udf_subr.c revision 1.73.4.8 1 /* $NetBSD: udf_subr.c,v 1.73.4.8 2009/02/18 00:51:27 snj Exp $ */
2
3 /*
4 * Copyright (c) 2006, 2008 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 */
28
29
30 #include <sys/cdefs.h>
31 #ifndef lint
32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.73.4.8 2009/02/18 00:51:27 snj Exp $");
33 #endif /* not lint */
34
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_quota.h"
38 #include "opt_compat_netbsd.h"
39 #endif
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysctl.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/vnode.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <sys/mount.h>
50 #include <sys/buf.h>
51 #include <sys/file.h>
52 #include <sys/device.h>
53 #include <sys/disklabel.h>
54 #include <sys/ioctl.h>
55 #include <sys/malloc.h>
56 #include <sys/dirent.h>
57 #include <sys/stat.h>
58 #include <sys/conf.h>
59 #include <sys/kauth.h>
60 #include <fs/unicode.h>
61 #include <dev/clock_subr.h>
62
63 #include <fs/udf/ecma167-udf.h>
64 #include <fs/udf/udf_mount.h>
65 #include <sys/dirhash.h>
66
67 #include "udf.h"
68 #include "udf_subr.h"
69 #include "udf_bswap.h"
70
71
72 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
73
74 #define UDF_SET_SYSTEMFILE(vp) \
75 /* XXXAD Is the vnode locked? */ \
76 (vp)->v_vflag |= VV_SYSTEM; \
77 vref(vp); \
78 vput(vp); \
79
80 extern int syncer_maxdelay; /* maximum delay time */
81 extern int (**udf_vnodeop_p)(void *);
82
83 /* --------------------------------------------------------------------- */
84
85 //#ifdef DEBUG
86 #if 1
87
88 #if 0
89 static void
90 udf_dumpblob(boid *blob, uint32_t dlen)
91 {
92 int i, j;
93
94 printf("blob = %p\n", blob);
95 printf("dump of %d bytes\n", dlen);
96
97 for (i = 0; i < dlen; i+ = 16) {
98 printf("%04x ", i);
99 for (j = 0; j < 16; j++) {
100 if (i+j < dlen) {
101 printf("%02x ", blob[i+j]);
102 } else {
103 printf(" ");
104 }
105 }
106 for (j = 0; j < 16; j++) {
107 if (i+j < dlen) {
108 if (blob[i+j]>32 && blob[i+j]! = 127) {
109 printf("%c", blob[i+j]);
110 } else {
111 printf(".");
112 }
113 }
114 }
115 printf("\n");
116 }
117 printf("\n");
118 Debugger();
119 }
120 #endif
121
122 static void
123 udf_dump_discinfo(struct udf_mount *ump)
124 {
125 char bits[128];
126 struct mmc_discinfo *di = &ump->discinfo;
127
128 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
129 return;
130
131 printf("Device/media info :\n");
132 printf("\tMMC profile 0x%02x\n", di->mmc_profile);
133 printf("\tderived class %d\n", di->mmc_class);
134 printf("\tsector size %d\n", di->sector_size);
135 printf("\tdisc state %d\n", di->disc_state);
136 printf("\tlast ses state %d\n", di->last_session_state);
137 printf("\tbg format state %d\n", di->bg_format_state);
138 printf("\tfrst track %d\n", di->first_track);
139 printf("\tfst on last ses %d\n", di->first_track_last_session);
140 printf("\tlst on last ses %d\n", di->last_track_last_session);
141 printf("\tlink block penalty %d\n", di->link_block_penalty);
142 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
143 sizeof(bits));
144 printf("\tdisc flags %s\n", bits);
145 printf("\tdisc id %x\n", di->disc_id);
146 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
147
148 printf("\tnum sessions %d\n", di->num_sessions);
149 printf("\tnum tracks %d\n", di->num_tracks);
150
151 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
152 printf("\tcapabilities cur %s\n", bits);
153 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
154 printf("\tcapabilities cap %s\n", bits);
155 }
156
157 static void
158 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
159 {
160 char bits[128];
161
162 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
163 return;
164
165 printf("Trackinfo for track %d:\n", trackinfo->tracknr);
166 printf("\tsessionnr %d\n", trackinfo->sessionnr);
167 printf("\ttrack mode %d\n", trackinfo->track_mode);
168 printf("\tdata mode %d\n", trackinfo->data_mode);
169 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
170 printf("\tflags %s\n", bits);
171
172 printf("\ttrack start %d\n", trackinfo->track_start);
173 printf("\tnext_writable %d\n", trackinfo->next_writable);
174 printf("\tfree_blocks %d\n", trackinfo->free_blocks);
175 printf("\tpacket_size %d\n", trackinfo->packet_size);
176 printf("\ttrack size %d\n", trackinfo->track_size);
177 printf("\tlast recorded block %d\n", trackinfo->last_recorded);
178 }
179
180 #else
181 #define udf_dump_discinfo(a);
182 #define udf_dump_trackinfo(a);
183 #endif
184
185
186 /* --------------------------------------------------------------------- */
187
188 /* not called often */
189 int
190 udf_update_discinfo(struct udf_mount *ump)
191 {
192 struct vnode *devvp = ump->devvp;
193 struct partinfo dpart;
194 struct mmc_discinfo *di;
195 int error;
196
197 DPRINTF(VOLUMES, ("read/update disc info\n"));
198 di = &ump->discinfo;
199 memset(di, 0, sizeof(struct mmc_discinfo));
200
201 /* check if we're on a MMC capable device, i.e. CD/DVD */
202 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
203 if (error == 0) {
204 udf_dump_discinfo(ump);
205 return 0;
206 }
207
208 /* disc partition support */
209 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
210 if (error)
211 return ENODEV;
212
213 /* set up a disc info profile for partitions */
214 di->mmc_profile = 0x01; /* disc type */
215 di->mmc_class = MMC_CLASS_DISC;
216 di->disc_state = MMC_STATE_CLOSED;
217 di->last_session_state = MMC_STATE_CLOSED;
218 di->bg_format_state = MMC_BGFSTATE_COMPLETED;
219 di->link_block_penalty = 0;
220
221 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
222 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
223 di->mmc_cap = di->mmc_cur;
224 di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
225
226 /* TODO problem with last_possible_lba on resizable VND; request */
227 di->last_possible_lba = dpart.part->p_size;
228 di->sector_size = dpart.disklab->d_secsize;
229
230 di->num_sessions = 1;
231 di->num_tracks = 1;
232
233 di->first_track = 1;
234 di->first_track_last_session = di->last_track_last_session = 1;
235
236 udf_dump_discinfo(ump);
237 return 0;
238 }
239
240
241 int
242 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
243 {
244 struct vnode *devvp = ump->devvp;
245 struct mmc_discinfo *di = &ump->discinfo;
246 int error, class;
247
248 DPRINTF(VOLUMES, ("read track info\n"));
249
250 class = di->mmc_class;
251 if (class != MMC_CLASS_DISC) {
252 /* tracknr specified in struct ti */
253 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
254 return error;
255 }
256
257 /* disc partition support */
258 if (ti->tracknr != 1)
259 return EIO;
260
261 /* create fake ti (TODO check for resized vnds) */
262 ti->sessionnr = 1;
263
264 ti->track_mode = 0; /* XXX */
265 ti->data_mode = 0; /* XXX */
266 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
267
268 ti->track_start = 0;
269 ti->packet_size = 1;
270
271 /* TODO support for resizable vnd */
272 ti->track_size = di->last_possible_lba;
273 ti->next_writable = di->last_possible_lba;
274 ti->last_recorded = ti->next_writable;
275 ti->free_blocks = 0;
276
277 return 0;
278 }
279
280
281 int
282 udf_setup_writeparams(struct udf_mount *ump)
283 {
284 struct mmc_writeparams mmc_writeparams;
285 int error;
286
287 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
288 return 0;
289
290 /*
291 * only CD burning normally needs setting up, but other disc types
292 * might need other settings to be made. The MMC framework will set up
293 * the nessisary recording parameters according to the disc
294 * characteristics read in. Modifications can be made in the discinfo
295 * structure passed to change the nature of the disc.
296 */
297
298 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
299 mmc_writeparams.mmc_class = ump->discinfo.mmc_class;
300 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur;
301
302 /*
303 * UDF dictates first track to determine track mode for the whole
304 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
305 * To prevent problems with a `reserved' track in front we start with
306 * the 2nd track and if that is not valid, go for the 1st.
307 */
308 mmc_writeparams.tracknr = 2;
309 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */
310 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */
311
312 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
313 FKIOCTL, NOCRED);
314 if (error) {
315 mmc_writeparams.tracknr = 1;
316 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
317 &mmc_writeparams, FKIOCTL, NOCRED);
318 }
319 return error;
320 }
321
322
323 int
324 udf_synchronise_caches(struct udf_mount *ump)
325 {
326 struct mmc_op mmc_op;
327
328 DPRINTF(CALL, ("udf_synchronise_caches()\n"));
329
330 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
331 return 0;
332
333 /* discs are done now */
334 if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
335 return 0;
336
337 bzero(&mmc_op, sizeof(struct mmc_op));
338 mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
339
340 /* ignore return code */
341 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
342
343 return 0;
344 }
345
346 /* --------------------------------------------------------------------- */
347
348 /* track/session searching for mounting */
349 int
350 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
351 int *first_tracknr, int *last_tracknr)
352 {
353 struct mmc_trackinfo trackinfo;
354 uint32_t tracknr, start_track, num_tracks;
355 int error;
356
357 /* if negative, sessionnr is relative to last session */
358 if (args->sessionnr < 0) {
359 args->sessionnr += ump->discinfo.num_sessions;
360 }
361
362 /* sanity */
363 if (args->sessionnr < 0)
364 args->sessionnr = 0;
365 if (args->sessionnr > ump->discinfo.num_sessions)
366 args->sessionnr = ump->discinfo.num_sessions;
367
368 /* search the tracks for this session, zero session nr indicates last */
369 if (args->sessionnr == 0)
370 args->sessionnr = ump->discinfo.num_sessions;
371 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
372 args->sessionnr--;
373
374 /* sanity again */
375 if (args->sessionnr < 0)
376 args->sessionnr = 0;
377
378 /* search the first and last track of the specified session */
379 num_tracks = ump->discinfo.num_tracks;
380 start_track = ump->discinfo.first_track;
381
382 /* search for first track of this session */
383 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
384 /* get track info */
385 trackinfo.tracknr = tracknr;
386 error = udf_update_trackinfo(ump, &trackinfo);
387 if (error)
388 return error;
389
390 if (trackinfo.sessionnr == args->sessionnr)
391 break;
392 }
393 *first_tracknr = tracknr;
394
395 /* search for last track of this session */
396 for (;tracknr <= num_tracks; tracknr++) {
397 /* get track info */
398 trackinfo.tracknr = tracknr;
399 error = udf_update_trackinfo(ump, &trackinfo);
400 if (error || (trackinfo.sessionnr != args->sessionnr)) {
401 tracknr--;
402 break;
403 }
404 }
405 if (tracknr > num_tracks)
406 tracknr--;
407
408 *last_tracknr = tracknr;
409
410 if (*last_tracknr < *first_tracknr) {
411 printf( "udf_search_tracks: sanity check on drive+disc failed, "
412 "drive returned garbage\n");
413 return EINVAL;
414 }
415
416 assert(*last_tracknr >= *first_tracknr);
417 return 0;
418 }
419
420
421 /*
422 * NOTE: this is the only routine in this file that directly peeks into the
423 * metadata file but since its at a larval state of the mount it can't hurt.
424 *
425 * XXX candidate for udf_allocation.c
426 * XXX clean me up!, change to new node reading code.
427 */
428
429 static void
430 udf_check_track_metadata_overlap(struct udf_mount *ump,
431 struct mmc_trackinfo *trackinfo)
432 {
433 struct part_desc *part;
434 struct file_entry *fe;
435 struct extfile_entry *efe;
436 struct short_ad *s_ad;
437 struct long_ad *l_ad;
438 uint32_t track_start, track_end;
439 uint32_t phys_part_start, phys_part_end, part_start, part_end;
440 uint32_t sector_size, len, alloclen, plb_num;
441 uint8_t *pos;
442 int addr_type, icblen, icbflags, flags;
443
444 /* get our track extents */
445 track_start = trackinfo->track_start;
446 track_end = track_start + trackinfo->track_size;
447
448 /* get our base partition extent */
449 KASSERT(ump->node_part == ump->fids_part);
450 part = ump->partitions[ump->node_part];
451 phys_part_start = udf_rw32(part->start_loc);
452 phys_part_end = phys_part_start + udf_rw32(part->part_len);
453
454 /* no use if its outside the physical partition */
455 if ((phys_part_start >= track_end) || (phys_part_end < track_start))
456 return;
457
458 /*
459 * now follow all extents in the fe/efe to see if they refer to this
460 * track
461 */
462
463 sector_size = ump->discinfo.sector_size;
464
465 /* XXX should we claim exclusive access to the metafile ? */
466 /* TODO: move to new node read code */
467 fe = ump->metadata_node->fe;
468 efe = ump->metadata_node->efe;
469 if (fe) {
470 alloclen = udf_rw32(fe->l_ad);
471 pos = &fe->data[0] + udf_rw32(fe->l_ea);
472 icbflags = udf_rw16(fe->icbtag.flags);
473 } else {
474 assert(efe);
475 alloclen = udf_rw32(efe->l_ad);
476 pos = &efe->data[0] + udf_rw32(efe->l_ea);
477 icbflags = udf_rw16(efe->icbtag.flags);
478 }
479 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
480
481 while (alloclen) {
482 if (addr_type == UDF_ICB_SHORT_ALLOC) {
483 icblen = sizeof(struct short_ad);
484 s_ad = (struct short_ad *) pos;
485 len = udf_rw32(s_ad->len);
486 plb_num = udf_rw32(s_ad->lb_num);
487 } else {
488 /* should not be present, but why not */
489 icblen = sizeof(struct long_ad);
490 l_ad = (struct long_ad *) pos;
491 len = udf_rw32(l_ad->len);
492 plb_num = udf_rw32(l_ad->loc.lb_num);
493 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */
494 }
495 /* process extent */
496 flags = UDF_EXT_FLAGS(len);
497 len = UDF_EXT_LEN(len);
498
499 part_start = phys_part_start + plb_num;
500 part_end = part_start + (len / sector_size);
501
502 if ((part_start >= track_start) && (part_end <= track_end)) {
503 /* extent is enclosed within this track */
504 ump->metadata_track = *trackinfo;
505 return;
506 }
507
508 pos += icblen;
509 alloclen -= icblen;
510 }
511 }
512
513
514 int
515 udf_search_writing_tracks(struct udf_mount *ump)
516 {
517 struct vnode *devvp = ump->devvp;
518 struct mmc_trackinfo trackinfo;
519 struct mmc_op mmc_op;
520 struct part_desc *part;
521 uint32_t tracknr, start_track, num_tracks;
522 uint32_t track_start, track_end, part_start, part_end;
523 int node_alloc, error;
524
525 /*
526 * in the CD/(HD)DVD/BD recordable device model a few tracks within
527 * the last session might be open but in the UDF device model at most
528 * three tracks can be open: a reserved track for delayed ISO VRS
529 * writing, a data track and a metadata track. We search here for the
530 * data track and the metadata track. Note that the reserved track is
531 * troublesome but can be detected by its small size of < 512 sectors.
532 */
533
534 /* update discinfo since it might have changed */
535 error = udf_update_discinfo(ump);
536 if (error)
537 return error;
538
539 num_tracks = ump->discinfo.num_tracks;
540 start_track = ump->discinfo.first_track;
541
542 /* fetch info on first and possibly only track */
543 trackinfo.tracknr = start_track;
544 error = udf_update_trackinfo(ump, &trackinfo);
545 if (error)
546 return error;
547
548 /* copy results to our mount point */
549 ump->data_track = trackinfo;
550 ump->metadata_track = trackinfo;
551
552 /* if not sequential, we're done */
553 if (num_tracks == 1)
554 return 0;
555
556 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
557 /* get track info */
558 trackinfo.tracknr = tracknr;
559 error = udf_update_trackinfo(ump, &trackinfo);
560 if (error)
561 return error;
562
563 /*
564 * If this track is marked damaged, ask for repair. This is an
565 * optional command, so ignore its error but report warning.
566 */
567 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
568 memset(&mmc_op, 0, sizeof(mmc_op));
569 mmc_op.operation = MMC_OP_REPAIRTRACK;
570 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
571 mmc_op.tracknr = tracknr;
572 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
573 if (error)
574 (void)printf("Drive can't explicitly repair "
575 "damaged track %d, but it might "
576 "autorepair\n", tracknr);
577
578 /* reget track info */
579 error = udf_update_trackinfo(ump, &trackinfo);
580 if (error)
581 return error;
582 }
583 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
584 continue;
585
586 track_start = trackinfo.track_start;
587 track_end = track_start + trackinfo.track_size;
588
589 /* check for overlap on data partition */
590 part = ump->partitions[ump->data_part];
591 part_start = udf_rw32(part->start_loc);
592 part_end = part_start + udf_rw32(part->part_len);
593 if ((part_start < track_end) && (part_end > track_start)) {
594 ump->data_track = trackinfo;
595 /* TODO check if UDF partition data_part is writable */
596 }
597
598 /* check for overlap on metadata partition */
599 node_alloc = ump->vtop_alloc[ump->node_part];
600 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
601 (node_alloc == UDF_ALLOC_METABITMAP)) {
602 udf_check_track_metadata_overlap(ump, &trackinfo);
603 } else {
604 ump->metadata_track = trackinfo;
605 }
606 }
607
608 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
609 return EROFS;
610
611 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
612 return EROFS;
613
614 return 0;
615 }
616
617 /* --------------------------------------------------------------------- */
618
619 /*
620 * Check if the blob starts with a good UDF tag. Tags are protected by a
621 * checksum over the reader except one byte at position 4 that is the checksum
622 * itself.
623 */
624
625 int
626 udf_check_tag(void *blob)
627 {
628 struct desc_tag *tag = blob;
629 uint8_t *pos, sum, cnt;
630
631 /* check TAG header checksum */
632 pos = (uint8_t *) tag;
633 sum = 0;
634
635 for(cnt = 0; cnt < 16; cnt++) {
636 if (cnt != 4)
637 sum += *pos;
638 pos++;
639 }
640 if (sum != tag->cksum) {
641 /* bad tag header checksum; this is not a valid tag */
642 return EINVAL;
643 }
644
645 return 0;
646 }
647
648
649 /*
650 * check tag payload will check descriptor CRC as specified.
651 * If the descriptor is too long, it will return EIO otherwise EINVAL.
652 */
653
654 int
655 udf_check_tag_payload(void *blob, uint32_t max_length)
656 {
657 struct desc_tag *tag = blob;
658 uint16_t crc, crc_len;
659
660 crc_len = udf_rw16(tag->desc_crc_len);
661
662 /* check payload CRC if applicable */
663 if (crc_len == 0)
664 return 0;
665
666 if (crc_len > max_length)
667 return EIO;
668
669 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
670 if (crc != udf_rw16(tag->desc_crc)) {
671 /* bad payload CRC; this is a broken tag */
672 return EINVAL;
673 }
674
675 return 0;
676 }
677
678
679 void
680 udf_validate_tag_sum(void *blob)
681 {
682 struct desc_tag *tag = blob;
683 uint8_t *pos, sum, cnt;
684
685 /* calculate TAG header checksum */
686 pos = (uint8_t *) tag;
687 sum = 0;
688
689 for(cnt = 0; cnt < 16; cnt++) {
690 if (cnt != 4) sum += *pos;
691 pos++;
692 }
693 tag->cksum = sum; /* 8 bit */
694 }
695
696
697 /* assumes sector number of descriptor to be saved already present */
698 void
699 udf_validate_tag_and_crc_sums(void *blob)
700 {
701 struct desc_tag *tag = blob;
702 uint8_t *btag = (uint8_t *) tag;
703 uint16_t crc, crc_len;
704
705 crc_len = udf_rw16(tag->desc_crc_len);
706
707 /* check payload CRC if applicable */
708 if (crc_len > 0) {
709 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
710 tag->desc_crc = udf_rw16(crc);
711 }
712
713 /* calculate TAG header checksum */
714 udf_validate_tag_sum(blob);
715 }
716
717 /* --------------------------------------------------------------------- */
718
719 /*
720 * XXX note the different semantics from udfclient: for FIDs it still rounds
721 * up to sectors. Use udf_fidsize() for a correct length.
