udf_subr.c revision 1.73.4.11 1 /* $NetBSD: udf_subr.c,v 1.73.4.11 2009/06/06 22:04:40 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.73.4.11 2009/06/06 22:04:40 bouyer Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65 #include <sys/dirhash.h>
66
67 #include "udf.h"
68 #include "udf_subr.h"
69 #include "udf_bswap.h"
70
71
72 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
73
74 #define UDF_SET_SYSTEMFILE(vp) \
75 /* XXXAD Is the vnode locked? */ \
76 (vp)->v_vflag |= VV_SYSTEM; \
77 vref(vp); \
78 vput(vp); \
79
80 extern int syncer_maxdelay; /* maximum delay time */
81 extern int (**udf_vnodeop_p)(void *);
82
83 /* --------------------------------------------------------------------- */
84
85 //#ifdef DEBUG
86 #if 1
87
88 #if 0
89 static void
90 udf_dumpblob(boid *blob, uint32_t dlen)
91 {
92 int i, j;
93
94 printf("blob = %p\n", blob);
95 printf("dump of %d bytes\n", dlen);
96
97 for (i = 0; i < dlen; i+ = 16) {
98 printf("%04x ", i);
99 for (j = 0; j < 16; j++) {
100 if (i+j < dlen) {
101 printf("%02x ", blob[i+j]);
102 } else {
103 printf(" ");
104 }
105 }
106 for (j = 0; j < 16; j++) {
107 if (i+j < dlen) {
108 if (blob[i+j]>32 && blob[i+j]! = 127) {
109 printf("%c", blob[i+j]);
110 } else {
111 printf(".");
112 }
113 }
114 }
115 printf("\n");
116 }
117 printf("\n");
118 Debugger();
119 }
120 #endif
121
122 static void
123 udf_dump_discinfo(struct udf_mount *ump)
124 {
125 char bits[128];
126 struct mmc_discinfo *di = &ump->discinfo;
127
128 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
129 return;
130
131 printf("Device/media info :\n");
132 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
133 printf("\tderived class %d\n", di->mmc_class);
134 printf("\tsector size %d\n", di->sector_size);
135 printf("\tdisc state %d\n", di->disc_state);
136 printf("\tlast ses state %d\n", di->last_session_state);
137 printf("\tbg format state %d\n", di->bg_format_state);
138 printf("\tfrst track %d\n", di->first_track);
139 printf("\tfst on last ses %d\n", di->first_track_last_session);
140 printf("\tlst on last ses %d\n", di->last_track_last_session);
141 printf("\tlink block penalty %d\n", di->link_block_penalty);
142 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
143 sizeof(bits));
144 printf("\tdisc flags %s\n", bits);
145 printf("\tdisc id %x\n", di->disc_id);
146 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
147
148 printf("\tnum sessions %d\n", di->num_sessions);
149 printf("\tnum tracks %d\n", di->num_tracks);
150
151 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
152 printf("\tcapabilities cur %s\n", bits);
153 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
154 printf("\tcapabilities cap %s\n", bits);
155 }
156
157 static void
158 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
159 {
160 char bits[128];
161
162 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
163 return;
164
165 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
166 printf("\tsessionnr %d\n", trackinfo->sessionnr);
167 printf("\ttrack mode %d\n", trackinfo->track_mode);
168 printf("\tdata mode %d\n", trackinfo->data_mode);
169 bitmask_snprintf(trackinfo->flags, MMC_TRACKINFO_FLAGBITS, bits,
170 sizeof(bits));
171 printf("\tflags %s\n", bits);
172
173 printf("\ttrack start %d\n", trackinfo->track_start);
174 printf("\tnext_writable %d\n", trackinfo->next_writable);
175 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
176 printf("\tpacket_size %d\n", trackinfo->packet_size);
177 printf("\ttrack size %d\n", trackinfo->track_size);
178 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
179 }
180
181 #else
182 #define udf_dump_discinfo(a);
183 #define udf_dump_trackinfo(a);
184 #endif
185
186
187 /* --------------------------------------------------------------------- */
188
189 /* not called often */
190 int
191 udf_update_discinfo(struct udf_mount *ump)
192 {
193 struct vnode *devvp = ump->devvp;
194 struct partinfo dpart;
195 struct mmc_discinfo *di;
196 int error;
197
198 DPRINTF(VOLUMES, ("read/update disc info\n"));
199 di = &ump->discinfo;
200 memset(di, 0, sizeof(struct mmc_discinfo));
201
202 /* check if we're on a MMC capable device, i.e. CD/DVD */
203 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
204 if (error == 0) {
205 udf_dump_discinfo(ump);
206 return 0;
207 }
208
209 /* disc partition support */
210 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
211 if (error)
212 return ENODEV;
213
214 /* set up a disc info profile for partitions */
215 di->mmc_profile = 0x01; /* disc type */
216 di->mmc_class = MMC_CLASS_DISC;
217 di->disc_state = MMC_STATE_CLOSED;
218 di->last_session_state = MMC_STATE_CLOSED;
219 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
220 di->link_block_penalty = 0;
221
222 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
223 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
224 di->mmc_cap = di->mmc_cur;
225 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
226
227 /* TODO problem with last_possible_lba on resizable VND; request */
228 di->last_possible_lba = dpart.part->p_size;
229 di->sector_size = dpart.disklab->d_secsize;
230
231 di->num_sessions = 1;
232 di->num_tracks = 1;
233
234 di->first_track = 1;
235 di->first_track_last_session = di->last_track_last_session = 1;
236
237 udf_dump_discinfo(ump);
238 return 0;
239 }
240
241
242 int
243 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
244 {
245 struct vnode *devvp = ump->devvp;
246 struct mmc_discinfo *di = &ump->discinfo;
247 int error, class;
248
249 DPRINTF(VOLUMES, ("read track info\n"));
250
251 class = di->mmc_class;
252 if (class != MMC_CLASS_DISC) {
253 /* tracknr specified in struct ti */
254 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
255 return error;
256 }
257
258 /* disc partition support */
259 if (ti->tracknr != 1)
260 return EIO;
261
262 /* create fake ti (TODO check for resized vnds) */
263 ti->sessionnr = 1;
264
265 ti->track_mode = 0; /* XXX */
266 ti->data_mode = 0; /* XXX */
267 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
268
269 ti->track_start = 0;
270 ti->packet_size = 1;
271
272 /* TODO support for resizable vnd */
273 ti->track_size = di->last_possible_lba;
274 ti->next_writable = di->last_possible_lba;
275 ti->last_recorded = ti->next_writable;
276 ti->free_blocks = 0;
277
278 return 0;
279 }
280
281
282 int
283 udf_setup_writeparams(struct udf_mount *ump)
284 {
285 struct mmc_writeparams mmc_writeparams;
286 int error;
287
288 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
289 return 0;
290
291 /*
292 * only CD burning normally needs setting up, but other disc types
293 * might need other settings to be made. The MMC framework will set up
294 * the nessisary recording parameters according to the disc
295 * characteristics read in. Modifications can be made in the discinfo
296 * structure passed to change the nature of the disc.
297 */
298
299 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
300 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
301 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
302
303 /*
304 * UDF dictates first track to determine track mode for the whole
305 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
306 * To prevent problems with a `reserved' track in front we start with
307 * the 2nd track and if that is not valid, go for the 1st.
308 */
309 mmc_writeparams.tracknr = 2;
310 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
311 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
312
313 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
314 FKIOCTL, NOCRED);
315 if (error) {
316 mmc_writeparams.tracknr = 1;
317 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
318 &mmc_writeparams, FKIOCTL, NOCRED);
319 }
320 return error;
321 }
322
323
324 int
325 udf_synchronise_caches(struct udf_mount *ump)
326 {
327 struct mmc_op mmc_op;
328
329 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
330
331 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
332 return 0;
333
334 /* discs are done now */
335 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
336 return 0;
337
338 bzero(&mmc_op, sizeof(struct mmc_op));
339 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
340
341 /* ignore return code */
342 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
343
344 return 0;
345 }
346
347 /* --------------------------------------------------------------------- */
348
349 /* track/session searching for mounting */
350 int
351 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
352 int *first_tracknr, int *last_tracknr)
353 {
354 struct mmc_trackinfo trackinfo;
355 uint32_t tracknr, start_track, num_tracks;
356 int error;
357
358 /* if negative, sessionnr is relative to last session */
359 if (args->sessionnr < 0) {
360 args->sessionnr += ump->discinfo.num_sessions;
361 }
362
363 /* sanity */
364 if (args->sessionnr < 0)
365 args->sessionnr = 0;
366 if (args->sessionnr > ump->discinfo.num_sessions)
367 args->sessionnr = ump->discinfo.num_sessions;
368
369 /* search the tracks for this session, zero session nr indicates last */
370 if (args->sessionnr == 0)
371 args->sessionnr = ump->discinfo.num_sessions;
372 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
373 args->sessionnr--;
374
375 /* sanity again */
376 if (args->sessionnr < 0)
377 args->sessionnr = 0;
378
379 /* search the first and last track of the specified session */
380 num_tracks = ump->discinfo.num_tracks;
381 start_track = ump->discinfo.first_track;
382
383 /* search for first track of this session */
384 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
385 /* get track info */
386 trackinfo.tracknr = tracknr;
387 error = udf_update_trackinfo(ump, &trackinfo);
388 if (error)
389 return error;
390
391 if (trackinfo.sessionnr == args->sessionnr)
392 break;
393 }
394 *first_tracknr = tracknr;
395
396 /* search for last track of this session */
397 for (;tracknr <= num_tracks; tracknr++) {
398 /* get track info */
399 trackinfo.tracknr = tracknr;
400 error = udf_update_trackinfo(ump, &trackinfo);
401 if (error || (trackinfo.sessionnr != args->sessionnr)) {
402 tracknr--;
403 break;
404 }
405 }
406 if (tracknr > num_tracks)
407 tracknr--;
408
409 *last_tracknr = tracknr;
410
411 if (*last_tracknr < *first_tracknr) {
412 printf( "udf_search_tracks: sanity check on drive+disc failed, "
413 "drive returned garbage\n");
414 return EINVAL;
415 }
416
417 assert(*last_tracknr >= *first_tracknr);
418 return 0;
419 }
420
421
422 /*
423 * NOTE: this is the only routine in this file that directly peeks into the
424 * metadata file but since its at a larval state of the mount it can't hurt.
425 *
426 * XXX candidate for udf_allocation.c
427 * XXX clean me up!, change to new node reading code.
428 */
429
430 static void
431 udf_check_track_metadata_overlap(struct udf_mount *ump,
432 struct mmc_trackinfo *trackinfo)
433 {
434 struct part_desc *part;
435 struct file_entry *fe;
436 struct extfile_entry *efe;
437 struct short_ad *s_ad;
438 struct long_ad *l_ad;
439 uint32_t track_start, track_end;
440 uint32_t phys_part_start, phys_part_end, part_start, part_end;
441 uint32_t sector_size, len, alloclen, plb_num;
442 uint8_t *pos;
443 int addr_type, icblen, icbflags, flags;
444
445 /* get our track extents */
446 track_start = trackinfo->track_start;
447 track_end = track_start + trackinfo->track_size;
448
449 /* get our base partition extent */
450 KASSERT(ump->node_part == ump->fids_part);
451 part = ump->partitions[ump->node_part];
452 phys_part_start = udf_rw32(part->start_loc);
453 phys_part_end = phys_part_start + udf_rw32(part->part_len);
454
455 /* no use if its outside the physical partition */
456 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
457 return;
458
459 /*
460 * now follow all extents in the fe/efe to see if they refer to this
461 * track
462 */
463
464 sector_size = ump->discinfo.sector_size;
465
466 /* XXX should we claim exclusive access to the metafile ? */
467 /* TODO: move to new node read code */
468 fe = ump->metadata_node->fe;
469 efe = ump->metadata_node->efe;
470 if (fe) {
471 alloclen = udf_rw32(fe->l_ad);
472 pos = &fe->data[0] + udf_rw32(fe->l_ea);
473 icbflags = udf_rw16(fe->icbtag.flags);
474 } else {
475 assert(efe);
476 alloclen = udf_rw32(efe->l_ad);
477 pos = &efe->data[0] + udf_rw32(efe->l_ea);
478 icbflags = udf_rw16(efe->icbtag.flags);
479 }
480 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
481
482 while (alloclen) {
483 if (addr_type == UDF_ICB_SHORT_ALLOC) {
484 icblen = sizeof(struct short_ad);
485 s_ad = (struct short_ad *) pos;
486 len = udf_rw32(s_ad->len);
487 plb_num = udf_rw32(s_ad->lb_num);
488 } else {
489 /* should not be present, but why not */
490 icblen = sizeof(struct long_ad);
491 l_ad = (struct long_ad *) pos;
492 len = udf_rw32(l_ad->len);
493 plb_num = udf_rw32(l_ad->loc.lb_num);
494 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
495 }
496 /* process extent */
497 flags = UDF_EXT_FLAGS(len);
498 len = UDF_EXT_LEN(len);
499
500 part_start = phys_part_start + plb_num;
501 part_end = part_start + (len / sector_size);
502
503 if ((part_start >= track_start) && (part_end <= track_end)) {
504 /* extent is enclosed within this track */
505 ump->metadata_track = *trackinfo;
506 return;
507 }
508
509 pos += icblen;
510 alloclen -= icblen;
511 }
512 }
513
514
515 int
516 udf_search_writing_tracks(struct udf_mount *ump)
517 {
518 struct vnode *devvp = ump->devvp;
519 struct mmc_trackinfo trackinfo;
520 struct mmc_op mmc_op;
521 struct part_desc *part;
522 uint32_t tracknr, start_track, num_tracks;
523 uint32_t track_start, track_end, part_start, part_end;
524 int node_alloc, error;
525
526 /*
527 * in the CD/(HD)DVD/BD recordable device model a few tracks within
528 * the last session might be open but in the UDF device model at most
529 * three tracks can be open: a reserved track for delayed ISO VRS
530 * writing, a data track and a metadata track. We search here for the
531 * data track and the metadata track. Note that the reserved track is
532 * troublesome but can be detected by its small size of < 512 sectors.
533 */
534
535 /* update discinfo since it might have changed */
536 error = udf_update_discinfo(ump);
537 if (error)
538 return error;
539
540 num_tracks = ump->discinfo.num_tracks;
541 start_track = ump->discinfo.first_track;
542
543 /* fetch info on first and possibly only track */
544 trackinfo.tracknr = start_track;
545 error = udf_update_trackinfo(ump, &trackinfo);
546 if (error)
547 return error;
548
549 /* copy results to our mount point */
550 ump->data_track = trackinfo;
551 ump->metadata_track = trackinfo;
552
553 /* if not sequential, we're done */
554 if (num_tracks == 1)
555 return 0;
556
557 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
558 /* get track info */
559 trackinfo.tracknr = tracknr;
560 error = udf_update_trackinfo(ump, &trackinfo);
561 if (error)
562 return error;
563
564 /*
565 * If this track is marked damaged, ask for repair. This is an
566 * optional command, so ignore its error but report warning.
567 */
568 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
569 memset(&mmc_op, 0, sizeof(mmc_op));
570 mmc_op.operation = MMC_OP_REPAIRTRACK;
571 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
572 mmc_op.tracknr = tracknr;
573 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
574 if (error)
575 (void)printf("Drive can't explicitly repair "
576 "damaged track %d, but it might "
577 "autorepair\n", tracknr);
578
579 /* reget track info */
580 error = udf_update_trackinfo(ump, &trackinfo);
581 if (error)
582 return error;
583 }
584 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
585 continue;
586
587 track_start = trackinfo.track_start;
588 track_end = track_start + trackinfo.track_size;
589
590 /* check for overlap on data partition */
591 part = ump->partitions[ump->data_part];
592 part_start = udf_rw32(part->start_loc);
593 part_end = part_start + udf_rw32(part->part_len);
594 if ((part_start < track_end) && (part_end > track_start)) {
595 ump->data_track = trackinfo;
596 /* TODO check if UDF partition data_part is writable */
597 }
598
599 /* check for overlap on metadata partition */
600 node_alloc = ump->vtop_alloc[ump->node_part];
601 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
602 (node_alloc == UDF_ALLOC_METABITMAP)) {
603 udf_check_track_metadata_overlap(ump, &trackinfo);
604 } else {
605 ump->metadata_track = trackinfo;
606 }
607 }
608
609 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
610 return EROFS;
611
612 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
613 return EROFS;
614
615 return 0;
616 }
617
618 /* --------------------------------------------------------------------- */
619
620 /*
621 * Check if the blob starts with a good UDF tag. Tags are protected by a
622 * checksum over the reader except one byte at position 4 that is the checksum
623 * itself.
624 */
625
626 int
627 udf_check_tag(void *blob)
628 {
629 struct desc_tag *tag = blob;
630 uint8_t *pos, sum, cnt;
631
632 /* check TAG header checksum */
633 pos = (uint8_t *) tag;
634 sum = 0;
635
636 for(cnt = 0; cnt < 16; cnt++) {
637 if (cnt != 4)
638 sum += *pos;
639 pos++;
640 }
641 if (sum != tag->cksum) {
642 /* bad tag header checksum; this is not a valid tag */
643 return EINVAL;
644 }
645
646 return 0;
647 }
648
649
650 /*
651 * check tag payload will check descriptor CRC as specified.
652 * If the descriptor is too long, it will return EIO otherwise EINVAL.
653 */
654
655 int
656 udf_check_tag_payload(void *blob, uint32_t max_length)
657 {
658 struct desc_tag *tag = blob;
659 uint16_t crc, crc_len;
660
661 crc_len = udf_rw16(tag->desc_crc_len);
662
663 /* check payload CRC if applicable */
664 if (crc_len == 0)
665 return 0;
666
667 if (crc_len > max_length)
668 return EIO;
669
670 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
671 if (crc != udf_rw16(tag->desc_crc)) {
672 /* bad payload CRC; this is a broken tag */
673 return EINVAL;
674 }
675
676 return 0;
677 }
678
679
680 void
681 udf_validate_tag_sum(void *blob)
682 {
683 struct desc_tag *tag = blob;
684 uint8_t *pos, sum, cnt;
685
686 /* calculate TAG header checksum */
687 pos = (uint8_t *) tag;
688 sum = 0;
689
690 for(cnt = 0; cnt < 16; cnt++) {
691 if (cnt != 4) sum += *pos;
692 pos++;
693 }
694 tag->cksum = sum; /* 8 bit */
695 }
696
697
698 /* assumes sector number of descriptor to be saved already present */
699 void
700 udf_validate_tag_and_crc_sums(void *blob)
701 {
702 struct desc_tag *tag = blob;
703 uint8_t *btag = (uint8_t *) tag;
704 uint16_t crc, crc_len;
705
706 crc_len = udf_rw16(tag->desc_crc_len);
707
708 /* check payload CRC if applicable */
709 if (crc_len > 0) {
710 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
711 tag->desc_crc = udf_rw16(crc);
712 }
713
714 /* calculate TAG header checksum */
715 udf_validate_tag_sum(blob);
716 }
717
718 /* --------------------------------------------------------------------- */
719
720 /*
721 * XXX note the different semantics from udfclient: for FIDs it still rounds
722 * up to sectors. Use udf_fidsize() for a correct length.
723 */
724
725 int
726 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
727 {
728 uint32_t size, tag_id, num_lb, elmsz;
729
730 tag_id = udf_rw16(dscr->tag.id);
731
732 switch (tag_id) {
733 case TAGID_LOGVOL :
734 size = sizeof(struct logvol_desc) - 1;
735 size += udf_rw32(dscr->lvd.mt_l);
736 break;
737 case TAGID_UNALLOC_SPACE :
738 elmsz = sizeof(struct extent_ad);
739 size = sizeof(struct unalloc_sp_desc) - elmsz;
740 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
741 break;
742 case TAGID_FID :
743 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
744 size = (size + 3) & ~3;
745 break;
746 case TAGID_LOGVOL_INTEGRITY :
747 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
748 size += udf_rw32(dscr->lvid.l_iu);
749 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
750 break;
751 case TAGID_SPACE_BITMAP :
752 size = sizeof(struct space_bitmap_desc) - 1;
753 size += udf_rw32(dscr->sbd.num_bytes);
754 break;
755 case TAGID_SPARING_TABLE :
756 elmsz = sizeof(struct spare_map_entry);
757 size = sizeof(struct udf_sparing_table) - elmsz;
758 size += udf_rw16(dscr->spt.rt_l) * elmsz;
759 break;
760 case TAGID_FENTRY :
761 size = sizeof(struct file_entry);
762 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
763 break;
764 case TAGID_EXTFENTRY :
765 size = sizeof(struct extfile_entry);
766 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
767 break;
768 case TAGID_FSD :
769 size = sizeof(struct fileset_desc);
770 break;
771 default :
772 size = sizeof(union dscrptr);
773 break;
774 }
775
776 if ((size == 0) || (lb_size == 0))
777 return 0;
778
779 if (lb_size == 1)
780 return size;
781
782 /* round up in sectors */
783 num_lb = (size + lb_size -1) / lb_size;
784 return num_lb * lb_size;
785 }
786
787
788 int
789 udf_fidsize(struct fileid_desc *fid)
790 {
791 uint32_t size;
792
793 if (udf_rw16(fid->tag.id) != TAGID_FID)
794 panic("got udf_fidsize on non FID\n");
795
796 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
797 size = (size + 3) & ~3;
798
799 return size;
800 }
801
802 /* --------------------------------------------------------------------- */
803
804 void
805 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
806 {
807 int ret;
808
809 mutex_enter(&udf_node->node_mutex);
810 /* wait until free */
811 while (udf_node->i_flags & IN_LOCKED) {
812 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
813 /* TODO check if we should return error; abort */
814 if (ret == EWOULDBLOCK) {
815 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
816 "wanted at %s:%d, previously locked at %s:%d\n",
817 udf_node, fname, lineno,
818 udf_node->lock_fname, udf_node->lock_lineno));
819 }
820 }
821 /* grab */
822 udf_node->i_flags |= IN_LOCKED | flag;
823 /* debug */
824 udf_node->lock_fname = fname;
825 udf_node->lock_lineno = lineno;
826
827 mutex_exit(&udf_node->node_mutex);
828 }
829
830
831 void
832 udf_unlock_node(struct udf_node *udf_node, int flag)
833 {
834 mutex_enter(&udf_node->node_mutex);
835 udf_node->i_flags &= ~(IN_LOCKED | flag);
836 cv_broadcast(&udf_node->node_lock);
837 mutex_exit(&udf_node->node_mutex);
838 }
839
840
841 /* --------------------------------------------------------------------- */
842
843 static int
844 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
845 {
846 int error;
847
848 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
849 (union dscrptr **) dst);
850 if (!error) {
851 /* blank terminator blocks are not allowed here */
852 if (*dst == NULL)
853 return ENOENT;
854 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
855 error = ENOENT;
856 free(*dst, M_UDFVOLD);
857 *dst = NULL;
858 DPRINTF(VOLUMES, ("Not an anchor\n"));
859 }
860 }
861
862 return error;
863 }
864
865
866 int
867 udf_read_anchors(struct udf_mount *ump)
868 {
869 struct udf_args *args = &ump->mount_args;
870 struct mmc_trackinfo first_track;
871 struct mmc_trackinfo second_track;
872 struct mmc_trackinfo last_track;
873 struct anchor_vdp **anchorsp;
874 uint32_t track_start;
875 uint32_t track_end;
876 uint32_t positions[4];
877 int first_tracknr, last_tracknr;
878 int error, anch, ok, first_anchor;
879
880 /* search the first and last track of the specified session */
881 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
882 if (!error) {
883 first_track.tracknr = first_tracknr;
884 error = udf_update_trackinfo(ump, &first_track);
885 }
886 if (!error) {
887 last_track.tracknr = last_tracknr;
888 error = udf_update_trackinfo(ump, &last_track);
889 }
890 if ((!error) && (first_tracknr != last_tracknr)) {
891 second_track.tracknr = first_tracknr+1;
892 error = udf_update_trackinfo(ump, &second_track);
893 }
894 if (error) {
895 printf("UDF mount: reading disc geometry failed\n");
896 return 0;
897 }
898
899 track_start = first_track.track_start;
900
901 /* `end' is not as straitforward as start. */
902 track_end = last_track.track_start
903 + last_track.track_size - last_track.free_blocks - 1;
904
905 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
906 /* end of track is not straitforward here */
907 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
908 track_end = last_track.last_recorded;
909 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
910 track_end = last_track.next_writable
911 - ump->discinfo.link_block_penalty;
912 }
913
914 /* its no use reading a blank track */
915 first_anchor = 0;
916 if (first_track.flags & MMC_TRACKINFO_BLANK)
917 first_anchor = 1;
918
919 /* get our packet size */
920 ump->packet_size = first_track.packet_size;
921 if (first_track.flags & MMC_TRACKINFO_BLANK)
922 ump->packet_size = second_track.packet_size;
923
924 if (ump->packet_size <= 1) {
925 /* take max, but not bigger than 64 */
926 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
927 ump->packet_size = MIN(ump->packet_size, 64);
928 }
929 KASSERT(ump->packet_size >= 1);
930
931 /* read anchors start+256, start+512, end-256, end */
932 positions[0] = track_start+256;
933 positions[1] = track_end-256;
934 positions[2] = track_end;
935 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
936 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
937
938 ok = 0;
939 anchorsp = ump->anchors;
940 for (anch = first_anchor; anch < 4; anch++) {
941 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
942 positions[anch]));
943 error = udf_read_anchor(ump, positions[anch], anchorsp);
944 if (!error) {
945 anchorsp++;
946 ok++;
947 }
948 }
949
950 /* VATs are only recorded on sequential media, but initialise */
951 ump->first_possible_vat_location = track_start + 2;
952 ump->last_possible_vat_location = track_end + last_track.packet_size;
953
954 return ok;
955 }
956
957 /* --------------------------------------------------------------------- */
958
959 /* we dont try to be smart; we just record the parts */
960 #define UDF_UPDATE_DSCR(name, dscr) \
961 if (name) \
962 free(name, M_UDFVOLD); \
963 name = dscr;
964
965 static int
966 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
967 {
968 struct part_desc *part;
969 uint16_t phys_part, raw_phys_part;
970
971 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
972 udf_rw16(dscr->tag.id)));
973 switch (udf_rw16(dscr->tag.id)) {
974 case TAGID_PRI_VOL : /* primary partition */
975 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
976 break;
977 case TAGID_LOGVOL : /* logical volume */
978 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
979 break;
980 case TAGID_UNALLOC_SPACE : /* unallocated space */
981 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
982 break;
983 case TAGID_IMP_VOL : /* implementation */
984 /* XXX do we care about multiple impl. descr ? */
985 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
986 break;
987 case TAGID_PARTITION : /* physical partition */
988 /* not much use if its not allocated */
989 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
990 free(dscr, M_UDFVOLD);
991 break;
992 }
993
994 /*
995 * BUGALERT: some rogue implementations use random physical
996 * partion numbers to break other implementations so lookup
997 * the number.
