Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.71
      1 /* $NetBSD: udf_subr.c,v 1.71 2008/08/06 13:41:12 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.71 2008/08/06 13:41:12 reinoud Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_quota.h"
     38 #include "opt_compat_netbsd.h"
     39 #endif
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/namei.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/vnode.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <sys/mount.h>
     50 #include <sys/buf.h>
     51 #include <sys/file.h>
     52 #include <sys/device.h>
     53 #include <sys/disklabel.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/malloc.h>
     56 #include <sys/dirent.h>
     57 #include <sys/stat.h>
     58 #include <sys/conf.h>
     59 #include <sys/kauth.h>
     60 #include <fs/unicode.h>
     61 #include <dev/clock_subr.h>
     62 
     63 #include <fs/udf/ecma167-udf.h>
     64 #include <fs/udf/udf_mount.h>
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_udf.h"
     68 #endif
     69 
     70 #include "udf.h"
     71 #include "udf_subr.h"
     72 #include "udf_bswap.h"
     73 
     74 
     75 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     76 
     77 #define UDF_SET_SYSTEMFILE(vp) \
     78 	/* XXXAD Is the vnode locked? */	\
     79 	(vp)->v_vflag |= VV_SYSTEM;		\
     80 	vref(vp);			\
     81 	vput(vp);			\
     82 
     83 extern int syncer_maxdelay;     /* maximum delay time */
     84 extern int (**udf_vnodeop_p)(void *);
     85 
     86 /* --------------------------------------------------------------------- */
     87 
     88 //#ifdef DEBUG
     89 #if 1
     90 
     91 #if 0
     92 static void
     93 udf_dumpblob(boid *blob, uint32_t dlen)
     94 {
     95 	int i, j;
     96 
     97 	printf("blob = %p\n", blob);
     98 	printf("dump of %d bytes\n", dlen);
     99 
    100 	for (i = 0; i < dlen; i+ = 16) {
    101 		printf("%04x ", i);
    102 		for (j = 0; j < 16; j++) {
    103 			if (i+j < dlen) {
    104 				printf("%02x ", blob[i+j]);
    105 			} else {
    106 				printf("   ");
    107 			}
    108 		}
    109 		for (j = 0; j < 16; j++) {
    110 			if (i+j < dlen) {
    111 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    112 					printf("%c", blob[i+j]);
    113 				} else {
    114 					printf(".");
    115 				}
    116 			}
    117 		}
    118 		printf("\n");
    119 	}
    120 	printf("\n");
    121 	Debugger();
    122 }
    123 #endif
    124 
    125 static void
    126 udf_dump_discinfo(struct udf_mount *ump)
    127 {
    128 	char   bits[128];
    129 	struct mmc_discinfo *di = &ump->discinfo;
    130 
    131 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    132 		return;
    133 
    134 	printf("Device/media info  :\n");
    135 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    136 	printf("\tderived class      %d\n", di->mmc_class);
    137 	printf("\tsector size        %d\n", di->sector_size);
    138 	printf("\tdisc state         %d\n", di->disc_state);
    139 	printf("\tlast ses state     %d\n", di->last_session_state);
    140 	printf("\tbg format state    %d\n", di->bg_format_state);
    141 	printf("\tfrst track         %d\n", di->first_track);
    142 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    143 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    144 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    145 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    146 		sizeof(bits));
    147 	printf("\tdisc flags         %s\n", bits);
    148 	printf("\tdisc id            %x\n", di->disc_id);
    149 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    150 
    151 	printf("\tnum sessions       %d\n", di->num_sessions);
    152 	printf("\tnum tracks         %d\n", di->num_tracks);
    153 
    154 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    155 	printf("\tcapabilities cur   %s\n", bits);
    156 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    157 	printf("\tcapabilities cap   %s\n", bits);
    158 }
    159 #else
    160 #define udf_dump_discinfo(a);
    161 #endif
    162 
    163 
    164 /* --------------------------------------------------------------------- */
    165 
    166 /* not called often */
    167 int
    168 udf_update_discinfo(struct udf_mount *ump)
    169 {
    170 	struct vnode *devvp = ump->devvp;
    171 	struct partinfo dpart;
    172 	struct mmc_discinfo *di;
    173 	int error;
    174 
    175 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    176 	di = &ump->discinfo;
    177 	memset(di, 0, sizeof(struct mmc_discinfo));
    178 
    179 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    180 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    181 	if (error == 0) {
    182 		udf_dump_discinfo(ump);
    183 		return 0;
    184 	}
    185 
    186 	/* disc partition support */
    187 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    188 	if (error)
    189 		return ENODEV;
    190 
    191 	/* set up a disc info profile for partitions */
    192 	di->mmc_profile		= 0x01;	/* disc type */
    193 	di->mmc_class		= MMC_CLASS_DISC;
    194 	di->disc_state		= MMC_STATE_CLOSED;
    195 	di->last_session_state	= MMC_STATE_CLOSED;
    196 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    197 	di->link_block_penalty	= 0;
    198 
    199 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    200 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    201 	di->mmc_cap    = di->mmc_cur;
    202 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    203 
    204 	/* TODO problem with last_possible_lba on resizable VND; request */
    205 	di->last_possible_lba = dpart.part->p_size;
    206 	di->sector_size       = dpart.disklab->d_secsize;
    207 
    208 	di->num_sessions = 1;
    209 	di->num_tracks   = 1;
    210 
    211 	di->first_track  = 1;
    212 	di->first_track_last_session = di->last_track_last_session = 1;
    213 
    214 	udf_dump_discinfo(ump);
    215 	return 0;
    216 }
    217 
    218 
    219 int
    220 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    221 {
    222 	struct vnode *devvp = ump->devvp;
    223 	struct mmc_discinfo *di = &ump->discinfo;
    224 	int error, class;
    225 
    226 	DPRINTF(VOLUMES, ("read track info\n"));
    227 
    228 	class = di->mmc_class;
    229 	if (class != MMC_CLASS_DISC) {
    230 		/* tracknr specified in struct ti */
    231 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    232 		return error;
    233 	}
    234 
    235 	/* disc partition support */
    236 	if (ti->tracknr != 1)
    237 		return EIO;
    238 
    239 	/* create fake ti (TODO check for resized vnds) */
    240 	ti->sessionnr  = 1;
    241 
    242 	ti->track_mode = 0;	/* XXX */
    243 	ti->data_mode  = 0;	/* XXX */
    244 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    245 
    246 	ti->track_start    = 0;
    247 	ti->packet_size    = 1;
    248 
    249 	/* TODO support for resizable vnd */
    250 	ti->track_size    = di->last_possible_lba;
    251 	ti->next_writable = di->last_possible_lba;
    252 	ti->last_recorded = ti->next_writable;
    253 	ti->free_blocks   = 0;
    254 
    255 	return 0;
    256 }
    257 
    258 
    259 int
    260 udf_setup_writeparams(struct udf_mount *ump)
    261 {
    262 	struct mmc_writeparams mmc_writeparams;
    263 	int error;
    264 
    265 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    266 		return 0;
    267 
    268 	/*
    269 	 * only CD burning normally needs setting up, but other disc types
    270 	 * might need other settings to be made. The MMC framework will set up
    271 	 * the nessisary recording parameters according to the disc
    272 	 * characteristics read in. Modifications can be made in the discinfo
    273 	 * structure passed to change the nature of the disc.
    274 	 */
    275 
    276 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    277 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    278 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    279 
    280 	/*
    281 	 * UDF dictates first track to determine track mode for the whole
    282 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    283 	 * To prevent problems with a `reserved' track in front we start with
    284 	 * the 2nd track and if that is not valid, go for the 1st.
    285 	 */
    286 	mmc_writeparams.tracknr = 2;
    287 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    288 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    289 
    290 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    291 			FKIOCTL, NOCRED);
    292 	if (error) {
    293 		mmc_writeparams.tracknr = 1;
    294 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    295 				&mmc_writeparams, FKIOCTL, NOCRED);
    296 	}
    297 	return error;
    298 }
    299 
    300 
    301 int
    302 udf_synchronise_caches(struct udf_mount *ump)
    303 {
    304 	struct mmc_op mmc_op;
    305 
    306 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    307 
    308 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    309 		return 0;
    310 
    311 	/* discs are done now */
    312 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    313 		return 0;
    314 
    315 	bzero(&mmc_op, sizeof(struct mmc_op));
    316 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    317 
    318 	/* ignore return code */
    319 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    320 
    321 	return 0;
    322 }
    323 
    324 /* --------------------------------------------------------------------- */
    325 
    326 /* track/session searching for mounting */
    327 int
    328 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    329 		  int *first_tracknr, int *last_tracknr)
    330 {
    331 	struct mmc_trackinfo trackinfo;
    332 	uint32_t tracknr, start_track, num_tracks;
    333 	int error;
    334 
    335 	/* if negative, sessionnr is relative to last session */
    336 	if (args->sessionnr < 0) {
    337 		args->sessionnr += ump->discinfo.num_sessions;
    338 	}
    339 
    340 	/* sanity */
    341 	if (args->sessionnr < 0)
    342 		args->sessionnr = 0;
    343 	if (args->sessionnr > ump->discinfo.num_sessions)
    344 		args->sessionnr = ump->discinfo.num_sessions;
    345 
    346 	/* search the tracks for this session, zero session nr indicates last */
    347 	if (args->sessionnr == 0)
    348 		args->sessionnr = ump->discinfo.num_sessions;
    349 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    350 		args->sessionnr--;
    351 
    352 	/* sanity again */
    353 	if (args->sessionnr < 0)
    354 		args->sessionnr = 0;
    355 
    356 	/* search the first and last track of the specified session */
    357 	num_tracks  = ump->discinfo.num_tracks;
    358 	start_track = ump->discinfo.first_track;
    359 
    360 	/* search for first track of this session */
    361 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    362 		/* get track info */
    363 		trackinfo.tracknr = tracknr;
    364 		error = udf_update_trackinfo(ump, &trackinfo);
    365 		if (error)
    366 			return error;
    367 
    368 		if (trackinfo.sessionnr == args->sessionnr)
    369 			break;
    370 	}
    371 	*first_tracknr = tracknr;
    372 
    373 	/* search for last track of this session */
    374 	for (;tracknr <= num_tracks; tracknr++) {
    375 		/* get track info */
    376 		trackinfo.tracknr = tracknr;
    377 		error = udf_update_trackinfo(ump, &trackinfo);
    378 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    379 			tracknr--;
    380 			break;
    381 		}
    382 	}
    383 	if (tracknr > num_tracks)
    384 		tracknr--;
    385 
    386 	*last_tracknr = tracknr;
    387 
    388 	if (*last_tracknr < *first_tracknr) {
    389 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    390 			"drive returned garbage\n");
    391 		return EINVAL;
    392 	}
    393 
    394 	assert(*last_tracknr >= *first_tracknr);
    395 	return 0;
    396 }
    397 
    398 
    399 /*
    400  * NOTE: this is the only routine in this file that directly peeks into the
    401  * metadata file but since its at a larval state of the mount it can't hurt.
    402  *
    403  * XXX candidate for udf_allocation.c
    404  * XXX clean me up!, change to new node reading code.
    405  */
    406 
    407 static void
    408 udf_check_track_metadata_overlap(struct udf_mount *ump,
    409 	struct mmc_trackinfo *trackinfo)
    410 {
    411 	struct part_desc *part;
    412 	struct file_entry      *fe;
    413 	struct extfile_entry   *efe;
    414 	struct short_ad        *s_ad;
    415 	struct long_ad         *l_ad;
    416 	uint32_t track_start, track_end;
    417 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    418 	uint32_t sector_size, len, alloclen, plb_num;
    419 	uint8_t *pos;
    420 	int addr_type, icblen, icbflags, flags;
    421 
    422 	/* get our track extents */
    423 	track_start = trackinfo->track_start;
    424 	track_end   = track_start + trackinfo->track_size;
    425 
    426 	/* get our base partition extent */
    427 	KASSERT(ump->node_part == ump->fids_part);
    428 	part = ump->partitions[ump->node_part];
    429 	phys_part_start = udf_rw32(part->start_loc);
    430 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    431 
    432 	/* no use if its outside the physical partition */
    433 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    434 		return;
    435 
    436 	/*
    437 	 * now follow all extents in the fe/efe to see if they refer to this
    438 	 * track
    439 	 */
    440 
    441 	sector_size = ump->discinfo.sector_size;
    442 
    443 	/* XXX should we claim exclusive access to the metafile ? */
    444 	/* TODO: move to new node read code */
    445 	fe  = ump->metadata_node->fe;
    446 	efe = ump->metadata_node->efe;
    447 	if (fe) {
    448 		alloclen = udf_rw32(fe->l_ad);
    449 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    450 		icbflags = udf_rw16(fe->icbtag.flags);
    451 	} else {
    452 		assert(efe);
    453 		alloclen = udf_rw32(efe->l_ad);
    454 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    455 		icbflags = udf_rw16(efe->icbtag.flags);
    456 	}
    457 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    458 
    459 	while (alloclen) {
    460 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    461 			icblen = sizeof(struct short_ad);
    462 			s_ad   = (struct short_ad *) pos;
    463 			len        = udf_rw32(s_ad->len);
    464 			plb_num    = udf_rw32(s_ad->lb_num);
    465 		} else {
    466 			/* should not be present, but why not */
    467 			icblen = sizeof(struct long_ad);
    468 			l_ad   = (struct long_ad *) pos;
    469 			len        = udf_rw32(l_ad->len);
    470 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    471 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    472 		}
    473 		/* process extent */
    474 		flags   = UDF_EXT_FLAGS(len);
    475 		len     = UDF_EXT_LEN(len);
    476 
    477 		part_start = phys_part_start + plb_num;
    478 		part_end   = part_start + (len / sector_size);
    479 
    480 		if ((part_start >= track_start) && (part_end <= track_end)) {
    481 			/* extent is enclosed within this track */
    482 			ump->metadata_track = *trackinfo;
    483 			return;
    484 		}
    485 
    486 		pos        += icblen;
    487 		alloclen   -= icblen;
    488 	}
    489 }
    490 
    491 
    492 int
    493 udf_search_writing_tracks(struct udf_mount *ump)
    494 {
    495 	struct mmc_trackinfo trackinfo;
    496 	struct part_desc *part;
    497 	uint32_t tracknr, start_track, num_tracks;
    498 	uint32_t track_start, track_end, part_start, part_end;
    499 	int node_alloc, error;
    500 
    501 	/*
    502 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    503 	 * the last session might be open but in the UDF device model at most
    504 	 * three tracks can be open: a reserved track for delayed ISO VRS
    505 	 * writing, a data track and a metadata track. We search here for the
    506 	 * data track and the metadata track. Note that the reserved track is
    507 	 * troublesome but can be detected by its small size of < 512 sectors.
    508 	 */
    509 
    510 	num_tracks  = ump->discinfo.num_tracks;
    511 	start_track = ump->discinfo.first_track;
    512 
    513 	/* fetch info on first and possibly only track */
    514 	trackinfo.tracknr = start_track;
    515 	error = udf_update_trackinfo(ump, &trackinfo);
    516 	if (error)
    517 		return error;
    518 
    519 	/* copy results to our mount point */
    520 	ump->data_track     = trackinfo;
    521 	ump->metadata_track = trackinfo;
    522 
    523 	/* if not sequential, we're done */
    524 	if (num_tracks == 1)
    525 		return 0;
    526 
    527 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    528 		/* get track info */
    529 		trackinfo.tracknr = tracknr;
    530 		error = udf_update_trackinfo(ump, &trackinfo);
    531 		if (error)
    532 			return error;
    533 
    534 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    535 			continue;
    536 
    537 		track_start = trackinfo.track_start;
    538 		track_end   = track_start + trackinfo.track_size;
    539 
    540 		/* check for overlap on data partition */
    541 		part = ump->partitions[ump->data_part];
    542 		part_start = udf_rw32(part->start_loc);
    543 		part_end   = part_start + udf_rw32(part->part_len);
    544 		if ((part_start < track_end) && (part_end > track_start)) {
    545 			ump->data_track = trackinfo;
    546 			/* TODO check if UDF partition data_part is writable */
    547 		}
    548 
    549 		/* check for overlap on metadata partition */
    550 		node_alloc = ump->vtop_alloc[ump->node_part];
    551 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    552 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    553 			udf_check_track_metadata_overlap(ump, &trackinfo);
    554 		} else {
    555 			ump->metadata_track = trackinfo;
    556 		}
    557 	}
    558 
    559 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    560 		return EROFS;
    561 
    562 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    563 		return EROFS;
    564 
    565 	return 0;
    566 }
    567 
    568 /* --------------------------------------------------------------------- */
    569 
    570 /*
    571  * Check if the blob starts with a good UDF tag. Tags are protected by a
    572  * checksum over the reader except one byte at position 4 that is the checksum
    573  * itself.
    574  */
    575 
    576 int
    577 udf_check_tag(void *blob)
    578 {
    579 	struct desc_tag *tag = blob;
    580 	uint8_t *pos, sum, cnt;
    581 
    582 	/* check TAG header checksum */
    583 	pos = (uint8_t *) tag;
    584 	sum = 0;
    585 
    586 	for(cnt = 0; cnt < 16; cnt++) {
    587 		if (cnt != 4)
    588 			sum += *pos;
    589 		pos++;
    590 	}
    591 	if (sum != tag->cksum) {
    592 		/* bad tag header checksum; this is not a valid tag */
    593 		return EINVAL;
    594 	}
    595 
    596 	return 0;
    597 }
    598 
    599 
    600 /*
    601  * check tag payload will check descriptor CRC as specified.
    602  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    603  */
    604 
    605 int
    606 udf_check_tag_payload(void *blob, uint32_t max_length)
    607 {
    608 	struct desc_tag *tag = blob;
    609 	uint16_t crc, crc_len;
    610 
    611 	crc_len = udf_rw16(tag->desc_crc_len);
    612 
    613 	/* check payload CRC if applicable */
    614 	if (crc_len == 0)
    615 		return 0;
    616 
    617 	if (crc_len > max_length)
    618 		return EIO;
    619 
    620 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    621 	if (crc != udf_rw16(tag->desc_crc)) {
    622 		/* bad payload CRC; this is a broken tag */
    623 		return EINVAL;
    624 	}
    625 
    626 	return 0;
    627 }
    628 
    629 
    630 void
    631 udf_validate_tag_sum(void *blob)
    632 {
    633 	struct desc_tag *tag = blob;
    634 	uint8_t *pos, sum, cnt;
    635 
    636 	/* calculate TAG header checksum */
    637 	pos = (uint8_t *) tag;
    638 	sum = 0;
    639 
    640 	for(cnt = 0; cnt < 16; cnt++) {
    641 		if (cnt != 4) sum += *pos;
    642 		pos++;
    643 	}
    644 	tag->cksum = sum;	/* 8 bit */
    645 }
    646 
    647 
    648 /* assumes sector number of descriptor to be saved already present */
    649 void
    650 udf_validate_tag_and_crc_sums(void *blob)
    651 {
    652 	struct desc_tag *tag  = blob;
    653 	uint8_t         *btag = (uint8_t *) tag;
    654 	uint16_t crc, crc_len;
    655 
    656 	crc_len = udf_rw16(tag->desc_crc_len);
    657 
    658 	/* check payload CRC if applicable */
    659 	if (crc_len > 0) {
    660 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    661 		tag->desc_crc = udf_rw16(crc);
    662 	}
    663 
    664 	/* calculate TAG header checksum */
    665 	udf_validate_tag_sum(blob);
    666 }
    667 
    668 /* --------------------------------------------------------------------- */
    669 
    670 /*
    671  * XXX note the different semantics from udfclient: for FIDs it still rounds
    672  * up to sectors. Use udf_fidsize() for a correct length.
    673  */
    674 
    675 int
    676 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    677 {
    678 	uint32_t size, tag_id, num_lb, elmsz;
    679 
    680 	tag_id = udf_rw16(dscr->tag.id);
    681 
    682 	switch (tag_id) {
    683 	case TAGID_LOGVOL :
    684 		size  = sizeof(struct logvol_desc) - 1;
    685 		size += udf_rw32(dscr->lvd.mt_l);
    686 		break;
    687 	case TAGID_UNALLOC_SPACE :
    688 		elmsz = sizeof(struct extent_ad);
    689 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    690 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    691 		break;
    692 	case TAGID_FID :
    693 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    694 		size = (size + 3) & ~3;
    695 		break;
    696 	case TAGID_LOGVOL_INTEGRITY :
    697 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    698 		size += udf_rw32(dscr->lvid.l_iu);
    699 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    700 		break;
    701 	case TAGID_SPACE_BITMAP :
    702 		size  = sizeof(struct space_bitmap_desc) - 1;
    703 		size += udf_rw32(dscr->sbd.num_bytes);
    704 		break;
    705 	case TAGID_SPARING_TABLE :
    706 		elmsz = sizeof(struct spare_map_entry);
    707 		size  = sizeof(struct udf_sparing_table) - elmsz;
    708 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    709 		break;
    710 	case TAGID_FENTRY :
    711 		size  = sizeof(struct file_entry);
    712 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    713 		break;
    714 	case TAGID_EXTFENTRY :
    715 		size  = sizeof(struct extfile_entry);
    716 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    717 		break;
    718 	case TAGID_FSD :
    719 		size  = sizeof(struct fileset_desc);
    720 		break;
    721 	default :
    722 		size = sizeof(union dscrptr);
    723 		break;
    724 	}
    725 
    726 	if ((size == 0) || (lb_size == 0))
    727 		return 0;
    728 
    729 	if (lb_size == 1)
    730 		return size;
    731 
    732 	/* round up in sectors */
    733 	num_lb = (size + lb_size -1) / lb_size;
    734 	return num_lb * lb_size;
    735 }
    736 
    737 
    738 int
    739 udf_fidsize(struct fileid_desc *fid)
    740 {
    741 	uint32_t size;
    742 
    743 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    744 		panic("got udf_fidsize on non FID\n");
    745 
    746 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    747 	size = (size + 3) & ~3;
    748 
    749 	return size;
    750 }
    751 
    752 /* --------------------------------------------------------------------- */
    753 
    754 void
    755 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    756 {
    757 	int ret;
    758 
    759 	mutex_enter(&udf_node->node_mutex);
    760 	/* wait until free */
    761 	while (udf_node->i_flags & IN_LOCKED) {
    762 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    763 		/* TODO check if we should return error; abort */
    764 		if (ret == EWOULDBLOCK) {
    765 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    766 				"wanted at %s:%d, previously locked at %s:%d\n",
    767 				udf_node, fname, lineno,
    768 				udf_node->lock_fname, udf_node->lock_lineno));
    769 		}
    770 	}
    771 	/* grab */
    772 	udf_node->i_flags |= IN_LOCKED | flag;
    773 	/* debug */
    774 	udf_node->lock_fname  = fname;
    775 	udf_node->lock_lineno = lineno;
    776 
    777 	mutex_exit(&udf_node->node_mutex);
    778 }
    779 
    780 
    781 void
    782 udf_unlock_node(struct udf_node *udf_node, int flag)
    783 {
    784 	mutex_enter(&udf_node->node_mutex);
    785 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    786 	cv_broadcast(&udf_node->node_lock);
    787 	mutex_exit(&udf_node->node_mutex);
    788 }
    789 
    790 
    791 /* --------------------------------------------------------------------- */
    792 
    793 static int
    794 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    795 {
    796 	int error;
    797 
    798 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    799 			(union dscrptr **) dst);
    800 	if (!error) {
    801 		/* blank terminator blocks are not allowed here */
    802 		if (*dst == NULL)
    803 			return ENOENT;
    804 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    805 			error = ENOENT;
    806 			free(*dst, M_UDFVOLD);
    807 			*dst = NULL;
    808 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    809 		}
    810 	}
    811 
    812 	return error;
    813 }
    814 
    815 
    816 int
    817 udf_read_anchors(struct udf_mount *ump)
    818 {
    819 	struct udf_args *args = &ump->mount_args;
    820 	struct mmc_trackinfo first_track;
    821 	struct mmc_trackinfo second_track;
    822 	struct mmc_trackinfo last_track;
    823 	struct anchor_vdp **anchorsp;
    824 	uint32_t track_start;
    825 	uint32_t track_end;
    826 	uint32_t positions[4];
    827 	int first_tracknr, last_tracknr;
    828 	int error, anch, ok, first_anchor;
    829 
    830 	/* search the first and last track of the specified session */
    831 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    832 	if (!error) {
    833 		first_track.tracknr = first_tracknr;
    834 		error = udf_update_trackinfo(ump, &first_track);
    835 	}
    836 	if (!error) {
    837 		last_track.tracknr = last_tracknr;
    838 		error = udf_update_trackinfo(ump, &last_track);
    839 	}
    840 	if ((!error) && (first_tracknr != last_tracknr)) {
    841 		second_track.tracknr = first_tracknr+1;
    842 		error = udf_update_trackinfo(ump, &second_track);
    843 	}
    844 	if (error) {
    845 		printf("UDF mount: reading disc geometry failed\n");
    846 		return 0;
    847 	}
    848 
    849 	track_start = first_track.track_start;
    850 
    851 	/* `end' is not as straitforward as start. */
    852 	track_end =   last_track.track_start
    853 		    + last_track.track_size - last_track.free_blocks - 1;
    854 
    855 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    856 		/* end of track is not straitforward here */
    857 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    858 			track_end = last_track.last_recorded;
    859 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    860 			track_end = last_track.next_writable
    861 				    - ump->discinfo.link_block_penalty;
    862 	}
    863 
    864 	/* its no use reading a blank track */
    865 	first_anchor = 0;
    866 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    867 		first_anchor = 1;
    868 
    869 	/* get our packet size */
    870 	ump->packet_size = first_track.packet_size;
    871 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    872 		ump->packet_size = second_track.packet_size;
    873 
    874 	if (ump->packet_size <= 1) {
    875 		/* take max, but not bigger than 64 */
    876 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    877 		ump->packet_size = MIN(ump->packet_size, 64);
    878 	}
    879 	KASSERT(ump->packet_size >= 1);
    880 
    881 	/* read anchors start+256, start+512, end-256, end */
    882 	positions[0] = track_start+256;
    883 	positions[1] =   track_end-256;
    884 	positions[2] =   track_end;
    885 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    886 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    887 
    888 	ok = 0;
    889 	anchorsp = ump->anchors;
    890 	for (anch = first_anchor; anch < 4; anch++) {
    891 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    892 		    positions[anch]));
    893 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    894 		if (!error) {
    895 			anchorsp++;
    896 			ok++;
    897 		}
    898 	}
    899 
    900 	/* VATs are only recorded on sequential media, but initialise */
    901 	ump->first_possible_vat_location = track_start + 2;
    902 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    903 
    904 	return ok;
    905 }
    906 
    907 /* --------------------------------------------------------------------- */
    908 
    909 /* we dont try to be smart; we just record the parts */
    910 #define UDF_UPDATE_DSCR(name, dscr) \
    911 	if (name) \
    912 		free(name, M_UDFVOLD); \
    913 	name = dscr;
    914 
    915 static int
    916 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    917 {
    918 	struct part_desc *part;
    919 	uint16_t phys_part, raw_phys_part;
    920 
    921 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    922 	    udf_rw16(dscr->tag.id)));
    923 	switch (udf_rw16(dscr->tag.id)) {
    924 	case TAGID_PRI_VOL :		/* primary partition		*/
    925 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    926 		break;
    927 	case TAGID_LOGVOL :		/* logical volume		*/
    928 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    929 		break;
    930 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    931 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    932 		break;
    933 	case TAGID_IMP_VOL :		/* implementation		*/
    934 		/* XXX do we care about multiple impl. descr ? */
    935 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    936 		break;
    937 	case TAGID_PARTITION :		/* physical partition		*/
    938 		/* not much use if its not allocated */
    939 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    940 			free(dscr, M_UDFVOLD);
    941 			break;
    942 		}
    943 
    944 		/*
    945 		 * BUGALERT: some rogue implementations use random physical
    946 		 * partion numbers to break other implementations so lookup
    947 		 * the number.