722 */
723
724 int
725 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
726 {
727 uint32_t size, tag_id, num_lb, elmsz;
728
729 tag_id = udf_rw16(dscr->tag.id);
730
731 switch (tag_id) {
732 case TAGID_LOGVOL :
733 size = sizeof(struct logvol_desc) - 1;
734 size += udf_rw32(dscr->lvd.mt_l);
735 break;
736 case TAGID_UNALLOC_SPACE :
737 elmsz = sizeof(struct extent_ad);
738 size = sizeof(struct unalloc_sp_desc) - elmsz;
739 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
740 break;
741 case TAGID_FID :
742 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
743 size = (size + 3) & ~3;
744 break;
745 case TAGID_LOGVOL_INTEGRITY :
746 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
747 size += udf_rw32(dscr->lvid.l_iu);
748 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
749 break;
750 case TAGID_SPACE_BITMAP :
751 size = sizeof(struct space_bitmap_desc) - 1;
752 size += udf_rw32(dscr->sbd.num_bytes);
753 break;
754 case TAGID_SPARING_TABLE :
755 elmsz = sizeof(struct spare_map_entry);
756 size = sizeof(struct udf_sparing_table) - elmsz;
757 size += udf_rw16(dscr->spt.rt_l) * elmsz;
758 break;
759 case TAGID_FENTRY :
760 size = sizeof(struct file_entry);
761 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
762 break;
763 case TAGID_EXTFENTRY :
764 size = sizeof(struct extfile_entry);
765 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
766 break;
767 case TAGID_FSD :
768 size = sizeof(struct fileset_desc);
769 break;
770 default :
771 size = sizeof(union dscrptr);
772 break;
773 }
774
775 if ((size == 0) || (lb_size == 0))
776 return 0;
777
778 if (lb_size == 1)
779 return size;
780
781 /* round up in sectors */
782 num_lb = (size + lb_size -1) / lb_size;
783 return num_lb * lb_size;
784 }
785
786
787 int
788 udf_fidsize(struct fileid_desc *fid)
789 {
790 uint32_t size;
791
792 if (udf_rw16(fid->tag.id) != TAGID_FID)
793 panic("got udf_fidsize on non FID\n");
794
795 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
796 size = (size + 3) & ~3;
797
798 return size;
799 }
800
801 /* --------------------------------------------------------------------- */
802
803 void
804 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
805 {
806 int ret;
807
808 mutex_enter(&udf_node->node_mutex);
809 /* wait until free */
810 while (udf_node->i_flags & IN_LOCKED) {
811 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
812 /* TODO check if we should return error; abort */
813 if (ret == EWOULDBLOCK) {
814 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
815 "wanted at %s:%d, previously locked at %s:%d\n",
816 udf_node, fname, lineno,
817 udf_node->lock_fname, udf_node->lock_lineno));
818 }
819 }
820 /* grab */
821 udf_node->i_flags |= IN_LOCKED | flag;
822 /* debug */
823 udf_node->lock_fname = fname;
824 udf_node->lock_lineno = lineno;
825
826 mutex_exit(&udf_node->node_mutex);
827 }
828
829
830 void
831 udf_unlock_node(struct udf_node *udf_node, int flag)
832 {
833 mutex_enter(&udf_node->node_mutex);
834 udf_node->i_flags &= ~(IN_LOCKED | flag);
835 cv_broadcast(&udf_node->node_lock);
836 mutex_exit(&udf_node->node_mutex);
837 }
838
839
840 /* --------------------------------------------------------------------- */
841
842 static int
843 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
844 {
845 int error;
846
847 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
848 (union dscrptr **) dst);
849 if (!error) {
850 /* blank terminator blocks are not allowed here */
851 if (*dst == NULL)
852 return ENOENT;
853 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
854 error = ENOENT;
855 free(*dst, M_UDFVOLD);
856 *dst = NULL;
857 DPRINTF(VOLUMES, ("Not an anchor\n"));
858 }
859 }
860
861 return error;
862 }
863
864
865 int
866 udf_read_anchors(struct udf_mount *ump)
867 {
868 struct udf_args *args = &ump->mount_args;
869 struct mmc_trackinfo first_track;
870 struct mmc_trackinfo second_track;
871 struct mmc_trackinfo last_track;
872 struct anchor_vdp **anchorsp;
873 uint32_t track_start;
874 uint32_t track_end;
875 uint32_t positions[4];
876 int first_tracknr, last_tracknr;
877 int error, anch, ok, first_anchor;
878
879 /* search the first and last track of the specified session */
880 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
881 if (!error) {
882 first_track.tracknr = first_tracknr;
883 error = udf_update_trackinfo(ump, &first_track);
884 }
885 if (!error) {
886 last_track.tracknr = last_tracknr;
887 error = udf_update_trackinfo(ump, &last_track);
888 }
889 if ((!error) && (first_tracknr != last_tracknr)) {
890 second_track.tracknr = first_tracknr+1;
891 error = udf_update_trackinfo(ump, &second_track);
892 }
893 if (error) {
894 printf("UDF mount: reading disc geometry failed\n");
895 return 0;
896 }
897
898 track_start = first_track.track_start;
899
900 /* `end' is not as straitforward as start. */
901 track_end = last_track.track_start
902 + last_track.track_size - last_track.free_blocks - 1;
903
904 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
905 /* end of track is not straitforward here */
906 if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
907 track_end = last_track.last_recorded;
908 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
909 track_end = last_track.next_writable
910 - ump->discinfo.link_block_penalty;
911 }
912
913 /* its no use reading a blank track */
914 first_anchor = 0;
915 if (first_track.flags & MMC_TRACKINFO_BLANK)
916 first_anchor = 1;
917
918 /* get our packet size */
919 ump->packet_size = first_track.packet_size;
920 if (first_track.flags & MMC_TRACKINFO_BLANK)
921 ump->packet_size = second_track.packet_size;
922
923 if (ump->packet_size <= 1) {
924 /* take max, but not bigger than 64 */
925 ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
926 ump->packet_size = MIN(ump->packet_size, 64);
927 }
928 KASSERT(ump->packet_size >= 1);
929
930 /* read anchors start+256, start+512, end-256, end */
931 positions[0] = track_start+256;
932 positions[1] = track_end-256;
933 positions[2] = track_end;
934 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
935 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
936
937 ok = 0;
938 anchorsp = ump->anchors;
939 for (anch = first_anchor; anch < 4; anch++) {
940 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
941 positions[anch]));
942 error = udf_read_anchor(ump, positions[anch], anchorsp);
943 if (!error) {
944 anchorsp++;
945 ok++;
946 }
947 }
948
949 /* VATs are only recorded on sequential media, but initialise */
950 ump->first_possible_vat_location = track_start + 2;
951 ump->last_possible_vat_location = track_end + last_track.packet_size;
952
953 return ok;
954 }
955
956 /* --------------------------------------------------------------------- */
957
958 /* we dont try to be smart; we just record the parts */
959 #define UDF_UPDATE_DSCR(name, dscr) \
960 if (name) \
961 free(name, M_UDFVOLD); \
962 name = dscr;
963
964 static int
965 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
966 {
967 struct part_desc *part;
968 uint16_t phys_part, raw_phys_part;
969
970 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
971 udf_rw16(dscr->tag.id)));
972 switch (udf_rw16(dscr->tag.id)) {
973 case TAGID_PRI_VOL : /* primary partition */
974 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
975 break;
976 case TAGID_LOGVOL : /* logical volume */
977 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
978 break;
979 case TAGID_UNALLOC_SPACE : /* unallocated space */
980 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
981 break;
982 case TAGID_IMP_VOL : /* implementation */
983 /* XXX do we care about multiple impl. descr ? */
984 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
985 break;
986 case TAGID_PARTITION : /* physical partition */
987 /* not much use if its not allocated */
988 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
989 free(dscr, M_UDFVOLD);
990 break;
991 }
992
993 /*
994 * BUGALERT: some rogue implementations use random physical
995 * partion numbers to break other implementations so lookup
996 * the number.
997 */
998 raw_phys_part = udf_rw16(dscr->pd.part_num);
999 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1000 part = ump->partitions[phys_part];
1001 if (part == NULL)
1002 break;
1003 if (udf_rw16(part->part_num) == raw_phys_part)
1004 break;
1005 }
1006 if (phys_part == UDF_PARTITIONS) {
1007 free(dscr, M_UDFVOLD);
1008 return EINVAL;
1009 }
1010
1011 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
1012 break;
1013 case TAGID_VOL : /* volume space extender; rare */
1014 DPRINTF(VOLUMES, ("VDS extender ignored\n"));
1015 free(dscr, M_UDFVOLD);
1016 break;
1017 default :
1018 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
1019 udf_rw16(dscr->tag.id)));
1020 free(dscr, M_UDFVOLD);
1021 }
1022
1023 return 0;
1024 }
1025 #undef UDF_UPDATE_DSCR
1026
1027 /* --------------------------------------------------------------------- */
1028
1029 static int
1030 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
1031 {
1032 union dscrptr *dscr;
1033 uint32_t sector_size, dscr_size;
1034 int error;
1035
1036 sector_size = ump->discinfo.sector_size;
1037
1038 /* loc is sectornr, len is in bytes */
1039 error = EIO;
1040 while (len) {
1041 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
1042 if (error)
1043 return error;
1044
1045 /* blank block is a terminator */
1046 if (dscr == NULL)
1047 return 0;
1048
1049 /* TERM descriptor is a terminator */
1050 if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
1051 free(dscr, M_UDFVOLD);
1052 return 0;
1053 }
1054
1055 /* process all others */
1056 dscr_size = udf_tagsize(dscr, sector_size);
1057 error = udf_process_vds_descriptor(ump, dscr);
1058 if (error) {
1059 free(dscr, M_UDFVOLD);
1060 break;
1061 }
1062 assert((dscr_size % sector_size) == 0);
1063
1064 len -= dscr_size;
1065 loc += dscr_size / sector_size;
1066 }
1067
1068 return error;
1069 }
1070
1071
1072 int
1073 udf_read_vds_space(struct udf_mount *ump)
1074 {
1075 /* struct udf_args *args = &ump->mount_args; */
1076 struct anchor_vdp *anchor, *anchor2;
1077 size_t size;
1078 uint32_t main_loc, main_len;
1079 uint32_t reserve_loc, reserve_len;
1080 int error;
1081
1082 /*
1083 * read in VDS space provided by the anchors; if one descriptor read
1084 * fails, try the mirror sector.
1085 *
1086 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
1087 * avoids the `compatibility features' of DirectCD that may confuse
1088 * stuff completely.
1089 */
1090
1091 anchor = ump->anchors[0];
1092 anchor2 = ump->anchors[1];
1093 assert(anchor);
1094
1095 if (anchor2) {
1096 size = sizeof(struct extent_ad);
1097 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
1098 anchor = anchor2;
1099 /* reserve is specified to be a literal copy of main */
1100 }
1101
1102 main_loc = udf_rw32(anchor->main_vds_ex.loc);
1103 main_len = udf_rw32(anchor->main_vds_ex.len);
1104
1105 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
1106 reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
1107
1108 error = udf_read_vds_extent(ump, main_loc, main_len);
1109 if (error) {
1110 printf("UDF mount: reading in reserve VDS extent\n");
1111 error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
1112 }
1113
1114 return error;
1115 }
1116
1117 /* --------------------------------------------------------------------- */
1118
1119 /*
1120 * Read in the logical volume integrity sequence pointed to by our logical
1121 * volume descriptor. Its a sequence that can be extended using fields in the
1122 * integrity descriptor itself. On sequential media only one is found, on
1123 * rewritable media a sequence of descriptors can be found as a form of
1124 * history keeping and on non sequential write-once media the chain is vital
1125 * to allow more and more descriptors to be written. The last descriptor
1126 * written in an extent needs to claim space for a new extent.
1127 */
1128
1129 static int
1130 udf_retrieve_lvint(struct udf_mount *ump)
1131 {
1132 union dscrptr *dscr;
1133 struct logvol_int_desc *lvint;
1134 struct udf_lvintq *trace;
1135 uint32_t lb_size, lbnum, len;
1136 int dscr_type, error, trace_len;
1137
1138 lb_size = udf_rw32(ump->logical_vol->lb_size);
1139 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
1140 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
1141
1142 /* clean trace */
1143 memset(ump->lvint_trace, 0,
1144 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
1145
1146 trace_len = 0;
1147 trace = ump->lvint_trace;
1148 trace->start = lbnum;
1149 trace->end = lbnum + len/lb_size;
1150 trace->pos = 0;
1151 trace->wpos = 0;
1152
1153 lvint = NULL;
1154 dscr = NULL;
1155 error = 0;
1156 while (len) {
1157 trace->pos = lbnum - trace->start;
1158 trace->wpos = trace->pos + 1;
1159
1160 /* read in our integrity descriptor */
1161 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
1162 if (!error) {
1163 if (dscr == NULL) {
1164 trace->wpos = trace->pos;
1165 break; /* empty terminates */
1166 }
1167 dscr_type = udf_rw16(dscr->tag.id);
1168 if (dscr_type == TAGID_TERM) {
1169 trace->wpos = trace->pos;
1170 break; /* clean terminator */
1171 }
1172 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1173 /* fatal... corrupt disc */
1174 error = ENOENT;
1175 break;
1176 }
1177 if (lvint)
1178 free(lvint, M_UDFVOLD);
1179 lvint = &dscr->lvid;
1180 dscr = NULL;
1181 } /* else hope for the best... maybe the next is ok */
1182
1183 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
1184 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
1185
1186 /* proceed sequential */
1187 lbnum += 1;
1188 len -= lb_size;
1189
1190 /* are we linking to a new piece? */
1191 if (dscr && lvint->next_extent.len) {
1192 len = udf_rw32(lvint->next_extent.len);
1193 lbnum = udf_rw32(lvint->next_extent.loc);
1194
1195 if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
1196 /* IEK! segment link full... */
1197 DPRINTF(VOLUMES, ("lvdint segments full\n"));
1198 error = EINVAL;
1199 } else {
1200 trace++;
1201 trace_len++;
1202
1203 trace->start = lbnum;
1204 trace->end = lbnum + len/lb_size;
1205 trace->pos = 0;
1206 trace->wpos = 0;
1207 }
1208 }
1209 }
1210
1211 /* clean up the mess, esp. when there is an error */
1212 if (dscr)
1213 free(dscr, M_UDFVOLD);
1214
1215 if (error && lvint) {
1216 free(lvint, M_UDFVOLD);
1217 lvint = NULL;
1218 }
1219
1220 if (!lvint)
1221 error = ENOENT;
1222
1223 ump->logvol_integrity = lvint;
1224 return error;
1225 }
1226
1227
1228 static int
1229 udf_loose_lvint_history(struct udf_mount *ump)
1230 {
1231 union dscrptr **bufs, *dscr, *last_dscr;
1232 struct udf_lvintq *trace, *in_trace, *out_trace;
1233 struct logvol_int_desc *lvint;
1234 uint32_t in_ext, in_pos, in_len;
1235 uint32_t out_ext, out_wpos, out_len;
1236 uint32_t lb_size, packet_size, lb_num;
1237 uint32_t len, start;
1238 int ext, minext, extlen, cnt, cpy_len, dscr_type;
1239 int losing;
1240 int error;
1241
1242 DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
1243
1244 lb_size = udf_rw32(ump->logical_vol->lb_size);
1245 packet_size = ump->data_track.packet_size; /* XXX data track */
1246
1247 /* search smallest extent */
1248 trace = &ump->lvint_trace[0];
1249 minext = trace->end - trace->start;
1250 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
1251 trace = &ump->lvint_trace[ext];
1252 extlen = trace->end - trace->start;
1253 if (extlen == 0)
1254 break;
1255 minext = MIN(minext, extlen);
1256 }
1257 losing = MIN(minext, UDF_LVINT_LOSSAGE);
1258 /* no sense wiping all */
1259 if (losing == minext)
1260 losing--;
1261
1262 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
1263
1264 /* get buffer for pieces */
1265 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
1266
1267 in_ext = 0;
1268 in_pos = losing;
1269 in_trace = &ump->lvint_trace[in_ext];
1270 in_len = in_trace->end - in_trace->start;
1271 out_ext = 0;
1272 out_wpos = 0;
1273 out_trace = &ump->lvint_trace[out_ext];
1274 out_len = out_trace->end - out_trace->start;
1275
1276 last_dscr = NULL;
1277 for(;;) {
1278 out_trace->pos = out_wpos;
1279 out_trace->wpos = out_trace->pos;
1280 if (in_pos >= in_len) {
1281 in_ext++;
1282 in_pos = 0;
1283 in_trace = &ump->lvint_trace[in_ext];
1284 in_len = in_trace->end - in_trace->start;
1285 }
1286 if (out_wpos >= out_len) {
1287 out_ext++;
1288 out_wpos = 0;
1289 out_trace = &ump->lvint_trace[out_ext];
1290 out_len = out_trace->end - out_trace->start;
1291 }
1292 /* copy overlap contents */
1293 cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
1294 cpy_len = MIN(cpy_len, in_len - in_trace->pos);
1295 if (cpy_len == 0)
1296 break;
1297
1298 /* copy */
1299 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
1300 for (cnt = 0; cnt < cpy_len; cnt++) {
1301 /* read in our integrity descriptor */
1302 lb_num = in_trace->start + in_pos + cnt;
1303 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
1304 &dscr);
1305 if (error) {
1306 /* copy last one */
1307 dscr = last_dscr;
1308 }
1309 bufs[cnt] = dscr;
1310 if (!error) {
1311 if (dscr == NULL) {
1312 out_trace->pos = out_wpos + cnt;
1313 out_trace->wpos = out_trace->pos;
1314 break; /* empty terminates */
1315 }
1316 dscr_type = udf_rw16(dscr->tag.id);
1317 if (dscr_type == TAGID_TERM) {
1318 out_trace->pos = out_wpos + cnt;
1319 out_trace->wpos = out_trace->pos;
1320 break; /* clean terminator */
1321 }
1322 if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
1323 panic( "UDF integrity sequence "
1324 "corrupted while mounted!\n");
1325 }
1326 last_dscr = dscr;
1327 }
1328 }
1329
1330 /* patch up if first entry was on error */
1331 if (bufs[0] == NULL) {
1332 for (cnt = 0; cnt < cpy_len; cnt++)
1333 if (bufs[cnt] != NULL)
1334 break;
1335 last_dscr = bufs[cnt];
1336 for (; cnt > 0; cnt--) {
1337 bufs[cnt] = last_dscr;
1338 }
1339 }
1340
1341 /* glue + write out */
1342 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
1343 for (cnt = 0; cnt < cpy_len; cnt++) {
1344 lb_num = out_trace->start + out_wpos + cnt;
1345 lvint = &bufs[cnt]->lvid;
1346
1347 /* set continuation */
1348 len = 0;
1349 start = 0;
1350 if (out_wpos + cnt == out_len) {
1351 /* get continuation */
1352 trace = &ump->lvint_trace[out_ext+1];
1353 len = trace->end - trace->start;
1354 start = trace->start;
1355 }
1356 lvint->next_extent.len = udf_rw32(len);
1357 lvint->next_extent.loc = udf_rw32(start);
1358
1359 lb_num = trace->start + trace->wpos;
1360 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1361 bufs[cnt], lb_num, lb_num);
1362 DPRINTFIF(VOLUMES, error,
1363 ("error writing lvint lb_num\n"));
1364 }
1365
1366 /* free non repeating descriptors */
1367 last_dscr = NULL;
1368 for (cnt = 0; cnt < cpy_len; cnt++) {
1369 if (bufs[cnt] != last_dscr)
1370 free(bufs[cnt], M_UDFVOLD);
1371 last_dscr = bufs[cnt];
1372 }
1373
1374 /* advance */
1375 in_pos += cpy_len;
1376 out_wpos += cpy_len;
1377 }
1378
1379 free(bufs, M_TEMP);
1380
1381 return 0;
1382 }
1383
1384
1385 static int
1386 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
1387 {
1388 struct udf_lvintq *trace;
1389 struct timeval now_v;
1390 struct timespec now_s;
1391 uint32_t sector;
1392 int logvol_integrity;
1393 int space, error;
1394
1395 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
1396
1397 again:
1398 /* get free space in last chunk */
1399 trace = ump->lvint_trace;
1400 while (trace->wpos > (trace->end - trace->start)) {
1401 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
1402 "wpos = %d\n", trace->start, trace->end,
1403 trace->pos, trace->wpos));
1404 trace++;
1405 }
1406
1407 /* check if there is space to append */
1408 space = (trace->end - trace->start) - trace->wpos;
1409 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1410 "space = %d\n", trace->start, trace->end, trace->pos,
1411 trace->wpos, space));
1412
1413 /* get state */
1414 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
1415 if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
1416 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
1417 /* don't allow this logvol to be opened */
1418 /* TODO extent LVINT space if possible */
1419 return EROFS;
1420 }
1421 }
1422
1423 if (space < 1) {
1424 if (lvflag & UDF_APPENDONLY_LVINT)
1425 return EROFS;
1426 /* loose history by re-writing extents */
1427 error = udf_loose_lvint_history(ump);
1428 if (error)
1429 return error;
1430 goto again;
1431 }
1432
1433 /* update our integrity descriptor to identify us and timestamp it */
1434 DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
1435 microtime(&now_v);
1436 TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
1437 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
1438 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
1439 udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
1440
1441 /* writeout integrity descriptor */
1442 sector = trace->start + trace->wpos;
1443 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1444 (union dscrptr *) ump->logvol_integrity,
1445 sector, sector);
1446 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
1447 if (error)
1448 return error;
1449
1450 /* advance write position */
1451 trace->wpos++; space--;
1452 if (space >= 1) {
1453 /* append terminator */
1454 sector = trace->start + trace->wpos;
1455 error = udf_write_terminator(ump, sector);
1456
1457 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
1458 }
1459
1460 space = (trace->end - trace->start) - trace->wpos;
1461 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
1462 "space = %d\n", trace->start, trace->end, trace->pos,
1463 trace->wpos, space));
1464 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
1465 "successfull\n"));
1466
1467 return error;
1468 }
1469
1470 /* --------------------------------------------------------------------- */
1471
1472 static int
1473 udf_read_physical_partition_spacetables(struct udf_mount *ump)
1474 {
1475 union dscrptr *dscr;
1476 /* struct udf_args *args = &ump->mount_args; */
1477 struct part_desc *partd;
1478 struct part_hdr_desc *parthdr;
1479 struct udf_bitmap *bitmap;
1480 uint32_t phys_part;
1481 uint32_t lb_num, len;
1482 int error, dscr_type;
1483
1484 /* unallocated space map */
1485 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1486 partd = ump->partitions[phys_part];
1487 if (partd == NULL)
1488 continue;
1489 parthdr = &partd->_impl_use.part_hdr;
1490
1491 lb_num = udf_rw32(partd->start_loc);
1492 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1493 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1494 if (len == 0)
1495 continue;
1496
1497 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1498 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1499 if (!error && dscr) {
1500 /* analyse */
1501 dscr_type = udf_rw16(dscr->tag.id);
1502 if (dscr_type == TAGID_SPACE_BITMAP) {
1503 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1504 ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
1505
