Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.69
      1 /* $NetBSD: udf_subr.c,v 1.69 2008/07/27 11:38:23 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.69 2008/07/27 11:38:23 reinoud Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_quota.h"
     38 #include "opt_compat_netbsd.h"
     39 #endif
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/namei.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/vnode.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <sys/mount.h>
     50 #include <sys/buf.h>
     51 #include <sys/file.h>
     52 #include <sys/device.h>
     53 #include <sys/disklabel.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/malloc.h>
     56 #include <sys/dirent.h>
     57 #include <sys/stat.h>
     58 #include <sys/conf.h>
     59 #include <sys/kauth.h>
     60 #include <fs/unicode.h>
     61 #include <dev/clock_subr.h>
     62 
     63 #include <fs/udf/ecma167-udf.h>
     64 #include <fs/udf/udf_mount.h>
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_udf.h"
     68 #endif
     69 
     70 #include "udf.h"
     71 #include "udf_subr.h"
     72 #include "udf_bswap.h"
     73 
     74 
     75 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     76 
     77 #define UDF_SET_SYSTEMFILE(vp) \
     78 	/* XXXAD Is the vnode locked? */	\
     79 	(vp)->v_vflag |= VV_SYSTEM;		\
     80 	vref(vp);			\
     81 	vput(vp);			\
     82 
     83 extern int syncer_maxdelay;     /* maximum delay time */
     84 extern int (**udf_vnodeop_p)(void *);
     85 
     86 /* --------------------------------------------------------------------- */
     87 
     88 //#ifdef DEBUG
     89 #if 1
     90 
     91 #if 0
     92 static void
     93 udf_dumpblob(boid *blob, uint32_t dlen)
     94 {
     95 	int i, j;
     96 
     97 	printf("blob = %p\n", blob);
     98 	printf("dump of %d bytes\n", dlen);
     99 
    100 	for (i = 0; i < dlen; i+ = 16) {
    101 		printf("%04x ", i);
    102 		for (j = 0; j < 16; j++) {
    103 			if (i+j < dlen) {
    104 				printf("%02x ", blob[i+j]);
    105 			} else {
    106 				printf("   ");
    107 			}
    108 		}
    109 		for (j = 0; j < 16; j++) {
    110 			if (i+j < dlen) {
    111 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    112 					printf("%c", blob[i+j]);
    113 				} else {
    114 					printf(".");
    115 				}
    116 			}
    117 		}
    118 		printf("\n");
    119 	}
    120 	printf("\n");
    121 	Debugger();
    122 }
    123 #endif
    124 
    125 static void
    126 udf_dump_discinfo(struct udf_mount *ump)
    127 {
    128 	char   bits[128];
    129 	struct mmc_discinfo *di = &ump->discinfo;
    130 
    131 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    132 		return;
    133 
    134 	printf("Device/media info  :\n");
    135 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    136 	printf("\tderived class      %d\n", di->mmc_class);
    137 	printf("\tsector size        %d\n", di->sector_size);
    138 	printf("\tdisc state         %d\n", di->disc_state);
    139 	printf("\tlast ses state     %d\n", di->last_session_state);
    140 	printf("\tbg format state    %d\n", di->bg_format_state);
    141 	printf("\tfrst track         %d\n", di->first_track);
    142 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    143 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    144 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    145 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    146 		sizeof(bits));
    147 	printf("\tdisc flags         %s\n", bits);
    148 	printf("\tdisc id            %x\n", di->disc_id);
    149 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    150 
    151 	printf("\tnum sessions       %d\n", di->num_sessions);
    152 	printf("\tnum tracks         %d\n", di->num_tracks);
    153 
    154 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    155 	printf("\tcapabilities cur   %s\n", bits);
    156 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    157 	printf("\tcapabilities cap   %s\n", bits);
    158 }
    159 #else
    160 #define udf_dump_discinfo(a);
    161 #endif
    162 
    163 
    164 /* --------------------------------------------------------------------- */
    165 
    166 /* not called often */
    167 int
    168 udf_update_discinfo(struct udf_mount *ump)
    169 {
    170 	struct vnode *devvp = ump->devvp;
    171 	struct partinfo dpart;
    172 	struct mmc_discinfo *di;
    173 	int error;
    174 
    175 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    176 	di = &ump->discinfo;
    177 	memset(di, 0, sizeof(struct mmc_discinfo));
    178 
    179 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    180 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    181 	if (error == 0) {
    182 		udf_dump_discinfo(ump);
    183 		return 0;
    184 	}
    185 
    186 	/* disc partition support */
    187 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    188 	if (error)
    189 		return ENODEV;
    190 
    191 	/* set up a disc info profile for partitions */
    192 	di->mmc_profile		= 0x01;	/* disc type */
    193 	di->mmc_class		= MMC_CLASS_DISC;
    194 	di->disc_state		= MMC_STATE_CLOSED;
    195 	di->last_session_state	= MMC_STATE_CLOSED;
    196 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    197 	di->link_block_penalty	= 0;
    198 
    199 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    200 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    201 	di->mmc_cap    = di->mmc_cur;
    202 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    203 
    204 	/* TODO problem with last_possible_lba on resizable VND; request */
    205 	di->last_possible_lba = dpart.part->p_size;
    206 	di->sector_size       = dpart.disklab->d_secsize;
    207 
    208 	di->num_sessions = 1;
    209 	di->num_tracks   = 1;
    210 
    211 	di->first_track  = 1;
    212 	di->first_track_last_session = di->last_track_last_session = 1;
    213 
    214 	udf_dump_discinfo(ump);
    215 	return 0;
    216 }
    217 
    218 
    219 int
    220 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    221 {
    222 	struct vnode *devvp = ump->devvp;
    223 	struct mmc_discinfo *di = &ump->discinfo;
    224 	int error, class;
    225 
    226 	DPRINTF(VOLUMES, ("read track info\n"));
    227 
    228 	class = di->mmc_class;
    229 	if (class != MMC_CLASS_DISC) {
    230 		/* tracknr specified in struct ti */
    231 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    232 		return error;
    233 	}
    234 
    235 	/* disc partition support */
    236 	if (ti->tracknr != 1)
    237 		return EIO;
    238 
    239 	/* create fake ti (TODO check for resized vnds) */
    240 	ti->sessionnr  = 1;
    241 
    242 	ti->track_mode = 0;	/* XXX */
    243 	ti->data_mode  = 0;	/* XXX */
    244 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    245 
    246 	ti->track_start    = 0;
    247 	ti->packet_size    = 1;
    248 
    249 	/* TODO support for resizable vnd */
    250 	ti->track_size    = di->last_possible_lba;
    251 	ti->next_writable = di->last_possible_lba;
    252 	ti->last_recorded = ti->next_writable;
    253 	ti->free_blocks   = 0;
    254 
    255 	return 0;
    256 }
    257 
    258 
    259 int
    260 udf_setup_writeparams(struct udf_mount *ump)
    261 {
    262 	struct mmc_writeparams mmc_writeparams;
    263 	int error;
    264 
    265 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    266 		return 0;
    267 
    268 	/*
    269 	 * only CD burning normally needs setting up, but other disc types
    270 	 * might need other settings to be made. The MMC framework will set up
    271 	 * the nessisary recording parameters according to the disc
    272 	 * characteristics read in. Modifications can be made in the discinfo
    273 	 * structure passed to change the nature of the disc.
    274 	 */
    275 
    276 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    277 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    278 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    279 
    280 	/*
    281 	 * UDF dictates first track to determine track mode for the whole
    282 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    283 	 * To prevent problems with a `reserved' track in front we start with
    284 	 * the 2nd track and if that is not valid, go for the 1st.
    285 	 */
    286 	mmc_writeparams.tracknr = 2;
    287 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    288 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    289 
    290 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    291 			FKIOCTL, NOCRED);
    292 	if (error) {
    293 		mmc_writeparams.tracknr = 1;
    294 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    295 				&mmc_writeparams, FKIOCTL, NOCRED);
    296 	}
    297 	return error;
    298 }
    299 
    300 
    301 int
    302 udf_synchronise_caches(struct udf_mount *ump)
    303 {
    304 	struct mmc_op mmc_op;
    305 
    306 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    307 
    308 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    309 		return 0;
    310 
    311 	/* discs are done now */
    312 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    313 		return 0;
    314 
    315 	bzero(&mmc_op, sizeof(struct mmc_op));
    316 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    317 
    318 	/* ignore return code */
    319 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    320 
    321 	return 0;
    322 }
    323 
    324 /* --------------------------------------------------------------------- */
    325 
    326 /* track/session searching for mounting */
    327 int
    328 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    329 		  int *first_tracknr, int *last_tracknr)
    330 {
    331 	struct mmc_trackinfo trackinfo;
    332 	uint32_t tracknr, start_track, num_tracks;
    333 	int error;
    334 
    335 	/* if negative, sessionnr is relative to last session */
    336 	if (args->sessionnr < 0) {
    337 		args->sessionnr += ump->discinfo.num_sessions;
    338 	}
    339 
    340 	/* sanity */
    341 	if (args->sessionnr < 0)
    342 		args->sessionnr = 0;
    343 	if (args->sessionnr > ump->discinfo.num_sessions)
    344 		args->sessionnr = ump->discinfo.num_sessions;
    345 
    346 	/* search the tracks for this session, zero session nr indicates last */
    347 	if (args->sessionnr == 0)
    348 		args->sessionnr = ump->discinfo.num_sessions;
    349 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    350 		args->sessionnr--;
    351 
    352 	/* sanity again */
    353 	if (args->sessionnr < 0)
    354 		args->sessionnr = 0;
    355 
    356 	/* search the first and last track of the specified session */
    357 	num_tracks  = ump->discinfo.num_tracks;
    358 	start_track = ump->discinfo.first_track;
    359 
    360 	/* search for first track of this session */
    361 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    362 		/* get track info */
    363 		trackinfo.tracknr = tracknr;
    364 		error = udf_update_trackinfo(ump, &trackinfo);
    365 		if (error)
    366 			return error;
    367 
    368 		if (trackinfo.sessionnr == args->sessionnr)
    369 			break;
    370 	}
    371 	*first_tracknr = tracknr;
    372 
    373 	/* search for last track of this session */
    374 	for (;tracknr <= num_tracks; tracknr++) {
    375 		/* get track info */
    376 		trackinfo.tracknr = tracknr;
    377 		error = udf_update_trackinfo(ump, &trackinfo);
    378 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    379 			tracknr--;
    380 			break;
    381 		}
    382 	}
    383 	if (tracknr > num_tracks)
    384 		tracknr--;
    385 
    386 	*last_tracknr = tracknr;
    387 
    388 	if (*last_tracknr < *first_tracknr) {
    389 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    390 			"drive returned garbage\n");
    391 		return EINVAL;
    392 	}
    393 
    394 	assert(*last_tracknr >= *first_tracknr);
    395 	return 0;
    396 }
    397 
    398 
    399 /*
    400  * NOTE: this is the only routine in this file that directly peeks into the
    401  * metadata file but since its at a larval state of the mount it can't hurt.
    402  *
    403  * XXX candidate for udf_allocation.c
    404  * XXX clean me up!, change to new node reading code.
    405  */
    406 
    407 static void
    408 udf_check_track_metadata_overlap(struct udf_mount *ump,
    409 	struct mmc_trackinfo *trackinfo)
    410 {
    411 	struct part_desc *part;
    412 	struct file_entry      *fe;
    413 	struct extfile_entry   *efe;
    414 	struct short_ad        *s_ad;
    415 	struct long_ad         *l_ad;
    416 	uint32_t track_start, track_end;
    417 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    418 	uint32_t sector_size, len, alloclen, plb_num;
    419 	uint8_t *pos;
    420 	int addr_type, icblen, icbflags, flags;
    421 
    422 	/* get our track extents */
    423 	track_start = trackinfo->track_start;
    424 	track_end   = track_start + trackinfo->track_size;
    425 
    426 	/* get our base partition extent */
    427 	part = ump->partitions[ump->metadata_part];
    428 	phys_part_start = udf_rw32(part->start_loc);
    429 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    430 
    431 	/* no use if its outside the physical partition */
    432 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    433 		return;
    434 
    435 	/*
    436 	 * now follow all extents in the fe/efe to see if they refer to this
    437 	 * track
    438 	 */
    439 
    440 	sector_size = ump->discinfo.sector_size;
    441 
    442 	/* XXX should we claim exclusive access to the metafile ? */
    443 	/* TODO: move to new node read code */
    444 	fe  = ump->metadata_node->fe;
    445 	efe = ump->metadata_node->efe;
    446 	if (fe) {
    447 		alloclen = udf_rw32(fe->l_ad);
    448 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    449 		icbflags = udf_rw16(fe->icbtag.flags);
    450 	} else {
    451 		assert(efe);
    452 		alloclen = udf_rw32(efe->l_ad);
    453 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    454 		icbflags = udf_rw16(efe->icbtag.flags);
    455 	}
    456 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    457 
    458 	while (alloclen) {
    459 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    460 			icblen = sizeof(struct short_ad);
    461 			s_ad   = (struct short_ad *) pos;
    462 			len        = udf_rw32(s_ad->len);
    463 			plb_num    = udf_rw32(s_ad->lb_num);
    464 		} else {
    465 			/* should not be present, but why not */
    466 			icblen = sizeof(struct long_ad);
    467 			l_ad   = (struct long_ad *) pos;
    468 			len        = udf_rw32(l_ad->len);
    469 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    470 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    471 		}
    472 		/* process extent */
    473 		flags   = UDF_EXT_FLAGS(len);
    474 		len     = UDF_EXT_LEN(len);
    475 
    476 		part_start = phys_part_start + plb_num;
    477 		part_end   = part_start + (len / sector_size);
    478 
    479 		if ((part_start >= track_start) && (part_end <= track_end)) {
    480 			/* extent is enclosed within this track */
    481 			ump->metadata_track = *trackinfo;
    482 			return;
    483 		}
    484 
    485 		pos        += icblen;
    486 		alloclen   -= icblen;
    487 	}
    488 }
    489 
    490 
    491 int
    492 udf_search_writing_tracks(struct udf_mount *ump)
    493 {
    494 	struct mmc_trackinfo trackinfo;
    495 	struct part_desc *part;
    496 	uint32_t tracknr, start_track, num_tracks;
    497 	uint32_t track_start, track_end, part_start, part_end;
    498 	int error;
    499 
    500 	/*
    501 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    502 	 * the last session might be open but in the UDF device model at most
    503 	 * three tracks can be open: a reserved track for delayed ISO VRS
    504 	 * writing, a data track and a metadata track. We search here for the
    505 	 * data track and the metadata track. Note that the reserved track is
    506 	 * troublesome but can be detected by its small size of < 512 sectors.
    507 	 */
    508 
    509 	num_tracks  = ump->discinfo.num_tracks;
    510 	start_track = ump->discinfo.first_track;
    511 
    512 	/* fetch info on first and possibly only track */
    513 	trackinfo.tracknr = start_track;
    514 	error = udf_update_trackinfo(ump, &trackinfo);
    515 	if (error)
    516 		return error;
    517 
    518 	/* copy results to our mount point */
    519 	ump->data_track     = trackinfo;
    520 	ump->metadata_track = trackinfo;
    521 
    522 	/* if not sequential, we're done */
    523 	if (num_tracks == 1)
    524 		return 0;
    525 
    526 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    527 		/* get track info */
    528 		trackinfo.tracknr = tracknr;
    529 		error = udf_update_trackinfo(ump, &trackinfo);
    530 		if (error)
    531 			return error;
    532 
    533 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    534 			continue;
    535 
    536 		track_start = trackinfo.track_start;
    537 		track_end   = track_start + trackinfo.track_size;
    538 
    539 		/* check for overlap on data partition */
    540 		part = ump->partitions[ump->data_part];
    541 		part_start = udf_rw32(part->start_loc);
    542 		part_end   = part_start + udf_rw32(part->part_len);
    543 		if ((part_start < track_end) && (part_end > track_start)) {
    544 			ump->data_track = trackinfo;
    545 			/* TODO check if UDF partition data_part is writable */
    546 		}
    547 
    548 		/* check for overlap on metadata partition */
    549 		if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    550 		    (ump->meta_alloc == UDF_ALLOC_METABITMAP)) {
    551 			udf_check_track_metadata_overlap(ump, &trackinfo);
    552 		} else {
    553 			ump->metadata_track = trackinfo;
    554 		}
    555 	}
    556 
    557 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    558 		return EROFS;
    559 
    560 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    561 		return EROFS;
    562 
    563 	return 0;
    564 }
    565 
    566 /* --------------------------------------------------------------------- */
    567 
    568 /*
    569  * Check if the blob starts with a good UDF tag. Tags are protected by a
    570  * checksum over the reader except one byte at position 4 that is the checksum
    571  * itself.
    572  */
    573 
    574 int
    575 udf_check_tag(void *blob)
    576 {
    577 	struct desc_tag *tag = blob;
    578 	uint8_t *pos, sum, cnt;
    579 
    580 	/* check TAG header checksum */
    581 	pos = (uint8_t *) tag;
    582 	sum = 0;
    583 
    584 	for(cnt = 0; cnt < 16; cnt++) {
    585 		if (cnt != 4)
    586 			sum += *pos;
    587 		pos++;
    588 	}
    589 	if (sum != tag->cksum) {
    590 		/* bad tag header checksum; this is not a valid tag */
    591 		return EINVAL;
    592 	}
    593 
    594 	return 0;
    595 }
    596 
    597 
    598 /*
    599  * check tag payload will check descriptor CRC as specified.
    600  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    601  */
    602 
    603 int
    604 udf_check_tag_payload(void *blob, uint32_t max_length)
    605 {
    606 	struct desc_tag *tag = blob;
    607 	uint16_t crc, crc_len;
    608 
    609 	crc_len = udf_rw16(tag->desc_crc_len);
    610 
    611 	/* check payload CRC if applicable */
    612 	if (crc_len == 0)
    613 		return 0;
    614 
    615 	if (crc_len > max_length)
    616 		return EIO;
    617 
    618 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    619 	if (crc != udf_rw16(tag->desc_crc)) {
    620 		/* bad payload CRC; this is a broken tag */
    621 		return EINVAL;
    622 	}
    623 
    624 	return 0;
    625 }
    626 
    627 
    628 void
    629 udf_validate_tag_sum(void *blob)
    630 {
    631 	struct desc_tag *tag = blob;
    632 	uint8_t *pos, sum, cnt;
    633 
    634 	/* calculate TAG header checksum */
    635 	pos = (uint8_t *) tag;
    636 	sum = 0;
    637 
    638 	for(cnt = 0; cnt < 16; cnt++) {
    639 		if (cnt != 4) sum += *pos;
    640 		pos++;
    641 	}
    642 	tag->cksum = sum;	/* 8 bit */
    643 }
    644 
    645 
    646 /* assumes sector number of descriptor to be saved already present */
    647 void
    648 udf_validate_tag_and_crc_sums(void *blob)
    649 {
    650 	struct desc_tag *tag  = blob;
    651 	uint8_t         *btag = (uint8_t *) tag;
    652 	uint16_t crc, crc_len;
    653 
    654 	crc_len = udf_rw16(tag->desc_crc_len);
    655 
    656 	/* check payload CRC if applicable */
    657 	if (crc_len > 0) {
    658 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    659 		tag->desc_crc = udf_rw16(crc);
    660 	}
    661 
    662 	/* calculate TAG header checksum */
    663 	udf_validate_tag_sum(blob);
    664 }
    665 
    666 /* --------------------------------------------------------------------- */
    667 
    668 /*
    669  * XXX note the different semantics from udfclient: for FIDs it still rounds
    670  * up to sectors. Use udf_fidsize() for a correct length.
    671  */
    672 
    673 int
    674 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    675 {
    676 	uint32_t size, tag_id, num_lb, elmsz;
    677 
    678 	tag_id = udf_rw16(dscr->tag.id);
    679 
    680 	switch (tag_id) {
    681 	case TAGID_LOGVOL :
    682 		size  = sizeof(struct logvol_desc) - 1;
    683 		size += udf_rw32(dscr->lvd.mt_l);
    684 		break;
    685 	case TAGID_UNALLOC_SPACE :
    686 		elmsz = sizeof(struct extent_ad);
    687 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    688 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    689 		break;
    690 	case TAGID_FID :
    691 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    692 		size = (size + 3) & ~3;
    693 		break;
    694 	case TAGID_LOGVOL_INTEGRITY :
    695 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    696 		size += udf_rw32(dscr->lvid.l_iu);
    697 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    698 		break;
    699 	case TAGID_SPACE_BITMAP :
    700 		size  = sizeof(struct space_bitmap_desc) - 1;
    701 		size += udf_rw32(dscr->sbd.num_bytes);
    702 		break;
    703 	case TAGID_SPARING_TABLE :
    704 		elmsz = sizeof(struct spare_map_entry);
    705 		size  = sizeof(struct udf_sparing_table) - elmsz;
    706 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    707 		break;
    708 	case TAGID_FENTRY :
    709 		size  = sizeof(struct file_entry);
    710 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    711 		break;
    712 	case TAGID_EXTFENTRY :
    713 		size  = sizeof(struct extfile_entry);
    714 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    715 		break;
    716 	case TAGID_FSD :
    717 		size  = sizeof(struct fileset_desc);
    718 		break;
    719 	default :
    720 		size = sizeof(union dscrptr);
    721 		break;
    722 	}
    723 
    724 	if ((size == 0) || (lb_size == 0)) return 0;
    725 
    726 	/* round up in sectors */
    727 	num_lb = (size + lb_size -1) / lb_size;
    728 	return num_lb * lb_size;
    729 }
    730 
    731 
    732 int
    733 udf_fidsize(struct fileid_desc *fid)
    734 {
    735 	uint32_t size;
    736 
    737 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    738 		panic("got udf_fidsize on non FID\n");
    739 
    740 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    741 	size = (size + 3) & ~3;
    742 
    743 	return size;
    744 }
    745 
    746 /* --------------------------------------------------------------------- */
    747 
    748 void
    749 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    750 {
    751 	int ret;
    752 
    753 	mutex_enter(&udf_node->node_mutex);
    754 	/* wait until free */
    755 	while (udf_node->i_flags & IN_LOCKED) {
    756 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    757 		/* TODO check if we should return error; abort */
    758 		if (ret == EWOULDBLOCK) {
    759 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    760 				"wanted at %s:%d, previously locked at %s:%d\n",
    761 				udf_node, fname, lineno,
    762 				udf_node->lock_fname, udf_node->lock_lineno));
    763 		}
    764 	}
    765 	/* grab */
    766 	udf_node->i_flags |= IN_LOCKED | flag;
    767 	/* debug */
    768 	udf_node->lock_fname  = fname;
    769 	udf_node->lock_lineno = lineno;
    770 
    771 	mutex_exit(&udf_node->node_mutex);
    772 }
    773 
    774 
    775 void
    776 udf_unlock_node(struct udf_node *udf_node, int flag)
    777 {
    778 	mutex_enter(&udf_node->node_mutex);
    779 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    780 	cv_broadcast(&udf_node->node_lock);
    781 	mutex_exit(&udf_node->node_mutex);
    782 }
    783 
    784 
    785 /* --------------------------------------------------------------------- */
    786 
    787 static int
    788 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    789 {
    790 	int error;
    791 
    792 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    793 			(union dscrptr **) dst);
    794 	if (!error) {
    795 		/* blank terminator blocks are not allowed here */
    796 		if (*dst == NULL)
    797 			return ENOENT;
    798 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    799 			error = ENOENT;
    800 			free(*dst, M_UDFVOLD);
    801 			*dst = NULL;
    802 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    803 		}
    804 	}
    805 
    806 	return error;
    807 }
    808 
    809 
    810 int
    811 udf_read_anchors(struct udf_mount *ump)
    812 {
    813 	struct udf_args *args = &ump->mount_args;
    814 	struct mmc_trackinfo first_track;
    815 	struct mmc_trackinfo second_track;
    816 	struct mmc_trackinfo last_track;
    817 	struct anchor_vdp **anchorsp;
    818 	uint32_t track_start;
    819 	uint32_t track_end;
    820 	uint32_t positions[4];
    821 	int first_tracknr, last_tracknr;
    822 	int error, anch, ok, first_anchor;
    823 
    824 	/* search the first and last track of the specified session */
    825 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    826 	if (!error) {
    827 		first_track.tracknr = first_tracknr;
    828 		error = udf_update_trackinfo(ump, &first_track);
    829 	}
    830 	if (!error) {
    831 		last_track.tracknr = last_tracknr;
    832 		error = udf_update_trackinfo(ump, &last_track);
    833 	}
    834 	if ((!error) && (first_tracknr != last_tracknr)) {
    835 		second_track.tracknr = first_tracknr+1;
    836 		error = udf_update_trackinfo(ump, &second_track);
    837 	}
    838 	if (error) {
    839 		printf("UDF mount: reading disc geometry failed\n");
    840 		return 0;
    841 	}
    842 
    843 	track_start = first_track.track_start;
    844 
    845 	/* `end' is not as straitforward as start. */
    846 	track_end =   last_track.track_start
    847 		    + last_track.track_size - last_track.free_blocks - 1;
    848 
    849 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    850 		/* end of track is not straitforward here */
    851 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    852 			track_end = last_track.last_recorded;
    853 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    854 			track_end = last_track.next_writable
    855 				    - ump->discinfo.link_block_penalty;
    856 	}
    857 
    858 	/* its no use reading a blank track */
    859 	first_anchor = 0;
    860 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    861 		first_anchor = 1;
    862 
    863 	/* get our packet size */
    864 	ump->packet_size = first_track.packet_size;
    865 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    866 		ump->packet_size = second_track.packet_size;
    867 
    868 	if (ump->packet_size <= 1) {
    869 		/* take max, but not bigger than 64 */
    870 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    871 		ump->packet_size = MIN(ump->packet_size, 64);
    872 	}
    873 	KASSERT(ump->packet_size >= 1);
    874 
    875 	/* read anchors start+256, start+512, end-256, end */
    876 	positions[0] = track_start+256;
    877 	positions[1] =   track_end-256;
    878 	positions[2] =   track_end;
    879 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    880 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    881 
    882 	ok = 0;
    883 	anchorsp = ump->anchors;
    884 	for (anch = first_anchor; anch < 4; anch++) {
    885 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    886 		    positions[anch]));
    887 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    888 		if (!error) {
    889 			anchorsp++;
    890 			ok++;
    891 		}
    892 	}
    893 
    894 	/* VATs are only recorded on sequential media, but initialise */
    895 	ump->first_possible_vat_location = track_start + 2;
    896 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    897 
    898 	return ok;
    899 }
    900 
    901 /* --------------------------------------------------------------------- */
    902 
    903 /* we dont try to be smart; we just record the parts */
    904 #define UDF_UPDATE_DSCR(name, dscr) \
    905 	if (name) \
    906 		free(name, M_UDFVOLD); \
    907 	name = dscr;
    908 
    909 static int
    910 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    911 {
    912 	struct part_desc *part;
    913 	uint16_t phys_part, raw_phys_part;
    914 
    915 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    916 	    udf_rw16(dscr->tag.id)));
    917 	switch (udf_rw16(dscr->tag.id)) {
    918 	case TAGID_PRI_VOL :		/* primary partition		*/
    919 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    920 		break;
    921 	case TAGID_LOGVOL :		/* logical volume		*/
    922 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    923 		break;
    924 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    925 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    926 		break;
    927 	case TAGID_IMP_VOL :		/* implementation		*/
    928 		/* XXX do we care about multiple impl. descr ? */
    929 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    930 		break;
    931 	case TAGID_PARTITION :		/* physical partition		*/
    932 		/* not much use if its not allocated */
    933 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    934 			free(dscr, M_UDFVOLD);
    935 			break;
    936 		}
    937 
    938 		/*
    939 		 * BUGALERT: some rogue implementations use random physical
    940 		 * partion numbers to break other implementations so lookup
    941 		 * the number.