    948 		 */
    949 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    950 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    951 			part = ump->partitions[phys_part];
    952 			if (part == NULL)
    953 				break;
    954 			if (udf_rw16(part->part_num) == raw_phys_part)
    955 				break;
    956 		}
    957 		if (phys_part == UDF_PARTITIONS) {
    958 			free(dscr, M_UDFVOLD);
    959 			return EINVAL;
    960 		}
    961 
    962 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
    963 		break;
    964 	case TAGID_VOL :		/* volume space extender; rare	*/
    965 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    966 		free(dscr, M_UDFVOLD);
    967 		break;
    968 	default :
    969 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    970 		    udf_rw16(dscr->tag.id)));
    971 		free(dscr, M_UDFVOLD);
    972 	}
    973 
    974 	return 0;
    975 }
    976 #undef UDF_UPDATE_DSCR
    977 
    978 /* --------------------------------------------------------------------- */
    979 
    980 static int
    981 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    982 {
    983 	union dscrptr *dscr;
    984 	uint32_t sector_size, dscr_size;
    985 	int error;
    986 
    987 	sector_size = ump->discinfo.sector_size;
    988 
    989 	/* loc is sectornr, len is in bytes */
    990 	error = EIO;
    991 	while (len) {
    992 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
    993 		if (error)
    994 			return error;
    995 
    996 		/* blank block is a terminator */
    997 		if (dscr == NULL)
    998 			return 0;
    999 
   1000 		/* TERM descriptor is a terminator */
   1001 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
   1002 			free(dscr, M_UDFVOLD);
   1003 			return 0;
   1004 		}
   1005 
   1006 		/* process all others */
   1007 		dscr_size = udf_tagsize(dscr, sector_size);
   1008 		error = udf_process_vds_descriptor(ump, dscr);
   1009 		if (error) {
   1010 			free(dscr, M_UDFVOLD);
   1011 			break;
   1012 		}
   1013 		assert((dscr_size % sector_size) == 0);
   1014 
   1015 		len -= dscr_size;
   1016 		loc += dscr_size / sector_size;
   1017 	}
   1018 
   1019 	return error;
   1020 }
   1021 
   1022 
   1023 int
   1024 udf_read_vds_space(struct udf_mount *ump)
   1025 {
   1026 	/* struct udf_args *args = &ump->mount_args; */
   1027 	struct anchor_vdp *anchor, *anchor2;
   1028 	size_t size;
   1029 	uint32_t main_loc, main_len;
   1030 	uint32_t reserve_loc, reserve_len;
   1031 	int error;
   1032 
   1033 	/*
   1034 	 * read in VDS space provided by the anchors; if one descriptor read
   1035 	 * fails, try the mirror sector.
   1036 	 *
   1037 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1038 	 * avoids the `compatibility features' of DirectCD that may confuse
   1039 	 * stuff completely.
   1040 	 */
   1041 
   1042 	anchor  = ump->anchors[0];
   1043 	anchor2 = ump->anchors[1];
   1044 	assert(anchor);
   1045 
   1046 	if (anchor2) {
   1047 		size = sizeof(struct extent_ad);
   1048 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1049 			anchor = anchor2;
   1050 		/* reserve is specified to be a literal copy of main */
   1051 	}
   1052 
   1053 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1054 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1055 
   1056 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1057 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1058 
   1059 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1060 	if (error) {
   1061 		printf("UDF mount: reading in reserve VDS extent\n");
   1062 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1063 	}
   1064 
   1065 	return error;
   1066 }
   1067 
   1068 /* --------------------------------------------------------------------- */
   1069 
   1070 /*
   1071  * Read in the logical volume integrity sequence pointed to by our logical
   1072  * volume descriptor. Its a sequence that can be extended using fields in the
   1073  * integrity descriptor itself. On sequential media only one is found, on
   1074  * rewritable media a sequence of descriptors can be found as a form of
   1075  * history keeping and on non sequential write-once media the chain is vital
   1076  * to allow more and more descriptors to be written. The last descriptor
   1077  * written in an extent needs to claim space for a new extent.
   1078  */
   1079 
   1080 static int
   1081 udf_retrieve_lvint(struct udf_mount *ump)
   1082 {
   1083 	union dscrptr *dscr;
   1084 	struct logvol_int_desc *lvint;
   1085 	struct udf_lvintq *trace;
   1086 	uint32_t lb_size, lbnum, len;
   1087 	int dscr_type, error, trace_len;
   1088 
   1089 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1090 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1091 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1092 
   1093 	/* clean trace */
   1094 	memset(ump->lvint_trace, 0,
   1095 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1096 
   1097 	trace_len    = 0;
   1098 	trace        = ump->lvint_trace;
   1099 	trace->start = lbnum;
   1100 	trace->end   = lbnum + len/lb_size;
   1101 	trace->pos   = 0;
   1102 	trace->wpos  = 0;
   1103 
   1104 	lvint = NULL;
   1105 	dscr  = NULL;
   1106 	error = 0;
   1107 	while (len) {
   1108 		trace->pos  = lbnum - trace->start;
   1109 		trace->wpos = trace->pos + 1;
   1110 
   1111 		/* read in our integrity descriptor */
   1112 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1113 		if (!error) {
   1114 			if (dscr == NULL) {
   1115 				trace->wpos = trace->pos;
   1116 				break;		/* empty terminates */
   1117 			}
   1118 			dscr_type = udf_rw16(dscr->tag.id);
   1119 			if (dscr_type == TAGID_TERM) {
   1120 				trace->wpos = trace->pos;
   1121 				break;		/* clean terminator */
   1122 			}
   1123 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1124 				/* fatal... corrupt disc */
   1125 				error = ENOENT;
   1126 				break;
   1127 			}
   1128 			if (lvint)
   1129 				free(lvint, M_UDFVOLD);
   1130 			lvint = &dscr->lvid;
   1131 			dscr = NULL;
   1132 		} /* else hope for the best... maybe the next is ok */
   1133 
   1134 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1135 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1136 
   1137 		/* proceed sequential */
   1138 		lbnum += 1;
   1139 		len    -= lb_size;
   1140 
   1141 		/* are we linking to a new piece? */
   1142 		if (dscr && lvint->next_extent.len) {
   1143 			len    = udf_rw32(lvint->next_extent.len);
   1144 			lbnum = udf_rw32(lvint->next_extent.loc);
   1145 
   1146 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1147 				/* IEK! segment link full... */
   1148 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1149 				error = EINVAL;
   1150 			} else {
   1151 				trace++;
   1152 				trace_len++;
   1153 
   1154 				trace->start = lbnum;
   1155 				trace->end   = lbnum + len/lb_size;
   1156 				trace->pos   = 0;
   1157 				trace->wpos  = 0;
   1158 			}
   1159 		}
   1160 	}
   1161 
   1162 	/* clean up the mess, esp. when there is an error */
   1163 	if (dscr)
   1164 		free(dscr, M_UDFVOLD);
   1165 
   1166 	if (error && lvint) {
   1167 		free(lvint, M_UDFVOLD);
   1168 		lvint = NULL;
   1169 	}
   1170 
   1171 	if (!lvint)
   1172 		error = ENOENT;
   1173 
   1174 	ump->logvol_integrity = lvint;
   1175 	return error;
   1176 }
   1177 
   1178 
   1179 static int
   1180 udf_loose_lvint_history(struct udf_mount *ump)
   1181 {
   1182 	union dscrptr **bufs, *dscr, *last_dscr;
   1183 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1184 	struct logvol_int_desc *lvint;
   1185 	uint32_t in_ext, in_pos, in_len;
   1186 	uint32_t out_ext, out_wpos, out_len;
   1187 	uint32_t lb_size, packet_size, lb_num;
   1188 	uint32_t len, start;
   1189 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1190 	int losing;
   1191 	int error;
   1192 
   1193 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1194 
   1195 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1196 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1197 
   1198 	/* search smallest extent */
   1199 	trace = &ump->lvint_trace[0];
   1200 	minext = trace->end - trace->start;
   1201 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1202 		trace = &ump->lvint_trace[ext];
   1203 		extlen = trace->end - trace->start;
   1204 		if (extlen == 0)
   1205 			break;
   1206 		minext = MIN(minext, extlen);
   1207 	}
   1208 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1209 	/* no sense wiping all */
   1210 	if (losing == minext)
   1211 		losing--;
   1212 
   1213 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1214 
   1215 	/* get buffer for pieces */
   1216 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1217 
   1218 	in_ext    = 0;
   1219 	in_pos    = losing;
   1220 	in_trace  = &ump->lvint_trace[in_ext];
   1221 	in_len    = in_trace->end - in_trace->start;
   1222 	out_ext   = 0;
   1223 	out_wpos  = 0;
   1224 	out_trace = &ump->lvint_trace[out_ext];
   1225 	out_len   = out_trace->end - out_trace->start;
   1226 
   1227 	last_dscr = NULL;
   1228 	for(;;) {
   1229 		out_trace->pos  = out_wpos;
   1230 		out_trace->wpos = out_trace->pos;
   1231 		if (in_pos >= in_len) {
   1232 			in_ext++;
   1233 			in_pos = 0;
   1234 			in_trace = &ump->lvint_trace[in_ext];
   1235 			in_len   = in_trace->end - in_trace->start;
   1236 		}
   1237 		if (out_wpos >= out_len) {
   1238 			out_ext++;
   1239 			out_wpos = 0;
   1240 			out_trace = &ump->lvint_trace[out_ext];
   1241 			out_len   = out_trace->end - out_trace->start;
   1242 		}
   1243 		/* copy overlap contents */
   1244 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1245 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1246 		if (cpy_len == 0)
   1247 			break;
   1248 
   1249 		/* copy */
   1250 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1251 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1252 			/* read in our integrity descriptor */
   1253 			lb_num = in_trace->start + in_pos + cnt;
   1254 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1255 				&dscr);
   1256 			if (error) {
   1257 				/* copy last one */
   1258 				dscr = last_dscr;
   1259 			}
   1260 			bufs[cnt] = dscr;
   1261 			if (!error) {
   1262 				if (dscr == NULL) {
   1263 					out_trace->pos  = out_wpos + cnt;
   1264 					out_trace->wpos = out_trace->pos;
   1265 					break;		/* empty terminates */
   1266 				}
   1267 				dscr_type = udf_rw16(dscr->tag.id);
   1268 				if (dscr_type == TAGID_TERM) {
   1269 					out_trace->pos  = out_wpos + cnt;
   1270 					out_trace->wpos = out_trace->pos;
   1271 					break;		/* clean terminator */
   1272 				}
   1273 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1274 					panic(  "UDF integrity sequence "
   1275 						"corrupted while mounted!\n");
   1276 				}
   1277 				last_dscr = dscr;
   1278 			}
   1279 		}
   1280 
   1281 		/* patch up if first entry was on error */
   1282 		if (bufs[0] == NULL) {
   1283 			for (cnt = 0; cnt < cpy_len; cnt++)
   1284 				if (bufs[cnt] != NULL)
   1285 					break;
   1286 			last_dscr = bufs[cnt];
   1287 			for (; cnt > 0; cnt--) {
   1288 				bufs[cnt] = last_dscr;
   1289 			}
   1290 		}
   1291 
   1292 		/* glue + write out */
   1293 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1294 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1295 			lb_num = out_trace->start + out_wpos + cnt;
   1296 			lvint  = &bufs[cnt]->lvid;
   1297 
   1298 			/* set continuation */
   1299 			len = 0;
   1300 			start = 0;
   1301 			if (out_wpos + cnt == out_len) {
   1302 				/* get continuation */
   1303 				trace = &ump->lvint_trace[out_ext+1];
   1304 				len   = trace->end - trace->start;
   1305 				start = trace->start;
   1306 			}
   1307 			lvint->next_extent.len = udf_rw32(len);
   1308 			lvint->next_extent.loc = udf_rw32(start);
   1309 
   1310 			lb_num = trace->start + trace->wpos;
   1311 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1312 				bufs[cnt], lb_num, lb_num);
   1313 			DPRINTFIF(VOLUMES, error,
   1314 				("error writing lvint lb_num\n"));
   1315 		}
   1316 
   1317 		/* free non repeating descriptors */
   1318 		last_dscr = NULL;
   1319 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1320 			if (bufs[cnt] != last_dscr)
   1321 				free(bufs[cnt], M_UDFVOLD);
   1322 			last_dscr = bufs[cnt];
   1323 		}
   1324 
   1325 		/* advance */
   1326 		in_pos   += cpy_len;
   1327 		out_wpos += cpy_len;
   1328 	}
   1329 
   1330 	free(bufs, M_TEMP);
   1331 
   1332 	return 0;
   1333 }
   1334 
   1335 
   1336 static int
   1337 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1338 {
   1339 	struct udf_lvintq *trace;
   1340 	struct timeval  now_v;
   1341 	struct timespec now_s;
   1342 	uint32_t sector;
   1343 	int logvol_integrity;
   1344 	int space, error;
   1345 
   1346 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1347 
   1348 again:
   1349 	/* get free space in last chunk */
   1350 	trace = ump->lvint_trace;
   1351 	while (trace->wpos > (trace->end - trace->start)) {
   1352 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1353 				  "wpos = %d\n", trace->start, trace->end,
   1354 				  trace->pos, trace->wpos));
   1355 		trace++;
   1356 	}
   1357 
   1358 	/* check if there is space to append */
   1359 	space = (trace->end - trace->start) - trace->wpos;
   1360 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1361 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1362 			  trace->wpos, space));
   1363 
   1364 	/* get state */
   1365 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1366 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1367 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1368 			/* don't allow this logvol to be opened */
   1369 			/* TODO extent LVINT space if possible */
   1370 			return EROFS;
   1371 		}
   1372 	}
   1373 
   1374 	if (space < 1) {
   1375 		if (lvflag & UDF_APPENDONLY_LVINT)
   1376 			return EROFS;
   1377 		/* loose history by re-writing extents */
   1378 		error = udf_loose_lvint_history(ump);
   1379 		if (error)
   1380 			return error;
   1381 		goto again;
   1382 	}
   1383 
   1384 	/* update our integrity descriptor to identify us and timestamp it */
   1385 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1386 	microtime(&now_v);
   1387 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1388 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1389 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1390 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1391 
   1392 	/* writeout integrity descriptor */
   1393 	sector = trace->start + trace->wpos;
   1394 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1395 			(union dscrptr *) ump->logvol_integrity,
   1396 			sector, sector);
   1397 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1398 	if (error)
   1399 		return error;
   1400 
   1401 	/* advance write position */
   1402 	trace->wpos++; space--;
   1403 	if (space >= 1) {
   1404 		/* append terminator */
   1405 		sector = trace->start + trace->wpos;
   1406 		error = udf_write_terminator(ump, sector);
   1407 
   1408 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1409 	}
   1410 
   1411 	space = (trace->end - trace->start) - trace->wpos;
   1412 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1413 		"space = %d\n", trace->start, trace->end, trace->pos,
   1414 		trace->wpos, space));
   1415 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1416 		"successfull\n"));
   1417 
   1418 	return error;
   1419 }
   1420 
   1421 /* --------------------------------------------------------------------- */
   1422 
   1423 static int
   1424 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1425 {
   1426 	union dscrptr        *dscr;
   1427 	/* struct udf_args *args = &ump->mount_args; */
   1428 	struct part_desc     *partd;
   1429 	struct part_hdr_desc *parthdr;
   1430 	struct udf_bitmap    *bitmap;
   1431 	uint32_t phys_part;
   1432 	uint32_t lb_num, len;
   1433 	int error, dscr_type;
   1434 
   1435 	/* unallocated space map */
   1436 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1437 		partd = ump->partitions[phys_part];
   1438 		if (partd == NULL)
   1439 			continue;
   1440 		parthdr = &partd->_impl_use.part_hdr;
   1441 
   1442 		lb_num  = udf_rw32(partd->start_loc);
   1443 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1444 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1445 		if (len == 0)
   1446 			continue;
   1447 
   1448 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1449 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1450 		if (!error && dscr) {
   1451 			/* analyse */
   1452 			dscr_type = udf_rw16(dscr->tag.id);
   1453 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1454 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1455 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1456 
   1457 				/* fill in ump->part_unalloc_bits */
   1458 				bitmap = &ump->part_unalloc_bits[phys_part];
   1459 				bitmap->blob  = (uint8_t *) dscr;
   1460 				bitmap->bits  = dscr->sbd.data;
   1461 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1462 				bitmap->pages = NULL;	/* TODO */
   1463 				bitmap->data_pos     = 0;
   1464 				bitmap->metadata_pos = 0;
   1465 			} else {
   1466 				free(dscr, M_UDFVOLD);
   1467 
   1468 				printf( "UDF mount: error reading unallocated "
   1469 					"space bitmap\n");
   1470 				return EROFS;
   1471 			}
   1472 		} else {
   1473 			/* blank not allowed */
   1474 			printf("UDF mount: blank unallocated space bitmap\n");
   1475 			return EROFS;
   1476 		}
   1477 	}
   1478 
   1479 	/* unallocated space table (not supported) */
   1480 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1481 		partd = ump->partitions[phys_part];
   1482 		if (partd == NULL)
   1483 			continue;
   1484 		parthdr = &partd->_impl_use.part_hdr;
   1485 
   1486 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1487 		if (len) {
   1488 			printf("UDF mount: space tables not supported\n");
   1489 			return EROFS;
   1490 		}
   1491 	}
   1492 
   1493 	/* freed space map */
   1494 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1495 		partd = ump->partitions[phys_part];
   1496 		if (partd == NULL)
   1497 			continue;
   1498 		parthdr = &partd->_impl_use.part_hdr;
   1499 
   1500 		/* freed space map */
   1501 		lb_num  = udf_rw32(partd->start_loc);
   1502 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1503 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1504 		if (len == 0)
   1505 			continue;
   1506 
   1507 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1508 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1509 		if (!error && dscr) {
   1510 			/* analyse */
   1511 			dscr_type = udf_rw16(dscr->tag.id);
   1512 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1513 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1514 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1515 
   1516 				/* fill in ump->part_freed_bits */
   1517 				bitmap = &ump->part_unalloc_bits[phys_part];
   1518 				bitmap->blob  = (uint8_t *) dscr;
   1519 				bitmap->bits  = dscr->sbd.data;
   1520 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1521 				bitmap->pages = NULL;	/* TODO */
   1522 				bitmap->data_pos     = 0;
   1523 				bitmap->metadata_pos = 0;
   1524 			} else {
   1525 				free(dscr, M_UDFVOLD);
   1526 
   1527 				printf( "UDF mount: error reading freed  "
   1528 					"space bitmap\n");
   1529 				return EROFS;
   1530 			}
   1531 		} else {
   1532 			/* blank not allowed */
   1533 			printf("UDF mount: blank freed space bitmap\n");
   1534 			return EROFS;
   1535 		}
   1536 	}
   1537 
   1538 	/* freed space table (not supported) */
   1539 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1540 		partd = ump->partitions[phys_part];
   1541 		if (partd == NULL)
   1542 			continue;
   1543 		parthdr = &partd->_impl_use.part_hdr;
   1544 
   1545 		len     = udf_rw32(parthdr->freed_space_table.len);
   1546 		if (len) {
   1547 			printf("UDF mount: space tables not supported\n");
   1548 			return EROFS;
   1549 		}
   1550 	}
   1551 
   1552 	return 0;
   1553 }
   1554 
   1555 
   1556 /* TODO implement async writeout */
   1557 int
   1558 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1559 {
   1560 	union dscrptr        *dscr;
   1561 	/* struct udf_args *args = &ump->mount_args; */
   1562 	struct part_desc     *partd;
   1563 	struct part_hdr_desc *parthdr;
   1564 	uint32_t phys_part;
   1565 	uint32_t lb_num, len, ptov;
   1566 	int error_all, error;
   1567 
   1568 	error_all = 0;
   1569 	/* unallocated space map */
   1570 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1571 		partd = ump->partitions[phys_part];
   1572 		if (partd == NULL)
   1573 			continue;
   1574 		parthdr = &partd->_impl_use.part_hdr;
   1575 
   1576 		ptov   = udf_rw32(partd->start_loc);
   1577 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1578 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1579 		if (len == 0)
   1580 			continue;
   1581 
   1582 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1583 			lb_num + ptov));
   1584 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1585 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1586 				(union dscrptr *) dscr,
   1587 				ptov + lb_num, lb_num);
   1588 		if (error) {
   1589 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1590 			error_all = error;
   1591 		}
   1592 	}
   1593 
   1594 	/* freed space map */
   1595 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1596 		partd = ump->partitions[phys_part];
   1597 		if (partd == NULL)
   1598 			continue;
   1599 		parthdr = &partd->_impl_use.part_hdr;
   1600 
   1601 		/* freed space map */
   1602 		ptov   = udf_rw32(partd->start_loc);
   1603 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1604 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1605 		if (len == 0)
   1606 			continue;
   1607 
   1608 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1609 			lb_num + ptov));
   1610 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1611 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1612 				(union dscrptr *) dscr,
   1613 				ptov + lb_num, lb_num);
   1614 		if (error) {
   1615 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1616 			error_all = error;
   1617 		}
   1618 	}
   1619 
   1620 	return error_all;
   1621 }
   1622 
   1623 
   1624 static int
   1625 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1626 {
   1627 	struct udf_node	     *bitmap_node;
   1628 	union dscrptr        *dscr;
   1629 	struct udf_bitmap    *bitmap;
   1630 	uint64_t inflen;
   1631 	int error, dscr_type;
   1632 
   1633 	bitmap_node = ump->metadatabitmap_node;
   1634 
   1635 	/* only read in when metadata bitmap node is read in */
   1636 	if (bitmap_node == NULL)
   1637 		return 0;
   1638 
   1639 	if (bitmap_node->fe) {
   1640 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1641 	} else {
   1642 		KASSERT(bitmap_node->efe);
   1643 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1644 	}
   1645 
   1646 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1647 		"%"PRIu64" bytes\n", inflen));
   1648 
   1649 	/* allocate space for bitmap */
   1650 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1651 	if (!dscr)
   1652 		return ENOMEM;
   1653 
   1654 	/* set vnode type to regular file or we can't read from it! */
   1655 	bitmap_node->vnode->v_type = VREG;
   1656 
   1657 	/* read in complete metadata bitmap file */
   1658 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1659 			dscr,
   1660 			inflen, 0,
   1661 			UIO_SYSSPACE,
   1662 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1663 			NULL, NULL);
   1664 	if (error) {
   1665 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1666 		goto errorout;
   1667 	}
   1668 
   1669 	/* analyse */
   1670 	dscr_type = udf_rw16(dscr->tag.id);
   1671 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1672 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1673 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1674 
   1675 		/* fill in bitmap bits */
   1676 		bitmap = &ump->metadata_unalloc_bits;
   1677 		bitmap->blob  = (uint8_t *) dscr;
   1678 		bitmap->bits  = dscr->sbd.data;
   1679 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1680 		bitmap->pages = NULL;	/* TODO */
   1681 		bitmap->data_pos     = 0;
   1682 		bitmap->metadata_pos = 0;
   1683 	} else {
   1684 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1685 		goto errorout;
   1686 	}
   1687 
   1688 	return 0;
   1689 
   1690 errorout:
   1691 	free(dscr, M_UDFVOLD);
   1692 	printf( "UDF mount: error reading unallocated "
   1693 		"space bitmap for metadata partition\n");
   1694 	return EROFS;
   1695 }
   1696 
   1697 
   1698 int
   1699 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1700 {
   1701 	struct udf_node	     *bitmap_node;
   1702 	union dscrptr        *dscr;
   1703 	uint64_t inflen, new_inflen;
   1704 	int dummy, error;
   1705 
   1706 	bitmap_node = ump->metadatabitmap_node;
   1707 
   1708 	/* only write out when metadata bitmap node is known */
   1709 	if (bitmap_node == NULL)
   1710 		return 0;
   1711 
   1712 	if (bitmap_node->fe) {
   1713 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1714 	} else {
   1715 		KASSERT(bitmap_node->efe);
   1716 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1717 	}
   1718 
   1719 	/* reduce length to zero */
   1720 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1721 	new_inflen = udf_tagsize(dscr, 1);
   1722 
   1723 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
   1724 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
   1725 
   1726 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1727 	if (error)
   1728 		printf("Error resizing metadata space bitmap\n");
   1729 
   1730 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1731 			dscr,
   1732 			new_inflen, 0,
   1733 			UIO_SYSSPACE,
   1734 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1735 			NULL, NULL);
   1736 
   1737 	bitmap_node->i_flags |= IN_MODIFIED;
   1738 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
   1739 
   1740 	error = VOP_FSYNC(bitmap_node->vnode,
   1741 			FSCRED, FSYNC_WAIT, 0, 0);
   1742 
   1743 	if (error)
   1744 		printf( "Error writing out metadata partition unalloced "
   1745 			"space bitmap!\n");
   1746 
   1747 	return error;
   1748 }
   1749 
   1750 
   1751 /* --------------------------------------------------------------------- */
   1752 
   1753 /*
   1754  * Checks if ump's vds information is correct and complete
   1755  */
   1756 
   1757 int
   1758 udf_process_vds(struct udf_mount *ump) {
   1759 	union udf_pmap *mapping;
   1760 	/* struct udf_args *args = &ump->mount_args; */
   1761 	struct logvol_int_desc *lvint;
   1762 	struct udf_logvol_info *lvinfo;
   1763 	struct part_desc *part;
   1764 	uint32_t n_pm, mt_l;
   1765 	uint8_t *pmap_pos;
   1766 	char *domain_name, *map_name;
   1767 	const char *check_name;
   1768 	char bits[128];
   1769 	int pmap_stype, pmap_size;
   1770 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1771 	int n_phys, n_virt, n_spar, n_meta;
   1772 	int len, error;
   1773 
   1774 	if (ump == NULL)
   1775 		return ENOENT;
   1776 
   1777 	/* we need at least an anchor (trivial, but for safety) */
   1778 	if (ump->anchors[0] == NULL)
   1779 		return EINVAL;
   1780 
   1781 	/* we need at least one primary and one logical volume descriptor */
   1782 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1783 		return EINVAL;
   1784 
   1785 	/* we need at least one partition descriptor */
   1786 	if (ump->partitions[0] == NULL)
   1787 		return EINVAL;
   1788 
   1789 	/* check logical volume sector size verses device sector size */
   1790 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1791 		printf("UDF mount: format violation, lb_size != sector size\n");
   1792 		return EINVAL;
   1793 	}
   1794 
   1795 	/* check domain name */
   1796 	domain_name = ump->logical_vol->domain_id.id;
   1797 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1798 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1799 		return EINVAL;
   1800 	}
   1801 
   1802 	/* retrieve logical volume integrity sequence */
   1803 	error = udf_retrieve_lvint(ump);
   1804 
   1805 	/*
   1806 	 * We need at least one logvol integrity descriptor recorded.  Note
   1807 	 * that its OK to have an open logical volume integrity here. The VAT
   1808 	 * will close/update the integrity.