1506 /* fill in ump->part_unalloc_bits */
1507 bitmap = &ump->part_unalloc_bits[phys_part];
1508 bitmap->blob = (uint8_t *) dscr;
1509 bitmap->bits = dscr->sbd.data;
1510 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1511 bitmap->pages = NULL; /* TODO */
1512 bitmap->data_pos = 0;
1513 bitmap->metadata_pos = 0;
1514 } else {
1515 free(dscr, M_UDFVOLD);
1516
1517 printf( "UDF mount: error reading unallocated "
1518 "space bitmap\n");
1519 return EROFS;
1520 }
1521 } else {
1522 /* blank not allowed */
1523 printf("UDF mount: blank unallocated space bitmap\n");
1524 return EROFS;
1525 }
1526 }
1527
1528 /* unallocated space table (not supported) */
1529 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1530 partd = ump->partitions[phys_part];
1531 if (partd == NULL)
1532 continue;
1533 parthdr = &partd->_impl_use.part_hdr;
1534
1535 len = udf_rw32(parthdr->unalloc_space_table.len);
1536 if (len) {
1537 printf("UDF mount: space tables not supported\n");
1538 return EROFS;
1539 }
1540 }
1541
1542 /* freed space map */
1543 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1544 partd = ump->partitions[phys_part];
1545 if (partd == NULL)
1546 continue;
1547 parthdr = &partd->_impl_use.part_hdr;
1548
1549 /* freed space map */
1550 lb_num = udf_rw32(partd->start_loc);
1551 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
1552 len = udf_rw32(parthdr->freed_space_bitmap.len);
1553 if (len == 0)
1554 continue;
1555
1556 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
1557 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
1558 if (!error && dscr) {
1559 /* analyse */
1560 dscr_type = udf_rw16(dscr->tag.id);
1561 if (dscr_type == TAGID_SPACE_BITMAP) {
1562 DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
1563 ump->part_freed_dscr[phys_part] = &dscr->sbd;
1564
1565 /* fill in ump->part_freed_bits */
1566 bitmap = &ump->part_unalloc_bits[phys_part];
1567 bitmap->blob = (uint8_t *) dscr;
1568 bitmap->bits = dscr->sbd.data;
1569 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1570 bitmap->pages = NULL; /* TODO */
1571 bitmap->data_pos = 0;
1572 bitmap->metadata_pos = 0;
1573 } else {
1574 free(dscr, M_UDFVOLD);
1575
1576 printf( "UDF mount: error reading freed "
1577 "space bitmap\n");
1578 return EROFS;
1579 }
1580 } else {
1581 /* blank not allowed */
1582 printf("UDF mount: blank freed space bitmap\n");
1583 return EROFS;
1584 }
1585 }
1586
1587 /* freed space table (not supported) */
1588 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1589 partd = ump->partitions[phys_part];
1590 if (partd == NULL)
1591 continue;
1592 parthdr = &partd->_impl_use.part_hdr;
1593
1594 len = udf_rw32(parthdr->freed_space_table.len);
1595 if (len) {
1596 printf("UDF mount: space tables not supported\n");
1597 return EROFS;
1598 }
1599 }
1600
1601 return 0;
1602 }
1603
1604
1605 /* TODO implement async writeout */
1606 int
1607 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
1608 {
1609 union dscrptr *dscr;
1610 /* struct udf_args *args = &ump->mount_args; */
1611 struct part_desc *partd;
1612 struct part_hdr_desc *parthdr;
1613 uint32_t phys_part;
1614 uint32_t lb_num, len, ptov;
1615 int error_all, error;
1616
1617 error_all = 0;
1618 /* unallocated space map */
1619 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1620 partd = ump->partitions[phys_part];
1621 if (partd == NULL)
1622 continue;
1623 parthdr = &partd->_impl_use.part_hdr;
1624
1625 ptov = udf_rw32(partd->start_loc);
1626 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
1627 len = udf_rw32(parthdr->unalloc_space_bitmap.len);
1628 if (len == 0)
1629 continue;
1630
1631 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
1632 lb_num + ptov));
1633 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
1634 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1635 (union dscrptr *) dscr,
1636 ptov + lb_num, lb_num);
1637 if (error) {
1638 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1639 error_all = error;
1640 }
1641 }
1642
1643 /* freed space map */
1644 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1645 partd = ump->partitions[phys_part];
1646 if (partd == NULL)
1647 continue;
1648 parthdr = &partd->_impl_use.part_hdr;
1649
1650 /* freed space map */
1651 ptov = udf_rw32(partd->start_loc);
1652 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
1653 len = udf_rw32(parthdr->freed_space_bitmap.len);
1654 if (len == 0)
1655 continue;
1656
1657 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
1658 lb_num + ptov));
1659 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
1660 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
1661 (union dscrptr *) dscr,
1662 ptov + lb_num, lb_num);
1663 if (error) {
1664 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
1665 error_all = error;
1666 }
1667 }
1668
1669 return error_all;
1670 }
1671
1672
1673 static int
1674 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
1675 {
1676 struct udf_node *bitmap_node;
1677 union dscrptr *dscr;
1678 struct udf_bitmap *bitmap;
1679 uint64_t inflen;
1680 int error, dscr_type;
1681
1682 bitmap_node = ump->metadatabitmap_node;
1683
1684 /* only read in when metadata bitmap node is read in */
1685 if (bitmap_node == NULL)
1686 return 0;
1687
1688 if (bitmap_node->fe) {
1689 inflen = udf_rw64(bitmap_node->fe->inf_len);
1690 } else {
1691 KASSERT(bitmap_node->efe);
1692 inflen = udf_rw64(bitmap_node->efe->inf_len);
1693 }
1694
1695 DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
1696 "%"PRIu64" bytes\n", inflen));
1697
1698 /* allocate space for bitmap */
1699 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
1700 if (!dscr)
1701 return ENOMEM;
1702
1703 /* set vnode type to regular file or we can't read from it! */
1704 bitmap_node->vnode->v_type = VREG;
1705
1706 /* read in complete metadata bitmap file */
1707 error = vn_rdwr(UIO_READ, bitmap_node->vnode,
1708 dscr,
1709 inflen, 0,
1710 UIO_SYSSPACE,
1711 IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1712 NULL, NULL);
1713 if (error) {
1714 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
1715 goto errorout;
1716 }
1717
1718 /* analyse */
1719 dscr_type = udf_rw16(dscr->tag.id);
1720 if (dscr_type == TAGID_SPACE_BITMAP) {
1721 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
1722 ump->metadata_unalloc_dscr = &dscr->sbd;
1723
1724 /* fill in bitmap bits */
1725 bitmap = &ump->metadata_unalloc_bits;
1726 bitmap->blob = (uint8_t *) dscr;
1727 bitmap->bits = dscr->sbd.data;
1728 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
1729 bitmap->pages = NULL; /* TODO */
1730 bitmap->data_pos = 0;
1731 bitmap->metadata_pos = 0;
1732 } else {
1733 DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
1734 goto errorout;
1735 }
1736
1737 return 0;
1738
1739 errorout:
1740 free(dscr, M_UDFVOLD);
1741 printf( "UDF mount: error reading unallocated "
1742 "space bitmap for metadata partition\n");
1743 return EROFS;
1744 }
1745
1746
1747 int
1748 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
1749 {
1750 struct udf_node *bitmap_node;
1751 union dscrptr *dscr;
1752 uint64_t inflen, new_inflen;
1753 int dummy, error;
1754
1755 bitmap_node = ump->metadatabitmap_node;
1756
1757 /* only write out when metadata bitmap node is known */
1758 if (bitmap_node == NULL)
1759 return 0;
1760
1761 if (bitmap_node->fe) {
1762 inflen = udf_rw64(bitmap_node->fe->inf_len);
1763 } else {
1764 KASSERT(bitmap_node->efe);
1765 inflen = udf_rw64(bitmap_node->efe->inf_len);
1766 }
1767
1768 /* reduce length to zero */
1769 dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
1770 new_inflen = udf_tagsize(dscr, 1);
1771
1772 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
1773 "%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
1774
1775 error = udf_resize_node(bitmap_node, new_inflen, &dummy);
1776 if (error)
1777 printf("Error resizing metadata space bitmap\n");
1778
1779 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
1780 dscr,
1781 new_inflen, 0,
1782 UIO_SYSSPACE,
1783 IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
1784 NULL, NULL);
1785
1786 bitmap_node->i_flags |= IN_MODIFIED;
1787 vflushbuf(bitmap_node->vnode, 1 /* sync */);
1788
1789 error = VOP_FSYNC(bitmap_node->vnode,
1790 FSCRED, FSYNC_WAIT, 0, 0);
1791
1792 if (error)
1793 printf( "Error writing out metadata partition unalloced "
1794 "space bitmap!\n");
1795
1796 return error;
1797 }
1798
1799
1800 /* --------------------------------------------------------------------- */
1801
1802 /*
1803 * Checks if ump's vds information is correct and complete
1804 */
1805
1806 int
1807 udf_process_vds(struct udf_mount *ump) {
1808 union udf_pmap *mapping;
1809 /* struct udf_args *args = &ump->mount_args; */
1810 struct logvol_int_desc *lvint;
1811 struct udf_logvol_info *lvinfo;
1812 struct part_desc *part;
1813 uint32_t n_pm, mt_l;
1814 uint8_t *pmap_pos;
1815 char *domain_name, *map_name;
1816 const char *check_name;
1817 char bits[128];
1818 int pmap_stype, pmap_size;
1819 int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
1820 int n_phys, n_virt, n_spar, n_meta;
1821 int len, error;
1822
1823 if (ump == NULL)
1824 return ENOENT;
1825
1826 /* we need at least an anchor (trivial, but for safety) */
1827 if (ump->anchors[0] == NULL)
1828 return EINVAL;
1829
1830 /* we need at least one primary and one logical volume descriptor */
1831 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
1832 return EINVAL;
1833
1834 /* we need at least one partition descriptor */
1835 if (ump->partitions[0] == NULL)
1836 return EINVAL;
1837
1838 /* check logical volume sector size verses device sector size */
1839 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
1840 printf("UDF mount: format violation, lb_size != sector size\n");
1841 return EINVAL;
1842 }
1843
1844 /* check domain name */
1845 domain_name = ump->logical_vol->domain_id.id;
1846 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
1847 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
1848 return EINVAL;
1849 }
1850
1851 /* retrieve logical volume integrity sequence */
1852 error = udf_retrieve_lvint(ump);
1853
1854 /*
1855 * We need at least one logvol integrity descriptor recorded. Note
1856 * that its OK to have an open logical volume integrity here. The VAT
1857 * will close/update the integrity.
1858 */
1859 if (ump->logvol_integrity == NULL)
1860 return EINVAL;
1861
1862 /* process derived structures */
1863 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1864 lvint = ump->logvol_integrity;
1865 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
1866 ump->logvol_info = lvinfo;
1867
1868 /* TODO check udf versions? */
1869
1870 /*
1871 * check logvol mappings: effective virt->log partmap translation
1872 * check and recording of the mapping results. Saves expensive
1873 * strncmp() in tight places.
1874 */
1875 DPRINTF(VOLUMES, ("checking logvol mappings\n"));
1876 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
1877 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
1878 pmap_pos = ump->logical_vol->maps;
1879
1880 if (n_pm > UDF_PMAPS) {
1881 printf("UDF mount: too many mappings\n");
1882 return EINVAL;
1883 }
1884
1885 /* count types and set partition numbers */
1886 ump->data_part = ump->node_part = ump->fids_part = 0;
1887 n_phys = n_virt = n_spar = n_meta = 0;
1888 for (log_part = 0; log_part < n_pm; log_part++) {
1889 mapping = (union udf_pmap *) pmap_pos;
1890 pmap_stype = pmap_pos[0];
1891 pmap_size = pmap_pos[1];
1892 switch (pmap_stype) {
1893 case 1: /* physical mapping */
1894 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
1895 raw_phys_part = udf_rw16(mapping->pm1.part_num);
1896 pmap_type = UDF_VTOP_TYPE_PHYS;
1897 n_phys++;
1898 ump->data_part = log_part;
1899 ump->node_part = log_part;
1900 ump->fids_part = log_part;
1901 break;
1902 case 2: /* virtual/sparable/meta mapping */
1903 map_name = mapping->pm2.part_id.id;
1904 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
1905 raw_phys_part = udf_rw16(mapping->pm2.part_num);
1906 pmap_type = UDF_VTOP_TYPE_UNKNOWN;
1907 len = UDF_REGID_ID_SIZE;
1908
1909 check_name = "*UDF Virtual Partition";
1910 if (strncmp(map_name, check_name, len) == 0) {
1911 pmap_type = UDF_VTOP_TYPE_VIRT;
1912 n_virt++;
1913 ump->node_part = log_part;
1914 break;
1915 }
1916 check_name = "*UDF Sparable Partition";
1917 if (strncmp(map_name, check_name, len) == 0) {
1918 pmap_type = UDF_VTOP_TYPE_SPARABLE;
1919 n_spar++;
1920 ump->data_part = log_part;
1921 ump->node_part = log_part;
1922 ump->fids_part = log_part;
1923 break;
1924 }
1925 check_name = "*UDF Metadata Partition";
1926 if (strncmp(map_name, check_name, len) == 0) {
1927 pmap_type = UDF_VTOP_TYPE_META;
1928 n_meta++;
1929 ump->node_part = log_part;
1930 ump->fids_part = log_part;
1931 break;
1932 }
1933 break;
1934 default:
1935 return EINVAL;
1936 }
1937
1938 /*
1939 * BUGALERT: some rogue implementations use random physical
1940 * partion numbers to break other implementations so lookup
1941 * the number.
1942 */
1943 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
1944 part = ump->partitions[phys_part];
1945 if (part == NULL)
1946 continue;
1947 if (udf_rw16(part->part_num) == raw_phys_part)
1948 break;
1949 }
1950
1951 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
1952 raw_phys_part, phys_part, pmap_type));
1953
1954 if (phys_part == UDF_PARTITIONS)
1955 return EINVAL;
1956 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
1957 return EINVAL;
1958
1959 ump->vtop [log_part] = phys_part;
1960 ump->vtop_tp[log_part] = pmap_type;
1961
1962 pmap_pos += pmap_size;
1963 }
1964 /* not winning the beauty contest */
1965 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
1966
1967 /* test some basic UDF assertions/requirements */
1968 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
1969 return EINVAL;
1970
1971 if (n_virt) {
1972 if ((n_phys == 0) || n_spar || n_meta)
1973 return EINVAL;
1974 }
1975 if (n_spar + n_phys == 0)
1976 return EINVAL;
1977
1978 /* select allocation type for each logical partition */
1979 for (log_part = 0; log_part < n_pm; log_part++) {
1980 maps_on = ump->vtop[log_part];
1981 switch (ump->vtop_tp[log_part]) {
1982 case UDF_VTOP_TYPE_PHYS :
1983 assert(maps_on == log_part);
1984 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1985 break;
1986 case UDF_VTOP_TYPE_VIRT :
1987 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
1988 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
1989 break;
1990 case UDF_VTOP_TYPE_SPARABLE :
1991 assert(maps_on == log_part);
1992 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
1993 break;
1994 case UDF_VTOP_TYPE_META :
1995 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
1996 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
1997 /* special case for UDF 2.60 */
1998 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
1999 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL;
2000 }
2001 break;
2002 default:
2003 panic("bad alloction type in udf's ump->vtop\n");
2004 }
2005 }
2006
2007 /* determine logical volume open/closure actions */
2008 if (n_virt) {
2009 ump->lvopen = 0;
2010 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
2011 ump->lvopen |= UDF_OPEN_SESSION ;
2012 ump->lvclose = UDF_WRITE_VAT;
2013 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
2014 ump->lvclose |= UDF_CLOSE_SESSION;
2015 } else {
2016 /* `normal' rewritable or non sequential media */
2017 ump->lvopen = UDF_WRITE_LVINT;
2018 ump->lvclose = UDF_WRITE_LVINT;
2019 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
2020 ump->lvopen |= UDF_APPENDONLY_LVINT;
2021 }
2022
2023 /*
2024 * Determine sheduler error behaviour. For virtual partions, update
2025 * the trackinfo; for sparable partitions replace a whole block on the
2026 * sparable table. Allways requeue.
2027 */
2028 ump->lvreadwrite = 0;
2029 if (n_virt)
2030 ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
2031 if (n_spar)
2032 ump->lvreadwrite = UDF_REMAP_BLOCK;
2033
2034 /*
2035 * Select our sheduler
2036 */
2037 ump->strategy = &udf_strat_rmw;
2038 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
2039 ump->strategy = &udf_strat_sequential;
2040 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
2041 (ump->discinfo.mmc_class == MMC_CLASS_UNKN))
2042 ump->strategy = &udf_strat_direct;
2043 if (n_spar)
2044 ump->strategy = &udf_strat_rmw;
2045
2046 #if 0
2047 /* read-only access won't benefit from the other shedulers */
2048 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
2049 ump->strategy = &udf_strat_direct;
2050 #endif
2051
2052 /* print results */
2053 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part));
2054 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
2055 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part));
2056 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
2057 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part));
2058 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
2059
2060 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits));
2061 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits));
2062 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
2063 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
2064 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
2065 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
2066
2067 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
2068 (ump->strategy == &udf_strat_direct) ? "Direct" :
2069 (ump->strategy == &udf_strat_sequential) ? "Sequential" :
2070 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
2071
2072 /* signal its OK for now */
2073 return 0;
2074 }
2075
2076 /* --------------------------------------------------------------------- */
2077
2078 /*
2079 * Update logical volume name in all structures that keep a record of it. We
2080 * use memmove since each of them might be specified as a source.
2081 *
2082 * Note that it doesn't update the VAT structure!
2083 */
2084
2085 static void
2086 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
2087 {
2088 struct logvol_desc *lvd = NULL;
2089 struct fileset_desc *fsd = NULL;
2090 struct udf_lv_info *lvi = NULL;
2091
2092 DPRINTF(VOLUMES, ("Updating logical volume name\n"));
2093 lvd = ump->logical_vol;
2094 fsd = ump->fileset_desc;
2095 if (ump->implementation)
2096 lvi = &ump->implementation->_impl_use.lv_info;
2097
2098 /* logvol's id might be specified as origional so use memmove here */
2099 memmove(lvd->logvol_id, logvol_id, 128);
2100 if (fsd)
2101 memmove(fsd->logvol_id, logvol_id, 128);
2102 if (lvi)
2103 memmove(lvi->logvol_id, logvol_id, 128);
2104 }
2105
2106 /* --------------------------------------------------------------------- */
2107
2108 void
2109 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
2110 uint32_t sector)
2111 {
2112 assert(ump->logical_vol);
2113
2114 tag->id = udf_rw16(tagid);
2115 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver;
2116 tag->cksum = 0;
2117 tag->reserved = 0;
2118 tag->serial_num = ump->logical_vol->tag.serial_num;
2119 tag->tag_loc = udf_rw32(sector);
2120 }
2121
2122
2123 uint64_t
2124 udf_advance_uniqueid(struct udf_mount *ump)
2125 {
2126 uint64_t unique_id;
2127
2128 mutex_enter(&ump->logvol_mutex);
2129 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
2130 if (unique_id < 0x10)
2131 unique_id = 0x10;
2132 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
2133 mutex_exit(&ump->logvol_mutex);
2134
2135 return unique_id;
2136 }
2137
2138
2139 static void
2140 udf_adjust_filecount(struct udf_node *udf_node, int sign)
2141 {
2142 struct udf_mount *ump = udf_node->ump;
2143 uint32_t num_dirs, num_files;
2144 int udf_file_type;
2145
2146 /* get file type */
2147 if (udf_node->fe) {
2148 udf_file_type = udf_node->fe->icbtag.file_type;
2149 } else {
2150 udf_file_type = udf_node->efe->icbtag.file_type;
2151 }
2152
2153 /* adjust file count */
2154 mutex_enter(&ump->allocate_mutex);
2155 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
2156 num_dirs = udf_rw32(ump->logvol_info->num_directories);
2157 ump->logvol_info->num_directories =
2158 udf_rw32((num_dirs + sign));
2159 } else {
2160 num_files = udf_rw32(ump->logvol_info->num_files);
2161 ump->logvol_info->num_files =
2162 udf_rw32((num_files + sign));
2163 }
2164 mutex_exit(&ump->allocate_mutex);
2165 }
2166
2167
2168 void
2169 udf_osta_charset(struct charspec *charspec)
2170 {
2171 bzero(charspec, sizeof(struct charspec));
2172 charspec->type = 0;
2173 strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
2174 }
2175
2176
2177 /* first call udf_set_regid and then the suffix */
2178 void
2179 udf_set_regid(struct regid *regid, char const *name)
2180 {
2181 bzero(regid, sizeof(struct regid));
2182 regid->flags = 0; /* not dirty and not protected */
2183 strcpy((char *) regid->id, name);
2184 }
2185
2186
2187 void
2188 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
2189 {
2190 uint16_t *ver;
2191
2192 ver = (uint16_t *) regid->id_suffix;
2193 *ver = ump->logvol_info->min_udf_readver;
2194 }
2195
2196
2197 void
2198 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
2199 {
2200 uint16_t *ver;
2201
2202 ver = (uint16_t *) regid->id_suffix;
2203 *ver = ump->logvol_info->min_udf_readver;
2204
2205 regid->id_suffix[2] = 4; /* unix */
2206 regid->id_suffix[3] = 8; /* NetBSD */
2207 }
2208
2209
2210 void
2211 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
2212 {
2213 regid->id_suffix[0] = 4; /* unix */
2214 regid->id_suffix[1] = 8; /* NetBSD */
2215 }
2216
2217
2218 void
2219 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
2220 {
2221 regid->id_suffix[0] = APP_VERSION_MAIN;
2222 regid->id_suffix[1] = APP_VERSION_SUB;
2223 }
2224
2225 static int
2226 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
2227 struct long_ad *parent, uint64_t unique_id)
2228 {
2229 /* the size of an empty FID is 38 but needs to be a multiple of 4 */
2230 int fidsize = 40;
2231
2232 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
2233 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
2234 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
2235 fid->icb = *parent;
2236 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
2237 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
2238 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
2239
2240 return fidsize;
2241 }
2242
2243 /* --------------------------------------------------------------------- */
2244
2245 /*
2246 * Extended attribute support. UDF knows of 3 places for extended attributes:
2247 *
2248 * (a) inside the file's (e)fe in the length of the extended attribute area
2249 * before the allocation descriptors/filedata
2250 *
2251 * (b) in a file referenced by (e)fe->ext_attr_icb and
2252 *
2253 * (c) in the e(fe)'s associated stream directory that can hold various
2254 * sub-files. In the stream directory a few fixed named subfiles are reserved
2255 * for NT/Unix ACL's and OS/2 attributes.
