity; should be open!; we could panic */
5783 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5784 if (lvint == UDF_INTEGRITY_CLOSED)
5785 printf("\tIntegrity was CLOSED!\n");
5786
5787 /* whatever the node type, change its size to zero */
5788 (void) udf_resize_node(udf_node, 0, &dummy);
5789
5790 /* force it to be `clean'; no use writing it out */
5791 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5792 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5793
5794 /* adjust file count */
5795 udf_adjust_filecount(udf_node, -1);
5796
5797 /*
5798 * Free its allocated descriptors; memory will be released when
5799 * vop_reclaim() is called.
5800 */
5801 loc = &udf_node->loc;
5802
5803 dscr = udf_node->fe;
5804 udf_free_descriptor_space(udf_node, loc, dscr);
5805 dscr = udf_node->efe;
5806 udf_free_descriptor_space(udf_node, loc, dscr);
5807
5808 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5809 dscr = udf_node->ext[extnr];
5810 loc = &udf_node->ext_loc[extnr];
5811 udf_free_descriptor_space(udf_node, loc, dscr);
5812 }
5813 }
5814
5815 /* --------------------------------------------------------------------- */
5816
5817 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5818 int
5819 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5820 {
5821 struct file_entry *fe = udf_node->fe;
5822 struct extfile_entry *efe = udf_node->efe;
5823 uint64_t file_size;
5824 int error;
5825
5826 if (fe) {
5827 file_size = udf_rw64(fe->inf_len);
5828 } else {
5829 assert(udf_node->efe);
5830 file_size = udf_rw64(efe->inf_len);
5831 }
5832
5833 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5834 file_size, new_size));
5835
5836 /* if not changing, we're done */
5837 if (file_size == new_size)
5838 return 0;
5839
5840 *extended = (new_size > file_size);
5841 if (*extended) {
5842 error = udf_grow_node(udf_node, new_size);
5843 } else {
5844 error = udf_shrink_node(udf_node, new_size);
5845 }
5846
5847 return error;
5848 }
5849
5850
5851 /* --------------------------------------------------------------------- */
5852
5853 void
5854 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5855 struct timespec *mod, struct timespec *birth)
5856 {
5857 struct timespec now;
5858 struct file_entry *fe;
5859 struct extfile_entry *efe;
5860 struct filetimes_extattr_entry *ft_extattr;
5861 struct timestamp *atime, *mtime, *attrtime, *ctime;
5862 struct timestamp fe_ctime;
5863 struct timespec cur_birth;
5864 uint32_t offset, a_l;
5865 uint8_t *filedata;
5866 int error;
5867
5868 /* protect against rogue values */
5869 if (!udf_node)
5870 return;
5871
5872 fe = udf_node->fe;
5873 efe = udf_node->efe;
5874
5875 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5876 return;
5877
5878 /* get descriptor information */
5879 if (fe) {
5880 atime = &fe->atime;
5881 mtime = &fe->mtime;
5882 attrtime = &fe->attrtime;
5883 filedata = fe->data;
5884
5885 /* initial save dummy setting */
5886 ctime = &fe_ctime;
5887
5888 /* check our extended attribute if present */
5889 error = udf_extattr_search_intern(udf_node,
5890 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5891 if (!error) {
5892 ft_extattr = (struct filetimes_extattr_entry *)
5893 (filedata + offset);
5894 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5895 ctime = &ft_extattr->times[0];
5896 }
5897 /* TODO create the extended attribute if not found ? */
5898 } else {
5899 assert(udf_node->efe);
5900 atime = &efe->atime;
5901 mtime = &efe->mtime;
5902 attrtime = &efe->attrtime;
5903 ctime = &efe->ctime;
5904 }
5905
5906 vfs_timestamp(&now);
5907
5908 /* set access time */
5909 if (udf_node->i_flags & IN_ACCESS) {
5910 if (acc == NULL)
5911 acc = &now;
5912 udf_timespec_to_timestamp(acc, atime);
5913 }
5914
5915 /* set modification time */
5916 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5917 if (mod == NULL)
5918 mod = &now;
5919 udf_timespec_to_timestamp(mod, mtime);
5920
5921 /* ensure birthtime is older than set modification! */
5922 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5923 if ((cur_birth.tv_sec > mod->tv_sec) ||
5924 ((cur_birth.tv_sec == mod->tv_sec) &&
5925 (cur_birth.tv_nsec > mod->tv_nsec))) {
5926 udf_timespec_to_timestamp(mod, ctime);
5927 }
5928 }
5929
5930 /* update birthtime if specified */