   1809 	 */
   1810 	if (ump->logvol_integrity == NULL)
   1811 		return EINVAL;
   1812 
   1813 	/* process derived structures */
   1814 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1815 	lvint  = ump->logvol_integrity;
   1816 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1817 	ump->logvol_info = lvinfo;
   1818 
   1819 	/* TODO check udf versions? */
   1820 
   1821 	/*
   1822 	 * check logvol mappings: effective virt->log partmap translation
   1823 	 * check and recording of the mapping results. Saves expensive
   1824 	 * strncmp() in tight places.
   1825 	 */
   1826 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1827 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1828 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1829 	pmap_pos =  ump->logical_vol->maps;
   1830 
   1831 	if (n_pm > UDF_PMAPS) {
   1832 		printf("UDF mount: too many mappings\n");
   1833 		return EINVAL;
   1834 	}
   1835 
   1836 	/* count types and set partition numbers */
   1837 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1838 	n_phys = n_virt = n_spar = n_meta = 0;
   1839 	for (log_part = 0; log_part < n_pm; log_part++) {
   1840 		mapping = (union udf_pmap *) pmap_pos;
   1841 		pmap_stype = pmap_pos[0];
   1842 		pmap_size  = pmap_pos[1];
   1843 		switch (pmap_stype) {
   1844 		case 1:	/* physical mapping */
   1845 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1846 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1847 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1848 			n_phys++;
   1849 			ump->data_part = log_part;
   1850 			ump->node_part = log_part;
   1851 			ump->fids_part = log_part;
   1852 			break;
   1853 		case 2: /* virtual/sparable/meta mapping */
   1854 			map_name  = mapping->pm2.part_id.id;
   1855 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1856 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1857 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1858 			len = UDF_REGID_ID_SIZE;
   1859 
   1860 			check_name = "*UDF Virtual Partition";
   1861 			if (strncmp(map_name, check_name, len) == 0) {
   1862 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1863 				n_virt++;
   1864 				ump->node_part = log_part;
   1865 				break;
   1866 			}
   1867 			check_name = "*UDF Sparable Partition";
   1868 			if (strncmp(map_name, check_name, len) == 0) {
   1869 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1870 				n_spar++;
   1871 				ump->data_part = log_part;
   1872 				ump->node_part = log_part;
   1873 				ump->fids_part = log_part;
   1874 				break;
   1875 			}
   1876 			check_name = "*UDF Metadata Partition";
   1877 			if (strncmp(map_name, check_name, len) == 0) {
   1878 				pmap_type = UDF_VTOP_TYPE_META;
   1879 				n_meta++;
   1880 				ump->node_part = log_part;
   1881 				ump->fids_part = log_part;
   1882 				break;
   1883 			}
   1884 			break;
   1885 		default:
   1886 			return EINVAL;
   1887 		}
   1888 
   1889 		/*
   1890 		 * BUGALERT: some rogue implementations use random physical
   1891 		 * partion numbers to break other implementations so lookup
   1892 		 * the number.
   1893 		 */
   1894 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1895 			part = ump->partitions[phys_part];
   1896 			if (part == NULL)
   1897 				continue;
   1898 			if (udf_rw16(part->part_num) == raw_phys_part)
   1899 				break;
   1900 		}
   1901 
   1902 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1903 		    raw_phys_part, phys_part, pmap_type));
   1904 
   1905 		if (phys_part == UDF_PARTITIONS)
   1906 			return EINVAL;
   1907 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1908 			return EINVAL;
   1909 
   1910 		ump->vtop   [log_part] = phys_part;
   1911 		ump->vtop_tp[log_part] = pmap_type;
   1912 
   1913 		pmap_pos += pmap_size;
   1914 	}
   1915 	/* not winning the beauty contest */
   1916 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1917 
   1918 	/* test some basic UDF assertions/requirements */
   1919 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1920 		return EINVAL;
   1921 
   1922 	if (n_virt) {
   1923 		if ((n_phys == 0) || n_spar || n_meta)
   1924 			return EINVAL;
   1925 	}
   1926 	if (n_spar + n_phys == 0)
   1927 		return EINVAL;
   1928 
   1929 	/* select allocation type for each logical partition */
   1930 	for (log_part = 0; log_part < n_pm; log_part++) {
   1931 		maps_on = ump->vtop[log_part];
   1932 		switch (ump->vtop_tp[log_part]) {
   1933 		case UDF_VTOP_TYPE_PHYS :
   1934 			assert(maps_on == log_part);
   1935 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1936 			break;
   1937 		case UDF_VTOP_TYPE_VIRT :
   1938 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   1939 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1940 			break;
   1941 		case UDF_VTOP_TYPE_SPARABLE :
   1942 			assert(maps_on == log_part);
   1943 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1944 			break;
   1945 		case UDF_VTOP_TYPE_META :
   1946 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   1947 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1948 				/* special case for UDF 2.60 */
   1949 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   1950 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1951 			}
   1952 			break;
   1953 		default:
   1954 			panic("bad alloction type in udf's ump->vtop\n");
   1955 		}
   1956 	}
   1957 
   1958 	/* determine logical volume open/closure actions */
   1959 	if (n_virt) {
   1960 		ump->lvopen  = 0;
   1961 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
   1962 			ump->lvopen |= UDF_OPEN_SESSION ;
   1963 		ump->lvclose = UDF_WRITE_VAT;
   1964 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   1965 			ump->lvclose |= UDF_CLOSE_SESSION;
   1966 	} else {
   1967 		/* `normal' rewritable or non sequential media */
   1968 		ump->lvopen  = UDF_WRITE_LVINT;
   1969 		ump->lvclose = UDF_WRITE_LVINT;
   1970 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   1971 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   1972 	}
   1973 
   1974 	/*
   1975 	 * Determine sheduler error behaviour. For virtual partions, update
   1976 	 * the trackinfo; for sparable partitions replace a whole block on the
   1977 	 * sparable table. Allways requeue.
   1978 	 */
   1979 	ump->lvreadwrite = 0;
   1980 	if (n_virt)
   1981 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   1982 	if (n_spar)
   1983 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   1984 
   1985 	/*
   1986 	 * Select our sheduler
   1987 	 */
   1988 	ump->strategy = &udf_strat_rmw;
   1989 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   1990 		ump->strategy = &udf_strat_sequential;
   1991 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   1992 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   1993 			ump->strategy = &udf_strat_direct;
   1994 	if (n_spar)
   1995 		ump->strategy = &udf_strat_rmw;
   1996 
   1997 	/* print results */
   1998 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   1999 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2000 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2001 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2002 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2003 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2004 
   2005 	bitmask_snprintf(ump->lvopen,  UDFLOGVOL_BITS, bits, sizeof(bits));
   2006 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2007 	bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
   2008 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2009 	bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
   2010 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2011 
   2012 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2013 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2014 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2015 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2016 
   2017 	/* signal its OK for now */
   2018 	return 0;
   2019 }
   2020 
   2021 /* --------------------------------------------------------------------- */
   2022 
   2023 /*
   2024  * Update logical volume name in all structures that keep a record of it. We
   2025  * use memmove since each of them might be specified as a source.
   2026  *
   2027  * Note that it doesn't update the VAT structure!
   2028  */
   2029 
   2030 static void
   2031 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2032 {
   2033 	struct logvol_desc     *lvd = NULL;
   2034 	struct fileset_desc    *fsd = NULL;
   2035 	struct udf_lv_info     *lvi = NULL;
   2036 
   2037 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2038 	lvd = ump->logical_vol;
   2039 	fsd = ump->fileset_desc;
   2040 	if (ump->implementation)
   2041 		lvi = &ump->implementation->_impl_use.lv_info;
   2042 
   2043 	/* logvol's id might be specified as origional so use memmove here */
   2044 	memmove(lvd->logvol_id, logvol_id, 128);
   2045 	if (fsd)
   2046 		memmove(fsd->logvol_id, logvol_id, 128);
   2047 	if (lvi)
   2048 		memmove(lvi->logvol_id, logvol_id, 128);
   2049 }
   2050 
   2051 /* --------------------------------------------------------------------- */
   2052 
   2053 void
   2054 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2055 	uint32_t sector)
   2056 {
   2057 	assert(ump->logical_vol);
   2058 
   2059 	tag->id 		= udf_rw16(tagid);
   2060 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2061 	tag->cksum		= 0;
   2062 	tag->reserved		= 0;
   2063 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2064 	tag->tag_loc            = udf_rw32(sector);
   2065 }
   2066 
   2067 
   2068 uint64_t
   2069 udf_advance_uniqueid(struct udf_mount *ump)
   2070 {
   2071 	uint64_t unique_id;
   2072 
   2073 	mutex_enter(&ump->logvol_mutex);
   2074 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2075 	if (unique_id < 0x10)
   2076 		unique_id = 0x10;
   2077 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2078 	mutex_exit(&ump->logvol_mutex);
   2079 
   2080 	return unique_id;
   2081 }
   2082 
   2083 
   2084 static void
   2085 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2086 {
   2087 	struct udf_mount *ump = udf_node->ump;
   2088 	uint32_t num_dirs, num_files;
   2089 	int udf_file_type;
   2090 
   2091 	/* get file type */
   2092 	if (udf_node->fe) {
   2093 		udf_file_type = udf_node->fe->icbtag.file_type;
   2094 	} else {
   2095 		udf_file_type = udf_node->efe->icbtag.file_type;
   2096 	}
   2097 
   2098 	/* adjust file count */
   2099 	mutex_enter(&ump->allocate_mutex);
   2100 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2101 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2102 		ump->logvol_info->num_directories =
   2103 			udf_rw32((num_dirs + sign));
   2104 	} else {
   2105 		num_files = udf_rw32(ump->logvol_info->num_files);
   2106 		ump->logvol_info->num_files =
   2107 			udf_rw32((num_files + sign));
   2108 	}
   2109 	mutex_exit(&ump->allocate_mutex);
   2110 }
   2111 
   2112 
   2113 void
   2114 udf_osta_charset(struct charspec *charspec)
   2115 {
   2116 	bzero(charspec, sizeof(struct charspec));
   2117 	charspec->type = 0;
   2118 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2119 }
   2120 
   2121 
   2122 /* first call udf_set_regid and then the suffix */
   2123 void
   2124 udf_set_regid(struct regid *regid, char const *name)
   2125 {
   2126 	bzero(regid, sizeof(struct regid));
   2127 	regid->flags    = 0;		/* not dirty and not protected */
   2128 	strcpy((char *) regid->id, name);
   2129 }
   2130 
   2131 
   2132 void
   2133 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2134 {
   2135 	uint16_t *ver;
   2136 
   2137 	ver  = (uint16_t *) regid->id_suffix;
   2138 	*ver = ump->logvol_info->min_udf_readver;
   2139 }
   2140 
   2141 
   2142 void
   2143 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2144 {
   2145 	uint16_t *ver;
   2146 
   2147 	ver  = (uint16_t *) regid->id_suffix;
   2148 	*ver = ump->logvol_info->min_udf_readver;
   2149 
   2150 	regid->id_suffix[2] = 4;	/* unix */
   2151 	regid->id_suffix[3] = 8;	/* NetBSD */
   2152 }
   2153 
   2154 
   2155 void
   2156 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2157 {
   2158 	regid->id_suffix[0] = 4;	/* unix */
   2159 	regid->id_suffix[1] = 8;	/* NetBSD */
   2160 }
   2161 
   2162 
   2163 void
   2164 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2165 {
   2166 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2167 	regid->id_suffix[1] = APP_VERSION_SUB;
   2168 }
   2169 
   2170 static int
   2171 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2172 	struct long_ad *parent, uint64_t unique_id)
   2173 {
   2174 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2175 	int fidsize = 40;
   2176 
   2177 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2178 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2179 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2180 	fid->icb = *parent;
   2181 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2182 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
   2183 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2184 
   2185 	return fidsize;
   2186 }
   2187 
   2188 /* --------------------------------------------------------------------- */
   2189 
   2190 /*
   2191  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2192  *
   2193  * (a) inside the file's (e)fe in the length of the extended attribute area
   2194  * before the allocation descriptors/filedata
   2195  *
   2196  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2197  *
   2198  * (c) in the e(fe)'s associated stream directory that can hold various
   2199  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2200  * for NT/Unix ACL's and OS/2 attributes.
   2201  *
   2202  * NOTE: Extended attributes are read randomly but allways written
   2203  * *atomicaly*. For ACL's this interface is propably different but not known
   2204  * to me yet.
   2205  *
   2206  * Order of extended attributes in a space :
   2207  *   ECMA 167 EAs
   2208  *   Non block aligned Implementation Use EAs
   2209  *   Block aligned Implementation Use EAs
   2210  *   Application Use EAs
   2211  */
   2212 
   2213 static int
   2214 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2215 {
   2216 	uint16_t   *spos;
   2217 
   2218 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2219 		/* checksum valid? */
   2220 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2221 		spos = (uint16_t *) implext->data;
   2222 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2223 			return EINVAL;
   2224 	}
   2225 	return 0;
   2226 }
   2227 
   2228 static void
   2229 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2230 {
   2231 	uint16_t   *spos;
   2232 
   2233 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2234 		/* set checksum */
   2235 		spos = (uint16_t *) implext->data;
   2236 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2237 	}
   2238 }
   2239 
   2240 
   2241 int
   2242 udf_extattr_search_intern(struct udf_node *node,
   2243 	uint32_t sattr, char const *sattrname,
   2244 	uint32_t *offsetp, uint32_t *lengthp)
   2245 {
   2246 	struct extattrhdr_desc    *eahdr;
   2247 	struct extattr_entry      *attrhdr;
   2248 	struct impl_extattr_entry *implext;
   2249 	uint32_t    offset, a_l, sector_size;
   2250 	 int32_t    l_ea;
   2251 	uint8_t    *pos;
   2252 	int         error;
   2253 
   2254 	/* get mountpoint */
   2255 	sector_size = node->ump->discinfo.sector_size;
   2256 
   2257 	/* get information from fe/efe */
   2258 	if (node->fe) {
   2259 		l_ea  = udf_rw32(node->fe->l_ea);
   2260 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2261 	} else {
   2262 		assert(node->efe);
   2263 		l_ea  = udf_rw32(node->efe->l_ea);
   2264 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2265 	}
   2266 
   2267 	/* something recorded here? */
   2268 	if (l_ea == 0)
   2269 		return ENOENT;
   2270 
   2271 	/* check extended attribute tag; what to do if it fails? */
   2272 	error = udf_check_tag(eahdr);
   2273 	if (error)
   2274 		return EINVAL;
   2275 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2276 		return EINVAL;
   2277 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2278 	if (error)
   2279 		return EINVAL;
   2280 
   2281 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2282 
   2283 	/* looking for Ecma-167 attributes? */
   2284 	offset = sizeof(struct extattrhdr_desc);
   2285 
   2286 	/* looking for either implemenation use or application use */
   2287 	if (sattr == 2048) {				/* [4/48.10.8] */
   2288 		offset = udf_rw32(eahdr->impl_attr_loc);
   2289 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2290 			return ENOENT;
   2291 	}
   2292 	if (sattr == 65536) {				/* [4/48.10.9] */
   2293 		offset = udf_rw32(eahdr->appl_attr_loc);
   2294 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2295 			return ENOENT;
   2296 	}
   2297 
   2298 	/* paranoia check offset and l_ea */
   2299 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2300 		return EINVAL;
   2301 
   2302 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2303 
   2304 	/* find our extended attribute  */
   2305 	l_ea -= offset;
   2306 	pos = (uint8_t *) eahdr + offset;
   2307 
   2308 	while (l_ea >= sizeof(struct extattr_entry)) {
   2309 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2310 		attrhdr = (struct extattr_entry *) pos;
   2311 		implext = (struct impl_extattr_entry *) pos;
   2312 
   2313 		/* get complete attribute length and check for roque values */
   2314 		a_l = udf_rw32(attrhdr->a_l);
   2315 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2316 				udf_rw32(attrhdr->type),
   2317 				attrhdr->subtype, a_l, l_ea));
   2318 		if ((a_l == 0) || (a_l > l_ea))
   2319 			return EINVAL;
   2320 
   2321 		if (attrhdr->type != sattr)
   2322 			goto next_attribute;
   2323 
   2324 		/* we might have found it! */
   2325 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2326 			*offsetp = offset;
   2327 			*lengthp = a_l;
   2328 			return 0;		/* success */
   2329 		}
   2330 
   2331 		/*
   2332 		 * Implementation use and application use extended attributes
   2333 		 * have a name to identify. They share the same structure only
   2334 		 * UDF implementation use extended attributes have a checksum
   2335 		 * we need to check
   2336 		 */
   2337 
   2338 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2339 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2340 			/* we have found our appl/implementation attribute */
   2341 			*offsetp = offset;
   2342 			*lengthp = a_l;
   2343 			return 0;		/* success */
   2344 		}
   2345 
   2346 next_attribute:
   2347 		/* next attribute */
   2348 		pos    += a_l;
   2349 		l_ea   -= a_l;
   2350 		offset += a_l;
   2351 	}
   2352 	/* not found */
   2353 	return ENOENT;
   2354 }
   2355 
   2356 
   2357 static void
   2358 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2359 	struct extattr_entry *extattr)
   2360 {
   2361 	struct file_entry      *fe;
   2362 	struct extfile_entry   *efe;
   2363 	struct extattrhdr_desc *extattrhdr;
   2364 	struct impl_extattr_entry *implext;
   2365 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2366 	uint32_t *l_eap, l_ad;
   2367 	uint16_t *spos;
   2368 	uint8_t *bpos, *data;
   2369 
   2370 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2371 		fe    = &dscr->fe;
   2372 		data  = fe->data;
   2373 		l_eap = &fe->l_ea;
   2374 		l_ad  = udf_rw32(fe->l_ad);
   2375 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2376 		efe   = &dscr->efe;
   2377 		data  = efe->data;
   2378 		l_eap = &efe->l_ea;
   2379 		l_ad  = udf_rw32(efe->l_ad);
   2380 	} else {
   2381 		panic("Bad tag passed to udf_extattr_insert_internal");
   2382 	}
   2383 
   2384 	/* can't append already written to file descriptors yet */
   2385 	assert(l_ad == 0);
   2386 
   2387 	/* should have a header! */
   2388 	extattrhdr = (struct extattrhdr_desc *) data;
   2389 	l_ea = udf_rw32(*l_eap);
   2390 	if (l_ea == 0) {
   2391 		/* create empty extended attribute header */
   2392 		exthdr_len = sizeof(struct extattrhdr_desc);
   2393 
   2394 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2395 			/* loc */ 0);
   2396 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2397 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2398 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2399 
   2400 		/* record extended attribute header length */
   2401 		l_ea = exthdr_len;
   2402 		*l_eap = udf_rw32(l_ea);
   2403 	}
   2404 
   2405 	/* extract locations */
   2406 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2407 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2408 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2409 		impl_attr_loc = l_ea;
   2410 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2411 		appl_attr_loc = l_ea;
   2412 
   2413 	/* Ecma 167 EAs */
   2414 	if (udf_rw32(extattr->type) < 2048) {
   2415 		assert(impl_attr_loc == l_ea);
   2416 		assert(appl_attr_loc == l_ea);
   2417 	}
   2418 
   2419 	/* implementation use extended attributes */
   2420 	if (udf_rw32(extattr->type) == 2048) {
   2421 		assert(appl_attr_loc == l_ea);
   2422 
   2423 		/* calculate and write extended attribute header checksum */
   2424 		implext = (struct impl_extattr_entry *) extattr;
   2425 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2426 		spos = (uint16_t *) implext->data;
   2427 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2428 	}
   2429 
   2430 	/* application use extended attributes */
   2431 	assert(udf_rw32(extattr->type) != 65536);
   2432 	assert(appl_attr_loc == l_ea);
   2433 
   2434 	/* append the attribute at the end of the current space */
   2435 	bpos = data + udf_rw32(*l_eap);
   2436 	a_l  = udf_rw32(extattr->a_l);
   2437 
   2438 	/* update impl. attribute locations */
   2439 	if (udf_rw32(extattr->type) < 2048) {
   2440 		impl_attr_loc = l_ea + a_l;
   2441 		appl_attr_loc = l_ea + a_l;
   2442 	}
   2443 	if (udf_rw32(extattr->type) == 2048) {
   2444 		appl_attr_loc = l_ea + a_l;
   2445 	}
   2446 
   2447 	/* copy and advance */
   2448 	memcpy(bpos, extattr, a_l);
   2449 	l_ea += a_l;
   2450 	*l_eap = udf_rw32(l_ea);
   2451 
   2452 	/* do the `dance` again backwards */
   2453 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2454 		if (impl_attr_loc == l_ea)
   2455 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2456 		if (appl_attr_loc == l_ea)
   2457 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2458 	}
   2459 
   2460 	/* store offsets */
   2461 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2462 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2463 }
   2464 
   2465 
   2466 /* --------------------------------------------------------------------- */
   2467 
   2468 static int
   2469 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2470 {
   2471 	struct udf_mount       *ump;
   2472 	struct udf_logvol_info *lvinfo;
   2473 	struct impl_extattr_entry     *implext;
   2474 	struct vatlvext_extattr_entry  lvext;
   2475 	const char *extstr = "*UDF VAT LVExtension";
   2476 	uint64_t    vat_uniqueid;
   2477 	uint32_t    offset, a_l;
   2478 	uint8_t    *ea_start, *lvextpos;
   2479 	int         error;
   2480 
   2481 	/* get mountpoint and lvinfo */
   2482 	ump    = vat_node->ump;
   2483 	lvinfo = ump->logvol_info;
   2484 
   2485 	/* get information from fe/efe */
   2486 	if (vat_node->fe) {
   2487 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2488 		ea_start     = vat_node->fe->data;
   2489 	} else {
   2490 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2491 		ea_start     = vat_node->efe->data;
   2492 	}
   2493 
   2494 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2495 	if (error)
   2496 		return error;
   2497 
   2498 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2499 	error = udf_impl_extattr_check(implext);
   2500 	if (error)
   2501 		return error;
   2502 
   2503 	/* paranoia */
   2504 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2505 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2506 		return EINVAL;
   2507 	}
   2508 
   2509 	/*
   2510 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2511 	 * bug in the specification it might not be word aligned so
   2512 	 * copy first to avoid panics on some machines (!!)
   2513 	 */
   2514 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2515 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2516 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2517 
   2518 	/* check if it was updated the last time */
   2519 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2520 		lvinfo->num_files       = lvext.num_files;
   2521 		lvinfo->num_directories = lvext.num_directories;
   2522 		udf_update_logvolname(ump, lvext.logvol_id);
   2523 	} else {
   2524 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2525 		/* replace VAT LVExt by free space EA */
   2526 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2527 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2528 		udf_calc_impl_extattr_checksum(implext);
   2529 	}
   2530 
   2531 	return 0;
   2532 }
   2533 
   2534 
   2535 static int
   2536 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2537 {
   2538 	struct udf_mount       *ump;
   2539 	struct udf_logvol_info *lvinfo;
   2540 	struct impl_extattr_entry     *implext;
   2541 	struct vatlvext_extattr_entry  lvext;
   2542 	const char *extstr = "*UDF VAT LVExtension";
   2543 	uint64_t    vat_uniqueid;
   2544 	uint32_t    offset, a_l;
   2545 	uint8_t    *ea_start, *lvextpos;
   2546 	int         error;
   2547 
   2548 	/* get mountpoint and lvinfo */
   2549 	ump    = vat_node->ump;
   2550 	lvinfo = ump->logvol_info;
   2551 
   2552 	/* get information from fe/efe */
   2553 	if (vat_node->fe) {
   2554 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2555 		ea_start     = vat_node->fe->data;
   2556 	} else {
   2557 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2558 		ea_start     = vat_node->efe->data;
   2559 	}
   2560 
   2561 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2562 	if (error)
   2563 		return error;
   2564 	/* found, it existed */
   2565 
   2566 	/* paranoia */
   2567 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2568 	error = udf_impl_extattr_check(implext);
   2569 	if (error) {
   2570 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2571 		return error;
   2572 	}
   2573 	/* it is correct */
   2574 
   2575 	/*
   2576 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2577 	 * bug in the specification it might not be word aligned so
   2578 	 * copy first to avoid panics on some machines (!!)