998 */
999 raw_phys_part = udf_rw16(dscr->pd.part_num);
1000 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1001 part = ump->partitions[phys_part];
1002 if (part == NULL)
1003 break;
1004 if (udf_rw16(part->part_num) == raw_phys_part)
1005 break;
1006 }
1007 if (phys_part == UDF_PARTITIONS) {
1008 free(dscr, M_UDFVOLD);
1009 return EINVAL;
1010 }
1011
1012 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1013 break;
1014 case TAGID_VOL : /* volume space extender; rare */
1015 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1016 free(dscr, M_UDFVOLD);
1017 break;
1018 default :
1019 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1020 udf_rw16(dscr->tag.id)));
1021 free(dscr, M_UDFVOLD);
1022 }
1023
1024 return 0;
1025 }
1026 #undef UDF_UPDATE_DSCR
1027
1028 /* --------------------------------------------------------------------- */
1029
1030 static int
1031 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1032 {
1033 union dscrptr *dscr;
1034 uint32_t sector_size, dscr_size;
1035 int error;
1036
1037 sector_size = ump->discinfo.sector_size;
1038
1039 /* loc is sectornr, len is in bytes */
1040 error = EIO;
1041 while (len) {
1042 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1043 if (error)
1044 return error;
1045
1046 /* blank block is a terminator */
1047 if (dscr == NULL)
1048 return 0;
1049
1050 /* TERM descriptor is a terminator */
1051 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1052 free(dscr, M_UDFVOLD);
1053 return 0;
1054 }
1055
1056 /* process all others */
1057 dscr_size = udf_tagsize(dscr, sector_size);
1058 error = udf_process_vds_descriptor(ump, dscr);
1059 if (error) {
1060 free(dscr, M_UDFVOLD);
1061 break;
1062 }
1063 assert((dscr_size % sector_size) == 0);
1064
1065 len -= dscr_size;
1066 loc += dscr_size / sector_size;
1067 }
1068
1069 return error;
1070 }
1071
1072
1073 int
1074 udf_read_vds_space(struct udf_mount *ump)
1075 {
1076 /* struct udf_args *args = &ump->mount_args; */
1077 struct anchor_vdp *anchor, *anchor2;
1078 size_t size;
1079 uint32_t main_loc, main_len;
1080 uint32_t reserve_loc, reserve_len;
1081 int error;
1082
1083 /*
1084 * read in VDS space provided by the anchors; if one descriptor read
1085 * fails, try the mirror sector.
1086 *
1087 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1088 * avoids the `compatibility features' of DirectCD that may confuse
1089 * stuff completely.
1090 */
1091
1092 anchor = ump->anchors[0];
1093 anchor2 = ump->anchors[1];
1094 assert(anchor);
1095
1096 if (anchor2) {
1097 size = sizeof(struct extent_ad);
1098 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1099 anchor = anchor2;
1100 /* reserve is specified to be a literal copy of main */
1101 }
1102
1103 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1104 main_len = udf_rw32(anchor->main_vds_ex.len);
1105
1106 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1107 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1108
1109 error = udf_read_vds_extent(ump, main_loc, main_len);
1110 if (error) {
1111 printf("UDF mount: reading in reserve VDS extent\n");
1112 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1113 }
1114
1115 return error;
1116 }
1117
1118 /* --------------------------------------------------------------------- */
1119
1120 /*
1121 * Read in the logical volume integrity sequence pointed to by our logical
1122 * volume descriptor. Its a sequence that can be extended using fields in the
1123 * integrity descriptor itself. On sequential media only one is found, on
1124 * rewritable media a sequence of descriptors can be found as a form of
1125 * history keeping and on non sequential write-once media the chain is vital
1126 * to allow more and more descriptors to be written. The last descriptor
1127 * written in an extent needs to claim space for a new extent.
1128 */
1129
1130 static int
1131 udf_retrieve_lvint(struct udf_mount *ump)
1132 {
1133 union dscrptr *dscr;
1134 struct logvol_int_desc *lvint;
1135 struct udf_lvintq *trace;
1136 uint32_t lb_size, lbnum, len;
1137 int dscr_type, error, trace_len;
1138
1139 lb_size = udf_rw32(ump->logical_vol->lb_size);
1140 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1141 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1142
1143 /* clean trace */
1144 memset(ump->lvint_trace, 0,
1145 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1146
1147 trace_len = 0;
1148 trace = ump->lvint_trace;
1149 trace->start = lbnum;
1150 trace->end = lbnum + len/lb_size;
1151 trace->pos = 0;
1152 trace->wpos = 0;
1153
1154 lvint = NULL;
1155 dscr = NULL;
1156 error = 0;
1157 while (len) {
1158 trace->pos = lbnum - trace->start;
1159 trace->wpos = trace->pos + 1;
1160
1161 /* read in our integrity descriptor */
1162 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1163 if (!error) {
1164 if (dscr == NULL) {
1165 trace->wpos = trace->pos;
1166 break; /* empty terminates */
1167 }
1168 dscr_type = udf_rw16(dscr->tag.id);
1169 if (dscr_type == TAGID_TERM) {
1170 trace->wpos = trace->pos;
1171 break; /* clean terminator */
1172 }
1173 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1174 /* fatal... corrupt disc */
1175 error = ENOENT;
1176 break;
1177 }
1178 if (lvint)
1179 free(lvint, M_UDFVOLD);
1180 lvint = &dscr->lvid;
1181 dscr = NULL;
1182 } /* else hope for the best... maybe the next is ok */
1183
1184 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1185 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1186
1187 /* proceed sequential */
1188 lbnum += 1;
1189 len -= lb_size;
1190
1191 /* are we linking to a new piece? */
1192 if (dscr && lvint->next_extent.len) {
1193 len = udf_rw32(lvint->next_extent.len);
1194 lbnum = udf_rw32(lvint->next_extent.loc);
1195
1196 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1197 /* IEK! segment link full... */
1198 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1199 error = EINVAL;
1200 } else {
1201 trace++;
1202 trace_len++;
1203
1204 trace->start = lbnum;
1205 trace->end = lbnum + len/lb_size;
1206 trace->pos = 0;
1207 trace->wpos = 0;
1208 }
1209 }
1210 }
1211
1212 /* clean up the mess, esp. when there is an error */
1213 if (dscr)
1214 free(dscr, M_UDFVOLD);
1215
1216 if (error && lvint) {
1217 free(lvint, M_UDFVOLD);
1218 lvint = NULL;
1219 }
1220
1221 if (!lvint)
1222 error = ENOENT;
1223
1224 ump->logvol_integrity = lvint;
1225 return error;
1226 }
1227
1228
1229 static int
1230 udf_loose_lvint_history(struct udf_mount *ump)
1231 {
1232 union dscrptr **bufs, *dscr, *last_dscr;
1233 struct udf_lvintq *trace, *in_trace, *out_trace;
1234 struct logvol_int_desc *lvint;
1235 uint32_t in_ext, in_pos, in_len;
1236 uint32_t out_ext, out_wpos, out_len;
1237 uint32_t lb_size, packet_size, lb_num;
1238 uint32_t len, start;
1239 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1240 int losing;
1241 int error;
1242
1243 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1244
1245 lb_size = udf_rw32(ump->logical_vol->lb_size);
1246 packet_size = ump->data_track.packet_size; /* XXX data track */
1247
1248 /* search smallest extent */
1249 trace = &ump->lvint_trace[0];
1250 minext = trace->end - trace->start;
1251 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1252 trace = &ump->lvint_trace[ext];
1253 extlen = trace->end - trace->start;
1254 if (extlen == 0)
1255 break;
1256 minext = MIN(minext, extlen);
1257 }
1258 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1259 /* no sense wiping all */
1260 if (losing == minext)
1261 losing--;
1262
1263 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1264
1265 /* get buffer for pieces */
1266 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1267
1268 in_ext = 0;
1269 in_pos = losing;
1270 in_trace = &ump->lvint_trace[in_ext];
1271 in_len = in_trace->end - in_trace->start;
1272 out_ext = 0;
1273 out_wpos = 0;
1274 out_trace = &ump->lvint_trace[out_ext];
1275 out_len = out_trace->end - out_trace->start;
1276
1277 last_dscr = NULL;
1278 for(;;) {
1279 out_trace->pos = out_wpos;
1280 out_trace->wpos = out_trace->pos;
1281 if (in_pos >= in_len) {
1282 in_ext++;
1283 in_pos = 0;
1284 in_trace = &ump->lvint_trace[in_ext];
1285 in_len = in_trace->end - in_trace->start;
1286 }
1287 if (out_wpos >= out_len) {
1288 out_ext++;
1289 out_wpos = 0;
1290 out_trace = &ump->lvint_trace[out_ext];
1291 out_len = out_trace->end - out_trace->start;
1292 }
1293 /* copy overlap contents */
1294 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1295 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1296 if (cpy_len == 0)
1297 break;
1298
1299 /* copy */
1300 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1301 for (cnt = 0; cnt < cpy_len; cnt++) {
1302 /* read in our integrity descriptor */
1303 lb_num = in_trace->start + in_pos + cnt;
1304 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1305 &dscr);
1306 if (error) {
1307 /* copy last one */
1308 dscr = last_dscr;
1309 }
1310 bufs[cnt] = dscr;
1311 if (!error) {
1312 if (dscr == NULL) {
1313 out_trace->pos = out_wpos + cnt;
1314 out_trace->wpos = out_trace->pos;
1315 break; /* empty terminates */
1316 }
1317 dscr_type = udf_rw16(dscr->tag.id);
1318 if (dscr_type == TAGID_TERM) {
1319 out_trace->pos = out_wpos + cnt;
1320 out_trace->wpos = out_trace->pos;
1321 break; /* clean terminator */
1322 }
1323 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1324 panic( "UDF integrity sequence "
1325 "corrupted while mounted!\n");
1326 }
1327 last_dscr = dscr;
1328 }
1329 }
1330
1331 /* patch up if first entry was on error */
1332 if (bufs[0] == NULL) {
1333 for (cnt = 0; cnt < cpy_len; cnt++)
1334 if (bufs[cnt] != NULL)
1335 break;
1336 last_dscr = bufs[cnt];
1337 for (; cnt > 0; cnt--) {
1338 bufs[cnt] = last_dscr;
1339 }
1340 }
1341
1342 /* glue + write out */
1343 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1344 for (cnt = 0; cnt < cpy_len; cnt++) {
1345 lb_num = out_trace->start + out_wpos + cnt;
1346 lvint = &bufs[cnt]->lvid;
1347
1348 /* set continuation */
1349 len = 0;
1350 start = 0;
1351 if (out_wpos + cnt == out_len) {
1352 /* get continuation */
1353 trace = &ump->lvint_trace[out_ext+1];
1354 len = trace->end - trace->start;
1355 start = trace->start;
1356 }
1357 lvint->next_extent.len = udf_rw32(len);
1358 lvint->next_extent.loc = udf_rw32(start);
1359
1360 lb_num = trace->start + trace->wpos;
1361 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1362 bufs[cnt], lb_num, lb_num);
1363 DPRINTFIF(VOLUMES, error,
1364 ("error writing lvint lb_num\n"));
1365 }
1366
1367 /* free non repeating descriptors */
1368 last_dscr = NULL;
1369 for (cnt = 0; cnt < cpy_len; cnt++) {
1370 if (bufs[cnt] != last_dscr)
1371 free(bufs[cnt], M_UDFVOLD);
1372 last_dscr = bufs[cnt];
1373 }
1374
1375 /* advance */
1376 in_pos += cpy_len;
1377 out_wpos += cpy_len;
1378 }
1379
1380 free(bufs, M_TEMP);
1381
1382 return 0;
1383 }
1384
1385
1386 static int
1387 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1388 {
1389 struct udf_lvintq *trace;
1390 struct timeval now_v;
1391 struct timespec now_s;
1392 uint32_t sector;
1393 int logvol_integrity;
1394 int space, error;
1395
1396 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1397
1398 again:
1399 /* get free space in last chunk */
1400 trace = ump->lvint_trace;
1401 while (trace->wpos > (trace->end - trace->start)) {
1402 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1403 "wpos = %d\n", trace->start, trace->end,
1404 trace->pos, trace->wpos));
1405 trace++;
1406 }
1407
1408 /* check if there is space to append */
1409 space = (trace->end - trace->start) - trace->wpos;
1410 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1411 "space = %d\n", trace->start, trace->end, trace->pos,
1412 trace->wpos, space));
1413
1414 /* get state */
1415 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1416 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1417 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1418 /* don't allow this logvol to be opened */
1419 /* TODO extent LVINT space if possible */
1420 return EROFS;
1421 }
1422 }
1423
1424 if (space < 1) {
1425 if (lvflag & UDF_APPENDONLY_LVINT)
1426 return EROFS;
1427 /* loose history by re-writing extents */
1428 error = udf_loose_lvint_history(ump);
1429 if (error)
1430 return error;
1431 goto again;
1432 }
1433
1434 /* update our integrity descriptor to identify us and timestamp it */
1435 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1436 microtime(&now_v);
1437 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1438 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1439 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1440 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1441
1442 /* writeout integrity descriptor */
1443 sector = trace->start + trace->wpos;
1444 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1445 (union dscrptr *) ump->logvol_integrity,
1446 sector, sector);
1447 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1448 if (error)
1449 return error;
1450
1451 /* advance write position */
1452 trace->wpos++; space--;
1453 if (space >= 1) {
1454 /* append terminator */
1455 sector = trace->start + trace->wpos;
1456 error = udf_write_terminator(ump, sector);
1457
1458 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1459 }
1460
1461 space = (trace->end - trace->start) - trace->wpos;
1462 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1463 "space = %d\n", trace->start, trace->end, trace->pos,
1464 trace->wpos, space));
1465 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1466 "successfull\n"));
1467
1468 return error;
1469 }
1470
1471 /* --------------------------------------------------------------------- */
1472
1473 static int
1474 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1475 {
1476 union dscrptr *dscr;
1477 /* struct udf_args *args = &ump->mount_args; */
1478 struct part_desc *partd;
1479 struct part_hdr_desc *parthdr;
1480 struct udf_bitmap *bitmap;
1481 uint32_t phys_part;
1482 uint32_t lb_num, len;
1483 int error, dscr_type;
1484
1485 /* unallocated space map */
1486 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1487 partd = ump->partitions[phys_part];
1488 if (partd == NULL)
1489 continue;
1490 parthdr = &partd->_impl_use.part_hdr;
1491
1492 lb_num = udf_rw32(partd->start_loc);
1493 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1494 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1495 if (len == 0)
1496 continue;
1497
1498 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1499 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1500 if (!error && dscr) {
1501 /* analyse */
1502 dscr_type = udf_rw16(dscr->tag.id);
1503 if (dscr_type == TAGID_SPACE_BITMAP) {
1504 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1505 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1506
1507 /* fill in ump->part_unalloc_bits */
1508 bitmap = &ump->part_unalloc_bits[phys_part];
1509 bitmap->blob = (uint8_t *) dscr;
1510 bitmap->bits = dscr->sbd.data;
1511 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1512 bitmap->pages = NULL; /* TODO */
1513 bitmap->data_pos = 0;
1514 bitmap->metadata_pos = 0;
1515 } else {
1516 free(dscr, M_UDFVOLD);
1517
1518 printf( "UDF mount: error reading unallocated "
1519 "space bitmap\n");
1520 return EROFS;
1521 }
1522 } else {
1523 /* blank not allowed */
1524 printf("UDF mount: blank unallocated space bitmap\n");
1525 return EROFS;
1526 }
1527 }
1528
1529 /* unallocated space table (not supported) */
1530 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1531 partd = ump->partitions[phys_part];
1532 if (partd == NULL)
1533 continue;
1534 parthdr = &partd->_impl_use.part_hdr;
1535
1536 len = udf_rw32(parthdr->unalloc_space_table.len);
1537 if (len) {
1538 printf("UDF mount: space tables not supported\n");
1539 return EROFS;
1540 }
1541 }
1542
1543 /* freed space map */
1544 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1545 partd = ump->partitions[phys_part];
1546 if (partd == NULL)
1547 continue;
1548 parthdr = &partd->_impl_use.part_hdr;
1549
1550 /* freed space map */
1551 lb_num = udf_rw32(partd->start_loc);
1552 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1553 len = udf_rw32(parthdr->freed_space_bitmap.len);
1554 if (len == 0)
1555 continue;
1556
1557 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1558 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1559 if (!error && dscr) {
1560 /* analyse */
1561 dscr_type = udf_rw16(dscr->tag.id);
1562 if (dscr_type == TAGID_SPACE_BITMAP) {
1563 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1564 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1565
1566 /* fill in ump->part_freed_bits */
1567 bitmap = &ump->part_unalloc_bits[phys_part];
1568 bitmap->blob = (uint8_t *) dscr;
1569 bitmap->bits = dscr->sbd.data;
1570 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1571 bitmap->pages = NULL; /* TODO */
1572 bitmap->data_pos = 0;
1573 bitmap->metadata_pos = 0;
1574 } else {
1575 free(dscr, M_UDFVOLD);
1576
1577 printf( "UDF mount: error reading freed "
1578 "space bitmap\n");
1579 return EROFS;
1580 }
1581 } else {
1582 /* blank not allowed */
1583 printf("UDF mount: blank freed space bitmap\n");
1584 return EROFS;
1585 }
1586 }
1587
1588 /* freed space table (not supported) */
1589 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1590 partd = ump->partitions[phys_part];
1591 if (partd == NULL)
1592 continue;
1593 parthdr = &partd->_impl_use.part_hdr;
1594
1595 len = udf_rw32(parthdr->freed_space_table.len);
1596 if (len) {
1597 printf("UDF mount: space tables not supported\n");
1598 return EROFS;
1599 }
1600 }
1601
1602 return 0;
1603 }
1604
1605
1606 /* TODO implement async writeout */
1607 int
1608 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1609 {
1610 union dscrptr *dscr;
1611 /* struct udf_args *args = &ump->mount_args; */
1612 struct part_desc *partd;
1613 struct part_hdr_desc *parthdr;
1614 uint32_t phys_part;
1615 uint32_t lb_num, len, ptov;
1616 int error_all, error;
1617
1618 error_all = 0;
1619 /* unallocated space map */
1620 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1621 partd = ump->partitions[phys_part];
1622 if (partd == NULL)
1623 continue;
1624 parthdr = &partd->_impl_use.part_hdr;
1625
1626 ptov = udf_rw32(partd->start_loc);
1627 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1628 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1629 if (len == 0)
1630 continue;
1631
1632 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1633 lb_num + ptov));
1634 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1635 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1636 (union dscrptr *) dscr,
1637 ptov + lb_num, lb_num);
1638 if (error) {
1639 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1640 error_all = error;
1641 }
1642 }
1643
1644 /* freed space map */
1645 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1646 partd = ump->partitions[phys_part];
1647 if (partd == NULL)
1648 continue;
1649 parthdr = &partd->_impl_use.part_hdr;
1650
1651 /* freed space map */
1652 ptov = udf_rw32(partd->start_loc);
1653 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1654 len = udf_rw32(parthdr->freed_space_bitmap.len);
1655 if (len == 0)
1656 continue;
1657
1658 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1659 lb_num + ptov));
1660 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1661 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1662 (union dscrptr *) dscr,
1663 ptov + lb_num, lb_num);
1664 if (error) {
1665 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1666 error_all = error;
1667 }
1668 }
1669
1670 return error_all;
1671 }
1672
1673
1674 static int
1675 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1676 {
1677 struct udf_node *bitmap_node;
1678 union dscrptr *dscr;
1679 struct udf_bitmap *bitmap;
1680 uint64_t inflen;
1681 int error, dscr_type;
1682
1683 bitmap_node = ump->metadatabitmap_node;
1684
1685 /* only read in when metadata bitmap node is read in */
1686 if (bitmap_node == NULL)
1687 return 0;
1688
1689 if (bitmap_node->fe) {
1690 inflen = udf_rw64(bitmap_node->fe->inf_len);
1691 } else {
1692 KASSERT(bitmap_node->efe);
1693 inflen = udf_rw64(bitmap_node->efe->inf_len);
1694 }
1695
1696 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1697 "%"PRIu64" bytes\n", inflen));
1698
1699 /* allocate space for bitmap */
1700 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1701 if (!dscr)
1702 return ENOMEM;
1703
1704 /* set vnode type to regular file or we can't read from it! */
1705 bitmap_node->vnode->v_type = VREG;
1706
1707 /* read in complete metadata bitmap file */
1708 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1709 dscr,
1710 inflen, 0,
1711 UIO_SYSSPACE,
1712 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1713 NULL, NULL);
1714 if (error) {
1715 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1716 goto errorout;
1717 }
1718
1719 /* analyse */
1720 dscr_type = udf_rw16(dscr->tag.id);
1721 if (dscr_type == TAGID_SPACE_BITMAP) {
1722 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1723 ump->metadata_unalloc_dscr = &dscr->sbd;
1724
1725 /* fill in bitmap bits */
1726 bitmap = &ump->metadata_unalloc_bits;
1727 bitmap->blob = (uint8_t *) dscr;
1728 bitmap->bits = dscr->sbd.data;
1729 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1730 bitmap->pages = NULL; /* TODO */
1731 bitmap->data_pos = 0;
1732 bitmap->metadata_pos = 0;
1733 } else {
1734 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1735 goto errorout;
1736 }
1737
1738 return 0;
1739
1740 errorout:
1741 free(dscr, M_UDFVOLD);
1742 printf( "UDF mount: error reading unallocated "
1743 "space bitmap for metadata partition\n");
1744 return EROFS;
1745 }
1746
1747
1748 int
1749 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1750 {
1751 struct udf_node *bitmap_node;
1752 union dscrptr *dscr;
1753 uint64_t inflen, new_inflen;
1754 int dummy, error;
1755
1756 bitmap_node = ump->metadatabitmap_node;
1757
1758 /* only write out when metadata bitmap node is known */
1759 if (bitmap_node == NULL)
1760 return 0;
1761
1762 if (bitmap_node->fe) {
1763 inflen = udf_rw64(bitmap_node->fe->inf_len);
1764 } else {
1765 KASSERT(bitmap_node->efe);
1766 inflen = udf_rw64(bitmap_node->efe->inf_len);
1767 }
1768
1769 /* reduce length to zero */
1770 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1771 new_inflen = udf_tagsize(dscr, 1);
1772
1773 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1774 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1775
1776 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1777 if (error)
1778 printf("Error resizing metadata space bitmap\n");
1779
1780 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1781 dscr,
1782 new_inflen, 0,
1783 UIO_SYSSPACE,
1784 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1785 NULL, NULL);
1786
1787 bitmap_node->i_flags |= IN_MODIFIED;
1788 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1789
1790 error = VOP_FSYNC(bitmap_node->vnode,
1791 FSCRED, FSYNC_WAIT, 0, 0);
1792
1793 if (error)
1794 printf( "Error writing out metadata partition unalloced "
1795 "space bitmap!\n");
1796
1797 return error;
1798 }
1799
1800
1801 /* --------------------------------------------------------------------- */
1802
1803 /*
1804 * Checks if ump's vds information is correct and complete
1805 */
1806
1807 int
1808 udf_process_vds(struct udf_mount *ump) {
1809 union udf_pmap *mapping;
1810 /* struct udf_args *args = &ump->mount_args; */
1811 struct logvol_int_desc *lvint;
1812 struct udf_logvol_info *lvinfo;
1813 struct part_desc *part;
1814 uint32_t n_pm, mt_l;
1815 uint8_t *pmap_pos;
1816 char *domain_name, *map_name;
1817 const char *check_name;
1818 char bits[128];
1819 int pmap_stype, pmap_size;
1820 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1821 int n_phys, n_virt, n_spar, n_meta;
1822 int len, error;
1823
1824 if (ump == NULL)
1825 return ENOENT;
1826
1827 /* we need at least an anchor (trivial, but for safety) */
1828 if (ump->anchors[0] == NULL)
1829 return EINVAL;
1830
1831 /* we need at least one primary and one logical volume descriptor */
1832 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1833 return EINVAL;
1834
1835 /* we need at least one partition descriptor */
1836 if (ump->partitions[0] == NULL)
1837 return EINVAL;
1838
1839 /* check logical volume sector size verses device sector size */
1840 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1841 printf("UDF mount: format violation, lb_size != sector size\n");
1842 return EINVAL;
1843 }
1844
1845 /* check domain name */
1846 domain_name = ump->logical_vol->domain_id.id;
1847 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1848 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1849 return EINVAL;
1850 }
1851
1852 /* retrieve logical volume integrity sequence */
1853 error = udf_retrieve_lvint(ump);
1854
1855 /*
1856 * We need at least one logvol integrity descriptor recorded. Note
1857 * that its OK to have an open logical volume integrity here. The VAT
1858 * will close/update the integrity.