5931 /* XXX we asume here that given birthtime is older than mod */
5932 if (birth && (birth->tv_sec != VNOVAL)) {
5933 udf_timespec_to_timestamp(birth, ctime);
5934 }
5935
5936 /* set change time */
5937 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5938 udf_timespec_to_timestamp(&now, attrtime);
5939
5940 /* notify updates to the node itself */
5941 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5942 udf_node->i_flags |= IN_ACCESSED;
5943 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5944 udf_node->i_flags |= IN_MODIFIED;
5945
5946 /* clear modification flags */
5947 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5948 }
5949
5950 /* --------------------------------------------------------------------- */
5951
5952 int
5953 udf_update(struct vnode *vp, struct timespec *acc,
5954 struct timespec *mod, struct timespec *birth, int updflags)
5955 {
5956 struct udf_node *udf_node = VTOI(vp);
5957 struct udf_mount *ump = udf_node->ump;
5958 struct regid *impl_id;
5959 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5960 int waitfor, flags;
5961
5962 #ifdef DEBUG
5963 char bits[128];
5964 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5965 updflags));
5966 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5967 DPRINTF(CALL, ("\tnode flags %s\n", bits));
5968 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5969 #endif
5970
5971 /* set our times */
5972 udf_itimes(udf_node, acc, mod, birth);
5973
5974 /* set our implementation id */
5975 if (udf_node->fe) {
5976 impl_id = &udf_node->fe->imp_id;
5977 } else {
5978 impl_id = &udf_node->efe->imp_id;
5979 }
5980 udf_set_regid(impl_id, IMPL_NAME);
5981 udf_add_impl_regid(ump, impl_id);
5982
5983 /* if called when mounted readonly, never write back */
5984 if (vp->v_mount->mnt_flag & MNT_RDONLY)
5985 return 0;
5986
5987 /* check if the node is dirty 'enough'*/
5988 if (updflags & UPDATE_CLOSE) {
5989 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
5990 } else {
5991 flags = udf_node->i_flags & IN_MODIFIED;
5992 }
5993 if (flags == 0)
5994 return 0;
5995
5996 /* determine if we need to write sync or async */
5997 waitfor = 0;
5998 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
5999 /* sync mounted */
6000 waitfor = updflags & UPDATE_WAIT;
6001 if (updflags & UPDATE_DIROP)
6002 waitfor |= UPDATE_WAIT;
6003 }
6004 if (waitfor)
6005 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6006
6007 return 0;
6008 }
6009
6010
6011 /* --------------------------------------------------------------------- */
6012
6013
6014 /*
6015 * Read one fid and process it into a dirent and advance to the next (*fid)
6016 * has to be allocated a logical block in size, (*dirent) struct dirent length
6017 */
6018
6019 int
6020 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6021 struct fileid_desc *fid, struct dirent *dirent)
6022 {
6023 struct udf_node *dir_node = VTOI(vp);
6024 struct udf_mount *ump = dir_node->ump;
6025 struct file_entry *fe = dir_node->fe;
6026 struct extfile_entry *efe = dir_node->efe;
6027 uint32_t fid_size, lb_size;
6028 uint64_t file_size;
6029 char *fid_name;
6030 int enough, error;
6031
6032 assert(fid);
6033 assert(dirent);
6034 assert(dir_node);
6035 assert(offset);
6036 assert(*offset != 1);
6037
6038 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6039 /* check if we're past the end of the directory */
6040 if (fe) {
6041 file_size = udf_rw64(fe->inf_len);
6042 } else {
6043 assert(dir_node->efe);
6044 file_size = udf_rw64(efe->inf_len);
6045 }
6046 if (*offset >= file_size)
6047 return EINVAL;
6048
6049 /* get maximum length of FID descriptor */
6050 lb_size = udf_rw32(ump->logical_vol->lb_size);
6051
6052 /* initialise return values */
6053 fid_size = 0;
6054 memset(dirent, 0, sizeof(struct dirent));
6055 memset(fid, 0, lb_size);
6056
6057 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6058 if (!enough) {
6059 /* short dir ... */
6060 return EIO;
6061 }
6062
6063 error = vn_rdwr(UIO_READ, vp,
6064 fid, MIN(file_size - (*offset), lb_size), *offset,
6065 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6066 NULL, NULL);
6067 if (error)
6068 return error;
6069
6070 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6071 /*
6072 * Check if we got a whole descriptor.