    942 		 */
    943 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    944 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    945 			part = ump->partitions[phys_part];
    946 			if (part == NULL)
    947 				break;
    948 			if (udf_rw16(part->part_num) == raw_phys_part)
    949 				break;
    950 		}
    951 		if (phys_part == UDF_PARTITIONS) {
    952 			free(dscr, M_UDFVOLD);
    953 			return EINVAL;
    954 		}
    955 
    956 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
    957 		break;
    958 	case TAGID_VOL :		/* volume space extender; rare	*/
    959 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    960 		free(dscr, M_UDFVOLD);
    961 		break;
    962 	default :
    963 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    964 		    udf_rw16(dscr->tag.id)));
    965 		free(dscr, M_UDFVOLD);
    966 	}
    967 
    968 	return 0;
    969 }
    970 #undef UDF_UPDATE_DSCR
    971 
    972 /* --------------------------------------------------------------------- */
    973 
    974 static int
    975 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    976 {
    977 	union dscrptr *dscr;
    978 	uint32_t sector_size, dscr_size;
    979 	int error;
    980 
    981 	sector_size = ump->discinfo.sector_size;
    982 
    983 	/* loc is sectornr, len is in bytes */
    984 	error = EIO;
    985 	while (len) {
    986 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
    987 		if (error)
    988 			return error;
    989 
    990 		/* blank block is a terminator */
    991 		if (dscr == NULL)
    992 			return 0;
    993 
    994 		/* TERM descriptor is a terminator */
    995 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
    996 			free(dscr, M_UDFVOLD);
    997 			return 0;
    998 		}
    999 
   1000 		/* process all others */
   1001 		dscr_size = udf_tagsize(dscr, sector_size);
   1002 		error = udf_process_vds_descriptor(ump, dscr);
   1003 		if (error) {
   1004 			free(dscr, M_UDFVOLD);
   1005 			break;
   1006 		}
   1007 		assert((dscr_size % sector_size) == 0);
   1008 
   1009 		len -= dscr_size;
   1010 		loc += dscr_size / sector_size;
   1011 	}
   1012 
   1013 	return error;
   1014 }
   1015 
   1016 
   1017 int
   1018 udf_read_vds_space(struct udf_mount *ump)
   1019 {
   1020 	/* struct udf_args *args = &ump->mount_args; */
   1021 	struct anchor_vdp *anchor, *anchor2;
   1022 	size_t size;
   1023 	uint32_t main_loc, main_len;
   1024 	uint32_t reserve_loc, reserve_len;
   1025 	int error;
   1026 
   1027 	/*
   1028 	 * read in VDS space provided by the anchors; if one descriptor read
   1029 	 * fails, try the mirror sector.
   1030 	 *
   1031 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1032 	 * avoids the `compatibility features' of DirectCD that may confuse
   1033 	 * stuff completely.
   1034 	 */
   1035 
   1036 	anchor  = ump->anchors[0];
   1037 	anchor2 = ump->anchors[1];
   1038 	assert(anchor);
   1039 
   1040 	if (anchor2) {
   1041 		size = sizeof(struct extent_ad);
   1042 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1043 			anchor = anchor2;
   1044 		/* reserve is specified to be a literal copy of main */
   1045 	}
   1046 
   1047 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1048 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1049 
   1050 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1051 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1052 
   1053 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1054 	if (error) {
   1055 		printf("UDF mount: reading in reserve VDS extent\n");
   1056 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1057 	}
   1058 
   1059 	return error;
   1060 }
   1061 
   1062 /* --------------------------------------------------------------------- */
   1063 
   1064 /*
   1065  * Read in the logical volume integrity sequence pointed to by our logical
   1066  * volume descriptor. Its a sequence that can be extended using fields in the
   1067  * integrity descriptor itself. On sequential media only one is found, on
   1068  * rewritable media a sequence of descriptors can be found as a form of
   1069  * history keeping and on non sequential write-once media the chain is vital
   1070  * to allow more and more descriptors to be written. The last descriptor
   1071  * written in an extent needs to claim space for a new extent.
   1072  */
   1073 
   1074 static int
   1075 udf_retrieve_lvint(struct udf_mount *ump)
   1076 {
   1077 	union dscrptr *dscr;
   1078 	struct logvol_int_desc *lvint;
   1079 	struct udf_lvintq *trace;
   1080 	uint32_t lb_size, lbnum, len;
   1081 	int dscr_type, error, trace_len;
   1082 
   1083 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1084 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1085 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1086 
   1087 	/* clean trace */
   1088 	memset(ump->lvint_trace, 0,
   1089 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1090 
   1091 	trace_len    = 0;
   1092 	trace        = ump->lvint_trace;
   1093 	trace->start = lbnum;
   1094 	trace->end   = lbnum + len/lb_size;
   1095 	trace->pos   = 0;
   1096 	trace->wpos  = 0;
   1097 
   1098 	lvint = NULL;
   1099 	dscr  = NULL;
   1100 	error = 0;
   1101 	while (len) {
   1102 		trace->pos  = lbnum - trace->start;
   1103 		trace->wpos = trace->pos + 1;
   1104 
   1105 		/* read in our integrity descriptor */
   1106 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1107 		if (!error) {
   1108 			if (dscr == NULL) {
   1109 				trace->wpos = trace->pos;
   1110 				break;		/* empty terminates */
   1111 			}
   1112 			dscr_type = udf_rw16(dscr->tag.id);
   1113 			if (dscr_type == TAGID_TERM) {
   1114 				trace->wpos = trace->pos;
   1115 				break;		/* clean terminator */
   1116 			}
   1117 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1118 				/* fatal... corrupt disc */
   1119 				error = ENOENT;
   1120 				break;
   1121 			}
   1122 			if (lvint)
   1123 				free(lvint, M_UDFVOLD);
   1124 			lvint = &dscr->lvid;
   1125 			dscr = NULL;
   1126 		} /* else hope for the best... maybe the next is ok */
   1127 
   1128 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1129 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1130 
   1131 		/* proceed sequential */
   1132 		lbnum += 1;
   1133 		len    -= lb_size;
   1134 
   1135 		/* are we linking to a new piece? */
   1136 		if (dscr && lvint->next_extent.len) {
   1137 			len    = udf_rw32(lvint->next_extent.len);
   1138 			lbnum = udf_rw32(lvint->next_extent.loc);
   1139 
   1140 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1141 				/* IEK! segment link full... */
   1142 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1143 				error = EINVAL;
   1144 			} else {
   1145 				trace++;
   1146 				trace_len++;
   1147 
   1148 				trace->start = lbnum;
   1149 				trace->end   = lbnum + len/lb_size;
   1150 				trace->pos   = 0;
   1151 				trace->wpos  = 0;
   1152 			}
   1153 		}
   1154 	}
   1155 
   1156 	/* clean up the mess, esp. when there is an error */
   1157 	if (dscr)
   1158 		free(dscr, M_UDFVOLD);
   1159 
   1160 	if (error && lvint) {
   1161 		free(lvint, M_UDFVOLD);
   1162 		lvint = NULL;
   1163 	}
   1164 
   1165 	if (!lvint)
   1166 		error = ENOENT;
   1167 
   1168 	ump->logvol_integrity = lvint;
   1169 	return error;
   1170 }
   1171 
   1172 
   1173 static int
   1174 udf_loose_lvint_history(struct udf_mount *ump)
   1175 {
   1176 	union dscrptr **bufs, *dscr, *last_dscr;
   1177 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1178 	struct logvol_int_desc *lvint;
   1179 	uint32_t in_ext, in_pos, in_len;
   1180 	uint32_t out_ext, out_wpos, out_len;
   1181 	uint32_t lb_size, packet_size, lb_num;
   1182 	uint32_t len, start;
   1183 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1184 	int losing;
   1185 	int error;
   1186 
   1187 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1188 
   1189 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1190 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1191 
   1192 	/* search smallest extent */
   1193 	trace = &ump->lvint_trace[0];
   1194 	minext = trace->end - trace->start;
   1195 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1196 		trace = &ump->lvint_trace[ext];
   1197 		extlen = trace->end - trace->start;
   1198 		if (extlen == 0)
   1199 			break;
   1200 		minext = MIN(minext, extlen);
   1201 	}
   1202 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1203 	/* no sense wiping all */
   1204 	if (losing == minext)
   1205 		losing--;
   1206 
   1207 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1208 
   1209 	/* get buffer for pieces */
   1210 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1211 
   1212 	in_ext    = 0;
   1213 	in_pos    = losing;
   1214 	in_trace  = &ump->lvint_trace[in_ext];
   1215 	in_len    = in_trace->end - in_trace->start;
   1216 	out_ext   = 0;
   1217 	out_wpos  = 0;
   1218 	out_trace = &ump->lvint_trace[out_ext];
   1219 	out_len   = out_trace->end - out_trace->start;
   1220 
   1221 	last_dscr = NULL;
   1222 	for(;;) {
   1223 		out_trace->pos  = out_wpos;
   1224 		out_trace->wpos = out_trace->pos;
   1225 		if (in_pos >= in_len) {
   1226 			in_ext++;
   1227 			in_pos = 0;
   1228 			in_trace = &ump->lvint_trace[in_ext];
   1229 			in_len   = in_trace->end - in_trace->start;
   1230 		}
   1231 		if (out_wpos >= out_len) {
   1232 			out_ext++;
   1233 			out_wpos = 0;
   1234 			out_trace = &ump->lvint_trace[out_ext];
   1235 			out_len   = out_trace->end - out_trace->start;
   1236 		}
   1237 		/* copy overlap contents */
   1238 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1239 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1240 		if (cpy_len == 0)
   1241 			break;
   1242 
   1243 		/* copy */
   1244 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1245 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1246 			/* read in our integrity descriptor */
   1247 			lb_num = in_trace->start + in_pos + cnt;
   1248 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1249 				&dscr);
   1250 			if (error) {
   1251 				/* copy last one */
   1252 				dscr = last_dscr;
   1253 			}
   1254 			bufs[cnt] = dscr;
   1255 			if (!error) {
   1256 				if (dscr == NULL) {
   1257 					out_trace->pos  = out_wpos + cnt;
   1258 					out_trace->wpos = out_trace->pos;
   1259 					break;		/* empty terminates */
   1260 				}
   1261 				dscr_type = udf_rw16(dscr->tag.id);
   1262 				if (dscr_type == TAGID_TERM) {
   1263 					out_trace->pos  = out_wpos + cnt;
   1264 					out_trace->wpos = out_trace->pos;
   1265 					break;		/* clean terminator */
   1266 				}
   1267 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1268 					panic(  "UDF integrity sequence "
   1269 						"corrupted while mounted!\n");
   1270 				}
   1271 				last_dscr = dscr;
   1272 			}
   1273 		}
   1274 
   1275 		/* patch up if first entry was on error */
   1276 		if (bufs[0] == NULL) {
   1277 			for (cnt = 0; cnt < cpy_len; cnt++)
   1278 				if (bufs[cnt] != NULL)
   1279 					break;
   1280 			last_dscr = bufs[cnt];
   1281 			for (; cnt > 0; cnt--) {
   1282 				bufs[cnt] = last_dscr;
   1283 			}
   1284 		}
   1285 
   1286 		/* glue + write out */
   1287 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1288 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1289 			lb_num = out_trace->start + out_wpos + cnt;
   1290 			lvint  = &bufs[cnt]->lvid;
   1291 
   1292 			/* set continuation */
   1293 			len = 0;
   1294 			start = 0;
   1295 			if (out_wpos + cnt == out_len) {
   1296 				/* get continuation */
   1297 				trace = &ump->lvint_trace[out_ext+1];
   1298 				len   = trace->end - trace->start;
   1299 				start = trace->start;
   1300 			}
   1301 			lvint->next_extent.len = udf_rw32(len);
   1302 			lvint->next_extent.loc = udf_rw32(start);
   1303 
   1304 			lb_num = trace->start + trace->wpos;
   1305 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1306 				bufs[cnt], lb_num, lb_num);
   1307 			DPRINTFIF(VOLUMES, error,
   1308 				("error writing lvint lb_num\n"));
   1309 		}
   1310 
   1311 		/* free non repeating descriptors */
   1312 		last_dscr = NULL;
   1313 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1314 			if (bufs[cnt] != last_dscr)
   1315 				free(bufs[cnt], M_UDFVOLD);
   1316 			last_dscr = bufs[cnt];
   1317 		}
   1318 
   1319 		/* advance */
   1320 		in_pos   += cpy_len;
   1321 		out_wpos += cpy_len;
   1322 	}
   1323 
   1324 	free(bufs, M_TEMP);
   1325 
   1326 	return 0;
   1327 }
   1328 
   1329 
   1330 static int
   1331 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1332 {
   1333 	struct udf_lvintq *trace;
   1334 	struct timeval  now_v;
   1335 	struct timespec now_s;
   1336 	uint32_t sector;
   1337 	int logvol_integrity;
   1338 	int space, error;
   1339 
   1340 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1341 
   1342 again:
   1343 	/* get free space in last chunk */
   1344 	trace = ump->lvint_trace;
   1345 	while (trace->wpos > (trace->end - trace->start)) {
   1346 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1347 				  "wpos = %d\n", trace->start, trace->end,
   1348 				  trace->pos, trace->wpos));
   1349 		trace++;
   1350 	}
   1351 
   1352 	/* check if there is space to append */
   1353 	space = (trace->end - trace->start) - trace->wpos;
   1354 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1355 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1356 			  trace->wpos, space));
   1357 
   1358 	/* get state */
   1359 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1360 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1361 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1362 			/* don't allow this logvol to be opened */
   1363 			/* TODO extent LVINT space if possible */
   1364 			return EROFS;
   1365 		}
   1366 	}
   1367 
   1368 	if (space < 1) {
   1369 		if (lvflag & UDF_APPENDONLY_LVINT)
   1370 			return EROFS;
   1371 		/* loose history by re-writing extents */
   1372 		error = udf_loose_lvint_history(ump);
   1373 		if (error)
   1374 			return error;
   1375 		goto again;
   1376 	}
   1377 
   1378 	/* update our integrity descriptor to identify us and timestamp it */
   1379 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1380 	microtime(&now_v);
   1381 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1382 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1383 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1384 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1385 
   1386 	/* writeout integrity descriptor */
   1387 	sector = trace->start + trace->wpos;
   1388 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1389 			(union dscrptr *) ump->logvol_integrity,
   1390 			sector, sector);
   1391 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1392 	if (error)
   1393 		return error;
   1394 
   1395 	/* advance write position */
   1396 	trace->wpos++; space--;
   1397 	if (space >= 1) {
   1398 		/* append terminator */
   1399 		sector = trace->start + trace->wpos;
   1400 		error = udf_write_terminator(ump, sector);
   1401 
   1402 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1403 	}
   1404 
   1405 	space = (trace->end - trace->start) - trace->wpos;
   1406 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1407 		"space = %d\n", trace->start, trace->end, trace->pos,
   1408 		trace->wpos, space));
   1409 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1410 		"successfull\n"));
   1411 
   1412 	return error;
   1413 }
   1414 
   1415 /* --------------------------------------------------------------------- */
   1416 
   1417 static int
   1418 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1419 {
   1420 	union dscrptr        *dscr;
   1421 	/* struct udf_args *args = &ump->mount_args; */
   1422 	struct part_desc     *partd;
   1423 	struct part_hdr_desc *parthdr;
   1424 	struct udf_bitmap    *bitmap;
   1425 	uint32_t phys_part;
   1426 	uint32_t lb_num, len;
   1427 	int error, dscr_type;
   1428 
   1429 	/* unallocated space map */
   1430 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1431 		partd = ump->partitions[phys_part];
   1432 		if (partd == NULL)
   1433 			continue;
   1434 		parthdr = &partd->_impl_use.part_hdr;
   1435 
   1436 		lb_num  = udf_rw32(partd->start_loc);
   1437 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1438 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1439 		if (len == 0)
   1440 			continue;
   1441 
   1442 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1443 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1444 		if (!error && dscr) {
   1445 			/* analyse */
   1446 			dscr_type = udf_rw16(dscr->tag.id);
   1447 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1448 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1449 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1450 
   1451 				/* fill in ump->part_unalloc_bits */
   1452 				bitmap = &ump->part_unalloc_bits[phys_part];
   1453 				bitmap->blob  = (uint8_t *) dscr;
   1454 				bitmap->bits  = dscr->sbd.data;
   1455 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1456 				bitmap->pages = NULL;	/* TODO */
   1457 				bitmap->data_pos     = 0;
   1458 				bitmap->metadata_pos = 0;
   1459 			} else {
   1460 				free(dscr, M_UDFVOLD);
   1461 
   1462 				printf( "UDF mount: error reading unallocated "
   1463 					"space bitmap\n");
   1464 				return EROFS;
   1465 			}
   1466 		} else {
   1467 			/* blank not allowed */
   1468 			printf("UDF mount: blank unallocated space bitmap\n");
   1469 			return EROFS;
   1470 		}
   1471 	}
   1472 
   1473 	/* unallocated space table (not supported) */
   1474 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1475 		partd = ump->partitions[phys_part];
   1476 		if (partd == NULL)
   1477 			continue;
   1478 		parthdr = &partd->_impl_use.part_hdr;
   1479 
   1480 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1481 		if (len) {
   1482 			printf("UDF mount: space tables not supported\n");
   1483 			return EROFS;
   1484 		}
   1485 	}
   1486 
   1487 	/* freed space map */
   1488 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1489 		partd = ump->partitions[phys_part];
   1490 		if (partd == NULL)
   1491 			continue;
   1492 		parthdr = &partd->_impl_use.part_hdr;
   1493 
   1494 		/* freed space map */
   1495 		lb_num  = udf_rw32(partd->start_loc);
   1496 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1497 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1498 		if (len == 0)
   1499 			continue;
   1500 
   1501 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1502 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1503 		if (!error && dscr) {
   1504 			/* analyse */
   1505 			dscr_type = udf_rw16(dscr->tag.id);
   1506 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1507 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1508 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1509 
   1510 				/* fill in ump->part_freed_bits */
   1511 				bitmap = &ump->part_unalloc_bits[phys_part];
   1512 				bitmap->blob  = (uint8_t *) dscr;
   1513 				bitmap->bits  = dscr->sbd.data;
   1514 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1515 				bitmap->pages = NULL;	/* TODO */
   1516 				bitmap->data_pos     = 0;
   1517 				bitmap->metadata_pos = 0;
   1518 			} else {
   1519 				free(dscr, M_UDFVOLD);
   1520 
   1521 				printf( "UDF mount: error reading freed  "
   1522 					"space bitmap\n");
   1523 				return EROFS;
   1524 			}
   1525 		} else {
   1526 			/* blank not allowed */
   1527 			printf("UDF mount: blank freed space bitmap\n");
   1528 			return EROFS;
   1529 		}
   1530 	}
   1531 
   1532 	/* freed space table (not supported) */
   1533 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1534 		partd = ump->partitions[phys_part];
   1535 		if (partd == NULL)
   1536 			continue;
   1537 		parthdr = &partd->_impl_use.part_hdr;
   1538 
   1539 		len     = udf_rw32(parthdr->freed_space_table.len);
   1540 		if (len) {
   1541 			printf("UDF mount: space tables not supported\n");
   1542 			return EROFS;
   1543 		}
   1544 	}
   1545 
   1546 	return 0;
   1547 }
   1548 
   1549 
   1550 /* TODO implement async writeout */
   1551 int
   1552 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1553 {
   1554 	union dscrptr        *dscr;
   1555 	/* struct udf_args *args = &ump->mount_args; */
   1556 	struct part_desc     *partd;
   1557 	struct part_hdr_desc *parthdr;
   1558 	uint32_t phys_part;
   1559 	uint32_t lb_num, len, ptov;
   1560 	int error_all, error;
   1561 
   1562 	error_all = 0;
   1563 	/* unallocated space map */
   1564 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1565 		partd = ump->partitions[phys_part];
   1566 		if (partd == NULL)
   1567 			continue;
   1568 		parthdr = &partd->_impl_use.part_hdr;
   1569 
   1570 		ptov   = udf_rw32(partd->start_loc);
   1571 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1572 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1573 		if (len == 0)
   1574 			continue;
   1575 
   1576 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1577 			lb_num + ptov));
   1578 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1579 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1580 				(union dscrptr *) dscr,
   1581 				ptov + lb_num, lb_num);
   1582 		if (error) {
   1583 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1584 			error_all = error;
   1585 		}
   1586 	}
   1587 
   1588 	/* freed space map */
   1589 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1590 		partd = ump->partitions[phys_part];
   1591 		if (partd == NULL)
   1592 			continue;
   1593 		parthdr = &partd->_impl_use.part_hdr;
   1594 
   1595 		/* freed space map */
   1596 		ptov   = udf_rw32(partd->start_loc);
   1597 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1598 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1599 		if (len == 0)
   1600 			continue;
   1601 
   1602 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1603 			lb_num + ptov));
   1604 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1605 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1606 				(union dscrptr *) dscr,
   1607 				ptov + lb_num, lb_num);
   1608 		if (error) {
   1609 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1610 			error_all = error;
   1611 		}
   1612 	}
   1613 
   1614 	return error_all;
   1615 }
   1616 
   1617 /*
   1618  * Checks if ump's vds information is correct and complete
   1619  */
   1620 
   1621 int
   1622 udf_process_vds(struct udf_mount *ump) {
   1623 	union udf_pmap *mapping;
   1624 	/* struct udf_args *args = &ump->mount_args; */
   1625 	struct logvol_int_desc *lvint;
   1626 	struct udf_logvol_info *lvinfo;
   1627 	struct part_desc *part;
   1628 	uint32_t n_pm, mt_l;
   1629 	uint8_t *pmap_pos;
   1630 	char *domain_name, *map_name;
   1631 	const char *check_name;
   1632 	char bits[128];
   1633 	int pmap_stype, pmap_size;
   1634 	int pmap_type, log_part, phys_part, raw_phys_part;
   1635 	int n_phys, n_virt, n_spar, n_meta;
   1636 	int len, error;
   1637 
   1638 	if (ump == NULL)
   1639 		return ENOENT;
   1640 
   1641 	/* we need at least an anchor (trivial, but for safety) */
   1642 	if (ump->anchors[0] == NULL)
   1643 		return EINVAL;
   1644 
   1645 	/* we need at least one primary and one logical volume descriptor */
   1646 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1647 		return EINVAL;
   1648 
   1649 	/* we need at least one partition descriptor */
   1650 	if (ump->partitions[0] == NULL)
   1651 		return EINVAL;
   1652 
   1653 	/* check logical volume sector size verses device sector size */
   1654 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1655 		printf("UDF mount: format violation, lb_size != sector size\n");
   1656 		return EINVAL;
   1657 	}
   1658 
   1659 	/* check domain name */
   1660 	domain_name = ump->logical_vol->domain_id.id;
   1661 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1662 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1663 		return EINVAL;
   1664 	}
   1665 
   1666 	/* retrieve logical volume integrity sequence */
   1667 	error = udf_retrieve_lvint(ump);
   1668 
   1669 	/*
   1670 	 * We need at least one logvol integrity descriptor recorded.  Note
   1671 	 * that its OK to have an open logical volume integrity here. The VAT
   1672 	 * will close/update the integrity.
   1673 	 */
   1674 	if (ump->logvol_integrity == NULL)
   1675 		return EINVAL;
   1676 
   1677 	/* process derived structures */
   1678 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1679 	lvint  = ump->logvol_integrity;
   1680 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1681 	ump->logvol_info = lvinfo;
   1682 
   1683 	/* TODO check udf versions? */
   1684 
   1685 	/*
   1686 	 * check logvol mappings: effective virt->log partmap translation
   1687 	 * check and recording of the mapping results. Saves expensive
   1688 	 * strncmp() in tight places.