1859 */
1860 if (ump->logvol_integrity == NULL)
1861 return EINVAL;
1862
1863 /* process derived structures */
1864 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1865 lvint = ump->logvol_integrity;
1866 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1867 ump->logvol_info = lvinfo;
1868
1869 /* TODO check udf versions? */
1870
1871 /*
1872 * check logvol mappings: effective virt->log partmap translation
1873 * check and recording of the mapping results. Saves expensive
1874 * strncmp() in tight places.
1875 */
1876 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1877 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1878 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1879 pmap_pos = ump->logical_vol->maps;
1880
1881 if (n_pm > UDF_PMAPS) {
1882 printf("UDF mount: too many mappings\n");
1883 return EINVAL;
1884 }
1885
1886 /* count types and set partition numbers */
1887 ump->data_part = ump->node_part = ump->fids_part = 0;
1888 n_phys = n_virt = n_spar = n_meta = 0;
1889 for (log_part = 0; log_part < n_pm; log_part++) {
1890 mapping = (union udf_pmap *) pmap_pos;
1891 pmap_stype = pmap_pos[0];
1892 pmap_size = pmap_pos[1];
1893 switch (pmap_stype) {
1894 case 1: /* physical mapping */
1895 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1896 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1897 pmap_type = UDF_VTOP_TYPE_PHYS;
1898 n_phys++;
1899 ump->data_part = log_part;
1900 ump->node_part = log_part;
1901 ump->fids_part = log_part;
1902 break;
1903 case 2: /* virtual/sparable/meta mapping */
1904 map_name = mapping->pm2.part_id.id;
1905 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1906 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1907 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1908 len = UDF_REGID_ID_SIZE;
1909
1910 check_name = "*UDF Virtual Partition";
1911 if (strncmp(map_name, check_name, len) == 0) {
1912 pmap_type = UDF_VTOP_TYPE_VIRT;
1913 n_virt++;
1914 ump->node_part = log_part;
1915 break;
1916 }
1917 check_name = "*UDF Sparable Partition";
1918 if (strncmp(map_name, check_name, len) == 0) {
1919 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1920 n_spar++;
1921 ump->data_part = log_part;
1922 ump->node_part = log_part;
1923 ump->fids_part = log_part;
1924 break;
1925 }
1926 check_name = "*UDF Metadata Partition";
1927 if (strncmp(map_name, check_name, len) == 0) {
1928 pmap_type = UDF_VTOP_TYPE_META;
1929 n_meta++;
1930 ump->node_part = log_part;
1931 ump->fids_part = log_part;
1932 break;
1933 }
1934 break;
1935 default:
1936 return EINVAL;
1937 }
1938
1939 /*
1940 * BUGALERT: some rogue implementations use random physical
1941 * partion numbers to break other implementations so lookup
1942 * the number.
1943 */
1944 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1945 part = ump->partitions[phys_part];
1946 if (part == NULL)
1947 continue;
1948 if (udf_rw16(part->part_num) == raw_phys_part)
1949 break;
1950 }
1951
1952 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1953 raw_phys_part, phys_part, pmap_type));
1954
1955 if (phys_part == UDF_PARTITIONS)
1956 return EINVAL;
1957 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1958 return EINVAL;
1959
1960 ump->vtop [log_part] = phys_part;
1961 ump->vtop_tp[log_part] = pmap_type;
1962
1963 pmap_pos += pmap_size;
1964 }
1965 /* not winning the beauty contest */
1966 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1967
1968 /* test some basic UDF assertions/requirements */
1969 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1970 return EINVAL;
1971
1972 if (n_virt) {
1973 if ((n_phys == 0) || n_spar || n_meta)
1974 return EINVAL;
1975 }
1976 if (n_spar + n_phys == 0)
1977 return EINVAL;
1978
1979 /* select allocation type for each logical partition */
1980 for (log_part = 0; log_part < n_pm; log_part++) {
1981 maps_on = ump->vtop[log_part];
1982 switch (ump->vtop_tp[log_part]) {
1983 case UDF_VTOP_TYPE_PHYS :
1984 assert(maps_on == log_part);
1985 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1986 break;
1987 case UDF_VTOP_TYPE_VIRT :
1988 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
1989 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
1990 break;
1991 case UDF_VTOP_TYPE_SPARABLE :
1992 assert(maps_on == log_part);
1993 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1994 break;
1995 case UDF_VTOP_TYPE_META :
1996 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
1997 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1998 /* special case for UDF 2.60 */
1999 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
2000 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2001 }
2002 break;
2003 default:
2004 panic("bad alloction type in udf's ump->vtop\n");
2005 }
2006 }
2007
2008 /* determine logical volume open/closure actions */
2009 if (n_virt) {
2010 ump->lvopen = 0;
2011 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2012 ump->lvopen |= UDF_OPEN_SESSION ;
2013 ump->lvclose = UDF_WRITE_VAT;
2014 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2015 ump->lvclose |= UDF_CLOSE_SESSION;
2016 } else {
2017 /* `normal' rewritable or non sequential media */
2018 ump->lvopen = UDF_WRITE_LVINT;
2019 ump->lvclose = UDF_WRITE_LVINT;
2020 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2021 ump->lvopen |= UDF_APPENDONLY_LVINT;
2022 }
2023
2024 /*
2025 * Determine sheduler error behaviour. For virtual partions, update
2026 * the trackinfo; for sparable partitions replace a whole block on the
2027 * sparable table. Allways requeue.
2028 */
2029 ump->lvreadwrite = 0;
2030 if (n_virt)
2031 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2032 if (n_spar)
2033 ump->lvreadwrite = UDF_REMAP_BLOCK;
2034
2035 /*
2036 * Select our sheduler
2037 */
2038 ump->strategy = &udf_strat_rmw;
2039 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2040 ump->strategy = &udf_strat_sequential;
2041 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2042 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2043 ump->strategy = &udf_strat_direct;
2044 if (n_spar)
2045 ump->strategy = &udf_strat_rmw;
2046
2047 #if 0
2048 /* read-only access won't benefit from the other shedulers */
2049 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2050 ump->strategy = &udf_strat_direct;
2051 #endif
2052
2053 /* print results */
2054 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2055 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2056 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2057 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2058 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2059 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2060
2061 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
2062 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2063 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2064 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2065 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2066 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2067
2068 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2069 (ump->strategy == &udf_strat_direct) ? "Direct" :
2070 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2071 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2072
2073 /* signal its OK for now */
2074 return 0;
2075 }
2076
2077 /* --------------------------------------------------------------------- */
2078
2079 /*
2080 * Update logical volume name in all structures that keep a record of it. We
2081 * use memmove since each of them might be specified as a source.
2082 *
2083 * Note that it doesn't update the VAT structure!
2084 */
2085
2086 static void
2087 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2088 {
2089 struct logvol_desc *lvd = NULL;
2090 struct fileset_desc *fsd = NULL;
2091 struct udf_lv_info *lvi = NULL;
2092
2093 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2094 lvd = ump->logical_vol;
2095 fsd = ump->fileset_desc;
2096 if (ump->implementation)
2097 lvi = &ump->implementation->_impl_use.lv_info;
2098
2099 /* logvol's id might be specified as origional so use memmove here */
2100 memmove(lvd->logvol_id, logvol_id, 128);
2101 if (fsd)
2102 memmove(fsd->logvol_id, logvol_id, 128);
2103 if (lvi)
2104 memmove(lvi->logvol_id, logvol_id, 128);
2105 }
2106
2107 /* --------------------------------------------------------------------- */
2108
2109 void
2110 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2111 uint32_t sector)
2112 {
2113 assert(ump->logical_vol);
2114
2115 tag->id = udf_rw16(tagid);
2116 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2117 tag->cksum = 0;
2118 tag->reserved = 0;
2119 tag->serial_num = ump->logical_vol->tag.serial_num;
2120 tag->tag_loc = udf_rw32(sector);
2121 }
2122
2123
2124 uint64_t
2125 udf_advance_uniqueid(struct udf_mount *ump)
2126 {
2127 uint64_t unique_id;
2128
2129 mutex_enter(&ump->logvol_mutex);
2130 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2131 if (unique_id < 0x10)
2132 unique_id = 0x10;
2133 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2134 mutex_exit(&ump->logvol_mutex);
2135
2136 return unique_id;
2137 }
2138
2139
2140 static void
2141 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2142 {
2143 struct udf_mount *ump = udf_node->ump;
2144 uint32_t num_dirs, num_files;
2145 int udf_file_type;
2146
2147 /* get file type */
2148 if (udf_node->fe) {
2149 udf_file_type = udf_node->fe->icbtag.file_type;
2150 } else {
2151 udf_file_type = udf_node->efe->icbtag.file_type;
2152 }
2153
2154 /* adjust file count */
2155 mutex_enter(&ump->allocate_mutex);
2156 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2157 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2158 ump->logvol_info->num_directories =
2159 udf_rw32((num_dirs + sign));
2160 } else {
2161 num_files = udf_rw32(ump->logvol_info->num_files);
2162 ump->logvol_info->num_files =
2163 udf_rw32((num_files + sign));
2164 }
2165 mutex_exit(&ump->allocate_mutex);
2166 }
2167
2168
2169 void
2170 udf_osta_charset(struct charspec *charspec)
2171 {
2172 bzero(charspec, sizeof(struct charspec));
2173 charspec->type = 0;
2174 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2175 }
2176
2177
2178 /* first call udf_set_regid and then the suffix */
2179 void
2180 udf_set_regid(struct regid *regid, char const *name)
2181 {
2182 bzero(regid, sizeof(struct regid));
2183 regid->flags = 0; /* not dirty and not protected */
2184 strcpy((char *) regid->id, name);
2185 }
2186
2187
2188 void
2189 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2190 {
2191 uint16_t *ver;
2192
2193 ver = (uint16_t *) regid->id_suffix;
2194 *ver = ump->logvol_info->min_udf_readver;
2195 }
2196
2197
2198 void
2199 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2200 {
2201 uint16_t *ver;
2202
2203 ver = (uint16_t *) regid->id_suffix;
2204 *ver = ump->logvol_info->min_udf_readver;
2205
2206 regid->id_suffix[2] = 4; /* unix */
2207 regid->id_suffix[3] = 8; /* NetBSD */
2208 }
2209
2210
2211 void
2212 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2213 {
2214 regid->id_suffix[0] = 4; /* unix */
2215 regid->id_suffix[1] = 8; /* NetBSD */
2216 }
2217
2218
2219 void
2220 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2221 {
2222 regid->id_suffix[0] = APP_VERSION_MAIN;
2223 regid->id_suffix[1] = APP_VERSION_SUB;
2224 }
2225
2226 static int
2227 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2228 struct long_ad *parent, uint64_t unique_id)
2229 {
2230 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2231 int fidsize = 40;
2232
2233 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2234 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2235 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2236 fid->icb = *parent;
2237 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2238 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
2239 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2240
2241 return fidsize;
2242 }
2243
2244 /* --------------------------------------------------------------------- */
2245
2246 /*
2247 * Extended attribute support. UDF knows of 3 places for extended attributes:
2248 *
2249 * (a) inside the file's (e)fe in the length of the extended attribute area
2250 * before the allocation descriptors/filedata
2251 *
2252 * (b) in a file referenced by (e)fe->ext_attr_icb and
2253 *
2254 * (c) in the e(fe)'s associated stream directory that can hold various
2255 * sub-files. In the stream directory a few fixed named subfiles are reserved
2256 * for NT/Unix ACL's and OS/2 attributes.
2257 *
2258 * NOTE: Extended attributes are read randomly but allways written
2259 * *atomicaly*. For ACL's this interface is propably different but not known
2260 * to me yet.
2261 *
2262 * Order of extended attributes in a space :
2263 * ECMA 167 EAs
2264 * Non block aligned Implementation Use EAs
2265 * Block aligned Implementation Use EAs
2266 * Application Use EAs
2267 */
2268
2269 static int
2270 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2271 {
2272 uint16_t *spos;
2273
2274 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2275 /* checksum valid? */
2276 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2277 spos = (uint16_t *) implext->data;
2278 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2279 return EINVAL;
2280 }
2281 return 0;
2282 }
2283
2284 static void
2285 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2286 {
2287 uint16_t *spos;
2288
2289 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2290 /* set checksum */
2291 spos = (uint16_t *) implext->data;
2292 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2293 }
2294 }
2295
2296
2297 int
2298 udf_extattr_search_intern(struct udf_node *node,
2299 uint32_t sattr, char const *sattrname,
2300 uint32_t *offsetp, uint32_t *lengthp)
2301 {
2302 struct extattrhdr_desc *eahdr;
2303 struct extattr_entry *attrhdr;
2304 struct impl_extattr_entry *implext;
2305 uint32_t offset, a_l, sector_size;
2306 int32_t l_ea;
2307 uint8_t *pos;
2308 int error;
2309
2310 /* get mountpoint */
2311 sector_size = node->ump->discinfo.sector_size;
2312
2313 /* get information from fe/efe */
2314 if (node->fe) {
2315 l_ea = udf_rw32(node->fe->l_ea);
2316 eahdr = (struct extattrhdr_desc *) node->fe->data;
2317 } else {
2318 assert(node->efe);
2319 l_ea = udf_rw32(node->efe->l_ea);
2320 eahdr = (struct extattrhdr_desc *) node->efe->data;
2321 }
2322
2323 /* something recorded here? */
2324 if (l_ea == 0)
2325 return ENOENT;
2326
2327 /* check extended attribute tag; what to do if it fails? */
2328 error = udf_check_tag(eahdr);
2329 if (error)
2330 return EINVAL;
2331 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2332 return EINVAL;
2333 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2334 if (error)
2335 return EINVAL;
2336
2337 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2338
2339 /* looking for Ecma-167 attributes? */
2340 offset = sizeof(struct extattrhdr_desc);
2341
2342 /* looking for either implemenation use or application use */
2343 if (sattr == 2048) { /* [4/48.10.8] */
2344 offset = udf_rw32(eahdr->impl_attr_loc);
2345 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2346 return ENOENT;
2347 }
2348 if (sattr == 65536) { /* [4/48.10.9] */
2349 offset = udf_rw32(eahdr->appl_attr_loc);
2350 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2351 return ENOENT;
2352 }
2353
2354 /* paranoia check offset and l_ea */
2355 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2356 return EINVAL;
2357
2358 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2359
2360 /* find our extended attribute */
2361 l_ea -= offset;
2362 pos = (uint8_t *) eahdr + offset;
2363
2364 while (l_ea >= sizeof(struct extattr_entry)) {
2365 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2366 attrhdr = (struct extattr_entry *) pos;
2367 implext = (struct impl_extattr_entry *) pos;
2368
2369 /* get complete attribute length and check for roque values */
2370 a_l = udf_rw32(attrhdr->a_l);
2371 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2372 udf_rw32(attrhdr->type),
2373 attrhdr->subtype, a_l, l_ea));
2374 if ((a_l == 0) || (a_l > l_ea))
2375 return EINVAL;
2376
2377 if (attrhdr->type != sattr)
2378 goto next_attribute;
2379
2380 /* we might have found it! */
2381 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2382 *offsetp = offset;
2383 *lengthp = a_l;
2384 return 0; /* success */
2385 }
2386
2387 /*
2388 * Implementation use and application use extended attributes
2389 * have a name to identify. They share the same structure only
2390 * UDF implementation use extended attributes have a checksum
2391 * we need to check
2392 */
2393
2394 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2395 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2396 /* we have found our appl/implementation attribute */
2397 *offsetp = offset;
2398 *lengthp = a_l;
2399 return 0; /* success */
2400 }
2401
2402 next_attribute:
2403 /* next attribute */
2404 pos += a_l;
2405 l_ea -= a_l;
2406 offset += a_l;
2407 }
2408 /* not found */
2409 return ENOENT;
2410 }
2411
2412
2413 static void
2414 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2415 struct extattr_entry *extattr)
2416 {
2417 struct file_entry *fe;
2418 struct extfile_entry *efe;
2419 struct extattrhdr_desc *extattrhdr;
2420 struct impl_extattr_entry *implext;
2421 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2422 uint32_t *l_eap, l_ad;
2423 uint16_t *spos;
2424 uint8_t *bpos, *data;
2425
2426 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2427 fe = &dscr->fe;
2428 data = fe->data;
2429 l_eap = &fe->l_ea;
2430 l_ad = udf_rw32(fe->l_ad);
2431 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2432 efe = &dscr->efe;
2433 data = efe->data;
2434 l_eap = &efe->l_ea;
2435 l_ad = udf_rw32(efe->l_ad);
2436 } else {
2437 panic("Bad tag passed to udf_extattr_insert_internal");
2438 }
2439
2440 /* can't append already written to file descriptors yet */
2441 assert(l_ad == 0);
2442
2443 /* should have a header! */
2444 extattrhdr = (struct extattrhdr_desc *) data;
2445 l_ea = udf_rw32(*l_eap);
2446 if (l_ea == 0) {
2447 /* create empty extended attribute header */
2448 exthdr_len = sizeof(struct extattrhdr_desc);
2449
2450 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2451 /* loc */ 0);
2452 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2453 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2454 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2455
2456 /* record extended attribute header length */
2457 l_ea = exthdr_len;
2458 *l_eap = udf_rw32(l_ea);
2459 }
2460
2461 /* extract locations */
2462 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2463 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2464 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2465 impl_attr_loc = l_ea;
2466 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2467 appl_attr_loc = l_ea;
2468
2469 /* Ecma 167 EAs */
2470 if (udf_rw32(extattr->type) < 2048) {
2471 assert(impl_attr_loc == l_ea);
2472 assert(appl_attr_loc == l_ea);
2473 }
2474
2475 /* implementation use extended attributes */
2476 if (udf_rw32(extattr->type) == 2048) {
2477 assert(appl_attr_loc == l_ea);
2478
2479 /* calculate and write extended attribute header checksum */
2480 implext = (struct impl_extattr_entry *) extattr;
2481 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2482 spos = (uint16_t *) implext->data;
2483 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2484 }
2485
2486 /* application use extended attributes */
2487 assert(udf_rw32(extattr->type) != 65536);
2488 assert(appl_attr_loc == l_ea);
2489
2490 /* append the attribute at the end of the current space */
2491 bpos = data + udf_rw32(*l_eap);
2492 a_l = udf_rw32(extattr->a_l);
2493
2494 /* update impl. attribute locations */
2495 if (udf_rw32(extattr->type) < 2048) {
2496 impl_attr_loc = l_ea + a_l;
2497 appl_attr_loc = l_ea + a_l;
2498 }
2499 if (udf_rw32(extattr->type) == 2048) {
2500 appl_attr_loc = l_ea + a_l;
2501 }
2502
2503 /* copy and advance */
2504 memcpy(bpos, extattr, a_l);
2505 l_ea += a_l;
2506 *l_eap = udf_rw32(l_ea);
2507
2508 /* do the `dance` again backwards */
2509 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2510 if (impl_attr_loc == l_ea)
2511 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2512 if (appl_attr_loc == l_ea)
2513 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2514 }
2515
2516 /* store offsets */
2517 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2518 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2519 }
2520
2521
2522 /* --------------------------------------------------------------------- */
2523
2524 static int
2525 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2526 {
2527 struct udf_mount *ump;
2528 struct udf_logvol_info *lvinfo;
2529 struct impl_extattr_entry *implext;
2530 struct vatlvext_extattr_entry lvext;
2531 const char *extstr = "*UDF VAT LVExtension";
2532 uint64_t vat_uniqueid;
2533 uint32_t offset, a_l;
2534 uint8_t *ea_start, *lvextpos;
2535 int error;
2536
2537 /* get mountpoint and lvinfo */
2538 ump = vat_node->ump;
2539 lvinfo = ump->logvol_info;
2540
2541 /* get information from fe/efe */
2542 if (vat_node->fe) {
2543 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2544 ea_start = vat_node->fe->data;
2545 } else {
2546 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2547 ea_start = vat_node->efe->data;
2548 }
2549
2550 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2551 if (error)
2552 return error;
2553
2554 implext = (struct impl_extattr_entry *) (ea_start + offset);
2555 error = udf_impl_extattr_check(implext);
2556 if (error)
2557 return error;
2558
2559 /* paranoia */
2560 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2561 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2562 return EINVAL;
2563 }
2564
2565 /*
2566 * we have found our "VAT LVExtension attribute. BUT due to a
2567 * bug in the specification it might not be word aligned so
2568 * copy first to avoid panics on some machines (!!)
2569 */
2570 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2571 lvextpos = implext->data + udf_rw32(implext->iu_l);
2572 memcpy(&lvext, lvextpos, sizeof(lvext));
2573
2574 /* check if it was updated the last time */
2575 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2576 lvinfo->num_files = lvext.num_files;
2577 lvinfo->num_directories = lvext.num_directories;
2578 udf_update_logvolname(ump, lvext.logvol_id);
2579 } else {
2580 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2581 /* replace VAT LVExt by free space EA */
2582 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2583 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2584 udf_calc_impl_extattr_checksum(implext);
2585 }
2586
2587 return 0;
2588 }
2589
2590
2591 static int
2592 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2593 {
2594 struct udf_mount *ump;
2595 struct udf_logvol_info *lvinfo;
2596 struct impl_extattr_entry *implext;
2597 struct vatlvext_extattr_entry lvext;
2598 const char *extstr = "*UDF VAT LVExtension";
2599 uint64_t vat_uniqueid;
2600 uint32_t offset, a_l;
2601 uint8_t *ea_start, *lvextpos;
2602 int error;
2603
2604 /* get mountpoint and lvinfo */
2605 ump = vat_node->ump;
2606 lvinfo = ump->logvol_info;
2607
2608 /* get information from fe/efe */
2609 if (vat_node->fe) {
2610 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2611 ea_start = vat_node->fe->data;
2612 } else {
2613 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2614 ea_start = vat_node->efe->data;
2615 }
2616
2617 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2618 if (error)
2619 return error;
2620 /* found, it existed */
2621
2622 /* paranoia */
2623 implext = (struct impl_extattr_entry *) (ea_start + offset);
2624 error = udf_impl_extattr_check(implext);
2625 if (error) {
2626 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2627 return error;
2628 }
2629 /* it is correct */
2630
2631 /*
2632 * we have found our "VAT LVExtension attribute. BUT due to a
2633 * bug in the specification it might not be word aligned so
2634 * copy first to avoid panics on some machines (!!)