6073 * TODO Try to `resync' directory stream when something is very wrong.
6074 */
6075
6076 /* check if our FID header is OK */
6077 error = udf_check_tag(fid);
6078 if (error) {
6079 goto brokendir;
6080 }
6081 DPRINTF(FIDS, ("\ttag check ok\n"));
6082
6083 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6084 error = EIO;
6085 goto brokendir;
6086 }
6087 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6088
6089 /* check for length */
6090 fid_size = udf_fidsize(fid);
6091 enough = (file_size - (*offset) >= fid_size);
6092 if (!enough) {
6093 error = EIO;
6094 goto brokendir;
6095 }
6096 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6097
6098 /* check FID contents */
6099 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6100 brokendir:
6101 if (error) {
6102 /* note that is sometimes a bit quick to report */
6103 printf("BROKEN DIRECTORY ENTRY\n");
6104 /* RESYNC? */
6105 /* TODO: use udf_resync_fid_stream */
6106 return EIO;
6107 }
6108 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6109
6110 /* we got a whole and valid descriptor! */
6111 DPRINTF(FIDS, ("\tinterpret FID\n"));
6112
6113 /* create resulting dirent structure */
6114 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6115 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6116 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6117
6118 /* '..' has no name, so provide one */
6119 if (fid->file_char & UDF_FILE_CHAR_PAR)
6120 strcpy(dirent->d_name, "..");
6121
6122 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
6123 dirent->d_namlen = strlen(dirent->d_name);
6124 dirent->d_reclen = _DIRENT_SIZE(dirent);
6125
6126 /*
6127 * Note that its not worth trying to go for the filetypes now... its
6128 * too expensive too
6129 */
6130 dirent->d_type = DT_UNKNOWN;
6131
6132 /* initial guess for filetype we can make */
6133 if (fid->file_char & UDF_FILE_CHAR_DIR)
6134 dirent->d_type = DT_DIR;
6135
6136 /* advance */
6137 *offset += fid_size;
6138
6139 return error;
6140 }
6141
6142
6143 /* --------------------------------------------------------------------- */
6144
6145 static void
6146 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6147 int pass, int *ndirty)
6148 {
6149 struct udf_node *udf_node, *n_udf_node;
6150 struct vnode *vp;
6151 int vdirty, error;
6152 int on_type, on_flags, on_vnode;
6153
6154 derailed:
6155 KASSERT(mutex_owned(&mntvnode_lock));
6156
6157 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6158 udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6159 for (;udf_node; udf_node = n_udf_node) {
6160 DPRINTF(SYNC, ("."));
6161
6162 udf_node->i_flags &= ~IN_SYNCED;
6163 vp = udf_node->vnode;
6164
6165 mutex_enter(&vp->v_interlock);
6166 n_udf_node = LIST_NEXT(udf_node, sortchain);
6167 if (n_udf_node)
6168 n_udf_node->i_flags |= IN_SYNCED;
6169
6170 /* system nodes are not synced this way */
6171 if (vp->v_vflag & VV_SYSTEM) {
6172 mutex_exit(&vp->v_interlock);
6173 continue;
6174 }
6175
6176 /* check if its dirty enough to even try */
6177 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6178 on_flags = ((udf_node->i_flags &
6179 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6180 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6181 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6182 if (on_type || (on_flags || on_vnode)) { /* XXX */
6183 /* not dirty (enough?) */
6184 mutex_exit(&vp->v_interlock);
6185 continue;
6186 }
6187
6188 mutex_exit(&mntvnode_lock);
6189 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6190 if (error) {
6191 mutex_enter(&mntvnode_lock);
6192 if (error == ENOENT)
6193 goto derailed;
6194 *ndirty += 1;
6195 continue;
6196 }
6197
6198 switch (pass) {
6199 case 1:
6200 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6201 break;
6202 case 2:
6203 vdirty = vp->v_numoutput;
6204 if (vp->v_tag == VT_UDF)
6205 vdirty += udf_node->outstanding_bufs +
6206 udf_node->outstanding_nodedscr;