   2579 	 */
   2580 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2581 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2582 
   2583 	lvext.unique_id_chk   = vat_uniqueid;
   2584 	lvext.num_files       = lvinfo->num_files;
   2585 	lvext.num_directories = lvinfo->num_directories;
   2586 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2587 
   2588 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2589 
   2590 	return 0;
   2591 }
   2592 
   2593 /* --------------------------------------------------------------------- */
   2594 
   2595 int
   2596 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2597 {
   2598 	struct udf_mount *ump = vat_node->ump;
   2599 
   2600 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2601 		return EINVAL;
   2602 
   2603 	memcpy(blob, ump->vat_table + offset, size);
   2604 	return 0;
   2605 }
   2606 
   2607 int
   2608 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2609 {
   2610 	struct udf_mount *ump = vat_node->ump;
   2611 	uint32_t offset_high;
   2612 	uint8_t *new_vat_table;
   2613 
   2614 	/* extent VAT allocation if needed */
   2615 	offset_high = offset + size;
   2616 	if (offset_high >= ump->vat_table_alloc_len) {
   2617 		/* realloc */
   2618 		new_vat_table = realloc(ump->vat_table,
   2619 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2620 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2621 		if (!new_vat_table) {
   2622 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2623 			return ENOMEM;
   2624 		}
   2625 		ump->vat_table = new_vat_table;
   2626 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2627 	}
   2628 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2629 
   2630 	memcpy(ump->vat_table + offset, blob, size);
   2631 	return 0;
   2632 }
   2633 
   2634 /* --------------------------------------------------------------------- */
   2635 
   2636 /* TODO support previous VAT location writeout */
   2637 static int
   2638 udf_update_vat_descriptor(struct udf_mount *ump)
   2639 {
   2640 	struct udf_node *vat_node = ump->vat_node;
   2641 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2642 	struct icb_tag *icbtag;
   2643 	struct udf_oldvat_tail *oldvat_tl;
   2644 	struct udf_vat *vat;
   2645 	uint64_t unique_id;
   2646 	uint32_t lb_size;
   2647 	uint8_t *raw_vat;
   2648 	int filetype, error;
   2649 
   2650 	KASSERT(vat_node);
   2651 	KASSERT(lvinfo);
   2652 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2653 
   2654 	/* get our new unique_id */
   2655 	unique_id = udf_advance_uniqueid(ump);
   2656 
   2657 	/* get information from fe/efe */
   2658 	if (vat_node->fe) {
   2659 		icbtag    = &vat_node->fe->icbtag;
   2660 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2661 	} else {
   2662 		icbtag = &vat_node->efe->icbtag;
   2663 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2664 	}
   2665 
   2666 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2667 	filetype = icbtag->file_type;
   2668 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2669 
   2670 	/* allocate piece to process head or tail of VAT file */
   2671 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2672 
   2673 	if (filetype == 0) {
   2674 		/*
   2675 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2676 		 * lvint if present.
   2677 		 */
   2678 		udf_update_vat_extattr_from_lvid(vat_node);
   2679 
   2680 		/* setup identifying regid */
   2681 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2682 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2683 
   2684 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2685 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2686 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2687 
   2688 		/* write out new tail of virtual allocation table file */
   2689 		error = udf_vat_write(vat_node, raw_vat,
   2690 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2691 	} else {
   2692 		/* compose the VAT2 header */
   2693 		vat = (struct udf_vat *) raw_vat;
   2694 		memset(vat, 0, sizeof(struct udf_vat));
   2695 
   2696 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2697 		vat->impl_use_len     = udf_rw16(0);
   2698 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2699 		vat->prev_vat         = udf_rw32(0xffffffff);
   2700 		vat->num_files        = lvinfo->num_files;
   2701 		vat->num_directories  = lvinfo->num_directories;
   2702 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2703 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2704 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2705 
   2706 		error = udf_vat_write(vat_node, raw_vat,
   2707 			sizeof(struct udf_vat), 0);
   2708 	}
   2709 	free(raw_vat, M_TEMP);
   2710 
   2711 	return error;	/* success! */
   2712 }
   2713 
   2714 
   2715 int
   2716 udf_writeout_vat(struct udf_mount *ump)
   2717 {
   2718 	struct udf_node *vat_node = ump->vat_node;
   2719 	uint32_t vat_length;
   2720 	int error;
   2721 
   2722 	KASSERT(vat_node);
   2723 
   2724 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2725 
   2726 	mutex_enter(&ump->allocate_mutex);
   2727 	udf_update_vat_descriptor(ump);
   2728 
   2729 	/* write out the VAT contents ; TODO intelligent writing */
   2730 	vat_length = ump->vat_table_len;
   2731 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2732 		ump->vat_table, ump->vat_table_len, 0,
   2733 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
   2734 	if (error) {
   2735 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2736 		goto out;
   2737 	}
   2738 
   2739 	mutex_exit(&ump->allocate_mutex);
   2740 
   2741 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2742 	error = VOP_FSYNC(ump->vat_node->vnode,
   2743 			FSCRED, FSYNC_WAIT, 0, 0);
   2744 	if (error)
   2745 		printf("udf_writeout_vat: error writing VAT node!\n");
   2746 out:
   2747 
   2748 	return error;
   2749 }
   2750 
   2751 /* --------------------------------------------------------------------- */
   2752 
   2753 /*
   2754  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2755  * descriptor. If OK, read in complete VAT file.
   2756  */
   2757 
   2758 static int
   2759 udf_check_for_vat(struct udf_node *vat_node)
   2760 {
   2761 	struct udf_mount *ump;
   2762 	struct icb_tag   *icbtag;
   2763 	struct timestamp *mtime;
   2764 	struct udf_vat   *vat;
   2765 	struct udf_oldvat_tail *oldvat_tl;
   2766 	struct udf_logvol_info *lvinfo;
   2767 	uint64_t  unique_id;
   2768 	uint32_t  vat_length;
   2769 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2770 	uint32_t  sector_size;
   2771 	uint32_t *raw_vat;
   2772 	uint8_t  *vat_table;
   2773 	char     *regid_name;
   2774 	int filetype;
   2775 	int error;
   2776 
   2777 	/* vat_length is really 64 bits though impossible */
   2778 
   2779 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2780 	if (!vat_node)
   2781 		return ENOENT;
   2782 
   2783 	/* get mount info */
   2784 	ump = vat_node->ump;
   2785 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2786 
   2787 	/* check assertions */
   2788 	assert(vat_node->fe || vat_node->efe);
   2789 	assert(ump->logvol_integrity);
   2790 
   2791 	/* set vnode type to regular file or we can't read from it! */
   2792 	vat_node->vnode->v_type = VREG;
   2793 
   2794 	/* get information from fe/efe */
   2795 	if (vat_node->fe) {
   2796 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2797 		icbtag    = &vat_node->fe->icbtag;
   2798 		mtime     = &vat_node->fe->mtime;
   2799 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2800 	} else {
   2801 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2802 		icbtag = &vat_node->efe->icbtag;
   2803 		mtime  = &vat_node->efe->mtime;
   2804 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2805 	}
   2806 
   2807 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2808 	filetype = icbtag->file_type;
   2809 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2810 		return ENOENT;
   2811 
   2812 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2813 
   2814 	vat_table_alloc_len =
   2815 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2816 			* UDF_VAT_CHUNKSIZE;
   2817 
   2818 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2819 		M_CANFAIL | M_WAITOK);
   2820 	if (vat_table == NULL) {
   2821 		printf("allocation of %d bytes failed for VAT\n",
   2822 			vat_table_alloc_len);
   2823 		return ENOMEM;
   2824 	}
   2825 
   2826 	/* allocate piece to read in head or tail of VAT file */
   2827 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2828 
   2829 	/*
   2830 	 * check contents of the file if its the old 1.50 VAT table format.
   2831 	 * Its notoriously broken and allthough some implementations support an
   2832 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2833 	 * to be useable since a lot of implementations don't maintain it.
   2834 	 */
   2835 	lvinfo = ump->logvol_info;
   2836 
   2837 	if (filetype == 0) {
   2838 		/* definition */
   2839 		vat_offset  = 0;
   2840 		vat_entries = (vat_length-36)/4;
   2841 
   2842 		/* read in tail of virtual allocation table file */
   2843 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2844 				(uint8_t *) raw_vat,
   2845 				sizeof(struct udf_oldvat_tail),
   2846 				vat_entries * 4,
   2847 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2848 				NULL, NULL);
   2849 		if (error)
   2850 			goto out;
   2851 
   2852 		/* check 1.50 VAT */
   2853 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2854 		regid_name = (char *) oldvat_tl->id.id;
   2855 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2856 		if (error) {
   2857 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2858 			error = ENOENT;
   2859 			goto out;
   2860 		}
   2861 
   2862 		/*
   2863 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2864 		 * if present.
   2865 		 */
   2866 		udf_update_lvid_from_vat_extattr(vat_node);
   2867 	} else {
   2868 		/* read in head of virtual allocation table file */
   2869 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2870 				(uint8_t *) raw_vat,
   2871 				sizeof(struct udf_vat), 0,
   2872 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2873 				NULL, NULL);
   2874 		if (error)
   2875 			goto out;
   2876 
   2877 		/* definition */
   2878 		vat = (struct udf_vat *) raw_vat;
   2879 		vat_offset  = vat->header_len;
   2880 		vat_entries = (vat_length - vat_offset)/4;
   2881 
   2882 		assert(lvinfo);
   2883 		lvinfo->num_files        = vat->num_files;
   2884 		lvinfo->num_directories  = vat->num_directories;
   2885 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2886 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2887 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2888 
   2889 		udf_update_logvolname(ump, vat->logvol_id);
   2890 	}
   2891 
   2892 	/* read in complete VAT file */
   2893 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2894 			vat_table,
   2895 			vat_length, 0,
   2896 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2897 			NULL, NULL);
   2898 	if (error)
   2899 		printf("read in of complete VAT file failed (error %d)\n",
   2900 			error);
   2901 	if (error)
   2902 		goto out;
   2903 
   2904 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2905 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
   2906 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2907 	ump->logvol_integrity->time           = *mtime;
   2908 
   2909 	ump->vat_table_len = vat_length;
   2910 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2911 	ump->vat_table   = vat_table;
   2912 	ump->vat_offset  = vat_offset;
   2913 	ump->vat_entries = vat_entries;
   2914 	ump->vat_last_free_lb = 0;		/* start at beginning */
   2915 
   2916 out:
   2917 	if (error) {
   2918 		if (vat_table)
   2919 			free(vat_table, M_UDFVOLD);
   2920 	}
   2921 	free(raw_vat, M_TEMP);
   2922 
   2923 	return error;
   2924 }
   2925 
   2926 /* --------------------------------------------------------------------- */
   2927 
   2928 static int
   2929 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   2930 {
   2931 	struct udf_node *vat_node;
   2932 	struct long_ad	 icb_loc;
   2933 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   2934 	int error;
   2935 
   2936 	/* mapping info not needed */
   2937 	mapping = mapping;
   2938 
   2939 	vat_loc = ump->last_possible_vat_location;
   2940 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   2941 
   2942 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   2943 		vat_loc, early_vat_loc));
   2944 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   2945 	late_vat_loc  = vat_loc + 1024;
   2946 
   2947 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   2948 		vat_loc, early_vat_loc));
   2949 
   2950 	/* start looking from the end of the range */
   2951 	do {
   2952 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   2953 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   2954 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   2955 
   2956 		error = udf_get_node(ump, &icb_loc, &vat_node);
   2957 		if (!error) {
   2958 			error = udf_check_for_vat(vat_node);
   2959 			DPRINTFIF(VOLUMES, !error,
   2960 				("VAT accepted at %d\n", vat_loc));
   2961 			if (!error)
   2962 				break;
   2963 		}
   2964 		if (vat_node) {
   2965 			vput(vat_node->vnode);
   2966 			vat_node = NULL;
   2967 		}
   2968 		vat_loc--;	/* walk backwards */
   2969 	} while (vat_loc >= early_vat_loc);
   2970 
   2971 	/* keep our VAT node around */
   2972 	if (vat_node) {
   2973 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   2974 		ump->vat_node = vat_node;
   2975 	}
   2976 
   2977 	return error;
   2978 }
   2979 
   2980 /* --------------------------------------------------------------------- */
   2981 
   2982 static int
   2983 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   2984 {
   2985 	union dscrptr *dscr;
   2986 	struct part_map_spare *pms = &mapping->pms;
   2987 	uint32_t lb_num;
   2988 	int spar, error;
   2989 
   2990 	/*
   2991 	 * The partition mapping passed on to us specifies the information we
   2992 	 * need to locate and initialise the sparable partition mapping
   2993 	 * information we need.
   2994 	 */
   2995 
   2996 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   2997 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   2998 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   2999 
   3000 	for (spar = 0; spar < pms->n_st; spar++) {
   3001 		lb_num = pms->st_loc[spar];
   3002 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3003 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3004 		if (!error && dscr) {
   3005 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3006 				if (ump->sparing_table)
   3007 					free(ump->sparing_table, M_UDFVOLD);
   3008 				ump->sparing_table = &dscr->spt;
   3009 				dscr = NULL;
   3010 				DPRINTF(VOLUMES,
   3011 				    ("Sparing table accepted (%d entries)\n",
   3012 				     udf_rw16(ump->sparing_table->rt_l)));
   3013 				break;	/* we're done */
   3014 			}
   3015 		}
   3016 		if (dscr)
   3017 			free(dscr, M_UDFVOLD);
   3018 	}
   3019 
   3020 	if (ump->sparing_table)
   3021 		return 0;
   3022 
   3023 	return ENOENT;
   3024 }
   3025 
   3026 /* --------------------------------------------------------------------- */
   3027 
   3028 static int
   3029 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3030 {
   3031 	struct part_map_meta *pmm = &mapping->pmm;
   3032 	struct long_ad	 icb_loc;
   3033 	struct vnode *vp;
   3034 	int error;
   3035 
   3036 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3037 	icb_loc.loc.part_num = pmm->part_num;
   3038 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3039 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3040 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3041 	if (ump->metadata_node) {
   3042 		vp = ump->metadata_node->vnode;
   3043 		UDF_SET_SYSTEMFILE(vp);
   3044 	}
   3045 
   3046 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3047 	if (icb_loc.loc.lb_num != -1) {
   3048 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3049 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3050 		if (ump->metadatamirror_node) {
   3051 			vp = ump->metadatamirror_node->vnode;
   3052 			UDF_SET_SYSTEMFILE(vp);
   3053 		}
   3054 	}
   3055 
   3056 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3057 	if (icb_loc.loc.lb_num != -1) {
   3058 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3059 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3060 		if (ump->metadatabitmap_node) {
   3061 			vp = ump->metadatabitmap_node->vnode;
   3062 			UDF_SET_SYSTEMFILE(vp);
   3063 		}
   3064 	}
   3065 
   3066 	/* if we're mounting read-only we relax the requirements */
   3067 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3068 		error = EFAULT;
   3069 		if (ump->metadata_node)
   3070 			error = 0;
   3071 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3072 			printf( "udf mount: Metadata file not readable, "
   3073 				"substituting Metadata copy file\n");
   3074 			ump->metadata_node = ump->metadatamirror_node;
   3075 			ump->metadatamirror_node = NULL;
   3076 			error = 0;
   3077 		}
   3078 	} else {
   3079 		/* mounting read/write */
   3080 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3081 		if (error)
   3082 			error = EROFS;
   3083 	}
   3084 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3085 				   "metadata files\n"));
   3086 	return error;
   3087 }
   3088 
   3089 /* --------------------------------------------------------------------- */
   3090 
   3091 int
   3092 udf_read_vds_tables(struct udf_mount *ump)
   3093 {
   3094 	union udf_pmap *mapping;
   3095 	/* struct udf_args *args = &ump->mount_args; */
   3096 	uint32_t n_pm, mt_l;
   3097 	uint32_t log_part;
   3098 	uint8_t *pmap_pos;
   3099 	int pmap_size;
   3100 	int error;
   3101 
   3102 	/* Iterate (again) over the part mappings for locations   */
   3103 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3104 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   3105 	pmap_pos =  ump->logical_vol->maps;
   3106 
   3107 	for (log_part = 0; log_part < n_pm; log_part++) {
   3108 		mapping = (union udf_pmap *) pmap_pos;
   3109 		switch (ump->vtop_tp[log_part]) {
   3110 		case UDF_VTOP_TYPE_PHYS :
   3111 			/* nothing */
   3112 			break;
   3113 		case UDF_VTOP_TYPE_VIRT :
   3114 			/* search and load VAT */
   3115 			error = udf_search_vat(ump, mapping);
   3116 			if (error)
   3117 				return ENOENT;
   3118 			break;
   3119 		case UDF_VTOP_TYPE_SPARABLE :
   3120 			/* load one of the sparable tables */
   3121 			error = udf_read_sparables(ump, mapping);
   3122 			if (error)
   3123 				return ENOENT;
   3124 			break;
   3125 		case UDF_VTOP_TYPE_META :
   3126 			/* load the associated file descriptors */
   3127 			error = udf_read_metadata_nodes(ump, mapping);
   3128 			if (error)
   3129 				return ENOENT;
   3130 			break;
   3131 		default:
   3132 			break;
   3133 		}
   3134 		pmap_size  = pmap_pos[1];
   3135 		pmap_pos  += pmap_size;
   3136 	}
   3137 
   3138 	/* read in and check unallocated and free space info if writing */
   3139 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3140 		error = udf_read_physical_partition_spacetables(ump);
   3141 		if (error)
   3142 			return error;
   3143 
   3144 		/* also read in metadata partion spacebitmap if defined */
   3145 		error = udf_read_metadata_partition_spacetable(ump);
   3146 			return error;
   3147 	}
   3148 
   3149 	return 0;
   3150 }
   3151 
   3152 /* --------------------------------------------------------------------- */
   3153 
   3154 int
   3155 udf_read_rootdirs(struct udf_mount *ump)
   3156 {
   3157 	union dscrptr *dscr;
   3158 	/* struct udf_args *args = &ump->mount_args; */
   3159 	struct udf_node *rootdir_node, *streamdir_node;
   3160 	struct long_ad  fsd_loc, *dir_loc;
   3161 	uint32_t lb_num, dummy;
   3162 	uint32_t fsd_len;
   3163 	int dscr_type;
   3164 	int error;
   3165 
   3166 	/* TODO implement FSD reading in separate function like integrity? */
   3167 	/* get fileset descriptor sequence */
   3168 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3169 	fsd_len = udf_rw32(fsd_loc.len);
   3170 
   3171 	dscr  = NULL;
   3172 	error = 0;
   3173 	while (fsd_len || error) {
   3174 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3175 		/* translate fsd_loc to lb_num */
   3176 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3177 		if (error)
   3178 			break;
   3179 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3180 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3181 		/* end markers */
   3182 		if (error || (dscr == NULL))
   3183 			break;
   3184 
   3185 		/* analyse */
   3186 		dscr_type = udf_rw16(dscr->tag.id);
   3187 		if (dscr_type == TAGID_TERM)
   3188 			break;
   3189 		if (dscr_type != TAGID_FSD) {
   3190 			free(dscr, M_UDFVOLD);
   3191 			return ENOENT;
   3192 		}
   3193 
   3194 		/*
   3195 		 * TODO check for multiple fileset descriptors; its only
   3196 		 * picking the last now. Also check for FSD
   3197 		 * correctness/interpretability
   3198 		 */
   3199 
   3200 		/* update */
   3201 		if (ump->fileset_desc) {
   3202 			free(ump->fileset_desc, M_UDFVOLD);
   3203 		}
   3204 		ump->fileset_desc = &dscr->fsd;
   3205 		dscr = NULL;
   3206 
   3207 		/* continue to the next fsd */
   3208 		fsd_len -= ump->discinfo.sector_size;
   3209 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3210 
   3211 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3212 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3213 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3214 			fsd_loc = ump->fileset_desc->next_ex;
   3215 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3216 		}
   3217 	}
   3218 	if (dscr)
   3219 		free(dscr, M_UDFVOLD);
   3220 
   3221 	/* there has to be one */
   3222 	if (ump->fileset_desc == NULL)
   3223 		return ENOENT;
   3224 
   3225 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3226 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3227 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3228 
   3229 	/*
   3230 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3231 	 * the system stream dir. Some files in the system streamdir are not
   3232 	 * wanted in this implementation since they are not maintained. If
   3233 	 * writing is enabled we'll delete these files if they exist.
   3234 	 */
   3235 
   3236 	rootdir_node = streamdir_node = NULL;
   3237 	dir_loc = NULL;
   3238 
   3239 	/* try to read in the rootdir */
   3240 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3241 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3242 	if (error)
   3243 		return ENOENT;
   3244 
   3245 	/* aparently it read in fine */
   3246 
   3247 	/*
   3248 	 * Try the system stream directory; not very likely in the ones we
   3249 	 * test, but for completeness.
   3250 	 */
   3251 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3252 	if (udf_rw32(dir_loc->len)) {
   3253 		printf("udf_read_rootdirs: streamdir defined ");
   3254 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3255 		if (error) {
   3256 			printf("but error in streamdir reading\n");
   3257 		} else {
   3258 			printf("but ignored\n");
   3259 			/*
   3260 			 * TODO process streamdir `baddies' i.e. files we dont
   3261 			 * want if R/W
   3262 			 */
   3263 		}
   3264 	}
   3265 
   3266 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3267 
   3268 	/* release the vnodes again; they'll be auto-recycled later */
   3269 	if (streamdir_node) {
   3270 		vput(streamdir_node->vnode);
   3271 	}
   3272 	if (rootdir_node) {
   3273 		vput(rootdir_node->vnode);
   3274 	}
   3275 
   3276 	return 0;
   3277 }
   3278 
   3279 /* --------------------------------------------------------------------- */
   3280 
   3281 /* To make absolutely sure we are NOT returning zero, add one :) */
   3282 
   3283 long
   3284 udf_calchash(struct long_ad *icbptr)
   3285 {
   3286 	/* ought to be enough since each mountpoint has its own chain */
   3287 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3288 }
   3289 
   3290 
   3291 static struct udf_node *
   3292 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3293 {
   3294 	struct udf_node *node;
   3295 	struct vnode *vp;
   3296 	uint32_t hashline;
   3297 
   3298 loop:
   3299 	mutex_enter(&ump->ihash_lock);
   3300 
   3301 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   3302 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
   3303 		assert(node);
   3304 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
   3305 		    node->loc.loc.part_num == icbptr->loc.part_num) {
   3306 			vp = node->vnode;
   3307 			assert(vp);
   3308 			mutex_enter(&vp->v_interlock);
   3309 			mutex_exit(&ump->ihash_lock);
   3310 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   3311 				goto loop;
   3312 			return node;
   3313 		}
   3314 	}
   3315 	mutex_exit(&ump->ihash_lock);
   3316 
   3317 	return NULL;
   3318 }
   3319 
   3320 
   3321 static void
   3322 udf_sorted_list_insert(struct udf_node *node)
   3323 {
   3324 	struct udf_mount *ump;
   3325 	struct udf_node  *s_node, *last_node;
   3326 	uint32_t loc, s_loc;
   3327 
   3328 	ump = node->ump;
   3329 	last_node = NULL;	/* XXX gcc */
   3330 
   3331 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
   3332 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
   3333 		return;
   3334 	}
   3335 
   3336 	/*
   3337 	 * We sort on logical block number here and not on physical block
   3338 	 * number here. Ideally we should go for the physical block nr to get
   3339 	 * better sync performance though this sort will ensure that packets
   3340 	 * won't get spit up unnessisarily.
   3341 	 */
   3342 
   3343 	loc = udf_rw32(node->loc.loc.lb_num);
   3344 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
   3345 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
   3346 		if (s_loc > loc) {
   3347 			LIST_INSERT_BEFORE(s_node, node, sortchain);
   3348 			return;
   3349 		}
   3350 		last_node = s_node;
   3351 	}
   3352 	LIST_INSERT_AFTER(last_node, node, sortchain);
   3353 }
   3354 
   3355 
   3356 static void
   3357 udf_register_node(struct udf_node *node)
   3358 {
   3359 	struct udf_mount *ump;
   3360 	struct udf_node *chk;
   3361 	uint32_t hashline;
   3362 
   3363 	ump = node->ump;
   3364 	mutex_enter(&ump->ihash_lock);
   3365 
   3366 	/* add to our hash table */
   3367 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
   3368 #ifdef DEBUG
   3369 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
   3370 		assert(chk);
   3371 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
   3372 		    chk->loc.loc.part_num == node->loc.loc.part_num)
   3373 			panic("Double node entered\n");
   3374 	}
   3375 #else
   3376 	chk = NULL;
   3377 #endif
   3378 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
   3379 
   3380 	/* add to our sorted list */
   3381 	udf_sorted_list_insert(node);
   3382 
   3383 	mutex_exit(&ump->ihash_lock);
   3384 }
   3385 
   3386 
   3387 static void
   3388 udf_deregister_node(struct udf_node *node)
   3389 {
   3390 	struct udf_mount *ump;
   3391 
   3392 	ump = node->ump;
   3393 	mutex_enter(&ump->ihash_lock);
   3394 
   3395 	/* from hash and sorted list */
   3396 	LIST_REMOVE(node, hashchain);
   3397 	LIST_REMOVE(node, sortchain);
   3398 
   3399 	mutex_exit(&ump->ihash_lock);
   3400 }
   3401 
   3402 /* --------------------------------------------------------------------- */
   3403 
   3404 int
   3405 udf_open_logvol(struct udf_mount *ump)
   3406 {
   3407 	int logvol_integrity;
   3408 	int error;
   3409 
   3410 	/* already/still open? */
   3411 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3412 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3413 		return 0;
   3414 
   3415 	/* can we open it ? */
   3416 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3417 		return EROFS;
   3418 
   3419 	/* setup write parameters */
   3420 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3421 	if ((error = udf_setup_writeparams(ump)) != 0)
   3422 		return error;
   3423 
   3424 	/* determine data and metadata tracks (most likely same) */
   3425 	error = udf_search_writing_tracks(ump);
   3426 	if (error) {
   3427 		/* most likely lack of space */
   3428 		printf("udf_open_logvol: error searching writing tracks\n");
   3429 		return EROFS;
   3430 	}
   3431 
   3432 	/* writeout/update lvint on disc or only in memory */
   3433 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3434 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3435 		/* TODO implement writeout of VRS + VDS */
   3436 		printf( "udf_open_logvol:Opening a closed session not yet "
   3437 			"implemented\n");
   3438 		return EROFS;
   3439 
   3440 		/* determine data and metadata tracks again */
   3441 		error = udf_search_writing_tracks(ump);
   3442 	}
   3443 
   3444 	/* mark it open */
   3445 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3446 
   3447 	/* do we need to write it out? */
   3448 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3449 		error = udf_writeout_lvint(ump, ump->lvopen);
   3450 		/* if we couldn't write it mark it closed again */
   3451 		if (error) {
   3452 			ump->logvol_integrity->integrity_type =
   3453 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3454 			return error;
   3455 		}
   3456 	}
   3457 
   3458 	return 0;
   3459 }
   3460 
   3461 
   3462 int
   3463 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3464 {
   3465 	int logvol_integrity;
   3466 	int error = 0, error1 = 0, error2 = 0;
   3467 	int n;
   3468 
   3469 	/* already/still closed? */
   3470 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3471 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3472 		return 0;
   3473 
   3474 	/* writeout/update lvint or write out VAT */
   3475 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
   3476 	if (ump->lvclose & UDF_WRITE_VAT) {
   3477 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3478 
   3479 		/* write out the VAT node */
   3480 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3481 		udf_writeout_vat(ump);
   3482 
   3483 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3484 		for (n = 0; n < 16; n++) {
   3485 			ump->vat_node->i_flags |= IN_MODIFIED;
   3486 			error = VOP_FSYNC(ump->vat_node->vnode,
   3487 					FSCRED, FSYNC_WAIT, 0, 0);
   3488 		}
   3489 		if (error) {
   3490 			printf("udf_close_logvol: writeout of VAT failed\n");
   3491 			return error;
   3492 		}
   3493 	}
   3494 
   3495 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3496 		/* sync writeout metadata spacetable if existing */
   3497 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3498 		if (error1)
   3499 			printf( "udf_close_logvol: writeout of metadata space "
   3500 				"bitmap failed\n");
   3501 
   3502 		/* sync writeout partition spacetables */
   3503 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3504 		if (error2)
   3505 			printf( "udf_close_logvol: writeout of space tables "
   3506 				"failed\n");
   3507 
   3508 		if (error1 || error2)
   3509 			return (error1 | error2);
   3510 
   3511 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3512 	}
   3513 
   3514 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3515 		printf("TODO: Closing a session is not yet implemented\n");
   3516 		return EROFS;
   3517 		ump->lvopen |= UDF_OPEN_SESSION;
   3518 	}
   3519 
   3520 	/* mark it closed */
   3521 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3522 
   3523 	/* do we need to write out the logical volume integrity */
   3524 	if (ump->lvclose & UDF_WRITE_LVINT)
   3525 		error = udf_writeout_lvint(ump, ump->lvopen);
   3526 	if (error) {
   3527 		/* HELP now what? mark it open again for now */
   3528 		ump->logvol_integrity->integrity_type =
   3529 			udf_rw32(UDF_INTEGRITY_OPEN);
   3530 		return error;
   3531 	}
   3532 
   3533 	(void) udf_synchronise_caches(ump);
   3534 
   3535 	return 0;
   3536 }
   3537 
   3538 /* --------------------------------------------------------------------- */
   3539 
   3540 /*
   3541  * Genfs interfacing
   3542  *
   3543  * static const struct genfs_ops udf_genfsops = {
   3544  * 	.gop_size = genfs_size,
   3545  * 		size of transfers
   3546  * 	.gop_alloc = udf_gop_alloc,
   3547  * 		allocate len bytes at offset
   3548  * 	.gop_write = genfs_gop_write,
   3549  * 		putpages interface code
   3550  * 	.gop_markupdate = udf_gop_markupdate,
   3551  * 		set update/modify flags etc.