2635 */
2636 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2637 lvextpos = implext->data + udf_rw32(implext->iu_l);
2638
2639 lvext.unique_id_chk = vat_uniqueid;
2640 lvext.num_files = lvinfo->num_files;
2641 lvext.num_directories = lvinfo->num_directories;
2642 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2643
2644 memcpy(lvextpos, &lvext, sizeof(lvext));
2645
2646 return 0;
2647 }
2648
2649 /* --------------------------------------------------------------------- */
2650
2651 int
2652 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2653 {
2654 struct udf_mount *ump = vat_node->ump;
2655
2656 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2657 return EINVAL;
2658
2659 memcpy(blob, ump->vat_table + offset, size);
2660 return 0;
2661 }
2662
2663 int
2664 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2665 {
2666 struct udf_mount *ump = vat_node->ump;
2667 uint32_t offset_high;
2668 uint8_t *new_vat_table;
2669
2670 /* extent VAT allocation if needed */
2671 offset_high = offset + size;
2672 if (offset_high >= ump->vat_table_alloc_len) {
2673 /* realloc */
2674 new_vat_table = realloc(ump->vat_table,
2675 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2676 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2677 if (!new_vat_table) {
2678 printf("udf_vat_write: can't extent VAT, out of mem\n");
2679 return ENOMEM;
2680 }
2681 ump->vat_table = new_vat_table;
2682 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2683 }
2684 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2685
2686 memcpy(ump->vat_table + offset, blob, size);
2687 return 0;
2688 }
2689
2690 /* --------------------------------------------------------------------- */
2691
2692 /* TODO support previous VAT location writeout */
2693 static int
2694 udf_update_vat_descriptor(struct udf_mount *ump)
2695 {
2696 struct udf_node *vat_node = ump->vat_node;
2697 struct udf_logvol_info *lvinfo = ump->logvol_info;
2698 struct icb_tag *icbtag;
2699 struct udf_oldvat_tail *oldvat_tl;
2700 struct udf_vat *vat;
2701 uint64_t unique_id;
2702 uint32_t lb_size;
2703 uint8_t *raw_vat;
2704 int filetype, error;
2705
2706 KASSERT(vat_node);
2707 KASSERT(lvinfo);
2708 lb_size = udf_rw32(ump->logical_vol->lb_size);
2709
2710 /* get our new unique_id */
2711 unique_id = udf_advance_uniqueid(ump);
2712
2713 /* get information from fe/efe */
2714 if (vat_node->fe) {
2715 icbtag = &vat_node->fe->icbtag;
2716 vat_node->fe->unique_id = udf_rw64(unique_id);
2717 } else {
2718 icbtag = &vat_node->efe->icbtag;
2719 vat_node->efe->unique_id = udf_rw64(unique_id);
2720 }
2721
2722 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2723 filetype = icbtag->file_type;
2724 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2725
2726 /* allocate piece to process head or tail of VAT file */
2727 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2728
2729 if (filetype == 0) {
2730 /*
2731 * Update "*UDF VAT LVExtension" extended attribute from the
2732 * lvint if present.
2733 */
2734 udf_update_vat_extattr_from_lvid(vat_node);
2735
2736 /* setup identifying regid */
2737 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2738 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2739
2740 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2741 udf_add_udf_regid(ump, &oldvat_tl->id);
2742 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2743
2744 /* write out new tail of virtual allocation table file */
2745 error = udf_vat_write(vat_node, raw_vat,
2746 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2747 } else {
2748 /* compose the VAT2 header */
2749 vat = (struct udf_vat *) raw_vat;
2750 memset(vat, 0, sizeof(struct udf_vat));
2751
2752 vat->header_len = udf_rw16(152); /* as per spec */
2753 vat->impl_use_len = udf_rw16(0);
2754 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2755 vat->prev_vat = udf_rw32(0xffffffff);
2756 vat->num_files = lvinfo->num_files;
2757 vat->num_directories = lvinfo->num_directories;
2758 vat->min_udf_readver = lvinfo->min_udf_readver;
2759 vat->min_udf_writever = lvinfo->min_udf_writever;
2760 vat->max_udf_writever = lvinfo->max_udf_writever;
2761
2762 error = udf_vat_write(vat_node, raw_vat,
2763 sizeof(struct udf_vat), 0);
2764 }
2765 free(raw_vat, M_TEMP);
2766
2767 return error; /* success! */
2768 }
2769
2770
2771 int
2772 udf_writeout_vat(struct udf_mount *ump)
2773 {
2774 struct udf_node *vat_node = ump->vat_node;
2775 uint32_t vat_length;
2776 int error;
2777
2778 KASSERT(vat_node);
2779
2780 DPRINTF(CALL, ("udf_writeout_vat\n"));
2781
2782 mutex_enter(&ump->allocate_mutex);
2783 udf_update_vat_descriptor(ump);
2784
2785 /* write out the VAT contents ; TODO intelligent writing */
2786 vat_length = ump->vat_table_len;
2787 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2788 ump->vat_table, ump->vat_table_len, 0,
2789 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2790 if (error) {
2791 printf("udf_writeout_vat: failed to write out VAT contents\n");
2792 goto out;
2793 }
2794
2795 mutex_exit(&ump->allocate_mutex);
2796
2797 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2798 error = VOP_FSYNC(ump->vat_node->vnode,
2799 FSCRED, FSYNC_WAIT, 0, 0);
2800 if (error)
2801 printf("udf_writeout_vat: error writing VAT node!\n");
2802 out:
2803
2804 return error;
2805 }
2806
2807 /* --------------------------------------------------------------------- */
2808
2809 /*
2810 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2811 * descriptor. If OK, read in complete VAT file.
2812 */
2813
2814 static int
2815 udf_check_for_vat(struct udf_node *vat_node)
2816 {
2817 struct udf_mount *ump;
2818 struct icb_tag *icbtag;
2819 struct timestamp *mtime;
2820 struct udf_vat *vat;
2821 struct udf_oldvat_tail *oldvat_tl;
2822 struct udf_logvol_info *lvinfo;
2823 uint64_t unique_id;
2824 uint32_t vat_length;
2825 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2826 uint32_t sector_size;
2827 uint32_t *raw_vat;
2828 uint8_t *vat_table;
2829 char *regid_name;
2830 int filetype;
2831 int error;
2832
2833 /* vat_length is really 64 bits though impossible */
2834
2835 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2836 if (!vat_node)
2837 return ENOENT;
2838
2839 /* get mount info */
2840 ump = vat_node->ump;
2841 sector_size = udf_rw32(ump->logical_vol->lb_size);
2842
2843 /* check assertions */
2844 assert(vat_node->fe || vat_node->efe);
2845 assert(ump->logvol_integrity);
2846
2847 /* set vnode type to regular file or we can't read from it! */
2848 vat_node->vnode->v_type = VREG;
2849
2850 /* get information from fe/efe */
2851 if (vat_node->fe) {
2852 vat_length = udf_rw64(vat_node->fe->inf_len);
2853 icbtag = &vat_node->fe->icbtag;
2854 mtime = &vat_node->fe->mtime;
2855 unique_id = udf_rw64(vat_node->fe->unique_id);
2856 } else {
2857 vat_length = udf_rw64(vat_node->efe->inf_len);
2858 icbtag = &vat_node->efe->icbtag;
2859 mtime = &vat_node->efe->mtime;
2860 unique_id = udf_rw64(vat_node->efe->unique_id);
2861 }
2862
2863 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2864 filetype = icbtag->file_type;
2865 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2866 return ENOENT;
2867
2868 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2869
2870 vat_table_alloc_len =
2871 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2872 * UDF_VAT_CHUNKSIZE;
2873
2874 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2875 M_CANFAIL | M_WAITOK);
2876 if (vat_table == NULL) {
2877 printf("allocation of %d bytes failed for VAT\n",
2878 vat_table_alloc_len);
2879 return ENOMEM;
2880 }
2881
2882 /* allocate piece to read in head or tail of VAT file */
2883 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2884
2885 /*
2886 * check contents of the file if its the old 1.50 VAT table format.
2887 * Its notoriously broken and allthough some implementations support an
2888 * extention as defined in the UDF 1.50 errata document, its doubtfull
2889 * to be useable since a lot of implementations don't maintain it.
2890 */
2891 lvinfo = ump->logvol_info;
2892
2893 if (filetype == 0) {
2894 /* definition */
2895 vat_offset = 0;
2896 vat_entries = (vat_length-36)/4;
2897
2898 /* read in tail of virtual allocation table file */
2899 error = vn_rdwr(UIO_READ, vat_node->vnode,
2900 (uint8_t *) raw_vat,
2901 sizeof(struct udf_oldvat_tail),
2902 vat_entries * 4,
2903 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2904 NULL, NULL);
2905 if (error)
2906 goto out;
2907
2908 /* check 1.50 VAT */
2909 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2910 regid_name = (char *) oldvat_tl->id.id;
2911 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2912 if (error) {
2913 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2914 error = ENOENT;
2915 goto out;
2916 }
2917
2918 /*
2919 * update LVID from "*UDF VAT LVExtension" extended attribute
2920 * if present.
2921 */
2922 udf_update_lvid_from_vat_extattr(vat_node);
2923 } else {
2924 /* read in head of virtual allocation table file */
2925 error = vn_rdwr(UIO_READ, vat_node->vnode,
2926 (uint8_t *) raw_vat,
2927 sizeof(struct udf_vat), 0,
2928 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2929 NULL, NULL);
2930 if (error)
2931 goto out;
2932
2933 /* definition */
2934 vat = (struct udf_vat *) raw_vat;
2935 vat_offset = vat->header_len;
2936 vat_entries = (vat_length - vat_offset)/4;
2937
2938 assert(lvinfo);
2939 lvinfo->num_files = vat->num_files;
2940 lvinfo->num_directories = vat->num_directories;
2941 lvinfo->min_udf_readver = vat->min_udf_readver;
2942 lvinfo->min_udf_writever = vat->min_udf_writever;
2943 lvinfo->max_udf_writever = vat->max_udf_writever;
2944
2945 udf_update_logvolname(ump, vat->logvol_id);
2946 }
2947
2948 /* read in complete VAT file */
2949 error = vn_rdwr(UIO_READ, vat_node->vnode,
2950 vat_table,
2951 vat_length, 0,
2952 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2953 NULL, NULL);
2954 if (error)
2955 printf("read in of complete VAT file failed (error %d)\n",
2956 error);
2957 if (error)
2958 goto out;
2959
2960 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2961 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
2962 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2963 ump->logvol_integrity->time = *mtime;
2964
2965 ump->vat_table_len = vat_length;
2966 ump->vat_table_alloc_len = vat_table_alloc_len;
2967 ump->vat_table = vat_table;
2968 ump->vat_offset = vat_offset;
2969 ump->vat_entries = vat_entries;
2970 ump->vat_last_free_lb = 0; /* start at beginning */
2971
2972 out:
2973 if (error) {
2974 if (vat_table)
2975 free(vat_table, M_UDFVOLD);
2976 }
2977 free(raw_vat, M_TEMP);
2978
2979 return error;
2980 }
2981
2982 /* --------------------------------------------------------------------- */
2983
2984 static int
2985 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2986 {
2987 struct udf_node *vat_node;
2988 struct long_ad icb_loc;
2989 uint32_t early_vat_loc, late_vat_loc, vat_loc;
2990 int error;
2991
2992 /* mapping info not needed */
2993 mapping = mapping;
2994
2995 vat_loc = ump->last_possible_vat_location;
2996 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
2997
2998 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2999 vat_loc, early_vat_loc));
3000 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3001 late_vat_loc = vat_loc + 1024;
3002
3003 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3004 vat_loc, early_vat_loc));
3005
3006 /* start looking from the end of the range */
3007 do {
3008 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3009 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3010 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3011
3012 error = udf_get_node(ump, &icb_loc, &vat_node);
3013 if (!error) {
3014 error = udf_check_for_vat(vat_node);
3015 DPRINTFIF(VOLUMES, !error,
3016 ("VAT accepted at %d\n", vat_loc));
3017 if (!error)
3018 break;
3019 }
3020 if (vat_node) {
3021 vput(vat_node->vnode);
3022 vat_node = NULL;
3023 }
3024 vat_loc--; /* walk backwards */
3025 } while (vat_loc >= early_vat_loc);
3026
3027 /* keep our VAT node around */
3028 if (vat_node) {
3029 UDF_SET_SYSTEMFILE(vat_node->vnode);
3030 ump->vat_node = vat_node;
3031 }
3032
3033 return error;
3034 }
3035
3036 /* --------------------------------------------------------------------- */
3037
3038 static int
3039 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3040 {
3041 union dscrptr *dscr;
3042 struct part_map_spare *pms = &mapping->pms;
3043 uint32_t lb_num;
3044 int spar, error;
3045
3046 /*
3047 * The partition mapping passed on to us specifies the information we
3048 * need to locate and initialise the sparable partition mapping
3049 * information we need.
3050 */
3051
3052 DPRINTF(VOLUMES, ("Read sparable table\n"));
3053 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3054 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3055
3056 for (spar = 0; spar < pms->n_st; spar++) {
3057 lb_num = pms->st_loc[spar];
3058 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3059 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3060 if (!error && dscr) {
3061 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3062 if (ump->sparing_table)
3063 free(ump->sparing_table, M_UDFVOLD);
3064 ump->sparing_table = &dscr->spt;
3065 dscr = NULL;
3066 DPRINTF(VOLUMES,
3067 ("Sparing table accepted (%d entries)\n",
3068 udf_rw16(ump->sparing_table->rt_l)));
3069 break; /* we're done */
3070 }
3071 }
3072 if (dscr)
3073 free(dscr, M_UDFVOLD);
3074 }
3075
3076 if (ump->sparing_table)
3077 return 0;
3078
3079 return ENOENT;
3080 }
3081
3082 /* --------------------------------------------------------------------- */
3083
3084 static int
3085 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3086 {
3087 struct part_map_meta *pmm = &mapping->pmm;
3088 struct long_ad icb_loc;
3089 struct vnode *vp;
3090 int error;
3091
3092 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3093 icb_loc.loc.part_num = pmm->part_num;
3094 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3095 DPRINTF(VOLUMES, ("Metadata file\n"));
3096 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3097 if (ump->metadata_node) {
3098 vp = ump->metadata_node->vnode;
3099 UDF_SET_SYSTEMFILE(vp);
3100 }
3101
3102 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3103 if (icb_loc.loc.lb_num != -1) {
3104 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3105 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3106 if (ump->metadatamirror_node) {
3107 vp = ump->metadatamirror_node->vnode;
3108 UDF_SET_SYSTEMFILE(vp);
3109 }
3110 }
3111
3112 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3113 if (icb_loc.loc.lb_num != -1) {
3114 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3115 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3116 if (ump->metadatabitmap_node) {
3117 vp = ump->metadatabitmap_node->vnode;
3118 UDF_SET_SYSTEMFILE(vp);
3119 }
3120 }
3121
3122 /* if we're mounting read-only we relax the requirements */
3123 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3124 error = EFAULT;
3125 if (ump->metadata_node)
3126 error = 0;
3127 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3128 printf( "udf mount: Metadata file not readable, "
3129 "substituting Metadata copy file\n");
3130 ump->metadata_node = ump->metadatamirror_node;
3131 ump->metadatamirror_node = NULL;
3132 error = 0;
3133 }
3134 } else {
3135 /* mounting read/write */
3136 /* XXX DISABLED! metadata writing is not working yet XXX */
3137 if (error)
3138 error = EROFS;
3139 }
3140 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3141 "metadata files\n"));
3142 return error;
3143 }
3144
3145 /* --------------------------------------------------------------------- */
3146
3147 int
3148 udf_read_vds_tables(struct udf_mount *ump)
3149 {
3150 union udf_pmap *mapping;
3151 /* struct udf_args *args = &ump->mount_args; */
3152 uint32_t n_pm, mt_l;
3153 uint32_t log_part;
3154 uint8_t *pmap_pos;
3155 int pmap_size;
3156 int error;
3157
3158 /* Iterate (again) over the part mappings for locations */
3159 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3160 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3161 pmap_pos = ump->logical_vol->maps;
3162
3163 for (log_part = 0; log_part < n_pm; log_part++) {
3164 mapping = (union udf_pmap *) pmap_pos;
3165 switch (ump->vtop_tp[log_part]) {
3166 case UDF_VTOP_TYPE_PHYS :
3167 /* nothing */
3168 break;
3169 case UDF_VTOP_TYPE_VIRT :
3170 /* search and load VAT */
3171 error = udf_search_vat(ump, mapping);
3172 if (error)
3173 return ENOENT;
3174 break;
3175 case UDF_VTOP_TYPE_SPARABLE :
3176 /* load one of the sparable tables */
3177 error = udf_read_sparables(ump, mapping);
3178 if (error)
3179 return ENOENT;
3180 break;
3181 case UDF_VTOP_TYPE_META :
3182 /* load the associated file descriptors */
3183 error = udf_read_metadata_nodes(ump, mapping);
3184 if (error)
3185 return ENOENT;
3186 break;
3187 default:
3188 break;
3189 }
3190 pmap_size = pmap_pos[1];
3191 pmap_pos += pmap_size;
3192 }
3193
3194 /* read in and check unallocated and free space info if writing */
3195 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3196 error = udf_read_physical_partition_spacetables(ump);
3197 if (error)
3198 return error;
3199
3200 /* also read in metadata partion spacebitmap if defined */
3201 error = udf_read_metadata_partition_spacetable(ump);
3202 return error;
3203 }
3204
3205 return 0;
3206 }
3207
3208 /* --------------------------------------------------------------------- */
3209
3210 int
3211 udf_read_rootdirs(struct udf_mount *ump)
3212 {
3213 union dscrptr *dscr;
3214 /* struct udf_args *args = &ump->mount_args; */
3215 struct udf_node *rootdir_node, *streamdir_node;
3216 struct long_ad fsd_loc, *dir_loc;
3217 uint32_t lb_num, dummy;
3218 uint32_t fsd_len;
3219 int dscr_type;
3220 int error;
3221
3222 /* TODO implement FSD reading in separate function like integrity? */
3223 /* get fileset descriptor sequence */
3224 fsd_loc = ump->logical_vol->lv_fsd_loc;
3225 fsd_len = udf_rw32(fsd_loc.len);
3226
3227 dscr = NULL;
3228 error = 0;
3229 while (fsd_len || error) {
3230 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3231 /* translate fsd_loc to lb_num */
3232 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3233 if (error)
3234 break;
3235 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3236 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3237 /* end markers */
3238 if (error || (dscr == NULL))
3239 break;
3240
3241 /* analyse */
3242 dscr_type = udf_rw16(dscr->tag.id);
3243 if (dscr_type == TAGID_TERM)
3244 break;
3245 if (dscr_type != TAGID_FSD) {
3246 free(dscr, M_UDFVOLD);
3247 return ENOENT;
3248 }
3249
3250 /*
3251 * TODO check for multiple fileset descriptors; its only
3252 * picking the last now. Also check for FSD
3253 * correctness/interpretability
3254 */
3255
3256 /* update */
3257 if (ump->fileset_desc) {
3258 free(ump->fileset_desc, M_UDFVOLD);
3259 }
3260 ump->fileset_desc = &dscr->fsd;
3261 dscr = NULL;
3262
3263 /* continue to the next fsd */
3264 fsd_len -= ump->discinfo.sector_size;
3265 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3266
3267 /* follow up to fsd->next_ex (long_ad) if its not null */
3268 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3269 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3270 fsd_loc = ump->fileset_desc->next_ex;
3271 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3272 }
3273 }
3274 if (dscr)
3275 free(dscr, M_UDFVOLD);
3276
3277 /* there has to be one */
3278 if (ump->fileset_desc == NULL)
3279 return ENOENT;
3280
3281 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3282 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3283 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3284
3285 /*
3286 * Now the FSD is known, read in the rootdirectory and if one exists,
3287 * the system stream dir. Some files in the system streamdir are not
3288 * wanted in this implementation since they are not maintained. If
3289 * writing is enabled we'll delete these files if they exist.
3290 */
3291
3292 rootdir_node = streamdir_node = NULL;
3293 dir_loc = NULL;
3294
3295 /* try to read in the rootdir */
3296 dir_loc = &ump->fileset_desc->rootdir_icb;
3297 error = udf_get_node(ump, dir_loc, &rootdir_node);
3298 if (error)
3299 return ENOENT;
3300
3301 /* aparently it read in fine */
3302
3303 /*
3304 * Try the system stream directory; not very likely in the ones we
3305 * test, but for completeness.
3306 */
3307 dir_loc = &ump->fileset_desc->streamdir_icb;
3308 if (udf_rw32(dir_loc->len)) {
3309 printf("udf_read_rootdirs: streamdir defined ");
3310 error = udf_get_node(ump, dir_loc, &streamdir_node);
3311 if (error) {
3312 printf("but error in streamdir reading\n");
3313 } else {
3314 printf("but ignored\n");
3315 /*
3316 * TODO process streamdir `baddies' i.e. files we dont
3317 * want if R/W
3318 */
3319 }
3320 }
3321
3322 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3323
3324 /* release the vnodes again; they'll be auto-recycled later */
3325 if (streamdir_node) {
3326 vput(streamdir_node->vnode);
3327 }
3328 if (rootdir_node) {
3329 vput(rootdir_node->vnode);
3330 }
3331
3332 return 0;
3333 }
3334
3335 /* --------------------------------------------------------------------- */
3336
3337 /* To make absolutely sure we are NOT returning zero, add one :) */
3338
3339 long
3340 udf_calchash(struct long_ad *icbptr)
3341 {
3342 /* ought to be enough since each mountpoint has its own chain */
3343 return udf_rw32(icbptr->loc.lb_num) + 1;
3344 }
3345
3346
3347 static struct udf_node *
3348 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3349 {
3350 struct udf_node *node;
3351 struct vnode *vp;
3352 uint32_t hashline;
3353
3354 loop:
3355 mutex_enter(&ump->ihash_lock);
3356
3357 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3358 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3359 assert(node);
3360 if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
3361 node->loc.loc.part_num == icbptr->loc.part_num) {
3362 vp = node->vnode;
3363 assert(vp);
3364 mutex_enter(&vp->v_interlock);
3365 mutex_exit(&ump->ihash_lock);
3366 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3367 goto loop;
3368 return node;
3369 }
3370 }
3371 mutex_exit(&ump->ihash_lock);
3372
3373 return NULL;
3374 }
3375
3376
3377 static void
3378 udf_sorted_list_insert(struct udf_node *node)
3379 {
3380 struct udf_mount *ump;
3381 struct udf_node *s_node, *last_node;
3382 uint32_t loc, s_loc;
3383
3384 ump = node->ump;
3385 last_node = NULL; /* XXX gcc */
3386
3387 if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3388 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3389 return;
3390 }
3391
3392 /*
3393 * We sort on logical block number here and not on physical block
3394 * number here. Ideally we should go for the physical block nr to get
3395 * better sync performance though this sort will ensure that packets
3396 * won't get spit up unnessisarily.