2256 *
2257 * NOTE: Extended attributes are read randomly but allways written
2258 * *atomicaly*. For ACL's this interface is propably different but not known
2259 * to me yet.
2260 *
2261 * Order of extended attributes in a space :
2262 * ECMA 167 EAs
2263 * Non block aligned Implementation Use EAs
2264 * Block aligned Implementation Use EAs
2265 * Application Use EAs
2266 */
2267
2268 static int
2269 udf_impl_extattr_check(struct impl_extattr_entry *implext)
2270 {
2271 uint16_t *spos;
2272
2273 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2274 /* checksum valid? */
2275 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
2276 spos = (uint16_t *) implext->data;
2277 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
2278 return EINVAL;
2279 }
2280 return 0;
2281 }
2282
2283 static void
2284 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
2285 {
2286 uint16_t *spos;
2287
2288 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
2289 /* set checksum */
2290 spos = (uint16_t *) implext->data;
2291 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2292 }
2293 }
2294
2295
2296 int
2297 udf_extattr_search_intern(struct udf_node *node,
2298 uint32_t sattr, char const *sattrname,
2299 uint32_t *offsetp, uint32_t *lengthp)
2300 {
2301 struct extattrhdr_desc *eahdr;
2302 struct extattr_entry *attrhdr;
2303 struct impl_extattr_entry *implext;
2304 uint32_t offset, a_l, sector_size;
2305 int32_t l_ea;
2306 uint8_t *pos;
2307 int error;
2308
2309 /* get mountpoint */
2310 sector_size = node->ump->discinfo.sector_size;
2311
2312 /* get information from fe/efe */
2313 if (node->fe) {
2314 l_ea = udf_rw32(node->fe->l_ea);
2315 eahdr = (struct extattrhdr_desc *) node->fe->data;
2316 } else {
2317 assert(node->efe);
2318 l_ea = udf_rw32(node->efe->l_ea);
2319 eahdr = (struct extattrhdr_desc *) node->efe->data;
2320 }
2321
2322 /* something recorded here? */
2323 if (l_ea == 0)
2324 return ENOENT;
2325
2326 /* check extended attribute tag; what to do if it fails? */
2327 error = udf_check_tag(eahdr);
2328 if (error)
2329 return EINVAL;
2330 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
2331 return EINVAL;
2332 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
2333 if (error)
2334 return EINVAL;
2335
2336 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
2337
2338 /* looking for Ecma-167 attributes? */
2339 offset = sizeof(struct extattrhdr_desc);
2340
2341 /* looking for either implemenation use or application use */
2342 if (sattr == 2048) { /* [4/48.10.8] */
2343 offset = udf_rw32(eahdr->impl_attr_loc);
2344 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2345 return ENOENT;
2346 }
2347 if (sattr == 65536) { /* [4/48.10.9] */
2348 offset = udf_rw32(eahdr->appl_attr_loc);
2349 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
2350 return ENOENT;
2351 }
2352
2353 /* paranoia check offset and l_ea */
2354 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
2355 return EINVAL;
2356
2357 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
2358
2359 /* find our extended attribute */
2360 l_ea -= offset;
2361 pos = (uint8_t *) eahdr + offset;
2362
2363 while (l_ea >= sizeof(struct extattr_entry)) {
2364 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
2365 attrhdr = (struct extattr_entry *) pos;
2366 implext = (struct impl_extattr_entry *) pos;
2367
2368 /* get complete attribute length and check for roque values */
2369 a_l = udf_rw32(attrhdr->a_l);
2370 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
2371 udf_rw32(attrhdr->type),
2372 attrhdr->subtype, a_l, l_ea));
2373 if ((a_l == 0) || (a_l > l_ea))
2374 return EINVAL;
2375
2376 if (attrhdr->type != sattr)
2377 goto next_attribute;
2378
2379 /* we might have found it! */
2380 if (attrhdr->type < 2048) { /* Ecma-167 attribute */
2381 *offsetp = offset;
2382 *lengthp = a_l;
2383 return 0; /* success */
2384 }
2385
2386 /*
2387 * Implementation use and application use extended attributes
2388 * have a name to identify. They share the same structure only
2389 * UDF implementation use extended attributes have a checksum
2390 * we need to check
2391 */
2392
2393 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
2394 if (strcmp(implext->imp_id.id, sattrname) == 0) {
2395 /* we have found our appl/implementation attribute */
2396 *offsetp = offset;
2397 *lengthp = a_l;
2398 return 0; /* success */
2399 }
2400
2401 next_attribute:
2402 /* next attribute */
2403 pos += a_l;
2404 l_ea -= a_l;
2405 offset += a_l;
2406 }
2407 /* not found */
2408 return ENOENT;
2409 }
2410
2411
2412 static void
2413 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
2414 struct extattr_entry *extattr)
2415 {
2416 struct file_entry *fe;
2417 struct extfile_entry *efe;
2418 struct extattrhdr_desc *extattrhdr;
2419 struct impl_extattr_entry *implext;
2420 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
2421 uint32_t *l_eap, l_ad;
2422 uint16_t *spos;
2423 uint8_t *bpos, *data;
2424
2425 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
2426 fe = &dscr->fe;
2427 data = fe->data;
2428 l_eap = &fe->l_ea;
2429 l_ad = udf_rw32(fe->l_ad);
2430 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
2431 efe = &dscr->efe;
2432 data = efe->data;
2433 l_eap = &efe->l_ea;
2434 l_ad = udf_rw32(efe->l_ad);
2435 } else {
2436 panic("Bad tag passed to udf_extattr_insert_internal");
2437 }
2438
2439 /* can't append already written to file descriptors yet */
2440 assert(l_ad == 0);
2441
2442 /* should have a header! */
2443 extattrhdr = (struct extattrhdr_desc *) data;
2444 l_ea = udf_rw32(*l_eap);
2445 if (l_ea == 0) {
2446 /* create empty extended attribute header */
2447 exthdr_len = sizeof(struct extattrhdr_desc);
2448
2449 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
2450 /* loc */ 0);
2451 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
2452 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
2453 extattrhdr->tag.desc_crc_len = udf_rw16(8);
2454
2455 /* record extended attribute header length */
2456 l_ea = exthdr_len;
2457 *l_eap = udf_rw32(l_ea);
2458 }
2459
2460 /* extract locations */
2461 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
2462 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
2463 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2464 impl_attr_loc = l_ea;
2465 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
2466 appl_attr_loc = l_ea;
2467
2468 /* Ecma 167 EAs */
2469 if (udf_rw32(extattr->type) < 2048) {
2470 assert(impl_attr_loc == l_ea);
2471 assert(appl_attr_loc == l_ea);
2472 }
2473
2474 /* implementation use extended attributes */
2475 if (udf_rw32(extattr->type) == 2048) {
2476 assert(appl_attr_loc == l_ea);
2477
2478 /* calculate and write extended attribute header checksum */
2479 implext = (struct impl_extattr_entry *) extattr;
2480 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */
2481 spos = (uint16_t *) implext->data;
2482 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
2483 }
2484
2485 /* application use extended attributes */
2486 assert(udf_rw32(extattr->type) != 65536);
2487 assert(appl_attr_loc == l_ea);
2488
2489 /* append the attribute at the end of the current space */
2490 bpos = data + udf_rw32(*l_eap);
2491 a_l = udf_rw32(extattr->a_l);
2492
2493 /* update impl. attribute locations */
2494 if (udf_rw32(extattr->type) < 2048) {
2495 impl_attr_loc = l_ea + a_l;
2496 appl_attr_loc = l_ea + a_l;
2497 }
2498 if (udf_rw32(extattr->type) == 2048) {
2499 appl_attr_loc = l_ea + a_l;
2500 }
2501
2502 /* copy and advance */
2503 memcpy(bpos, extattr, a_l);
2504 l_ea += a_l;
2505 *l_eap = udf_rw32(l_ea);
2506
2507 /* do the `dance` again backwards */
2508 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
2509 if (impl_attr_loc == l_ea)
2510 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
2511 if (appl_attr_loc == l_ea)
2512 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
2513 }
2514
2515 /* store offsets */
2516 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
2517 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
2518 }
2519
2520
2521 /* --------------------------------------------------------------------- */
2522
2523 static int
2524 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
2525 {
2526 struct udf_mount *ump;
2527 struct udf_logvol_info *lvinfo;
2528 struct impl_extattr_entry *implext;
2529 struct vatlvext_extattr_entry lvext;
2530 const char *extstr = "*UDF VAT LVExtension";
2531 uint64_t vat_uniqueid;
2532 uint32_t offset, a_l;
2533 uint8_t *ea_start, *lvextpos;
2534 int error;
2535
2536 /* get mountpoint and lvinfo */
2537 ump = vat_node->ump;
2538 lvinfo = ump->logvol_info;
2539
2540 /* get information from fe/efe */
2541 if (vat_node->fe) {
2542 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2543 ea_start = vat_node->fe->data;
2544 } else {
2545 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2546 ea_start = vat_node->efe->data;
2547 }
2548
2549 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2550 if (error)
2551 return error;
2552
2553 implext = (struct impl_extattr_entry *) (ea_start + offset);
2554 error = udf_impl_extattr_check(implext);
2555 if (error)
2556 return error;
2557
2558 /* paranoia */
2559 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
2560 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
2561 return EINVAL;
2562 }
2563
2564 /*
2565 * we have found our "VAT LVExtension attribute. BUT due to a
2566 * bug in the specification it might not be word aligned so
2567 * copy first to avoid panics on some machines (!!)
2568 */
2569 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
2570 lvextpos = implext->data + udf_rw32(implext->iu_l);
2571 memcpy(&lvext, lvextpos, sizeof(lvext));
2572
2573 /* check if it was updated the last time */
2574 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
2575 lvinfo->num_files = lvext.num_files;
2576 lvinfo->num_directories = lvext.num_directories;
2577 udf_update_logvolname(ump, lvext.logvol_id);
2578 } else {
2579 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
2580 /* replace VAT LVExt by free space EA */
2581 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
2582 strcpy(implext->imp_id.id, "*UDF FreeEASpace");
2583 udf_calc_impl_extattr_checksum(implext);
2584 }
2585
2586 return 0;
2587 }
2588
2589
2590 static int
2591 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
2592 {
2593 struct udf_mount *ump;
2594 struct udf_logvol_info *lvinfo;
2595 struct impl_extattr_entry *implext;
2596 struct vatlvext_extattr_entry lvext;
2597 const char *extstr = "*UDF VAT LVExtension";
2598 uint64_t vat_uniqueid;
2599 uint32_t offset, a_l;
2600 uint8_t *ea_start, *lvextpos;
2601 int error;
2602
2603 /* get mountpoint and lvinfo */
2604 ump = vat_node->ump;
2605 lvinfo = ump->logvol_info;
2606
2607 /* get information from fe/efe */
2608 if (vat_node->fe) {
2609 vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
2610 ea_start = vat_node->fe->data;
2611 } else {
2612 vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
2613 ea_start = vat_node->efe->data;
2614 }
2615
2616 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
2617 if (error)
2618 return error;
2619 /* found, it existed */
2620
2621 /* paranoia */
2622 implext = (struct impl_extattr_entry *) (ea_start + offset);
2623 error = udf_impl_extattr_check(implext);
2624 if (error) {
2625 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
2626 return error;
2627 }
2628 /* it is correct */
2629
2630 /*
2631 * we have found our "VAT LVExtension attribute. BUT due to a
2632 * bug in the specification it might not be word aligned so
2633 * copy first to avoid panics on some machines (!!)
2634 */
2635 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
2636 lvextpos = implext->data + udf_rw32(implext->iu_l);
2637
2638 lvext.unique_id_chk = vat_uniqueid;
2639 lvext.num_files = lvinfo->num_files;
2640 lvext.num_directories = lvinfo->num_directories;
2641 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
2642
2643 memcpy(lvextpos, &lvext, sizeof(lvext));
2644
2645 return 0;
2646 }
2647
2648 /* --------------------------------------------------------------------- */
2649
2650 int
2651 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2652 {
2653 struct udf_mount *ump = vat_node->ump;
2654
2655 if (offset + size > ump->vat_offset + ump->vat_entries * 4)
2656 return EINVAL;
2657
2658 memcpy(blob, ump->vat_table + offset, size);
2659 return 0;
2660 }
2661
2662 int
2663 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
2664 {
2665 struct udf_mount *ump = vat_node->ump;
2666 uint32_t offset_high;
2667 uint8_t *new_vat_table;
2668
2669 /* extent VAT allocation if needed */
2670 offset_high = offset + size;
2671 if (offset_high >= ump->vat_table_alloc_len) {
2672 /* realloc */
2673 new_vat_table = realloc(ump->vat_table,
2674 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
2675 M_UDFVOLD, M_WAITOK | M_CANFAIL);
2676 if (!new_vat_table) {
2677 printf("udf_vat_write: can't extent VAT, out of mem\n");
2678 return ENOMEM;
2679 }
2680 ump->vat_table = new_vat_table;
2681 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
2682 }
2683 ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
2684
2685 memcpy(ump->vat_table + offset, blob, size);
2686 return 0;
2687 }
2688
2689 /* --------------------------------------------------------------------- */
2690
2691 /* TODO support previous VAT location writeout */
2692 static int
2693 udf_update_vat_descriptor(struct udf_mount *ump)
2694 {
2695 struct udf_node *vat_node = ump->vat_node;
2696 struct udf_logvol_info *lvinfo = ump->logvol_info;
2697 struct icb_tag *icbtag;
2698 struct udf_oldvat_tail *oldvat_tl;
2699 struct udf_vat *vat;
2700 uint64_t unique_id;
2701 uint32_t lb_size;
2702 uint8_t *raw_vat;
2703 int filetype, error;
2704
2705 KASSERT(vat_node);
2706 KASSERT(lvinfo);
2707 lb_size = udf_rw32(ump->logical_vol->lb_size);
2708
2709 /* get our new unique_id */
2710 unique_id = udf_advance_uniqueid(ump);
2711
2712 /* get information from fe/efe */
2713 if (vat_node->fe) {
2714 icbtag = &vat_node->fe->icbtag;
2715 vat_node->fe->unique_id = udf_rw64(unique_id);
2716 } else {
2717 icbtag = &vat_node->efe->icbtag;
2718 vat_node->efe->unique_id = udf_rw64(unique_id);
2719 }
2720
2721 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2722 filetype = icbtag->file_type;
2723 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
2724
2725 /* allocate piece to process head or tail of VAT file */
2726 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
2727
2728 if (filetype == 0) {
2729 /*
2730 * Update "*UDF VAT LVExtension" extended attribute from the
2731 * lvint if present.
2732 */
2733 udf_update_vat_extattr_from_lvid(vat_node);
2734
2735 /* setup identifying regid */
2736 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2737 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
2738
2739 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
2740 udf_add_udf_regid(ump, &oldvat_tl->id);
2741 oldvat_tl->prev_vat = udf_rw32(0xffffffff);
2742
2743 /* write out new tail of virtual allocation table file */
2744 error = udf_vat_write(vat_node, raw_vat,
2745 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
2746 } else {
2747 /* compose the VAT2 header */
2748 vat = (struct udf_vat *) raw_vat;
2749 memset(vat, 0, sizeof(struct udf_vat));
2750
2751 vat->header_len = udf_rw16(152); /* as per spec */
2752 vat->impl_use_len = udf_rw16(0);
2753 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
2754 vat->prev_vat = udf_rw32(0xffffffff);
2755 vat->num_files = lvinfo->num_files;
2756 vat->num_directories = lvinfo->num_directories;
2757 vat->min_udf_readver = lvinfo->min_udf_readver;
2758 vat->min_udf_writever = lvinfo->min_udf_writever;
2759 vat->max_udf_writever = lvinfo->max_udf_writever;
2760
2761 error = udf_vat_write(vat_node, raw_vat,
2762 sizeof(struct udf_vat), 0);
2763 }
2764 free(raw_vat, M_TEMP);
2765
2766 return error; /* success! */
2767 }
2768
2769
2770 int
2771 udf_writeout_vat(struct udf_mount *ump)
2772 {
2773 struct udf_node *vat_node = ump->vat_node;
2774 uint32_t vat_length;
2775 int error;
2776
2777 KASSERT(vat_node);
2778
2779 DPRINTF(CALL, ("udf_writeout_vat\n"));
2780
2781 mutex_enter(&ump->allocate_mutex);
2782 udf_update_vat_descriptor(ump);
2783
2784 /* write out the VAT contents ; TODO intelligent writing */
2785 vat_length = ump->vat_table_len;
2786 error = vn_rdwr(UIO_WRITE, vat_node->vnode,
2787 ump->vat_table, ump->vat_table_len, 0,
2788 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
2789 if (error) {
2790 printf("udf_writeout_vat: failed to write out VAT contents\n");
2791 goto out;
2792 }
2793
2794 mutex_exit(&ump->allocate_mutex);
2795
2796 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
2797 error = VOP_FSYNC(ump->vat_node->vnode,
2798 FSCRED, FSYNC_WAIT, 0, 0);
2799 if (error)
2800 printf("udf_writeout_vat: error writing VAT node!\n");
2801 out:
2802
2803 return error;
2804 }
2805
2806 /* --------------------------------------------------------------------- */
2807
2808 /*
2809 * Read in relevant pieces of VAT file and check if its indeed a VAT file
2810 * descriptor. If OK, read in complete VAT file.
2811 */
2812
2813 static int
2814 udf_check_for_vat(struct udf_node *vat_node)
2815 {
2816 struct udf_mount *ump;
2817 struct icb_tag *icbtag;
2818 struct timestamp *mtime;
2819 struct udf_vat *vat;
2820 struct udf_oldvat_tail *oldvat_tl;
2821 struct udf_logvol_info *lvinfo;
2822 uint64_t unique_id;
2823 uint32_t vat_length;
2824 uint32_t vat_offset, vat_entries, vat_table_alloc_len;
2825 uint32_t sector_size;
2826 uint32_t *raw_vat;
2827 uint8_t *vat_table;
2828 char *regid_name;
2829 int filetype;
2830 int error;
2831
2832 /* vat_length is really 64 bits though impossible */
2833
2834 DPRINTF(VOLUMES, ("Checking for VAT\n"));
2835 if (!vat_node)
2836 return ENOENT;
2837
2838 /* get mount info */
2839 ump = vat_node->ump;
2840 sector_size = udf_rw32(ump->logical_vol->lb_size);
2841
2842 /* check assertions */
2843 assert(vat_node->fe || vat_node->efe);
2844 assert(ump->logvol_integrity);
2845
2846 /* set vnode type to regular file or we can't read from it! */
2847 vat_node->vnode->v_type = VREG;
2848
2849 /* get information from fe/efe */
2850 if (vat_node->fe) {
2851 vat_length = udf_rw64(vat_node->fe->inf_len);
2852 icbtag = &vat_node->fe->icbtag;
2853 mtime = &vat_node->fe->mtime;
2854 unique_id = udf_rw64(vat_node->fe->unique_id);
2855 } else {
2856 vat_length = udf_rw64(vat_node->efe->inf_len);
2857 icbtag = &vat_node->efe->icbtag;
2858 mtime = &vat_node->efe->mtime;
2859 unique_id = udf_rw64(vat_node->efe->unique_id);
2860 }
2861
2862 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
2863 filetype = icbtag->file_type;
2864 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
2865 return ENOENT;
2866
2867 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
2868
2869 vat_table_alloc_len =
2870 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
2871 * UDF_VAT_CHUNKSIZE;
2872
2873 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
2874 M_CANFAIL | M_WAITOK);
2875 if (vat_table == NULL) {
2876 printf("allocation of %d bytes failed for VAT\n",
2877 vat_table_alloc_len);
2878 return ENOMEM;
2879 }
2880
2881 /* allocate piece to read in head or tail of VAT file */
2882 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
2883
2884 /*
2885 * check contents of the file if its the old 1.50 VAT table format.