   1689 	 */
   1690 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1691 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1692 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1693 	pmap_pos =  ump->logical_vol->maps;
   1694 
   1695 	if (n_pm > UDF_PMAPS) {
   1696 		printf("UDF mount: too many mappings\n");
   1697 		return EINVAL;
   1698 	}
   1699 
   1700 	ump->data_part = ump->metadata_part = 0;
   1701 	n_phys = n_virt = n_spar = n_meta = 0;
   1702 	for (log_part = 0; log_part < n_pm; log_part++) {
   1703 		mapping = (union udf_pmap *) pmap_pos;
   1704 		pmap_stype = pmap_pos[0];
   1705 		pmap_size  = pmap_pos[1];
   1706 		switch (pmap_stype) {
   1707 		case 1:	/* physical mapping */
   1708 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1709 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1710 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1711 			n_phys++;
   1712 			ump->data_part     = log_part;
   1713 			ump->metadata_part = log_part;
   1714 			break;
   1715 		case 2: /* virtual/sparable/meta mapping */
   1716 			map_name  = mapping->pm2.part_id.id;
   1717 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1718 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1719 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1720 			len = UDF_REGID_ID_SIZE;
   1721 
   1722 			check_name = "*UDF Virtual Partition";
   1723 			if (strncmp(map_name, check_name, len) == 0) {
   1724 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1725 				n_virt++;
   1726 				ump->metadata_part = log_part;
   1727 				break;
   1728 			}
   1729 			check_name = "*UDF Sparable Partition";
   1730 			if (strncmp(map_name, check_name, len) == 0) {
   1731 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1732 				n_spar++;
   1733 				ump->data_part     = log_part;
   1734 				ump->metadata_part = log_part;
   1735 				break;
   1736 			}
   1737 			check_name = "*UDF Metadata Partition";
   1738 			if (strncmp(map_name, check_name, len) == 0) {
   1739 				pmap_type = UDF_VTOP_TYPE_META;
   1740 				n_meta++;
   1741 				ump->metadata_part = log_part;
   1742 				break;
   1743 			}
   1744 			break;
   1745 		default:
   1746 			return EINVAL;
   1747 		}
   1748 
   1749 		/*
   1750 		 * BUGALERT: some rogue implementations use random physical
   1751 		 * partion numbers to break other implementations so lookup
   1752 		 * the number.
   1753 		 */
   1754 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1755 			part = ump->partitions[phys_part];
   1756 			if (part == NULL)
   1757 				continue;
   1758 			if (udf_rw16(part->part_num) == raw_phys_part)
   1759 				break;
   1760 		}
   1761 
   1762 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1763 		    raw_phys_part, phys_part, pmap_type));
   1764 
   1765 		if (phys_part == UDF_PARTITIONS)
   1766 			return EINVAL;
   1767 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1768 			return EINVAL;
   1769 
   1770 		ump->vtop   [log_part] = phys_part;
   1771 		ump->vtop_tp[log_part] = pmap_type;
   1772 
   1773 		pmap_pos += pmap_size;
   1774 	}
   1775 	/* not winning the beauty contest */
   1776 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1777 
   1778 	/* test some basic UDF assertions/requirements */
   1779 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1780 		return EINVAL;
   1781 
   1782 	if (n_virt) {
   1783 		if ((n_phys == 0) || n_spar || n_meta)
   1784 			return EINVAL;
   1785 	}
   1786 	if (n_spar + n_phys == 0)
   1787 		return EINVAL;
   1788 
   1789 	/* determine allocation scheme's based on disc format */
   1790 	/* VAT's can only be on a sequential media */
   1791 	ump->data_alloc = UDF_ALLOC_SPACEMAP;
   1792 	if (n_virt)
   1793 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1794 
   1795 	ump->meta_alloc = UDF_ALLOC_SPACEMAP;
   1796 	if (n_virt)
   1797 		ump->meta_alloc = UDF_ALLOC_VAT;
   1798 	if (n_meta)
   1799 		ump->meta_alloc = UDF_ALLOC_METABITMAP;
   1800 
   1801 	/* special cases for pseudo-overwrite */
   1802 	if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1803 		ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
   1804 		if (n_meta) {
   1805 			ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
   1806 		} else {
   1807 			ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
   1808 		}
   1809 	}
   1810 
   1811 	/* determine default allocation descriptors to use */
   1812 	ump->data_allocdscr = UDF_ICB_SHORT_ALLOC;
   1813 	ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
   1814 	if (n_pm > 1) {
   1815 		ump->data_allocdscr = UDF_ICB_LONG_ALLOC;
   1816 		ump->meta_allocdscr = UDF_ICB_LONG_ALLOC;
   1817 		/* metadata partitions are forced to have short */
   1818 		if (n_meta)
   1819 			ump->meta_allocdscr = UDF_ICB_SHORT_ALLOC;
   1820 	}
   1821 
   1822 	/* determine logical volume open/closure actions */
   1823 	if (n_virt) {
   1824 		ump->lvopen  = 0;
   1825 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
   1826 			ump->lvopen |= UDF_OPEN_SESSION ;
   1827 		ump->lvclose = UDF_WRITE_VAT;
   1828 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   1829 			ump->lvclose |= UDF_CLOSE_SESSION;
   1830 	} else {
   1831 		/* `normal' rewritable or non sequential media */
   1832 		ump->lvopen  = UDF_WRITE_LVINT;
   1833 		ump->lvclose = UDF_WRITE_LVINT;
   1834 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   1835 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   1836 	}
   1837 
   1838 	/*
   1839 	 * Determine sheduler error behaviour. For virtual partions, update
   1840 	 * the trackinfo; for sparable partitions replace a whole block on the
   1841 	 * sparable table. Allways requeue.
   1842 	 */
   1843 	ump->lvreadwrite = 0;
   1844 	if (n_virt)
   1845 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   1846 	if (n_spar)
   1847 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   1848 
   1849 	/*
   1850 	 * Select our sheduler
   1851 	 */
   1852 	ump->strategy = &udf_strat_rmw;
   1853 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   1854 		ump->strategy = &udf_strat_sequential;
   1855 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   1856 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   1857 			ump->strategy = &udf_strat_direct;
   1858 	if (n_spar)
   1859 		ump->strategy = &udf_strat_rmw;
   1860 
   1861 	/* print results */
   1862 	DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
   1863 	    ump->data_alloc, ump->meta_alloc));
   1864 	DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n",
   1865 	    ump->data_part, ump->metadata_part));
   1866 
   1867 	bitmask_snprintf(ump->lvopen,  UDFLOGVOL_BITS, bits, sizeof(bits));
   1868 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   1869 	bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
   1870 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   1871 	bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
   1872 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   1873 
   1874 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   1875 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   1876 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   1877 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   1878 
   1879 	/* signal its OK for now */
   1880 	return 0;
   1881 }
   1882 
   1883 /* --------------------------------------------------------------------- */
   1884 
   1885 /*
   1886  * Update logical volume name in all structures that keep a record of it. We
   1887  * use memmove since each of them might be specified as a source.
   1888  *
   1889  * Note that it doesn't update the VAT structure!
   1890  */
   1891 
   1892 static void
   1893 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   1894 {
   1895 	struct logvol_desc     *lvd = NULL;
   1896 	struct fileset_desc    *fsd = NULL;
   1897 	struct udf_lv_info     *lvi = NULL;
   1898 
   1899 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   1900 	lvd = ump->logical_vol;
   1901 	fsd = ump->fileset_desc;
   1902 	if (ump->implementation)
   1903 		lvi = &ump->implementation->_impl_use.lv_info;
   1904 
   1905 	/* logvol's id might be specified as origional so use memmove here */
   1906 	memmove(lvd->logvol_id, logvol_id, 128);
   1907 	if (fsd)
   1908 		memmove(fsd->logvol_id, logvol_id, 128);
   1909 	if (lvi)
   1910 		memmove(lvi->logvol_id, logvol_id, 128);
   1911 }
   1912 
   1913 /* --------------------------------------------------------------------- */
   1914 
   1915 void
   1916 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   1917 	uint32_t sector)
   1918 {
   1919 	assert(ump->logical_vol);
   1920 
   1921 	tag->id 		= udf_rw16(tagid);
   1922 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   1923 	tag->cksum		= 0;
   1924 	tag->reserved		= 0;
   1925 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   1926 	tag->tag_loc            = udf_rw32(sector);
   1927 }
   1928 
   1929 
   1930 uint64_t
   1931 udf_advance_uniqueid(struct udf_mount *ump)
   1932 {
   1933 	uint64_t unique_id;
   1934 
   1935 	mutex_enter(&ump->logvol_mutex);
   1936 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   1937 	if (unique_id < 0x10)
   1938 		unique_id = 0x10;
   1939 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   1940 	mutex_exit(&ump->logvol_mutex);
   1941 
   1942 	return unique_id;
   1943 }
   1944 
   1945 
   1946 static void
   1947 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   1948 {
   1949 	struct udf_mount *ump = udf_node->ump;
   1950 	uint32_t num_dirs, num_files;
   1951 	int udf_file_type;
   1952 
   1953 	/* get file type */
   1954 	if (udf_node->fe) {
   1955 		udf_file_type = udf_node->fe->icbtag.file_type;
   1956 	} else {
   1957 		udf_file_type = udf_node->efe->icbtag.file_type;
   1958 	}
   1959 
   1960 	/* adjust file count */
   1961 	mutex_enter(&ump->allocate_mutex);
   1962 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   1963 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   1964 		ump->logvol_info->num_directories =
   1965 			udf_rw32((num_dirs + sign));
   1966 	} else {
   1967 		num_files = udf_rw32(ump->logvol_info->num_files);
   1968 		ump->logvol_info->num_files =
   1969 			udf_rw32((num_files + sign));
   1970 	}
   1971 	mutex_exit(&ump->allocate_mutex);
   1972 }
   1973 
   1974 
   1975 void
   1976 udf_osta_charset(struct charspec *charspec)
   1977 {
   1978 	bzero(charspec, sizeof(struct charspec));
   1979 	charspec->type = 0;
   1980 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   1981 }
   1982 
   1983 
   1984 /* first call udf_set_regid and then the suffix */
   1985 void
   1986 udf_set_regid(struct regid *regid, char const *name)
   1987 {
   1988 	bzero(regid, sizeof(struct regid));
   1989 	regid->flags    = 0;		/* not dirty and not protected */
   1990 	strcpy((char *) regid->id, name);
   1991 }
   1992 
   1993 
   1994 void
   1995 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   1996 {
   1997 	uint16_t *ver;
   1998 
   1999 	ver  = (uint16_t *) regid->id_suffix;
   2000 	*ver = ump->logvol_info->min_udf_readver;
   2001 }
   2002 
   2003 
   2004 void
   2005 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2006 {
   2007 	uint16_t *ver;
   2008 
   2009 	ver  = (uint16_t *) regid->id_suffix;
   2010 	*ver = ump->logvol_info->min_udf_readver;
   2011 
   2012 	regid->id_suffix[2] = 4;	/* unix */
   2013 	regid->id_suffix[3] = 8;	/* NetBSD */
   2014 }
   2015 
   2016 
   2017 void
   2018 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2019 {
   2020 	regid->id_suffix[0] = 4;	/* unix */
   2021 	regid->id_suffix[1] = 8;	/* NetBSD */
   2022 }
   2023 
   2024 
   2025 void
   2026 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2027 {
   2028 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2029 	regid->id_suffix[1] = APP_VERSION_SUB;
   2030 }
   2031 
   2032 static int
   2033 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2034 	struct long_ad *parent, uint64_t unique_id)
   2035 {
   2036 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2037 	int fidsize = 40;
   2038 
   2039 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2040 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2041 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2042 	fid->icb = *parent;
   2043 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2044 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
   2045 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2046 
   2047 	return fidsize;
   2048 }
   2049 
   2050 /* --------------------------------------------------------------------- */
   2051 
   2052 /*
   2053  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2054  *
   2055  * (a) inside the file's (e)fe in the length of the extended attribute area
   2056  * before the allocation descriptors/filedata
   2057  *
   2058  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2059  *
   2060  * (c) in the e(fe)'s associated stream directory that can hold various
   2061  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2062  * for NT/Unix ACL's and OS/2 attributes.
   2063  *
   2064  * NOTE: Extended attributes are read randomly but allways written
   2065  * *atomicaly*. For ACL's this interface is propably different but not known
   2066  * to me yet.
   2067  *
   2068  * Order of extended attributes in a space :
   2069  *   ECMA 167 EAs
   2070  *   Non block aligned Implementation Use EAs
   2071  *   Block aligned Implementation Use EAs
   2072  *   Application Use EAs
   2073  */
   2074 
   2075 static int
   2076 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2077 {
   2078 	uint16_t   *spos;
   2079 
   2080 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2081 		/* checksum valid? */
   2082 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2083 		spos = (uint16_t *) implext->data;
   2084 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2085 			return EINVAL;
   2086 	}
   2087 	return 0;
   2088 }
   2089 
   2090 static void
   2091 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2092 {
   2093 	uint16_t   *spos;
   2094 
   2095 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2096 		/* set checksum */
   2097 		spos = (uint16_t *) implext->data;
   2098 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2099 	}
   2100 }
   2101 
   2102 
   2103 int
   2104 udf_extattr_search_intern(struct udf_node *node,
   2105 	uint32_t sattr, char const *sattrname,
   2106 	uint32_t *offsetp, uint32_t *lengthp)
   2107 {
   2108 	struct extattrhdr_desc    *eahdr;
   2109 	struct extattr_entry      *attrhdr;
   2110 	struct impl_extattr_entry *implext;
   2111 	uint32_t    offset, a_l, sector_size;
   2112 	 int32_t    l_ea;
   2113 	uint8_t    *pos;
   2114 	int         error;
   2115 
   2116 	/* get mountpoint */
   2117 	sector_size = node->ump->discinfo.sector_size;
   2118 
   2119 	/* get information from fe/efe */
   2120 	if (node->fe) {
   2121 		l_ea  = udf_rw32(node->fe->l_ea);
   2122 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2123 	} else {
   2124 		assert(node->efe);
   2125 		l_ea  = udf_rw32(node->efe->l_ea);
   2126 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2127 	}
   2128 
   2129 	/* something recorded here? */
   2130 	if (l_ea == 0)
   2131 		return ENOENT;
   2132 
   2133 	/* check extended attribute tag; what to do if it fails? */
   2134 	error = udf_check_tag(eahdr);
   2135 	if (error)
   2136 		return EINVAL;
   2137 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2138 		return EINVAL;
   2139 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2140 	if (error)
   2141 		return EINVAL;
   2142 
   2143 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2144 
   2145 	/* looking for Ecma-167 attributes? */
   2146 	offset = sizeof(struct extattrhdr_desc);
   2147 
   2148 	/* looking for either implemenation use or application use */
   2149 	if (sattr == 2048) {				/* [4/48.10.8] */
   2150 		offset = udf_rw32(eahdr->impl_attr_loc);
   2151 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2152 			return ENOENT;
   2153 	}
   2154 	if (sattr == 65536) {				/* [4/48.10.9] */
   2155 		offset = udf_rw32(eahdr->appl_attr_loc);
   2156 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2157 			return ENOENT;
   2158 	}
   2159 
   2160 	/* paranoia check offset and l_ea */
   2161 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2162 		return EINVAL;
   2163 
   2164 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2165 
   2166 	/* find our extended attribute  */
   2167 	l_ea -= offset;
   2168 	pos = (uint8_t *) eahdr + offset;
   2169 
   2170 	while (l_ea >= sizeof(struct extattr_entry)) {
   2171 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2172 		attrhdr = (struct extattr_entry *) pos;
   2173 		implext = (struct impl_extattr_entry *) pos;
   2174 
   2175 		/* get complete attribute length and check for roque values */
   2176 		a_l = udf_rw32(attrhdr->a_l);
   2177 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2178 				udf_rw32(attrhdr->type),
   2179 				attrhdr->subtype, a_l, l_ea));
   2180 		if ((a_l == 0) || (a_l > l_ea))
   2181 			return EINVAL;
   2182 
   2183 		if (attrhdr->type != sattr)
   2184 			goto next_attribute;
   2185 
   2186 		/* we might have found it! */
   2187 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2188 			*offsetp = offset;
   2189 			*lengthp = a_l;
   2190 			return 0;		/* success */
   2191 		}
   2192 
   2193 		/*
   2194 		 * Implementation use and application use extended attributes
   2195 		 * have a name to identify. They share the same structure only
   2196 		 * UDF implementation use extended attributes have a checksum
   2197 		 * we need to check
   2198 		 */
   2199 
   2200 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2201 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2202 			/* we have found our appl/implementation attribute */
   2203 			*offsetp = offset;
   2204 			*lengthp = a_l;
   2205 			return 0;		/* success */
   2206 		}
   2207 
   2208 next_attribute:
   2209 		/* next attribute */
   2210 		pos    += a_l;
   2211 		l_ea   -= a_l;
   2212 		offset += a_l;
   2213 	}
   2214 	/* not found */
   2215 	return ENOENT;
   2216 }
   2217 
   2218 
   2219 static void
   2220 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2221 	struct extattr_entry *extattr)
   2222 {
   2223 	struct file_entry      *fe;
   2224 	struct extfile_entry   *efe;
   2225 	struct extattrhdr_desc *extattrhdr;
   2226 	struct impl_extattr_entry *implext;
   2227 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2228 	uint32_t *l_eap, l_ad;
   2229 	uint16_t *spos;
   2230 	uint8_t *bpos, *data;
   2231 
   2232 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2233 		fe    = &dscr->fe;
   2234 		data  = fe->data;
   2235 		l_eap = &fe->l_ea;
   2236 		l_ad  = udf_rw32(fe->l_ad);
   2237 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2238 		efe   = &dscr->efe;
   2239 		data  = efe->data;
   2240 		l_eap = &efe->l_ea;
   2241 		l_ad  = udf_rw32(efe->l_ad);
   2242 	} else {
   2243 		panic("Bad tag passed to udf_extattr_insert_internal");
   2244 	}
   2245 
   2246 	/* can't append already written to file descriptors yet */
   2247 	assert(l_ad == 0);
   2248 
   2249 	/* should have a header! */
   2250 	extattrhdr = (struct extattrhdr_desc *) data;
   2251 	l_ea = udf_rw32(*l_eap);
   2252 	if (l_ea == 0) {
   2253 		/* create empty extended attribute header */
   2254 		exthdr_len = sizeof(struct extattrhdr_desc);
   2255 
   2256 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2257 			/* loc */ 0);
   2258 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2259 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2260 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2261 
   2262 		/* record extended attribute header length */
   2263 		l_ea = exthdr_len;
   2264 		*l_eap = udf_rw32(l_ea);
   2265 	}
   2266 
   2267 	/* extract locations */
   2268 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2269 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2270 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2271 		impl_attr_loc = l_ea;
   2272 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2273 		appl_attr_loc = l_ea;
   2274 
   2275 	/* Ecma 167 EAs */
   2276 	if (udf_rw32(extattr->type) < 2048) {
   2277 		assert(impl_attr_loc == l_ea);
   2278 		assert(appl_attr_loc == l_ea);
   2279 	}
   2280 
   2281 	/* implementation use extended attributes */
   2282 	if (udf_rw32(extattr->type) == 2048) {
   2283 		assert(appl_attr_loc == l_ea);
   2284 
   2285 		/* calculate and write extended attribute header checksum */
   2286 		implext = (struct impl_extattr_entry *) extattr;
   2287 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2288 		spos = (uint16_t *) implext->data;
   2289 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2290 	}
   2291 
   2292 	/* application use extended attributes */
   2293 	assert(udf_rw32(extattr->type) != 65536);
   2294 	assert(appl_attr_loc == l_ea);
   2295 
   2296 	/* append the attribute at the end of the current space */
   2297 	bpos = data + udf_rw32(*l_eap);
   2298 	a_l  = udf_rw32(extattr->a_l);
   2299 
   2300 	/* update impl. attribute locations */
   2301 	if (udf_rw32(extattr->type) < 2048) {
   2302 		impl_attr_loc = l_ea + a_l;
   2303 		appl_attr_loc = l_ea + a_l;
   2304 	}
   2305 	if (udf_rw32(extattr->type) == 2048) {
   2306 		appl_attr_loc = l_ea + a_l;
   2307 	}
   2308 
   2309 	/* copy and advance */
   2310 	memcpy(bpos, extattr, a_l);
   2311 	l_ea += a_l;
   2312 	*l_eap = udf_rw32(l_ea);
   2313 
   2314 	/* do the `dance` again backwards */
   2315 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2316 		if (impl_attr_loc == l_ea)
   2317 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2318 		if (appl_attr_loc == l_ea)
   2319 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2320 	}
   2321 
   2322 	/* store offsets */
   2323 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2324 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2325 }
   2326 
   2327 
   2328 /* --------------------------------------------------------------------- */
   2329 
   2330 static int
   2331 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2332 {
   2333 	struct udf_mount       *ump;
   2334 	struct udf_logvol_info *lvinfo;
   2335 	struct impl_extattr_entry     *implext;
   2336 	struct vatlvext_extattr_entry  lvext;
   2337 	const char *extstr = "*UDF VAT LVExtension";
   2338 	uint64_t    vat_uniqueid;
   2339 	uint32_t    offset, a_l;
   2340 	uint8_t    *ea_start, *lvextpos;
   2341 	int         error;
   2342 
   2343 	/* get mountpoint and lvinfo */
   2344 	ump    = vat_node->ump;
   2345 	lvinfo = ump->logvol_info;
   2346 
   2347 	/* get information from fe/efe */
   2348 	if (vat_node->fe) {
   2349 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2350 		ea_start     = vat_node->fe->data;
   2351 	} else {
   2352 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2353 		ea_start     = vat_node->efe->data;
   2354 	}
   2355 
   2356 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2357 	if (error)
   2358 		return error;
   2359 
   2360 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2361 	error = udf_impl_extattr_check(implext);
   2362 	if (error)
   2363 		return error;
   2364 
   2365 	/* paranoia */
   2366 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2367 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2368 		return EINVAL;
   2369 	}
   2370 
   2371 	/*
   2372 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2373 	 * bug in the specification it might not be word aligned so
   2374 	 * copy first to avoid panics on some machines (!!)
   2375 	 */
   2376 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2377 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2378 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2379 
   2380 	/* check if it was updated the last time */
   2381 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2382 		lvinfo->num_files       = lvext.num_files;
   2383 		lvinfo->num_directories = lvext.num_directories;
   2384 		udf_update_logvolname(ump, lvext.logvol_id);
   2385 	} else {
   2386 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2387 		/* replace VAT LVExt by free space EA */
   2388 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2389 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2390 		udf_calc_impl_extattr_checksum(implext);
   2391 	}
   2392 
   2393 	return 0;
   2394 }
   2395 
   2396 
   2397 static int
   2398 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2399 {
   2400 	struct udf_mount       *ump;
   2401 	struct udf_logvol_info *lvinfo;
   2402 	struct impl_extattr_entry     *implext;
   2403 	struct vatlvext_extattr_entry  lvext;
   2404 	const char *extstr = "*UDF VAT LVExtension";
   2405 	uint64_t    vat_uniqueid;
   2406 	uint32_t    offset, a_l;
   2407 	uint8_t    *ea_start, *lvextpos;
   2408 	int         error;
   2409 
   2410 	/* get mountpoint and lvinfo */
   2411 	ump    = vat_node->ump;
   2412 	lvinfo = ump->logvol_info;
   2413 
   2414 	/* get information from fe/efe */
   2415 	if (vat_node->fe) {
   2416 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2417 		ea_start     = vat_node->fe->data;
   2418 	} else {
   2419 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2420 		ea_start     = vat_node->efe->data;
   2421 	}
   2422 
   2423 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2424 	if (error)
   2425 		return error;
   2426 	/* found, it existed */
   2427 
   2428 	/* paranoia */
   2429 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2430 	error = udf_impl_extattr_check(implext);
   2431 	if (error) {
   2432 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2433 		return error;
   2434 	}
   2435 	/* it is correct */
   2436 
   2437 	/*
   2438 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2439 	 * bug in the specification it might not be word aligned so
   2440 	 * copy first to avoid panics on some machines (!!)
   2441 	 */
   2442 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2443 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2444 
   2445 	lvext.unique_id_chk   = vat_uniqueid;
   2446 	lvext.num_files       = lvinfo->num_files;
   2447 	lvext.num_directories = lvinfo->num_directories;
   2448 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2449 
   2450 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2451 
   2452 	return 0;
   2453 }
   2454 
   2455 /* --------------------------------------------------------------------- */
   2456 
   2457 int
   2458 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2459 {
   2460 	struct udf_mount *ump = vat_node->ump;
   2461 
   2462 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2463 		return EINVAL;
   2464 
   2465 	memcpy(blob, ump->vat_table + offset, size);
   2466 	return 0;
   2467 }
   2468 
   2469 int
   2470 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2471 {
   2472 	struct udf_mount *ump = vat_node->ump;
   2473 	uint32_t offset_high;
   2474 	uint8_t *new_vat_table;
   2475 
   2476 	/* extent VAT allocation if needed */
   2477 	offset_high = offset + size;
   2478 	if (offset_high >= ump->vat_table_alloc_len) {
   2479 		/* realloc */
   2480 		new_vat_table = realloc(ump->vat_table,
   2481 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2482 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2483 		if (!new_vat_table) {
   2484 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2485 			return ENOMEM;
   2486 		}
   2487 		ump->vat_table = new_vat_table;
   2488 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2489 	}
   2490 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2491 
   2492 	memcpy(ump->vat_table + offset, blob, size);
   2493 	return 0;
   2494 }
   2495 
   2496 /* --------------------------------------------------------------------- */
   2497 
   2498 /* TODO support previous VAT location writeout */
   2499 static int
   2500 udf_update_vat_descriptor(struct udf_mount *ump)
   2501 {
   2502 	struct udf_node *vat_node = ump->vat_node;
   2503 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2504 	struct icb_tag *icbtag;
   2505 	struct udf_oldvat_tail *oldvat_tl;
   2506 	struct udf_vat *vat;
   2507 	uint64_t unique_id;
   2508 	uint32_t lb_size;
   2509 	uint8_t *raw_vat;
   2510 	int filetype, error;
   2511 
   2512 	KASSERT(vat_node);
   2513 	KASSERT(lvinfo);
   2514 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2515 
   2516 	/* get our new unique_id */
   2517 	unique_id = udf_advance_uniqueid(ump);
   2518 
   2519 	/* get information from fe/efe */
   2520 	if (vat_node->fe) {
   2521 		icbtag    = &vat_node->fe->icbtag;
   2522 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2523 	} else {
   2524 		icbtag = &vat_node->efe->icbtag;
   2525 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2526 	}
   2527 
   2528 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2529 	filetype = icbtag->file_type;
   2530 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2531 
   2532 	/* allocate piece to process head or tail of VAT file */
   2533 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2534 
   2535 	if (filetype == 0) {
   2536 		/*
   2537 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2538 		 * lvint if present.