   3552  * }
   3553  */
   3554 
   3555 /*
   3556  * Genfs interface. These four functions are the only ones defined though not
   3557  * documented... great....
   3558  */
   3559 
   3560 /*
   3561  * Callback from genfs to allocate len bytes at offset off; only called when
   3562  * filling up gaps in the allocation.
   3563  */
   3564 /* XXX should we check if there is space enough in udf_gop_alloc? */
   3565 static int
   3566 udf_gop_alloc(struct vnode *vp, off_t off,
   3567     off_t len, int flags, kauth_cred_t cred)
   3568 {
   3569 #if 0
   3570 	struct udf_node *udf_node = VTOI(vp);
   3571 	struct udf_mount *ump = udf_node->ump;
   3572 	uint32_t lb_size, num_lb;
   3573 #endif
   3574 
   3575 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
   3576 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
   3577 
   3578 	return 0;
   3579 }
   3580 
   3581 
   3582 /*
   3583  * callback from genfs to update our flags
   3584  */
   3585 static void
   3586 udf_gop_markupdate(struct vnode *vp, int flags)
   3587 {
   3588 	struct udf_node *udf_node = VTOI(vp);
   3589 	u_long mask = 0;
   3590 
   3591 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   3592 		mask = IN_ACCESS;
   3593 	}
   3594 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   3595 		if (vp->v_type == VREG) {
   3596 			mask |= IN_CHANGE | IN_UPDATE;
   3597 		} else {
   3598 			mask |= IN_MODIFY;
   3599 		}
   3600 	}
   3601 	if (mask) {
   3602 		udf_node->i_flags |= mask;
   3603 	}
   3604 }
   3605 
   3606 
   3607 static const struct genfs_ops udf_genfsops = {
   3608 	.gop_size = genfs_size,
   3609 	.gop_alloc = udf_gop_alloc,
   3610 	.gop_write = genfs_gop_write_rwmap,
   3611 	.gop_markupdate = udf_gop_markupdate,
   3612 };
   3613 
   3614 
   3615 /* --------------------------------------------------------------------- */
   3616 
   3617 int
   3618 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   3619 {
   3620 	union dscrptr *dscr;
   3621 	int error;
   3622 
   3623 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
   3624 	bzero(dscr, ump->discinfo.sector_size);
   3625 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   3626 
   3627 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   3628 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   3629 	(void) udf_validate_tag_and_crc_sums(dscr);
   3630 
   3631 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   3632 			dscr, sector, sector);
   3633 
   3634 	free(dscr, M_TEMP);
   3635 
   3636 	return error;
   3637 }
   3638 
   3639 
   3640 /* --------------------------------------------------------------------- */
   3641 
   3642 /* UDF<->unix converters */
   3643 
   3644 /* --------------------------------------------------------------------- */
   3645 
   3646 static mode_t
   3647 udf_perm_to_unix_mode(uint32_t perm)
   3648 {
   3649 	mode_t mode;
   3650 
   3651 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   3652 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   3653 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   3654 
   3655 	return mode;
   3656 }
   3657 
   3658 /* --------------------------------------------------------------------- */
   3659 
   3660 static uint32_t
   3661 unix_mode_to_udf_perm(mode_t mode)
   3662 {
   3663 	uint32_t perm;
   3664 
   3665 	perm  = ((mode & S_IRWXO)     );
   3666 	perm |= ((mode & S_IRWXG) << 2);
   3667 	perm |= ((mode & S_IRWXU) << 4);
   3668 	perm |= ((mode & S_IWOTH) << 3);
   3669 	perm |= ((mode & S_IWGRP) << 5);
   3670 	perm |= ((mode & S_IWUSR) << 7);
   3671 
   3672 	return perm;
   3673 }
   3674 
   3675 /* --------------------------------------------------------------------- */
   3676 
   3677 static uint32_t
   3678 udf_icb_to_unix_filetype(uint32_t icbftype)
   3679 {
   3680 	switch (icbftype) {
   3681 	case UDF_ICB_FILETYPE_DIRECTORY :
   3682 	case UDF_ICB_FILETYPE_STREAMDIR :
   3683 		return S_IFDIR;
   3684 	case UDF_ICB_FILETYPE_FIFO :
   3685 		return S_IFIFO;
   3686 	case UDF_ICB_FILETYPE_CHARDEVICE :
   3687 		return S_IFCHR;
   3688 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   3689 		return S_IFBLK;
   3690 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   3691 	case UDF_ICB_FILETYPE_REALTIME :
   3692 		return S_IFREG;
   3693 	case UDF_ICB_FILETYPE_SYMLINK :
   3694 		return S_IFLNK;
   3695 	case UDF_ICB_FILETYPE_SOCKET :
   3696 		return S_IFSOCK;
   3697 	}
   3698 	/* no idea what this is */
   3699 	return 0;
   3700 }
   3701 
   3702 /* --------------------------------------------------------------------- */
   3703 
   3704 void
   3705 udf_to_unix_name(char *result, int result_len, char *id, int len,
   3706 	struct charspec *chsp)
   3707 {
   3708 	uint16_t   *raw_name, *unix_name;
   3709 	uint16_t   *inchp, ch;
   3710 	uint8_t	   *outchp;
   3711 	const char *osta_id = "OSTA Compressed Unicode";
   3712 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   3713 
   3714 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   3715 	unix_name = raw_name + 1024;			/* split space in half */
   3716 	assert(sizeof(char) == sizeof(uint8_t));
   3717 	outchp = (uint8_t *) result;
   3718 
   3719 	is_osta_typ0  = (chsp->type == 0);
   3720 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3721 	if (is_osta_typ0) {
   3722 		/* TODO clean up */
   3723 		*raw_name = *unix_name = 0;
   3724 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   3725 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   3726 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   3727 		/* output UTF8 */
   3728 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   3729 			ch = *inchp;
   3730 			nout = wput_utf8(outchp, result_len, ch);
   3731 			outchp += nout; result_len -= nout;
   3732 			if (!ch) break;
   3733 		}
   3734 		*outchp++ = 0;
   3735 	} else {
   3736 		/* assume 8bit char length byte latin-1 */
   3737 		assert(*id == 8);
   3738 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   3739 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   3740 	}
   3741 	free(raw_name, M_UDFTEMP);
   3742 }
   3743 
   3744 /* --------------------------------------------------------------------- */
   3745 
   3746 void
   3747 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   3748 	struct charspec *chsp)
   3749 {
   3750 	uint16_t   *raw_name;
   3751 	uint16_t   *outchp;
   3752 	const char *inchp;
   3753 	const char *osta_id = "OSTA Compressed Unicode";
   3754 	int         udf_chars, is_osta_typ0, bits;
   3755 	size_t      cnt;
   3756 
   3757 	/* allocate temporary unicode-16 buffer */
   3758 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   3759 
   3760 	/* convert utf8 to unicode-16 */
   3761 	*raw_name = 0;
   3762 	inchp  = name;
   3763 	outchp = raw_name;
   3764 	bits = 8;
   3765 	for (cnt = name_len, udf_chars = 0; cnt;) {
   3766 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   3767 		*outchp = wget_utf8(&inchp, &cnt);
   3768 		if (*outchp > 0xff)
   3769 			bits=16;
   3770 		outchp++;
   3771 		udf_chars++;
   3772 	}
   3773 	/* null terminate just in case */
   3774 	*outchp++ = 0;
   3775 
   3776 	is_osta_typ0  = (chsp->type == 0);
   3777 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3778 	if (is_osta_typ0) {
   3779 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   3780 				(unicode_t *) raw_name,
   3781 				(byte *) result);
   3782 	} else {
   3783 		printf("unix to udf name: no CHSP0 ?\n");
   3784 		/* XXX assume 8bit char length byte latin-1 */
   3785 		*result++ = 8; udf_chars = 1;
   3786 		strncpy(result, name + 1, name_len);
   3787 		udf_chars += name_len;
   3788 	}
   3789 	*result_len = udf_chars;
   3790 	free(raw_name, M_UDFTEMP);
   3791 }
   3792 
   3793 /* --------------------------------------------------------------------- */
   3794 
   3795 void
   3796 udf_timestamp_to_timespec(struct udf_mount *ump,
   3797 			  struct timestamp *timestamp,
   3798 			  struct timespec  *timespec)
   3799 {
   3800 	struct clock_ymdhms ymdhms;
   3801 	uint32_t usecs, secs, nsecs;
   3802 	uint16_t tz;
   3803 
   3804 	/* fill in ymdhms structure from timestamp */
   3805 	memset(&ymdhms, 0, sizeof(ymdhms));
   3806 	ymdhms.dt_year = udf_rw16(timestamp->year);
   3807 	ymdhms.dt_mon  = timestamp->month;
   3808 	ymdhms.dt_day  = timestamp->day;
   3809 	ymdhms.dt_wday = 0; /* ? */
   3810 	ymdhms.dt_hour = timestamp->hour;
   3811 	ymdhms.dt_min  = timestamp->minute;
   3812 	ymdhms.dt_sec  = timestamp->second;
   3813 
   3814 	secs = clock_ymdhms_to_secs(&ymdhms);
   3815 	usecs = timestamp->usec +
   3816 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   3817 	nsecs = usecs * 1000;
   3818 
   3819 	/*
   3820 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   3821 	 * compliment, so we gotta do some extra magic to handle it right.
   3822 	 */
   3823 	tz  = udf_rw16(timestamp->type_tz);
   3824 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   3825 	if (tz & 0x0800)		/* sign extention */
   3826 		tz |= 0xf000;
   3827 
   3828 	/* TODO check timezone conversion */
   3829 	/* check if we are specified a timezone to convert */
   3830 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   3831 		if ((int16_t) tz != -2047)
   3832 			secs -= (int16_t) tz * 60;
   3833 	} else {
   3834 		secs -= ump->mount_args.gmtoff;
   3835 	}
   3836 
   3837 	timespec->tv_sec  = secs;
   3838 	timespec->tv_nsec = nsecs;
   3839 }
   3840 
   3841 
   3842 void
   3843 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   3844 {
   3845 	struct clock_ymdhms ymdhms;
   3846 	uint32_t husec, usec, csec;
   3847 
   3848 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   3849 
   3850 	usec   = timespec->tv_nsec / 1000;
   3851 	husec  =  usec / 100;
   3852 	usec  -= husec * 100;				/* only 0-99 in usec  */
   3853 	csec   = husec / 100;				/* only 0-99 in csec  */
   3854 	husec -=  csec * 100;				/* only 0-99 in husec */
   3855 
   3856 	/* set method 1 for CUT/GMT */
   3857 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   3858 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   3859 	timestamp->month	= ymdhms.dt_mon;
   3860 	timestamp->day		= ymdhms.dt_day;
   3861 	timestamp->hour		= ymdhms.dt_hour;
   3862 	timestamp->minute	= ymdhms.dt_min;
   3863 	timestamp->second	= ymdhms.dt_sec;
   3864 	timestamp->centisec	= csec;
   3865 	timestamp->hund_usec	= husec;
   3866 	timestamp->usec		= usec;
   3867 }
   3868 
   3869 /* --------------------------------------------------------------------- */
   3870 
   3871 /*
   3872  * Attribute and filetypes converters with get/set pairs
   3873  */
   3874 
   3875 uint32_t
   3876 udf_getaccessmode(struct udf_node *udf_node)
   3877 {
   3878 	struct file_entry     *fe = udf_node->fe;;
   3879 	struct extfile_entry *efe = udf_node->efe;
   3880 	uint32_t udf_perm, icbftype;
   3881 	uint32_t mode, ftype;
   3882 	uint16_t icbflags;
   3883 
   3884 	UDF_LOCK_NODE(udf_node, 0);
   3885 	if (fe) {
   3886 		udf_perm = udf_rw32(fe->perm);
   3887 		icbftype = fe->icbtag.file_type;
   3888 		icbflags = udf_rw16(fe->icbtag.flags);
   3889 	} else {
   3890 		assert(udf_node->efe);
   3891 		udf_perm = udf_rw32(efe->perm);
   3892 		icbftype = efe->icbtag.file_type;
   3893 		icbflags = udf_rw16(efe->icbtag.flags);
   3894 	}
   3895 
   3896 	mode  = udf_perm_to_unix_mode(udf_perm);
   3897 	ftype = udf_icb_to_unix_filetype(icbftype);
   3898 
   3899 	/* set suid, sgid, sticky from flags in fe/efe */
   3900 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   3901 		mode |= S_ISUID;
   3902 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   3903 		mode |= S_ISGID;
   3904 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   3905 		mode |= S_ISVTX;
   3906 
   3907 	UDF_UNLOCK_NODE(udf_node, 0);
   3908 
   3909 	return mode | ftype;
   3910 }
   3911 
   3912 
   3913 void
   3914 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   3915 {
   3916 	struct file_entry    *fe  = udf_node->fe;
   3917 	struct extfile_entry *efe = udf_node->efe;
   3918 	uint32_t udf_perm;
   3919 	uint16_t icbflags;
   3920 
   3921 	UDF_LOCK_NODE(udf_node, 0);
   3922 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   3923 	if (fe) {
   3924 		icbflags = udf_rw16(fe->icbtag.flags);
   3925 	} else {
   3926 		icbflags = udf_rw16(efe->icbtag.flags);
   3927 	}
   3928 
   3929 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   3930 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   3931 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   3932 	if (mode & S_ISUID)
   3933 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   3934 	if (mode & S_ISGID)
   3935 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   3936 	if (mode & S_ISVTX)
   3937 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   3938 
   3939 	if (fe) {
   3940 		fe->perm  = udf_rw32(udf_perm);
   3941 		fe->icbtag.flags  = udf_rw16(icbflags);
   3942 	} else {
   3943 		efe->perm = udf_rw32(udf_perm);
   3944 		efe->icbtag.flags = udf_rw16(icbflags);
   3945 	}
   3946 
   3947 	UDF_UNLOCK_NODE(udf_node, 0);
   3948 }
   3949 
   3950 
   3951 void
   3952 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   3953 {
   3954 	struct udf_mount     *ump = udf_node->ump;
   3955 	struct file_entry    *fe  = udf_node->fe;
   3956 	struct extfile_entry *efe = udf_node->efe;
   3957 	uid_t uid;
   3958 	gid_t gid;
   3959 
   3960 	UDF_LOCK_NODE(udf_node, 0);
   3961 	if (fe) {
   3962 		uid = (uid_t)udf_rw32(fe->uid);
   3963 		gid = (gid_t)udf_rw32(fe->gid);
   3964 	} else {
   3965 		assert(udf_node->efe);
   3966 		uid = (uid_t)udf_rw32(efe->uid);
   3967 		gid = (gid_t)udf_rw32(efe->gid);
   3968 	}
   3969 
   3970 	/* do the uid/gid translation game */
   3971 	if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
   3972 		uid = ump->mount_args.anon_uid;
   3973 		gid = ump->mount_args.anon_gid;
   3974 	}
   3975 	*uidp = uid;
   3976 	*gidp = gid;
   3977 
   3978 	UDF_UNLOCK_NODE(udf_node, 0);
   3979 }
   3980 
   3981 
   3982 void
   3983 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   3984 {
   3985 	struct udf_mount     *ump = udf_node->ump;
   3986 	struct file_entry    *fe  = udf_node->fe;
   3987 	struct extfile_entry *efe = udf_node->efe;
   3988 	uid_t nobody_uid;
   3989 	gid_t nobody_gid;
   3990 
   3991 	UDF_LOCK_NODE(udf_node, 0);
   3992 
   3993 	/* do the uid/gid translation game */
   3994 	nobody_uid = ump->mount_args.nobody_uid;
   3995 	nobody_gid = ump->mount_args.nobody_gid;
   3996 	if ((uid == nobody_uid) && (gid == nobody_gid)) {
   3997 		uid = (uid_t) -1;
   3998 		gid = (gid_t) -1;
   3999 	}
   4000 
   4001 	if (fe) {
   4002 		fe->uid  = udf_rw32((uint32_t) uid);
   4003 		fe->gid  = udf_rw32((uint32_t) gid);
   4004 	} else {
   4005 		efe->uid = udf_rw32((uint32_t) uid);
   4006 		efe->gid = udf_rw32((uint32_t) gid);
   4007 	}
   4008 
   4009 	UDF_UNLOCK_NODE(udf_node, 0);
   4010 }
   4011 
   4012 
   4013 /* --------------------------------------------------------------------- */
   4014 
   4015 /*
   4016  * UDF dirhash implementation
   4017  */
   4018 
   4019 static uint32_t
   4020 udf_dirhash_hash(const char *str, int namelen)
   4021 {
   4022 	uint32_t hash = 5381;
   4023         int i, c;
   4024 
   4025 	for (i = 0; i < namelen; i++) {
   4026 		c = *str++;
   4027 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
   4028 	}
   4029         return hash;
   4030 }
   4031 
   4032 
   4033 static void
   4034 udf_dirhash_purge(struct udf_dirhash *dirh)
   4035 {
   4036 	struct udf_dirhash_entry *dirh_e;
   4037 	uint32_t hashline;
   4038 
   4039 	if (dirh == NULL)
   4040 		return;
   4041 
   4042 	if (dirh->size == 0)
   4043 		return;
   4044 
   4045 	for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++) {
   4046 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   4047 		while (dirh_e) {
   4048 			LIST_REMOVE(dirh_e, next);
   4049 			pool_put(&udf_dirhash_entry_pool, dirh_e);
   4050 			dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   4051 		}
   4052 	}
   4053 	dirh_e = LIST_FIRST(&dirh->free_entries);
   4054 
   4055 	while (dirh_e) {
   4056 		LIST_REMOVE(dirh_e, next);
   4057 		pool_put(&udf_dirhash_entry_pool, dirh_e);
   4058 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   4059 	}
   4060 
   4061 	dirh->flags &= ~UDF_DIRH_COMPLETE;
   4062 	dirh->flags |=  UDF_DIRH_PURGED;
   4063 
   4064 	udf_dirhashsize -= dirh->size;
   4065 	dirh->size = 0;
   4066 }
   4067 
   4068 
   4069 static void
   4070 udf_dirhash_destroy(struct udf_dirhash **dirhp)
   4071 {
   4072 	struct udf_dirhash *dirh = *dirhp;
   4073 
   4074 	if (dirh == NULL)
   4075 		return;
   4076 
   4077 	mutex_enter(&udf_dirhashmutex);
   4078 
   4079 	udf_dirhash_purge(dirh);
   4080 	TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
   4081 	pool_put(&udf_dirhash_pool, dirh);
   4082 
   4083 	*dirhp = NULL;
   4084 
   4085 	mutex_exit(&udf_dirhashmutex);
   4086 }
   4087 
   4088 
   4089 static void
   4090 udf_dirhash_get(struct udf_dirhash **dirhp)
   4091 {
   4092 	struct udf_dirhash *dirh;
   4093 	uint32_t hashline;
   4094 
   4095 	mutex_enter(&udf_dirhashmutex);
   4096 
   4097 	dirh = *dirhp;
   4098 	if (*dirhp == NULL) {
   4099 		dirh = pool_get(&udf_dirhash_pool, PR_WAITOK);
   4100 		*dirhp = dirh;
   4101 		memset(dirh, 0, sizeof(struct udf_dirhash));
   4102 		for (hashline = 0; hashline < UDF_DIRHASH_HASHSIZE; hashline++)
   4103 			LIST_INIT(&dirh->entries[hashline]);
   4104 		dirh->size   = 0;
   4105 		dirh->refcnt = 0;
   4106 		dirh->flags  = 0;
   4107 	} else {
   4108 		TAILQ_REMOVE(&udf_dirhash_queue, dirh, next);
   4109 	}
   4110 
   4111 	dirh->refcnt++;
   4112 	TAILQ_INSERT_HEAD(&udf_dirhash_queue, dirh, next);
   4113 
   4114 	mutex_exit(&udf_dirhashmutex);
   4115 }
   4116 
   4117 
   4118 static void
   4119 udf_dirhash_put(struct udf_dirhash *dirh)
   4120 {
   4121 	mutex_enter(&udf_dirhashmutex);
   4122 	dirh->refcnt--;
   4123 	mutex_exit(&udf_dirhashmutex);
   4124 }
   4125 
   4126 
   4127 static void
   4128 udf_dirhash_enter(struct udf_node *dir_node, struct fileid_desc *fid,
   4129 	struct dirent *dirent, uint64_t offset, uint32_t fid_size, int new)
   4130 {
   4131 	struct udf_dirhash *dirh, *del_dirh, *prev_dirh;
   4132 	struct udf_dirhash_entry *dirh_e;
   4133 	uint32_t hashvalue, hashline;
   4134 	int entrysize;
   4135 
   4136 	/* make sure we have a dirhash to work on */
   4137 	dirh = dir_node->dir_hash;
   4138 	KASSERT(dirh);
   4139 	KASSERT(dirh->refcnt > 0);
   4140 
   4141 	/* are we trying to re-enter an entry? */
   4142 	if (!new && (dirh->flags & UDF_DIRH_COMPLETE))
   4143 		return;
   4144 
   4145 	/* calculate our hash */
   4146 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
   4147 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   4148 
   4149 	/* lookup and insert entry if not there yet */
   4150 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
   4151 		/* check for hash collision */
   4152 		if (dirh_e->hashvalue != hashvalue)
   4153 			continue;
   4154 		if (dirh_e->offset != offset)
   4155 			continue;
   4156 		/* got it already */
   4157 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
   4158 		KASSERT(dirh_e->fid_size == fid_size);
   4159 		return;
   4160 	}
   4161 
   4162 	DPRINTF(DIRHASH, ("dirhash enter %"PRIu64", %d, %d for `%*.*s`\n",
   4163 		offset, fid_size, dirent->d_namlen,
   4164 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4165 
   4166 	/* check if entry is in free space list */
   4167 	LIST_FOREACH(dirh_e, &dirh->free_entries, next) {
   4168 		if (dirh_e->offset == offset) {
   4169 			DPRINTF(DIRHASH, ("\tremoving free entry\n"));
   4170 			LIST_REMOVE(dirh_e, next);
   4171 			break;
   4172 		}
   4173 	}
   4174 
   4175 	/* ensure we are not passing the dirhash limit */
   4176 	entrysize = sizeof(struct udf_dirhash_entry);
   4177 	if (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
   4178 		del_dirh = TAILQ_LAST(&udf_dirhash_queue, _udf_dirhash);
   4179 		KASSERT(del_dirh);
   4180 		while (udf_dirhashsize + entrysize > udf_maxdirhashsize) {
   4181 			/* no use trying to delete myself */
   4182 			if (del_dirh == dirh)
   4183 				break;
   4184 			prev_dirh = TAILQ_PREV(del_dirh, _udf_dirhash, next);
   4185 			if (del_dirh->refcnt == 0)
   4186 				udf_dirhash_purge(del_dirh);
   4187 			del_dirh = prev_dirh;
   4188 		}
   4189 	}
   4190 
   4191 	/* add to the hashline */
   4192 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
   4193 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
   4194 
   4195 	dirh_e->hashvalue = hashvalue;
   4196 	dirh_e->offset    = offset;
   4197 	dirh_e->d_namlen  = dirent->d_namlen;
   4198 	dirh_e->fid_size  = fid_size;
   4199 
   4200 	dirh->size      += sizeof(struct udf_dirhash_entry);
   4201 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
   4202 	LIST_INSERT_HEAD(&dirh->entries[hashline], dirh_e, next);
   4203 }
   4204 
   4205 
   4206 static void
   4207 udf_dirhash_enter_freed(struct udf_node *dir_node, uint64_t offset,
   4208 	uint32_t fid_size)
   4209 {
   4210 	struct udf_dirhash *dirh;
   4211 	struct udf_dirhash_entry *dirh_e;
   4212 
   4213 	/* make sure we have a dirhash to work on */
   4214 	dirh = dir_node->dir_hash;
   4215 	KASSERT(dirh);
   4216 	KASSERT(dirh->refcnt > 0);
   4217 
   4218 #ifdef DEBUG
   4219 	/* check for double entry of free space */
   4220 	LIST_FOREACH(dirh_e, &dirh->free_entries, next)
   4221 		KASSERT(dirh_e->offset != offset);
   4222 #endif
   4223 
   4224 	DPRINTF(DIRHASH, ("dirhash enter FREED %"PRIu64", %d\n",
   4225 		offset, fid_size));
   4226 	dirh_e = pool_get(&udf_dirhash_entry_pool, PR_WAITOK);
   4227 	memset(dirh_e, 0, sizeof(struct udf_dirhash_entry));
   4228 
   4229 	dirh_e->hashvalue = 0;		/* not relevant */
   4230 	dirh_e->offset    = offset;
   4231 	dirh_e->d_namlen  = 0;		/* not relevant */
   4232 	dirh_e->fid_size  = fid_size;
   4233 
   4234 	/* XXX it might be preferable to append them at the tail */
   4235 	LIST_INSERT_HEAD(&dirh->free_entries, dirh_e, next);
   4236 	dirh->size      += sizeof(struct udf_dirhash_entry);
   4237 	udf_dirhashsize += sizeof(struct udf_dirhash_entry);
   4238 }
   4239 
   4240 
   4241 static void
   4242 udf_dirhash_remove(struct udf_node *dir_node, struct dirent *dirent,
   4243 	uint64_t offset, uint32_t fid_size)
   4244 {
   4245 	struct udf_dirhash *dirh;
   4246 	struct udf_dirhash_entry *dirh_e;
   4247 	uint32_t hashvalue, hashline;
   4248 
   4249 	DPRINTF(DIRHASH, ("dirhash remove %"PRIu64", %d for `%*.*s`\n",
   4250 		offset, fid_size,
   4251 		dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4252 
   4253 	/* make sure we have a dirhash to work on */
   4254 	dirh = dir_node->dir_hash;
   4255 	KASSERT(dirh);
   4256 	KASSERT(dirh->refcnt > 0);
   4257 
   4258 	/* calculate our hash */
   4259 	hashvalue = udf_dirhash_hash(dirent->d_name, dirent->d_namlen);
   4260 	hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   4261 
   4262 	/* lookup entry */
   4263 	LIST_FOREACH(dirh_e, &dirh->entries[hashline], next) {
   4264 		/* check for hash collision */
   4265 		if (dirh_e->hashvalue != hashvalue)
   4266 			continue;
   4267 		if (dirh_e->offset != offset)
   4268 			continue;
   4269 
   4270 		/* got it! */
   4271 		KASSERT(dirh_e->d_namlen == dirent->d_namlen);
   4272 		KASSERT(dirh_e->fid_size == fid_size);
   4273 		LIST_REMOVE(dirh_e, next);
   4274 		dirh->size      -= sizeof(struct udf_dirhash_entry);
   4275 		udf_dirhashsize -= sizeof(struct udf_dirhash_entry);
   4276 
   4277 		udf_dirhash_enter_freed(dir_node, offset, fid_size);
   4278 		return;
   4279 	}
   4280 
   4281 	/* not found! */
   4282 	panic("dirhash_remove couldn't find entry in hash table\n");
   4283 }
   4284 
   4285 
   4286 /* BUGALERT: don't use result longer than needed, never past the node lock */
   4287 /* call with NULL *result initially and it will return nonzero if again */
   4288 static int
   4289 udf_dirhash_lookup(struct udf_node *dir_node, const char *d_name, int d_namlen,
   4290 	struct udf_dirhash_entry **result)
   4291 {
   4292 	struct udf_dirhash *dirh;
   4293 	struct udf_dirhash_entry *dirh_e;
   4294 	uint32_t hashvalue, hashline;
   4295 
   4296 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
   4297 
   4298 	/* make sure we have a dirhash to work on */
   4299 	dirh = dir_node->dir_hash;
   4300 	KASSERT(dirh);
   4301 	KASSERT(dirh->refcnt > 0);
   4302 
   4303 	/* start where we were */
   4304 	if (*result) {
   4305 		KASSERT(dir_node->dir_hash);
   4306 		dirh_e = *result;
   4307 
   4308 		/* retrieve information to avoid recalculation and advance */
   4309 		hashvalue = dirh_e->hashvalue;
   4310 		dirh_e = LIST_NEXT(*result, next);
   4311 	} else {
   4312 		/* calculate our hash and lookup all entries in hashline */
   4313 		hashvalue = udf_dirhash_hash(d_name, d_namlen);
   4314 		hashline  = hashvalue & UDF_DIRHASH_HASHMASK;
   4315 		dirh_e = LIST_FIRST(&dirh->entries[hashline]);
   4316 	}
   4317 
   4318 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
   4319 		/* check for hash collision */
   4320 		if (dirh_e->hashvalue != hashvalue)
   4321 			continue;
   4322 		if (dirh_e->d_namlen != d_namlen)
   4323 			continue;
   4324 		/* might have an entry in the cache */
   4325 		*result = dirh_e;
   4326 		return 1;
   4327 	}
   4328 
   4329 	*result = NULL;
   4330 	return 0;
   4331 }
   4332 
   4333 
   4334 /* BUGALERT: don't use result longer than needed, never past the node lock */