6207 if (vdirty == 0)
6208 VOP_FSYNC(vp, cred, 0,0,0);
6209 *ndirty += vdirty;
6210 break;
6211 case 3:
6212 vdirty = vp->v_numoutput;
6213 if (vp->v_tag == VT_UDF)
6214 vdirty += udf_node->outstanding_bufs +
6215 udf_node->outstanding_nodedscr;
6216 *ndirty += vdirty;
6217 break;
6218 }
6219
6220 vput(vp);
6221 mutex_enter(&mntvnode_lock);
6222 }
6223 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6224 }
6225
6226
6227 void
6228 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6229 {
6230 int dummy, ndirty;
6231
6232 mutex_enter(&mntvnode_lock);
6233 recount:
6234 dummy = 0;
6235 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6236 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6237 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6238
6239 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6240 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6241 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6242
6243 if (waitfor == MNT_WAIT) {
6244 ndirty = ump->devvp->v_numoutput;
6245 DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
6246 ndirty));
6247 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6248 DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
6249 ndirty));
6250
6251 if (ndirty) {
6252 /* 1/4 second wait */
6253 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6254 hz/4);
6255 goto recount;
6256 }
6257 }
6258
6259 mutex_exit(&mntvnode_lock);
6260 }
6261
6262 /* --------------------------------------------------------------------- */
6263
6264 /*
6265 * Read and write file extent in/from the buffer.
6266 *
6267 * The splitup of the extent into seperate request-buffers is to minimise
6268 * copying around as much as possible.
6269 *
6270 * block based file reading and writing
6271 */
6272
6273 static int
6274 udf_read_internal(struct udf_node *node, uint8_t *blob)
6275 {
6276 struct udf_mount *ump;
6277 struct file_entry *fe = node->fe;
6278 struct extfile_entry *efe = node->efe;
6279 uint64_t inflen;
6280 uint32_t sector_size;
6281 uint8_t *pos;
6282 int icbflags, addr_type;
6283
6284 /* get extent and do some paranoia checks */
6285 ump = node->ump;
6286 sector_size = ump->discinfo.sector_size;
6287
6288 if (fe) {
6289 inflen = udf_rw64(fe->inf_len);
6290 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6291 icbflags = udf_rw16(fe->icbtag.flags);
6292 } else {
6293 assert(node->efe);
6294 inflen = udf_rw64(efe->inf_len);
6295 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6296 icbflags = udf_rw16(efe->icbtag.flags);
6297 }
6298 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6299
6300 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6301 assert(inflen < sector_size);
6302
6303 /* copy out info */
6304 memset(blob, 0, sector_size);
6305 memcpy(blob, pos, inflen);
6306
6307 return 0;
6308 }
6309
6310
6311 static int
6312 udf_write_internal(struct udf_node *node, uint8_t *blob)
6313 {
6314 struct udf_mount *ump;
6315 struct file_entry *fe = node->fe;
6316 struct extfile_entry *efe = node->efe;
6317 uint64_t inflen;
6318 uint32_t sector_size;
6319 uint8_t *pos;
6320 int icbflags, addr_type;
6321
6322 /* get extent and do some paranoia checks */
6323 ump = node->ump;
6324 sector_size = ump->discinfo.sector_size;
6325
6326 if (fe) {
6327 inflen = udf_rw64(fe->inf_len);
6328 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6329 icbflags = udf_rw16(fe->icbtag.flags);
6330 } else {
6331 assert(node->efe);
6332 inflen = udf_rw64(efe->inf_len);
6333 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6334 icbflags = udf_rw16(efe->icbtag.flags);
6335 }
6336 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6337
6338 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6339 assert(inflen < sector_size);
6340
6341 /* copy in blob */
6342 /* memset(pos, 0, inflen); */
6343 memcpy(pos, blob, inflen);
6344
6345 return 0;
6346 }
6347
6348
6349 void
6350 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6351 {