   2539 		 */
   2540 		udf_update_vat_extattr_from_lvid(vat_node);
   2541 
   2542 		/* setup identifying regid */
   2543 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2544 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2545 
   2546 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2547 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2548 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2549 
   2550 		/* write out new tail of virtual allocation table file */
   2551 		error = udf_vat_write(vat_node, raw_vat,
   2552 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2553 	} else {
   2554 		/* compose the VAT2 header */
   2555 		vat = (struct udf_vat *) raw_vat;
   2556 		memset(vat, 0, sizeof(struct udf_vat));
   2557 
   2558 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2559 		vat->impl_use_len     = udf_rw16(0);
   2560 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2561 		vat->prev_vat         = udf_rw32(0xffffffff);
   2562 		vat->num_files        = lvinfo->num_files;
   2563 		vat->num_directories  = lvinfo->num_directories;
   2564 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2565 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2566 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2567 
   2568 		error = udf_vat_write(vat_node, raw_vat,
   2569 			sizeof(struct udf_vat), 0);
   2570 	}
   2571 	free(raw_vat, M_TEMP);
   2572 
   2573 	return error;	/* success! */
   2574 }
   2575 
   2576 
   2577 int
   2578 udf_writeout_vat(struct udf_mount *ump)
   2579 {
   2580 	struct udf_node *vat_node = ump->vat_node;
   2581 	uint32_t vat_length;
   2582 	int error;
   2583 
   2584 	KASSERT(vat_node);
   2585 
   2586 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2587 
   2588 	mutex_enter(&ump->allocate_mutex);
   2589 	udf_update_vat_descriptor(ump);
   2590 
   2591 	/* write out the VAT contents ; TODO intelligent writing */
   2592 	vat_length = ump->vat_table_len;
   2593 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2594 		ump->vat_table, ump->vat_table_len, 0,
   2595 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
   2596 	if (error) {
   2597 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2598 		goto out;
   2599 	}
   2600 
   2601 	mutex_exit(&ump->allocate_mutex);
   2602 
   2603 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2604 	error = VOP_FSYNC(ump->vat_node->vnode,
   2605 			FSCRED, FSYNC_WAIT, 0, 0);
   2606 	if (error)
   2607 		printf("udf_writeout_vat: error writing VAT node!\n");
   2608 out:
   2609 
   2610 	return error;
   2611 }
   2612 
   2613 /* --------------------------------------------------------------------- */
   2614 
   2615 /*
   2616  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2617  * descriptor. If OK, read in complete VAT file.
   2618  */
   2619 
   2620 static int
   2621 udf_check_for_vat(struct udf_node *vat_node)
   2622 {
   2623 	struct udf_mount *ump;
   2624 	struct icb_tag   *icbtag;
   2625 	struct timestamp *mtime;
   2626 	struct udf_vat   *vat;
   2627 	struct udf_oldvat_tail *oldvat_tl;
   2628 	struct udf_logvol_info *lvinfo;
   2629 	uint64_t  unique_id;
   2630 	uint32_t  vat_length;
   2631 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2632 	uint32_t  sector_size;
   2633 	uint32_t *raw_vat;
   2634 	uint8_t  *vat_table;
   2635 	char     *regid_name;
   2636 	int filetype;
   2637 	int error;
   2638 
   2639 	/* vat_length is really 64 bits though impossible */
   2640 
   2641 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2642 	if (!vat_node)
   2643 		return ENOENT;
   2644 
   2645 	/* get mount info */
   2646 	ump = vat_node->ump;
   2647 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2648 
   2649 	/* check assertions */
   2650 	assert(vat_node->fe || vat_node->efe);
   2651 	assert(ump->logvol_integrity);
   2652 
   2653 	/* set vnode type to regular file or we can't read from it! */
   2654 	vat_node->vnode->v_type = VREG;
   2655 
   2656 	/* get information from fe/efe */
   2657 	if (vat_node->fe) {
   2658 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2659 		icbtag    = &vat_node->fe->icbtag;
   2660 		mtime     = &vat_node->fe->mtime;
   2661 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2662 	} else {
   2663 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2664 		icbtag = &vat_node->efe->icbtag;
   2665 		mtime  = &vat_node->efe->mtime;
   2666 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2667 	}
   2668 
   2669 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2670 	filetype = icbtag->file_type;
   2671 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2672 		return ENOENT;
   2673 
   2674 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2675 
   2676 	vat_table_alloc_len =
   2677 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2678 			* UDF_VAT_CHUNKSIZE;
   2679 
   2680 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2681 		M_CANFAIL | M_WAITOK);
   2682 	if (vat_table == NULL) {
   2683 		printf("allocation of %d bytes failed for VAT\n",
   2684 			vat_table_alloc_len);
   2685 		return ENOMEM;
   2686 	}
   2687 
   2688 	/* allocate piece to read in head or tail of VAT file */
   2689 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2690 
   2691 	/*
   2692 	 * check contents of the file if its the old 1.50 VAT table format.
   2693 	 * Its notoriously broken and allthough some implementations support an
   2694 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2695 	 * to be useable since a lot of implementations don't maintain it.
   2696 	 */
   2697 	lvinfo = ump->logvol_info;
   2698 
   2699 	if (filetype == 0) {
   2700 		/* definition */
   2701 		vat_offset  = 0;
   2702 		vat_entries = (vat_length-36)/4;
   2703 
   2704 		/* read in tail of virtual allocation table file */
   2705 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2706 				(uint8_t *) raw_vat,
   2707 				sizeof(struct udf_oldvat_tail),
   2708 				vat_entries * 4,
   2709 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2710 				NULL, NULL);
   2711 		if (error)
   2712 			goto out;
   2713 
   2714 		/* check 1.50 VAT */
   2715 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2716 		regid_name = (char *) oldvat_tl->id.id;
   2717 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2718 		if (error) {
   2719 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2720 			error = ENOENT;
   2721 			goto out;
   2722 		}
   2723 
   2724 		/*
   2725 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2726 		 * if present.
   2727 		 */
   2728 		udf_update_lvid_from_vat_extattr(vat_node);
   2729 	} else {
   2730 		/* read in head of virtual allocation table file */
   2731 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2732 				(uint8_t *) raw_vat,
   2733 				sizeof(struct udf_vat), 0,
   2734 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2735 				NULL, NULL);
   2736 		if (error)
   2737 			goto out;
   2738 
   2739 		/* definition */
   2740 		vat = (struct udf_vat *) raw_vat;
   2741 		vat_offset  = vat->header_len;
   2742 		vat_entries = (vat_length - vat_offset)/4;
   2743 
   2744 		assert(lvinfo);
   2745 		lvinfo->num_files        = vat->num_files;
   2746 		lvinfo->num_directories  = vat->num_directories;
   2747 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2748 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2749 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2750 
   2751 		udf_update_logvolname(ump, vat->logvol_id);
   2752 	}
   2753 
   2754 	/* read in complete VAT file */
   2755 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2756 			vat_table,
   2757 			vat_length, 0,
   2758 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2759 			NULL, NULL);
   2760 	if (error)
   2761 		printf("read in of complete VAT file failed (error %d)\n",
   2762 			error);
   2763 	if (error)
   2764 		goto out;
   2765 
   2766 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2767 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
   2768 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2769 	ump->logvol_integrity->time           = *mtime;
   2770 
   2771 	ump->vat_table_len = vat_length;
   2772 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2773 	ump->vat_table   = vat_table;
   2774 	ump->vat_offset  = vat_offset;
   2775 	ump->vat_entries = vat_entries;
   2776 	ump->vat_last_free_lb = 0;		/* start at beginning */
   2777 
   2778 out:
   2779 	if (error) {
   2780 		if (vat_table)
   2781 			free(vat_table, M_UDFVOLD);
   2782 	}
   2783 	free(raw_vat, M_TEMP);
   2784 
   2785 	return error;
   2786 }
   2787 
   2788 /* --------------------------------------------------------------------- */
   2789 
   2790 static int
   2791 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   2792 {
   2793 	struct udf_node *vat_node;
   2794 	struct long_ad	 icb_loc;
   2795 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   2796 	int error;
   2797 
   2798 	/* mapping info not needed */
   2799 	mapping = mapping;
   2800 
   2801 	vat_loc = ump->last_possible_vat_location;
   2802 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   2803 
   2804 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   2805 		vat_loc, early_vat_loc));
   2806 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   2807 	late_vat_loc  = vat_loc + 1024;
   2808 
   2809 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   2810 		vat_loc, early_vat_loc));
   2811 
   2812 	/* start looking from the end of the range */
   2813 	do {
   2814 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   2815 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   2816 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   2817 
   2818 		error = udf_get_node(ump, &icb_loc, &vat_node);
   2819 		if (!error) {
   2820 			error = udf_check_for_vat(vat_node);
   2821 			DPRINTFIF(VOLUMES, !error,
   2822 				("VAT accepted at %d\n", vat_loc));
   2823 			if (!error)
   2824 				break;
   2825 		}
   2826 		if (vat_node) {
   2827 			vput(vat_node->vnode);
   2828 			vat_node = NULL;
   2829 		}
   2830 		vat_loc--;	/* walk backwards */
   2831 	} while (vat_loc >= early_vat_loc);
   2832 
   2833 	/* keep our VAT node around */
   2834 	if (vat_node) {
   2835 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   2836 		ump->vat_node = vat_node;
   2837 	}
   2838 
   2839 	return error;
   2840 }
   2841 
   2842 /* --------------------------------------------------------------------- */
   2843 
   2844 static int
   2845 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   2846 {
   2847 	union dscrptr *dscr;
   2848 	struct part_map_spare *pms = &mapping->pms;
   2849 	uint32_t lb_num;
   2850 	int spar, error;
   2851 
   2852 	/*
   2853 	 * The partition mapping passed on to us specifies the information we
   2854 	 * need to locate and initialise the sparable partition mapping
   2855 	 * information we need.
   2856 	 */
   2857 
   2858 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   2859 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   2860 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   2861 
   2862 	for (spar = 0; spar < pms->n_st; spar++) {
   2863 		lb_num = pms->st_loc[spar];
   2864 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   2865 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   2866 		if (!error && dscr) {
   2867 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   2868 				if (ump->sparing_table)
   2869 					free(ump->sparing_table, M_UDFVOLD);
   2870 				ump->sparing_table = &dscr->spt;
   2871 				dscr = NULL;
   2872 				DPRINTF(VOLUMES,
   2873 				    ("Sparing table accepted (%d entries)\n",
   2874 				     udf_rw16(ump->sparing_table->rt_l)));
   2875 				break;	/* we're done */
   2876 			}
   2877 		}
   2878 		if (dscr)
   2879 			free(dscr, M_UDFVOLD);
   2880 	}
   2881 
   2882 	if (ump->sparing_table)
   2883 		return 0;
   2884 
   2885 	return ENOENT;
   2886 }
   2887 
   2888 /* --------------------------------------------------------------------- */
   2889 
   2890 static int
   2891 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   2892 {
   2893 	struct part_map_meta *pmm = &mapping->pmm;
   2894 	struct long_ad	 icb_loc;
   2895 	struct vnode *vp;
   2896 	int error;
   2897 
   2898 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   2899 	icb_loc.loc.part_num = pmm->part_num;
   2900 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   2901 	DPRINTF(VOLUMES, ("Metadata file\n"));
   2902 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   2903 	if (ump->metadata_node) {
   2904 		vp = ump->metadata_node->vnode;
   2905 		UDF_SET_SYSTEMFILE(vp);
   2906 	}
   2907 
   2908 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   2909 	if (icb_loc.loc.lb_num != -1) {
   2910 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   2911 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   2912 		if (ump->metadatamirror_node) {
   2913 			vp = ump->metadatamirror_node->vnode;
   2914 			UDF_SET_SYSTEMFILE(vp);
   2915 		}
   2916 	}
   2917 
   2918 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   2919 	if (icb_loc.loc.lb_num != -1) {
   2920 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   2921 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   2922 		if (ump->metadatabitmap_node) {
   2923 			vp = ump->metadatabitmap_node->vnode;
   2924 			UDF_SET_SYSTEMFILE(vp);
   2925 		}
   2926 	}
   2927 
   2928 	/* if we're mounting read-only we relax the requirements */
   2929 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   2930 		error = EFAULT;
   2931 		if (ump->metadata_node)
   2932 			error = 0;
   2933 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   2934 			printf( "udf mount: Metadata file not readable, "
   2935 				"substituting Metadata copy file\n");
   2936 			ump->metadata_node = ump->metadatamirror_node;
   2937 			ump->metadatamirror_node = NULL;
   2938 			error = 0;
   2939 		}
   2940 	} else {
   2941 		/* mounting read/write */
   2942 /*		if (error) */
   2943 			error = EROFS;
   2944 	}
   2945 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   2946 				   "metadata files\n"));
   2947 	return error;
   2948 }
   2949 
   2950 /* --------------------------------------------------------------------- */
   2951 
   2952 int
   2953 udf_read_vds_tables(struct udf_mount *ump)
   2954 {
   2955 	union udf_pmap *mapping;
   2956 	/* struct udf_args *args = &ump->mount_args; */
   2957 	uint32_t n_pm, mt_l;
   2958 	uint32_t log_part;
   2959 	uint8_t *pmap_pos;
   2960 	int pmap_size;
   2961 	int error;
   2962 
   2963 	/* read in and check unallocated and free space info if writing */
   2964 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   2965 		error = udf_read_physical_partition_spacetables(ump);
   2966 		if (error)
   2967 			return error;
   2968 	}
   2969 
   2970 	/* Iterate (again) over the part mappings for locations   */
   2971 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   2972 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   2973 	pmap_pos =  ump->logical_vol->maps;
   2974 
   2975 	for (log_part = 0; log_part < n_pm; log_part++) {
   2976 		mapping = (union udf_pmap *) pmap_pos;
   2977 		switch (ump->vtop_tp[log_part]) {
   2978 		case UDF_VTOP_TYPE_PHYS :
   2979 			/* nothing */
   2980 			break;
   2981 		case UDF_VTOP_TYPE_VIRT :
   2982 			/* search and load VAT */
   2983 			error = udf_search_vat(ump, mapping);
   2984 			if (error)
   2985 				return ENOENT;
   2986 			break;
   2987 		case UDF_VTOP_TYPE_SPARABLE :
   2988 			/* load one of the sparable tables */
   2989 			error = udf_read_sparables(ump, mapping);
   2990 			if (error)
   2991 				return ENOENT;
   2992 			break;
   2993 		case UDF_VTOP_TYPE_META :
   2994 			/* load the associated file descriptors */
   2995 			error = udf_read_metadata_nodes(ump, mapping);
   2996 			if (error)
   2997 				return ENOENT;
   2998 			break;
   2999 		default:
   3000 			break;
   3001 		}
   3002 		pmap_size  = pmap_pos[1];
   3003 		pmap_pos  += pmap_size;
   3004 	}
   3005 
   3006 	return 0;
   3007 }
   3008 
   3009 /* --------------------------------------------------------------------- */
   3010 
   3011 int
   3012 udf_read_rootdirs(struct udf_mount *ump)
   3013 {
   3014 	union dscrptr *dscr;
   3015 	/* struct udf_args *args = &ump->mount_args; */
   3016 	struct udf_node *rootdir_node, *streamdir_node;
   3017 	struct long_ad  fsd_loc, *dir_loc;
   3018 	uint32_t lb_num, dummy;
   3019 	uint32_t fsd_len;
   3020 	int dscr_type;
   3021 	int error;
   3022 
   3023 	/* TODO implement FSD reading in separate function like integrity? */
   3024 	/* get fileset descriptor sequence */
   3025 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3026 	fsd_len = udf_rw32(fsd_loc.len);
   3027 
   3028 	dscr  = NULL;
   3029 	error = 0;
   3030 	while (fsd_len || error) {
   3031 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3032 		/* translate fsd_loc to lb_num */
   3033 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3034 		if (error)
   3035 			break;
   3036 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3037 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3038 		/* end markers */
   3039 		if (error || (dscr == NULL))
   3040 			break;
   3041 
   3042 		/* analyse */
   3043 		dscr_type = udf_rw16(dscr->tag.id);
   3044 		if (dscr_type == TAGID_TERM)
   3045 			break;
   3046 		if (dscr_type != TAGID_FSD) {
   3047 			free(dscr, M_UDFVOLD);
   3048 			return ENOENT;
   3049 		}
   3050 
   3051 		/*
   3052 		 * TODO check for multiple fileset descriptors; its only
   3053 		 * picking the last now. Also check for FSD
   3054 		 * correctness/interpretability
   3055 		 */
   3056 
   3057 		/* update */
   3058 		if (ump->fileset_desc) {
   3059 			free(ump->fileset_desc, M_UDFVOLD);
   3060 		}
   3061 		ump->fileset_desc = &dscr->fsd;
   3062 		dscr = NULL;
   3063 
   3064 		/* continue to the next fsd */
   3065 		fsd_len -= ump->discinfo.sector_size;
   3066 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3067 
   3068 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3069 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3070 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3071 			fsd_loc = ump->fileset_desc->next_ex;
   3072 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3073 		}
   3074 	}
   3075 	if (dscr)
   3076 		free(dscr, M_UDFVOLD);
   3077 
   3078 	/* there has to be one */
   3079 	if (ump->fileset_desc == NULL)
   3080 		return ENOENT;
   3081 
   3082 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3083 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3084 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3085 
   3086 	/*
   3087 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3088 	 * the system stream dir. Some files in the system streamdir are not
   3089 	 * wanted in this implementation since they are not maintained. If
   3090 	 * writing is enabled we'll delete these files if they exist.
   3091 	 */
   3092 
   3093 	rootdir_node = streamdir_node = NULL;
   3094 	dir_loc = NULL;
   3095 
   3096 	/* try to read in the rootdir */
   3097 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3098 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3099 	if (error)
   3100 		return ENOENT;
   3101 
   3102 	/* aparently it read in fine */
   3103 
   3104 	/*
   3105 	 * Try the system stream directory; not very likely in the ones we
   3106 	 * test, but for completeness.
   3107 	 */
   3108 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3109 	if (udf_rw32(dir_loc->len)) {
   3110 		printf("udf_read_rootdirs: streamdir defined ");
   3111 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3112 		if (error) {
   3113 			printf("but error in streamdir reading\n");
   3114 		} else {
   3115 			printf("but ignored\n");
   3116 			/*
   3117 			 * TODO process streamdir `baddies' i.e. files we dont
   3118 			 * want if R/W
   3119 			 */
   3120 		}
   3121 	}
   3122 
   3123 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3124 
   3125 	/* release the vnodes again; they'll be auto-recycled later */
   3126 	if (streamdir_node) {
   3127 		vput(streamdir_node->vnode);
   3128 	}
   3129 	if (rootdir_node) {
   3130 		vput(rootdir_node->vnode);
   3131 	}
   3132 
   3133 	return 0;
   3134 }
   3135 
   3136 /* --------------------------------------------------------------------- */
   3137 
   3138 /* To make absolutely sure we are NOT returning zero, add one :) */
   3139 
   3140 long
   3141 udf_calchash(struct long_ad *icbptr)
   3142 {
   3143 	/* ought to be enough since each mountpoint has its own chain */
   3144 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3145 }
   3146 
   3147 
   3148 static struct udf_node *
   3149 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3150 {
   3151 	struct udf_node *node;
   3152 	struct vnode *vp;
   3153 	uint32_t hashline;
   3154 
   3155 loop:
   3156 	mutex_enter(&ump->ihash_lock);
   3157 
   3158 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   3159 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
   3160 		assert(node);
   3161 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
   3162 		    node->loc.loc.part_num == icbptr->loc.part_num) {
   3163 			vp = node->vnode;
   3164 			assert(vp);
   3165 			mutex_enter(&vp->v_interlock);
   3166 			mutex_exit(&ump->ihash_lock);
   3167 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   3168 				goto loop;
   3169 			return node;
   3170 		}
   3171 	}
   3172 	mutex_exit(&ump->ihash_lock);
   3173 
   3174 	return NULL;
   3175 }
   3176 
   3177 
   3178 static void
   3179 udf_sorted_list_insert(struct udf_node *node)
   3180 {
   3181 	struct udf_mount *ump;
   3182 	struct udf_node  *s_node, *last_node;
   3183 	uint32_t loc, s_loc;
   3184 
   3185 	ump = node->ump;
   3186 	last_node = NULL;	/* XXX gcc */
   3187 
   3188 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
   3189 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
   3190 		return;
   3191 	}
   3192 
   3193 	/*
   3194 	 * We sort on logical block number here and not on physical block
   3195 	 * number here. Ideally we should go for the physical block nr to get
   3196 	 * better sync performance though this sort will ensure that packets
   3197 	 * won't get spit up unnessisarily.
   3198 	 */
   3199 
   3200 	loc = udf_rw32(node->loc.loc.lb_num);
   3201 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
   3202 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
   3203 		if (s_loc > loc) {
   3204 			LIST_INSERT_BEFORE(s_node, node, sortchain);
   3205 			return;
   3206 		}
   3207 		last_node = s_node;
   3208 	}
   3209 	LIST_INSERT_AFTER(last_node, node, sortchain);
   3210 }
   3211 
   3212 
   3213 static void
   3214 udf_register_node(struct udf_node *node)
   3215 {
   3216 	struct udf_mount *ump;
   3217 	struct udf_node *chk;
   3218 	uint32_t hashline;
   3219 
   3220 	ump = node->ump;
   3221 	mutex_enter(&ump->ihash_lock);
   3222 
   3223 	/* add to our hash table */
   3224 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
   3225 #ifdef DEBUG
   3226 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
   3227 		assert(chk);
   3228 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
   3229 		    chk->loc.loc.part_num == node->loc.loc.part_num)
   3230 			panic("Double node entered\n");
   3231 	}
   3232 #else
   3233 	chk = NULL;
   3234 #endif
   3235 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
   3236 
   3237 	/* add to our sorted list */
   3238 	udf_sorted_list_insert(node);
   3239 
   3240 	mutex_exit(&ump->ihash_lock);
   3241 }
   3242 
   3243 
   3244 static void
   3245 udf_deregister_node(struct udf_node *node)
   3246 {
   3247 	struct udf_mount *ump;
   3248 
   3249 	ump = node->ump;
   3250 	mutex_enter(&ump->ihash_lock);
   3251 
   3252 	/* from hash and sorted list */
   3253 	LIST_REMOVE(node, hashchain);
   3254 	LIST_REMOVE(node, sortchain);
   3255 
   3256 	mutex_exit(&ump->ihash_lock);
   3257 }
   3258 
   3259 /* --------------------------------------------------------------------- */
   3260 
   3261 int
   3262 udf_open_logvol(struct udf_mount *ump)
   3263 {
   3264 	int logvol_integrity;
   3265 	int error;
   3266 
   3267 	/* already/still open? */
   3268 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3269 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3270 		return 0;
   3271 
   3272 	/* can we open it ? */
   3273 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3274 		return EROFS;
   3275 
   3276 	/* setup write parameters */
   3277 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3278 	if ((error = udf_setup_writeparams(ump)) != 0)
   3279 		return error;
   3280 
   3281 	/* determine data and metadata tracks (most likely same) */
   3282 	error = udf_search_writing_tracks(ump);
   3283 	if (error) {
   3284 		/* most likely lack of space */
   3285 		printf("udf_open_logvol: error searching writing tracks\n");
   3286 		return EROFS;
   3287 	}
   3288 
   3289 	/* writeout/update lvint on disc or only in memory */
   3290 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3291 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3292 		/* TODO implement writeout of VRS + VDS */
   3293 		printf( "udf_open_logvol:Opening a closed session not yet "
   3294 			"implemented\n");
   3295 		return EROFS;
   3296 
   3297 		/* determine data and metadata tracks again */
   3298 		error = udf_search_writing_tracks(ump);
   3299 	}
   3300 
   3301 	/* mark it open */
   3302 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3303 
   3304 	/* do we need to write it out? */
   3305 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3306 		error = udf_writeout_lvint(ump, ump->lvopen);
   3307 		/* if we couldn't write it mark it closed again */
   3308 		if (error) {
   3309 			ump->logvol_integrity->integrity_type =
   3310 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3311 			return error;
   3312 		}
   3313 	}
   3314 
   3315 	return 0;
   3316 }
   3317 
   3318 
   3319 int
   3320 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3321 {
   3322 	int logvol_integrity;
   3323 	int error = 0;
   3324 	int n;
   3325 
   3326 	/* already/still closed? */
   3327 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3328 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3329 		return 0;
   3330 
   3331 	/* writeout/update lvint or write out VAT */
   3332 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
   3333 	if (ump->lvclose & UDF_WRITE_VAT) {
   3334 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3335 
   3336 		/* preprocess the VAT node; its modified on every writeout */
   3337 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3338 		udf_update_vat_descriptor(ump->vat_node->ump);
   3339 
   3340 		/* write out the VAT node */
   3341 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3342 		for (n = 0; n < 16; n++) {
   3343 			ump->vat_node->i_flags |= IN_MODIFIED;
   3344 			error = VOP_FSYNC(ump->vat_node->vnode,
   3345 					FSCRED, FSYNC_WAIT, 0, 0);
   3346 		}
   3347 		if (error) {
   3348 			printf("udf_close_logvol: writeout of VAT failed\n");
   3349 			return error;
   3350 		}
   3351 	}
   3352 
   3353 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3354 		/* sync writeout partition spacetables */
   3355 		error = udf_write_physical_partition_spacetables(ump, true);
   3356 		if (error) {
   3357 			printf( "udf_close_logvol: writeout of space tables "
   3358 				"failed\n");
   3359 			return error;
   3360 		}
   3361 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3362 	}
   3363 
   3364 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3365 		printf("TODO: Closing a session is not yet implemented\n");
   3366 		return EROFS;
   3367 		ump->lvopen |= UDF_OPEN_SESSION;
   3368 	}
   3369 
   3370 	/* mark it closed */
   3371 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3372 
   3373 	/* do we need to write out the logical volume integrity */
   3374 	if (ump->lvclose & UDF_WRITE_LVINT)
   3375 		error = udf_writeout_lvint(ump, ump->lvopen);
   3376 	if (error) {
   3377 		/* HELP now what? mark it open again for now */
   3378 		ump->logvol_integrity->integrity_type =
   3379 			udf_rw32(UDF_INTEGRITY_OPEN);
   3380 		return error;
   3381 	}
   3382 
   3383 	(void) udf_synchronise_caches(ump);
   3384 
   3385 	return 0;
   3386 }
   3387 
   3388 /* --------------------------------------------------------------------- */
   3389 
   3390 /*
   3391  * Genfs interfacing
   3392  *
   3393  * static const struct genfs_ops udf_genfsops = {
   3394  * 	.gop_size = genfs_size,
   3395  * 		size of transfers
   3396  * 	.gop_alloc = udf_gop_alloc,
   3397  * 		allocate len bytes at offset
   3398  * 	.gop_write = genfs_gop_write,
   3399  * 		putpages interface code
   3400  * 	.gop_markupdate = udf_gop_markupdate,
   3401  * 		set update/modify flags etc.