3397 */
3398
3399 loc = udf_rw32(node->loc.loc.lb_num);
3400 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3401 s_loc = udf_rw32(s_node->loc.loc.lb_num);
3402 if (s_loc > loc) {
3403 LIST_INSERT_BEFORE(s_node, node, sortchain);
3404 return;
3405 }
3406 last_node = s_node;
3407 }
3408 LIST_INSERT_AFTER(last_node, node, sortchain);
3409 }
3410
3411
3412 static void
3413 udf_register_node(struct udf_node *node)
3414 {
3415 struct udf_mount *ump;
3416 struct udf_node *chk;
3417 uint32_t hashline;
3418
3419 ump = node->ump;
3420 mutex_enter(&ump->ihash_lock);
3421
3422 /* add to our hash table */
3423 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3424 #ifdef DEBUG
3425 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3426 assert(chk);
3427 if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
3428 chk->loc.loc.part_num == node->loc.loc.part_num)
3429 panic("Double node entered\n");
3430 }
3431 #else
3432 chk = NULL;
3433 #endif
3434 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3435
3436 /* add to our sorted list */
3437 udf_sorted_list_insert(node);
3438
3439 mutex_exit(&ump->ihash_lock);
3440 }
3441
3442
3443 static void
3444 udf_deregister_node(struct udf_node *node)
3445 {
3446 struct udf_mount *ump;
3447
3448 ump = node->ump;
3449 mutex_enter(&ump->ihash_lock);
3450
3451 /* from hash and sorted list */
3452 LIST_REMOVE(node, hashchain);
3453 LIST_REMOVE(node, sortchain);
3454
3455 mutex_exit(&ump->ihash_lock);
3456 }
3457
3458 /* --------------------------------------------------------------------- */
3459
3460 static int
3461 udf_validate_session_start(struct udf_mount *ump)
3462 {
3463 struct mmc_trackinfo trackinfo;
3464 struct vrs_desc *vrs;
3465 uint32_t tracknr, sessionnr, sector, sector_size;
3466 uint32_t iso9660_vrs, write_track_start;
3467 uint8_t *buffer, *blank, *pos;
3468 int blks, max_sectors, vrs_len;
3469 int error;
3470
3471 /* disc appendable? */
3472 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3473 return EROFS;
3474
3475 /* already written here? if so, there should be an ISO VDS */
3476 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3477 return 0;
3478
3479 /*
3480 * Check if the first track of the session is blank and if so, copy or
3481 * create a dummy ISO descriptor so the disc is valid again.
3482 */
3483
3484 tracknr = ump->discinfo.first_track_last_session;
3485 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3486 trackinfo.tracknr = tracknr;
3487 error = udf_update_trackinfo(ump, &trackinfo);
3488 if (error)
3489 return error;
3490
3491 udf_dump_trackinfo(&trackinfo);
3492 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3493 KASSERT(trackinfo.sessionnr > 1);
3494
3495 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3496 write_track_start = trackinfo.next_writable;
3497
3498 /* we have to copy the ISO VRS from a former session */
3499 DPRINTF(VOLUMES, ("validate_session_start: "
3500 "blank or reserved track, copying VRS\n"));
3501
3502 /* sessionnr should be the session we're mounting */
3503 sessionnr = ump->mount_args.sessionnr;
3504
3505 /* start at the first track */
3506 tracknr = ump->discinfo.first_track;
3507 while (tracknr <= ump->discinfo.num_tracks) {
3508 trackinfo.tracknr = tracknr;
3509 error = udf_update_trackinfo(ump, &trackinfo);
3510 if (error) {
3511 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3512 return error;
3513 }
3514 if (trackinfo.sessionnr == sessionnr)
3515 break;
3516 tracknr++;
3517 }
3518 if (trackinfo.sessionnr != sessionnr) {
3519 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3520 return ENOENT;
3521 }
3522
3523 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3524 udf_dump_trackinfo(&trackinfo);
3525
3526 /*
3527 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3528 * minimum ISO `sector size' 2048
3529 */
3530 sector_size = ump->discinfo.sector_size;
3531 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3532 + trackinfo.track_start;
3533
3534 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3535 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3536 blks = MAX(1, 2048 / sector_size);
3537
3538 error = 0;
3539 for (sector = 0; sector < max_sectors; sector += blks) {
3540 pos = buffer + sector * sector_size;
3541 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3542 iso9660_vrs + sector, blks);
3543 if (error)
3544 break;
3545 /* check this ISO descriptor */
3546 vrs = (struct vrs_desc *) pos;
3547 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3548 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3549 continue;
3550 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3551 continue;
3552 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3553 continue;
3554 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3555 continue;
3556 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3557 continue;
3558 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3559 break;
3560 /* now what? for now, end of sequence */
3561 break;
3562 }
3563 vrs_len = sector + blks;
3564 if (error) {
3565 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3566 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3567
3568 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3569
3570 vrs = (struct vrs_desc *) (buffer);
3571 vrs->struct_type = 0;
3572 vrs->version = 1;
3573 memcpy(vrs->identifier,VRS_BEA01, 5);
3574
3575 vrs = (struct vrs_desc *) (buffer + 2048);
3576 vrs->struct_type = 0;
3577 vrs->version = 1;
3578 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
3579 memcpy(vrs->identifier,VRS_NSR02, 5);
3580 } else {
3581 memcpy(vrs->identifier,VRS_NSR03, 5);
3582 }
3583
3584 vrs = (struct vrs_desc *) (buffer + 4096);
3585 vrs->struct_type = 0;
3586 vrs->version = 1;
3587 memcpy(vrs->identifier, VRS_TEA01, 5);
3588
3589 vrs_len = 3*blks;
3590 }
3591
3592 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3593
3594 /*
3595 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3596 * minimum ISO `sector size' 2048
3597 */
3598 sector_size = ump->discinfo.sector_size;
3599 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3600 + write_track_start;
3601
3602 /* write out 32 kb */
3603 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3604 memset(blank, 0, sector_size);
3605 error = 0;
3606 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3607 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3608 blank, sector, 1);
3609 if (error)
3610 break;
3611 }
3612 if (!error) {
3613 /* write out our ISO VRS */
3614 KASSERT(sector == iso9660_vrs);
3615 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3616 sector, vrs_len);
3617 sector += vrs_len;
3618 }
3619 if (!error) {
3620 /* fill upto the first anchor at S+256 */
3621 for (; sector < write_track_start+256; sector++) {
3622 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3623 blank, sector, 1);
3624 if (error)
3625 break;
3626 }
3627 }
3628 if (!error) {
3629 /* write out anchor; write at ABSOLUTE place! */
3630 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3631 (union dscrptr *) ump->anchors[0], sector, sector);
3632 if (error)
3633 printf("writeout of anchor failed!\n");
3634 }
3635
3636 free(blank, M_TEMP);
3637 free(buffer, M_TEMP);
3638
3639 if (error)
3640 printf("udf_open_session: error writing iso vrs! : "
3641 "leaving disc in compromised state!\n");
3642
3643 /* synchronise device caches */
3644 (void) udf_synchronise_caches(ump);
3645
3646 return error;
3647 }
3648
3649
3650 int
3651 udf_open_logvol(struct udf_mount *ump)
3652 {
3653 int logvol_integrity;
3654 int error;
3655
3656 /* already/still open? */
3657 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3658 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3659 return 0;
3660
3661 /* can we open it ? */
3662 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3663 return EROFS;
3664
3665 /* setup write parameters */
3666 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3667 if ((error = udf_setup_writeparams(ump)) != 0)
3668 return error;
3669
3670 /* determine data and metadata tracks (most likely same) */
3671 error = udf_search_writing_tracks(ump);
3672 if (error) {
3673 /* most likely lack of space */
3674 printf("udf_open_logvol: error searching writing tracks\n");
3675 return EROFS;
3676 }
3677
3678 /* writeout/update lvint on disc or only in memory */
3679 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3680 if (ump->lvopen & UDF_OPEN_SESSION) {
3681 /* TODO optional track reservation opening */
3682 error = udf_validate_session_start(ump);
3683 if (error)
3684 return error;
3685
3686 /* determine data and metadata tracks again */
3687 error = udf_search_writing_tracks(ump);
3688 }
3689
3690 /* mark it open */
3691 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3692
3693 /* do we need to write it out? */
3694 if (ump->lvopen & UDF_WRITE_LVINT) {
3695 error = udf_writeout_lvint(ump, ump->lvopen);
3696 /* if we couldn't write it mark it closed again */
3697 if (error) {
3698 ump->logvol_integrity->integrity_type =
3699 udf_rw32(UDF_INTEGRITY_CLOSED);
3700 return error;
3701 }
3702 }
3703
3704 return 0;
3705 }
3706
3707
3708 int
3709 udf_close_logvol(struct udf_mount *ump, int mntflags)
3710 {
3711 struct vnode *devvp = ump->devvp;
3712 struct mmc_op mmc_op;
3713 int logvol_integrity;
3714 int error = 0, error1 = 0, error2 = 0;
3715 int tracknr;
3716 int nvats, n, nok;
3717
3718 /* already/still closed? */
3719 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3720 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3721 return 0;
3722
3723 /* writeout/update lvint or write out VAT */
3724 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3725 #ifdef DIAGNOSTIC
3726 if (ump->lvclose & UDF_CLOSE_SESSION)
3727 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3728 #endif
3729
3730 if (ump->lvclose & UDF_WRITE_VAT) {
3731 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3732
3733 /* write out the VAT data and all its descriptors */
3734 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3735 udf_writeout_vat(ump);
3736 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3737
3738 (void) VOP_FSYNC(ump->vat_node->vnode,
3739 FSCRED, FSYNC_WAIT, 0, 0);
3740
3741 if (ump->lvclose & UDF_CLOSE_SESSION) {
3742 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3743 "as requested\n"));
3744 }
3745
3746 /* at least two DVD packets and 3 CD-R packets */
3747 nvats = 32;
3748
3749 #if notyet
3750 /*
3751 * TODO calculate the available space and if the disc is
3752 * allmost full, write out till end-256-1 with banks, write
3753 * AVDP and fill up with VATs, then close session and close
3754 * disc.
3755 */
3756 if (ump->lvclose & UDF_FINALISE_DISC) {
3757 error = udf_write_phys_dscr_sync(ump, NULL,
3758 UDF_C_FLOAT_DSCR,
3759 (union dscrptr *) ump->anchors[0],
3760 0, 0);
3761 if (error)
3762 printf("writeout of anchor failed!\n");
3763
3764 /* pad space with VAT ICBs */
3765 nvats = 256;
3766 }
3767 #endif
3768
3769 /* write out a number of VAT nodes */
3770 nok = 0;
3771 for (n = 0; n < nvats; n++) {
3772 /* will now only write last FE/EFE */
3773 ump->vat_node->i_flags |= IN_MODIFIED;
3774 error = VOP_FSYNC(ump->vat_node->vnode,
3775 FSCRED, FSYNC_WAIT, 0, 0);
3776 if (!error)
3777 nok++;
3778 }
3779 if (nok < 14) {
3780 /* arbitrary; but at least one or two CD frames */
3781 printf("writeout of at least 14 VATs failed\n");
3782 return error;
3783 }
3784 }
3785
3786 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3787
3788 /* finish closing of session */
3789 if (ump->lvclose & UDF_CLOSE_SESSION) {
3790 error = udf_validate_session_start(ump);
3791 if (error)
3792 return error;
3793
3794 /* close all associated tracks */
3795 tracknr = ump->discinfo.first_track_last_session;
3796 error = 0;
3797 while (tracknr <= ump->discinfo.last_track_last_session) {
3798 DPRINTF(VOLUMES, ("\tclosing possible open "
3799 "track %d\n", tracknr));
3800 memset(&mmc_op, 0, sizeof(mmc_op));
3801 mmc_op.operation = MMC_OP_CLOSETRACK;
3802 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3803 mmc_op.tracknr = tracknr;
3804 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3805 FKIOCTL, NOCRED);
3806 if (error)
3807 printf("udf_close_logvol: closing of "
3808 "track %d failed\n", tracknr);
3809 tracknr ++;
3810 }
3811 if (!error) {
3812 DPRINTF(VOLUMES, ("closing session\n"));
3813 memset(&mmc_op, 0, sizeof(mmc_op));
3814 mmc_op.operation = MMC_OP_CLOSESESSION;
3815 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3816 mmc_op.sessionnr = ump->discinfo.num_sessions;
3817 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3818 FKIOCTL, NOCRED);
3819 if (error)
3820 printf("udf_close_logvol: closing of session"
3821 "failed\n");
3822 }
3823 if (!error)
3824 ump->lvopen |= UDF_OPEN_SESSION;
3825 if (error) {
3826 printf("udf_close_logvol: leaving disc as it is\n");
3827 ump->lvclose &= ~UDF_FINALISE_DISC;
3828 }
3829 }
3830
3831 if (ump->lvclose & UDF_FINALISE_DISC) {
3832 memset(&mmc_op, 0, sizeof(mmc_op));
3833 mmc_op.operation = MMC_OP_FINALISEDISC;
3834 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3835 mmc_op.sessionnr = ump->discinfo.num_sessions;
3836 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3837 FKIOCTL, NOCRED);
3838 if (error)
3839 printf("udf_close_logvol: finalising disc"
3840 "failed\n");
3841 }
3842
3843 /* write out partition bitmaps if requested */
3844 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3845 /* sync writeout metadata spacetable if existing */
3846 error1 = udf_write_metadata_partition_spacetable(ump, true);
3847 if (error1)
3848 printf( "udf_close_logvol: writeout of metadata space "
3849 "bitmap failed\n");
3850
3851 /* sync writeout partition spacetables */
3852 error2 = udf_write_physical_partition_spacetables(ump, true);
3853 if (error2)
3854 printf( "udf_close_logvol: writeout of space tables "
3855 "failed\n");
3856
3857 if (error1 || error2)
3858 return (error1 | error2);
3859
3860 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3861 }
3862
3863 /* mark it closed */
3864 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3865
3866 /* do we need to write out the logical volume integrity? */
3867 if (ump->lvclose & UDF_WRITE_LVINT)
3868 error = udf_writeout_lvint(ump, ump->lvopen);
3869 if (error) {
3870 /* HELP now what? mark it open again for now */
3871 ump->logvol_integrity->integrity_type =
3872 udf_rw32(UDF_INTEGRITY_OPEN);
3873 return error;
3874 }
3875
3876 (void) udf_synchronise_caches(ump);
3877
3878 return 0;
3879 }
3880
3881 /* --------------------------------------------------------------------- */
3882
3883 /*
3884 * Genfs interfacing
3885 *
3886 * static const struct genfs_ops udf_genfsops = {
3887 * .gop_size = genfs_size,
3888 * size of transfers
3889 * .gop_alloc = udf_gop_alloc,
3890 * allocate len bytes at offset
3891 * .gop_write = genfs_gop_write,
3892 * putpages interface code
3893 * .gop_markupdate = udf_gop_markupdate,
3894 * set update/modify flags etc.
3895 * }
3896 */
3897
3898 /*
3899 * Genfs interface. These four functions are the only ones defined though not
3900 * documented... great....
3901 */
3902
3903 /*
3904 * Callback from genfs to allocate len bytes at offset off; only called when
3905 * filling up gaps in the allocation.
3906 */
3907 /* XXX should we check if there is space enough in udf_gop_alloc? */
3908 static int
3909 udf_gop_alloc(struct vnode *vp, off_t off,
3910 off_t len, int flags, kauth_cred_t cred)
3911 {
3912 #if 0
3913 struct udf_node *udf_node = VTOI(vp);
3914 struct udf_mount *ump = udf_node->ump;
3915 uint32_t lb_size, num_lb;
3916 #endif
3917
3918 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3919 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3920
3921 return 0;
3922 }
3923
3924
3925 /*
3926 * callback from genfs to update our flags
3927 */
3928 static void
3929 udf_gop_markupdate(struct vnode *vp, int flags)
3930 {
3931 struct udf_node *udf_node = VTOI(vp);
3932 u_long mask = 0;
3933
3934 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3935 mask = IN_ACCESS;
3936 }
3937 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3938 if (vp->v_type == VREG) {
3939 mask |= IN_CHANGE | IN_UPDATE;
3940 } else {
3941 mask |= IN_MODIFY;
3942 }
3943 }
3944 if (mask) {
3945 udf_node->i_flags |= mask;
3946 }
3947 }
3948
3949
3950 static const struct genfs_ops udf_genfsops = {
3951 .gop_size = genfs_size,
3952 .gop_alloc = udf_gop_alloc,
3953 .gop_write = genfs_gop_write_rwmap,
3954 .gop_markupdate = udf_gop_markupdate,
3955 };
3956
3957
3958 /* --------------------------------------------------------------------- */
3959
3960 int
3961 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3962 {
3963 union dscrptr *dscr;
3964 int error;
3965
3966 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3967 bzero(dscr, ump->discinfo.sector_size);
3968 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3969
3970 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3971 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3972 (void) udf_validate_tag_and_crc_sums(dscr);
3973
3974 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3975 dscr, sector, sector);
3976
3977 free(dscr, M_TEMP);
3978
3979 return error;
3980 }
3981
3982
3983 /* --------------------------------------------------------------------- */
3984
3985 /* UDF<->unix converters */
3986
3987 /* --------------------------------------------------------------------- */
3988
3989 static mode_t
3990 udf_perm_to_unix_mode(uint32_t perm)
3991 {
3992 mode_t mode;
3993
3994 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
3995 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
3996 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3997
3998 return mode;
3999 }
4000
4001 /* --------------------------------------------------------------------- */
4002
4003 static uint32_t
4004 unix_mode_to_udf_perm(mode_t mode)
4005 {
4006 uint32_t perm;
4007
4008 perm = ((mode & S_IRWXO) );
4009 perm |= ((mode & S_IRWXG) << 2);
4010 perm |= ((mode & S_IRWXU) << 4);
4011 perm |= ((mode & S_IWOTH) << 3);
4012 perm |= ((mode & S_IWGRP) << 5);
4013 perm |= ((mode & S_IWUSR) << 7);
4014
4015 return perm;
4016 }
4017
4018 /* --------------------------------------------------------------------- */
4019
4020 static uint32_t
4021 udf_icb_to_unix_filetype(uint32_t icbftype)
4022 {
4023 switch (icbftype) {
4024 case UDF_ICB_FILETYPE_DIRECTORY :
4025 case UDF_ICB_FILETYPE_STREAMDIR :
4026 return S_IFDIR;
4027 case UDF_ICB_FILETYPE_FIFO :
4028 return S_IFIFO;
4029 case UDF_ICB_FILETYPE_CHARDEVICE :
4030 return S_IFCHR;
4031 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4032 return S_IFBLK;
4033 case UDF_ICB_FILETYPE_RANDOMACCESS :
4034 case UDF_ICB_FILETYPE_REALTIME :
4035 return S_IFREG;
4036 case UDF_ICB_FILETYPE_SYMLINK :
4037 return S_IFLNK;
4038 case UDF_ICB_FILETYPE_SOCKET :
4039 return S_IFSOCK;
4040 }
4041 /* no idea what this is */
4042 return 0;
4043 }
4044
4045 /* --------------------------------------------------------------------- */
4046
4047 void
4048 udf_to_unix_name(char *result, int result_len, char *id, int len,
4049 struct charspec *chsp)
4050 {
4051 uint16_t *raw_name, *unix_name;
4052 uint16_t *inchp, ch;
4053 uint8_t *outchp;
4054 const char *osta_id = "OSTA Compressed Unicode";
4055 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4056
4057 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4058 unix_name = raw_name + 1024; /* split space in half */
4059 assert(sizeof(char) == sizeof(uint8_t));
4060 outchp = (uint8_t *) result;
4061
4062 is_osta_typ0 = (chsp->type == 0);
4063 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4064 if (is_osta_typ0) {
4065 /* TODO clean up */
4066 *raw_name = *unix_name = 0;
4067 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4068 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4069 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4070 /* output UTF8 */
4071 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4072 ch = *inchp;
4073 nout = wput_utf8(outchp, result_len, ch);
4074 outchp += nout; result_len -= nout;
4075 if (!ch) break;
4076 }
4077 *outchp++ = 0;
4078 } else {
4079 /* assume 8bit char length byte latin-1 */
4080 assert(*id == 8);
4081 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4082 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4083 }
4084 free(raw_name, M_UDFTEMP);
4085 }
4086
4087 /* --------------------------------------------------------------------- */
4088
4089 void
4090 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4091 struct charspec *chsp)
4092 {
4093 uint16_t *raw_name;
4094 uint16_t *outchp;
4095 const char *inchp;
4096 const char *osta_id = "OSTA Compressed Unicode";
4097 int udf_chars, is_osta_typ0, bits;
4098 size_t cnt;
4099
4100 /* allocate temporary unicode-16 buffer */
4101 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4102
4103 /* convert utf8 to unicode-16 */
4104 *raw_name = 0;
4105 inchp = name;
4106 outchp = raw_name;
4107 bits = 8;
4108 for (cnt = name_len, udf_chars = 0; cnt;) {
4109 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4110 *outchp = wget_utf8(&inchp, &cnt);
4111 if (*outchp > 0xff)
4112 bits=16;
4113 outchp++;
4114 udf_chars++;
4115 }
4116 /* null terminate just in case */
4117 *outchp++ = 0;
4118
4119 is_osta_typ0 = (chsp->type == 0);
4120 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4121 if (is_osta_typ0) {
4122 udf_chars = udf_CompressUnicode(udf_chars, bits,
4123 (unicode_t *) raw_name,
4124 (byte *) result);
4125 } else {
4126 printf("unix to udf name: no CHSP0 ?\n");
4127 /* XXX assume 8bit char length byte latin-1 */
4128 *result++ = 8; udf_chars = 1;
4129 strncpy(result, name + 1, name_len);
4130 udf_chars += name_len;
4131 }
4132 *result_len = udf_chars;
4133 free(raw_name, M_UDFTEMP);
4134 }
4135
4136 /* --------------------------------------------------------------------- */
4137
4138 void
4139 udf_timestamp_to_timespec(struct udf_mount *ump,
4140 struct timestamp *timestamp,
4141 struct timespec *timespec)
4142 {
4143 struct clock_ymdhms ymdhms;
4144 uint32_t usecs, secs, nsecs;
4145 uint16_t tz;
4146
4147 /* fill in ymdhms structure from timestamp */
4148 memset(&ymdhms, 0, sizeof(ymdhms));
4149 ymdhms.dt_year = udf_rw16(timestamp->year);
4150 ymdhms.dt_mon = timestamp->month;
4151 ymdhms.dt_day = timestamp->day;
4152 ymdhms.dt_wday = 0; /* ? */
4153 ymdhms.dt_hour = timestamp->hour;
4154 ymdhms.dt_min = timestamp->minute;
4155 ymdhms.dt_sec = timestamp->second;
4156
4157 secs = clock_ymdhms_to_secs(&ymdhms);
4158 usecs = timestamp->usec +
4159 100*timestamp->hund_usec + 10000*timestamp->centisec;
4160 nsecs = usecs * 1000;
4161
4162 /*
4163 * Calculate the time zone. The timezone is 12 bit signed 2's
4164 * compliment, so we gotta do some extra magic to handle it right.