2886 * Its notoriously broken and allthough some implementations support an
2887 * extention as defined in the UDF 1.50 errata document, its doubtfull
2888 * to be useable since a lot of implementations don't maintain it.
2889 */
2890 lvinfo = ump->logvol_info;
2891
2892 if (filetype == 0) {
2893 /* definition */
2894 vat_offset = 0;
2895 vat_entries = (vat_length-36)/4;
2896
2897 /* read in tail of virtual allocation table file */
2898 error = vn_rdwr(UIO_READ, vat_node->vnode,
2899 (uint8_t *) raw_vat,
2900 sizeof(struct udf_oldvat_tail),
2901 vat_entries * 4,
2902 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2903 NULL, NULL);
2904 if (error)
2905 goto out;
2906
2907 /* check 1.50 VAT */
2908 oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
2909 regid_name = (char *) oldvat_tl->id.id;
2910 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
2911 if (error) {
2912 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
2913 error = ENOENT;
2914 goto out;
2915 }
2916
2917 /*
2918 * update LVID from "*UDF VAT LVExtension" extended attribute
2919 * if present.
2920 */
2921 udf_update_lvid_from_vat_extattr(vat_node);
2922 } else {
2923 /* read in head of virtual allocation table file */
2924 error = vn_rdwr(UIO_READ, vat_node->vnode,
2925 (uint8_t *) raw_vat,
2926 sizeof(struct udf_vat), 0,
2927 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2928 NULL, NULL);
2929 if (error)
2930 goto out;
2931
2932 /* definition */
2933 vat = (struct udf_vat *) raw_vat;
2934 vat_offset = vat->header_len;
2935 vat_entries = (vat_length - vat_offset)/4;
2936
2937 assert(lvinfo);
2938 lvinfo->num_files = vat->num_files;
2939 lvinfo->num_directories = vat->num_directories;
2940 lvinfo->min_udf_readver = vat->min_udf_readver;
2941 lvinfo->min_udf_writever = vat->min_udf_writever;
2942 lvinfo->max_udf_writever = vat->max_udf_writever;
2943
2944 udf_update_logvolname(ump, vat->logvol_id);
2945 }
2946
2947 /* read in complete VAT file */
2948 error = vn_rdwr(UIO_READ, vat_node->vnode,
2949 vat_table,
2950 vat_length, 0,
2951 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
2952 NULL, NULL);
2953 if (error)
2954 printf("read in of complete VAT file failed (error %d)\n",
2955 error);
2956 if (error)
2957 goto out;
2958
2959 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
2960 ump->logvol_integrity->lvint_next_unique_id = unique_id;
2961 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
2962 ump->logvol_integrity->time = *mtime;
2963
2964 ump->vat_table_len = vat_length;
2965 ump->vat_table_alloc_len = vat_table_alloc_len;
2966 ump->vat_table = vat_table;
2967 ump->vat_offset = vat_offset;
2968 ump->vat_entries = vat_entries;
2969 ump->vat_last_free_lb = 0; /* start at beginning */
2970
2971 out:
2972 if (error) {
2973 if (vat_table)
2974 free(vat_table, M_UDFVOLD);
2975 }
2976 free(raw_vat, M_TEMP);
2977
2978 return error;
2979 }
2980
2981 /* --------------------------------------------------------------------- */
2982
2983 static int
2984 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
2985 {
2986 struct udf_node *vat_node;
2987 struct long_ad icb_loc;
2988 uint32_t early_vat_loc, late_vat_loc, vat_loc;
2989 int error;
2990
2991 /* mapping info not needed */
2992 mapping = mapping;
2993
2994 vat_loc = ump->last_possible_vat_location;
2995 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */
2996
2997 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
2998 vat_loc, early_vat_loc));
2999 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
3000 late_vat_loc = vat_loc + 1024;
3001
3002 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
3003 vat_loc, early_vat_loc));
3004
3005 /* start looking from the end of the range */
3006 do {
3007 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
3008 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
3009 icb_loc.loc.lb_num = udf_rw32(vat_loc);
3010
3011 error = udf_get_node(ump, &icb_loc, &vat_node);
3012 if (!error) {
3013 error = udf_check_for_vat(vat_node);
3014 DPRINTFIF(VOLUMES, !error,
3015 ("VAT accepted at %d\n", vat_loc));
3016 if (!error)
3017 break;
3018 }
3019 if (vat_node) {
3020 vput(vat_node->vnode);
3021 vat_node = NULL;
3022 }
3023 vat_loc--; /* walk backwards */
3024 } while (vat_loc >= early_vat_loc);
3025
3026 /* keep our VAT node around */
3027 if (vat_node) {
3028 UDF_SET_SYSTEMFILE(vat_node->vnode);
3029 ump->vat_node = vat_node;
3030 }
3031
3032 return error;
3033 }
3034
3035 /* --------------------------------------------------------------------- */
3036
3037 static int
3038 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
3039 {
3040 union dscrptr *dscr;
3041 struct part_map_spare *pms = &mapping->pms;
3042 uint32_t lb_num;
3043 int spar, error;
3044
3045 /*
3046 * The partition mapping passed on to us specifies the information we
3047 * need to locate and initialise the sparable partition mapping
3048 * information we need.
3049 */
3050
3051 DPRINTF(VOLUMES, ("Read sparable table\n"));
3052 ump->sparable_packet_size = udf_rw16(pms->packet_len);
3053 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */
3054
3055 for (spar = 0; spar < pms->n_st; spar++) {
3056 lb_num = pms->st_loc[spar];
3057 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
3058 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3059 if (!error && dscr) {
3060 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
3061 if (ump->sparing_table)
3062 free(ump->sparing_table, M_UDFVOLD);
3063 ump->sparing_table = &dscr->spt;
3064 dscr = NULL;
3065 DPRINTF(VOLUMES,
3066 ("Sparing table accepted (%d entries)\n",
3067 udf_rw16(ump->sparing_table->rt_l)));
3068 break; /* we're done */
3069 }
3070 }
3071 if (dscr)
3072 free(dscr, M_UDFVOLD);
3073 }
3074
3075 if (ump->sparing_table)
3076 return 0;
3077
3078 return ENOENT;
3079 }
3080
3081 /* --------------------------------------------------------------------- */
3082
3083 static int
3084 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
3085 {
3086 struct part_map_meta *pmm = &mapping->pmm;
3087 struct long_ad icb_loc;
3088 struct vnode *vp;
3089 int error;
3090
3091 DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
3092 icb_loc.loc.part_num = pmm->part_num;
3093 icb_loc.loc.lb_num = pmm->meta_file_lbn;
3094 DPRINTF(VOLUMES, ("Metadata file\n"));
3095 error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
3096 if (ump->metadata_node) {
3097 vp = ump->metadata_node->vnode;
3098 UDF_SET_SYSTEMFILE(vp);
3099 }
3100
3101 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
3102 if (icb_loc.loc.lb_num != -1) {
3103 DPRINTF(VOLUMES, ("Metadata copy file\n"));
3104 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
3105 if (ump->metadatamirror_node) {
3106 vp = ump->metadatamirror_node->vnode;
3107 UDF_SET_SYSTEMFILE(vp);
3108 }
3109 }
3110
3111 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
3112 if (icb_loc.loc.lb_num != -1) {
3113 DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
3114 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
3115 if (ump->metadatabitmap_node) {
3116 vp = ump->metadatabitmap_node->vnode;
3117 UDF_SET_SYSTEMFILE(vp);
3118 }
3119 }
3120
3121 /* if we're mounting read-only we relax the requirements */
3122 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
3123 error = EFAULT;
3124 if (ump->metadata_node)
3125 error = 0;
3126 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
3127 printf( "udf mount: Metadata file not readable, "
3128 "substituting Metadata copy file\n");
3129 ump->metadata_node = ump->metadatamirror_node;
3130 ump->metadatamirror_node = NULL;
3131 error = 0;
3132 }
3133 } else {
3134 /* mounting read/write */
3135 /* XXX DISABLED! metadata writing is not working yet XXX */
3136 if (error)
3137 error = EROFS;
3138 }
3139 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
3140 "metadata files\n"));
3141 return error;
3142 }
3143
3144 /* --------------------------------------------------------------------- */
3145
3146 int
3147 udf_read_vds_tables(struct udf_mount *ump)
3148 {
3149 union udf_pmap *mapping;
3150 /* struct udf_args *args = &ump->mount_args; */
3151 uint32_t n_pm, mt_l;
3152 uint32_t log_part;
3153 uint8_t *pmap_pos;
3154 int pmap_size;
3155 int error;
3156
3157 /* Iterate (again) over the part mappings for locations */
3158 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
3159 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
3160 pmap_pos = ump->logical_vol->maps;
3161
3162 for (log_part = 0; log_part < n_pm; log_part++) {
3163 mapping = (union udf_pmap *) pmap_pos;
3164 switch (ump->vtop_tp[log_part]) {
3165 case UDF_VTOP_TYPE_PHYS :
3166 /* nothing */
3167 break;
3168 case UDF_VTOP_TYPE_VIRT :
3169 /* search and load VAT */
3170 error = udf_search_vat(ump, mapping);
3171 if (error)
3172 return ENOENT;
3173 break;
3174 case UDF_VTOP_TYPE_SPARABLE :
3175 /* load one of the sparable tables */
3176 error = udf_read_sparables(ump, mapping);
3177 if (error)
3178 return ENOENT;
3179 break;
3180 case UDF_VTOP_TYPE_META :
3181 /* load the associated file descriptors */
3182 error = udf_read_metadata_nodes(ump, mapping);
3183 if (error)
3184 return ENOENT;
3185 break;
3186 default:
3187 break;
3188 }
3189 pmap_size = pmap_pos[1];
3190 pmap_pos += pmap_size;
3191 }
3192
3193 /* read in and check unallocated and free space info if writing */
3194 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
3195 error = udf_read_physical_partition_spacetables(ump);
3196 if (error)
3197 return error;
3198
3199 /* also read in metadata partion spacebitmap if defined */
3200 error = udf_read_metadata_partition_spacetable(ump);
3201 return error;
3202 }
3203
3204 return 0;
3205 }
3206
3207 /* --------------------------------------------------------------------- */
3208
3209 int
3210 udf_read_rootdirs(struct udf_mount *ump)
3211 {
3212 union dscrptr *dscr;
3213 /* struct udf_args *args = &ump->mount_args; */
3214 struct udf_node *rootdir_node, *streamdir_node;
3215 struct long_ad fsd_loc, *dir_loc;
3216 uint32_t lb_num, dummy;
3217 uint32_t fsd_len;
3218 int dscr_type;
3219 int error;
3220
3221 /* TODO implement FSD reading in separate function like integrity? */
3222 /* get fileset descriptor sequence */
3223 fsd_loc = ump->logical_vol->lv_fsd_loc;
3224 fsd_len = udf_rw32(fsd_loc.len);
3225
3226 dscr = NULL;
3227 error = 0;
3228 while (fsd_len || error) {
3229 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
3230 /* translate fsd_loc to lb_num */
3231 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
3232 if (error)
3233 break;
3234 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
3235 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
3236 /* end markers */
3237 if (error || (dscr == NULL))
3238 break;
3239
3240 /* analyse */
3241 dscr_type = udf_rw16(dscr->tag.id);
3242 if (dscr_type == TAGID_TERM)
3243 break;
3244 if (dscr_type != TAGID_FSD) {
3245 free(dscr, M_UDFVOLD);
3246 return ENOENT;
3247 }
3248
3249 /*
3250 * TODO check for multiple fileset descriptors; its only
3251 * picking the last now. Also check for FSD
3252 * correctness/interpretability
3253 */
3254
3255 /* update */
3256 if (ump->fileset_desc) {
3257 free(ump->fileset_desc, M_UDFVOLD);
3258 }
3259 ump->fileset_desc = &dscr->fsd;
3260 dscr = NULL;
3261
3262 /* continue to the next fsd */
3263 fsd_len -= ump->discinfo.sector_size;
3264 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
3265
3266 /* follow up to fsd->next_ex (long_ad) if its not null */
3267 if (udf_rw32(ump->fileset_desc->next_ex.len)) {
3268 DPRINTF(VOLUMES, ("follow up FSD extent\n"));
3269 fsd_loc = ump->fileset_desc->next_ex;
3270 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
3271 }
3272 }
3273 if (dscr)
3274 free(dscr, M_UDFVOLD);
3275
3276 /* there has to be one */
3277 if (ump->fileset_desc == NULL)
3278 return ENOENT;
3279
3280 DPRINTF(VOLUMES, ("FSD read in fine\n"));
3281 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
3282 udf_update_logvolname(ump, ump->logical_vol->logvol_id);
3283
3284 /*
3285 * Now the FSD is known, read in the rootdirectory and if one exists,
3286 * the system stream dir. Some files in the system streamdir are not
3287 * wanted in this implementation since they are not maintained. If
3288 * writing is enabled we'll delete these files if they exist.
3289 */
3290
3291 rootdir_node = streamdir_node = NULL;
3292 dir_loc = NULL;
3293
3294 /* try to read in the rootdir */
3295 dir_loc = &ump->fileset_desc->rootdir_icb;
3296 error = udf_get_node(ump, dir_loc, &rootdir_node);
3297 if (error)
3298 return ENOENT;
3299
3300 /* aparently it read in fine */
3301
3302 /*
3303 * Try the system stream directory; not very likely in the ones we
3304 * test, but for completeness.
3305 */
3306 dir_loc = &ump->fileset_desc->streamdir_icb;
3307 if (udf_rw32(dir_loc->len)) {
3308 printf("udf_read_rootdirs: streamdir defined ");
3309 error = udf_get_node(ump, dir_loc, &streamdir_node);
3310 if (error) {
3311 printf("but error in streamdir reading\n");
3312 } else {
3313 printf("but ignored\n");
3314 /*
3315 * TODO process streamdir `baddies' i.e. files we dont
3316 * want if R/W
3317 */
3318 }
3319 }
3320
3321 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
3322
3323 /* release the vnodes again; they'll be auto-recycled later */
3324 if (streamdir_node) {
3325 vput(streamdir_node->vnode);
3326 }
3327 if (rootdir_node) {
3328 vput(rootdir_node->vnode);
3329 }
3330
3331 return 0;
3332 }
3333
3334 /* --------------------------------------------------------------------- */
3335
3336 /* To make absolutely sure we are NOT returning zero, add one :) */
3337
3338 long
3339 udf_calchash(struct long_ad *icbptr)
3340 {
3341 /* ought to be enough since each mountpoint has its own chain */
3342 return udf_rw32(icbptr->loc.lb_num) + 1;
3343 }
3344
3345
3346 static struct udf_node *
3347 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
3348 {
3349 struct udf_node *node;
3350 struct vnode *vp;
3351 uint32_t hashline;
3352
3353 loop:
3354 mutex_enter(&ump->ihash_lock);
3355
3356 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
3357 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
3358 assert(node);
3359 if (node->loc.loc.lb_num == icbptr->loc.lb_num &&
3360 node->loc.loc.part_num == icbptr->loc.part_num) {
3361 vp = node->vnode;
3362 assert(vp);
3363 mutex_enter(&vp->v_interlock);
3364 mutex_exit(&ump->ihash_lock);
3365 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
3366 goto loop;
3367 return node;
3368 }
3369 }
3370 mutex_exit(&ump->ihash_lock);
3371
3372 return NULL;
3373 }
3374
3375
3376 static void
3377 udf_sorted_list_insert(struct udf_node *node)
3378 {
3379 struct udf_mount *ump;
3380 struct udf_node *s_node, *last_node;
3381 uint32_t loc, s_loc;
3382
3383 ump = node->ump;
3384 last_node = NULL; /* XXX gcc */
3385
3386 if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
3387 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
3388 return;
3389 }
3390
3391 /*
3392 * We sort on logical block number here and not on physical block
3393 * number here. Ideally we should go for the physical block nr to get
3394 * better sync performance though this sort will ensure that packets
3395 * won't get spit up unnessisarily.
3396 */
3397
3398 loc = udf_rw32(node->loc.loc.lb_num);
3399 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
3400 s_loc = udf_rw32(s_node->loc.loc.lb_num);
3401 if (s_loc > loc) {
3402 LIST_INSERT_BEFORE(s_node, node, sortchain);
3403 return;
3404 }
3405 last_node = s_node;
3406 }
3407 LIST_INSERT_AFTER(last_node, node, sortchain);
3408 }
3409
3410
3411 static void
3412 udf_register_node(struct udf_node *node)
3413 {
3414 struct udf_mount *ump;
3415 struct udf_node *chk;
3416 uint32_t hashline;
3417
3418 ump = node->ump;
3419 mutex_enter(&ump->ihash_lock);
3420
3421 /* add to our hash table */
3422 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
3423 #ifdef DEBUG
3424 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
3425 assert(chk);
3426 if (chk->loc.loc.lb_num == node->loc.loc.lb_num &&
3427 chk->loc.loc.part_num == node->loc.loc.part_num)
3428 panic("Double node entered\n");
3429 }
3430 #else
3431 chk = NULL;
3432 #endif
3433 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
3434
3435 /* add to our sorted list */
3436 udf_sorted_list_insert(node);
3437
3438 mutex_exit(&ump->ihash_lock);
3439 }
3440
3441
3442 static void
3443 udf_deregister_node(struct udf_node *node)
3444 {
3445 struct udf_mount *ump;
3446
3447 ump = node->ump;
3448 mutex_enter(&ump->ihash_lock);
3449
3450 /* from hash and sorted list */
3451 LIST_REMOVE(node, hashchain);
3452 LIST_REMOVE(node, sortchain);
3453
3454 mutex_exit(&ump->ihash_lock);
3455 }
3456
3457 /* --------------------------------------------------------------------- */
3458
3459 static int
3460 udf_validate_session_start(struct udf_mount *ump)
3461 {
3462 struct mmc_trackinfo trackinfo;
3463 struct vrs_desc *vrs;
3464 uint32_t tracknr, sessionnr, sector, sector_size;
3465 uint32_t iso9660_vrs, write_track_start;
3466 uint8_t *buffer, *blank, *pos;
3467 int blks, max_sectors, vrs_len;
3468 int error;
3469
3470 /* disc appendable? */
3471 if (ump->discinfo.disc_state == MMC_STATE_FULL)
3472 return EROFS;
3473
3474 /* already written here? if so, there should be an ISO VDS */
3475 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
3476 return 0;
3477
3478 /*
3479 * Check if the first track of the session is blank and if so, copy or
3480 * create a dummy ISO descriptor so the disc is valid again.