   3402  * }
   3403  */
   3404 
   3405 /*
   3406  * Genfs interface. These four functions are the only ones defined though not
   3407  * documented... great....
   3408  */
   3409 
   3410 /*
   3411  * Callback from genfs to allocate len bytes at offset off; only called when
   3412  * filling up gaps in the allocation.
   3413  */
   3414 /* XXX should we check if there is space enough in udf_gop_alloc? */
   3415 static int
   3416 udf_gop_alloc(struct vnode *vp, off_t off,
   3417     off_t len, int flags, kauth_cred_t cred)
   3418 {
   3419 #if 0
   3420 	struct udf_node *udf_node = VTOI(vp);
   3421 	struct udf_mount *ump = udf_node->ump;
   3422 	uint32_t lb_size, num_lb;
   3423 #endif
   3424 
   3425 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
   3426 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
   3427 
   3428 	return 0;
   3429 }
   3430 
   3431 
   3432 /*
   3433  * callback from genfs to update our flags
   3434  */
   3435 static void
   3436 udf_gop_markupdate(struct vnode *vp, int flags)
   3437 {
   3438 	struct udf_node *udf_node = VTOI(vp);
   3439 	u_long mask = 0;
   3440 
   3441 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   3442 		mask = IN_ACCESS;
   3443 	}
   3444 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   3445 		if (vp->v_type == VREG) {
   3446 			mask |= IN_CHANGE | IN_UPDATE;
   3447 		} else {
   3448 			mask |= IN_MODIFY;
   3449 		}
   3450 	}
   3451 	if (mask) {
   3452 		udf_node->i_flags |= mask;
   3453 	}
   3454 }
   3455 
   3456 
   3457 static const struct genfs_ops udf_genfsops = {
   3458 	.gop_size = genfs_size,
   3459 	.gop_alloc = udf_gop_alloc,
   3460 	.gop_write = genfs_gop_write_rwmap,
   3461 	.gop_markupdate = udf_gop_markupdate,
   3462 };
   3463 
   3464 
   3465 /* --------------------------------------------------------------------- */
   3466 
   3467 int
   3468 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   3469 {
   3470 	union dscrptr *dscr;
   3471 	int error;
   3472 
   3473 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
   3474 	bzero(dscr, ump->discinfo.sector_size);
   3475 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   3476 
   3477 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   3478 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   3479 	(void) udf_validate_tag_and_crc_sums(dscr);
   3480 
   3481 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   3482 			dscr, sector, sector);
   3483 
   3484 	free(dscr, M_TEMP);
   3485 
   3486 	return error;
   3487 }
   3488 
   3489 
   3490 /* --------------------------------------------------------------------- */
   3491 
   3492 /* UDF<->unix converters */
   3493 
   3494 /* --------------------------------------------------------------------- */
   3495 
   3496 static mode_t
   3497 udf_perm_to_unix_mode(uint32_t perm)
   3498 {
   3499 	mode_t mode;
   3500 
   3501 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   3502 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   3503 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   3504 
   3505 	return mode;
   3506 }
   3507 
   3508 /* --------------------------------------------------------------------- */
   3509 
   3510 static uint32_t
   3511 unix_mode_to_udf_perm(mode_t mode)
   3512 {
   3513 	uint32_t perm;
   3514 
   3515 	perm  = ((mode & S_IRWXO)     );
   3516 	perm |= ((mode & S_IRWXG) << 2);
   3517 	perm |= ((mode & S_IRWXU) << 4);
   3518 	perm |= ((mode & S_IWOTH) << 3);
   3519 	perm |= ((mode & S_IWGRP) << 5);
   3520 	perm |= ((mode & S_IWUSR) << 7);
   3521 
   3522 	return perm;
   3523 }
   3524 
   3525 /* --------------------------------------------------------------------- */
   3526 
   3527 static uint32_t
   3528 udf_icb_to_unix_filetype(uint32_t icbftype)
   3529 {
   3530 	switch (icbftype) {
   3531 	case UDF_ICB_FILETYPE_DIRECTORY :
   3532 	case UDF_ICB_FILETYPE_STREAMDIR :
   3533 		return S_IFDIR;
   3534 	case UDF_ICB_FILETYPE_FIFO :
   3535 		return S_IFIFO;
   3536 	case UDF_ICB_FILETYPE_CHARDEVICE :
   3537 		return S_IFCHR;
   3538 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   3539 		return S_IFBLK;
   3540 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   3541 	case UDF_ICB_FILETYPE_REALTIME :
   3542 		return S_IFREG;
   3543 	case UDF_ICB_FILETYPE_SYMLINK :
   3544 		return S_IFLNK;
   3545 	case UDF_ICB_FILETYPE_SOCKET :
   3546 		return S_IFSOCK;
   3547 	}
   3548 	/* no idea what this is */
   3549 	return 0;
   3550 }
   3551 
   3552 /* --------------------------------------------------------------------- */
   3553 
   3554 void
   3555 udf_to_unix_name(char *result, int result_len, char *id, int len,
   3556 	struct charspec *chsp)
   3557 {
   3558 	uint16_t   *raw_name, *unix_name;
   3559 	uint16_t   *inchp, ch;
   3560 	uint8_t	   *outchp;
   3561 	const char *osta_id = "OSTA Compressed Unicode";
   3562 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   3563 
   3564 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   3565 	unix_name = raw_name + 1024;			/* split space in half */
   3566 	assert(sizeof(char) == sizeof(uint8_t));
   3567 	outchp = (uint8_t *) result;
   3568 
   3569 	is_osta_typ0  = (chsp->type == 0);
   3570 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3571 	if (is_osta_typ0) {
   3572 		/* TODO clean up */
   3573 		*raw_name = *unix_name = 0;
   3574 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   3575 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   3576 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   3577 		/* output UTF8 */
   3578 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   3579 			ch = *inchp;
   3580 			nout = wput_utf8(outchp, result_len, ch);
   3581 			outchp += nout; result_len -= nout;
   3582 			if (!ch) break;
   3583 		}
   3584 		*outchp++ = 0;
   3585 	} else {
   3586 		/* assume 8bit char length byte latin-1 */
   3587 		assert(*id == 8);
   3588 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   3589 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   3590 	}
   3591 	free(raw_name, M_UDFTEMP);
   3592 }
   3593 
   3594 /* --------------------------------------------------------------------- */
   3595 
   3596 void
   3597 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   3598 	struct charspec *chsp)
   3599 {
   3600 	uint16_t   *raw_name;
   3601 	uint16_t   *outchp;
   3602 	const char *inchp;
   3603 	const char *osta_id = "OSTA Compressed Unicode";
   3604 	int         udf_chars, is_osta_typ0, bits;
   3605 	size_t      cnt;
   3606 
   3607 	/* allocate temporary unicode-16 buffer */
   3608 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   3609 
   3610 	/* convert utf8 to unicode-16 */
   3611 	*raw_name = 0;
   3612 	inchp  = name;
   3613 	outchp = raw_name;
   3614 	bits = 8;
   3615 	for (cnt = name_len, udf_chars = 0; cnt;) {
   3616 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   3617 		*outchp = wget_utf8(&inchp, &cnt);
   3618 		if (*outchp > 0xff)
   3619 			bits=16;
   3620 		outchp++;
   3621 		udf_chars++;
   3622 	}
   3623 	/* null terminate just in case */
   3624 	*outchp++ = 0;
   3625 
   3626 	is_osta_typ0  = (chsp->type == 0);
   3627 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3628 	if (is_osta_typ0) {
   3629 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   3630 				(unicode_t *) raw_name,
   3631 				(byte *) result);
   3632 	} else {
   3633 		printf("unix to udf name: no CHSP0 ?\n");
   3634 		/* XXX assume 8bit char length byte latin-1 */
   3635 		*result++ = 8; udf_chars = 1;
   3636 		strncpy(result, name + 1, name_len);
   3637 		udf_chars += name_len;
   3638 	}
   3639 	*result_len = udf_chars;
   3640 	free(raw_name, M_UDFTEMP);
   3641 }
   3642 
   3643 /* --------------------------------------------------------------------- */
   3644 
   3645 void
   3646 udf_timestamp_to_timespec(struct udf_mount *ump,
   3647 			  struct timestamp *timestamp,
   3648 			  struct timespec  *timespec)
   3649 {
   3650 	struct clock_ymdhms ymdhms;
   3651 	uint32_t usecs, secs, nsecs;
   3652 	uint16_t tz;
   3653 
   3654 	/* fill in ymdhms structure from timestamp */
   3655 	memset(&ymdhms, 0, sizeof(ymdhms));
   3656 	ymdhms.dt_year = udf_rw16(timestamp->year);
   3657 	ymdhms.dt_mon  = timestamp->month;
   3658 	ymdhms.dt_day  = timestamp->day;
   3659 	ymdhms.dt_wday = 0; /* ? */
   3660 	ymdhms.dt_hour = timestamp->hour;
   3661 	ymdhms.dt_min  = timestamp->minute;
   3662 	ymdhms.dt_sec  = timestamp->second;
   3663 
   3664 	secs = clock_ymdhms_to_secs(&ymdhms);
   3665 	usecs = timestamp->usec +
   3666 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   3667 	nsecs = usecs * 1000;
   3668 
   3669 	/*
   3670 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   3671 	 * compliment, so we gotta do some extra magic to handle it right.
   3672 	 */
   3673 	tz  = udf_rw16(timestamp->type_tz);
   3674 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   3675 	if (tz & 0x0800)		/* sign extention */
   3676 		tz |= 0xf000;
   3677 
   3678 	/* TODO check timezone conversion */
   3679 	/* check if we are specified a timezone to convert */
   3680 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   3681 		if ((int16_t) tz != -2047)
   3682 			secs -= (int16_t) tz * 60;
   3683 	} else {
   3684 		secs -= ump->mount_args.gmtoff;
   3685 	}
   3686 
   3687 	timespec->tv_sec  = secs;
   3688 	timespec->tv_nsec = nsecs;
   3689 }
   3690 
   3691 
   3692 void
   3693 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   3694 {
   3695 	struct clock_ymdhms ymdhms;
   3696 	uint32_t husec, usec, csec;
   3697 
   3698 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   3699 
   3700 	usec   = timespec->tv_nsec / 1000;
   3701 	husec  =  usec / 100;
   3702 	usec  -= husec * 100;				/* only 0-99 in usec  */
   3703 	csec   = husec / 100;				/* only 0-99 in csec  */
   3704 	husec -=  csec * 100;				/* only 0-99 in husec */
   3705 
   3706 	/* set method 1 for CUT/GMT */
   3707 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   3708 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   3709 	timestamp->month	= ymdhms.dt_mon;
   3710 	timestamp->day		= ymdhms.dt_day;
   3711 	timestamp->hour		= ymdhms.dt_hour;
   3712 	timestamp->minute	= ymdhms.dt_min;
   3713 	timestamp->second	= ymdhms.dt_sec;
   3714 	timestamp->centisec	= csec;
   3715 	timestamp->hund_usec	= husec;
   3716 	timestamp->usec		= usec;
   3717 }
   3718 
   3719 /* --------------------------------------------------------------------- */
   3720 
   3721 /*
   3722  * Attribute and filetypes converters with get/set pairs
   3723  */
   3724 
   3725 uint32_t
   3726 udf_getaccessmode(struct udf_node *udf_node)
   3727 {
   3728 	struct file_entry     *fe = udf_node->fe;;
   3729 	struct extfile_entry *efe = udf_node->efe;
   3730 	uint32_t udf_perm, icbftype;
   3731 	uint32_t mode, ftype;
   3732 	uint16_t icbflags;
   3733 
   3734 	UDF_LOCK_NODE(udf_node, 0);
   3735 	if (fe) {
   3736 		udf_perm = udf_rw32(fe->perm);
   3737 		icbftype = fe->icbtag.file_type;
   3738 		icbflags = udf_rw16(fe->icbtag.flags);
   3739 	} else {
   3740 		assert(udf_node->efe);
   3741 		udf_perm = udf_rw32(efe->perm);
   3742 		icbftype = efe->icbtag.file_type;
   3743 		icbflags = udf_rw16(efe->icbtag.flags);
   3744 	}
   3745 
   3746 	mode  = udf_perm_to_unix_mode(udf_perm);
   3747 	ftype = udf_icb_to_unix_filetype(icbftype);
   3748 
   3749 	/* set suid, sgid, sticky from flags in fe/efe */
   3750 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   3751 		mode |= S_ISUID;
   3752 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   3753 		mode |= S_ISGID;
   3754 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   3755 		mode |= S_ISVTX;
   3756 
   3757 	UDF_UNLOCK_NODE(udf_node, 0);
   3758 
   3759 	return mode | ftype;
   3760 }
   3761 
   3762 
   3763 void
   3764 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   3765 {
   3766 	struct file_entry    *fe  = udf_node->fe;
   3767 	struct extfile_entry *efe = udf_node->efe;
   3768 	uint32_t udf_perm;
   3769 	uint16_t icbflags;
   3770 
   3771 	UDF_LOCK_NODE(udf_node, 0);
   3772 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   3773 	if (fe) {
   3774 		icbflags = udf_rw16(fe->icbtag.flags);
   3775 	} else {
   3776 		icbflags = udf_rw16(efe->icbtag.flags);
   3777 	}
   3778 
   3779 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   3780 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   3781 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   3782 	if (mode & S_ISUID)
   3783 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   3784 	if (mode & S_ISGID)
   3785 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   3786 	if (mode & S_ISVTX)
   3787 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   3788 
   3789 	if (fe) {
   3790 		fe->perm  = udf_rw32(udf_perm);
   3791 		fe->icbtag.flags  = udf_rw16(icbflags);
   3792 	} else {
   3793 		efe->perm = udf_rw32(udf_perm);
   3794 		efe->icbtag.flags = udf_rw16(icbflags);
   3795 	}
   3796 
   3797 	UDF_UNLOCK_NODE(udf_node, 0);
   3798 }
   3799 
   3800 
   3801 void
   3802 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   3803 {
   3804 	struct udf_mount     *ump = udf_node->ump;
   3805 	struct file_entry    *fe  = udf_node->fe;
   3806 	struct extfile_entry *efe = udf_node->efe;
   3807 	uid_t uid;
   3808 	gid_t gid;
   3809 
   3810 	UDF_LOCK_NODE(udf_node, 0);
   3811 	if (fe) {
   3812 		uid = (uid_t)udf_rw32(fe->uid);
   3813 		gid = (gid_t)udf_rw32(fe->gid);
   3814 	} else {
   3815 		assert(udf_node->efe);
   3816 		uid = (uid_t)udf_rw32(efe->uid);
   3817 		gid = (gid_t)udf_rw32(efe->gid);
   3818 	}
   3819 
   3820 	/* do the uid/gid translation game */
   3821 	if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
   3822 		uid = ump->mount_args.anon_uid;
   3823 		gid = ump->mount_args.anon_gid;
   3824 	}
   3825 	*uidp = uid;
   3826 	*gidp = gid;
   3827 
   3828 	UDF_UNLOCK_NODE(udf_node, 0);
   3829 }
   3830 
   3831 
   3832 void
   3833 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   3834 {
   3835 	struct udf_mount     *ump = udf_node->ump;
   3836 	struct file_entry    *fe  = udf_node->fe;
   3837 	struct extfile_entry *efe = udf_node->efe;
   3838 	uid_t nobody_uid;
   3839 	gid_t nobody_gid;
   3840 
   3841 	UDF_LOCK_NODE(udf_node, 0);
   3842 
   3843 	/* do the uid/gid translation game */
   3844 	nobody_uid = ump->mount_args.nobody_uid;
   3845 	nobody_gid = ump->mount_args.nobody_gid;
   3846 	if ((uid == nobody_uid) && (gid == nobody_gid)) {
   3847 		uid = (uid_t) -1;
   3848 		gid = (gid_t) -1;
   3849 	}
   3850 
   3851 	if (fe) {
   3852 		fe->uid  = udf_rw32((uint32_t) uid);
   3853 		fe->gid  = udf_rw32((uint32_t) gid);
   3854 	} else {
   3855 		efe->uid = udf_rw32((uint32_t) uid);
   3856 		efe->gid = udf_rw32((uint32_t) gid);
   3857 	}
   3858 
   3859 	UDF_UNLOCK_NODE(udf_node, 0);
   3860 }
   3861 
   3862 
   3863 /* --------------------------------------------------------------------- */
   3864 
   3865 /*
   3866  * UDF dirhash implementation
   3867  */
   3868 
   3869 static uint32_t
   3870 udf_dirhash_hash(const char *str, int namelen)
   3871 {
   3872 	uint32_t hash = 5381;
   3873         int i, c;
   3874 
   3875 	for (i = 0; i < namelen; i++) {
   3876 		c = *str++;
   3877 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
   3878 	}
   3879         return hash;
   3880 }
   3881 
   3882 
   3883 static void
   3884 udf_dirhash_purge(struct udf_dirhash *dirh)
   3885 {
   3886 	struct udf_dirhash_entry *dirh_e;
   3887 	uint32_t hashline;
   3888 
   3889 	if (dirh == NULL)
   3890 		return;
   3891 
   3892 	if (dirh->size == 0)
   3893 		return;
   3894 
   3895 	for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
   3896 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   3897 		while (dirh_e) {
   3898 			LIST_REMOVE(dirh_e, next);
   3899 			pool_put(&udf_dirhash_entry_pool, dirh_e);
   3900 			dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   3901 		}
   3902 	}
   3903 	dirh_e = LIST_FIRST(&dirh->free_entries);
   3904 
   3905 	while (dirh_e) {
   3906 		LIST_REMOVE(dirh_e, next);
   3907 		pool_put(&udf_dirhash_entry_pool, dirh_e);
   3908 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   3909 	}
   3910 
   3911 	dirh->flags &= ~UDF_DIRH_COMPLETE;
   3912 	dirh->flags |=  UDF_DIRH_PURGED;
   3913 
   3914 	udf_dirhashsize -= dirh->size;
   3915 	dirh->size = 0;
   3916 }
   3917 
   3918 
   3919 static void
   3920 udf_dirhash_destroy(struct udf_dirhash **dirhp)
   3921 {
   3922 	struct udf_dirhash *dirh = *dirhp;
   3923 
   3924 	if (dirh == NULL)
   3925 		return;
   3926 
   3927 	mutex_enter(&udf_dirhashmutex);
   3928 
   3929 	udf_dirhash_purge(dirh);
   3930 	TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
   3931 	pool_put(&udf_dirhash_pool, dirh);
   3932 
   3933 	*dirhp = NULL;
   3934 
   3935 	mutex_exit(&udf_dirhashmutex);
   3936 }
   3937 
   3938 
   3939 static void
   3940 udf_dirhash_get(struct udf_dirhash **dirhp)
   3941 {
   3942 	struct udf_dirhash *dirh;
   3943 	uint32_t hashline;
   3944 
   3945 	mutex_enter(&udf_dirhashmutex);
   3946 
   3947 	dirh = *dirhp;
   3948 	if (*dirhp == NULL) {
   3949 		dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
   3950 		*dirhp = dirh;
   3951 		memset(dirh, 0, sizeof(struct udf_dirhash));
   3952 		for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
   3953 			LIST_INIT(&dirh->entries[hashline]);
   3954 		dirh->size   = 0;
   3955 		dirh->refcnt = 0;
   3956 		dirh->flags  = 0;
   3957 	} else {
   3958 		TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
   3959 	}
   3960 
   3961 	dirh->refcnt++;
   3962 	TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
   3963 
   3964 	mutex_exit(&udf_dirhashmutex);
   3965 }
   3966 
   3967 
   3968 static void
   3969 udf_dirhash_put(struct udf_dirhash *dirh)
   3970 {
   3971 	mutex_enter(&udf_dirhashmutex);
   3972 	dirh->refcnt--;
   3973 	mutex_exit(&udf_dirhashmutex);
   3974 }
   3975 
   3976 
   3977 static void
   3978 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
   3979 	struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
   3980 {
   3981 	struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
   3982 	struct udf_dirhash_entry *dirh_e;
   3983 	uint32_t hashvalue, hashline;
   3984 	int entrysize;
   3985 
   3986 	/* make sure we have a dirhash to work on */
   3987 	dirh = dir_node->dir_hash;
   3988 	KASSERT(dirh);
   3989 	KASSERT(dirh->refcnt > 0);
   3990 
   3991 	/* are we trying to re-enter an entry? */
   3992 	if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
   3993 		return;
   3994 
   3995 	/* calculate our hash */
   3996 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
   3997 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   3998 
   3999 	/* lookup and insert entry if not there yet */
   4000 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
   4001 		/* check for hash collision */
   4002 		if (dirh_e->hashvalue != hashvalue)
   4003 			continue;
   4004 		if (dirh_e->offset != offset)
   4005 			continue;
   4006 		/* got it already */
   4007 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
   4008 		KASSERT(dirh_e->fid_size == fid_size);
   4009 		return;
   4010 	}
   4011 
   4012 	DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
   4013 		offset, fid_size, dirent->d_namlen,
   4014 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4015 
   4016 	/* check if entry is in free space list */
   4017 	LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
   4018 		if (dirh_e->offset == offset) {
   4019 			DPRINTF(DIRHASH, ("\tremoving free entry\n"));
   4020 			LIST_REMOVE(dirh_e, next);
   4021 			break;
   4022 		}
   4023 	}
   4024 
   4025 	/* ensure we are not passing the dirhash limit */
   4026 	entrysize = sizeof(struct udf_dirhash_entry);
   4027 	if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
   4028 		del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
   4029 		KASSERT(del_dirh);
   4030 		while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
   4031 			/* no use trying to delete myself */
   4032 			if (del_dirh == dirh)
   4033 				break;
   4034 			prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
   4035 			if (del_dirh->refcnt == 0)
   4036 				udf_dirhash_purge(del_dirh);
   4037 			del_dirh = prev_dirh;
   4038 		}
   4039 	}
   4040 
   4041 	/* add to the hashline */
   4042 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
   4043 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
   4044 
   4045 	dirh_e->hashvalue = hashvalue;
   4046 	dirh_e->offset    = offset;
   4047 	dirh_e->d_namlen  = dirent->d_namlen;
   4048 	dirh_e->fid_size  = fid_size;
   4049 
   4050 	dirh->size      += sizeof(struct udf_dirhash_entry);
   4051 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
   4052 	LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
   4053 }
   4054 
   4055 
   4056 static void
   4057 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
   4058 	uint32_t fid_size)
   4059 {
   4060 	struct udf_dirhash *dirh;
   4061 	struct udf_dirhash_entry *dirh_e;
   4062 
   4063 	/* make sure we have a dirhash to work on */
   4064 	dirh = dir_node->dir_hash;
   4065 	KASSERT(dirh);
   4066 	KASSERT(dirh->refcnt > 0);
   4067 
   4068 #ifdef DEBUG
   4069 	/* check for double entry of free space */
   4070 	LIST_FOREACH(dirh_e, &dirh->free_entries, next)
   4071 		KASSERT(dirh_e->offset != offset);
   4072 #endif
   4073 
   4074 	DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
   4075 		offset, fid_size));
   4076 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
   4077 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
   4078 
   4079 	dirh_e->hashvalue = 0;		/* not relevant */
   4080 	dirh_e->offset    = offset;
   4081 	dirh_e->d_namlen  = 0;		/* not relevant */
   4082 	dirh_e->fid_size  = fid_size;
   4083 
   4084 	/* XXX it might be preferable to append them at the tail */
   4085 	LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
   4086 	dirh->size      += sizeof(struct udf_dirhash_entry);
   4087 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
   4088 }
   4089 
   4090 
   4091 static void
   4092 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
   4093 	uint64_t offset, uint32_t fid_size)
   4094 {
   4095 	struct udf_dirhash *dirh;
   4096 	struct udf_dirhash_entry *dirh_e;
   4097 	uint32_t hashvalue, hashline;
   4098 
   4099 	DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
   4100 		offset, fid_size,
   4101 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4102 
   4103 	/* make sure we have a dirhash to work on */
   4104 	dirh = dir_node->dir_hash;
   4105 	KASSERT(dirh);
   4106 	KASSERT(dirh->refcnt > 0);
   4107 
   4108 	/* calculate our hash */
   4109 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
   4110 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   4111 
   4112 	/* lookup entry */
   4113 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
   4114 		/* check for hash collision */
   4115 		if (dirh_e->hashvalue != hashvalue)
   4116 			continue;
   4117 		if (dirh_e->offset != offset)
   4118 			continue;
   4119 
   4120 		/* got it! */
   4121 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
   4122 		KASSERT(dirh_e->fid_size == fid_size);
   4123 		LIST_REMOVE(dirh_e, next);
   4124 		dirh->size      -= sizeof(struct udf_dirhash_entry);
   4125 		udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
   4126 
   4127 		udf_dirhash_enter_freed(dir_node, offset, fid_size);
   4128 		return;
   4129 	}
   4130 
   4131 	/* not found! */
   4132 	panic("dirhash_remove couldn't find entry in hash table\n");
   4133 }
   4134 
   4135 
   4136 /* BUGALERT: don't use result longer than needed, never past the node lock */
   4137 /* call with NULL *result initially and it will return nonzero if again */
   4138 static int
   4139 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
   4140 	struct udf_dirhash_entry **result)
   4141 {
   4142 	struct udf_dirhash *dirh;
   4143 	struct udf_dirhash_entry *dirh_e;
   4144 	uint32_t hashvalue, hashline;
   4145 
   4146 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
   4147 
   4148 	/* make sure we have a dirhash to work on */
   4149 	dirh = dir_node->dir_hash;
   4150 	KASSERT(dirh);
   4151 	KASSERT(dirh->refcnt > 0);
   4152 
   4153 	/* start where we were */
   4154 	if (*result) {
   4155 		KASSERT(dir_node->dir_hash);
   4156 		dirh_e = *result;
   4157 
   4158 		/* retrieve information to avoid recalculation and advance */
   4159 		hashvalue = dirh_e->hashvalue;
   4160 		dirh_e = LIST_NEXT(*result, next);
   4161 	} else {
   4162 		/* calculate our hash and lookup all entries in hashline */
   4163 		hashvalue = udf_dirhash_hash(d_name, d_namlen);
   4164 		hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   4165 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   4166 	}
   4167 
   4168 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
   4169 		/* check for hash collision */
   4170 		if (dirh_e->hashvalue != hashvalue)
   4171 			continue;
   4172 		if (dirh_e->d_namlen != d_namlen)
   4173 			continue;
   4174 		/* might have an entry in the cache */
   4175 		*result = dirh_e;
   4176 		return 1;
   4177 	}
   4178 
   4179 	*result = NULL;
   4180 	return 0;
   4181 }
   4182 
   4183 
   4184 /* BUGALERT: don't use result longer than needed, never past the node lock */
   4185 /* call with NULL *result initially and it will return nonzero if again */
   4186 static int
   4187 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
   4188 	struct udf_dirhash_entry **result)
   4189 {
   4190 	struct udf_dirhash *dirh;
   4191 	struct udf_dirhash_entry *dirh_e;
   4192 
   4193 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
   4194 
   4195 	/* make sure we have a dirhash to work on */
   4196 	dirh = dir_node->dir_hash;
   4197 	KASSERT(dirh);
   4198 	KASSERT(dirh->refcnt > 0);
   4199 
   4200 	/* start where we were */
   4201 	if (*result) {
   4202 		KASSERT(dir_node->dir_hash);
   4203 		dirh_e = LIST_NEXT(*result, next);
   4204 	} else {
   4205 		/* lookup all entries that match */
   4206 		dirh_e = LIST_FIRST(&dirh->free_entries);
   4207 	}
   4208 
   4209 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
   4210 		/* check for minimum size */
   4211 		if (dirh_e->fid_size < min_fidsize)
   4212 			continue;
   4213 		/* might be a candidate */
   4214 		*result = dirh_e;
   4215 		return 1;
   4216 	}
   4217 
   4218 	*result = NULL;
   4219 	return 0;
   4220 }
   4221 
   4222 
   4223 static int
   4224 udf_dirhash_fill(struct udf_node *dir_node)
   4225 {
   4226 	struct vnode *dvp = dir_node->vnode;
   4227 	struct udf_dirhash *dirh;
   4228 	struct file_entry    *fe  = dir_node->fe;
   4229 	struct extfile_entry *efe = dir_node->efe;
   4230 	struct fileid_desc *fid;
   4231 	struct dirent *dirent;
   4232 	uint64_t file_size, pre_diroffset, diroffset;
   4233 	uint32_t lb_size;
   4234 	int error;
   4235 
   4236 	/* make sure we have a dirhash to work on */
   4237 	dirh = dir_node->dir_hash;
   4238 	KASSERT(dirh);
   4239 	KASSERT(dirh->refcnt > 0);
   4240 
   4241 	if (dirh->flags & UDF_DIRH_BROKEN)
   4242 		return EIO;
   4243 	if (dirh->flags & UDF_DIRH_COMPLETE)
   4244 		return 0;
   4245 
   4246 	/* make sure we have a clean dirhash to add to */
   4247 	udf_dirhash_purge(dirh);
   4248 
   4249 	/* get directory filesize */
   4250 	if (fe) {
   4251 		file_size = udf_rw64(fe->inf_len);
   4252 	} else {
   4253 		assert(efe);
   4254 		file_size = udf_rw64(efe->inf_len);
   4255 	}
   4256 
   4257 	/* allocate temporary space for fid */
   4258 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4259 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4260 
   4261 	/* allocate temporary space for dirent */
   4262 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4263 
   4264 	error = 0;
   4265 	diroffset = 0;
   4266 	while (diroffset < file_size) {
   4267 		/* transfer a new fid/dirent */
   4268 		pre_diroffset = diroffset;
   4269 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4270 		if (error) {
   4271 			/* TODO what to do? continue but not add? */
   4272 			dirh->flags |= UDF_DIRH_BROKEN;
   4273 			udf_dirhash_purge(dirh);
   4274 			break;
   4275 		}
   4276 
   4277 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4278 			/* register deleted extent for reuse */
   4279 			udf_dirhash_enter_freed(dir_node, pre_diroffset,
   4280 				udf_fidsize(fid));
   4281 		} else {
   4282 			/* append to the dirhash */
   4283 			udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
   4284 				udf_fidsize(fid), 0);
   4285 		}
   4286 	}
   4287 	dirh->flags |= UDF_DIRH_COMPLETE;
   4288 
   4289 	free(fid, M_UDFTEMP);
   4290 	free(dirent, M_UDFTEMP);
   4291 
   4292 	return error;
   4293 }
   4294 
   4295 
   4296 /* --------------------------------------------------------------------- */
   4297 
   4298 /*
   4299  * Directory read and manipulation functions.