   4335 /* call with NULL *result initially and it will return nonzero if again */
   4336 static int
   4337 udf_dirhash_lookup_freed(struct udf_node *dir_node, uint32_t min_fidsize,
   4338 	struct udf_dirhash_entry **result)
   4339 {
   4340 	struct udf_dirhash *dirh;
   4341 	struct udf_dirhash_entry *dirh_e;
   4342 
   4343 	KASSERT(VOP_ISLOCKED(dir_node->vnode));
   4344 
   4345 	/* make sure we have a dirhash to work on */
   4346 	dirh = dir_node->dir_hash;
   4347 	KASSERT(dirh);
   4348 	KASSERT(dirh->refcnt > 0);
   4349 
   4350 	/* start where we were */
   4351 	if (*result) {
   4352 		KASSERT(dir_node->dir_hash);
   4353 		dirh_e = LIST_NEXT(*result, next);
   4354 	} else {
   4355 		/* lookup all entries that match */
   4356 		dirh_e = LIST_FIRST(&dirh->free_entries);
   4357 	}
   4358 
   4359 	for (; dirh_e; dirh_e = LIST_NEXT(dirh_e, next)) {
   4360 		/* check for minimum size */
   4361 		if (dirh_e->fid_size < min_fidsize)
   4362 			continue;
   4363 		/* might be a candidate */
   4364 		*result = dirh_e;
   4365 		return 1;
   4366 	}
   4367 
   4368 	*result = NULL;
   4369 	return 0;
   4370 }
   4371 
   4372 
   4373 static int
   4374 udf_dirhash_fill(struct udf_node *dir_node)
   4375 {
   4376 	struct vnode *dvp = dir_node->vnode;
   4377 	struct udf_dirhash *dirh;
   4378 	struct file_entry    *fe  = dir_node->fe;
   4379 	struct extfile_entry *efe = dir_node->efe;
   4380 	struct fileid_desc *fid;
   4381 	struct dirent *dirent;
   4382 	uint64_t file_size, pre_diroffset, diroffset;
   4383 	uint32_t lb_size;
   4384 	int error;
   4385 
   4386 	/* make sure we have a dirhash to work on */
   4387 	dirh = dir_node->dir_hash;
   4388 	KASSERT(dirh);
   4389 	KASSERT(dirh->refcnt > 0);
   4390 
   4391 	if (dirh->flags & UDF_DIRH_BROKEN)
   4392 		return EIO;
   4393 	if (dirh->flags & UDF_DIRH_COMPLETE)
   4394 		return 0;
   4395 
   4396 	/* make sure we have a clean dirhash to add to */
   4397 	udf_dirhash_purge(dirh);
   4398 
   4399 	/* get directory filesize */
   4400 	if (fe) {
   4401 		file_size = udf_rw64(fe->inf_len);
   4402 	} else {
   4403 		assert(efe);
   4404 		file_size = udf_rw64(efe->inf_len);
   4405 	}
   4406 
   4407 	/* allocate temporary space for fid */
   4408 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4409 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4410 
   4411 	/* allocate temporary space for dirent */
   4412 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4413 
   4414 	error = 0;
   4415 	diroffset = 0;
   4416 	while (diroffset < file_size) {
   4417 		/* transfer a new fid/dirent */
   4418 		pre_diroffset = diroffset;
   4419 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4420 		if (error) {
   4421 			/* TODO what to do? continue but not add? */
   4422 			dirh->flags |= UDF_DIRH_BROKEN;
   4423 			udf_dirhash_purge(dirh);
   4424 			break;
   4425 		}
   4426 
   4427 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4428 			/* register deleted extent for reuse */
   4429 			udf_dirhash_enter_freed(dir_node, pre_diroffset,
   4430 				udf_fidsize(fid));
   4431 		} else {
   4432 			/* append to the dirhash */
   4433 			udf_dirhash_enter(dir_node, fid, dirent, pre_diroffset,
   4434 				udf_fidsize(fid), 0);
   4435 		}
   4436 	}
   4437 	dirh->flags |= UDF_DIRH_COMPLETE;
   4438 
   4439 	free(fid, M_UDFTEMP);
   4440 	free(dirent, M_UDFTEMP);
   4441 
   4442 	return error;
   4443 }
   4444 
   4445 
   4446 /* --------------------------------------------------------------------- */
   4447 
   4448 /*
   4449  * Directory read and manipulation functions.
   4450  *
   4451  * Note that if the file is found, the cached diroffset position *before* the
   4452  * advance is remembered. Thus if the same filename is lookup again just after
   4453  * this lookup its immediately found.
   4454  */
   4455 
   4456 int
   4457 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4458        struct long_ad *icb_loc, int *found)
   4459 {
   4460 	struct udf_node  *dir_node = VTOI(vp);
   4461 	struct udf_dirhash_entry *dirh_ep;
   4462 	struct fileid_desc *fid;
   4463 	struct dirent *dirent;
   4464 	uint64_t diroffset;
   4465 	uint32_t lb_size;
   4466 	int hit, error;
   4467 
   4468 	/* set default return */
   4469 	*found = 0;
   4470 
   4471 	/* get our dirhash and make sure its read in */
   4472 	udf_dirhash_get(&dir_node->dir_hash);
   4473 	error = udf_dirhash_fill(dir_node);
   4474 	if (error) {
   4475 		udf_dirhash_put(dir_node->dir_hash);
   4476 		return error;
   4477 	}
   4478 
   4479 	/* allocate temporary space for fid */
   4480 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4481 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4482 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4483 
   4484 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4485 		namelen, namelen, name));
   4486 
   4487 	/* search our dirhash hits */
   4488 	memset(icb_loc, 0, sizeof(*icb_loc));
   4489 	dirh_ep = NULL;
   4490 	for (;;) {
   4491 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
   4492 		/* if no hit, abort the search */
   4493 		if (!hit)
   4494 			break;
   4495 
   4496 		/* check this hit */
   4497 		diroffset = dirh_ep->offset;
   4498 
   4499 		/* transfer a new fid/dirent */
   4500 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4501 		if (error)
   4502 			break;
   4503 
   4504 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4505 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4506 
   4507 		/* see if its our entry */
   4508 		KASSERT(dirent->d_namlen == namelen);
   4509 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4510 			*found = 1;
   4511 			*icb_loc = fid->icb;
   4512 			break;
   4513 		}
   4514 	}
   4515 	free(fid, M_UDFTEMP);
   4516 	free(dirent, M_UDFTEMP);
   4517 
   4518 	udf_dirhash_put(dir_node->dir_hash);
   4519 
   4520 	return error;
   4521 }
   4522 
   4523 /* --------------------------------------------------------------------- */
   4524 
   4525 static int
   4526 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4527 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4528 	uint64_t parent_unique_id)
   4529 {
   4530 	struct timespec now;
   4531 	struct icb_tag *icb;
   4532 	struct filetimes_extattr_entry *ft_extattr;
   4533 	uint64_t unique_id;
   4534 	uint32_t fidsize, lb_num;
   4535 	uint8_t *bpos;
   4536 	int crclen, attrlen;
   4537 
   4538 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4539 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4540 	icb = &fe->icbtag;
   4541 
   4542 	/*
   4543 	 * Always use strategy type 4 unless on WORM wich we don't support
   4544 	 * (yet). Fill in defaults and set for internal allocation of data.
   4545 	 */
   4546 	icb->strat_type      = udf_rw16(4);
   4547 	icb->max_num_entries = udf_rw16(1);
   4548 	icb->file_type       = file_type;	/* 8 bit */
   4549 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4550 
   4551 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4552 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4553 
   4554 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4555 
   4556 	vfs_timestamp(&now);
   4557 	udf_timespec_to_timestamp(&now, &fe->atime);
   4558 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4559 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4560 
   4561 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4562 	udf_add_impl_regid(ump, &fe->imp_id);
   4563 
   4564 	unique_id = udf_advance_uniqueid(ump);
   4565 	fe->unique_id = udf_rw64(unique_id);
   4566 	fe->l_ea = udf_rw32(0);
   4567 
   4568 	/* create extended attribute to record our creation time */
   4569 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4570 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4571 	memset(ft_extattr, 0, attrlen);
   4572 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4573 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4574 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4575 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4576 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4577 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4578 
   4579 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4580 		(struct extattr_entry *) ft_extattr);
   4581 	free(ft_extattr, M_UDFTEMP);
   4582 
   4583 	/* if its a directory, create '..' */
   4584 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4585 	fidsize = 0;
   4586 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4587 		fidsize = udf_create_parentfid(ump,
   4588 			(struct fileid_desc *) bpos, parent_icb,
   4589 			parent_unique_id);
   4590 	}
   4591 
   4592 	/* record fidlength information */
   4593 	fe->inf_len = udf_rw64(fidsize);
   4594 	fe->l_ad    = udf_rw32(fidsize);
   4595 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4596 
   4597 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4598 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4599 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4600 
   4601 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4602 
   4603 	return fidsize;
   4604 }
   4605 
   4606 /* --------------------------------------------------------------------- */
   4607 
   4608 static int
   4609 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4610 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4611 	uint64_t parent_unique_id)
   4612 {
   4613 	struct timespec now;
   4614 	struct icb_tag *icb;
   4615 	uint64_t unique_id;
   4616 	uint32_t fidsize, lb_num;
   4617 	uint8_t *bpos;
   4618 	int crclen;
   4619 
   4620 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4621 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4622 	icb = &efe->icbtag;
   4623 
   4624 	/*
   4625 	 * Always use strategy type 4 unless on WORM wich we don't support
   4626 	 * (yet). Fill in defaults and set for internal allocation of data.
   4627 	 */
   4628 	icb->strat_type      = udf_rw16(4);
   4629 	icb->max_num_entries = udf_rw16(1);
   4630 	icb->file_type       = file_type;	/* 8 bit */
   4631 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4632 
   4633 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4634 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4635 
   4636 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4637 
   4638 	vfs_timestamp(&now);
   4639 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4640 	udf_timespec_to_timestamp(&now, &efe->atime);
   4641 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4642 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4643 
   4644 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4645 	udf_add_impl_regid(ump, &efe->imp_id);
   4646 
   4647 	unique_id = udf_advance_uniqueid(ump);
   4648 	efe->unique_id = udf_rw64(unique_id);
   4649 	efe->l_ea = udf_rw32(0);
   4650 
   4651 	/* if its a directory, create '..' */
   4652 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4653 	fidsize = 0;
   4654 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4655 		fidsize = udf_create_parentfid(ump,
   4656 			(struct fileid_desc *) bpos, parent_icb,
   4657 			parent_unique_id);
   4658 	}
   4659 
   4660 	/* record fidlength information */
   4661 	efe->obj_size = udf_rw64(fidsize);
   4662 	efe->inf_len  = udf_rw64(fidsize);
   4663 	efe->l_ad     = udf_rw32(fidsize);
   4664 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4665 
   4666 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4667 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4668 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4669 
   4670 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4671 
   4672 	return fidsize;
   4673 }
   4674 
   4675 /* --------------------------------------------------------------------- */
   4676 
   4677 int
   4678 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4679 	struct udf_node *udf_node, struct componentname *cnp)
   4680 {
   4681 	struct vnode *dvp = dir_node->vnode;
   4682 	struct udf_dirhash_entry *dirh_ep;
   4683 	struct file_entry    *fe  = dir_node->fe;
   4684 	struct extfile_entry *efe = dir_node->efe;
   4685 	struct fileid_desc *fid;
   4686 	struct dirent *dirent;
   4687 	uint64_t file_size, diroffset;
   4688 	uint32_t lb_size, fidsize;
   4689 	int found, error;
   4690 	char const *name  = cnp->cn_nameptr;
   4691 	int namelen = cnp->cn_namelen;
   4692 	int hit, refcnt;
   4693 
   4694 	/* get our dirhash and make sure its read in */
   4695 	udf_dirhash_get(&dir_node->dir_hash);
   4696 	error = udf_dirhash_fill(dir_node);
   4697 	if (error) {
   4698 		udf_dirhash_put(dir_node->dir_hash);
   4699 		return error;
   4700 	}
   4701 
   4702 	/* get directory filesize */
   4703 	if (fe) {
   4704 		file_size = udf_rw64(fe->inf_len);
   4705 	} else {
   4706 		assert(efe);
   4707 		file_size = udf_rw64(efe->inf_len);
   4708 	}
   4709 
   4710 	/* allocate temporary space for fid */
   4711 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4712 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4713 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4714 
   4715 	/* search our dirhash hits */
   4716 	found = 0;
   4717 	dirh_ep = NULL;
   4718 	for (;;) {
   4719 		hit = udf_dirhash_lookup(dir_node, name, namelen, &dirh_ep);
   4720 		/* if no hit, abort the search */
   4721 		if (!hit)
   4722 			break;
   4723 
   4724 		/* check this hit */
   4725 		diroffset = dirh_ep->offset;
   4726 
   4727 		/* transfer a new fid/dirent */
   4728 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4729 		if (error)
   4730 			break;
   4731 
   4732 		/* see if its our entry */
   4733 		KASSERT(dirent->d_namlen == namelen);
   4734 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4735 			found = 1;
   4736 			break;
   4737 		}
   4738 	}
   4739 
   4740 	if (!found)
   4741 		error = ENOENT;
   4742 	if (error)
   4743 		goto error_out;
   4744 
   4745 	/* mark deleted */
   4746 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4747 #ifdef UDF_COMPLETE_DELETE
   4748 	memset(&fid->icb, 0, sizeof(fid->icb));
   4749 #endif
   4750 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4751 
   4752 	/* get size of fid and compensate for the read_fid_stream advance */
   4753 	fidsize = udf_fidsize(fid);
   4754 	diroffset -= fidsize;
   4755 
   4756 	/* write out */
   4757 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4758 			fid, fidsize, diroffset,
   4759 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4760 			FSCRED, NULL, NULL);
   4761 	if (error)
   4762 		goto error_out;
   4763 
   4764 	/* get reference count of attached node */
   4765 	if (udf_node->fe) {
   4766 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4767 	} else {
   4768 		KASSERT(udf_node->efe);
   4769 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4770 	}
   4771 #ifdef UDF_COMPLETE_DELETE
   4772 	/* substract reference counter in attached node */
   4773 	refcnt -= 1;
   4774 	if (udf_node->fe) {
   4775 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4776 	} else {
   4777 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4778 	}
   4779 
   4780 	/* prevent writeout when refcnt == 0 */
   4781 	if (refcnt == 0)
   4782 		udf_node->i_flags |= IN_DELETED;
   4783 
   4784 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4785 		int drefcnt;
   4786 
   4787 		/* substract reference counter in directory node */
   4788 		/* note subtract 2 (?) for its was also backreferenced */
   4789 		if (dir_node->fe) {
   4790 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4791 			drefcnt -= 1;
   4792 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4793 		} else {
   4794 			KASSERT(dir_node->efe);
   4795 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4796 			drefcnt -= 1;
   4797 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4798 		}
   4799 	}
   4800 
   4801 	udf_node->i_flags |= IN_MODIFIED;
   4802 	dir_node->i_flags |= IN_MODIFIED;
   4803 #endif
   4804 	/* if it is/was a hardlink adjust the file count */
   4805 	if (refcnt > 0)
   4806 		udf_adjust_filecount(udf_node, -1);
   4807 
   4808 	/* remove from the dirhash */
   4809 	udf_dirhash_remove(dir_node, dirent, diroffset,
   4810 		udf_fidsize(fid));
   4811 
   4812 error_out:
   4813 	free(fid, M_UDFTEMP);
   4814 	free(dirent, M_UDFTEMP);
   4815 
   4816 	udf_dirhash_put(dir_node->dir_hash);
   4817 
   4818 	return error;
   4819 }
   4820 
   4821 /* --------------------------------------------------------------------- */
   4822 
   4823 /*
   4824  * We are not allowed to split the fid tag itself over an logical block so
   4825  * check the space remaining in the logical block.
   4826  *
   4827  * We try to select the smallest candidate for recycling or when none is
   4828  * found, append a new one at the end of the directory.
   4829  */
   4830 
   4831 int
   4832 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   4833 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   4834 {
   4835 	struct vnode *dvp = dir_node->vnode;
   4836 	struct udf_dirhash_entry *dirh_ep;
   4837 	struct fileid_desc   *fid;
   4838 	struct icb_tag       *icbtag;
   4839 	struct charspec osta_charspec;
   4840 	struct dirent   dirent;
   4841 	uint64_t unique_id, dir_size, diroffset;
   4842 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   4843 	uint32_t chosen_size, chosen_size_diff;
   4844 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   4845 	int file_char, refcnt, icbflags, addr_type, hit, error;
   4846 
   4847 	/* get our dirhash and make sure its read in */
   4848 	udf_dirhash_get(&dir_node->dir_hash);
   4849 	error = udf_dirhash_fill(dir_node);
   4850 	if (error) {
   4851 		udf_dirhash_put(dir_node->dir_hash);
   4852 		return error;
   4853 	}
   4854 
   4855 	/* get info */
   4856 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4857 	udf_osta_charset(&osta_charspec);
   4858 
   4859 	if (dir_node->fe) {
   4860 		dir_size = udf_rw64(dir_node->fe->inf_len);
   4861 		icbtag   = &dir_node->fe->icbtag;
   4862 	} else {
   4863 		dir_size = udf_rw64(dir_node->efe->inf_len);
   4864 		icbtag   = &dir_node->efe->icbtag;
   4865 	}
   4866 
   4867 	icbflags   = udf_rw16(icbtag->flags);
   4868 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4869 
   4870 	if (udf_node->fe) {
   4871 		unique_id = udf_rw64(udf_node->fe->unique_id);
   4872 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   4873 	} else {
   4874 		unique_id = udf_rw64(udf_node->efe->unique_id);
   4875 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   4876 	}
   4877 
   4878 	if (refcnt > 0) {
   4879 		unique_id = udf_advance_uniqueid(ump);
   4880 		udf_adjust_filecount(udf_node, 1);
   4881 	}
   4882 
   4883 	/* determine file characteristics */
   4884 	file_char = 0;	/* visible non deleted file and not stream metadata */
   4885 	if (vap->va_type == VDIR)
   4886 		file_char = UDF_FILE_CHAR_DIR;
   4887 
   4888 	/* malloc scrap buffer */
   4889 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   4890 	bzero(fid, lb_size);
   4891 
   4892 	/* calculate _minimum_ fid size */
   4893 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4894 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4895 	fidsize = UDF_FID_SIZE + fid->l_fi;
   4896 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   4897 
   4898 	/* find position that will fit the FID */
   4899 	chosen_fid_pos   = dir_size;
   4900 	chosen_size      = 0;
   4901 	chosen_size_diff = UINT_MAX;
   4902 
   4903 	/* shut up gcc */
   4904 	dirent.d_namlen = 0;
   4905 
   4906 	/* search our dirhash hits */
   4907 	error = 0;
   4908 	dirh_ep = NULL;
   4909 	for (;;) {
   4910 		hit = udf_dirhash_lookup_freed(dir_node, fidsize, &dirh_ep);
   4911 		/* if no hit, abort the search */
   4912 		if (!hit)
   4913 			break;
   4914 
   4915 		/* check this hit for size */
   4916 		this_fidsize = dirh_ep->fid_size;
   4917 
   4918 		/* check this hit */
   4919 		fid_pos     = dirh_ep->offset;
   4920 		end_fid_pos = fid_pos + this_fidsize;
   4921 		size_diff   = this_fidsize - fidsize;
   4922 		lb_rest = lb_size - (end_fid_pos % lb_size);
   4923 
   4924 #ifndef UDF_COMPLETE_DELETE
   4925 		/* transfer a new fid/dirent */
   4926 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   4927 		if (error)
   4928 			goto error_out;
   4929 
   4930 		/* only reuse entries that are wiped */
   4931 		/* check if the len + loc are marked zero */
   4932 		if (udf_rw32(fid->icb.len != 0))
   4933 			continue;
   4934 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   4935 			continue;
   4936 		if (udf_rw16(fid->icb.loc.part_num != 0))
   4937 			continue;
   4938 #endif	/* UDF_COMPLETE_DELETE */
   4939 
   4940 		/* select if not splitting the tag and its smaller */
   4941 		if ((size_diff >= 0)  &&
   4942 			(size_diff < chosen_size_diff) &&
   4943 			(lb_rest >= sizeof(struct desc_tag)))
   4944 		{
   4945 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   4946 			if ((size_diff == 0) || (size_diff >= 32)) {
   4947 				chosen_fid_pos   = fid_pos;
   4948 				chosen_size      = this_fidsize;
   4949 				chosen_size_diff = size_diff;
   4950 			}
   4951 		}
   4952 	}
   4953 
   4954 
   4955 	/* extend directory if no other candidate found */
   4956 	if (chosen_size == 0) {
   4957 		chosen_fid_pos   = dir_size;
   4958 		chosen_size      = fidsize;
   4959 		chosen_size_diff = 0;
   4960 
   4961 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   4962 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   4963 			/* pre-grow directory to see if we're to switch */
   4964 			udf_grow_node(dir_node, dir_size + chosen_size);
   4965 
   4966 			icbflags   = udf_rw16(icbtag->flags);
   4967 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4968 		}
   4969 
   4970 		/* make sure the next fid desc_tag won't be splitted */
   4971 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   4972 			end_fid_pos = chosen_fid_pos + chosen_size;
   4973 			lb_rest = lb_size - (end_fid_pos % lb_size);
   4974 
   4975 			/* pad with implementation use regid if needed */
   4976 			if (lb_rest < sizeof(struct desc_tag))
   4977 				chosen_size += 32;
   4978 		}
   4979 	}
   4980 	chosen_size_diff = chosen_size - fidsize;
   4981 	diroffset = chosen_fid_pos + chosen_size;
   4982 
   4983 	/* populate the FID */
   4984 	memset(fid, 0, lb_size);
   4985 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   4986 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   4987 	fid->file_char           = file_char;
   4988 	fid->icb                 = udf_node->loc;
   4989 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   4990 	fid->l_iu                = udf_rw16(0);
   4991 
   4992 	if (chosen_size > fidsize) {
   4993 		/* insert implementation-use regid to space it correctly */
   4994 		fid->l_iu = udf_rw16(chosen_size_diff);
   4995 
   4996 		/* set implementation use */
   4997 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   4998 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   4999 	}
   5000 
   5001 	/* fill in name */
   5002 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   5003 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   5004 
   5005 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
   5006 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   5007 
   5008 	/* writeout FID/update parent directory */
   5009 	error = vn_rdwr(UIO_WRITE, dvp,
   5010 			fid, chosen_size, chosen_fid_pos,
   5011 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   5012 			FSCRED, NULL, NULL);
   5013 
   5014 	if (error)
   5015 		goto error_out;
   5016 
   5017 	/* add reference counter in attached node */
   5018 	if (udf_node->fe) {
   5019 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   5020 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   5021 	} else {
   5022 		KASSERT(udf_node->efe);
   5023 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   5024 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   5025 	}
   5026 
   5027 	/* mark not deleted if it was... just in case, but do warn */
   5028 	if (udf_node->i_flags & IN_DELETED) {
   5029 		printf("udf: warning, marking a file undeleted\n");
   5030 		udf_node->i_flags &= ~IN_DELETED;
   5031 	}
   5032 
   5033 	if (file_char & UDF_FILE_CHAR_DIR) {
   5034 		/* add reference counter in directory node for '..' */
   5035 		if (dir_node->fe) {
   5036 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   5037 			refcnt++;
   5038 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   5039 		} else {
   5040 			KASSERT(dir_node->efe);
   5041 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   5042 			refcnt++;
   5043 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   5044 		}
   5045 	}
   5046 
   5047 	/* append to the dirhash */
   5048 	dirent.d_namlen = cnp->cn_namelen;
   5049 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
   5050 	udf_dirhash_enter(dir_node, fid, &dirent, chosen_fid_pos,
   5051 		udf_fidsize(fid), 1);
   5052 
   5053 	/* note updates */
   5054 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   5055 	/* VN_KNOTE(udf_node,  ...) */
   5056 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   5057 
   5058 error_out:
   5059 	free(fid, M_TEMP);
   5060 
   5061 	udf_dirhash_put(dir_node->dir_hash);
   5062 
   5063 	return error;
   5064 }
   5065 
   5066 /* --------------------------------------------------------------------- */
   5067 
   5068 /*
   5069  * Each node can have an attached streamdir node though not recursively. These
   5070  * are otherwise known as named substreams/named extended attributes that have
   5071  * no size limitations.