3481 */
3482
3483 tracknr = ump->discinfo.first_track_last_session;
3484 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
3485 trackinfo.tracknr = tracknr;
3486 error = udf_update_trackinfo(ump, &trackinfo);
3487 if (error)
3488 return error;
3489
3490 udf_dump_trackinfo(&trackinfo);
3491 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
3492 KASSERT(trackinfo.sessionnr > 1);
3493
3494 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
3495 write_track_start = trackinfo.next_writable;
3496
3497 /* we have to copy the ISO VRS from a former session */
3498 DPRINTF(VOLUMES, ("validate_session_start: "
3499 "blank or reserved track, copying VRS\n"));
3500
3501 /* sessionnr should be the session we're mounting */
3502 sessionnr = ump->mount_args.sessionnr;
3503
3504 /* start at the first track */
3505 tracknr = ump->discinfo.first_track;
3506 while (tracknr <= ump->discinfo.num_tracks) {
3507 trackinfo.tracknr = tracknr;
3508 error = udf_update_trackinfo(ump, &trackinfo);
3509 if (error) {
3510 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3511 return error;
3512 }
3513 if (trackinfo.sessionnr == sessionnr)
3514 break;
3515 tracknr++;
3516 }
3517 if (trackinfo.sessionnr != sessionnr) {
3518 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
3519 return ENOENT;
3520 }
3521
3522 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
3523 udf_dump_trackinfo(&trackinfo);
3524
3525 /*
3526 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3527 * minimum ISO `sector size' 2048
3528 */
3529 sector_size = ump->discinfo.sector_size;
3530 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3531 + trackinfo.track_start;
3532
3533 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
3534 max_sectors = UDF_ISO_VRS_SIZE / sector_size;
3535 blks = MAX(1, 2048 / sector_size);
3536
3537 error = 0;
3538 for (sector = 0; sector < max_sectors; sector += blks) {
3539 pos = buffer + sector * sector_size;
3540 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
3541 iso9660_vrs + sector, blks);
3542 if (error)
3543 break;
3544 /* check this ISO descriptor */
3545 vrs = (struct vrs_desc *) pos;
3546 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
3547 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
3548 continue;
3549 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
3550 continue;
3551 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
3552 continue;
3553 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
3554 continue;
3555 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
3556 continue;
3557 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
3558 break;
3559 /* now what? for now, end of sequence */
3560 break;
3561 }
3562 vrs_len = sector + blks;
3563 if (error) {
3564 DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
3565 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
3566
3567 memset(buffer, 0, UDF_ISO_VRS_SIZE);
3568
3569 vrs = (struct vrs_desc *) (buffer);
3570 vrs->struct_type = 0;
3571 vrs->version = 1;
3572 memcpy(vrs->identifier,VRS_BEA01, 5);
3573
3574 vrs = (struct vrs_desc *) (buffer + 2048);
3575 vrs->struct_type = 0;
3576 vrs->version = 1;
3577 if (ump->logical_vol->tag.descriptor_ver == 2) {
3578 memcpy(vrs->identifier,VRS_NSR02, 5);
3579 } else {
3580 memcpy(vrs->identifier,VRS_NSR03, 5);
3581 }
3582
3583 vrs = (struct vrs_desc *) (buffer + 4096);
3584 vrs->struct_type = 0;
3585 vrs->version = 1;
3586 memcpy(vrs->identifier, VRS_TEA01, 5);
3587
3588 vrs_len = 3*blks;
3589 }
3590
3591 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
3592
3593 /*
3594 * location of iso9660 vrs is defined as first sector AFTER 32kb,
3595 * minimum ISO `sector size' 2048
3596 */
3597 sector_size = ump->discinfo.sector_size;
3598 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
3599 + write_track_start;
3600
3601 /* write out 32 kb */
3602 blank = malloc(sector_size, M_TEMP, M_WAITOK);
3603 memset(blank, 0, sector_size);
3604 error = 0;
3605 for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
3606 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3607 blank, sector, 1);
3608 if (error)
3609 break;
3610 }
3611 if (!error) {
3612 /* write out our ISO VRS */
3613 KASSERT(sector == iso9660_vrs);
3614 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
3615 sector, vrs_len);
3616 sector += vrs_len;
3617 }
3618 if (!error) {
3619 /* fill upto the first anchor at S+256 */
3620 for (; sector < write_track_start+256; sector++) {
3621 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
3622 blank, sector, 1);
3623 if (error)
3624 break;
3625 }
3626 }
3627 if (!error) {
3628 /* write out anchor; write at ABSOLUTE place! */
3629 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
3630 (union dscrptr *) ump->anchors[0], sector, sector);
3631 if (error)
3632 printf("writeout of anchor failed!\n");
3633 }
3634
3635 free(blank, M_TEMP);
3636 free(buffer, M_TEMP);
3637
3638 if (error)
3639 printf("udf_open_session: error writing iso vrs! : "
3640 "leaving disc in compromised state!\n");
3641
3642 /* synchronise device caches */
3643 (void) udf_synchronise_caches(ump);
3644
3645 return error;
3646 }
3647
3648
3649 int
3650 udf_open_logvol(struct udf_mount *ump)
3651 {
3652 int logvol_integrity;
3653 int error;
3654
3655 /* already/still open? */
3656 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3657 if (logvol_integrity == UDF_INTEGRITY_OPEN)
3658 return 0;
3659
3660 /* can we open it ? */
3661 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
3662 return EROFS;
3663
3664 /* setup write parameters */
3665 DPRINTF(VOLUMES, ("Setting up write parameters\n"));
3666 if ((error = udf_setup_writeparams(ump)) != 0)
3667 return error;
3668
3669 /* determine data and metadata tracks (most likely same) */
3670 error = udf_search_writing_tracks(ump);
3671 if (error) {
3672 /* most likely lack of space */
3673 printf("udf_open_logvol: error searching writing tracks\n");
3674 return EROFS;
3675 }
3676
3677 /* writeout/update lvint on disc or only in memory */
3678 DPRINTF(VOLUMES, ("Opening logical volume\n"));
3679 if (ump->lvopen & UDF_OPEN_SESSION) {
3680 /* TODO optional track reservation opening */
3681 error = udf_validate_session_start(ump);
3682 if (error)
3683 return error;
3684
3685 /* determine data and metadata tracks again */
3686 error = udf_search_writing_tracks(ump);
3687 }
3688
3689 /* mark it open */
3690 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
3691
3692 /* do we need to write it out? */
3693 if (ump->lvopen & UDF_WRITE_LVINT) {
3694 error = udf_writeout_lvint(ump, ump->lvopen);
3695 /* if we couldn't write it mark it closed again */
3696 if (error) {
3697 ump->logvol_integrity->integrity_type =
3698 udf_rw32(UDF_INTEGRITY_CLOSED);
3699 return error;
3700 }
3701 }
3702
3703 return 0;
3704 }
3705
3706
3707 int
3708 udf_close_logvol(struct udf_mount *ump, int mntflags)
3709 {
3710 struct vnode *devvp = ump->devvp;
3711 struct mmc_op mmc_op;
3712 int logvol_integrity;
3713 int error = 0, error1 = 0, error2 = 0;
3714 int tracknr;
3715 int nvats, n, nok;
3716
3717 /* already/still closed? */
3718 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
3719 if (logvol_integrity == UDF_INTEGRITY_CLOSED)
3720 return 0;
3721
3722 /* writeout/update lvint or write out VAT */
3723 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
3724 #ifdef DIAGNOSTIC
3725 if (ump->lvclose & UDF_CLOSE_SESSION)
3726 KASSERT(ump->lvclose & UDF_WRITE_VAT);
3727 #endif
3728
3729 if (ump->lvclose & UDF_WRITE_VAT) {
3730 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
3731
3732 /* write out the VAT data and all its descriptors */
3733 DPRINTF(VOLUMES, ("writeout vat_node\n"));
3734 udf_writeout_vat(ump);
3735 vflushbuf(ump->vat_node->vnode, 1 /* sync */);
3736
3737 (void) VOP_FSYNC(ump->vat_node->vnode,
3738 FSCRED, FSYNC_WAIT, 0, 0);
3739
3740 if (ump->lvclose & UDF_CLOSE_SESSION) {
3741 DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
3742 "as requested\n"));
3743 }
3744
3745 /* at least two DVD packets and 3 CD-R packets */
3746 nvats = 32;
3747
3748 #if notyet
3749 /*
3750 * TODO calculate the available space and if the disc is
3751 * allmost full, write out till end-256-1 with banks, write
3752 * AVDP and fill up with VATs, then close session and close
3753 * disc.
3754 */
3755 if (ump->lvclose & UDF_FINALISE_DISC) {
3756 error = udf_write_phys_dscr_sync(ump, NULL,
3757 UDF_C_FLOAT_DSCR,
3758 (union dscrptr *) ump->anchors[0],
3759 0, 0);
3760 if (error)
3761 printf("writeout of anchor failed!\n");
3762
3763 /* pad space with VAT ICBs */
3764 nvats = 256;
3765 }
3766 #endif
3767
3768 /* write out a number of VAT nodes */
3769 nok = 0;
3770 for (n = 0; n < nvats; n++) {
3771 /* will now only write last FE/EFE */
3772 ump->vat_node->i_flags |= IN_MODIFIED;
3773 error = VOP_FSYNC(ump->vat_node->vnode,
3774 FSCRED, FSYNC_WAIT, 0, 0);
3775 if (!error)
3776 nok++;
3777 }
3778 if (nok < 14) {
3779 /* arbitrary; but at least one or two CD frames */
3780 printf("writeout of at least 14 VATs failed\n");
3781 return error;
3782 }
3783 }
3784
3785 /* NOTE the disc is in a (minimal) valid state now; no erroring out */
3786
3787 /* finish closing of session */
3788 if (ump->lvclose & UDF_CLOSE_SESSION) {
3789 error = udf_validate_session_start(ump);
3790 if (error)
3791 return error;
3792
3793 /* close all associated tracks */
3794 tracknr = ump->discinfo.first_track_last_session;
3795 error = 0;
3796 while (tracknr <= ump->discinfo.last_track_last_session) {
3797 DPRINTF(VOLUMES, ("\tclosing possible open "
3798 "track %d\n", tracknr));
3799 memset(&mmc_op, 0, sizeof(mmc_op));
3800 mmc_op.operation = MMC_OP_CLOSETRACK;
3801 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3802 mmc_op.tracknr = tracknr;
3803 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3804 FKIOCTL, NOCRED);
3805 if (error)
3806 printf("udf_close_logvol: closing of "
3807 "track %d failed\n", tracknr);
3808 tracknr ++;
3809 }
3810 if (!error) {
3811 DPRINTF(VOLUMES, ("closing session\n"));
3812 memset(&mmc_op, 0, sizeof(mmc_op));
3813 mmc_op.operation = MMC_OP_CLOSESESSION;
3814 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3815 mmc_op.sessionnr = ump->discinfo.num_sessions;
3816 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3817 FKIOCTL, NOCRED);
3818 if (error)
3819 printf("udf_close_logvol: closing of session"
3820 "failed\n");
3821 }
3822 if (!error)
3823 ump->lvopen |= UDF_OPEN_SESSION;
3824 if (error) {
3825 printf("udf_close_logvol: leaving disc as it is\n");
3826 ump->lvclose &= ~UDF_FINALISE_DISC;
3827 }
3828 }
3829
3830 if (ump->lvclose & UDF_FINALISE_DISC) {
3831 memset(&mmc_op, 0, sizeof(mmc_op));
3832 mmc_op.operation = MMC_OP_FINALISEDISC;
3833 mmc_op.mmc_profile = ump->discinfo.mmc_profile;
3834 mmc_op.sessionnr = ump->discinfo.num_sessions;
3835 error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
3836 FKIOCTL, NOCRED);
3837 if (error)
3838 printf("udf_close_logvol: finalising disc"
3839 "failed\n");
3840 }
3841
3842 /* write out partition bitmaps if requested */
3843 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
3844 /* sync writeout metadata spacetable if existing */
3845 error1 = udf_write_metadata_partition_spacetable(ump, true);
3846 if (error1)
3847 printf( "udf_close_logvol: writeout of metadata space "
3848 "bitmap failed\n");
3849
3850 /* sync writeout partition spacetables */
3851 error2 = udf_write_physical_partition_spacetables(ump, true);
3852 if (error2)
3853 printf( "udf_close_logvol: writeout of space tables "
3854 "failed\n");
3855
3856 if (error1 || error2)
3857 return (error1 | error2);
3858
3859 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
3860 }
3861
3862 /* mark it closed */
3863 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
3864
3865 /* do we need to write out the logical volume integrity? */
3866 if (ump->lvclose & UDF_WRITE_LVINT)
3867 error = udf_writeout_lvint(ump, ump->lvopen);
3868 if (error) {
3869 /* HELP now what? mark it open again for now */
3870 ump->logvol_integrity->integrity_type =
3871 udf_rw32(UDF_INTEGRITY_OPEN);
3872 return error;
3873 }
3874
3875 (void) udf_synchronise_caches(ump);
3876
3877 return 0;
3878 }
3879
3880 /* --------------------------------------------------------------------- */
3881
3882 /*
3883 * Genfs interfacing
3884 *
3885 * static const struct genfs_ops udf_genfsops = {
3886 * .gop_size = genfs_size,
3887 * size of transfers
3888 * .gop_alloc = udf_gop_alloc,
3889 * allocate len bytes at offset
3890 * .gop_write = genfs_gop_write,
3891 * putpages interface code
3892 * .gop_markupdate = udf_gop_markupdate,
3893 * set update/modify flags etc.
3894 * }
3895 */
3896
3897 /*
3898 * Genfs interface. These four functions are the only ones defined though not
3899 * documented... great....
3900 */
3901
3902 /*
3903 * Callback from genfs to allocate len bytes at offset off; only called when
3904 * filling up gaps in the allocation.
3905 */
3906 /* XXX should we check if there is space enough in udf_gop_alloc? */
3907 static int
3908 udf_gop_alloc(struct vnode *vp, off_t off,
3909 off_t len, int flags, kauth_cred_t cred)
3910 {
3911 #if 0
3912 struct udf_node *udf_node = VTOI(vp);
3913 struct udf_mount *ump = udf_node->ump;
3914 uint32_t lb_size, num_lb;
3915 #endif
3916
3917 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
3918 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
3919
3920 return 0;
3921 }
3922
3923
3924 /*
3925 * callback from genfs to update our flags
3926 */
3927 static void
3928 udf_gop_markupdate(struct vnode *vp, int flags)
3929 {
3930 struct udf_node *udf_node = VTOI(vp);
3931 u_long mask = 0;
3932
3933 if ((flags & GOP_UPDATE_ACCESSED) != 0) {
3934 mask = IN_ACCESS;
3935 }
3936 if ((flags & GOP_UPDATE_MODIFIED) != 0) {
3937 if (vp->v_type == VREG) {
3938 mask |= IN_CHANGE | IN_UPDATE;
3939 } else {
3940 mask |= IN_MODIFY;
3941 }
3942 }
3943 if (mask) {
3944 udf_node->i_flags |= mask;
3945 }
3946 }
3947
3948
3949 static const struct genfs_ops udf_genfsops = {
3950 .gop_size = genfs_size,
3951 .gop_alloc = udf_gop_alloc,
3952 .gop_write = genfs_gop_write_rwmap,
3953 .gop_markupdate = udf_gop_markupdate,
3954 };
3955
3956
3957 /* --------------------------------------------------------------------- */
3958
3959 int
3960 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
3961 {
3962 union dscrptr *dscr;
3963 int error;
3964
3965 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
3966 bzero(dscr, ump->discinfo.sector_size);
3967 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
3968
3969 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
3970 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
3971 (void) udf_validate_tag_and_crc_sums(dscr);
3972
3973 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
3974 dscr, sector, sector);
3975
3976 free(dscr, M_TEMP);
3977
3978 return error;
3979 }
3980
3981
3982 /* --------------------------------------------------------------------- */
3983
3984 /* UDF<->unix converters */
3985
3986 /* --------------------------------------------------------------------- */
3987
3988 static mode_t
3989 udf_perm_to_unix_mode(uint32_t perm)
3990 {
3991 mode_t mode;
3992
3993 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
3994 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
3995 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
3996
3997 return mode;
3998 }
3999
4000 /* --------------------------------------------------------------------- */
4001
4002 static uint32_t
4003 unix_mode_to_udf_perm(mode_t mode)
4004 {
4005 uint32_t perm;
4006
4007 perm = ((mode & S_IRWXO) );
4008 perm |= ((mode & S_IRWXG) << 2);
4009 perm |= ((mode & S_IRWXU) << 4);
4010 perm |= ((mode & S_IWOTH) << 3);
4011 perm |= ((mode & S_IWGRP) << 5);
4012 perm |= ((mode & S_IWUSR) << 7);
4013
4014 return perm;
4015 }
4016
4017 /* --------------------------------------------------------------------- */
4018
4019 static uint32_t
4020 udf_icb_to_unix_filetype(uint32_t icbftype)
4021 {
4022 switch (icbftype) {
4023 case UDF_ICB_FILETYPE_DIRECTORY :
4024 case UDF_ICB_FILETYPE_STREAMDIR :
4025 return S_IFDIR;
4026 case UDF_ICB_FILETYPE_FIFO :
4027 return S_IFIFO;
4028 case UDF_ICB_FILETYPE_CHARDEVICE :
4029 return S_IFCHR;
4030 case UDF_ICB_FILETYPE_BLOCKDEVICE :
4031 return S_IFBLK;
4032 case UDF_ICB_FILETYPE_RANDOMACCESS :
4033 case UDF_ICB_FILETYPE_REALTIME :
4034 return S_IFREG;
4035 case UDF_ICB_FILETYPE_SYMLINK :
4036 return S_IFLNK;
4037 case UDF_ICB_FILETYPE_SOCKET :
4038 return S_IFSOCK;
4039 }
4040 /* no idea what this is */
4041 return 0;
4042 }
4043
4044 /* --------------------------------------------------------------------- */
4045
4046 void
4047 udf_to_unix_name(char *result, int result_len, char *id, int len,
4048 struct charspec *chsp)
4049 {
4050 uint16_t *raw_name, *unix_name;
4051 uint16_t *inchp, ch;
4052 uint8_t *outchp;
4053 const char *osta_id = "OSTA Compressed Unicode";
4054 int ucode_chars, nice_uchars, is_osta_typ0, nout;
4055
4056 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
4057 unix_name = raw_name + 1024; /* split space in half */
4058 assert(sizeof(char) == sizeof(uint8_t));
4059 outchp = (uint8_t *) result;
4060
4061 is_osta_typ0 = (chsp->type == 0);
4062 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4063 if (is_osta_typ0) {
4064 /* TODO clean up */
4065 *raw_name = *unix_name = 0;
4066 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
4067 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
4068 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
4069 /* output UTF8 */
4070 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
4071 ch = *inchp;
4072 nout = wput_utf8(outchp, result_len, ch);
4073 outchp += nout; result_len -= nout;
4074 if (!ch) break;
4075 }
4076 *outchp++ = 0;
4077 } else {
4078 /* assume 8bit char length byte latin-1 */
4079 assert(*id == 8);
4080 assert(strlen((char *) (id+1)) <= MAXNAMLEN);
4081 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
4082 }
4083 free(raw_name, M_UDFTEMP);
4084 }
4085
4086 /* --------------------------------------------------------------------- */
4087
4088 void
4089 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
4090 struct charspec *chsp)
4091 {
4092 uint16_t *raw_name;
4093 uint16_t *outchp;
4094 const char *inchp;
4095 const char *osta_id = "OSTA Compressed Unicode";
4096 int udf_chars, is_osta_typ0, bits;
4097 size_t cnt;
4098
4099 /* allocate temporary unicode-16 buffer */
4100 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
4101
4102 /* convert utf8 to unicode-16 */
4103 *raw_name = 0;
4104 inchp = name;
4105 outchp = raw_name;
4106 bits = 8;
4107 for (cnt = name_len, udf_chars = 0; cnt;) {
4108 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
4109 *outchp = wget_utf8(&inchp, &cnt);
4110 if (*outchp > 0xff)
4111 bits=16;
4112 outchp++;
4113 udf_chars++;
4114 }
4115 /* null terminate just in case */
4116 *outchp++ = 0;
4117
4118 is_osta_typ0 = (chsp->type == 0);
4119 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
4120 if (is_osta_typ0) {
4121 udf_chars = udf_CompressUnicode(udf_chars, bits,
4122 (unicode_t *) raw_name,
4123 (byte *) result);
4124 } else {
4125 printf("unix to udf name: no CHSP0 ?\n");
4126 /* XXX assume 8bit char length byte latin-1 */
4127 *result++ = 8; udf_chars = 1;
4128 strncpy(result, name + 1, name_len);
4129 udf_chars += name_len;
4130 }
4131 *result_len = udf_chars;
4132 free(raw_name, M_UDFTEMP);
4133 }
4134
4135 /* --------------------------------------------------------------------- */
4136
4137 void
4138 udf_timestamp_to_timespec(struct udf_mount *ump,
4139 struct timestamp *timestamp,
4140 struct timespec *timespec)
4141 {
4142 struct clock_ymdhms ymdhms;
4143 uint32_t usecs, secs, nsecs;
4144 uint16_t tz;
4145
4146 /* fill in ymdhms structure from timestamp */
4147 memset(&ymdhms, 0, sizeof(ymdhms));
4148 ymdhms.dt_year = udf_rw16(timestamp->year);
4149 ymdhms.dt_mon = timestamp->month;
4150 ymdhms.dt_day = timestamp->day;
4151 ymdhms.dt_wday = 0; /* ? */
4152 ymdhms.dt_hour = timestamp->hour;
4153 ymdhms.dt_min = timestamp->minute;
4154 ymdhms.dt_sec = timestamp->second;
4155
4156 secs = clock_ymdhms_to_secs(&ymdhms);
4157 usecs = timestamp->usec +
4158 100*timestamp->hund_usec + 10000*timestamp->centisec;
4159 nsecs = usecs * 1000;
4160
4161 /*
4162 * Calculate the time zone. The timezone is 12 bit signed 2's
4163 * compliment, so we gotta do some extra magic to handle it right.