   4300  *
   4301  * Note that if the file is found, the cached diroffset position *before* the
   4302  * advance is remembered. Thus if the same filename is lookup again just after
   4303  * this lookup its immediately found.
   4304  */
   4305 
   4306 int
   4307 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4308        struct long_ad *icb_loc, int *found)
   4309 {
   4310 	struct udf_node  *dir_node = VTOI(vp);
   4311 	struct udf_dirhash_entry *dirh_ep;
   4312 	struct fileid_desc *fid;
   4313 	struct dirent *dirent;
   4314 	uint64_t diroffset;
   4315 	uint32_t lb_size;
   4316 	int hit, error;
   4317 
   4318 	/* set default return */
   4319 	*found = 0;
   4320 
   4321 	/* get our dirhash and make sure its read in */
   4322 	udf_dirhash_get(&dir_node->dir_hash);
   4323 	error = udf_dirhash_fill(dir_node);
   4324 	if (error) {
   4325 		udf_dirhash_put(dir_node->dir_hash);
   4326 		return error;
   4327 	}
   4328 
   4329 	/* allocate temporary space for fid */
   4330 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4331 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4332 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4333 
   4334 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4335 		namelen, namelen, name));
   4336 
   4337 	/* search our dirhash hits */
   4338 	memset(icb_loc, 0, sizeof(*icb_loc));
   4339 	dirh_ep = NULL;
   4340 	for (;;) {
   4341 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
   4342 		/* if no hit, abort the search */
   4343 		if (!hit)
   4344 			break;
   4345 
   4346 		/* check this hit */
   4347 		diroffset = dirh_ep->offset;
   4348 
   4349 		/* transfer a new fid/dirent */
   4350 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4351 		if (error)
   4352 			break;
   4353 
   4354 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4355 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4356 
   4357 		/* see if its our entry */
   4358 		KASSERT(dirent->d_namlen == namelen);
   4359 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4360 			*found = 1;
   4361 			*icb_loc = fid->icb;
   4362 			break;
   4363 		}
   4364 	}
   4365 	free(fid, M_UDFTEMP);
   4366 	free(dirent, M_UDFTEMP);
   4367 
   4368 	udf_dirhash_put(dir_node->dir_hash);
   4369 
   4370 	return error;
   4371 }
   4372 
   4373 /* --------------------------------------------------------------------- */
   4374 
   4375 static int
   4376 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4377 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4378 	uint64_t parent_unique_id)
   4379 {
   4380 	struct timespec now;
   4381 	struct icb_tag *icb;
   4382 	struct filetimes_extattr_entry *ft_extattr;
   4383 	uint64_t unique_id;
   4384 	uint32_t fidsize, lb_num;
   4385 	uint8_t *bpos;
   4386 	int crclen, attrlen;
   4387 
   4388 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4389 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4390 	icb = &fe->icbtag;
   4391 
   4392 	/*
   4393 	 * Always use strategy type 4 unless on WORM wich we don't support
   4394 	 * (yet). Fill in defaults and set for internal allocation of data.
   4395 	 */
   4396 	icb->strat_type      = udf_rw16(4);
   4397 	icb->max_num_entries = udf_rw16(1);
   4398 	icb->file_type       = file_type;	/* 8 bit */
   4399 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4400 
   4401 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4402 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4403 
   4404 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4405 
   4406 	vfs_timestamp(&now);
   4407 	udf_timespec_to_timestamp(&now, &fe->atime);
   4408 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4409 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4410 
   4411 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4412 	udf_add_impl_regid(ump, &fe->imp_id);
   4413 
   4414 	unique_id = udf_advance_uniqueid(ump);
   4415 	fe->unique_id = udf_rw64(unique_id);
   4416 	fe->l_ea = udf_rw32(0);
   4417 
   4418 	/* create extended attribute to record our creation time */
   4419 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4420 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4421 	memset(ft_extattr, 0, attrlen);
   4422 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4423 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4424 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4425 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4426 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4427 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4428 
   4429 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4430 		(struct extattr_entry *) ft_extattr);
   4431 	free(ft_extattr, M_UDFTEMP);
   4432 
   4433 	/* if its a directory, create '..' */
   4434 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4435 	fidsize = 0;
   4436 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4437 		fidsize = udf_create_parentfid(ump,
   4438 			(struct fileid_desc *) bpos, parent_icb,
   4439 			parent_unique_id);
   4440 	}
   4441 
   4442 	/* record fidlength information */
   4443 	fe->inf_len = udf_rw64(fidsize);
   4444 	fe->l_ad    = udf_rw32(fidsize);
   4445 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4446 
   4447 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4448 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4449 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4450 
   4451 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4452 
   4453 	return fidsize;
   4454 }
   4455 
   4456 /* --------------------------------------------------------------------- */
   4457 
   4458 static int
   4459 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4460 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4461 	uint64_t parent_unique_id)
   4462 {
   4463 	struct timespec now;
   4464 	struct icb_tag *icb;
   4465 	uint64_t unique_id;
   4466 	uint32_t fidsize, lb_num;
   4467 	uint8_t *bpos;
   4468 	int crclen;
   4469 
   4470 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4471 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4472 	icb = &efe->icbtag;
   4473 
   4474 	/*
   4475 	 * Always use strategy type 4 unless on WORM wich we don't support
   4476 	 * (yet). Fill in defaults and set for internal allocation of data.
   4477 	 */
   4478 	icb->strat_type      = udf_rw16(4);
   4479 	icb->max_num_entries = udf_rw16(1);
   4480 	icb->file_type       = file_type;	/* 8 bit */
   4481 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4482 
   4483 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4484 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4485 
   4486 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4487 
   4488 	vfs_timestamp(&now);
   4489 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4490 	udf_timespec_to_timestamp(&now, &efe->atime);
   4491 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4492 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4493 
   4494 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4495 	udf_add_impl_regid(ump, &efe->imp_id);
   4496 
   4497 	unique_id = udf_advance_uniqueid(ump);
   4498 	efe->unique_id = udf_rw64(unique_id);
   4499 	efe->l_ea = udf_rw32(0);
   4500 
   4501 	/* if its a directory, create '..' */
   4502 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4503 	fidsize = 0;
   4504 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4505 		fidsize = udf_create_parentfid(ump,
   4506 			(struct fileid_desc *) bpos, parent_icb,
   4507 			parent_unique_id);
   4508 	}
   4509 
   4510 	/* record fidlength information */
   4511 	efe->obj_size = udf_rw64(fidsize);
   4512 	efe->inf_len  = udf_rw64(fidsize);
   4513 	efe->l_ad     = udf_rw32(fidsize);
   4514 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4515 
   4516 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4517 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4518 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4519 
   4520 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4521 
   4522 	return fidsize;
   4523 }
   4524 
   4525 /* --------------------------------------------------------------------- */
   4526 
   4527 int
   4528 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4529 	struct udf_node *udf_node, struct componentname *cnp)
   4530 {
   4531 	struct vnode *dvp = dir_node->vnode;
   4532 	struct udf_dirhash_entry *dirh_ep;
   4533 	struct file_entry    *fe  = dir_node->fe;
   4534 	struct extfile_entry *efe = dir_node->efe;
   4535 	struct fileid_desc *fid;
   4536 	struct dirent *dirent;
   4537 	uint64_t file_size, diroffset;
   4538 	uint32_t lb_size, fidsize;
   4539 	int found, error;
   4540 	char const *name  = cnp->cn_nameptr;
   4541 	int namelen = cnp->cn_namelen;
   4542 	int hit, refcnt;
   4543 
   4544 	/* get our dirhash and make sure its read in */
   4545 	udf_dirhash_get(&dir_node->dir_hash);
   4546 	error = udf_dirhash_fill(dir_node);
   4547 	if (error) {
   4548 		udf_dirhash_put(dir_node->dir_hash);
   4549 		return error;
   4550 	}
   4551 
   4552 	/* get directory filesize */
   4553 	if (fe) {
   4554 		file_size = udf_rw64(fe->inf_len);
   4555 	} else {
   4556 		assert(efe);
   4557 		file_size = udf_rw64(efe->inf_len);
   4558 	}
   4559 
   4560 	/* allocate temporary space for fid */
   4561 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4562 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4563 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4564 
   4565 	/* search our dirhash hits */
   4566 	found = 0;
   4567 	dirh_ep = NULL;
   4568 	for (;;) {
   4569 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
   4570 		/* if no hit, abort the search */
   4571 		if (!hit)
   4572 			break;
   4573 
   4574 		/* check this hit */
   4575 		diroffset = dirh_ep->offset;
   4576 
   4577 		/* transfer a new fid/dirent */
   4578 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4579 		if (error)
   4580 			break;
   4581 
   4582 		/* see if its our entry */
   4583 		KASSERT(dirent->d_namlen == namelen);
   4584 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4585 			found = 1;
   4586 			break;
   4587 		}
   4588 	}
   4589 
   4590 	if (!found)
   4591 		error = ENOENT;
   4592 	if (error)
   4593 		goto error_out;
   4594 
   4595 	/* mark deleted */
   4596 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4597 #ifdef UDF_COMPLETE_DELETE
   4598 	memset(&fid->icb, 0, sizeof(fid->icb));
   4599 #endif
   4600 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4601 
   4602 	/* get size of fid and compensate for the read_fid_stream advance */
   4603 	fidsize = udf_fidsize(fid);
   4604 	diroffset -= fidsize;
   4605 
   4606 	/* write out */
   4607 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4608 			fid, fidsize, diroffset,
   4609 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4610 			FSCRED, NULL, NULL);
   4611 	if (error)
   4612 		goto error_out;
   4613 
   4614 	/* get reference count of attached node */
   4615 	if (udf_node->fe) {
   4616 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4617 	} else {
   4618 		KASSERT(udf_node->efe);
   4619 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4620 	}
   4621 #ifdef UDF_COMPLETE_DELETE
   4622 	/* substract reference counter in attached node */
   4623 	refcnt -= 1;
   4624 	if (udf_node->fe) {
   4625 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4626 	} else {
   4627 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4628 	}
   4629 
   4630 	/* prevent writeout when refcnt == 0 */
   4631 	if (refcnt == 0)
   4632 		udf_node->i_flags |= IN_DELETED;
   4633 
   4634 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4635 		int drefcnt;
   4636 
   4637 		/* substract reference counter in directory node */
   4638 		/* note subtract 2 (?) for its was also backreferenced */
   4639 		if (dir_node->fe) {
   4640 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4641 			drefcnt -= 1;
   4642 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4643 		} else {
   4644 			KASSERT(dir_node->efe);
   4645 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4646 			drefcnt -= 1;
   4647 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4648 		}
   4649 	}
   4650 
   4651 	udf_node->i_flags |= IN_MODIFIED;
   4652 	dir_node->i_flags |= IN_MODIFIED;
   4653 #endif
   4654 	/* if it is/was a hardlink adjust the file count */
   4655 	if (refcnt > 0)
   4656 		udf_adjust_filecount(udf_node, -1);
   4657 
   4658 	/* remove from the dirhash */
   4659 	udf_dirhash_remove(dir_node, dirent, diroffset,
   4660 		udf_fidsize(fid));
   4661 
   4662 error_out:
   4663 	free(fid, M_UDFTEMP);
   4664 	free(dirent, M_UDFTEMP);
   4665 
   4666 	udf_dirhash_put(dir_node->dir_hash);
   4667 
   4668 	return error;
   4669 }
   4670 
   4671 /* --------------------------------------------------------------------- */
   4672 
   4673 /*
   4674  * We are not allowed to split the fid tag itself over an logical block so
   4675  * check the space remaining in the logical block.
   4676  *
   4677  * We try to select the smallest candidate for recycling or when none is
   4678  * found, append a new one at the end of the directory.
   4679  */
   4680 
   4681 int
   4682 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   4683 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   4684 {
   4685 	struct vnode *dvp = dir_node->vnode;
   4686 	struct udf_dirhash_entry *dirh_ep;
   4687 	struct fileid_desc   *fid;
   4688 	struct icb_tag       *icbtag;
   4689 	struct charspec osta_charspec;
   4690 	struct dirent   dirent;
   4691 	uint64_t unique_id, dir_size, diroffset;
   4692 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   4693 	uint32_t chosen_size, chosen_size_diff;
   4694 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   4695 	int file_char, refcnt, icbflags, addr_type, hit, error;
   4696 
   4697 	/* get our dirhash and make sure its read in */
   4698 	udf_dirhash_get(&dir_node->dir_hash);
   4699 	error = udf_dirhash_fill(dir_node);
   4700 	if (error) {
   4701 		udf_dirhash_put(dir_node->dir_hash);
   4702 		return error;
   4703 	}
   4704 
   4705 	/* get info */
   4706 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4707 	udf_osta_charset(&osta_charspec);
   4708 
   4709 	if (dir_node->fe) {
   4710 		dir_size = udf_rw64(dir_node->fe->inf_len);
   4711 		icbtag   = &dir_node->fe->icbtag;
   4712 	} else {
   4713 		dir_size = udf_rw64(dir_node->efe->inf_len);
   4714 		icbtag   = &dir_node->efe->icbtag;
   4715 	}
   4716 
   4717 	icbflags   = udf_rw16(icbtag->flags);
   4718 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4719 
   4720 	if (udf_node->fe) {
   4721 		unique_id = udf_rw64(udf_node->fe->unique_id);
   4722 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   4723 	} else {
   4724 		unique_id = udf_rw64(udf_node->efe->unique_id);
   4725 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   4726 	}
   4727 
   4728 	if (refcnt > 0) {
   4729 		unique_id = udf_advance_uniqueid(ump);
   4730 		udf_adjust_filecount(udf_node, 1);
   4731 	}
   4732 
   4733 	/* determine file characteristics */
   4734 	file_char = 0;	/* visible non deleted file and not stream metadata */
   4735 	if (vap->va_type == VDIR)
   4736 		file_char = UDF_FILE_CHAR_DIR;
   4737 
   4738 	/* malloc scrap buffer */
   4739 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   4740 	bzero(fid, lb_size);
   4741 
   4742 	/* calculate _minimum_ fid size */
   4743 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4744 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4745 	fidsize = UDF_FID_SIZE + fid->l_fi;
   4746 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   4747 
   4748 	/* find position that will fit the FID */
   4749 	chosen_fid_pos   = dir_size;
   4750 	chosen_size      = 0;
   4751 	chosen_size_diff = UINT_MAX;
   4752 
   4753 	/* shut up gcc */
   4754 	dirent.d_namlen = 0;
   4755 
   4756 	/* search our dirhash hits */
   4757 	error = 0;
   4758 	dirh_ep = NULL;
   4759 	for (;;) {
   4760 		hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
   4761 		/* if no hit, abort the search */
   4762 		if (!hit)
   4763 			break;
   4764 
   4765 		/* check this hit for size */
   4766 		this_fidsize = dirh_ep->fid_size;
   4767 
   4768 		/* check this hit */
   4769 		fid_pos     = dirh_ep->offset;
   4770 		end_fid_pos = fid_pos + this_fidsize;
   4771 		size_diff   = this_fidsize - fidsize;
   4772 		lb_rest = lb_size - (end_fid_pos % lb_size);
   4773 
   4774 #ifndef UDF_COMPLETE_DELETE
   4775 		/* transfer a new fid/dirent */
   4776 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   4777 		if (error)
   4778 			goto error_out;
   4779 
   4780 		/* only reuse entries that are wiped */
   4781 		/* check if the len + loc are marked zero */
   4782 		if (udf_rw32(fid->icb.len != 0))
   4783 			continue;
   4784 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   4785 			continue;
   4786 		if (udf_rw16(fid->icb.loc.part_num != 0))
   4787 			continue;
   4788 #endif	/* UDF_COMPLETE_DELETE */
   4789 
   4790 		/* select if not splitting the tag and its smaller */
   4791 		if ((size_diff >= 0)  &&
   4792 			(size_diff < chosen_size_diff) &&
   4793 			(lb_rest >= sizeof(struct desc_tag)))
   4794 		{
   4795 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   4796 			if ((size_diff == 0) || (size_diff >= 32)) {
   4797 				chosen_fid_pos   = fid_pos;
   4798 				chosen_size      = this_fidsize;
   4799 				chosen_size_diff = size_diff;
   4800 			}
   4801 		}
   4802 	}
   4803 
   4804 
   4805 	/* extend directory if no other candidate found */
   4806 	if (chosen_size == 0) {
   4807 		chosen_fid_pos   = dir_size;
   4808 		chosen_size      = fidsize;
   4809 		chosen_size_diff = 0;
   4810 
   4811 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   4812 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   4813 			/* pre-grow directory to see if we're to switch */
   4814 			udf_grow_node(dir_node, dir_size + chosen_size);
   4815 
   4816 			icbflags   = udf_rw16(icbtag->flags);
   4817 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4818 		}
   4819 
   4820 		/* make sure the next fid desc_tag won't be splitted */
   4821 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   4822 			end_fid_pos = chosen_fid_pos + chosen_size;
   4823 			lb_rest = lb_size - (end_fid_pos % lb_size);
   4824 
   4825 			/* pad with implementation use regid if needed */
   4826 			if (lb_rest < sizeof(struct desc_tag))
   4827 				chosen_size += 32;
   4828 		}
   4829 	}
   4830 	chosen_size_diff = chosen_size - fidsize;
   4831 	diroffset = chosen_fid_pos + chosen_size;
   4832 
   4833 	/* populate the FID */
   4834 	memset(fid, 0, lb_size);
   4835 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   4836 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   4837 	fid->file_char           = file_char;
   4838 	fid->icb                 = udf_node->loc;
   4839 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   4840 	fid->l_iu                = udf_rw16(0);
   4841 
   4842 	if (chosen_size > fidsize) {
   4843 		/* insert implementation-use regid to space it correctly */
   4844 		fid->l_iu = udf_rw16(chosen_size_diff);
   4845 
   4846 		/* set implementation use */
   4847 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   4848 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   4849 	}
   4850 
   4851 	/* fill in name */
   4852 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   4853 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4854 
   4855 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
   4856 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4857 
   4858 	/* writeout FID/update parent directory */
   4859 	error = vn_rdwr(UIO_WRITE, dvp,
   4860 			fid, chosen_size, chosen_fid_pos,
   4861 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4862 			FSCRED, NULL, NULL);
   4863 
   4864 	if (error)
   4865 		goto error_out;
   4866 
   4867 	/* add reference counter in attached node */
   4868 	if (udf_node->fe) {
   4869 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4870 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   4871 	} else {
   4872 		KASSERT(udf_node->efe);
   4873 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4874 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   4875 	}
   4876 
   4877 	/* mark not deleted if it was... just in case, but do warn */
   4878 	if (udf_node->i_flags & IN_DELETED) {
   4879 		printf("udf: warning, marking a file undeleted\n");
   4880 		udf_node->i_flags &= ~IN_DELETED;
   4881 	}
   4882 
   4883 	if (file_char & UDF_FILE_CHAR_DIR) {
   4884 		/* add reference counter in directory node for '..' */
   4885 		if (dir_node->fe) {
   4886 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   4887 			refcnt++;
   4888 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   4889 		} else {
   4890 			KASSERT(dir_node->efe);
   4891 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   4892 			refcnt++;
   4893 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   4894 		}
   4895 	}
   4896 
   4897 	/* append to the dirhash */
   4898 	dirent.d_namlen = cnp->cn_namelen;
   4899 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
   4900 	udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
   4901 		udf_fidsize(fid), 1);
   4902 
   4903 	/* note updates */
   4904 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   4905 	/* VN_KNOTE(udf_node,  ...) */
   4906 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   4907 
   4908 error_out:
   4909 	free(fid, M_TEMP);
   4910 
   4911 	udf_dirhash_put(dir_node->dir_hash);
   4912 
   4913 	return error;
   4914 }
   4915 
   4916 /* --------------------------------------------------------------------- */
   4917 
   4918 /*
   4919  * Each node can have an attached streamdir node though not recursively. These
   4920  * are otherwise known as named substreams/named extended attributes that have
   4921  * no size limitations.