   5072  *
   5073  * `Normal' extended attributes are indicated with a number and are recorded
   5074  * in either the fe/efe descriptor itself for small descriptors or recorded in
   5075  * the attached extended attribute file. Since these spaces can get
   5076  * fragmented, care ought to be taken.
   5077  *
   5078  * Since the size of the space reserved for allocation descriptors is limited,
   5079  * there is a mechanim provided for extending this space; this is done by a
   5080  * special extent to allow schrinking of the allocations without breaking the
   5081  * linkage to the allocation extent descriptor.
   5082  */
   5083 
   5084 int
   5085 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   5086 	     struct udf_node **udf_noderes)
   5087 {
   5088 	union dscrptr   *dscr;
   5089 	struct udf_node *udf_node;
   5090 	struct vnode    *nvp;
   5091 	struct long_ad   icb_loc, last_fe_icb_loc;
   5092 	uint64_t file_size;
   5093 	uint32_t lb_size, sector, dummy;
   5094 	uint8_t  *file_data;
   5095 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   5096 	int slot, eof, error;
   5097 
   5098 	DPRINTF(NODE, ("udf_get_node called\n"));
   5099 	*udf_noderes = udf_node = NULL;
   5100 
   5101 	/* lock to disallow simultanious creation of same udf_node */
   5102 	mutex_enter(&ump->get_node_lock);
   5103 
   5104 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   5105 	/* lookup in hash table */
   5106 	assert(ump);
   5107 	assert(node_icb_loc);
   5108 	udf_node = udf_hash_lookup(ump, node_icb_loc);
   5109 	if (udf_node) {
   5110 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   5111 		/* vnode is returned locked */
   5112 		*udf_noderes = udf_node;
   5113 		mutex_exit(&ump->get_node_lock);
   5114 		return 0;
   5115 	}
   5116 
   5117 	/* garbage check: translate udf_node_icb_loc to sectornr */
   5118 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   5119 	if (error) {
   5120 		/* no use, this will fail anyway */
   5121 		mutex_exit(&ump->get_node_lock);
   5122 		return EINVAL;
   5123 	}
   5124 
   5125 	/* build udf_node (do initialise!) */
   5126 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5127 	memset(udf_node, 0, sizeof(struct udf_node));
   5128 
   5129 	DPRINTF(NODE, ("\tget new vnode\n"));
   5130 	/* give it a vnode */
   5131 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   5132         if (error) {
   5133 		pool_put(&udf_node_pool, udf_node);
   5134 		mutex_exit(&ump->get_node_lock);
   5135 		return error;
   5136 	}
   5137 
   5138 	/* always return locked vnode */
   5139 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   5140 		/* recycle vnode and unlock; simultanious will fail too */
   5141 		ungetnewvnode(nvp);
   5142 		mutex_exit(&ump->get_node_lock);
   5143 		return error;
   5144 	}
   5145 
   5146 	/* initialise crosslinks, note location of fe/efe for hashing */
   5147 	udf_node->ump    =  ump;
   5148 	udf_node->vnode  =  nvp;
   5149 	nvp->v_data      =  udf_node;
   5150 	udf_node->loc    = *node_icb_loc;
   5151 	udf_node->lockf  =  0;
   5152 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5153 	cv_init(&udf_node->node_lock, "udf_nlk");
   5154 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   5155 	udf_node->outstanding_bufs = 0;
   5156 	udf_node->outstanding_nodedscr = 0;
   5157 
   5158 	/* insert into the hash lookup */
   5159 	udf_register_node(udf_node);
   5160 
   5161 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   5162 	mutex_exit(&ump->get_node_lock);
   5163 
   5164 	icb_loc = *node_icb_loc;
   5165 	needs_indirect = 0;
   5166 	strat4096 = 0;
   5167 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   5168 	file_size = 0;
   5169 	file_data = NULL;
   5170 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5171 
   5172 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   5173 	do {
   5174 		/* try to read in fe/efe */
   5175 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5176 
   5177 		/* blank sector marks end of sequence, check this */
   5178 		if ((dscr == NULL) &&  (!strat4096))
   5179 			error = ENOENT;
   5180 
   5181 		/* break if read error or blank sector */
   5182 		if (error || (dscr == NULL))
   5183 			break;
   5184 
   5185 		/* process descriptor based on the descriptor type */
   5186 		dscr_type = udf_rw16(dscr->tag.id);
   5187 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   5188 
   5189 		/* if dealing with an indirect entry, follow the link */
   5190 		if (dscr_type == TAGID_INDIRECTENTRY) {
   5191 			needs_indirect = 0;
   5192 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5193 			icb_loc = dscr->inde.indirect_icb;
   5194 			continue;
   5195 		}
   5196 
   5197 		/* only file entries and extended file entries allowed here */
   5198 		if ((dscr_type != TAGID_FENTRY) &&
   5199 		    (dscr_type != TAGID_EXTFENTRY)) {
   5200 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5201 			error = ENOENT;
   5202 			break;
   5203 		}
   5204 
   5205 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   5206 
   5207 		/* choose this one */
   5208 		last_fe_icb_loc = icb_loc;
   5209 
   5210 		/* record and process/update (ext)fentry */
   5211 		file_data = NULL;
   5212 		if (dscr_type == TAGID_FENTRY) {
   5213 			if (udf_node->fe)
   5214 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5215 					udf_node->fe);
   5216 			udf_node->fe  = &dscr->fe;
   5217 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   5218 			udf_file_type = udf_node->fe->icbtag.file_type;
   5219 			file_size = udf_rw64(udf_node->fe->inf_len);
   5220 			file_data = udf_node->fe->data;
   5221 		} else {
   5222 			if (udf_node->efe)
   5223 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5224 					udf_node->efe);
   5225 			udf_node->efe = &dscr->efe;
   5226 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   5227 			udf_file_type = udf_node->efe->icbtag.file_type;
   5228 			file_size = udf_rw64(udf_node->efe->inf_len);
   5229 			file_data = udf_node->efe->data;
   5230 		}
   5231 
   5232 		/* check recording strategy (structure) */
   5233 
   5234 		/*
   5235 		 * Strategy 4096 is a daisy linked chain terminating with an
   5236 		 * unrecorded sector or a TERM descriptor. The next
   5237 		 * descriptor is to be found in the sector that follows the
   5238 		 * current sector.
   5239 		 */
   5240 		if (strat == 4096) {
   5241 			strat4096 = 1;
   5242 			needs_indirect = 1;
   5243 
   5244 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   5245 		}
   5246 
   5247 		/*
   5248 		 * Strategy 4 is the normal strategy and terminates, but if
   5249 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   5250 		 */
   5251 
   5252 		if (strat == 4) {
   5253 			if (strat4096) {
   5254 				error = EINVAL;
   5255 				break;
   5256 			}
   5257 			break;		/* done */
   5258 		}
   5259 	} while (!error);
   5260 
   5261 	/* first round of cleanup code */
   5262 	if (error) {
   5263 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   5264 		/* recycle udf_node */
   5265 		udf_dispose_node(udf_node);
   5266 
   5267 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5268 		nvp->v_data = NULL;
   5269 		ungetnewvnode(nvp);
   5270 
   5271 		return EINVAL;		/* error code ok? */
   5272 	}
   5273 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   5274 
   5275 	/* assert no references to dscr anymore beyong this point */
   5276 	assert((udf_node->fe) || (udf_node->efe));
   5277 	dscr = NULL;
   5278 
   5279 	/*
   5280 	 * Remember where to record an updated version of the descriptor. If
   5281 	 * there is a sequence of indirect entries, icb_loc will have been
   5282 	 * updated. Its the write disipline to allocate new space and to make
   5283 	 * sure the chain is maintained.
   5284 	 *
   5285 	 * `needs_indirect' flags if the next location is to be filled with
   5286 	 * with an indirect entry.
   5287 	 */
   5288 	udf_node->write_loc = icb_loc;
   5289 	udf_node->needs_indirect = needs_indirect;
   5290 
   5291 	/*
   5292 	 * Go trough all allocations extents of this descriptor and when
   5293 	 * encountering a redirect read in the allocation extension. These are
   5294 	 * daisy-chained.
   5295 	 */
   5296 	UDF_LOCK_NODE(udf_node, 0);
   5297 	udf_node->num_extensions = 0;
   5298 
   5299 	error   = 0;
   5300 	slot    = 0;
   5301 	for (;;) {
   5302 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   5303 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   5304 			"lb_num = %d, part = %d\n", slot, eof,
   5305 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   5306 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   5307 			udf_rw32(icb_loc.loc.lb_num),
   5308 			udf_rw16(icb_loc.loc.part_num)));
   5309 		if (eof)
   5310 			break;
   5311 		slot++;
   5312 
   5313 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   5314 			continue;
   5315 
   5316 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   5317 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   5318 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   5319 					"too many allocation extensions on "
   5320 					"udf_node\n"));
   5321 			error = EINVAL;
   5322 			break;
   5323 		}
   5324 
   5325 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   5326 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   5327 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   5328 					"extension size in udf_node\n"));
   5329 			error = EINVAL;
   5330 			break;
   5331 		}
   5332 
   5333 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   5334 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   5335 		/* load in allocation extent */
   5336 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5337 		if (error || (dscr == NULL))
   5338 			break;
   5339 
   5340 		/* process read-in descriptor */
   5341 		dscr_type = udf_rw16(dscr->tag.id);
   5342 
   5343 		if (dscr_type != TAGID_ALLOCEXTENT) {
   5344 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5345 			error = ENOENT;
   5346 			break;
   5347 		}
   5348 
   5349 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5350 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5351 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5352 
   5353 		udf_node->num_extensions++;
   5354 
   5355 	} /* while */
   5356 	UDF_UNLOCK_NODE(udf_node, 0);
   5357 
   5358 	/* second round of cleanup code */
   5359 	if (error) {
   5360 		/* recycle udf_node */
   5361 		udf_dispose_node(udf_node);
   5362 
   5363 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5364 		nvp->v_data = NULL;
   5365 		ungetnewvnode(nvp);
   5366 
   5367 		return EINVAL;		/* error code ok? */
   5368 	}
   5369 
   5370 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5371 
   5372 	/*
   5373 	 * Translate UDF filetypes into vnode types.
   5374 	 *
   5375 	 * Systemfiles like the meta main and mirror files are not treated as
   5376 	 * normal files, so we type them as having no type. UDF dictates that
   5377 	 * they are not allowed to be visible.
   5378 	 */
   5379 
   5380 	switch (udf_file_type) {
   5381 	case UDF_ICB_FILETYPE_DIRECTORY :
   5382 	case UDF_ICB_FILETYPE_STREAMDIR :
   5383 		nvp->v_type = VDIR;
   5384 		break;
   5385 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5386 		nvp->v_type = VBLK;
   5387 		break;
   5388 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5389 		nvp->v_type = VCHR;
   5390 		break;
   5391 	case UDF_ICB_FILETYPE_SOCKET :
   5392 		nvp->v_type = VSOCK;
   5393 		break;
   5394 	case UDF_ICB_FILETYPE_FIFO :
   5395 		nvp->v_type = VFIFO;
   5396 		break;
   5397 	case UDF_ICB_FILETYPE_SYMLINK :
   5398 		nvp->v_type = VLNK;
   5399 		break;
   5400 	case UDF_ICB_FILETYPE_VAT :
   5401 	case UDF_ICB_FILETYPE_META_MAIN :
   5402 	case UDF_ICB_FILETYPE_META_MIRROR :
   5403 		nvp->v_type = VNON;
   5404 		break;
   5405 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5406 	case UDF_ICB_FILETYPE_REALTIME :
   5407 		nvp->v_type = VREG;
   5408 		break;
   5409 	default:
   5410 		/* YIKES, something else */
   5411 		nvp->v_type = VNON;
   5412 	}
   5413 
   5414 	/* TODO specfs, fifofs etc etc. vnops setting */
   5415 
   5416 	/* don't forget to set vnode's v_size */
   5417 	uvm_vnp_setsize(nvp, file_size);
   5418 
   5419 	/* TODO ext attr and streamdir udf_nodes */
   5420 
   5421 	*udf_noderes = udf_node;
   5422 
   5423 	return 0;
   5424 }
   5425 
   5426 /* --------------------------------------------------------------------- */
   5427 
   5428 int
   5429 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5430 {
   5431 	union dscrptr *dscr;
   5432 	struct long_ad *loc;
   5433 	int extnr, flags, error;
   5434 
   5435 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5436 
   5437 	KASSERT(udf_node->outstanding_bufs == 0);
   5438 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5439 
   5440 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5441 
   5442 	if (udf_node->i_flags & IN_DELETED) {
   5443 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5444 		return 0;
   5445 	}
   5446 
   5447 	/* lock node */
   5448 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
   5449 	UDF_LOCK_NODE(udf_node, flags);
   5450 
   5451 	/* at least one descriptor writeout */
   5452 	udf_node->outstanding_nodedscr = 1;
   5453 
   5454 	/* we're going to write out the descriptor so clear the flags */
   5455 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5456 
   5457 	/* if we were rebuild, write out the allocation extents */
   5458 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5459 		/* mark outstanding node descriptors and issue them */
   5460 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5461 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5462 			loc = &udf_node->ext_loc[extnr];
   5463 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5464 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5465 			if (error)
   5466 				return error;
   5467 		}
   5468 		/* mark allocation extents written out */
   5469 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5470 	}
   5471 
   5472 	if (udf_node->fe) {
   5473 		KASSERT(udf_node->efe == NULL);
   5474 		dscr = (union dscrptr *) udf_node->fe;
   5475 	} else {
   5476 		KASSERT(udf_node->efe);
   5477 		KASSERT(udf_node->fe == NULL);
   5478 		dscr = (union dscrptr *) udf_node->efe;
   5479 	}
   5480 	KASSERT(dscr);
   5481 
   5482 	loc = &udf_node->write_loc;
   5483 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5484 	return error;
   5485 }
   5486 
   5487 /* --------------------------------------------------------------------- */
   5488 
   5489 int
   5490 udf_dispose_node(struct udf_node *udf_node)
   5491 {
   5492 	struct vnode *vp;
   5493 	int extnr;
   5494 
   5495 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5496 	if (!udf_node) {
   5497 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5498 		return 0;
   5499 	}
   5500 
   5501 	vp  = udf_node->vnode;
   5502 #ifdef DIAGNOSTIC
   5503 	if (vp->v_numoutput)
   5504 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5505 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5506 #endif
   5507 
   5508 	/* wait until out of sync (just in case we happen to stumble over one */
   5509 	KASSERT(!mutex_owned(&mntvnode_lock));
   5510 	mutex_enter(&mntvnode_lock);
   5511 	while (udf_node->i_flags & IN_SYNCED) {
   5512 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
   5513 			hz/16);
   5514 	}
   5515 	mutex_exit(&mntvnode_lock);
   5516 
   5517 	/* TODO extended attributes and streamdir */
   5518 
   5519 	/* remove dirhash if present */
   5520 	udf_dirhash_destroy(&udf_node->dir_hash);
   5521 
   5522 	/* remove from our hash lookup table */
   5523 	udf_deregister_node(udf_node);
   5524 
   5525 	/* destroy our lock */
   5526 	mutex_destroy(&udf_node->node_mutex);
   5527 	cv_destroy(&udf_node->node_lock);
   5528 
   5529 	/* dissociate our udf_node from the vnode */
   5530 	genfs_node_destroy(udf_node->vnode);
   5531 	vp->v_data = NULL;
   5532 
   5533 	/* free associated memory and the node itself */
   5534 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5535 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5536 			udf_node->ext[extnr]);
   5537 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5538 	}
   5539 
   5540 	if (udf_node->fe)
   5541 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5542 			udf_node->fe);
   5543 	if (udf_node->efe)
   5544 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5545 			udf_node->efe);
   5546 
   5547 	udf_node->fe  = (void *) 0xdeadaaaa;
   5548 	udf_node->efe = (void *) 0xdeadbbbb;
   5549 	udf_node->ump = (void *) 0xdeadbeef;
   5550 	pool_put(&udf_node_pool, udf_node);
   5551 
   5552 	return 0;
   5553 }
   5554 
   5555 
   5556 
   5557 /*
   5558  * create a new node using the specified vnodeops, vap and cnp but with the
   5559  * udf_file_type. This allows special files to be created. Use with care.
   5560  */
   5561 
   5562 static int
   5563 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5564 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5565 {
   5566 	union dscrptr *dscr;
   5567 	struct udf_node *dir_node = VTOI(dvp);;
   5568 	struct udf_node *udf_node;
   5569 	struct udf_mount *ump = dir_node->ump;
   5570 	struct vnode *nvp;
   5571 	struct long_ad node_icb_loc;
   5572 	uint64_t parent_unique_id;
   5573 	uint64_t lmapping;
   5574 	uint32_t lb_size, lb_num;
   5575 	uint16_t vpart_num;
   5576 	uid_t uid;
   5577 	gid_t gid, parent_gid;
   5578 	int fid_size, error;
   5579 
   5580 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5581 	*vpp = NULL;
   5582 
   5583 	/* allocate vnode */
   5584 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5585         if (error)
   5586 		return error;
   5587 
   5588 	/* lock node */
   5589 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5590 	if (error) {
   5591 		nvp->v_data = NULL;
   5592 		ungetnewvnode(nvp);
   5593 		return error;
   5594 	}
   5595 
   5596 	/* get disc allocation for one logical block */
   5597 	vpart_num = ump->node_part;
   5598 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
   5599 			vpart_num, &lmapping);
   5600 	lb_num = lmapping;
   5601 	if (error) {
   5602 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5603 		ungetnewvnode(nvp);
   5604 		return error;
   5605 	}
   5606 
   5607 	/* initialise pointer to location */
   5608 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5609 	node_icb_loc.len = lb_size;
   5610 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5611 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5612 
   5613 	/* build udf_node (do initialise!) */
   5614 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5615 	memset(udf_node, 0, sizeof(struct udf_node));
   5616 
   5617 	/* initialise crosslinks, note location of fe/efe for hashing */
   5618 	/* bugalert: synchronise with udf_get_node() */
   5619 	udf_node->ump       = ump;
   5620 	udf_node->vnode     = nvp;
   5621 	nvp->v_data         = udf_node;
   5622 	udf_node->loc       = node_icb_loc;
   5623 	udf_node->write_loc = node_icb_loc;
   5624 	udf_node->lockf     = 0;
   5625 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5626 	cv_init(&udf_node->node_lock, "udf_nlk");
   5627 	udf_node->outstanding_bufs = 0;
   5628 	udf_node->outstanding_nodedscr = 0;
   5629 
   5630 	/* initialise genfs */
   5631 	genfs_node_init(nvp, &udf_genfsops);
   5632 
   5633 	/* insert into the hash lookup */
   5634 	udf_register_node(udf_node);
   5635 
   5636 	/* get parent's unique ID for refering '..' if its a directory */
   5637 	if (dir_node->fe) {
   5638 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5639 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5640 	} else {
   5641 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5642 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5643 	}
   5644 
   5645 	/* get descriptor */
   5646 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5647 
   5648 	/* choose a fe or an efe for it */
   5649 	if (ump->logical_vol->tag.descriptor_ver == 2) {
   5650 		udf_node->fe = &dscr->fe;
   5651 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5652 			udf_file_type, &udf_node->loc,
   5653 			&dir_node->loc, parent_unique_id);
   5654 		/* TODO add extended attribute for creation time */
   5655 	} else {
   5656 		udf_node->efe = &dscr->efe;
   5657 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5658 			udf_file_type, &udf_node->loc,
   5659 			&dir_node->loc, parent_unique_id);
   5660 	}
   5661 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5662 
   5663 	/* update vnode's size and type */
   5664 	nvp->v_type = vap->va_type;
   5665 	uvm_vnp_setsize(nvp, fid_size);
   5666 
   5667 	/* set access mode */
   5668 	udf_setaccessmode(udf_node, vap->va_mode);
   5669 
   5670 	/* set ownership */
   5671 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5672 	gid = parent_gid;
   5673 	udf_setownership(udf_node, uid, gid);
   5674 
   5675 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5676 	if (error) {
   5677 		/* free disc allocation for node */
   5678 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5679 
   5680 		/* recycle udf_node */
   5681 		udf_dispose_node(udf_node);
   5682 		vput(nvp);
   5683 
   5684 		*vpp = NULL;
   5685 		return error;
   5686 	}
   5687 
   5688 	/* adjust file count */
   5689 	udf_adjust_filecount(udf_node, 1);
   5690 
   5691 	/* return result */
   5692 	*vpp = nvp;
   5693 
   5694 	return 0;
   5695 }
   5696 
   5697 
   5698 int
   5699 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5700 	struct componentname *cnp)
   5701 {
   5702 	int (**vnodeops)(void *);
   5703 	int udf_file_type;
   5704 
   5705 	DPRINTF(NODE, ("udf_create_node called\n"));
   5706 
   5707 	/* what type are we creating ? */
   5708 	vnodeops = udf_vnodeop_p;
   5709 	/* start with a default */
   5710 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5711 
   5712 	*vpp = NULL;
   5713 
   5714 	switch (vap->va_type) {
   5715 	case VREG :
   5716 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5717 		break;
   5718 	case VDIR :
   5719 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5720 		break;
   5721 	case VLNK :
   5722 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5723 		break;
   5724 	case VBLK :
   5725 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5726 		/* specfs */
   5727 		return ENOTSUP;
   5728 		break;
   5729 	case VCHR :
   5730 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5731 		/* specfs */
   5732 		return ENOTSUP;
   5733 		break;
   5734 	case VFIFO :
   5735 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5736 		/* specfs */
   5737 		return ENOTSUP;
   5738 		break;
   5739 	case VSOCK :
   5740 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5741 		/* specfs */
   5742 		return ENOTSUP;
   5743 		break;
   5744 	case VNON :
   5745 	case VBAD :
   5746 	default :
   5747 		/* nothing; can we even create these? */
   5748 		return EINVAL;
   5749 	}
   5750 
   5751 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5752 }
   5753 
   5754 /* --------------------------------------------------------------------- */
   5755 
   5756 static void
   5757 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5758 {
   5759 	struct udf_mount *ump = udf_node->ump;
   5760 	uint32_t lb_size, lb_num, len, num_lb;
   5761 	uint16_t vpart_num;
   5762 
   5763 	/* is there really one? */
   5764 	if (mem == NULL)
   5765 		return;
   5766 
   5767 	/* got a descriptor here */
   5768 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5769 	lb_num    = udf_rw32(loc->loc.lb_num);
   5770 	vpart_num = udf_rw16(loc->loc.part_num);
   5771 
   5772 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5773 	num_lb = (len + lb_size -1) / lb_size;
   5774 
   5775 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5776 }
   5777 
   5778 void
   5779 udf_delete_node(struct udf_node *udf_node)
   5780 {
   5781 	void *dscr;
   5782 	struct udf_mount *ump;
   5783 	struct long_ad *loc;
   5784 	int extnr, lvint, dummy;
   5785 
   5786 	ump = udf_node->ump;
   5787 
   5788 	/* paranoia check on integrity; should be open!; we could panic */
   5789 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5790 	if (lvint == UDF_INTEGRITY_CLOSED)
   5791 		printf("\tIntegrity was CLOSED!\n");
   5792 
   5793 	/* whatever the node type, change its size to zero */
   5794 	(void) udf_resize_node(udf_node, 0, &dummy);
   5795 
   5796 	/* force it to be `clean'; no use writing it out */
   5797 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   5798 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5799 
   5800 	/* adjust file count */
   5801 	udf_adjust_filecount(udf_node, -1);
   5802 
   5803 	/*
   5804 	 * Free its allocated descriptors; memory will be released when
   5805 	 * vop_reclaim() is called.