6352 struct buf *nestbuf;
6353 struct udf_mount *ump = udf_node->ump;
6354 uint64_t *mapping;
6355 uint64_t run_start;
6356 uint32_t sector_size;
6357 uint32_t buf_offset, sector, rbuflen, rblk;
6358 uint32_t from, lblkno;
6359 uint32_t sectors;
6360 uint8_t *buf_pos;
6361 int error, run_length, isdir, what;
6362
6363 sector_size = udf_node->ump->discinfo.sector_size;
6364
6365 from = buf->b_blkno;
6366 sectors = buf->b_bcount / sector_size;
6367
6368 isdir = (udf_node->vnode->v_type == VDIR);
6369 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6370
6371 /* assure we have enough translation slots */
6372 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6373 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6374
6375 if (sectors > UDF_MAX_MAPPINGS) {
6376 printf("udf_read_filebuf: implementation limit on bufsize\n");
6377 buf->b_error = EIO;
6378 biodone(buf);
6379 return;
6380 }
6381
6382 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6383
6384 error = 0;
6385 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6386 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6387 if (error) {
6388 buf->b_error = error;
6389 biodone(buf);
6390 goto out;
6391 }
6392 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6393
6394 /* pre-check if its an internal */
6395 if (*mapping == UDF_TRANS_INTERN) {
6396 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6397 if (error)
6398 buf->b_error = error;
6399 biodone(buf);
6400 goto out;
6401 }
6402 DPRINTF(READ, ("\tnot intern\n"));
6403
6404 #ifdef DEBUG
6405 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6406 printf("Returned translation table:\n");
6407 for (sector = 0; sector < sectors; sector++) {
6408 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6409 }
6410 }
6411 #endif
6412
6413 /* request read-in of data from disc sheduler */
6414 buf->b_resid = buf->b_bcount;
6415 for (sector = 0; sector < sectors; sector++) {
6416 buf_offset = sector * sector_size;
6417 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6418 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6419
6420 /* check if its zero or unmapped to stop reading */
6421 switch (mapping[sector]) {
6422 case UDF_TRANS_UNMAPPED:
6423 case UDF_TRANS_ZERO:
6424 /* copy zero sector TODO runlength like below */
6425 memset(buf_pos, 0, sector_size);
6426 DPRINTF(READ, ("\treturning zero sector\n"));
6427 nestiobuf_done(buf, sector_size, 0);
6428 break;
6429 default :
6430 DPRINTF(READ, ("\tread sector "
6431 "%"PRIu64"\n", mapping[sector]));
6432
6433 lblkno = from + sector;
6434 run_start = mapping[sector];
6435 run_length = 1;
6436 while (sector < sectors-1) {
6437 if (mapping[sector+1] != mapping[sector]+1)
6438 break;
6439 run_length++;
6440 sector++;
6441 }
6442
6443 /*
6444 * nest an iobuf and mark it for async reading. Since
6445 * we're using nested buffers, they can't be cached by
6446 * design.
6447 */
6448 rbuflen = run_length * sector_size;
6449 rblk = run_start * (sector_size/DEV_BSIZE);
6450
6451 nestbuf = getiobuf(NULL, true);
6452 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6453 /* nestbuf is B_ASYNC */
6454
6455 /* identify this nestbuf */
6456 nestbuf->b_lblkno = lblkno;
6457 assert(nestbuf->b_vp == udf_node->vnode);
6458
6459 /* CD shedules on raw blkno */
6460 nestbuf->b_blkno = rblk;
6461 nestbuf->b_proc = NULL;
6462 nestbuf->b_rawblkno = rblk;
6463 nestbuf->b_udf_c_type = what;
6464
6465 udf_discstrat_queuebuf(ump, nestbuf);
6466 }
6467 }
6468 out:
6469 /* if we're synchronously reading, wait for the completion */
6470 if ((buf->b_flags & B_ASYNC) == 0)
6471 biowait(buf);
6472
6473 DPRINTF(READ, ("\tend of read_filebuf\n"));
6474 free(mapping, M_TEMP);
6475 return;
6476 }
6477
6478
6479 void
6480 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6481 {
6482 struct buf *nestbuf;
6483 struct udf_mount *ump = udf_node->ump;
6484 uint64_t *mapping;
6485 uint64_t run_start;
6486 uint32_t lb_size;