   4922  *
   4923  * `Normal' extended attributes are indicated with a number and are recorded
   4924  * in either the fe/efe descriptor itself for small descriptors or recorded in
   4925  * the attached extended attribute file. Since these spaces can get
   4926  * fragmented, care ought to be taken.
   4927  *
   4928  * Since the size of the space reserved for allocation descriptors is limited,
   4929  * there is a mechanim provided for extending this space; this is done by a
   4930  * special extent to allow schrinking of the allocations without breaking the
   4931  * linkage to the allocation extent descriptor.
   4932  */
   4933 
   4934 int
   4935 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   4936 	     struct udf_node **udf_noderes)
   4937 {
   4938 	union dscrptr   *dscr;
   4939 	struct udf_node *udf_node;
   4940 	struct vnode    *nvp;
   4941 	struct long_ad   icb_loc, last_fe_icb_loc;
   4942 	uint64_t file_size;
   4943 	uint32_t lb_size, sector, dummy;
   4944 	uint8_t  *file_data;
   4945 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   4946 	int slot, eof, error;
   4947 
   4948 	DPRINTF(NODE, ("udf_get_node called\n"));
   4949 	*udf_noderes = udf_node = NULL;
   4950 
   4951 	/* lock to disallow simultanious creation of same udf_node */
   4952 	mutex_enter(&ump->get_node_lock);
   4953 
   4954 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   4955 	/* lookup in hash table */
   4956 	assert(ump);
   4957 	assert(node_icb_loc);
   4958 	udf_node = udf_hash_lookup(ump, node_icb_loc);
   4959 	if (udf_node) {
   4960 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   4961 		/* vnode is returned locked */
   4962 		*udf_noderes = udf_node;
   4963 		mutex_exit(&ump->get_node_lock);
   4964 		return 0;
   4965 	}
   4966 
   4967 	/* garbage check: translate udf_node_icb_loc to sectornr */
   4968 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   4969 	if (error) {
   4970 		/* no use, this will fail anyway */
   4971 		mutex_exit(&ump->get_node_lock);
   4972 		return EINVAL;
   4973 	}
   4974 
   4975 	/* build udf_node (do initialise!) */
   4976 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   4977 	memset(udf_node, 0, sizeof(struct udf_node));
   4978 
   4979 	DPRINTF(NODE, ("\tget new vnode\n"));
   4980 	/* give it a vnode */
   4981 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   4982         if (error) {
   4983 		pool_put(&udf_node_pool, udf_node);
   4984 		mutex_exit(&ump->get_node_lock);
   4985 		return error;
   4986 	}
   4987 
   4988 	/* always return locked vnode */
   4989 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   4990 		/* recycle vnode and unlock; simultanious will fail too */
   4991 		ungetnewvnode(nvp);
   4992 		mutex_exit(&ump->get_node_lock);
   4993 		return error;
   4994 	}
   4995 
   4996 	/* initialise crosslinks, note location of fe/efe for hashing */
   4997 	udf_node->ump    =  ump;
   4998 	udf_node->vnode  =  nvp;
   4999 	nvp->v_data      =  udf_node;
   5000 	udf_node->loc    = *node_icb_loc;
   5001 	udf_node->lockf  =  0;
   5002 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5003 	cv_init(&udf_node->node_lock, "udf_nlk");
   5004 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   5005 	udf_node->outstanding_bufs = 0;
   5006 	udf_node->outstanding_nodedscr = 0;
   5007 
   5008 	/* insert into the hash lookup */
   5009 	udf_register_node(udf_node);
   5010 
   5011 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   5012 	mutex_exit(&ump->get_node_lock);
   5013 
   5014 	icb_loc = *node_icb_loc;
   5015 	needs_indirect = 0;
   5016 	strat4096 = 0;
   5017 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   5018 	file_size = 0;
   5019 	file_data = NULL;
   5020 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5021 
   5022 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   5023 	do {
   5024 		/* try to read in fe/efe */
   5025 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5026 
   5027 		/* blank sector marks end of sequence, check this */
   5028 		if ((dscr == NULL) &&  (!strat4096))
   5029 			error = ENOENT;
   5030 
   5031 		/* break if read error or blank sector */
   5032 		if (error || (dscr == NULL))
   5033 			break;
   5034 
   5035 		/* process descriptor based on the descriptor type */
   5036 		dscr_type = udf_rw16(dscr->tag.id);
   5037 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   5038 
   5039 		/* if dealing with an indirect entry, follow the link */
   5040 		if (dscr_type == TAGID_INDIRECTENTRY) {
   5041 			needs_indirect = 0;
   5042 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5043 			icb_loc = dscr->inde.indirect_icb;
   5044 			continue;
   5045 		}
   5046 
   5047 		/* only file entries and extended file entries allowed here */
   5048 		if ((dscr_type != TAGID_FENTRY) &&
   5049 		    (dscr_type != TAGID_EXTFENTRY)) {
   5050 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5051 			error = ENOENT;
   5052 			break;
   5053 		}
   5054 
   5055 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   5056 
   5057 		/* choose this one */
   5058 		last_fe_icb_loc = icb_loc;
   5059 
   5060 		/* record and process/update (ext)fentry */
   5061 		file_data = NULL;
   5062 		if (dscr_type == TAGID_FENTRY) {
   5063 			if (udf_node->fe)
   5064 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5065 					udf_node->fe);
   5066 			udf_node->fe  = &dscr->fe;
   5067 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   5068 			udf_file_type = udf_node->fe->icbtag.file_type;
   5069 			file_size = udf_rw64(udf_node->fe->inf_len);
   5070 			file_data = udf_node->fe->data;
   5071 		} else {
   5072 			if (udf_node->efe)
   5073 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5074 					udf_node->efe);
   5075 			udf_node->efe = &dscr->efe;
   5076 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   5077 			udf_file_type = udf_node->efe->icbtag.file_type;
   5078 			file_size = udf_rw64(udf_node->efe->inf_len);
   5079 			file_data = udf_node->efe->data;
   5080 		}
   5081 
   5082 		/* check recording strategy (structure) */
   5083 
   5084 		/*
   5085 		 * Strategy 4096 is a daisy linked chain terminating with an
   5086 		 * unrecorded sector or a TERM descriptor. The next
   5087 		 * descriptor is to be found in the sector that follows the
   5088 		 * current sector.
   5089 		 */
   5090 		if (strat == 4096) {
   5091 			strat4096 = 1;
   5092 			needs_indirect = 1;
   5093 
   5094 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   5095 		}
   5096 
   5097 		/*
   5098 		 * Strategy 4 is the normal strategy and terminates, but if
   5099 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   5100 		 */
   5101 
   5102 		if (strat == 4) {
   5103 			if (strat4096) {
   5104 				error = EINVAL;
   5105 				break;
   5106 			}
   5107 			break;		/* done */
   5108 		}
   5109 	} while (!error);
   5110 
   5111 	/* first round of cleanup code */
   5112 	if (error) {
   5113 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   5114 		/* recycle udf_node */
   5115 		udf_dispose_node(udf_node);
   5116 
   5117 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5118 		nvp->v_data = NULL;
   5119 		ungetnewvnode(nvp);
   5120 
   5121 		return EINVAL;		/* error code ok? */
   5122 	}
   5123 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   5124 
   5125 	/* assert no references to dscr anymore beyong this point */
   5126 	assert((udf_node->fe) || (udf_node->efe));
   5127 	dscr = NULL;
   5128 
   5129 	/*
   5130 	 * Remember where to record an updated version of the descriptor. If
   5131 	 * there is a sequence of indirect entries, icb_loc will have been
   5132 	 * updated. Its the write disipline to allocate new space and to make
   5133 	 * sure the chain is maintained.
   5134 	 *
   5135 	 * `needs_indirect' flags if the next location is to be filled with
   5136 	 * with an indirect entry.
   5137 	 */
   5138 	udf_node->write_loc = icb_loc;
   5139 	udf_node->needs_indirect = needs_indirect;
   5140 
   5141 	/*
   5142 	 * Go trough all allocations extents of this descriptor and when
   5143 	 * encountering a redirect read in the allocation extension. These are
   5144 	 * daisy-chained.
   5145 	 */
   5146 	UDF_LOCK_NODE(udf_node, 0);
   5147 	udf_node->num_extensions = 0;
   5148 
   5149 	error   = 0;
   5150 	slot    = 0;
   5151 	for (;;) {
   5152 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   5153 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   5154 			"lb_num = %d, part = %d\n", slot, eof,
   5155 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   5156 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   5157 			udf_rw32(icb_loc.loc.lb_num),
   5158 			udf_rw16(icb_loc.loc.part_num)));
   5159 		if (eof)
   5160 			break;
   5161 		slot++;
   5162 
   5163 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   5164 			continue;
   5165 
   5166 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   5167 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   5168 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   5169 					"too many allocation extensions on "
   5170 					"udf_node\n"));
   5171 			error = EINVAL;
   5172 			break;
   5173 		}
   5174 
   5175 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   5176 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   5177 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   5178 					"extension size in udf_node\n"));
   5179 			error = EINVAL;
   5180 			break;
   5181 		}
   5182 
   5183 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   5184 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   5185 		/* load in allocation extent */
   5186 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5187 		if (error || (dscr == NULL))
   5188 			break;
   5189 
   5190 		/* process read-in descriptor */
   5191 		dscr_type = udf_rw16(dscr->tag.id);
   5192 
   5193 		if (dscr_type != TAGID_ALLOCEXTENT) {
   5194 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5195 			error = ENOENT;
   5196 			break;
   5197 		}
   5198 
   5199 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5200 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5201 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5202 
   5203 		udf_node->num_extensions++;
   5204 
   5205 	} /* while */
   5206 	UDF_UNLOCK_NODE(udf_node, 0);
   5207 
   5208 	/* second round of cleanup code */
   5209 	if (error) {
   5210 		/* recycle udf_node */
   5211 		udf_dispose_node(udf_node);
   5212 
   5213 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5214 		nvp->v_data = NULL;
   5215 		ungetnewvnode(nvp);
   5216 
   5217 		return EINVAL;		/* error code ok? */
   5218 	}
   5219 
   5220 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5221 
   5222 	/*
   5223 	 * Translate UDF filetypes into vnode types.
   5224 	 *
   5225 	 * Systemfiles like the meta main and mirror files are not treated as
   5226 	 * normal files, so we type them as having no type. UDF dictates that
   5227 	 * they are not allowed to be visible.
   5228 	 */
   5229 
   5230 	switch (udf_file_type) {
   5231 	case UDF_ICB_FILETYPE_DIRECTORY :
   5232 	case UDF_ICB_FILETYPE_STREAMDIR :
   5233 		nvp->v_type = VDIR;
   5234 		break;
   5235 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5236 		nvp->v_type = VBLK;
   5237 		break;
   5238 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5239 		nvp->v_type = VCHR;
   5240 		break;
   5241 	case UDF_ICB_FILETYPE_SOCKET :
   5242 		nvp->v_type = VSOCK;
   5243 		break;
   5244 	case UDF_ICB_FILETYPE_FIFO :
   5245 		nvp->v_type = VFIFO;
   5246 		break;
   5247 	case UDF_ICB_FILETYPE_SYMLINK :
   5248 		nvp->v_type = VLNK;
   5249 		break;
   5250 	case UDF_ICB_FILETYPE_VAT :
   5251 	case UDF_ICB_FILETYPE_META_MAIN :
   5252 	case UDF_ICB_FILETYPE_META_MIRROR :
   5253 		nvp->v_type = VNON;
   5254 		break;
   5255 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5256 	case UDF_ICB_FILETYPE_REALTIME :
   5257 		nvp->v_type = VREG;
   5258 		break;
   5259 	default:
   5260 		/* YIKES, something else */
   5261 		nvp->v_type = VNON;
   5262 	}
   5263 
   5264 	/* TODO specfs, fifofs etc etc. vnops setting */
   5265 
   5266 	/* don't forget to set vnode's v_size */
   5267 	uvm_vnp_setsize(nvp, file_size);
   5268 
   5269 	/* TODO ext attr and streamdir udf_nodes */
   5270 
   5271 	*udf_noderes = udf_node;
   5272 
   5273 	return 0;
   5274 }
   5275 
   5276 /* --------------------------------------------------------------------- */
   5277 
   5278 
   5279 int
   5280 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5281 {
   5282 	union dscrptr *dscr;
   5283 	struct long_ad *loc;
   5284 	int extnr, flags, error;
   5285 
   5286 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5287 
   5288 	KASSERT(udf_node->outstanding_bufs == 0);
   5289 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5290 
   5291 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5292 
   5293 	if (udf_node->i_flags & IN_DELETED) {
   5294 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5295 		return 0;
   5296 	}
   5297 
   5298 	/* lock node */
   5299 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
   5300 	UDF_LOCK_NODE(udf_node, flags);
   5301 
   5302 	/* at least one descriptor writeout */
   5303 	udf_node->outstanding_nodedscr = 1;
   5304 
   5305 	/* we're going to write out the descriptor so clear the flags */
   5306 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5307 
   5308 	/* if we were rebuild, write out the allocation extents */
   5309 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5310 		/* mark outstanding node dscriptors and issue them */
   5311 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5312 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5313 			loc = &udf_node->ext_loc[extnr];
   5314 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5315 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5316 			if (error)
   5317 				return error;
   5318 		}
   5319 		/* mark allocation extents written out */
   5320 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5321 	}
   5322 
   5323 	if (udf_node->fe) {
   5324 		dscr = (union dscrptr *) udf_node->fe;
   5325 	} else {
   5326 		KASSERT(udf_node->efe);
   5327 		dscr = (union dscrptr *) udf_node->efe;
   5328 	}
   5329 	KASSERT(dscr);
   5330 
   5331 	loc = &udf_node->write_loc;
   5332 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5333 	return error;
   5334 }
   5335 
   5336 /* --------------------------------------------------------------------- */
   5337 
   5338 int
   5339 udf_dispose_node(struct udf_node *udf_node)
   5340 {
   5341 	struct vnode *vp;
   5342 	int extnr;
   5343 
   5344 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5345 	if (!udf_node) {
   5346 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5347 		return 0;
   5348 	}
   5349 
   5350 	vp  = udf_node->vnode;
   5351 #ifdef DIAGNOSTIC
   5352 	if (vp->v_numoutput)
   5353 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5354 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5355 #endif
   5356 
   5357 	/* wait until out of sync (just in case we happen to stumble over one */
   5358 	KASSERT(!mutex_owned(&mntvnode_lock));
   5359 	mutex_enter(&mntvnode_lock);
   5360 	while (udf_node->i_flags & IN_SYNCED) {
   5361 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
   5362 			hz/16);
   5363 	}
   5364 	mutex_exit(&mntvnode_lock);
   5365 
   5366 	/* TODO extended attributes and streamdir */
   5367 
   5368 	/* remove dirhash if present */
   5369 	udf_dirhash_destroy(&udf_node->dir_hash);
   5370 
   5371 	/* remove from our hash lookup table */
   5372 	udf_deregister_node(udf_node);
   5373 
   5374 	/* destroy our lock */
   5375 	mutex_destroy(&udf_node->node_mutex);
   5376 	cv_destroy(&udf_node->node_lock);
   5377 
   5378 	/* dissociate our udf_node from the vnode */
   5379 	genfs_node_destroy(udf_node->vnode);
   5380 	vp->v_data = NULL;
   5381 
   5382 	/* free associated memory and the node itself */
   5383 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5384 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5385 			udf_node->ext[extnr]);
   5386 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5387 	}
   5388 
   5389 	if (udf_node->fe)
   5390 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5391 			udf_node->fe);
   5392 	if (udf_node->efe)
   5393 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5394 			udf_node->efe);
   5395 
   5396 	udf_node->fe  = (void *) 0xdeadaaaa;
   5397 	udf_node->efe = (void *) 0xdeadbbbb;
   5398 	udf_node->ump = (void *) 0xdeadbeef;
   5399 	pool_put(&udf_node_pool, udf_node);
   5400 
   5401 	return 0;
   5402 }
   5403 
   5404 
   5405 
   5406 /*
   5407  * create a new node using the specified vnodeops, vap and cnp but with the
   5408  * udf_file_type. This allows special files to be created. Use with care.
   5409  */
   5410 
   5411 static int
   5412 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5413 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5414 {
   5415 	union dscrptr *dscr;
   5416 	struct udf_node *dir_node = VTOI(dvp);;
   5417 	struct udf_node *udf_node;
   5418 	struct udf_mount *ump = dir_node->ump;
   5419 	struct vnode *nvp;
   5420 	struct long_ad node_icb_loc;
   5421 	uint64_t parent_unique_id;
   5422 	uint64_t lmapping, pmapping;
   5423 	uint32_t lb_size, lb_num;
   5424 	uint16_t vpart_num;
   5425 	uid_t uid;
   5426 	gid_t gid, parent_gid;
   5427 	int fid_size, error;
   5428 
   5429 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5430 	*vpp = NULL;
   5431 
   5432 	/* allocate vnode */
   5433 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5434         if (error)
   5435 		return error;
   5436 
   5437 	/* lock node */
   5438 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5439 	if (error) {
   5440 		nvp->v_data = NULL;
   5441 		ungetnewvnode(nvp);
   5442 		return error;
   5443 	}
   5444 
   5445 	/* get disc allocation for one logical block */
   5446 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
   5447 			&vpart_num, &lmapping, &pmapping);
   5448 	lb_num = lmapping;
   5449 	if (error) {
   5450 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5451 		ungetnewvnode(nvp);
   5452 		return error;
   5453 	}
   5454 
   5455 	/* initialise pointer to location */
   5456 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5457 	node_icb_loc.len = lb_size;
   5458 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5459 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5460 
   5461 	/* build udf_node (do initialise!) */
   5462 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5463 	memset(udf_node, 0, sizeof(struct udf_node));
   5464 
   5465 	/* initialise crosslinks, note location of fe/efe for hashing */
   5466 	/* bugalert: synchronise with udf_get_node() */
   5467 	udf_node->ump       = ump;
   5468 	udf_node->vnode     = nvp;
   5469 	nvp->v_data         = udf_node;
   5470 	udf_node->loc       = node_icb_loc;
   5471 	udf_node->write_loc = node_icb_loc;
   5472 	udf_node->lockf     = 0;
   5473 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5474 	cv_init(&udf_node->node_lock, "udf_nlk");
   5475 	udf_node->outstanding_bufs = 0;
   5476 	udf_node->outstanding_nodedscr = 0;
   5477 
   5478 	/* initialise genfs */
   5479 	genfs_node_init(nvp, &udf_genfsops);
   5480 
   5481 	/* insert into the hash lookup */
   5482 	udf_register_node(udf_node);
   5483 
   5484 	/* get parent's unique ID for refering '..' if its a directory */
   5485 	if (dir_node->fe) {
   5486 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5487 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5488 	} else {
   5489 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5490 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5491 	}
   5492 
   5493 	/* get descriptor */
   5494 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5495 
   5496 	/* choose a fe or an efe for it */
   5497 	if (ump->logical_vol->tag.descriptor_ver == 2) {
   5498 		udf_node->fe = &dscr->fe;
   5499 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5500 			udf_file_type, &udf_node->loc,
   5501 			&dir_node->loc, parent_unique_id);
   5502 		/* TODO add extended attribute for creation time */
   5503 	} else {
   5504 		udf_node->efe = &dscr->efe;
   5505 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5506 			udf_file_type, &udf_node->loc,
   5507 			&dir_node->loc, parent_unique_id);
   5508 	}
   5509 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5510 
   5511 	/* update vnode's size and type */
   5512 	nvp->v_type = vap->va_type;
   5513 	uvm_vnp_setsize(nvp, fid_size);
   5514 
   5515 	/* set access mode */
   5516 	udf_setaccessmode(udf_node, vap->va_mode);
   5517 
   5518 	/* set ownership */
   5519 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5520 	gid = parent_gid;
   5521 	udf_setownership(udf_node, uid, gid);
   5522 
   5523 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5524 	if (error) {
   5525 		/* free disc allocation for node */
   5526 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5527 
   5528 		/* recycle udf_node */
   5529 		udf_dispose_node(udf_node);
   5530 		vput(nvp);
   5531 
   5532 		*vpp = NULL;
   5533 		return error;
   5534 	}
   5535 
   5536 	/* adjust file count */
   5537 	udf_adjust_filecount(udf_node, 1);
   5538 
   5539 	/* return result */
   5540 	*vpp = nvp;
   5541 
   5542 	return 0;
   5543 }
   5544 
   5545 
   5546 int
   5547 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5548 	struct componentname *cnp)
   5549 {
   5550 	int (**vnodeops)(void *);
   5551 	int udf_file_type;
   5552 
   5553 	DPRINTF(NODE, ("udf_create_node called\n"));
   5554 
   5555 	/* what type are we creating ? */
   5556 	vnodeops = udf_vnodeop_p;
   5557 	/* start with a default */
   5558 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5559 
   5560 	*vpp = NULL;
   5561 
   5562 	switch (vap->va_type) {
   5563 	case VREG :
   5564 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5565 		break;
   5566 	case VDIR :
   5567 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5568 		break;
   5569 	case VLNK :
   5570 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5571 		break;
   5572 	case VBLK :
   5573 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5574 		/* specfs */
   5575 		return ENOTSUP;
   5576 		break;
   5577 	case VCHR :
   5578 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5579 		/* specfs */
   5580 		return ENOTSUP;
   5581 		break;
   5582 	case VFIFO :
   5583 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5584 		/* specfs */
   5585 		return ENOTSUP;
   5586 		break;
   5587 	case VSOCK :
   5588 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5589 		/* specfs */
   5590 		return ENOTSUP;
   5591 		break;
   5592 	case VNON :
   5593 	case VBAD :
   5594 	default :
   5595 		/* nothing; can we even create these? */
   5596 		return EINVAL;
   5597 	}
   5598 
   5599 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5600 }
   5601 
   5602 /* --------------------------------------------------------------------- */
   5603 
   5604 static void
   5605 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5606 {
   5607 	struct udf_mount *ump = udf_node->ump;
   5608 	uint32_t lb_size, lb_num, len, num_lb;
   5609 	uint16_t vpart_num;
   5610 
   5611 	/* is there really one? */
   5612 	if (mem == NULL)
   5613 		return;
   5614 
   5615 	/* got a descriptor here */
   5616 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5617 	lb_num    = udf_rw32(loc->loc.lb_num);
   5618 	vpart_num = udf_rw16(loc->loc.part_num);
   5619 
   5620 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5621 	num_lb = (len + lb_size -1) / lb_size;
   5622 
   5623 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5624 }
   5625 
   5626 void
   5627 udf_delete_node(struct udf_node *udf_node)
   5628 {
   5629 	void *dscr;
   5630 	struct udf_mount *ump;
   5631 	struct long_ad *loc;
   5632 	int extnr, lvint, dummy;
   5633 
   5634 	ump = udf_node->ump;
   5635 
   5636 	/* paranoia check on integrity; should be open!; we could panic */
   5637 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5638 	if (lvint == UDF_INTEGRITY_CLOSED)
   5639 		printf("\tIntegrity was CLOSED!\n");
   5640 
   5641 	/* whatever the node type, change its size to zero */
   5642 	(void) udf_resize_node(udf_node, 0, &dummy);
   5643 
   5644 	/* force it to be `clean'; no use writing it out */
   5645 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   5646 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5647 
   5648 	/* adjust file count */
   5649 	udf_adjust_filecount(udf_node, -1);
   5650 
   5651 	/*
   5652 	 * Free its allocated descriptors; memory will be released when
   5653 	 * vop_reclaim() is called.