4165 */
4166 tz = udf_rw16(timestamp->type_tz);
4167 tz &= 0x0fff; /* only lower 12 bits are significant */
4168 if (tz & 0x0800) /* sign extention */
4169 tz |= 0xf000;
4170
4171 /* TODO check timezone conversion */
4172 /* check if we are specified a timezone to convert */
4173 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4174 if ((int16_t) tz != -2047)
4175 secs -= (int16_t) tz * 60;
4176 } else {
4177 secs -= ump->mount_args.gmtoff;
4178 }
4179
4180 timespec->tv_sec = secs;
4181 timespec->tv_nsec = nsecs;
4182 }
4183
4184
4185 void
4186 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4187 {
4188 struct clock_ymdhms ymdhms;
4189 uint32_t husec, usec, csec;
4190
4191 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4192
4193 usec = timespec->tv_nsec / 1000;
4194 husec = usec / 100;
4195 usec -= husec * 100; /* only 0-99 in usec */
4196 csec = husec / 100; /* only 0-99 in csec */
4197 husec -= csec * 100; /* only 0-99 in husec */
4198
4199 /* set method 1 for CUT/GMT */
4200 timestamp->type_tz = udf_rw16((1<<12) + 0);
4201 timestamp->year = udf_rw16(ymdhms.dt_year);
4202 timestamp->month = ymdhms.dt_mon;
4203 timestamp->day = ymdhms.dt_day;
4204 timestamp->hour = ymdhms.dt_hour;
4205 timestamp->minute = ymdhms.dt_min;
4206 timestamp->second = ymdhms.dt_sec;
4207 timestamp->centisec = csec;
4208 timestamp->hund_usec = husec;
4209 timestamp->usec = usec;
4210 }
4211
4212 /* --------------------------------------------------------------------- */
4213
4214 /*
4215 * Attribute and filetypes converters with get/set pairs
4216 */
4217
4218 uint32_t
4219 udf_getaccessmode(struct udf_node *udf_node)
4220 {
4221 struct file_entry *fe = udf_node->fe;;
4222 struct extfile_entry *efe = udf_node->efe;
4223 uint32_t udf_perm, icbftype;
4224 uint32_t mode, ftype;
4225 uint16_t icbflags;
4226
4227 UDF_LOCK_NODE(udf_node, 0);
4228 if (fe) {
4229 udf_perm = udf_rw32(fe->perm);
4230 icbftype = fe->icbtag.file_type;
4231 icbflags = udf_rw16(fe->icbtag.flags);
4232 } else {
4233 assert(udf_node->efe);
4234 udf_perm = udf_rw32(efe->perm);
4235 icbftype = efe->icbtag.file_type;
4236 icbflags = udf_rw16(efe->icbtag.flags);
4237 }
4238
4239 mode = udf_perm_to_unix_mode(udf_perm);
4240 ftype = udf_icb_to_unix_filetype(icbftype);
4241
4242 /* set suid, sgid, sticky from flags in fe/efe */
4243 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4244 mode |= S_ISUID;
4245 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4246 mode |= S_ISGID;
4247 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4248 mode |= S_ISVTX;
4249
4250 UDF_UNLOCK_NODE(udf_node, 0);
4251
4252 return mode | ftype;
4253 }
4254
4255
4256 void
4257 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4258 {
4259 struct file_entry *fe = udf_node->fe;
4260 struct extfile_entry *efe = udf_node->efe;
4261 uint32_t udf_perm;
4262 uint16_t icbflags;
4263
4264 UDF_LOCK_NODE(udf_node, 0);
4265 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4266 if (fe) {
4267 icbflags = udf_rw16(fe->icbtag.flags);
4268 } else {
4269 icbflags = udf_rw16(efe->icbtag.flags);
4270 }
4271
4272 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4273 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4274 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4275 if (mode & S_ISUID)
4276 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4277 if (mode & S_ISGID)
4278 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4279 if (mode & S_ISVTX)
4280 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4281
4282 if (fe) {
4283 fe->perm = udf_rw32(udf_perm);
4284 fe->icbtag.flags = udf_rw16(icbflags);
4285 } else {
4286 efe->perm = udf_rw32(udf_perm);
4287 efe->icbtag.flags = udf_rw16(icbflags);
4288 }
4289
4290 UDF_UNLOCK_NODE(udf_node, 0);
4291 }
4292
4293
4294 void
4295 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4296 {
4297 struct udf_mount *ump = udf_node->ump;
4298 struct file_entry *fe = udf_node->fe;
4299 struct extfile_entry *efe = udf_node->efe;
4300 uid_t uid;
4301 gid_t gid;
4302
4303 UDF_LOCK_NODE(udf_node, 0);
4304 if (fe) {
4305 uid = (uid_t)udf_rw32(fe->uid);
4306 gid = (gid_t)udf_rw32(fe->gid);
4307 } else {
4308 assert(udf_node->efe);
4309 uid = (uid_t)udf_rw32(efe->uid);
4310 gid = (gid_t)udf_rw32(efe->gid);
4311 }
4312
4313 /* do the uid/gid translation game */
4314 if (uid == (uid_t) -1)
4315 uid = ump->mount_args.anon_uid;
4316 if (gid == (gid_t) -1)
4317 gid = ump->mount_args.anon_gid;
4318
4319 *uidp = uid;
4320 *gidp = gid;
4321
4322 UDF_UNLOCK_NODE(udf_node, 0);
4323 }
4324
4325
4326 void
4327 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4328 {
4329 struct udf_mount *ump = udf_node->ump;
4330 struct file_entry *fe = udf_node->fe;
4331 struct extfile_entry *efe = udf_node->efe;
4332 uid_t nobody_uid;
4333 gid_t nobody_gid;
4334
4335 UDF_LOCK_NODE(udf_node, 0);
4336
4337 /* do the uid/gid translation game */
4338 nobody_uid = ump->mount_args.nobody_uid;
4339 nobody_gid = ump->mount_args.nobody_gid;
4340 if (uid == nobody_uid)
4341 uid = (uid_t) -1;
4342 if (gid == nobody_gid)
4343 gid = (gid_t) -1;
4344
4345 if (fe) {
4346 fe->uid = udf_rw32((uint32_t) uid);
4347 fe->gid = udf_rw32((uint32_t) gid);
4348 } else {
4349 efe->uid = udf_rw32((uint32_t) uid);
4350 efe->gid = udf_rw32((uint32_t) gid);
4351 }
4352
4353 UDF_UNLOCK_NODE(udf_node, 0);
4354 }
4355
4356
4357 /* --------------------------------------------------------------------- */
4358
4359
4360 static int
4361 dirhash_fill(struct udf_node *dir_node)
4362 {
4363 struct vnode *dvp = dir_node->vnode;
4364 struct dirhash *dirh;
4365 struct file_entry *fe = dir_node->fe;
4366 struct extfile_entry *efe = dir_node->efe;
4367 struct fileid_desc *fid;
4368 struct dirent *dirent;
4369 uint64_t file_size, pre_diroffset, diroffset;
4370 uint32_t lb_size;
4371 int error;
4372
4373 /* make sure we have a dirhash to work on */
4374 dirh = dir_node->dir_hash;
4375 KASSERT(dirh);
4376 KASSERT(dirh->refcnt > 0);
4377
4378 if (dirh->flags & DIRH_BROKEN)
4379 return EIO;
4380 if (dirh->flags & DIRH_COMPLETE)
4381 return 0;
4382
4383 /* make sure we have a clean dirhash to add to */
4384 dirhash_purge_entries(dirh);
4385
4386 /* get directory filesize */
4387 if (fe) {
4388 file_size = udf_rw64(fe->inf_len);
4389 } else {
4390 assert(efe);
4391 file_size = udf_rw64(efe->inf_len);
4392 }
4393
4394 /* allocate temporary space for fid */
4395 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4396 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4397
4398 /* allocate temporary space for dirent */
4399 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4400
4401 error = 0;
4402 diroffset = 0;
4403 while (diroffset < file_size) {
4404 /* transfer a new fid/dirent */
4405 pre_diroffset = diroffset;
4406 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4407 if (error) {
4408 /* TODO what to do? continue but not add? */
4409 dirh->flags |= DIRH_BROKEN;
4410 dirhash_purge_entries(dirh);
4411 break;
4412 }
4413
4414 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4415 /* register deleted extent for reuse */
4416 dirhash_enter_freed(dirh, pre_diroffset,
4417 udf_fidsize(fid));
4418 } else {
4419 /* append to the dirhash */
4420 dirhash_enter(dirh, dirent, pre_diroffset,
4421 udf_fidsize(fid), 0);
4422 }
4423 }
4424 dirh->flags |= DIRH_COMPLETE;
4425
4426 free(fid, M_UDFTEMP);
4427 free(dirent, M_UDFTEMP);
4428
4429 return error;
4430 }
4431
4432
4433 /* --------------------------------------------------------------------- */
4434
4435 /*
4436 * Directory read and manipulation functions.
4437 *
4438 */
4439
4440 int
4441 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4442 struct long_ad *icb_loc, int *found)
4443 {
4444 struct udf_node *dir_node = VTOI(vp);
4445 struct dirhash *dirh;
4446 struct dirhash_entry *dirh_ep;
4447 struct fileid_desc *fid;
4448 struct dirent *dirent;
4449 uint64_t diroffset;
4450 uint32_t lb_size;
4451 int hit, error;
4452
4453 /* set default return */
4454 *found = 0;
4455
4456 /* get our dirhash and make sure its read in */
4457 dirhash_get(&dir_node->dir_hash);
4458 error = dirhash_fill(dir_node);
4459 if (error) {
4460 dirhash_put(dir_node->dir_hash);
4461 return error;
4462 }
4463 dirh = dir_node->dir_hash;
4464
4465 /* allocate temporary space for fid */
4466 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4467 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4468 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4469
4470 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4471 namelen, namelen, name));
4472
4473 /* search our dirhash hits */
4474 memset(icb_loc, 0, sizeof(*icb_loc));
4475 dirh_ep = NULL;
4476 for (;;) {
4477 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4478 /* if no hit, abort the search */
4479 if (!hit)
4480 break;
4481
4482 /* check this hit */
4483 diroffset = dirh_ep->offset;
4484
4485 /* transfer a new fid/dirent */
4486 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4487 if (error)
4488 break;
4489
4490 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4491 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4492
4493 /* see if its our entry */
4494 KASSERT(dirent->d_namlen == namelen);
4495 if (strncmp(dirent->d_name, name, namelen) == 0) {
4496 *found = 1;
4497 *icb_loc = fid->icb;
4498 break;
4499 }
4500 }
4501 free(fid, M_UDFTEMP);
4502 free(dirent, M_UDFTEMP);
4503
4504 dirhash_put(dir_node->dir_hash);
4505
4506 return error;
4507 }
4508
4509 /* --------------------------------------------------------------------- */
4510
4511 static int
4512 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4513 struct long_ad *node_icb, struct long_ad *parent_icb,
4514 uint64_t parent_unique_id)
4515 {
4516 struct timespec now;
4517 struct icb_tag *icb;
4518 struct filetimes_extattr_entry *ft_extattr;
4519 uint64_t unique_id;
4520 uint32_t fidsize, lb_num;
4521 uint8_t *bpos;
4522 int crclen, attrlen;
4523
4524 lb_num = udf_rw32(node_icb->loc.lb_num);
4525 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4526 icb = &fe->icbtag;
4527
4528 /*
4529 * Always use strategy type 4 unless on WORM wich we don't support
4530 * (yet). Fill in defaults and set for internal allocation of data.
4531 */
4532 icb->strat_type = udf_rw16(4);
4533 icb->max_num_entries = udf_rw16(1);
4534 icb->file_type = file_type; /* 8 bit */
4535 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4536
4537 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4538 fe->link_cnt = udf_rw16(0); /* explicit setting */
4539
4540 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4541
4542 vfs_timestamp(&now);
4543 udf_timespec_to_timestamp(&now, &fe->atime);
4544 udf_timespec_to_timestamp(&now, &fe->attrtime);
4545 udf_timespec_to_timestamp(&now, &fe->mtime);
4546
4547 udf_set_regid(&fe->imp_id, IMPL_NAME);
4548 udf_add_impl_regid(ump, &fe->imp_id);
4549
4550 unique_id = udf_advance_uniqueid(ump);
4551 fe->unique_id = udf_rw64(unique_id);
4552 fe->l_ea = udf_rw32(0);
4553
4554 /* create extended attribute to record our creation time */
4555 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4556 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4557 memset(ft_extattr, 0, attrlen);
4558 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4559 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4560 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4561 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4562 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4563 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4564
4565 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4566 (struct extattr_entry *) ft_extattr);
4567 free(ft_extattr, M_UDFTEMP);
4568
4569 /* if its a directory, create '..' */
4570 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4571 fidsize = 0;
4572 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4573 fidsize = udf_create_parentfid(ump,
4574 (struct fileid_desc *) bpos, parent_icb,
4575 parent_unique_id);
4576 }
4577
4578 /* record fidlength information */
4579 fe->inf_len = udf_rw64(fidsize);
4580 fe->l_ad = udf_rw32(fidsize);
4581 fe->logblks_rec = udf_rw64(0); /* intern */
4582
4583 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4584 crclen += udf_rw32(fe->l_ea) + fidsize;
4585 fe->tag.desc_crc_len = udf_rw16(crclen);
4586
4587 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4588
4589 return fidsize;
4590 }
4591
4592 /* --------------------------------------------------------------------- */
4593
4594 static int
4595 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4596 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4597 uint64_t parent_unique_id)
4598 {
4599 struct timespec now;
4600 struct icb_tag *icb;
4601 uint64_t unique_id;
4602 uint32_t fidsize, lb_num;
4603 uint8_t *bpos;
4604 int crclen;
4605
4606 lb_num = udf_rw32(node_icb->loc.lb_num);
4607 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4608 icb = &efe->icbtag;
4609
4610 /*
4611 * Always use strategy type 4 unless on WORM wich we don't support
4612 * (yet). Fill in defaults and set for internal allocation of data.
4613 */
4614 icb->strat_type = udf_rw16(4);
4615 icb->max_num_entries = udf_rw16(1);
4616 icb->file_type = file_type; /* 8 bit */
4617 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4618
4619 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4620 efe->link_cnt = udf_rw16(0); /* explicit setting */
4621
4622 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4623
4624 vfs_timestamp(&now);
4625 udf_timespec_to_timestamp(&now, &efe->ctime);
4626 udf_timespec_to_timestamp(&now, &efe->atime);
4627 udf_timespec_to_timestamp(&now, &efe->attrtime);
4628 udf_timespec_to_timestamp(&now, &efe->mtime);
4629
4630 udf_set_regid(&efe->imp_id, IMPL_NAME);
4631 udf_add_impl_regid(ump, &efe->imp_id);
4632
4633 unique_id = udf_advance_uniqueid(ump);
4634 efe->unique_id = udf_rw64(unique_id);
4635 efe->l_ea = udf_rw32(0);
4636
4637 /* if its a directory, create '..' */
4638 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4639 fidsize = 0;
4640 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4641 fidsize = udf_create_parentfid(ump,
4642 (struct fileid_desc *) bpos, parent_icb,
4643 parent_unique_id);
4644 }
4645
4646 /* record fidlength information */
4647 efe->obj_size = udf_rw64(fidsize);
4648 efe->inf_len = udf_rw64(fidsize);
4649 efe->l_ad = udf_rw32(fidsize);
4650 efe->logblks_rec = udf_rw64(0); /* intern */
4651
4652 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4653 crclen += udf_rw32(efe->l_ea) + fidsize;
4654 efe->tag.desc_crc_len = udf_rw16(crclen);
4655
4656 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4657
4658 return fidsize;
4659 }
4660
4661 /* --------------------------------------------------------------------- */
4662
4663 int
4664 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4665 struct udf_node *udf_node, struct componentname *cnp)
4666 {
4667 struct vnode *dvp = dir_node->vnode;
4668 struct dirhash *dirh;
4669 struct dirhash_entry *dirh_ep;
4670 struct file_entry *fe = dir_node->fe;
4671 struct extfile_entry *efe = dir_node->efe;
4672 struct fileid_desc *fid;
4673 struct dirent *dirent;
4674 uint64_t file_size, diroffset;
4675 uint32_t lb_size, fidsize;
4676 int found, error;
4677 char const *name = cnp->cn_nameptr;
4678 int namelen = cnp->cn_namelen;
4679 int hit, refcnt;
4680
4681 /* get our dirhash and make sure its read in */
4682 dirhash_get(&dir_node->dir_hash);
4683 error = dirhash_fill(dir_node);
4684 if (error) {
4685 dirhash_put(dir_node->dir_hash);
4686 return error;
4687 }
4688 dirh = dir_node->dir_hash;
4689
4690 /* get directory filesize */
4691 if (fe) {
4692 file_size = udf_rw64(fe->inf_len);
4693 } else {
4694 assert(efe);
4695 file_size = udf_rw64(efe->inf_len);
4696 }
4697
4698 /* allocate temporary space for fid */
4699 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4700 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4701 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4702
4703 /* search our dirhash hits */
4704 found = 0;
4705 dirh_ep = NULL;
4706 for (;;) {
4707 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4708 /* if no hit, abort the search */
4709 if (!hit)
4710 break;
4711
4712 /* check this hit */
4713 diroffset = dirh_ep->offset;
4714
4715 /* transfer a new fid/dirent */
4716 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4717 if (error)
4718 break;
4719
4720 /* see if its our entry */
4721 KASSERT(dirent->d_namlen == namelen);
4722 if (strncmp(dirent->d_name, name, namelen) == 0) {
4723 found = 1;
4724 break;
4725 }
4726 }
4727
4728 if (!found)
4729 error = ENOENT;
4730 if (error)
4731 goto error_out;
4732
4733 /* mark deleted */
4734 fid->file_char |= UDF_FILE_CHAR_DEL;
4735 #ifdef UDF_COMPLETE_DELETE
4736 memset(&fid->icb, 0, sizeof(fid->icb));
4737 #endif
4738 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4739
4740 /* get size of fid and compensate for the read_fid_stream advance */
4741 fidsize = udf_fidsize(fid);
4742 diroffset -= fidsize;
4743
4744 /* write out */
4745 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4746 fid, fidsize, diroffset,
4747 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4748 FSCRED, NULL, NULL);
4749 if (error)
4750 goto error_out;
4751
4752 /* get reference count of attached node */
4753 if (udf_node->fe) {
4754 refcnt = udf_rw16(udf_node->fe->link_cnt);
4755 } else {
4756 KASSERT(udf_node->efe);
4757 refcnt = udf_rw16(udf_node->efe->link_cnt);
4758 }
4759 #ifdef UDF_COMPLETE_DELETE
4760 /* substract reference counter in attached node */
4761 refcnt -= 1;
4762 if (udf_node->fe) {
4763 udf_node->fe->link_cnt = udf_rw16(refcnt);
4764 } else {
4765 udf_node->efe->link_cnt = udf_rw16(refcnt);
4766 }
4767
4768 /* prevent writeout when refcnt == 0 */
4769 if (refcnt == 0)
4770 udf_node->i_flags |= IN_DELETED;
4771
4772 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4773 int drefcnt;
4774
4775 /* substract reference counter in directory node */
4776 /* note subtract 2 (?) for its was also backreferenced */
4777 if (dir_node->fe) {
4778 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4779 drefcnt -= 1;
4780 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4781 } else {
4782 KASSERT(dir_node->efe);
4783 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4784 drefcnt -= 1;
4785 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4786 }
4787 }
4788
4789 udf_node->i_flags |= IN_MODIFIED;
4790 dir_node->i_flags |= IN_MODIFIED;
4791 #endif
4792 /* if it is/was a hardlink adjust the file count */
4793 if (refcnt > 0)
4794 udf_adjust_filecount(udf_node, -1);
4795
4796 /* remove from the dirhash */
4797 dirhash_remove(dirh, dirent, diroffset,
4798 udf_fidsize(fid));
4799
4800 error_out:
4801 free(fid, M_UDFTEMP);
4802 free(dirent, M_UDFTEMP);
4803
4804 dirhash_put(dir_node->dir_hash);
4805
4806 return error;
4807 }
4808
4809 /* --------------------------------------------------------------------- */
4810
4811 /*
4812 * We are not allowed to split the fid tag itself over an logical block so
4813 * check the space remaining in the logical block.
4814 *
4815 * We try to select the smallest candidate for recycling or when none is
4816 * found, append a new one at the end of the directory.
4817 */
4818
4819 int
4820 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4821 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4822 {
4823 struct vnode *dvp = dir_node->vnode;
4824 struct dirhash *dirh;
4825 struct dirhash_entry *dirh_ep;
4826 struct fileid_desc *fid;
4827 struct icb_tag *icbtag;
4828 struct charspec osta_charspec;
4829 struct dirent dirent;
4830 uint64_t unique_id, dir_size;
4831 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4832 uint32_t chosen_size, chosen_size_diff;
4833 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4834 int file_char, refcnt, icbflags, addr_type, hit, error;
4835
4836 /* get our dirhash and make sure its read in */
4837 dirhash_get(&dir_node->dir_hash);
4838 error = dirhash_fill(dir_node);
4839 if (error) {
4840 dirhash_put(dir_node->dir_hash);
4841 return error;
4842 }
4843 dirh = dir_node->dir_hash;
4844
4845 /* get info */
4846 lb_size = udf_rw32(ump->logical_vol->lb_size);
4847 udf_osta_charset(&osta_charspec);
4848
4849 if (dir_node->fe) {
4850 dir_size = udf_rw64(dir_node->fe->inf_len);
4851 icbtag = &dir_node->fe->icbtag;
4852 } else {
4853 dir_size = udf_rw64(dir_node->efe->inf_len);
4854 icbtag = &dir_node->efe->icbtag;
4855 }
4856
4857 icbflags = udf_rw16(icbtag->flags);
4858 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4859
4860 if (udf_node->fe) {
4861 unique_id = udf_rw64(udf_node->fe->unique_id);
4862 refcnt = udf_rw16(udf_node->fe->link_cnt);
4863 } else {
4864 unique_id = udf_rw64(udf_node->efe->unique_id);
4865 refcnt = udf_rw16(udf_node->efe->link_cnt);
4866 }
4867
4868 if (refcnt > 0) {
4869 unique_id = udf_advance_uniqueid(ump);
4870 udf_adjust_filecount(udf_node, 1);
4871 }
4872
4873 /* determine file characteristics */
4874 file_char = 0; /* visible non deleted file and not stream metadata */
4875 if (vap->va_type == VDIR)
4876 file_char = UDF_FILE_CHAR_DIR;
4877
4878 /* malloc scrap buffer */
4879 fid = malloc(lb_size, M_TEMP, M_WAITOK);
4880 bzero(fid, lb_size);
4881
4882 /* calculate _minimum_ fid size */
4883 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4884 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4885 fidsize = UDF_FID_SIZE + fid->l_fi;
4886 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
4887
4888 /* find position that will fit the FID */
4889 chosen_fid_pos = dir_size;
4890 chosen_size = 0;
4891 chosen_size_diff = UINT_MAX;
4892
4893 /* shut up gcc */
4894 dirent.d_namlen = 0;
4895
4896 /* search our dirhash hits */
4897 error = 0;
4898 dirh_ep = NULL;
4899 for (;;) {
4900 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
4901 /* if no hit, abort the search */
4902 if (!hit)
4903 break;
4904
4905 /* check this hit for size */
4906 this_fidsize = dirh_ep->entry_size;
4907
4908 /* check this hit */
4909 fid_pos = dirh_ep->offset;
4910 end_fid_pos = fid_pos + this_fidsize;
4911 size_diff = this_fidsize - fidsize;
4912 lb_rest = lb_size - (end_fid_pos % lb_size);
4913
4914 #ifndef UDF_COMPLETE_DELETE
4915 /* transfer a new fid/dirent */
4916 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4917 if (error)
4918 goto error_out;
4919
4920 /* only reuse entries that are wiped */
4921 /* check if the len + loc are marked zero */
4922 if (udf_rw32(fid->icb.len) != 0)
4923 continue;
4924 if (udf_rw32(fid->icb.loc.lb_num) != 0)
4925 continue;
4926 if (udf_rw16(fid->icb.loc.part_num) != 0)
4927 continue;
4928 #endif /* UDF_COMPLETE_DELETE */
4929
4930 /* select if not splitting the tag and its smaller */
4931 if ((size_diff >= 0) &&
4932 (size_diff < chosen_size_diff) &&
4933 (lb_rest >= sizeof(struct desc_tag)))
4934 {
4935 /* UDF 2.3.4.2+3 specifies rules for iu size */
4936 if ((size_diff == 0) || (size_diff >= 32)) {
4937 chosen_fid_pos = fid_pos;
4938 chosen_size = this_fidsize;
4939 chosen_size_diff = size_diff;
4940 }
4941 }
4942 }
4943
4944
4945 /* extend directory if no other candidate found */
4946 if (chosen_size == 0) {
4947 chosen_fid_pos = dir_size;
4948 chosen_size = fidsize;
4949 chosen_size_diff = 0;
4950
4951 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4952 if (addr_type == UDF_ICB_INTERN_ALLOC) {
4953 /* pre-grow directory to see if we're to switch */
4954 udf_grow_node(dir_node, dir_size + chosen_size);
4955
4956 icbflags = udf_rw16(icbtag->flags);
4957 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4958 }
4959
4960 /* make sure the next fid desc_tag won't be splitted */
4961 if (addr_type != UDF_ICB_INTERN_ALLOC) {
4962 end_fid_pos = chosen_fid_pos + chosen_size;
4963 lb_rest = lb_size - (end_fid_pos % lb_size);
4964
4965 /* pad with implementation use regid if needed */
4966 if (lb_rest < sizeof(struct desc_tag))
4967 chosen_size += 32;
4968 }
4969 }
4970 chosen_size_diff = chosen_size - fidsize;
4971
4972 /* populate the FID */
4973 memset(fid, 0, lb_size);
4974 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4975 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
4976 fid->file_char = file_char;
4977 fid->icb = udf_node->loc;
4978 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4979 fid->l_iu = udf_rw16(0);
4980
4981 if (chosen_size > fidsize) {
4982 /* insert implementation-use regid to space it correctly */
4983 fid->l_iu = udf_rw16(chosen_size_diff);
4984
4985 /* set implementation use */
4986 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4987 udf_add_impl_regid(ump, (struct regid *) fid->data);
4988 }
4989
4990 /* fill in name */
4991 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4992 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4993
4994 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
4995 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4996
4997 /* writeout FID/update parent directory */
4998 error = vn_rdwr(UIO_WRITE, dvp,
4999 fid, chosen_size, chosen_fid_pos,
5000 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5001 FSCRED, NULL, NULL);
5002
5003 if (error)
5004 goto error_out;
5005
5006 /* add reference counter in attached node */
5007 if (udf_node->fe) {
5008 refcnt = udf_rw16(udf_node->fe->link_cnt);
5009 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5010 } else {
5011 KASSERT(udf_node->efe);
5012 refcnt = udf_rw16(udf_node->efe->link_cnt);
5013 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5014 }
5015
5016 /* mark not deleted if it was... just in case, but do warn */
5017 if (udf_node->i_flags & IN_DELETED) {
5018 printf("udf: warning, marking a file undeleted\n");
5019 udf_node->i_flags &= ~IN_DELETED;
5020 }
5021
5022 if (file_char & UDF_FILE_CHAR_DIR) {
5023 /* add reference counter in directory node for '..' */
5024 if (dir_node->fe) {
5025 refcnt = udf_rw16(dir_node->fe->link_cnt);
5026 refcnt++;
5027 dir_node->fe->link_cnt = udf_rw16(refcnt);
5028 } else {
5029 KASSERT(dir_node->efe);
5030 refcnt = udf_rw16(dir_node->efe->link_cnt);
5031 refcnt++;
5032 dir_node->efe->link_cnt = udf_rw16(refcnt);
5033 }
5034 }
5035
5036 /* append to the dirhash */
5037 dirent.d_namlen = cnp->cn_namelen;
5038 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5039 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5040 udf_fidsize(fid), 1);
5041
5042 /* note updates */
5043 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5044 /* VN_KNOTE(udf_node, ...) */
5045 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5046
5047 error_out:
5048 free(fid, M_TEMP);
5049
5050 dirhash_put(dir_node->dir_hash);
5051
5052 return error;
5053 }
5054
5055 /* --------------------------------------------------------------------- */
5056
5057 /*
5058 * Each node can have an attached streamdir node though not recursively. These
5059 * are otherwise known as named substreams/named extended attributes that have
5060 * no size limitations.