   5806 	 */
   5807 	loc = &udf_node->loc;
   5808 
   5809 	dscr = udf_node->fe;
   5810 	udf_free_descriptor_space(udf_node, loc, dscr);
   5811 	dscr = udf_node->efe;
   5812 	udf_free_descriptor_space(udf_node, loc, dscr);
   5813 
   5814 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   5815 		dscr =  udf_node->ext[extnr];
   5816 		loc  = &udf_node->ext_loc[extnr];
   5817 		udf_free_descriptor_space(udf_node, loc, dscr);
   5818 	}
   5819 }
   5820 
   5821 /* --------------------------------------------------------------------- */
   5822 
   5823 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   5824 int
   5825 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   5826 {
   5827 	struct file_entry    *fe  = udf_node->fe;
   5828 	struct extfile_entry *efe = udf_node->efe;
   5829 	uint64_t file_size;
   5830 	int error;
   5831 
   5832 	if (fe) {
   5833 		file_size  = udf_rw64(fe->inf_len);
   5834 	} else {
   5835 		assert(udf_node->efe);
   5836 		file_size  = udf_rw64(efe->inf_len);
   5837 	}
   5838 
   5839 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   5840 			file_size, new_size));
   5841 
   5842 	/* if not changing, we're done */
   5843 	if (file_size == new_size)
   5844 		return 0;
   5845 
   5846 	*extended = (new_size > file_size);
   5847 	if (*extended) {
   5848 		error = udf_grow_node(udf_node, new_size);
   5849 	} else {
   5850 		error = udf_shrink_node(udf_node, new_size);
   5851 	}
   5852 
   5853 	return error;
   5854 }
   5855 
   5856 
   5857 /* --------------------------------------------------------------------- */
   5858 
   5859 void
   5860 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   5861 	struct timespec *mod, struct timespec *birth)
   5862 {
   5863 	struct timespec now;
   5864 	struct file_entry    *fe;
   5865 	struct extfile_entry *efe;
   5866 	struct filetimes_extattr_entry *ft_extattr;
   5867 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   5868 	struct timestamp  fe_ctime;
   5869 	struct timespec   cur_birth;
   5870 	uint32_t offset, a_l;
   5871 	uint8_t *filedata;
   5872 	int error;
   5873 
   5874 	/* protect against rogue values */
   5875 	if (!udf_node)
   5876 		return;
   5877 
   5878 	fe  = udf_node->fe;
   5879 	efe = udf_node->efe;
   5880 
   5881 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   5882 		return;
   5883 
   5884 	/* get descriptor information */
   5885 	if (fe) {
   5886 		atime    = &fe->atime;
   5887 		mtime    = &fe->mtime;
   5888 		attrtime = &fe->attrtime;
   5889 		filedata = fe->data;
   5890 
   5891 		/* initial save dummy setting */
   5892 		ctime    = &fe_ctime;
   5893 
   5894 		/* check our extended attribute if present */
   5895 		error = udf_extattr_search_intern(udf_node,
   5896 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   5897 		if (!error) {
   5898 			ft_extattr = (struct filetimes_extattr_entry *)
   5899 				(filedata + offset);
   5900 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   5901 				ctime = &ft_extattr->times[0];
   5902 		}
   5903 		/* TODO create the extended attribute if not found ? */
   5904 	} else {
   5905 		assert(udf_node->efe);
   5906 		atime    = &efe->atime;
   5907 		mtime    = &efe->mtime;
   5908 		attrtime = &efe->attrtime;
   5909 		ctime    = &efe->ctime;
   5910 	}
   5911 
   5912 	vfs_timestamp(&now);
   5913 
   5914 	/* set access time */
   5915 	if (udf_node->i_flags & IN_ACCESS) {
   5916 		if (acc == NULL)
   5917 			acc = &now;
   5918 		udf_timespec_to_timestamp(acc, atime);
   5919 	}
   5920 
   5921 	/* set modification time */
   5922 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   5923 		if (mod == NULL)
   5924 			mod = &now;
   5925 		udf_timespec_to_timestamp(mod, mtime);
   5926 
   5927 		/* ensure birthtime is older than set modification! */
   5928 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   5929 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   5930 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   5931 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   5932 			udf_timespec_to_timestamp(mod, ctime);
   5933 		}
   5934 	}
   5935 
   5936 	/* update birthtime if specified */
   5937 	/* XXX we asume here that given birthtime is older than mod */
   5938 	if (birth && (birth->tv_sec != VNOVAL)) {
   5939 		udf_timespec_to_timestamp(birth, ctime);
   5940 	}
   5941 
   5942 	/* set change time */
   5943 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   5944 		udf_timespec_to_timestamp(&now, attrtime);
   5945 
   5946 	/* notify updates to the node itself */
   5947 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   5948 		udf_node->i_flags |= IN_ACCESSED;
   5949 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   5950 		udf_node->i_flags |= IN_MODIFIED;
   5951 
   5952 	/* clear modification flags */
   5953 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5954 }
   5955 
   5956 /* --------------------------------------------------------------------- */
   5957 
   5958 int
   5959 udf_update(struct vnode *vp, struct timespec *acc,
   5960 	struct timespec *mod, struct timespec *birth, int updflags)
   5961 {
   5962 	union dscrptr *dscrptr;
   5963 	struct udf_node  *udf_node = VTOI(vp);
   5964 	struct udf_mount *ump = udf_node->ump;
   5965 	struct regid     *impl_id;
   5966 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   5967 	int waitfor, flags;
   5968 
   5969 #ifdef DEBUG
   5970 	char bits[128];
   5971 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   5972 		updflags));
   5973 	bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
   5974 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   5975 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   5976 #endif
   5977 
   5978 	/* set our times */
   5979 	udf_itimes(udf_node, acc, mod, birth);
   5980 
   5981 	/* set our implementation id */
   5982 	if (udf_node->fe) {
   5983 		dscrptr = (union dscrptr *) udf_node->fe;
   5984 		impl_id = &udf_node->fe->imp_id;
   5985 	} else {
   5986 		dscrptr = (union dscrptr *) udf_node->efe;
   5987 		impl_id = &udf_node->efe->imp_id;
   5988 	}
   5989 
   5990 	/* set our ID */
   5991 	udf_set_regid(impl_id, IMPL_NAME);
   5992 	udf_add_impl_regid(ump, impl_id);
   5993 
   5994 	/* update our crc! on RMW we are not allowed to change a thing */
   5995 	udf_validate_tag_and_crc_sums(dscrptr);
   5996 
   5997 	/* if called when mounted readonly, never write back */
   5998 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   5999 		return 0;
   6000 
   6001 	/* check if the node is dirty 'enough'*/
   6002 	if (updflags & UPDATE_CLOSE) {
   6003 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   6004 	} else {
   6005 		flags = udf_node->i_flags & IN_MODIFIED;
   6006 	}
   6007 	if (flags == 0)
   6008 		return 0;
   6009 
   6010 	/* determine if we need to write sync or async */
   6011 	waitfor = 0;
   6012 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   6013 		/* sync mounted */
   6014 		waitfor = updflags & UPDATE_WAIT;
   6015 		if (updflags & UPDATE_DIROP)
   6016 			waitfor |= UPDATE_WAIT;
   6017 	}
   6018 	if (waitfor)
   6019 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   6020 
   6021 	return 0;
   6022 }
   6023 
   6024 
   6025 /* --------------------------------------------------------------------- */
   6026 
   6027 
   6028 /*
   6029  * Read one fid and process it into a dirent and advance to the next (*fid)
   6030  * has to be allocated a logical block in size, (*dirent) struct dirent length
   6031  */
   6032 
   6033 int
   6034 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   6035 		    struct fileid_desc *fid, struct dirent *dirent)
   6036 {
   6037 	struct udf_node  *dir_node = VTOI(vp);
   6038 	struct udf_mount *ump = dir_node->ump;
   6039 	struct file_entry    *fe  = dir_node->fe;
   6040 	struct extfile_entry *efe = dir_node->efe;
   6041 	uint32_t      fid_size, lb_size;
   6042 	uint64_t      file_size;
   6043 	char         *fid_name;
   6044 	int           enough, error;
   6045 
   6046 	assert(fid);
   6047 	assert(dirent);
   6048 	assert(dir_node);
   6049 	assert(offset);
   6050 	assert(*offset != 1);
   6051 
   6052 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   6053 	/* check if we're past the end of the directory */
   6054 	if (fe) {
   6055 		file_size = udf_rw64(fe->inf_len);
   6056 	} else {
   6057 		assert(dir_node->efe);
   6058 		file_size = udf_rw64(efe->inf_len);
   6059 	}
   6060 	if (*offset >= file_size)
   6061 		return EINVAL;
   6062 
   6063 	/* get maximum length of FID descriptor */
   6064 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   6065 
   6066 	/* initialise return values */
   6067 	fid_size = 0;
   6068 	memset(dirent, 0, sizeof(struct dirent));
   6069 	memset(fid, 0, lb_size);
   6070 
   6071 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   6072 	if (!enough) {
   6073 		/* short dir ... */
   6074 		return EIO;
   6075 	}
   6076 
   6077 	error = vn_rdwr(UIO_READ, vp,
   6078 			fid, MIN(file_size - (*offset), lb_size), *offset,
   6079 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   6080 			NULL, NULL);
   6081 	if (error)
   6082 		return error;
   6083 
   6084 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   6085 	/*
   6086 	 * Check if we got a whole descriptor.
   6087 	 * TODO Try to `resync' directory stream when something is very wrong.
   6088 	 */
   6089 
   6090 	/* check if our FID header is OK */
   6091 	error = udf_check_tag(fid);
   6092 	if (error) {
   6093 		goto brokendir;
   6094 	}
   6095 	DPRINTF(FIDS, ("\ttag check ok\n"));
   6096 
   6097 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   6098 		error = EIO;
   6099 		goto brokendir;
   6100 	}
   6101 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   6102 
   6103 	/* check for length */
   6104 	fid_size = udf_fidsize(fid);
   6105 	enough = (file_size - (*offset) >= fid_size);
   6106 	if (!enough) {
   6107 		error = EIO;
   6108 		goto brokendir;
   6109 	}
   6110 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   6111 
   6112 	/* check FID contents */
   6113 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   6114 brokendir:
   6115 	if (error) {
   6116 		/* note that is sometimes a bit quick to report */
   6117 		printf("BROKEN DIRECTORY ENTRY\n");
   6118 		/* RESYNC? */
   6119 		/* TODO: use udf_resync_fid_stream */
   6120 		return EIO;
   6121 	}
   6122 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   6123 
   6124 	/* we got a whole and valid descriptor! */
   6125 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   6126 
   6127 	/* create resulting dirent structure */
   6128 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   6129 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   6130 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   6131 
   6132 	/* '..' has no name, so provide one */
   6133 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   6134 		strcpy(dirent->d_name, "..");
   6135 
   6136 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   6137 	dirent->d_namlen = strlen(dirent->d_name);
   6138 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   6139 
   6140 	/*
   6141 	 * Note that its not worth trying to go for the filetypes now... its
   6142 	 * too expensive too
   6143 	 */
   6144 	dirent->d_type = DT_UNKNOWN;
   6145 
   6146 	/* initial guess for filetype we can make */
   6147 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   6148 		dirent->d_type = DT_DIR;
   6149 
   6150 	/* advance */
   6151 	*offset += fid_size;
   6152 
   6153 	return error;
   6154 }
   6155 
   6156 
   6157 /* --------------------------------------------------------------------- */
   6158 
   6159 static void
   6160 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   6161 	int pass, int *ndirty)
   6162 {
   6163 	struct udf_node *udf_node, *n_udf_node;
   6164 	struct vnode *vp;
   6165 	int vdirty, error;
   6166 	int on_type, on_flags, on_vnode;
   6167 
   6168 derailed:
   6169 	KASSERT(mutex_owned(&mntvnode_lock));
   6170 
   6171 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   6172 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
   6173 	for (;udf_node; udf_node = n_udf_node) {
   6174 		DPRINTF(SYNC, ("."));
   6175 
   6176 		udf_node->i_flags &= ~IN_SYNCED;
   6177 		vp = udf_node->vnode;
   6178 
   6179 		mutex_enter(&vp->v_interlock);
   6180 		n_udf_node = LIST_NEXT(udf_node, sortchain);
   6181 		if (n_udf_node)
   6182 			n_udf_node->i_flags |= IN_SYNCED;
   6183 
   6184 		/* system nodes are not synced this way */
   6185 		if (vp->v_vflag & VV_SYSTEM) {
   6186 			mutex_exit(&vp->v_interlock);
   6187 			continue;
   6188 		}
   6189 
   6190 		/* check if its dirty enough to even try */
   6191 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   6192 		on_flags = ((udf_node->i_flags &
   6193 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   6194 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   6195 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   6196 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   6197 			/* not dirty (enough?) */
   6198 			mutex_exit(&vp->v_interlock);
   6199 			continue;
   6200 		}
   6201 
   6202 		mutex_exit(&mntvnode_lock);
   6203 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   6204 		if (error) {
   6205 			mutex_enter(&mntvnode_lock);
   6206 			if (error == ENOENT)
   6207 				goto derailed;
   6208 			*ndirty += 1;
   6209 			continue;
   6210 		}
   6211 
   6212 		switch (pass) {
   6213 		case 1:
   6214 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   6215 			break;
   6216 		case 2:
   6217 			vdirty = vp->v_numoutput;
   6218 			if (vp->v_tag == VT_UDF)
   6219 				vdirty += udf_node->outstanding_bufs +
   6220 					udf_node->outstanding_nodedscr;
   6221 			if (vdirty == 0)
   6222 				VOP_FSYNC(vp, cred, 0,0,0);
   6223 			*ndirty += vdirty;
   6224 			break;
   6225 		case 3:
   6226 			vdirty = vp->v_numoutput;
   6227 			if (vp->v_tag == VT_UDF)
   6228 				vdirty += udf_node->outstanding_bufs +
   6229 					udf_node->outstanding_nodedscr;
   6230 			*ndirty += vdirty;
   6231 			break;
   6232 		}
   6233 
   6234 		vput(vp);
   6235 		mutex_enter(&mntvnode_lock);
   6236 	}
   6237 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   6238 }
   6239 
   6240 
   6241 void
   6242 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   6243 {
   6244 	int dummy, ndirty;
   6245 
   6246 	mutex_enter(&mntvnode_lock);
   6247 recount:
   6248 	dummy = 0;
   6249 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6250 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6251 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   6252 
   6253 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6254 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6255 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   6256 
   6257 	if (waitfor == MNT_WAIT) {
   6258 		ndirty = ump->devvp->v_numoutput;
   6259 		DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
   6260 			ndirty));
   6261 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   6262 		DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
   6263 			ndirty));
   6264 
   6265 		if (ndirty) {
   6266 			/* 1/4 second wait */
   6267 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   6268 				hz/4);
   6269 			goto recount;
   6270 		}
   6271 	}
   6272 
   6273 	mutex_exit(&mntvnode_lock);
   6274 }
   6275 
   6276 /* --------------------------------------------------------------------- */
   6277 
   6278 /*
   6279  * Read and write file extent in/from the buffer.
   6280  *
   6281  * The splitup of the extent into seperate request-buffers is to minimise
   6282  * copying around as much as possible.
   6283  *
   6284  * block based file reading and writing
   6285  */
   6286 
   6287 static int
   6288 udf_read_internal(struct udf_node *node, uint8_t *blob)
   6289 {
   6290 	struct udf_mount *ump;
   6291 	struct file_entry     *fe = node->fe;
   6292 	struct extfile_entry *efe = node->efe;
   6293 	uint64_t inflen;
   6294 	uint32_t sector_size;
   6295 	uint8_t  *pos;
   6296 	int icbflags, addr_type;
   6297 
   6298 	/* get extent and do some paranoia checks */
   6299 	ump = node->ump;
   6300 	sector_size = ump->discinfo.sector_size;
   6301 
   6302 	if (fe) {
   6303 		inflen   = udf_rw64(fe->inf_len);
   6304 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6305 		icbflags = udf_rw16(fe->icbtag.flags);
   6306 	} else {
   6307 		assert(node->efe);
   6308 		inflen   = udf_rw64(efe->inf_len);
   6309 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6310 		icbflags = udf_rw16(efe->icbtag.flags);
   6311 	}
   6312 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6313 
   6314 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6315 	assert(inflen < sector_size);
   6316 
   6317 	/* copy out info */
   6318 	memset(blob, 0, sector_size);
   6319 	memcpy(blob, pos, inflen);
   6320 
   6321 	return 0;
   6322 }
   6323 
   6324 
   6325 static int
   6326 udf_write_internal(struct udf_node *node, uint8_t *blob)
   6327 {
   6328 	struct udf_mount *ump;
   6329 	struct file_entry     *fe = node->fe;
   6330 	struct extfile_entry *efe = node->efe;
   6331 	uint64_t inflen;
   6332 	uint32_t sector_size;
   6333 	uint8_t  *pos;
   6334 	int icbflags, addr_type;
   6335 
   6336 	/* get extent and do some paranoia checks */
   6337 	ump = node->ump;
   6338 	sector_size = ump->discinfo.sector_size;
   6339 
   6340 	if (fe) {
   6341 		inflen   = udf_rw64(fe->inf_len);
   6342 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6343 		icbflags = udf_rw16(fe->icbtag.flags);
   6344 	} else {
   6345 		assert(node->efe);
   6346 		inflen   = udf_rw64(efe->inf_len);
   6347 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6348 		icbflags = udf_rw16(efe->icbtag.flags);
   6349 	}
   6350 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6351 
   6352 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6353 	assert(inflen < sector_size);
   6354 
   6355 	/* copy in blob */
   6356 	/* memset(pos, 0, inflen); */
   6357 	memcpy(pos, blob, inflen);
   6358 
   6359 	return 0;
   6360 }
   6361 
   6362 
   6363 void
   6364 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6365 {
   6366 	struct buf *nestbuf;
   6367 	struct udf_mount *ump = udf_node->ump;
   6368 	uint64_t   *mapping;
   6369 	uint64_t    run_start;
   6370 	uint32_t    sector_size;
   6371 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6372 	uint32_t    from, lblkno;
   6373 	uint32_t    sectors;
   6374 	uint8_t    *buf_pos;
   6375 	int error, run_length, isdir, what;
   6376 
   6377 	sector_size = udf_node->ump->discinfo.sector_size;
   6378 
   6379 	from    = buf->b_blkno;
   6380 	sectors = buf->b_bcount / sector_size;
   6381 
   6382 	isdir   = (udf_node->vnode->v_type == VDIR);
   6383 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6384 
   6385 	/* assure we have enough translation slots */
   6386 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6387 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6388 
   6389 	if (sectors > UDF_MAX_MAPPINGS) {
   6390 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6391 		buf->b_error  = EIO;
   6392 		biodone(buf);
   6393 		return;
   6394 	}
   6395 
   6396 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6397 
   6398 	error = 0;
   6399 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6400 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6401 	if (error) {
   6402 		buf->b_error  = error;
   6403 		biodone(buf);
   6404 		goto out;
   6405 	}
   6406 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6407 
   6408 	/* pre-check if its an internal */
   6409 	if (*mapping == UDF_TRANS_INTERN) {
   6410 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6411 		if (error)
   6412 			buf->b_error  = error;
   6413 		biodone(buf);
   6414 		goto out;
   6415 	}
   6416 	DPRINTF(READ, ("\tnot intern\n"));
   6417 
   6418 #ifdef DEBUG
   6419 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6420 		printf("Returned translation table:\n");
   6421 		for (sector = 0; sector < sectors; sector++) {
   6422 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6423 		}
   6424 	}
   6425 #endif
   6426 
   6427 	/* request read-in of data from disc sheduler */
   6428 	buf->b_resid = buf->b_bcount;
   6429 	for (sector = 0; sector < sectors; sector++) {
   6430 		buf_offset = sector * sector_size;
   6431 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6432 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6433 
   6434 		/* check if its zero or unmapped to stop reading */
   6435 		switch (mapping[sector]) {
   6436 		case UDF_TRANS_UNMAPPED:
   6437 		case UDF_TRANS_ZERO:
   6438 			/* copy zero sector TODO runlength like below */
   6439 			memset(buf_pos, 0, sector_size);
   6440 			DPRINTF(READ, ("\treturning zero sector\n"));
   6441 			nestiobuf_done(buf, sector_size, 0);
   6442 			break;
   6443 		default :
   6444 			DPRINTF(READ, ("\tread sector "
   6445 			    "%"PRIu64"\n", mapping[sector]));
   6446 
   6447 			lblkno = from + sector;
   6448 			run_start  = mapping[sector];
   6449 			run_length = 1;
   6450 			while (sector < sectors-1) {
   6451 				if (mapping[sector+1] != mapping[sector]+1)
   6452 					break;
   6453 				run_length++;
   6454 				sector++;
   6455 			}
   6456 
   6457 			/*
   6458 			 * nest an iobuf and mark it for async reading. Since
   6459 			 * we're using nested buffers, they can't be cached by
   6460 			 * design.
   6461 			 */
   6462 			rbuflen = run_length * sector_size;
   6463 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6464 
   6465 			nestbuf = getiobuf(NULL, true);
   6466 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6467 			/* nestbuf is B_ASYNC */
   6468 
   6469 			/* identify this nestbuf */
   6470 			nestbuf->b_lblkno   = lblkno;
   6471 			assert(nestbuf->b_vp == udf_node->vnode);
   6472 
   6473 			/* CD shedules on raw blkno */
   6474 			nestbuf->b_blkno      = rblk;
   6475 			nestbuf->b_proc       = NULL;
   6476 			nestbuf->b_rawblkno   = rblk;
   6477 			nestbuf->b_udf_c_type = what;
   6478 
   6479 			udf_discstrat_queuebuf(ump, nestbuf);
   6480 		}
   6481 	}
   6482 out:
   6483 	/* if we're synchronously reading, wait for the completion */
   6484 	if ((buf->b_flags & B_ASYNC) == 0)
   6485 		biowait(buf);
   6486 
   6487 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6488 	free(mapping, M_TEMP);
   6489 	return;
   6490 }
   6491 
   6492 
   6493 void
   6494 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6495 {
   6496 	struct buf *nestbuf;
   6497 	struct udf_mount *ump = udf_node->ump;
   6498 	uint64_t   *mapping;
   6499 	uint64_t    run_start;
   6500 	uint32_t    lb_size;
   6501 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6502 	uint32_t    from, lblkno;
   6503 	uint32_t    num_lb;
   6504 	uint8_t    *buf_pos;
   6505 	int error, run_length, isdir, what, s;
   6506 
   6507 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6508 
   6509 	from   = buf->b_blkno;
   6510 	num_lb = buf->b_bcount / lb_size;
   6511 
   6512 	isdir  = (udf_node->vnode->v_type == VDIR);
   6513 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6514 
   6515 	if (udf_node == ump->metadatabitmap_node)
   6516 		what = UDF_C_METADATA_SBM;
   6517 
   6518 	/* assure we have enough translation slots */
   6519 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6520 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6521 
   6522 	if (num_lb > UDF_MAX_MAPPINGS) {
   6523 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6524 		buf->b_error  = EIO;
   6525 		biodone(buf);
   6526 		return;
   6527 	}
   6528 
   6529 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6530 
   6531 	error = 0;
   6532 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6533 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6534 	if (error) {
   6535 		buf->b_error  = error;
   6536 		biodone(buf);
   6537 		goto out;
   6538 	}
   6539 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6540 
   6541 	/* if its internally mapped, we can write it in the descriptor itself */
   6542 	if (*mapping == UDF_TRANS_INTERN) {
   6543 		/* TODO paranoia check if we ARE going to have enough space */
   6544 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6545 		if (error)
   6546 			buf->b_error  = error;
   6547 		biodone(buf);
   6548 		goto out;
   6549 	}
   6550 	DPRINTF(WRITE, ("\tnot intern\n"));
   6551 
   6552 	/* request write out of data to disc sheduler */
   6553 	buf->b_resid = buf->b_bcount;
   6554 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6555 		buf_offset = lb_num * lb_size;
   6556 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6557 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6558 
   6559 		/*
   6560 		 * Mappings are not that important here. Just before we write
   6561 		 * the lb_num we late-allocate them when needed and update the
   6562 		 * mapping in the udf_node.
   6563 		 */
   6564 
   6565 		/* XXX why not ignore the mapping altogether ? */
   6566 		/* TODO estimate here how much will be late-allocated */
   6567 		DPRINTF(WRITE, ("\twrite lb_num "
   6568 		    "%"PRIu64, mapping[lb_num]));
   6569 
   6570 		lblkno = from + lb_num;
   6571 		run_start  = mapping[lb_num];
   6572 		run_length = 1;
   6573 		while (lb_num < num_lb-1) {
   6574 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6575 				if (mapping[lb_num+1] != mapping[lb_num])
   6576 					break;
   6577 			run_length++;
   6578 			lb_num++;
   6579 		}
   6580 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6581 
   6582 		/* nest an iobuf on the master buffer for the extent */
   6583 		rbuflen = run_length * lb_size;
   6584 		rblk = run_start * (lb_size/DEV_BSIZE);
   6585 
   6586 #if 0
   6587 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
   6588 		switch (mapping[lb_num]) {
   6589 		case UDF_TRANS_UNMAPPED:
   6590 		case UDF_TRANS_ZERO:
   6591 			rblk = -1;
   6592 			break;
   6593 		default:
   6594 			rblk = run_start * (lb_size/DEV_BSIZE);
   6595 			break;
   6596 		}
   6597 #endif
   6598 
   6599 		nestbuf = getiobuf(NULL, true);
   6600 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6601 		/* nestbuf is B_ASYNC */
   6602 
   6603 		/* identify this nestbuf */
   6604 		nestbuf->b_lblkno   = lblkno;
   6605 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6606 
   6607 		/* CD shedules on raw blkno */
   6608 		nestbuf->b_blkno      = rblk;
   6609 		nestbuf->b_proc       = NULL;
   6610 		nestbuf->b_rawblkno   = rblk;
   6611 		nestbuf->b_udf_c_type = what;
   6612 
   6613 		/* increment our outstanding bufs counter */
   6614 		s = splbio();
   6615 			udf_node->outstanding_bufs++;
   6616 		splx(s);
   6617 
   6618 		udf_discstrat_queuebuf(ump, nestbuf);
   6619 	}
   6620 out:
   6621 	/* if we're synchronously writing, wait for the completion */
   6622 	if ((buf->b_flags & B_ASYNC) == 0)
   6623 		biowait(buf);
   6624 
   6625 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6626 	free(mapping, M_TEMP);
   6627 	return;
   6628 }
   6629 
   6630 /* --------------------------------------------------------------------- */
   6631 
   6632 
   6633