4164 */
4165 tz = udf_rw16(timestamp->type_tz);
4166 tz &= 0x0fff; /* only lower 12 bits are significant */
4167 if (tz & 0x0800) /* sign extention */
4168 tz |= 0xf000;
4169
4170 /* TODO check timezone conversion */
4171 /* check if we are specified a timezone to convert */
4172 if (udf_rw16(timestamp->type_tz) & 0x1000) {
4173 if ((int16_t) tz != -2047)
4174 secs -= (int16_t) tz * 60;
4175 } else {
4176 secs -= ump->mount_args.gmtoff;
4177 }
4178
4179 timespec->tv_sec = secs;
4180 timespec->tv_nsec = nsecs;
4181 }
4182
4183
4184 void
4185 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
4186 {
4187 struct clock_ymdhms ymdhms;
4188 uint32_t husec, usec, csec;
4189
4190 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
4191
4192 usec = timespec->tv_nsec / 1000;
4193 husec = usec / 100;
4194 usec -= husec * 100; /* only 0-99 in usec */
4195 csec = husec / 100; /* only 0-99 in csec */
4196 husec -= csec * 100; /* only 0-99 in husec */
4197
4198 /* set method 1 for CUT/GMT */
4199 timestamp->type_tz = udf_rw16((1<<12) + 0);
4200 timestamp->year = udf_rw16(ymdhms.dt_year);
4201 timestamp->month = ymdhms.dt_mon;
4202 timestamp->day = ymdhms.dt_day;
4203 timestamp->hour = ymdhms.dt_hour;
4204 timestamp->minute = ymdhms.dt_min;
4205 timestamp->second = ymdhms.dt_sec;
4206 timestamp->centisec = csec;
4207 timestamp->hund_usec = husec;
4208 timestamp->usec = usec;
4209 }
4210
4211 /* --------------------------------------------------------------------- */
4212
4213 /*
4214 * Attribute and filetypes converters with get/set pairs
4215 */
4216
4217 uint32_t
4218 udf_getaccessmode(struct udf_node *udf_node)
4219 {
4220 struct file_entry *fe = udf_node->fe;;
4221 struct extfile_entry *efe = udf_node->efe;
4222 uint32_t udf_perm, icbftype;
4223 uint32_t mode, ftype;
4224 uint16_t icbflags;
4225
4226 UDF_LOCK_NODE(udf_node, 0);
4227 if (fe) {
4228 udf_perm = udf_rw32(fe->perm);
4229 icbftype = fe->icbtag.file_type;
4230 icbflags = udf_rw16(fe->icbtag.flags);
4231 } else {
4232 assert(udf_node->efe);
4233 udf_perm = udf_rw32(efe->perm);
4234 icbftype = efe->icbtag.file_type;
4235 icbflags = udf_rw16(efe->icbtag.flags);
4236 }
4237
4238 mode = udf_perm_to_unix_mode(udf_perm);
4239 ftype = udf_icb_to_unix_filetype(icbftype);
4240
4241 /* set suid, sgid, sticky from flags in fe/efe */
4242 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
4243 mode |= S_ISUID;
4244 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
4245 mode |= S_ISGID;
4246 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
4247 mode |= S_ISVTX;
4248
4249 UDF_UNLOCK_NODE(udf_node, 0);
4250
4251 return mode | ftype;
4252 }
4253
4254
4255 void
4256 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
4257 {
4258 struct file_entry *fe = udf_node->fe;
4259 struct extfile_entry *efe = udf_node->efe;
4260 uint32_t udf_perm;
4261 uint16_t icbflags;
4262
4263 UDF_LOCK_NODE(udf_node, 0);
4264 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
4265 if (fe) {
4266 icbflags = udf_rw16(fe->icbtag.flags);
4267 } else {
4268 icbflags = udf_rw16(efe->icbtag.flags);
4269 }
4270
4271 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
4272 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
4273 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
4274 if (mode & S_ISUID)
4275 icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
4276 if (mode & S_ISGID)
4277 icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
4278 if (mode & S_ISVTX)
4279 icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
4280
4281 if (fe) {
4282 fe->perm = udf_rw32(udf_perm);
4283 fe->icbtag.flags = udf_rw16(icbflags);
4284 } else {
4285 efe->perm = udf_rw32(udf_perm);
4286 efe->icbtag.flags = udf_rw16(icbflags);
4287 }
4288
4289 UDF_UNLOCK_NODE(udf_node, 0);
4290 }
4291
4292
4293 void
4294 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
4295 {
4296 struct udf_mount *ump = udf_node->ump;
4297 struct file_entry *fe = udf_node->fe;
4298 struct extfile_entry *efe = udf_node->efe;
4299 uid_t uid;
4300 gid_t gid;
4301
4302 UDF_LOCK_NODE(udf_node, 0);
4303 if (fe) {
4304 uid = (uid_t)udf_rw32(fe->uid);
4305 gid = (gid_t)udf_rw32(fe->gid);
4306 } else {
4307 assert(udf_node->efe);
4308 uid = (uid_t)udf_rw32(efe->uid);
4309 gid = (gid_t)udf_rw32(efe->gid);
4310 }
4311
4312 /* do the uid/gid translation game */
4313 if (uid == (uid_t) -1)
4314 uid = ump->mount_args.anon_uid;
4315 if (gid == (gid_t) -1)
4316 gid = ump->mount_args.anon_gid;
4317
4318 *uidp = uid;
4319 *gidp = gid;
4320
4321 UDF_UNLOCK_NODE(udf_node, 0);
4322 }
4323
4324
4325 void
4326 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
4327 {
4328 struct udf_mount *ump = udf_node->ump;
4329 struct file_entry *fe = udf_node->fe;
4330 struct extfile_entry *efe = udf_node->efe;
4331 uid_t nobody_uid;
4332 gid_t nobody_gid;
4333
4334 UDF_LOCK_NODE(udf_node, 0);
4335
4336 /* do the uid/gid translation game */
4337 nobody_uid = ump->mount_args.nobody_uid;
4338 nobody_gid = ump->mount_args.nobody_gid;
4339 if (uid == nobody_uid)
4340 uid = (uid_t) -1;
4341 if (gid == nobody_gid)
4342 gid = (gid_t) -1;
4343
4344 if (fe) {
4345 fe->uid = udf_rw32((uint32_t) uid);
4346 fe->gid = udf_rw32((uint32_t) gid);
4347 } else {
4348 efe->uid = udf_rw32((uint32_t) uid);
4349 efe->gid = udf_rw32((uint32_t) gid);
4350 }
4351
4352 UDF_UNLOCK_NODE(udf_node, 0);
4353 }
4354
4355
4356 /* --------------------------------------------------------------------- */
4357
4358
4359 static int
4360 dirhash_fill(struct udf_node *dir_node)
4361 {
4362 struct vnode *dvp = dir_node->vnode;
4363 struct dirhash *dirh;
4364 struct file_entry *fe = dir_node->fe;
4365 struct extfile_entry *efe = dir_node->efe;
4366 struct fileid_desc *fid;
4367 struct dirent *dirent;
4368 uint64_t file_size, pre_diroffset, diroffset;
4369 uint32_t lb_size;
4370 int error;
4371
4372 /* make sure we have a dirhash to work on */
4373 dirh = dir_node->dir_hash;
4374 KASSERT(dirh);
4375 KASSERT(dirh->refcnt > 0);
4376
4377 if (dirh->flags & DIRH_BROKEN)
4378 return EIO;
4379 if (dirh->flags & DIRH_COMPLETE)
4380 return 0;
4381
4382 /* make sure we have a clean dirhash to add to */
4383 dirhash_purge_entries(dirh);
4384
4385 /* get directory filesize */
4386 if (fe) {
4387 file_size = udf_rw64(fe->inf_len);
4388 } else {
4389 assert(efe);
4390 file_size = udf_rw64(efe->inf_len);
4391 }
4392
4393 /* allocate temporary space for fid */
4394 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4395 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4396
4397 /* allocate temporary space for dirent */
4398 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4399
4400 error = 0;
4401 diroffset = 0;
4402 while (diroffset < file_size) {
4403 /* transfer a new fid/dirent */
4404 pre_diroffset = diroffset;
4405 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4406 if (error) {
4407 /* TODO what to do? continue but not add? */
4408 dirh->flags |= DIRH_BROKEN;
4409 dirhash_purge_entries(dirh);
4410 break;
4411 }
4412
4413 if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
4414 /* register deleted extent for reuse */
4415 dirhash_enter_freed(dirh, pre_diroffset,
4416 udf_fidsize(fid));
4417 } else {
4418 /* append to the dirhash */
4419 dirhash_enter(dirh, dirent, pre_diroffset,
4420 udf_fidsize(fid), 0);
4421 }
4422 }
4423 dirh->flags |= DIRH_COMPLETE;
4424
4425 free(fid, M_UDFTEMP);
4426 free(dirent, M_UDFTEMP);
4427
4428 return error;
4429 }
4430
4431
4432 /* --------------------------------------------------------------------- */
4433
4434 /*
4435 * Directory read and manipulation functions.
4436 *
4437 */
4438
4439 int
4440 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
4441 struct long_ad *icb_loc, int *found)
4442 {
4443 struct udf_node *dir_node = VTOI(vp);
4444 struct dirhash *dirh;
4445 struct dirhash_entry *dirh_ep;
4446 struct fileid_desc *fid;
4447 struct dirent *dirent;
4448 uint64_t diroffset;
4449 uint32_t lb_size;
4450 int hit, error;
4451
4452 /* set default return */
4453 *found = 0;
4454
4455 /* get our dirhash and make sure its read in */
4456 dirhash_get(&dir_node->dir_hash);
4457 error = dirhash_fill(dir_node);
4458 if (error) {
4459 dirhash_put(dir_node->dir_hash);
4460 return error;
4461 }
4462 dirh = dir_node->dir_hash;
4463
4464 /* allocate temporary space for fid */
4465 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4466 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4467 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4468
4469 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
4470 namelen, namelen, name));
4471
4472 /* search our dirhash hits */
4473 memset(icb_loc, 0, sizeof(*icb_loc));
4474 dirh_ep = NULL;
4475 for (;;) {
4476 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4477 /* if no hit, abort the search */
4478 if (!hit)
4479 break;
4480
4481 /* check this hit */
4482 diroffset = dirh_ep->offset;
4483
4484 /* transfer a new fid/dirent */
4485 error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
4486 if (error)
4487 break;
4488
4489 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
4490 dirent->d_namlen, dirent->d_namlen, dirent->d_name));
4491
4492 /* see if its our entry */
4493 KASSERT(dirent->d_namlen == namelen);
4494 if (strncmp(dirent->d_name, name, namelen) == 0) {
4495 *found = 1;
4496 *icb_loc = fid->icb;
4497 break;
4498 }
4499 }
4500 free(fid, M_UDFTEMP);
4501 free(dirent, M_UDFTEMP);
4502
4503 dirhash_put(dir_node->dir_hash);
4504
4505 return error;
4506 }
4507
4508 /* --------------------------------------------------------------------- */
4509
4510 static int
4511 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
4512 struct long_ad *node_icb, struct long_ad *parent_icb,
4513 uint64_t parent_unique_id)
4514 {
4515 struct timespec now;
4516 struct icb_tag *icb;
4517 struct filetimes_extattr_entry *ft_extattr;
4518 uint64_t unique_id;
4519 uint32_t fidsize, lb_num;
4520 uint8_t *bpos;
4521 int crclen, attrlen;
4522
4523 lb_num = udf_rw32(node_icb->loc.lb_num);
4524 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
4525 icb = &fe->icbtag;
4526
4527 /*
4528 * Always use strategy type 4 unless on WORM wich we don't support
4529 * (yet). Fill in defaults and set for internal allocation of data.
4530 */
4531 icb->strat_type = udf_rw16(4);
4532 icb->max_num_entries = udf_rw16(1);
4533 icb->file_type = file_type; /* 8 bit */
4534 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4535
4536 fe->perm = udf_rw32(0x7fff); /* all is allowed */
4537 fe->link_cnt = udf_rw16(0); /* explicit setting */
4538
4539 fe->ckpoint = udf_rw32(1); /* user supplied file version */
4540
4541 vfs_timestamp(&now);
4542 udf_timespec_to_timestamp(&now, &fe->atime);
4543 udf_timespec_to_timestamp(&now, &fe->attrtime);
4544 udf_timespec_to_timestamp(&now, &fe->mtime);
4545
4546 udf_set_regid(&fe->imp_id, IMPL_NAME);
4547 udf_add_impl_regid(ump, &fe->imp_id);
4548
4549 unique_id = udf_advance_uniqueid(ump);
4550 fe->unique_id = udf_rw64(unique_id);
4551 fe->l_ea = udf_rw32(0);
4552
4553 /* create extended attribute to record our creation time */
4554 attrlen = UDF_FILETIMES_ATTR_SIZE(1);
4555 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
4556 memset(ft_extattr, 0, attrlen);
4557 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
4558 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */
4559 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
4560 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
4561 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
4562 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
4563
4564 udf_extattr_insert_internal(ump, (union dscrptr *) fe,
4565 (struct extattr_entry *) ft_extattr);
4566 free(ft_extattr, M_UDFTEMP);
4567
4568 /* if its a directory, create '..' */
4569 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
4570 fidsize = 0;
4571 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4572 fidsize = udf_create_parentfid(ump,
4573 (struct fileid_desc *) bpos, parent_icb,
4574 parent_unique_id);
4575 }
4576
4577 /* record fidlength information */
4578 fe->inf_len = udf_rw64(fidsize);
4579 fe->l_ad = udf_rw32(fidsize);
4580 fe->logblks_rec = udf_rw64(0); /* intern */
4581
4582 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
4583 crclen += udf_rw32(fe->l_ea) + fidsize;
4584 fe->tag.desc_crc_len = udf_rw16(crclen);
4585
4586 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
4587
4588 return fidsize;
4589 }
4590
4591 /* --------------------------------------------------------------------- */
4592
4593 static int
4594 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
4595 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
4596 uint64_t parent_unique_id)
4597 {
4598 struct timespec now;
4599 struct icb_tag *icb;
4600 uint64_t unique_id;
4601 uint32_t fidsize, lb_num;
4602 uint8_t *bpos;
4603 int crclen;
4604
4605 lb_num = udf_rw32(node_icb->loc.lb_num);
4606 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
4607 icb = &efe->icbtag;
4608
4609 /*
4610 * Always use strategy type 4 unless on WORM wich we don't support
4611 * (yet). Fill in defaults and set for internal allocation of data.
4612 */
4613 icb->strat_type = udf_rw16(4);
4614 icb->max_num_entries = udf_rw16(1);
4615 icb->file_type = file_type; /* 8 bit */
4616 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC);
4617
4618 efe->perm = udf_rw32(0x7fff); /* all is allowed */
4619 efe->link_cnt = udf_rw16(0); /* explicit setting */
4620
4621 efe->ckpoint = udf_rw32(1); /* user supplied file version */
4622
4623 vfs_timestamp(&now);
4624 udf_timespec_to_timestamp(&now, &efe->ctime);
4625 udf_timespec_to_timestamp(&now, &efe->atime);
4626 udf_timespec_to_timestamp(&now, &efe->attrtime);
4627 udf_timespec_to_timestamp(&now, &efe->mtime);
4628
4629 udf_set_regid(&efe->imp_id, IMPL_NAME);
4630 udf_add_impl_regid(ump, &efe->imp_id);
4631
4632 unique_id = udf_advance_uniqueid(ump);
4633 efe->unique_id = udf_rw64(unique_id);
4634 efe->l_ea = udf_rw32(0);
4635
4636 /* if its a directory, create '..' */
4637 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
4638 fidsize = 0;
4639 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
4640 fidsize = udf_create_parentfid(ump,
4641 (struct fileid_desc *) bpos, parent_icb,
4642 parent_unique_id);
4643 }
4644
4645 /* record fidlength information */
4646 efe->obj_size = udf_rw64(fidsize);
4647 efe->inf_len = udf_rw64(fidsize);
4648 efe->l_ad = udf_rw32(fidsize);
4649 efe->logblks_rec = udf_rw64(0); /* intern */
4650
4651 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
4652 crclen += udf_rw32(efe->l_ea) + fidsize;
4653 efe->tag.desc_crc_len = udf_rw16(crclen);
4654
4655 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
4656
4657 return fidsize;
4658 }
4659
4660 /* --------------------------------------------------------------------- */
4661
4662 int
4663 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
4664 struct udf_node *udf_node, struct componentname *cnp)
4665 {
4666 struct vnode *dvp = dir_node->vnode;
4667 struct dirhash *dirh;
4668 struct dirhash_entry *dirh_ep;
4669 struct file_entry *fe = dir_node->fe;
4670 struct extfile_entry *efe = dir_node->efe;
4671 struct fileid_desc *fid;
4672 struct dirent *dirent;
4673 uint64_t file_size, diroffset;
4674 uint32_t lb_size, fidsize;
4675 int found, error;
4676 char const *name = cnp->cn_nameptr;
4677 int namelen = cnp->cn_namelen;
4678 int hit, refcnt;
4679
4680 /* get our dirhash and make sure its read in */
4681 dirhash_get(&dir_node->dir_hash);
4682 error = dirhash_fill(dir_node);
4683 if (error) {
4684 dirhash_put(dir_node->dir_hash);
4685 return error;
4686 }
4687 dirh = dir_node->dir_hash;
4688
4689 /* get directory filesize */
4690 if (fe) {
4691 file_size = udf_rw64(fe->inf_len);
4692 } else {
4693 assert(efe);
4694 file_size = udf_rw64(efe->inf_len);
4695 }
4696
4697 /* allocate temporary space for fid */
4698 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
4699 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
4700 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
4701
4702 /* search our dirhash hits */
4703 found = 0;
4704 dirh_ep = NULL;
4705 for (;;) {
4706 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
4707 /* if no hit, abort the search */
4708 if (!hit)
4709 break;
4710
4711 /* check this hit */
4712 diroffset = dirh_ep->offset;
4713
4714 /* transfer a new fid/dirent */
4715 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
4716 if (error)
4717 break;
4718
4719 /* see if its our entry */
4720 KASSERT(dirent->d_namlen == namelen);
4721 if (strncmp(dirent->d_name, name, namelen) == 0) {
4722 found = 1;
4723 break;
4724 }
4725 }
4726
4727 if (!found)
4728 error = ENOENT;
4729 if (error)
4730 goto error_out;
4731
4732 /* mark deleted */
4733 fid->file_char |= UDF_FILE_CHAR_DEL;
4734 #ifdef UDF_COMPLETE_DELETE
4735 memset(&fid->icb, 0, sizeof(fid->icb));
4736 #endif
4737 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4738
4739 /* get size of fid and compensate for the read_fid_stream advance */
4740 fidsize = udf_fidsize(fid);
4741 diroffset -= fidsize;
4742
4743 /* write out */
4744 error = vn_rdwr(UIO_WRITE, dir_node->vnode,
4745 fid, fidsize, diroffset,
4746 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
4747 FSCRED, NULL, NULL);
4748 if (error)
4749 goto error_out;
4750
4751 /* get reference count of attached node */
4752 if (udf_node->fe) {
4753 refcnt = udf_rw16(udf_node->fe->link_cnt);
4754 } else {
4755 KASSERT(udf_node->efe);
4756 refcnt = udf_rw16(udf_node->efe->link_cnt);
4757 }
4758 #ifdef UDF_COMPLETE_DELETE
4759 /* substract reference counter in attached node */
4760 refcnt -= 1;
4761 if (udf_node->fe) {
4762 udf_node->fe->link_cnt = udf_rw16(refcnt);
4763 } else {
4764 udf_node->efe->link_cnt = udf_rw16(refcnt);
4765 }
4766
4767 /* prevent writeout when refcnt == 0 */
4768 if (refcnt == 0)
4769 udf_node->i_flags |= IN_DELETED;
4770
4771 if (fid->file_char & UDF_FILE_CHAR_DIR) {
4772 int drefcnt;
4773
4774 /* substract reference counter in directory node */
4775 /* note subtract 2 (?) for its was also backreferenced */
4776 if (dir_node->fe) {
4777 drefcnt = udf_rw16(dir_node->fe->link_cnt);
4778 drefcnt -= 1;
4779 dir_node->fe->link_cnt = udf_rw16(drefcnt);
4780 } else {
4781 KASSERT(dir_node->efe);
4782 drefcnt = udf_rw16(dir_node->efe->link_cnt);
4783 drefcnt -= 1;
4784 dir_node->efe->link_cnt = udf_rw16(drefcnt);
4785 }
4786 }
4787
4788 udf_node->i_flags |= IN_MODIFIED;
4789 dir_node->i_flags |= IN_MODIFIED;
4790 #endif
4791 /* if it is/was a hardlink adjust the file count */
4792 if (refcnt > 0)
4793 udf_adjust_filecount(udf_node, -1);
4794
4795 /* remove from the dirhash */
4796 dirhash_remove(dirh, dirent, diroffset,
4797 udf_fidsize(fid));
4798
4799 error_out:
4800 free(fid, M_UDFTEMP);
4801 free(dirent, M_UDFTEMP);
4802
4803 dirhash_put(dir_node->dir_hash);
4804
4805 return error;
4806 }
4807
4808 /* --------------------------------------------------------------------- */
4809
4810 /*
4811 * We are not allowed to split the fid tag itself over an logical block so
4812 * check the space remaining in the logical block.
4813 *
4814 * We try to select the smallest candidate for recycling or when none is
4815 * found, append a new one at the end of the directory.