5061 *
5062 * `Normal' extended attributes are indicated with a number and are recorded
5063 * in either the fe/efe descriptor itself for small descriptors or recorded in
5064 * the attached extended attribute file. Since these spaces can get
5065 * fragmented, care ought to be taken.
5066 *
5067 * Since the size of the space reserved for allocation descriptors is limited,
5068 * there is a mechanim provided for extending this space; this is done by a
5069 * special extent to allow schrinking of the allocations without breaking the
5070 * linkage to the allocation extent descriptor.
5071 */
5072
5073 int
5074 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5075 struct udf_node **udf_noderes)
5076 {
5077 union dscrptr *dscr;
5078 struct udf_node *udf_node;
5079 struct vnode *nvp;
5080 struct long_ad icb_loc, last_fe_icb_loc;
5081 uint64_t file_size;
5082 uint32_t lb_size, sector, dummy;
5083 uint8_t *file_data;
5084 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5085 int slot, eof, error;
5086
5087 DPRINTF(NODE, ("udf_get_node called\n"));
5088 *udf_noderes = udf_node = NULL;
5089
5090 /* lock to disallow simultanious creation of same udf_node */
5091 mutex_enter(&ump->get_node_lock);
5092
5093 DPRINTF(NODE, ("\tlookup in hash table\n"));
5094 /* lookup in hash table */
5095 assert(ump);
5096 assert(node_icb_loc);
5097 udf_node = udf_hash_lookup(ump, node_icb_loc);
5098 if (udf_node) {
5099 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5100 /* vnode is returned locked */
5101 *udf_noderes = udf_node;
5102 mutex_exit(&ump->get_node_lock);
5103 return 0;
5104 }
5105
5106 /* garbage check: translate udf_node_icb_loc to sectornr */
5107 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5108 if (error) {
5109 /* no use, this will fail anyway */
5110 mutex_exit(&ump->get_node_lock);
5111 return EINVAL;
5112 }
5113
5114 /* build udf_node (do initialise!) */
5115 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5116 memset(udf_node, 0, sizeof(struct udf_node));
5117
5118 DPRINTF(NODE, ("\tget new vnode\n"));
5119 /* give it a vnode */
5120 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5121 if (error) {
5122 pool_put(&udf_node_pool, udf_node);
5123 mutex_exit(&ump->get_node_lock);
5124 return error;
5125 }
5126
5127 /* always return locked vnode */
5128 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5129 /* recycle vnode and unlock; simultanious will fail too */
5130 ungetnewvnode(nvp);
5131 mutex_exit(&ump->get_node_lock);
5132 return error;
5133 }
5134
5135 /* initialise crosslinks, note location of fe/efe for hashing */
5136 udf_node->ump = ump;
5137 udf_node->vnode = nvp;
5138 nvp->v_data = udf_node;
5139 udf_node->loc = *node_icb_loc;
5140 udf_node->lockf = 0;
5141 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5142 cv_init(&udf_node->node_lock, "udf_nlk");
5143 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5144 udf_node->outstanding_bufs = 0;
5145 udf_node->outstanding_nodedscr = 0;
5146
5147 /* check if we're fetching the root */
5148 if (ump->fileset_desc)
5149 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5150 sizeof(struct long_ad)) == 0)
5151 nvp->v_vflag |= VV_ROOT;
5152
5153 /* insert into the hash lookup */
5154 udf_register_node(udf_node);
5155
5156 /* safe to unlock, the entry is in the hash table, vnode is locked */
5157 mutex_exit(&ump->get_node_lock);
5158
5159 icb_loc = *node_icb_loc;
5160 needs_indirect = 0;
5161 strat4096 = 0;
5162 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5163 file_size = 0;
5164 file_data = NULL;
5165 lb_size = udf_rw32(ump->logical_vol->lb_size);
5166
5167 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5168 do {
5169 /* try to read in fe/efe */
5170 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5171
5172 /* blank sector marks end of sequence, check this */
5173 if ((dscr == NULL) && (!strat4096))
5174 error = ENOENT;
5175
5176 /* break if read error or blank sector */
5177 if (error || (dscr == NULL))
5178 break;
5179
5180 /* process descriptor based on the descriptor type */
5181 dscr_type = udf_rw16(dscr->tag.id);
5182 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5183
5184 /* if dealing with an indirect entry, follow the link */
5185 if (dscr_type == TAGID_INDIRECTENTRY) {
5186 needs_indirect = 0;
5187 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5188 icb_loc = dscr->inde.indirect_icb;
5189 continue;
5190 }
5191
5192 /* only file entries and extended file entries allowed here */
5193 if ((dscr_type != TAGID_FENTRY) &&
5194 (dscr_type != TAGID_EXTFENTRY)) {
5195 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5196 error = ENOENT;
5197 break;
5198 }
5199
5200 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5201
5202 /* choose this one */
5203 last_fe_icb_loc = icb_loc;
5204
5205 /* record and process/update (ext)fentry */
5206 file_data = NULL;
5207 if (dscr_type == TAGID_FENTRY) {
5208 if (udf_node->fe)
5209 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5210 udf_node->fe);
5211 udf_node->fe = &dscr->fe;
5212 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5213 udf_file_type = udf_node->fe->icbtag.file_type;
5214 file_size = udf_rw64(udf_node->fe->inf_len);
5215 file_data = udf_node->fe->data;
5216 } else {
5217 if (udf_node->efe)
5218 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5219 udf_node->efe);
5220 udf_node->efe = &dscr->efe;
5221 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5222 udf_file_type = udf_node->efe->icbtag.file_type;
5223 file_size = udf_rw64(udf_node->efe->inf_len);
5224 file_data = udf_node->efe->data;
5225 }
5226
5227 /* check recording strategy (structure) */
5228
5229 /*
5230 * Strategy 4096 is a daisy linked chain terminating with an
5231 * unrecorded sector or a TERM descriptor. The next
5232 * descriptor is to be found in the sector that follows the
5233 * current sector.
5234 */
5235 if (strat == 4096) {
5236 strat4096 = 1;
5237 needs_indirect = 1;
5238
5239 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5240 }
5241
5242 /*
5243 * Strategy 4 is the normal strategy and terminates, but if
5244 * we're in strategy 4096, we can't have strategy 4 mixed in
5245 */
5246
5247 if (strat == 4) {
5248 if (strat4096) {
5249 error = EINVAL;
5250 break;
5251 }
5252 break; /* done */
5253 }
5254 } while (!error);
5255
5256 /* first round of cleanup code */
5257 if (error) {
5258 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5259 /* recycle udf_node */
5260 udf_dispose_node(udf_node);
5261
5262 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5263 nvp->v_data = NULL;
5264 ungetnewvnode(nvp);
5265
5266 return EINVAL; /* error code ok? */
5267 }
5268 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5269
5270 /* assert no references to dscr anymore beyong this point */
5271 assert((udf_node->fe) || (udf_node->efe));
5272 dscr = NULL;
5273
5274 /*
5275 * Remember where to record an updated version of the descriptor. If
5276 * there is a sequence of indirect entries, icb_loc will have been
5277 * updated. Its the write disipline to allocate new space and to make
5278 * sure the chain is maintained.
5279 *
5280 * `needs_indirect' flags if the next location is to be filled with
5281 * with an indirect entry.
5282 */
5283 udf_node->write_loc = icb_loc;
5284 udf_node->needs_indirect = needs_indirect;
5285
5286 /*
5287 * Go trough all allocations extents of this descriptor and when
5288 * encountering a redirect read in the allocation extension. These are
5289 * daisy-chained.
5290 */
5291 UDF_LOCK_NODE(udf_node, 0);
5292 udf_node->num_extensions = 0;
5293
5294 error = 0;
5295 slot = 0;
5296 for (;;) {
5297 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5298 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5299 "lb_num = %d, part = %d\n", slot, eof,
5300 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5301 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5302 udf_rw32(icb_loc.loc.lb_num),
5303 udf_rw16(icb_loc.loc.part_num)));
5304 if (eof)
5305 break;
5306 slot++;
5307
5308 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5309 continue;
5310
5311 DPRINTF(NODE, ("\tgot redirect extent\n"));
5312 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5313 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5314 "too many allocation extensions on "
5315 "udf_node\n"));
5316 error = EINVAL;
5317 break;
5318 }
5319
5320 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5321 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5322 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5323 "extension size in udf_node\n"));
5324 error = EINVAL;
5325 break;
5326 }
5327
5328 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5329 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5330 /* load in allocation extent */
5331 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5332 if (error || (dscr == NULL))
5333 break;
5334
5335 /* process read-in descriptor */
5336 dscr_type = udf_rw16(dscr->tag.id);
5337
5338 if (dscr_type != TAGID_ALLOCEXTENT) {
5339 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5340 error = ENOENT;
5341 break;
5342 }
5343
5344 DPRINTF(NODE, ("\trecording redirect extent\n"));
5345 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5346 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5347
5348 udf_node->num_extensions++;
5349
5350 } /* while */
5351 UDF_UNLOCK_NODE(udf_node, 0);
5352
5353 /* second round of cleanup code */
5354 if (error) {
5355 /* recycle udf_node */
5356 udf_dispose_node(udf_node);
5357
5358 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5359 nvp->v_data = NULL;
5360 ungetnewvnode(nvp);
5361
5362 return EINVAL; /* error code ok? */
5363 }
5364
5365 DPRINTF(NODE, ("\tnode read in fine\n"));
5366
5367 /*
5368 * Translate UDF filetypes into vnode types.
5369 *
5370 * Systemfiles like the meta main and mirror files are not treated as
5371 * normal files, so we type them as having no type. UDF dictates that
5372 * they are not allowed to be visible.
5373 */
5374
5375 switch (udf_file_type) {
5376 case UDF_ICB_FILETYPE_DIRECTORY :
5377 case UDF_ICB_FILETYPE_STREAMDIR :
5378 nvp->v_type = VDIR;
5379 break;
5380 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5381 nvp->v_type = VBLK;
5382 break;
5383 case UDF_ICB_FILETYPE_CHARDEVICE :
5384 nvp->v_type = VCHR;
5385 break;
5386 case UDF_ICB_FILETYPE_SOCKET :
5387 nvp->v_type = VSOCK;
5388 break;
5389 case UDF_ICB_FILETYPE_FIFO :
5390 nvp->v_type = VFIFO;
5391 break;
5392 case UDF_ICB_FILETYPE_SYMLINK :
5393 nvp->v_type = VLNK;
5394 break;
5395 case UDF_ICB_FILETYPE_VAT :
5396 case UDF_ICB_FILETYPE_META_MAIN :
5397 case UDF_ICB_FILETYPE_META_MIRROR :
5398 nvp->v_type = VNON;
5399 break;
5400 case UDF_ICB_FILETYPE_RANDOMACCESS :
5401 case UDF_ICB_FILETYPE_REALTIME :
5402 nvp->v_type = VREG;
5403 break;
5404 default:
5405 /* YIKES, something else */
5406 nvp->v_type = VNON;
5407 }
5408
5409 /* TODO specfs, fifofs etc etc. vnops setting */
5410
5411 /* don't forget to set vnode's v_size */
5412 uvm_vnp_setsize(nvp, file_size);
5413
5414 /* TODO ext attr and streamdir udf_nodes */
5415
5416 *udf_noderes = udf_node;
5417
5418 return 0;
5419 }
5420
5421 /* --------------------------------------------------------------------- */
5422
5423 int
5424 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5425 {
5426 union dscrptr *dscr;
5427 struct long_ad *loc;
5428 int extnr, error;
5429
5430 DPRINTF(NODE, ("udf_writeout_node called\n"));
5431
5432 KASSERT(udf_node->outstanding_bufs == 0);
5433 KASSERT(udf_node->outstanding_nodedscr == 0);
5434
5435 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5436
5437 if (udf_node->i_flags & IN_DELETED) {
5438 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5439 return 0;
5440 }
5441
5442 /* lock node */
5443 UDF_LOCK_NODE(udf_node, 0);
5444
5445 /* at least one descriptor writeout */
5446 udf_node->outstanding_nodedscr = 1;
5447
5448 /* we're going to write out the descriptor so clear the flags */
5449 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5450
5451 /* if we were rebuild, write out the allocation extents */
5452 if (udf_node->i_flags & IN_NODE_REBUILD) {
5453 /* mark outstanding node descriptors and issue them */
5454 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5455 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5456 loc = &udf_node->ext_loc[extnr];
5457 dscr = (union dscrptr *) udf_node->ext[extnr];
5458 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5459 if (error)
5460 return error;
5461 }
5462 /* mark allocation extents written out */
5463 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5464 }
5465
5466 if (udf_node->fe) {
5467 KASSERT(udf_node->efe == NULL);
5468 dscr = (union dscrptr *) udf_node->fe;
5469 } else {
5470 KASSERT(udf_node->efe);
5471 KASSERT(udf_node->fe == NULL);
5472 dscr = (union dscrptr *) udf_node->efe;
5473 }
5474 KASSERT(dscr);
5475
5476 loc = &udf_node->write_loc;
5477 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5478 return error;
5479 }
5480
5481 /* --------------------------------------------------------------------- */
5482
5483 int
5484 udf_dispose_node(struct udf_node *udf_node)
5485 {
5486 struct vnode *vp;
5487 int extnr;
5488
5489 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5490 if (!udf_node) {
5491 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5492 return 0;
5493 }
5494
5495 vp = udf_node->vnode;
5496 #ifdef DIAGNOSTIC
5497 if (vp->v_numoutput)
5498 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5499 "v_numoutput = %d", udf_node, vp->v_numoutput);
5500 #endif
5501
5502 /* wait until out of sync (just in case we happen to stumble over one */
5503 KASSERT(!mutex_owned(&mntvnode_lock));
5504 mutex_enter(&mntvnode_lock);
5505 while (udf_node->i_flags & IN_SYNCED) {
5506 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5507 hz/16);
5508 }
5509 mutex_exit(&mntvnode_lock);
5510
5511 /* TODO extended attributes and streamdir */
5512
5513 /* remove dirhash if present */
5514 dirhash_purge(&udf_node->dir_hash);
5515
5516 /* remove from our hash lookup table */
5517 udf_deregister_node(udf_node);
5518
5519 /* destroy our lock */
5520 mutex_destroy(&udf_node->node_mutex);
5521 cv_destroy(&udf_node->node_lock);
5522
5523 /* dissociate our udf_node from the vnode */
5524 genfs_node_destroy(udf_node->vnode);
5525 vp->v_data = NULL;
5526
5527 /* free associated memory and the node itself */
5528 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5529 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5530 udf_node->ext[extnr]);
5531 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5532 }
5533
5534 if (udf_node->fe)
5535 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5536 udf_node->fe);
5537 if (udf_node->efe)
5538 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5539 udf_node->efe);
5540
5541 udf_node->fe = (void *) 0xdeadaaaa;
5542 udf_node->efe = (void *) 0xdeadbbbb;
5543 udf_node->ump = (void *) 0xdeadbeef;
5544 pool_put(&udf_node_pool, udf_node);
5545
5546 return 0;
5547 }
5548
5549
5550
5551 /*
5552 * create a new node using the specified vnodeops, vap and cnp but with the
5553 * udf_file_type. This allows special files to be created. Use with care.
5554 */
5555
5556 static int
5557 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5558 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5559 {
5560 union dscrptr *dscr;
5561 struct udf_node *dir_node = VTOI(dvp);;
5562 struct udf_node *udf_node;
5563 struct udf_mount *ump = dir_node->ump;
5564 struct vnode *nvp;
5565 struct long_ad node_icb_loc;
5566 uint64_t parent_unique_id;
5567 uint64_t lmapping;
5568 uint32_t lb_size, lb_num;
5569 uint16_t vpart_num;
5570 uid_t uid;
5571 gid_t gid, parent_gid;
5572 int fid_size, error;
5573
5574 lb_size = udf_rw32(ump->logical_vol->lb_size);
5575 *vpp = NULL;
5576
5577 /* allocate vnode */
5578 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5579 if (error)
5580 return error;
5581
5582 /* lock node */
5583 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5584 if (error) {
5585 nvp->v_data = NULL;
5586 ungetnewvnode(nvp);
5587 return error;
5588 }
5589
5590 /* get disc allocation for one logical block */
5591 vpart_num = ump->node_part;
5592 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5593 vpart_num, &lmapping);
5594 lb_num = lmapping;
5595 if (error) {
5596 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5597 ungetnewvnode(nvp);
5598 return error;
5599 }
5600
5601 /* initialise pointer to location */
5602 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5603 node_icb_loc.len = udf_rw32(lb_size);
5604 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5605 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5606
5607 /* build udf_node (do initialise!) */
5608 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5609 memset(udf_node, 0, sizeof(struct udf_node));
5610
5611 /* initialise crosslinks, note location of fe/efe for hashing */
5612 /* bugalert: synchronise with udf_get_node() */
5613 udf_node->ump = ump;
5614 udf_node->vnode = nvp;
5615 nvp->v_data = udf_node;
5616 udf_node->loc = node_icb_loc;
5617 udf_node->write_loc = node_icb_loc;
5618 udf_node->lockf = 0;
5619 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5620 cv_init(&udf_node->node_lock, "udf_nlk");
5621 udf_node->outstanding_bufs = 0;
5622 udf_node->outstanding_nodedscr = 0;
5623
5624 /* initialise genfs */
5625 genfs_node_init(nvp, &udf_genfsops);
5626
5627 /* insert into the hash lookup */
5628 udf_register_node(udf_node);
5629
5630 /* get parent's unique ID for refering '..' if its a directory */
5631 if (dir_node->fe) {
5632 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5633 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5634 } else {
5635 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5636 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5637 }
5638
5639 /* get descriptor */
5640 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5641
5642 /* choose a fe or an efe for it */
5643 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
5644 udf_node->fe = &dscr->fe;
5645 fid_size = udf_create_new_fe(ump, udf_node->fe,
5646 udf_file_type, &udf_node->loc,
5647 &dir_node->loc, parent_unique_id);
5648 /* TODO add extended attribute for creation time */
5649 } else {
5650 udf_node->efe = &dscr->efe;
5651 fid_size = udf_create_new_efe(ump, udf_node->efe,
5652 udf_file_type, &udf_node->loc,
5653 &dir_node->loc, parent_unique_id);
5654 }
5655 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5656
5657 /* update vnode's size and type */
5658 nvp->v_type = vap->va_type;
5659 uvm_vnp_setsize(nvp, fid_size);
5660
5661 /* set access mode */
5662 udf_setaccessmode(udf_node, vap->va_mode);
5663
5664 /* set ownership */
5665 uid = kauth_cred_geteuid(cnp->cn_cred);
5666 gid = parent_gid;
5667 udf_setownership(udf_node, uid, gid);
5668
5669 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5670 if (error) {
5671 /* free disc allocation for node */
5672 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5673
5674 /* recycle udf_node */
5675 udf_dispose_node(udf_node);
5676 vput(nvp);
5677
5678 *vpp = NULL;
5679 return error;
5680 }
5681
5682 /* adjust file count */
5683 udf_adjust_filecount(udf_node, 1);
5684
5685 /* return result */
5686 *vpp = nvp;
5687
5688 return 0;
5689 }
5690
5691
5692 int
5693 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5694 struct componentname *cnp)
5695 {
5696 int (**vnodeops)(void *);
5697 int udf_file_type;
5698
5699 DPRINTF(NODE, ("udf_create_node called\n"));
5700
5701 /* what type are we creating ? */
5702 vnodeops = udf_vnodeop_p;
5703 /* start with a default */
5704 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5705
5706 *vpp = NULL;
5707
5708 switch (vap->va_type) {
5709 case VREG :
5710 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5711 break;
5712 case VDIR :
5713 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5714 break;
5715 case VLNK :
5716 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5717 break;
5718 case VBLK :
5719 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5720 /* specfs */
5721 return ENOTSUP;
5722 break;
5723 case VCHR :
5724 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5725 /* specfs */
5726 return ENOTSUP;
5727 break;
5728 case VFIFO :
5729 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5730 /* specfs */
5731 return ENOTSUP;
5732 break;
5733 case VSOCK :
5734 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5735 /* specfs */
5736 return ENOTSUP;
5737 break;
5738 case VNON :
5739 case VBAD :
5740 default :
5741 /* nothing; can we even create these? */
5742 return EINVAL;
5743 }
5744
5745 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5746 }
5747
5748 /* --------------------------------------------------------------------- */
5749
5750 static void
5751 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5752 {
5753 struct udf_mount *ump = udf_node->ump;
5754 uint32_t lb_size, lb_num, len, num_lb;
5755 uint16_t vpart_num;
5756
5757 /* is there really one? */
5758 if (mem == NULL)
5759 return;
5760
5761 /* got a descriptor here */
5762 len = UDF_EXT_LEN(udf_rw32(loc->len));
5763 lb_num = udf_rw32(loc->loc.lb_num);
5764 vpart_num = udf_rw16(loc->loc.part_num);
5765
5766 lb_size = udf_rw32(ump->logical_vol->lb_size);
5767 num_lb = (len + lb_size -1) / lb_size;
5768
5769 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5770 }
5771
5772 void
5773 udf_delete_node(struct udf_node *udf_node)
5774 {
5775 void *dscr;
5776 struct udf_mount *ump;
5777 struct long_ad *loc;
5778 int extnr, lvint, dummy;
5779
5780 ump = udf_node->ump;
5781
5782 /* paranoia check on integrity; should be open!; we could panic */
5783 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5784 if (lvint == UDF_INTEGRITY_CLOSED)
5785 printf("\tIntegrity was CLOSED!\n");
5786
5787 /* whatever the node type, change its size to zero */
5788 (void) udf_resize_node(udf_node, 0, &dummy);
5789
5790 /* force it to be `clean'; no use writing it out */
5791 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5792 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5793
5794 /* adjust file count */
5795 udf_adjust_filecount(udf_node, -1);
5796
5797 /*
5798 * Free its allocated descriptors; memory will be released when
5799 * vop_reclaim() is called.