6487 uint32_t buf_offset, lb_num, rbuflen, rblk;
6488 uint32_t from, lblkno;
6489 uint32_t num_lb;
6490 uint8_t *buf_pos;
6491 int error, run_length, isdir, what, s;
6492
6493 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6494
6495 from = buf->b_blkno;
6496 num_lb = buf->b_bcount / lb_size;
6497
6498 isdir = (udf_node->vnode->v_type == VDIR);
6499 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6500
6501 if (udf_node == ump->metadatabitmap_node)
6502 what = UDF_C_METADATA_SBM;
6503
6504 /* assure we have enough translation slots */
6505 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6506 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6507
6508 if (num_lb > UDF_MAX_MAPPINGS) {
6509 printf("udf_write_filebuf: implementation limit on bufsize\n");
6510 buf->b_error = EIO;
6511 biodone(buf);
6512 return;
6513 }
6514
6515 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6516
6517 error = 0;
6518 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6519 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6520 if (error) {
6521 buf->b_error = error;
6522 biodone(buf);
6523 goto out;
6524 }
6525 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6526
6527 /* if its internally mapped, we can write it in the descriptor itself */
6528 if (*mapping == UDF_TRANS_INTERN) {
6529 /* TODO paranoia check if we ARE going to have enough space */
6530 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6531 if (error)
6532 buf->b_error = error;
6533 biodone(buf);
6534 goto out;
6535 }
6536 DPRINTF(WRITE, ("\tnot intern\n"));
6537
6538 /* request write out of data to disc sheduler */
6539 buf->b_resid = buf->b_bcount;
6540 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6541 buf_offset = lb_num * lb_size;
6542 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6543 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6544
6545 /*
6546 * Mappings are not that important here. Just before we write
6547 * the lb_num we late-allocate them when needed and update the
6548 * mapping in the udf_node.
6549 */
6550
6551 /* XXX why not ignore the mapping altogether ? */
6552 /* TODO estimate here how much will be late-allocated */
6553 DPRINTF(WRITE, ("\twrite lb_num "
6554 "%"PRIu64, mapping[lb_num]));
6555
6556 lblkno = from + lb_num;
6557 run_start = mapping[lb_num];
6558 run_length = 1;
6559 while (lb_num < num_lb-1) {
6560 if (mapping[lb_num+1] != mapping[lb_num]+1)
6561 if (mapping[lb_num+1] != mapping[lb_num])
6562 break;
6563 run_length++;
6564 lb_num++;
6565 }
6566 DPRINTF(WRITE, ("+ %d\n", run_length));
6567
6568 /* nest an iobuf on the master buffer for the extent */
6569 rbuflen = run_length * lb_size;
6570 rblk = run_start * (lb_size/DEV_BSIZE);
6571
6572 #if 0
6573 /* if its zero or unmapped, our blknr gets -1 for unmapped */
6574 switch (mapping[lb_num]) {
6575 case UDF_TRANS_UNMAPPED:
6576 case UDF_TRANS_ZERO:
6577 rblk = -1;
6578 break;
6579 default:
6580 rblk = run_start * (lb_size/DEV_BSIZE);
6581 break;
6582 }
6583 #endif
6584
6585 nestbuf = getiobuf(NULL, true);
6586 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6587 /* nestbuf is B_ASYNC */
6588
6589 /* identify this nestbuf */
6590 nestbuf->b_lblkno = lblkno;
6591 KASSERT(nestbuf->b_vp == udf_node->vnode);
6592
6593 /* CD shedules on raw blkno */
6594 nestbuf->b_blkno = rblk;
6595 nestbuf->b_proc = NULL;
6596 nestbuf->b_rawblkno = rblk;
6597 nestbuf->b_udf_c_type = what;
6598
6599 /* increment our outstanding bufs counter */
6600 s = splbio();
6601 udf_node->outstanding_bufs++;
6602 splx(s);
6603
6604 udf_discstrat_queuebuf(ump, nestbuf);
6605 }
6606 out:
6607 /* if we're synchronously writing, wait for the completion */
6608 if ((buf->b_flags & B_ASYNC) == 0)
6609 biowait(buf);
6610
6611 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6612 free(mapping, M_TEMP);
6613 return;
6614 }
6615
6616 /* --------------------------------------------------------------------- */
6617
6618
6619