   5654 	 */
   5655 	loc = &udf_node->loc;
   5656 
   5657 	dscr = udf_node->fe;
   5658 	udf_free_descriptor_space(udf_node, loc, dscr);
   5659 	dscr = udf_node->efe;
   5660 	udf_free_descriptor_space(udf_node, loc, dscr);
   5661 
   5662 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   5663 		dscr =  udf_node->ext[extnr];
   5664 		loc  = &udf_node->ext_loc[extnr];
   5665 		udf_free_descriptor_space(udf_node, loc, dscr);
   5666 	}
   5667 }
   5668 
   5669 /* --------------------------------------------------------------------- */
   5670 
   5671 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   5672 int
   5673 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   5674 {
   5675 	struct file_entry    *fe  = udf_node->fe;
   5676 	struct extfile_entry *efe = udf_node->efe;
   5677 	uint64_t file_size;
   5678 	int error;
   5679 
   5680 	if (fe) {
   5681 		file_size  = udf_rw64(fe->inf_len);
   5682 	} else {
   5683 		assert(udf_node->efe);
   5684 		file_size  = udf_rw64(efe->inf_len);
   5685 	}
   5686 
   5687 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   5688 			file_size, new_size));
   5689 
   5690 	/* if not changing, we're done */
   5691 	if (file_size == new_size)
   5692 		return 0;
   5693 
   5694 	*extended = (new_size > file_size);
   5695 	if (*extended) {
   5696 		error = udf_grow_node(udf_node, new_size);
   5697 	} else {
   5698 		error = udf_shrink_node(udf_node, new_size);
   5699 	}
   5700 
   5701 	return error;
   5702 }
   5703 
   5704 
   5705 /* --------------------------------------------------------------------- */
   5706 
   5707 void
   5708 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   5709 	struct timespec *mod, struct timespec *birth)
   5710 {
   5711 	struct timespec now;
   5712 	struct file_entry    *fe;
   5713 	struct extfile_entry *efe;
   5714 	struct filetimes_extattr_entry *ft_extattr;
   5715 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   5716 	struct timestamp  fe_ctime;
   5717 	struct timespec   cur_birth;
   5718 	uint32_t offset, a_l;
   5719 	uint8_t *filedata;
   5720 	int error;
   5721 
   5722 	/* protect against rogue values */
   5723 	if (!udf_node)
   5724 		return;
   5725 
   5726 	fe  = udf_node->fe;
   5727 	efe = udf_node->efe;
   5728 
   5729 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   5730 		return;
   5731 
   5732 	/* get descriptor information */
   5733 	if (fe) {
   5734 		atime    = &fe->atime;
   5735 		mtime    = &fe->mtime;
   5736 		attrtime = &fe->attrtime;
   5737 		filedata = fe->data;
   5738 
   5739 		/* initial save dummy setting */
   5740 		ctime    = &fe_ctime;
   5741 
   5742 		/* check our extended attribute if present */
   5743 		error = udf_extattr_search_intern(udf_node,
   5744 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   5745 		if (!error) {
   5746 			ft_extattr = (struct filetimes_extattr_entry *)
   5747 				(filedata + offset);
   5748 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   5749 				ctime = &ft_extattr->times[0];
   5750 		}
   5751 		/* TODO create the extended attribute if not found ? */
   5752 	} else {
   5753 		assert(udf_node->efe);
   5754 		atime    = &efe->atime;
   5755 		mtime    = &efe->mtime;
   5756 		attrtime = &efe->attrtime;
   5757 		ctime    = &efe->ctime;
   5758 	}
   5759 
   5760 	vfs_timestamp(&now);
   5761 
   5762 	/* set access time */
   5763 	if (udf_node->i_flags & IN_ACCESS) {
   5764 		if (acc == NULL)
   5765 			acc = &now;
   5766 		udf_timespec_to_timestamp(acc, atime);
   5767 	}
   5768 
   5769 	/* set modification time */
   5770 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   5771 		if (mod == NULL)
   5772 			mod = &now;
   5773 		udf_timespec_to_timestamp(mod, mtime);
   5774 
   5775 		/* ensure birthtime is older than set modification! */
   5776 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   5777 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   5778 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   5779 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   5780 			udf_timespec_to_timestamp(mod, ctime);
   5781 		}
   5782 	}
   5783 
   5784 	/* update birthtime if specified */
   5785 	/* XXX we asume here that given birthtime is older than mod */
   5786 	if (birth && (birth->tv_sec != VNOVAL)) {
   5787 		udf_timespec_to_timestamp(birth, ctime);
   5788 	}
   5789 
   5790 	/* set change time */
   5791 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   5792 		udf_timespec_to_timestamp(&now, attrtime);
   5793 
   5794 	/* notify updates to the node itself */
   5795 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   5796 		udf_node->i_flags |= IN_ACCESSED;
   5797 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   5798 		udf_node->i_flags |= IN_MODIFIED;
   5799 
   5800 	/* clear modification flags */
   5801 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5802 }
   5803 
   5804 /* --------------------------------------------------------------------- */
   5805 
   5806 int
   5807 udf_update(struct vnode *vp, struct timespec *acc,
   5808 	struct timespec *mod, struct timespec *birth, int updflags)
   5809 {
   5810 	struct udf_node  *udf_node = VTOI(vp);
   5811 	struct udf_mount *ump = udf_node->ump;
   5812 	struct regid     *impl_id;
   5813 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   5814 	int waitfor, flags;
   5815 
   5816 #ifdef DEBUG
   5817 	char bits[128];
   5818 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   5819 		updflags));
   5820 	bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
   5821 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   5822 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   5823 #endif
   5824 
   5825 	/* set our times */
   5826 	udf_itimes(udf_node, acc, mod, birth);
   5827 
   5828 	/* set our implementation id */
   5829 	if (udf_node->fe) {
   5830 		impl_id = &udf_node->fe->imp_id;
   5831 	} else {
   5832 		impl_id = &udf_node->efe->imp_id;
   5833 	}
   5834 	udf_set_regid(impl_id, IMPL_NAME);
   5835 	udf_add_impl_regid(ump, impl_id);
   5836 
   5837 	/* if called when mounted readonly, never write back */
   5838 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   5839 		return 0;
   5840 
   5841 	/* check if the node is dirty 'enough'*/
   5842 	if (updflags & UPDATE_CLOSE) {
   5843 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   5844 	} else {
   5845 		flags = udf_node->i_flags & IN_MODIFIED;
   5846 	}
   5847 	if (flags == 0)
   5848 		return 0;
   5849 
   5850 	/* determine if we need to write sync or async */
   5851 	waitfor = 0;
   5852 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   5853 		/* sync mounted */
   5854 		waitfor = updflags & UPDATE_WAIT;
   5855 		if (updflags & UPDATE_DIROP)
   5856 			waitfor |= UPDATE_WAIT;
   5857 	}
   5858 	if (waitfor)
   5859 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   5860 
   5861 	return 0;
   5862 }
   5863 
   5864 
   5865 /* --------------------------------------------------------------------- */
   5866 
   5867 
   5868 /*
   5869  * Read one fid and process it into a dirent and advance to the next (*fid)
   5870  * has to be allocated a logical block in size, (*dirent) struct dirent length
   5871  */
   5872 
   5873 int
   5874 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   5875 		    struct fileid_desc *fid, struct dirent *dirent)
   5876 {
   5877 	struct udf_node  *dir_node = VTOI(vp);
   5878 	struct udf_mount *ump = dir_node->ump;
   5879 	struct file_entry    *fe  = dir_node->fe;
   5880 	struct extfile_entry *efe = dir_node->efe;
   5881 	uint32_t      fid_size, lb_size;
   5882 	uint64_t      file_size;
   5883 	char         *fid_name;
   5884 	int           enough, error;
   5885 
   5886 	assert(fid);
   5887 	assert(dirent);
   5888 	assert(dir_node);
   5889 	assert(offset);
   5890 	assert(*offset != 1);
   5891 
   5892 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   5893 	/* check if we're past the end of the directory */
   5894 	if (fe) {
   5895 		file_size = udf_rw64(fe->inf_len);
   5896 	} else {
   5897 		assert(dir_node->efe);
   5898 		file_size = udf_rw64(efe->inf_len);
   5899 	}
   5900 	if (*offset >= file_size)
   5901 		return EINVAL;
   5902 
   5903 	/* get maximum length of FID descriptor */
   5904 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5905 
   5906 	/* initialise return values */
   5907 	fid_size = 0;
   5908 	memset(dirent, 0, sizeof(struct dirent));
   5909 	memset(fid, 0, lb_size);
   5910 
   5911 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   5912 	if (!enough) {
   5913 		/* short dir ... */
   5914 		return EIO;
   5915 	}
   5916 
   5917 	error = vn_rdwr(UIO_READ, vp,
   5918 			fid, MIN(file_size - (*offset), lb_size), *offset,
   5919 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   5920 			NULL, NULL);
   5921 	if (error)
   5922 		return error;
   5923 
   5924 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   5925 	/*
   5926 	 * Check if we got a whole descriptor.
   5927 	 * TODO Try to `resync' directory stream when something is very wrong.
   5928 	 */
   5929 
   5930 	/* check if our FID header is OK */
   5931 	error = udf_check_tag(fid);
   5932 	if (error) {
   5933 		goto brokendir;
   5934 	}
   5935 	DPRINTF(FIDS, ("\ttag check ok\n"));
   5936 
   5937 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   5938 		error = EIO;
   5939 		goto brokendir;
   5940 	}
   5941 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   5942 
   5943 	/* check for length */
   5944 	fid_size = udf_fidsize(fid);
   5945 	enough = (file_size - (*offset) >= fid_size);
   5946 	if (!enough) {
   5947 		error = EIO;
   5948 		goto brokendir;
   5949 	}
   5950 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   5951 
   5952 	/* check FID contents */
   5953 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   5954 brokendir:
   5955 	if (error) {
   5956 		/* note that is sometimes a bit quick to report */
   5957 		printf("BROKEN DIRECTORY ENTRY\n");
   5958 		/* RESYNC? */
   5959 		/* TODO: use udf_resync_fid_stream */
   5960 		return EIO;
   5961 	}
   5962 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   5963 
   5964 	/* we got a whole and valid descriptor! */
   5965 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   5966 
   5967 	/* create resulting dirent structure */
   5968 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   5969 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   5970 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   5971 
   5972 	/* '..' has no name, so provide one */
   5973 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   5974 		strcpy(dirent->d_name, "..");
   5975 
   5976 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   5977 	dirent->d_namlen = strlen(dirent->d_name);
   5978 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   5979 
   5980 	/*
   5981 	 * Note that its not worth trying to go for the filetypes now... its
   5982 	 * too expensive too
   5983 	 */
   5984 	dirent->d_type = DT_UNKNOWN;
   5985 
   5986 	/* initial guess for filetype we can make */
   5987 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   5988 		dirent->d_type = DT_DIR;
   5989 
   5990 	/* advance */
   5991 	*offset += fid_size;
   5992 
   5993 	return error;
   5994 }
   5995 
   5996 
   5997 /* --------------------------------------------------------------------- */
   5998 
   5999 static void
   6000 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   6001 	int pass, int *ndirty)
   6002 {
   6003 	struct udf_node *udf_node, *n_udf_node;
   6004 	struct vnode *vp;
   6005 	int vdirty, error;
   6006 	int on_type, on_flags, on_vnode;
   6007 
   6008 derailed:
   6009 	KASSERT(mutex_owned(&mntvnode_lock));
   6010 
   6011 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   6012 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
   6013 	for (;udf_node; udf_node = n_udf_node) {
   6014 		DPRINTF(SYNC, ("."));
   6015 
   6016 		udf_node->i_flags &= ~IN_SYNCED;
   6017 		vp = udf_node->vnode;
   6018 
   6019 		mutex_enter(&vp->v_interlock);
   6020 		n_udf_node = LIST_NEXT(udf_node, sortchain);
   6021 		if (n_udf_node)
   6022 			n_udf_node->i_flags |= IN_SYNCED;
   6023 
   6024 		/* system nodes are not synced this way */
   6025 		if (vp->v_vflag & VV_SYSTEM) {
   6026 			mutex_exit(&vp->v_interlock);
   6027 			continue;
   6028 		}
   6029 
   6030 		/* check if its dirty enough to even try */
   6031 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   6032 		on_flags = ((udf_node->i_flags &
   6033 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   6034 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   6035 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   6036 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   6037 			/* not dirty (enough?) */
   6038 			mutex_exit(&vp->v_interlock);
   6039 			continue;
   6040 		}
   6041 
   6042 		mutex_exit(&mntvnode_lock);
   6043 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   6044 		if (error) {
   6045 			mutex_enter(&mntvnode_lock);
   6046 			if (error == ENOENT)
   6047 				goto derailed;
   6048 			*ndirty += 1;
   6049 			continue;
   6050 		}
   6051 
   6052 		switch (pass) {
   6053 		case 1:
   6054 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   6055 			break;
   6056 		case 2:
   6057 			vdirty = vp->v_numoutput;
   6058 			if (vp->v_tag == VT_UDF)
   6059 				vdirty += udf_node->outstanding_bufs +
   6060 					udf_node->outstanding_nodedscr;
   6061 			if (vdirty == 0)
   6062 				VOP_FSYNC(vp, cred, 0,0,0);
   6063 			*ndirty += vdirty;
   6064 			break;
   6065 		case 3:
   6066 			vdirty = vp->v_numoutput;
   6067 			if (vp->v_tag == VT_UDF)
   6068 				vdirty += udf_node->outstanding_bufs +
   6069 					udf_node->outstanding_nodedscr;
   6070 			*ndirty += vdirty;
   6071 			break;
   6072 		}
   6073 
   6074 		vput(vp);
   6075 		mutex_enter(&mntvnode_lock);
   6076 	}
   6077 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   6078 }
   6079 
   6080 
   6081 void
   6082 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   6083 {
   6084 	int dummy, ndirty;
   6085 
   6086 	mutex_enter(&mntvnode_lock);
   6087 recount:
   6088 	dummy = 0;
   6089 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6090 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6091 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   6092 
   6093 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6094 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6095 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   6096 
   6097 	if (waitfor == MNT_WAIT) {
   6098 		ndirty = ump->devvp->v_numoutput;
   6099 		DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
   6100 			ndirty));
   6101 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   6102 		DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
   6103 			ndirty));
   6104 
   6105 		if (ndirty) {
   6106 			/* 1/4 second wait */
   6107 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   6108 				hz/4);
   6109 			goto recount;
   6110 		}
   6111 	}
   6112 
   6113 	mutex_exit(&mntvnode_lock);
   6114 }
   6115 
   6116 /* --------------------------------------------------------------------- */
   6117 
   6118 /*
   6119  * Read and write file extent in/from the buffer.
   6120  *
   6121  * The splitup of the extent into seperate request-buffers is to minimise
   6122  * copying around as much as possible.
   6123  *
   6124  * block based file reading and writing
   6125  */
   6126 
   6127 static int
   6128 udf_read_internal(struct udf_node *node, uint8_t *blob)
   6129 {
   6130 	struct udf_mount *ump;
   6131 	struct file_entry     *fe = node->fe;
   6132 	struct extfile_entry *efe = node->efe;
   6133 	uint64_t inflen;
   6134 	uint32_t sector_size;
   6135 	uint8_t  *pos;
   6136 	int icbflags, addr_type;
   6137 
   6138 	/* get extent and do some paranoia checks */
   6139 	ump = node->ump;
   6140 	sector_size = ump->discinfo.sector_size;
   6141 
   6142 	if (fe) {
   6143 		inflen   = udf_rw64(fe->inf_len);
   6144 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6145 		icbflags = udf_rw16(fe->icbtag.flags);
   6146 	} else {
   6147 		assert(node->efe);
   6148 		inflen   = udf_rw64(efe->inf_len);
   6149 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6150 		icbflags = udf_rw16(efe->icbtag.flags);
   6151 	}
   6152 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6153 
   6154 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6155 	assert(inflen < sector_size);
   6156 
   6157 	/* copy out info */
   6158 	memset(blob, 0, sector_size);
   6159 	memcpy(blob, pos, inflen);
   6160 
   6161 	return 0;
   6162 }
   6163 
   6164 
   6165 static int
   6166 udf_write_internal(struct udf_node *node, uint8_t *blob)
   6167 {
   6168 	struct udf_mount *ump;
   6169 	struct file_entry     *fe = node->fe;
   6170 	struct extfile_entry *efe = node->efe;
   6171 	uint64_t inflen;
   6172 	uint32_t sector_size;
   6173 	uint8_t  *pos;
   6174 	int icbflags, addr_type;
   6175 
   6176 	/* get extent and do some paranoia checks */
   6177 	ump = node->ump;
   6178 	sector_size = ump->discinfo.sector_size;
   6179 
   6180 	if (fe) {
   6181 		inflen   = udf_rw64(fe->inf_len);
   6182 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6183 		icbflags = udf_rw16(fe->icbtag.flags);
   6184 	} else {
   6185 		assert(node->efe);
   6186 		inflen   = udf_rw64(efe->inf_len);
   6187 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6188 		icbflags = udf_rw16(efe->icbtag.flags);
   6189 	}
   6190 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6191 
   6192 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6193 	assert(inflen < sector_size);
   6194 
   6195 	/* copy in blob */
   6196 	/* memset(pos, 0, inflen); */
   6197 	memcpy(pos, blob, inflen);
   6198 
   6199 	return 0;
   6200 }
   6201 
   6202 
   6203 void
   6204 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6205 {
   6206 	struct buf *nestbuf;
   6207 	struct udf_mount *ump = udf_node->ump;
   6208 	uint64_t   *mapping;
   6209 	uint64_t    run_start;
   6210 	uint32_t    sector_size;
   6211 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6212 	uint32_t    from, lblkno;
   6213 	uint32_t    sectors;
   6214 	uint8_t    *buf_pos;
   6215 	int error, run_length, isdir, what;
   6216 
   6217 	sector_size = udf_node->ump->discinfo.sector_size;
   6218 
   6219 	from    = buf->b_blkno;
   6220 	sectors = buf->b_bcount / sector_size;
   6221 
   6222 	isdir   = (udf_node->vnode->v_type == VDIR);
   6223 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6224 
   6225 	/* assure we have enough translation slots */
   6226 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6227 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6228 
   6229 	if (sectors > UDF_MAX_MAPPINGS) {
   6230 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6231 		buf->b_error  = EIO;
   6232 		biodone(buf);
   6233 		return;
   6234 	}
   6235 
   6236 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6237 
   6238 	error = 0;
   6239 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6240 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6241 	if (error) {
   6242 		buf->b_error  = error;
   6243 		biodone(buf);
   6244 		goto out;
   6245 	}
   6246 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6247 
   6248 	/* pre-check if its an internal */
   6249 	if (*mapping == UDF_TRANS_INTERN) {
   6250 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6251 		if (error)
   6252 			buf->b_error  = error;
   6253 		biodone(buf);
   6254 		goto out;
   6255 	}
   6256 	DPRINTF(READ, ("\tnot intern\n"));
   6257 
   6258 #ifdef DEBUG
   6259 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6260 		printf("Returned translation table:\n");
   6261 		for (sector = 0; sector < sectors; sector++) {
   6262 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6263 		}
   6264 	}
   6265 #endif
   6266 
   6267 	/* request read-in of data from disc sheduler */
   6268 	buf->b_resid = buf->b_bcount;
   6269 	for (sector = 0; sector < sectors; sector++) {
   6270 		buf_offset = sector * sector_size;
   6271 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6272 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6273 
   6274 		/* check if its zero or unmapped to stop reading */
   6275 		switch (mapping[sector]) {
   6276 		case UDF_TRANS_UNMAPPED:
   6277 		case UDF_TRANS_ZERO:
   6278 			/* copy zero sector TODO runlength like below */
   6279 			memset(buf_pos, 0, sector_size);
   6280 			DPRINTF(READ, ("\treturning zero sector\n"));
   6281 			nestiobuf_done(buf, sector_size, 0);
   6282 			break;
   6283 		default :
   6284 			DPRINTF(READ, ("\tread sector "
   6285 			    "%"PRIu64"\n", mapping[sector]));
   6286 
   6287 			lblkno = from + sector;
   6288 			run_start  = mapping[sector];
   6289 			run_length = 1;
   6290 			while (sector < sectors-1) {
   6291 				if (mapping[sector+1] != mapping[sector]+1)
   6292 					break;
   6293 				run_length++;
   6294 				sector++;
   6295 			}
   6296 
   6297 			/*
   6298 			 * nest an iobuf and mark it for async reading. Since
   6299 			 * we're using nested buffers, they can't be cached by
   6300 			 * design.
   6301 			 */
   6302 			rbuflen = run_length * sector_size;
   6303 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6304 
   6305 			nestbuf = getiobuf(NULL, true);
   6306 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6307 			/* nestbuf is B_ASYNC */
   6308 
   6309 			/* identify this nestbuf */
   6310 			nestbuf->b_lblkno   = lblkno;
   6311 			assert(nestbuf->b_vp == udf_node->vnode);
   6312 
   6313 			/* CD shedules on raw blkno */
   6314 			nestbuf->b_blkno      = rblk;
   6315 			nestbuf->b_proc       = NULL;
   6316 			nestbuf->b_rawblkno   = rblk;
   6317 			nestbuf->b_udf_c_type = what;
   6318 
   6319 			udf_discstrat_queuebuf(ump, nestbuf);
   6320 		}
   6321 	}
   6322 out:
   6323 	/* if we're synchronously reading, wait for the completion */
   6324 	if ((buf->b_flags & B_ASYNC) == 0)
   6325 		biowait(buf);
   6326 
   6327 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6328 	free(mapping, M_TEMP);
   6329 	return;
   6330 }
   6331 
   6332 
   6333 void
   6334 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6335 {
   6336 	struct buf *nestbuf;
   6337 	struct udf_mount *ump = udf_node->ump;
   6338 	uint64_t   *mapping;
   6339 	uint64_t    run_start;
   6340 	uint32_t    lb_size;
   6341 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6342 	uint32_t    from, lblkno;
   6343 	uint32_t    num_lb;
   6344 	uint8_t    *buf_pos;
   6345 	int error, run_length, isdir, what, s;
   6346 
   6347 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6348 
   6349 	from   = buf->b_blkno;
   6350 	num_lb = buf->b_bcount / lb_size;
   6351 
   6352 	isdir  = (udf_node->vnode->v_type == VDIR);
   6353 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6354 
   6355 	/* assure we have enough translation slots */
   6356 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6357 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6358 
   6359 	if (num_lb > UDF_MAX_MAPPINGS) {
   6360 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6361 		buf->b_error  = EIO;
   6362 		biodone(buf);
   6363 		return;
   6364 	}
   6365 
   6366 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6367 
   6368 	error = 0;
   6369 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6370 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6371 	if (error) {
   6372 		buf->b_error  = error;
   6373 		biodone(buf);
   6374 		goto out;
   6375 	}
   6376 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6377 
   6378 	/* if its internally mapped, we can write it in the descriptor itself */
   6379 	if (*mapping == UDF_TRANS_INTERN) {
   6380 		/* TODO paranoia check if we ARE going to have enough space */
   6381 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6382 		if (error)
   6383 			buf->b_error  = error;
   6384 		biodone(buf);
   6385 		goto out;
   6386 	}
   6387 	DPRINTF(WRITE, ("\tnot intern\n"));
   6388 
   6389 	/* request write out of data to disc sheduler */
   6390 	buf->b_resid = buf->b_bcount;
   6391 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6392 		buf_offset = lb_num * lb_size;
   6393 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6394 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6395 
   6396 		/*
   6397 		 * Mappings are not that important here. Just before we write
   6398 		 * the lb_num we late-allocate them when needed and update the
   6399 		 * mapping in the udf_node.
   6400 		 */
   6401 
   6402 		/* XXX why not ignore the mapping altogether ? */
   6403 		/* TODO estimate here how much will be late-allocated */
   6404 		DPRINTF(WRITE, ("\twrite lb_num "
   6405 		    "%"PRIu64, mapping[lb_num]));
   6406 
   6407 		lblkno = from + lb_num;
   6408 		run_start  = mapping[lb_num];
   6409 		run_length = 1;
   6410 		while (lb_num < num_lb-1) {
   6411 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6412 				if (mapping[lb_num+1] != mapping[lb_num])
   6413 					break;
   6414 			run_length++;
   6415 			lb_num++;
   6416 		}
   6417 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6418 
   6419 		/* nest an iobuf on the master buffer for the extent */
   6420 		rbuflen = run_length * lb_size;
   6421 		rblk = run_start * (lb_size/DEV_BSIZE);
   6422 
   6423 #if 0
   6424 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
   6425 		switch (mapping[lb_num]) {
   6426 		case UDF_TRANS_UNMAPPED:
   6427 		case UDF_TRANS_ZERO:
   6428 			rblk = -1;
   6429 			break;
   6430 		default:
   6431 			rblk = run_start * (lb_size/DEV_BSIZE);
   6432 			break;
   6433 		}
   6434 #endif
   6435 
   6436 		nestbuf = getiobuf(NULL, true);
   6437 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6438 		/* nestbuf is B_ASYNC */
   6439 
   6440 		/* identify this nestbuf */
   6441 		nestbuf->b_lblkno   = lblkno;
   6442 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6443 
   6444 		/* CD shedules on raw blkno */
   6445 		nestbuf->b_blkno      = rblk;
   6446 		nestbuf->b_proc       = NULL;
   6447 		nestbuf->b_rawblkno   = rblk;
   6448 		nestbuf->b_udf_c_type = what;
   6449 
   6450 		/* increment our outstanding bufs counter */
   6451 		s = splbio();
   6452 			udf_node->outstanding_bufs++;
   6453 		splx(s);
   6454 
   6455 		udf_discstrat_queuebuf(ump, nestbuf);
   6456 	}
   6457 out:
   6458 	/* if we're synchronously writing, wait for the completion */
   6459 	if ((buf->b_flags & B_ASYNC) == 0)
   6460 		biowait(buf);
   6461 
   6462 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6463 	free(mapping, M_TEMP);
   6464 	return;
   6465 }
   6466 
   6467 /* --------------------------------------------------------------------- */
   6468 
   6469 
   6470