5800 */
5801 loc = &udf_node->loc;
5802
5803 dscr = udf_node->fe;
5804 udf_free_descriptor_space(udf_node, loc, dscr);
5805 dscr = udf_node->efe;
5806 udf_free_descriptor_space(udf_node, loc, dscr);
5807
5808 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5809 dscr = udf_node->ext[extnr];
5810 loc = &udf_node->ext_loc[extnr];
5811 udf_free_descriptor_space(udf_node, loc, dscr);
5812 }
5813 }
5814
5815 /* --------------------------------------------------------------------- */
5816
5817 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5818 int
5819 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5820 {
5821 struct file_entry *fe = udf_node->fe;
5822 struct extfile_entry *efe = udf_node->efe;
5823 uint64_t file_size;
5824 int error;
5825
5826 if (fe) {
5827 file_size = udf_rw64(fe->inf_len);
5828 } else {
5829 assert(udf_node->efe);
5830 file_size = udf_rw64(efe->inf_len);
5831 }
5832
5833 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5834 file_size, new_size));
5835
5836 /* if not changing, we're done */
5837 if (file_size == new_size)
5838 return 0;
5839
5840 *extended = (new_size > file_size);
5841 if (*extended) {
5842 error = udf_grow_node(udf_node, new_size);
5843 } else {
5844 error = udf_shrink_node(udf_node, new_size);
5845 }
5846
5847 return error;
5848 }
5849
5850
5851 /* --------------------------------------------------------------------- */
5852
5853 void
5854 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5855 struct timespec *mod, struct timespec *birth)
5856 {
5857 struct timespec now;
5858 struct file_entry *fe;
5859 struct extfile_entry *efe;
5860 struct filetimes_extattr_entry *ft_extattr;
5861 struct timestamp *atime, *mtime, *attrtime, *ctime;
5862 struct timestamp fe_ctime;
5863 struct timespec cur_birth;
5864 uint32_t offset, a_l;
5865 uint8_t *filedata;
5866 int error;
5867
5868 /* protect against rogue values */
5869 if (!udf_node)
5870 return;
5871
5872 fe = udf_node->fe;
5873 efe = udf_node->efe;
5874
5875 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5876 return;
5877
5878 /* get descriptor information */
5879 if (fe) {
5880 atime = &fe->atime;
5881 mtime = &fe->mtime;
5882 attrtime = &fe->attrtime;
5883 filedata = fe->data;
5884
5885 /* initial save dummy setting */
5886 ctime = &fe_ctime;
5887
5888 /* check our extended attribute if present */
5889 error = udf_extattr_search_intern(udf_node,
5890 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5891 if (!error) {
5892 ft_extattr = (struct filetimes_extattr_entry *)
5893 (filedata + offset);
5894 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5895 ctime = &ft_extattr->times[0];
5896 }
5897 /* TODO create the extended attribute if not found ? */
5898 } else {
5899 assert(udf_node->efe);
5900 atime = &efe->atime;
5901 mtime = &efe->mtime;
5902 attrtime = &efe->attrtime;
5903 ctime = &efe->ctime;
5904 }
5905
5906 vfs_timestamp(&now);
5907
5908 /* set access time */
5909 if (udf_node->i_flags & IN_ACCESS) {
5910 if (acc == NULL)
5911 acc = &now;
5912 udf_timespec_to_timestamp(acc, atime);
5913 }
5914
5915 /* set modification time */
5916 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5917 if (mod == NULL)
5918 mod = &now;
5919 udf_timespec_to_timestamp(mod, mtime);
5920
5921 /* ensure birthtime is older than set modification! */
5922 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5923 if ((cur_birth.tv_sec > mod->tv_sec) ||
5924 ((cur_birth.tv_sec == mod->tv_sec) &&
5925 (cur_birth.tv_nsec > mod->tv_nsec))) {
5926 udf_timespec_to_timestamp(mod, ctime);
5927 }
5928 }
5929
5930 /* update birthtime if specified */
5931 /* XXX we asume here that given birthtime is older than mod */
5932 if (birth && (birth->tv_sec != VNOVAL)) {
5933 udf_timespec_to_timestamp(birth, ctime);
5934 }
5935
5936 /* set change time */
5937 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5938 udf_timespec_to_timestamp(&now, attrtime);
5939
5940 /* notify updates to the node itself */
5941 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5942 udf_node->i_flags |= IN_ACCESSED;
5943 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5944 udf_node->i_flags |= IN_MODIFIED;
5945
5946 /* clear modification flags */
5947 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5948 }
5949
5950 /* --------------------------------------------------------------------- */
5951
5952 int
5953 udf_update(struct vnode *vp, struct timespec *acc,
5954 struct timespec *mod, struct timespec *birth, int updflags)
5955 {
5956 union dscrptr *dscrptr;
5957 struct udf_node *udf_node = VTOI(vp);
5958 struct udf_mount *ump = udf_node->ump;
5959 struct regid *impl_id;
5960 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5961 int waitfor, flags;
5962
5963 #ifdef DEBUG
5964 char bits[128];
5965 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5966 updflags));
5967 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5968 DPRINTF(CALL, ("\tnode flags %s\n", bits));
5969 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5970 #endif
5971
5972 /* set our times */
5973 udf_itimes(udf_node, acc, mod, birth);
5974
5975 /* set our implementation id */
5976 if (udf_node->fe) {
5977 dscrptr = (union dscrptr *) udf_node->fe;
5978 impl_id = &udf_node->fe->imp_id;
5979 } else {
5980 dscrptr = (union dscrptr *) udf_node->efe;
5981 impl_id = &udf_node->efe->imp_id;
5982 }
5983
5984 /* set our ID */
5985 udf_set_regid(impl_id, IMPL_NAME);
5986 udf_add_impl_regid(ump, impl_id);
5987
5988 /* update our crc! on RMW we are not allowed to change a thing */
5989 udf_validate_tag_and_crc_sums(dscrptr);
5990
5991 /* if called when mounted readonly, never write back */
5992 if (vp->v_mount->mnt_flag & MNT_RDONLY)
5993 return 0;
5994
5995 /* check if the node is dirty 'enough'*/
5996 if (updflags & UPDATE_CLOSE) {
5997 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
5998 } else {
5999 flags = udf_node->i_flags & IN_MODIFIED;
6000 }
6001 if (flags == 0)
6002 return 0;
6003
6004 /* determine if we need to write sync or async */
6005 waitfor = 0;
6006 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6007 /* sync mounted */
6008 waitfor = updflags & UPDATE_WAIT;
6009 if (updflags & UPDATE_DIROP)
6010 waitfor |= UPDATE_WAIT;
6011 }
6012 if (waitfor)
6013 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6014
6015 return 0;
6016 }
6017
6018
6019 /* --------------------------------------------------------------------- */
6020
6021
6022 /*
6023 * Read one fid and process it into a dirent and advance to the next (*fid)
6024 * has to be allocated a logical block in size, (*dirent) struct dirent length
6025 */
6026
6027 int
6028 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6029 struct fileid_desc *fid, struct dirent *dirent)
6030 {
6031 struct udf_node *dir_node = VTOI(vp);
6032 struct udf_mount *ump = dir_node->ump;
6033 struct file_entry *fe = dir_node->fe;
6034 struct extfile_entry *efe = dir_node->efe;
6035 uint32_t fid_size, lb_size;
6036 uint64_t file_size;
6037 char *fid_name;
6038 int enough, error;
6039
6040 assert(fid);
6041 assert(dirent);
6042 assert(dir_node);
6043 assert(offset);
6044 assert(*offset != 1);
6045
6046 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6047 /* check if we're past the end of the directory */
6048 if (fe) {
6049 file_size = udf_rw64(fe->inf_len);
6050 } else {
6051 assert(dir_node->efe);
6052 file_size = udf_rw64(efe->inf_len);
6053 }
6054 if (*offset >= file_size)
6055 return EINVAL;
6056
6057 /* get maximum length of FID descriptor */
6058 lb_size = udf_rw32(ump->logical_vol->lb_size);
6059
6060 /* initialise return values */
6061 fid_size = 0;
6062 memset(dirent, 0, sizeof(struct dirent));
6063 memset(fid, 0, lb_size);
6064
6065 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6066 if (!enough) {
6067 /* short dir ... */
6068 return EIO;
6069 }
6070
6071 error = vn_rdwr(UIO_READ, vp,
6072 fid, MIN(file_size - (*offset), lb_size), *offset,
6073 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6074 NULL, NULL);
6075 if (error)
6076 return error;
6077
6078 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6079 /*
6080 * Check if we got a whole descriptor.
6081 * TODO Try to `resync' directory stream when something is very wrong.
6082 */
6083
6084 /* check if our FID header is OK */
6085 error = udf_check_tag(fid);
6086 if (error) {
6087 goto brokendir;
6088 }
6089 DPRINTF(FIDS, ("\ttag check ok\n"));
6090
6091 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6092 error = EIO;
6093 goto brokendir;
6094 }
6095 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6096
6097 /* check for length */
6098 fid_size = udf_fidsize(fid);
6099 enough = (file_size - (*offset) >= fid_size);
6100 if (!enough) {
6101 error = EIO;
6102 goto brokendir;
6103 }
6104 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6105
6106 /* check FID contents */
6107 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6108 brokendir:
6109 if (error) {
6110 /* note that is sometimes a bit quick to report */
6111 printf("BROKEN DIRECTORY ENTRY\n");
6112 /* RESYNC? */
6113 /* TODO: use udf_resync_fid_stream */
6114 return EIO;
6115 }
6116 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6117
6118 /* we got a whole and valid descriptor! */
6119 DPRINTF(FIDS, ("\tinterpret FID\n"));
6120
6121 /* create resulting dirent structure */
6122 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6123 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6124 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6125
6126 /* '..' has no name, so provide one */
6127 if (fid->file_char & UDF_FILE_CHAR_PAR)
6128 strcpy(dirent->d_name, "..");
6129
6130 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
6131 dirent->d_namlen = strlen(dirent->d_name);
6132 dirent->d_reclen = _DIRENT_SIZE(dirent);
6133
6134 /*
6135 * Note that its not worth trying to go for the filetypes now... its
6136 * too expensive too
6137 */
6138 dirent->d_type = DT_UNKNOWN;
6139
6140 /* initial guess for filetype we can make */
6141 if (fid->file_char & UDF_FILE_CHAR_DIR)
6142 dirent->d_type = DT_DIR;
6143
6144 /* advance */
6145 *offset += fid_size;
6146
6147 return error;
6148 }
6149
6150
6151 /* --------------------------------------------------------------------- */
6152
6153 static void
6154 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6155 int pass, int *ndirty)
6156 {
6157 struct udf_node *udf_node, *n_udf_node;
6158 struct vnode *vp;
6159 int vdirty, error;
6160 int on_type, on_flags, on_vnode;
6161
6162 derailed:
6163 KASSERT(mutex_owned(&mntvnode_lock));
6164
6165 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6166 udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6167 for (;udf_node; udf_node = n_udf_node) {
6168 DPRINTF(SYNC, ("."));
6169
6170 udf_node->i_flags &= ~IN_SYNCED;
6171 vp = udf_node->vnode;
6172
6173 mutex_enter(&vp->v_interlock);
6174 n_udf_node = LIST_NEXT(udf_node, sortchain);
6175 if (n_udf_node)
6176 n_udf_node->i_flags |= IN_SYNCED;
6177
6178 /* system nodes are not synced this way */
6179 if (vp->v_vflag & VV_SYSTEM) {
6180 mutex_exit(&vp->v_interlock);
6181 continue;
6182 }
6183
6184 /* check if its dirty enough to even try */
6185 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6186 on_flags = ((udf_node->i_flags &
6187 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6188 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6189 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6190 if (on_type || (on_flags || on_vnode)) { /* XXX */
6191 /* not dirty (enough?) */
6192 mutex_exit(&vp->v_interlock);
6193 continue;
6194 }
6195
6196 mutex_exit(&mntvnode_lock);
6197 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6198 if (error) {
6199 mutex_enter(&mntvnode_lock);
6200 if (error == ENOENT)
6201 goto derailed;
6202 *ndirty += 1;
6203 continue;
6204 }
6205
6206 switch (pass) {
6207 case 1:
6208 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6209 break;
6210 case 2:
6211 vdirty = vp->v_numoutput;
6212 if (vp->v_tag == VT_UDF)
6213 vdirty += udf_node->outstanding_bufs +
6214 udf_node->outstanding_nodedscr;
6215 if (vdirty == 0)
6216 VOP_FSYNC(vp, cred, 0,0,0);
6217 *ndirty += vdirty;
6218 break;
6219 case 3:
6220 vdirty = vp->v_numoutput;
6221 if (vp->v_tag == VT_UDF)
6222 vdirty += udf_node->outstanding_bufs +
6223 udf_node->outstanding_nodedscr;
6224 *ndirty += vdirty;
6225 break;
6226 }
6227
6228 vput(vp);
6229 mutex_enter(&mntvnode_lock);
6230 }
6231 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6232 }
6233
6234
6235 void
6236 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6237 {
6238 int dummy, ndirty;
6239
6240 mutex_enter(&mntvnode_lock);
6241 recount:
6242 dummy = 0;
6243 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6244 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6245 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6246
6247 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6248 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6249 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6250
6251 if (waitfor == MNT_WAIT) {
6252 ndirty = ump->devvp->v_numoutput;
6253 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6254 ndirty));
6255 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6256 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6257 ndirty));
6258
6259 if (ndirty) {
6260 /* 1/4 second wait */
6261 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6262 hz/4);
6263 goto recount;
6264 }
6265 }
6266
6267 mutex_exit(&mntvnode_lock);
6268 }
6269
6270 /* --------------------------------------------------------------------- */
6271
6272 /*
6273 * Read and write file extent in/from the buffer.
6274 *
6275 * The splitup of the extent into seperate request-buffers is to minimise
6276 * copying around as much as possible.
6277 *
6278 * block based file reading and writing
6279 */
6280
6281 static int
6282 udf_read_internal(struct udf_node *node, uint8_t *blob)
6283 {
6284 struct udf_mount *ump;
6285 struct file_entry *fe = node->fe;
6286 struct extfile_entry *efe = node->efe;
6287 uint64_t inflen;
6288 uint32_t sector_size;
6289 uint8_t *pos;
6290 int icbflags, addr_type;
6291
6292 /* get extent and do some paranoia checks */
6293 ump = node->ump;
6294 sector_size = ump->discinfo.sector_size;
6295
6296 if (fe) {
6297 inflen = udf_rw64(fe->inf_len);
6298 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6299 icbflags = udf_rw16(fe->icbtag.flags);
6300 } else {
6301 assert(node->efe);
6302 inflen = udf_rw64(efe->inf_len);
6303 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6304 icbflags = udf_rw16(efe->icbtag.flags);
6305 }
6306 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6307
6308 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6309 assert(inflen < sector_size);
6310
6311 /* copy out info */
6312 memset(blob, 0, sector_size);
6313 memcpy(blob, pos, inflen);
6314
6315 return 0;
6316 }
6317
6318
6319 static int
6320 udf_write_internal(struct udf_node *node, uint8_t *blob)
6321 {
6322 struct udf_mount *ump;
6323 struct file_entry *fe = node->fe;
6324 struct extfile_entry *efe = node->efe;
6325 uint64_t inflen;
6326 uint32_t sector_size;
6327 uint8_t *pos;
6328 int icbflags, addr_type;
6329
6330 /* get extent and do some paranoia checks */
6331 ump = node->ump;
6332 sector_size = ump->discinfo.sector_size;
6333
6334 if (fe) {
6335 inflen = udf_rw64(fe->inf_len);
6336 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6337 icbflags = udf_rw16(fe->icbtag.flags);
6338 } else {
6339 assert(node->efe);
6340 inflen = udf_rw64(efe->inf_len);
6341 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6342 icbflags = udf_rw16(efe->icbtag.flags);
6343 }
6344 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6345
6346 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6347 assert(inflen < sector_size);
6348
6349 /* copy in blob */
6350 /* memset(pos, 0, inflen); */
6351 memcpy(pos, blob, inflen);
6352
6353 return 0;
6354 }
6355
6356
6357 void
6358 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6359 {
6360 struct buf *nestbuf;
6361 struct udf_mount *ump = udf_node->ump;
6362 uint64_t *mapping;
6363 uint64_t run_start;
6364 uint32_t sector_size;
6365 uint32_t buf_offset, sector, rbuflen, rblk;
6366 uint32_t from, lblkno;
6367 uint32_t sectors;
6368 uint8_t *buf_pos;
6369 int error, run_length, isdir, what;
6370
6371 sector_size = udf_node->ump->discinfo.sector_size;
6372
6373 from = buf->b_blkno;
6374 sectors = buf->b_bcount / sector_size;
6375
6376 isdir = (udf_node->vnode->v_type == VDIR);
6377 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6378
6379 /* assure we have enough translation slots */
6380 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6381 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6382
6383 if (sectors > UDF_MAX_MAPPINGS) {
6384 printf("udf_read_filebuf: implementation limit on bufsize\n");
6385 buf->b_error = EIO;
6386 biodone(buf);
6387 return;
6388 }
6389
6390 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6391
6392 error = 0;
6393 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6394 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6395 if (error) {
6396 buf->b_error = error;
6397 biodone(buf);
6398 goto out;
6399 }
6400 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6401
6402 /* pre-check if its an internal */
6403 if (*mapping == UDF_TRANS_INTERN) {
6404 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6405 if (error)
6406 buf->b_error = error;
6407 biodone(buf);
6408 goto out;
6409 }
6410 DPRINTF(READ, ("\tnot intern\n"));
6411
6412 #ifdef DEBUG
6413 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6414 printf("Returned translation table:\n");
6415 for (sector = 0; sector < sectors; sector++) {
6416 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6417 }
6418 }
6419 #endif
6420
6421 /* request read-in of data from disc sheduler */
6422 buf->b_resid = buf->b_bcount;
6423 for (sector = 0; sector < sectors; sector++) {
6424 buf_offset = sector * sector_size;
6425 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6426 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6427
6428 /* check if its zero or unmapped to stop reading */
6429 switch (mapping[sector]) {
6430 case UDF_TRANS_UNMAPPED:
6431 case UDF_TRANS_ZERO:
6432 /* copy zero sector TODO runlength like below */
6433 memset(buf_pos, 0, sector_size);
6434 DPRINTF(READ, ("\treturning zero sector\n"));
6435 nestiobuf_done(buf, sector_size, 0);
6436 break;
6437 default :
6438 DPRINTF(READ, ("\tread sector "
6439 "%"PRIu64"\n", mapping[sector]));
6440
6441 lblkno = from + sector;
6442 run_start = mapping[sector];
6443 run_length = 1;
6444 while (sector < sectors-1) {
6445 if (mapping[sector+1] != mapping[sector]+1)
6446 break;
6447 run_length++;
6448 sector++;
6449 }
6450
6451 /*
6452 * nest an iobuf and mark it for async reading. Since
6453 * we're using nested buffers, they can't be cached by
6454 * design.
6455 */
6456 rbuflen = run_length * sector_size;
6457 rblk = run_start * (sector_size/DEV_BSIZE);
6458
6459 nestbuf = getiobuf(NULL, true);
6460 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6461 /* nestbuf is B_ASYNC */
6462
6463 /* identify this nestbuf */
6464 nestbuf->b_lblkno = lblkno;
6465 assert(nestbuf->b_vp == udf_node->vnode);
6466
6467 /* CD shedules on raw blkno */
6468 nestbuf->b_blkno = rblk;
6469 nestbuf->b_proc = NULL;
6470 nestbuf->b_rawblkno = rblk;
6471 nestbuf->b_udf_c_type = what;
6472
6473 udf_discstrat_queuebuf(ump, nestbuf);
6474 }
6475 }
6476 out:
6477 /* if we're synchronously reading, wait for the completion */
6478 if ((buf->b_flags & B_ASYNC) == 0)
6479 biowait(buf);
6480
6481 DPRINTF(READ, ("\tend of read_filebuf\n"));
6482 free(mapping, M_TEMP);
6483 return;
6484 }
6485
6486
6487 void
6488 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6489 {
6490 struct buf *nestbuf;
6491 struct udf_mount *ump = udf_node->ump;
6492 uint64_t *mapping;
6493 uint64_t run_start;
6494 uint32_t lb_size;
6495 uint32_t buf_offset, lb_num, rbuflen, rblk;
6496 uint32_t from, lblkno;
6497 uint32_t num_lb;
6498 uint8_t *buf_pos;
6499 int error, run_length, isdir, what, s;
6500
6501 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6502
6503 from = buf->b_blkno;
6504 num_lb = buf->b_bcount / lb_size;
6505
6506 isdir = (udf_node->vnode->v_type == VDIR);
6507 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6508
6509 if (udf_node == ump->metadatabitmap_node)
6510 what = UDF_C_METADATA_SBM;
6511
6512 /* assure we have enough translation slots */
6513 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6514 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6515
6516 if (num_lb > UDF_MAX_MAPPINGS) {
6517 printf("udf_write_filebuf: implementation limit on bufsize\n");
6518 buf->b_error = EIO;
6519 biodone(buf);
6520 return;
6521 }
6522
6523 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6524
6525 error = 0;
6526 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6527 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6528 if (error) {
6529 buf->b_error = error;
6530 biodone(buf);
6531 goto out;
6532 }
6533 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6534
6535 /* if its internally mapped, we can write it in the descriptor itself */
6536 if (*mapping == UDF_TRANS_INTERN) {
6537 /* TODO paranoia check if we ARE going to have enough space */
6538 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6539 if (error)
6540 buf->b_error = error;
6541 biodone(buf);
6542 goto out;
6543 }
6544 DPRINTF(WRITE, ("\tnot intern\n"));
6545
6546 /* request write out of data to disc sheduler */
6547 buf->b_resid = buf->b_bcount;
6548 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6549 buf_offset = lb_num * lb_size;
6550 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6551 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6552
6553 /*
6554 * Mappings are not that important here. Just before we write
6555 * the lb_num we late-allocate them when needed and update the
6556 * mapping in the udf_node.
6557 */
6558
6559 /* XXX why not ignore the mapping altogether ? */
6560 /* TODO estimate here how much will be late-allocated */
6561 DPRINTF(WRITE, ("\twrite lb_num "
6562 "%"PRIu64, mapping[lb_num]));
6563
6564 lblkno = from + lb_num;
6565 run_start = mapping[lb_num];
6566 run_length = 1;
6567 while (lb_num < num_lb-1) {
6568 if (mapping[lb_num+1] != mapping[lb_num]+1)
6569 if (mapping[lb_num+1] != mapping[lb_num])
6570 break;
6571 run_length++;
6572 lb_num++;
6573 }
6574 DPRINTF(WRITE, ("+ %d\n", run_length));
6575
6576 /* nest an iobuf on the master buffer for the extent */
6577 rbuflen = run_length * lb_size;
6578 rblk = run_start * (lb_size/DEV_BSIZE);
6579
6580 #if 0
6581 /* if its zero or unmapped, our blknr gets -1 for unmapped */
6582 switch (mapping[lb_num]) {
6583 case UDF_TRANS_UNMAPPED:
6584 case UDF_TRANS_ZERO:
6585 rblk = -1;
6586 break;
6587 default:
6588 rblk = run_start * (lb_size/DEV_BSIZE);
6589 break;
6590 }
6591 #endif
6592
6593 nestbuf = getiobuf(NULL, true);
6594 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6595 /* nestbuf is B_ASYNC */
6596
6597 /* identify this nestbuf */
6598 nestbuf->b_lblkno = lblkno;
6599 KASSERT(nestbuf->b_vp == udf_node->vnode);
6600
6601 /* CD shedules on raw blkno */
6602 nestbuf->b_blkno = rblk;
6603 nestbuf->b_proc = NULL;
6604 nestbuf->b_rawblkno = rblk;
6605 nestbuf->b_udf_c_type = what;
6606
6607 /* increment our outstanding bufs counter */
6608 s = splbio();
6609 udf_node->outstanding_bufs++;
6610 splx(s);
6611
6612 udf_discstrat_queuebuf(ump, nestbuf);
6613 }
6614 out:
6615 /* if we're synchronously writing, wait for the completion */
6616 if ((buf->b_flags & B_ASYNC) == 0)
6617 biowait(buf);
6618
6619 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6620 free(mapping, M_TEMP);
6621 return;
6622 }
6623
6624 /* --------------------------------------------------------------------- */
6625
6626
6627