4816 */
4817
4818 int
4819 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
4820 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
4821 {
4822 struct vnode *dvp = dir_node->vnode;
4823 struct dirhash *dirh;
4824 struct dirhash_entry *dirh_ep;
4825 struct fileid_desc *fid;
4826 struct icb_tag *icbtag;
4827 struct charspec osta_charspec;
4828 struct dirent dirent;
4829 uint64_t unique_id, dir_size;
4830 uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
4831 uint32_t chosen_size, chosen_size_diff;
4832 int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
4833 int file_char, refcnt, icbflags, addr_type, hit, error;
4834
4835 /* get our dirhash and make sure its read in */
4836 dirhash_get(&dir_node->dir_hash);
4837 error = dirhash_fill(dir_node);
4838 if (error) {
4839 dirhash_put(dir_node->dir_hash);
4840 return error;
4841 }
4842 dirh = dir_node->dir_hash;
4843
4844 /* get info */
4845 lb_size = udf_rw32(ump->logical_vol->lb_size);
4846 udf_osta_charset(&osta_charspec);
4847
4848 if (dir_node->fe) {
4849 dir_size = udf_rw64(dir_node->fe->inf_len);
4850 icbtag = &dir_node->fe->icbtag;
4851 } else {
4852 dir_size = udf_rw64(dir_node->efe->inf_len);
4853 icbtag = &dir_node->efe->icbtag;
4854 }
4855
4856 icbflags = udf_rw16(icbtag->flags);
4857 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4858
4859 if (udf_node->fe) {
4860 unique_id = udf_rw64(udf_node->fe->unique_id);
4861 refcnt = udf_rw16(udf_node->fe->link_cnt);
4862 } else {
4863 unique_id = udf_rw64(udf_node->efe->unique_id);
4864 refcnt = udf_rw16(udf_node->efe->link_cnt);
4865 }
4866
4867 if (refcnt > 0) {
4868 unique_id = udf_advance_uniqueid(ump);
4869 udf_adjust_filecount(udf_node, 1);
4870 }
4871
4872 /* determine file characteristics */
4873 file_char = 0; /* visible non deleted file and not stream metadata */
4874 if (vap->va_type == VDIR)
4875 file_char = UDF_FILE_CHAR_DIR;
4876
4877 /* malloc scrap buffer */
4878 fid = malloc(lb_size, M_TEMP, M_WAITOK);
4879 bzero(fid, lb_size);
4880
4881 /* calculate _minimum_ fid size */
4882 unix_to_udf_name((char *) fid->data, &fid->l_fi,
4883 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4884 fidsize = UDF_FID_SIZE + fid->l_fi;
4885 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */
4886
4887 /* find position that will fit the FID */
4888 chosen_fid_pos = dir_size;
4889 chosen_size = 0;
4890 chosen_size_diff = UINT_MAX;
4891
4892 /* shut up gcc */
4893 dirent.d_namlen = 0;
4894
4895 /* search our dirhash hits */
4896 error = 0;
4897 dirh_ep = NULL;
4898 for (;;) {
4899 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
4900 /* if no hit, abort the search */
4901 if (!hit)
4902 break;
4903
4904 /* check this hit for size */
4905 this_fidsize = dirh_ep->entry_size;
4906
4907 /* check this hit */
4908 fid_pos = dirh_ep->offset;
4909 end_fid_pos = fid_pos + this_fidsize;
4910 size_diff = this_fidsize - fidsize;
4911 lb_rest = lb_size - (end_fid_pos % lb_size);
4912
4913 #ifndef UDF_COMPLETE_DELETE
4914 /* transfer a new fid/dirent */
4915 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
4916 if (error)
4917 goto error_out;
4918
4919 /* only reuse entries that are wiped */
4920 /* check if the len + loc are marked zero */
4921 if (udf_rw32(fid->icb.len != 0))
4922 continue;
4923 if (udf_rw32(fid->icb.loc.lb_num) != 0)
4924 continue;
4925 if (udf_rw16(fid->icb.loc.part_num != 0))
4926 continue;
4927 #endif /* UDF_COMPLETE_DELETE */
4928
4929 /* select if not splitting the tag and its smaller */
4930 if ((size_diff >= 0) &&
4931 (size_diff < chosen_size_diff) &&
4932 (lb_rest >= sizeof(struct desc_tag)))
4933 {
4934 /* UDF 2.3.4.2+3 specifies rules for iu size */
4935 if ((size_diff == 0) || (size_diff >= 32)) {
4936 chosen_fid_pos = fid_pos;
4937 chosen_size = this_fidsize;
4938 chosen_size_diff = size_diff;
4939 }
4940 }
4941 }
4942
4943
4944 /* extend directory if no other candidate found */
4945 if (chosen_size == 0) {
4946 chosen_fid_pos = dir_size;
4947 chosen_size = fidsize;
4948 chosen_size_diff = 0;
4949
4950 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
4951 if (addr_type == UDF_ICB_INTERN_ALLOC) {
4952 /* pre-grow directory to see if we're to switch */
4953 udf_grow_node(dir_node, dir_size + chosen_size);
4954
4955 icbflags = udf_rw16(icbtag->flags);
4956 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
4957 }
4958
4959 /* make sure the next fid desc_tag won't be splitted */
4960 if (addr_type != UDF_ICB_INTERN_ALLOC) {
4961 end_fid_pos = chosen_fid_pos + chosen_size;
4962 lb_rest = lb_size - (end_fid_pos % lb_size);
4963
4964 /* pad with implementation use regid if needed */
4965 if (lb_rest < sizeof(struct desc_tag))
4966 chosen_size += 32;
4967 }
4968 }
4969 chosen_size_diff = chosen_size - fidsize;
4970
4971 /* populate the FID */
4972 memset(fid, 0, lb_size);
4973 udf_inittag(ump, &fid->tag, TAGID_FID, 0);
4974 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */
4975 fid->file_char = file_char;
4976 fid->icb = udf_node->loc;
4977 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
4978 fid->l_iu = udf_rw16(0);
4979
4980 if (chosen_size > fidsize) {
4981 /* insert implementation-use regid to space it correctly */
4982 fid->l_iu = udf_rw16(chosen_size_diff);
4983
4984 /* set implementation use */
4985 udf_set_regid((struct regid *) fid->data, IMPL_NAME);
4986 udf_add_impl_regid(ump, (struct regid *) fid->data);
4987 }
4988
4989 /* fill in name */
4990 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
4991 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
4992
4993 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
4994 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
4995
4996 /* writeout FID/update parent directory */
4997 error = vn_rdwr(UIO_WRITE, dvp,
4998 fid, chosen_size, chosen_fid_pos,
4999 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
5000 FSCRED, NULL, NULL);
5001
5002 if (error)
5003 goto error_out;
5004
5005 /* add reference counter in attached node */
5006 if (udf_node->fe) {
5007 refcnt = udf_rw16(udf_node->fe->link_cnt);
5008 udf_node->fe->link_cnt = udf_rw16(refcnt+1);
5009 } else {
5010 KASSERT(udf_node->efe);
5011 refcnt = udf_rw16(udf_node->efe->link_cnt);
5012 udf_node->efe->link_cnt = udf_rw16(refcnt+1);
5013 }
5014
5015 /* mark not deleted if it was... just in case, but do warn */
5016 if (udf_node->i_flags & IN_DELETED) {
5017 printf("udf: warning, marking a file undeleted\n");
5018 udf_node->i_flags &= ~IN_DELETED;
5019 }
5020
5021 if (file_char & UDF_FILE_CHAR_DIR) {
5022 /* add reference counter in directory node for '..' */
5023 if (dir_node->fe) {
5024 refcnt = udf_rw16(dir_node->fe->link_cnt);
5025 refcnt++;
5026 dir_node->fe->link_cnt = udf_rw16(refcnt);
5027 } else {
5028 KASSERT(dir_node->efe);
5029 refcnt = udf_rw16(dir_node->efe->link_cnt);
5030 refcnt++;
5031 dir_node->efe->link_cnt = udf_rw16(refcnt);
5032 }
5033 }
5034
5035 /* append to the dirhash */
5036 dirent.d_namlen = cnp->cn_namelen;
5037 memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
5038 dirhash_enter(dirh, &dirent, chosen_fid_pos,
5039 udf_fidsize(fid), 1);
5040
5041 /* note updates */
5042 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
5043 /* VN_KNOTE(udf_node, ...) */
5044 udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
5045
5046 error_out:
5047 free(fid, M_TEMP);
5048
5049 dirhash_put(dir_node->dir_hash);
5050
5051 return error;
5052 }
5053
5054 /* --------------------------------------------------------------------- */
5055
5056 /*
5057 * Each node can have an attached streamdir node though not recursively. These
5058 * are otherwise known as named substreams/named extended attributes that have
5059 * no size limitations.
5060 *
5061 * `Normal' extended attributes are indicated with a number and are recorded
5062 * in either the fe/efe descriptor itself for small descriptors or recorded in
5063 * the attached extended attribute file. Since these spaces can get
5064 * fragmented, care ought to be taken.
5065 *
5066 * Since the size of the space reserved for allocation descriptors is limited,
5067 * there is a mechanim provided for extending this space; this is done by a
5068 * special extent to allow schrinking of the allocations without breaking the
5069 * linkage to the allocation extent descriptor.
5070 */
5071
5072 int
5073 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
5074 struct udf_node **udf_noderes)
5075 {
5076 union dscrptr *dscr;
5077 struct udf_node *udf_node;
5078 struct vnode *nvp;
5079 struct long_ad icb_loc, last_fe_icb_loc;
5080 uint64_t file_size;
5081 uint32_t lb_size, sector, dummy;
5082 uint8_t *file_data;
5083 int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
5084 int slot, eof, error;
5085
5086 DPRINTF(NODE, ("udf_get_node called\n"));
5087 *udf_noderes = udf_node = NULL;
5088
5089 /* lock to disallow simultanious creation of same udf_node */
5090 mutex_enter(&ump->get_node_lock);
5091
5092 DPRINTF(NODE, ("\tlookup in hash table\n"));
5093 /* lookup in hash table */
5094 assert(ump);
5095 assert(node_icb_loc);
5096 udf_node = udf_hash_lookup(ump, node_icb_loc);
5097 if (udf_node) {
5098 DPRINTF(NODE, ("\tgot it from the hash!\n"));
5099 /* vnode is returned locked */
5100 *udf_noderes = udf_node;
5101 mutex_exit(&ump->get_node_lock);
5102 return 0;
5103 }
5104
5105 /* garbage check: translate udf_node_icb_loc to sectornr */
5106 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
5107 if (error) {
5108 /* no use, this will fail anyway */
5109 mutex_exit(&ump->get_node_lock);
5110 return EINVAL;
5111 }
5112
5113 /* build udf_node (do initialise!) */
5114 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5115 memset(udf_node, 0, sizeof(struct udf_node));
5116
5117 DPRINTF(NODE, ("\tget new vnode\n"));
5118 /* give it a vnode */
5119 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
5120 if (error) {
5121 pool_put(&udf_node_pool, udf_node);
5122 mutex_exit(&ump->get_node_lock);
5123 return error;
5124 }
5125
5126 /* always return locked vnode */
5127 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
5128 /* recycle vnode and unlock; simultanious will fail too */
5129 ungetnewvnode(nvp);
5130 mutex_exit(&ump->get_node_lock);
5131 return error;
5132 }
5133
5134 /* initialise crosslinks, note location of fe/efe for hashing */
5135 udf_node->ump = ump;
5136 udf_node->vnode = nvp;
5137 nvp->v_data = udf_node;
5138 udf_node->loc = *node_icb_loc;
5139 udf_node->lockf = 0;
5140 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5141 cv_init(&udf_node->node_lock, "udf_nlk");
5142 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */
5143 udf_node->outstanding_bufs = 0;
5144 udf_node->outstanding_nodedscr = 0;
5145
5146 /* check if we're fetching the root */
5147 if (ump->fileset_desc)
5148 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
5149 sizeof(struct long_ad)) == 0)
5150 nvp->v_vflag |= VV_ROOT;
5151
5152 /* insert into the hash lookup */
5153 udf_register_node(udf_node);
5154
5155 /* safe to unlock, the entry is in the hash table, vnode is locked */
5156 mutex_exit(&ump->get_node_lock);
5157
5158 icb_loc = *node_icb_loc;
5159 needs_indirect = 0;
5160 strat4096 = 0;
5161 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
5162 file_size = 0;
5163 file_data = NULL;
5164 lb_size = udf_rw32(ump->logical_vol->lb_size);
5165
5166 DPRINTF(NODE, ("\tstart reading descriptors\n"));
5167 do {
5168 /* try to read in fe/efe */
5169 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5170
5171 /* blank sector marks end of sequence, check this */
5172 if ((dscr == NULL) && (!strat4096))
5173 error = ENOENT;
5174
5175 /* break if read error or blank sector */
5176 if (error || (dscr == NULL))
5177 break;
5178
5179 /* process descriptor based on the descriptor type */
5180 dscr_type = udf_rw16(dscr->tag.id);
5181 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
5182
5183 /* if dealing with an indirect entry, follow the link */
5184 if (dscr_type == TAGID_INDIRECTENTRY) {
5185 needs_indirect = 0;
5186 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5187 icb_loc = dscr->inde.indirect_icb;
5188 continue;
5189 }
5190
5191 /* only file entries and extended file entries allowed here */
5192 if ((dscr_type != TAGID_FENTRY) &&
5193 (dscr_type != TAGID_EXTFENTRY)) {
5194 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5195 error = ENOENT;
5196 break;
5197 }
5198
5199 KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
5200
5201 /* choose this one */
5202 last_fe_icb_loc = icb_loc;
5203
5204 /* record and process/update (ext)fentry */
5205 file_data = NULL;
5206 if (dscr_type == TAGID_FENTRY) {
5207 if (udf_node->fe)
5208 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5209 udf_node->fe);
5210 udf_node->fe = &dscr->fe;
5211 strat = udf_rw16(udf_node->fe->icbtag.strat_type);
5212 udf_file_type = udf_node->fe->icbtag.file_type;
5213 file_size = udf_rw64(udf_node->fe->inf_len);
5214 file_data = udf_node->fe->data;
5215 } else {
5216 if (udf_node->efe)
5217 udf_free_logvol_dscr(ump, &last_fe_icb_loc,
5218 udf_node->efe);
5219 udf_node->efe = &dscr->efe;
5220 strat = udf_rw16(udf_node->efe->icbtag.strat_type);
5221 udf_file_type = udf_node->efe->icbtag.file_type;
5222 file_size = udf_rw64(udf_node->efe->inf_len);
5223 file_data = udf_node->efe->data;
5224 }
5225
5226 /* check recording strategy (structure) */
5227
5228 /*
5229 * Strategy 4096 is a daisy linked chain terminating with an
5230 * unrecorded sector or a TERM descriptor. The next
5231 * descriptor is to be found in the sector that follows the
5232 * current sector.
5233 */
5234 if (strat == 4096) {
5235 strat4096 = 1;
5236 needs_indirect = 1;
5237
5238 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
5239 }
5240
5241 /*
5242 * Strategy 4 is the normal strategy and terminates, but if
5243 * we're in strategy 4096, we can't have strategy 4 mixed in
5244 */
5245
5246 if (strat == 4) {
5247 if (strat4096) {
5248 error = EINVAL;
5249 break;
5250 }
5251 break; /* done */
5252 }
5253 } while (!error);
5254
5255 /* first round of cleanup code */
5256 if (error) {
5257 DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
5258 /* recycle udf_node */
5259 udf_dispose_node(udf_node);
5260
5261 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5262 nvp->v_data = NULL;
5263 ungetnewvnode(nvp);
5264
5265 return EINVAL; /* error code ok? */
5266 }
5267 DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
5268
5269 /* assert no references to dscr anymore beyong this point */
5270 assert((udf_node->fe) || (udf_node->efe));
5271 dscr = NULL;
5272
5273 /*
5274 * Remember where to record an updated version of the descriptor. If
5275 * there is a sequence of indirect entries, icb_loc will have been
5276 * updated. Its the write disipline to allocate new space and to make
5277 * sure the chain is maintained.
5278 *
5279 * `needs_indirect' flags if the next location is to be filled with
5280 * with an indirect entry.
5281 */
5282 udf_node->write_loc = icb_loc;
5283 udf_node->needs_indirect = needs_indirect;
5284
5285 /*
5286 * Go trough all allocations extents of this descriptor and when
5287 * encountering a redirect read in the allocation extension. These are
5288 * daisy-chained.
5289 */
5290 UDF_LOCK_NODE(udf_node, 0);
5291 udf_node->num_extensions = 0;
5292
5293 error = 0;
5294 slot = 0;
5295 for (;;) {
5296 udf_get_adslot(udf_node, slot, &icb_loc, &eof);
5297 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
5298 "lb_num = %d, part = %d\n", slot, eof,
5299 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
5300 UDF_EXT_LEN(udf_rw32(icb_loc.len)),
5301 udf_rw32(icb_loc.loc.lb_num),
5302 udf_rw16(icb_loc.loc.part_num)));
5303 if (eof)
5304 break;
5305 slot++;
5306
5307 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
5308 continue;
5309
5310 DPRINTF(NODE, ("\tgot redirect extent\n"));
5311 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
5312 DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
5313 "too many allocation extensions on "
5314 "udf_node\n"));
5315 error = EINVAL;
5316 break;
5317 }
5318
5319 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */
5320 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
5321 DPRINTF(ALLOC, ("udf_get_node: bad allocation "
5322 "extension size in udf_node\n"));
5323 error = EINVAL;
5324 break;
5325 }
5326
5327 DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
5328 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
5329 /* load in allocation extent */
5330 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
5331 if (error || (dscr == NULL))
5332 break;
5333
5334 /* process read-in descriptor */
5335 dscr_type = udf_rw16(dscr->tag.id);
5336
5337 if (dscr_type != TAGID_ALLOCEXTENT) {
5338 udf_free_logvol_dscr(ump, &icb_loc, dscr);
5339 error = ENOENT;
5340 break;
5341 }
5342
5343 DPRINTF(NODE, ("\trecording redirect extent\n"));
5344 udf_node->ext[udf_node->num_extensions] = &dscr->aee;
5345 udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
5346
5347 udf_node->num_extensions++;
5348
5349 } /* while */
5350 UDF_UNLOCK_NODE(udf_node, 0);
5351
5352 /* second round of cleanup code */
5353 if (error) {
5354 /* recycle udf_node */
5355 udf_dispose_node(udf_node);
5356
5357 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5358 nvp->v_data = NULL;
5359 ungetnewvnode(nvp);
5360
5361 return EINVAL; /* error code ok? */
5362 }
5363
5364 DPRINTF(NODE, ("\tnode read in fine\n"));
5365
5366 /*
5367 * Translate UDF filetypes into vnode types.
5368 *
5369 * Systemfiles like the meta main and mirror files are not treated as
5370 * normal files, so we type them as having no type. UDF dictates that
5371 * they are not allowed to be visible.
5372 */
5373
5374 switch (udf_file_type) {
5375 case UDF_ICB_FILETYPE_DIRECTORY :
5376 case UDF_ICB_FILETYPE_STREAMDIR :
5377 nvp->v_type = VDIR;
5378 break;
5379 case UDF_ICB_FILETYPE_BLOCKDEVICE :
5380 nvp->v_type = VBLK;
5381 break;
5382 case UDF_ICB_FILETYPE_CHARDEVICE :
5383 nvp->v_type = VCHR;
5384 break;
5385 case UDF_ICB_FILETYPE_SOCKET :
5386 nvp->v_type = VSOCK;
5387 break;
5388 case UDF_ICB_FILETYPE_FIFO :
5389 nvp->v_type = VFIFO;
5390 break;
5391 case UDF_ICB_FILETYPE_SYMLINK :
5392 nvp->v_type = VLNK;
5393 break;
5394 case UDF_ICB_FILETYPE_VAT :
5395 case UDF_ICB_FILETYPE_META_MAIN :
5396 case UDF_ICB_FILETYPE_META_MIRROR :
5397 nvp->v_type = VNON;
5398 break;
5399 case UDF_ICB_FILETYPE_RANDOMACCESS :
5400 case UDF_ICB_FILETYPE_REALTIME :
5401 nvp->v_type = VREG;
5402 break;
5403 default:
5404 /* YIKES, something else */
5405 nvp->v_type = VNON;
5406 }
5407
5408 /* TODO specfs, fifofs etc etc. vnops setting */
5409
5410 /* don't forget to set vnode's v_size */
5411 uvm_vnp_setsize(nvp, file_size);
5412
5413 /* TODO ext attr and streamdir udf_nodes */
5414
5415 *udf_noderes = udf_node;
5416
5417 return 0;
5418 }
5419
5420 /* --------------------------------------------------------------------- */
5421
5422 int
5423 udf_writeout_node(struct udf_node *udf_node, int waitfor)
5424 {
5425 union dscrptr *dscr;
5426 struct long_ad *loc;
5427 int extnr, flags, error;
5428
5429 DPRINTF(NODE, ("udf_writeout_node called\n"));
5430
5431 KASSERT(udf_node->outstanding_bufs == 0);
5432 KASSERT(udf_node->outstanding_nodedscr == 0);
5433
5434 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
5435
5436 if (udf_node->i_flags & IN_DELETED) {
5437 DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
5438 return 0;
5439 }
5440
5441 /* lock node */
5442 flags = waitfor ? 0 : IN_CALLBACK_ULK;
5443 UDF_LOCK_NODE(udf_node, flags);
5444
5445 /* at least one descriptor writeout */
5446 udf_node->outstanding_nodedscr = 1;
5447
5448 /* we're going to write out the descriptor so clear the flags */
5449 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
5450
5451 /* if we were rebuild, write out the allocation extents */
5452 if (udf_node->i_flags & IN_NODE_REBUILD) {
5453 /* mark outstanding node descriptors and issue them */
5454 udf_node->outstanding_nodedscr += udf_node->num_extensions;
5455 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5456 loc = &udf_node->ext_loc[extnr];
5457 dscr = (union dscrptr *) udf_node->ext[extnr];
5458 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
5459 if (error)
5460 return error;
5461 }
5462 /* mark allocation extents written out */
5463 udf_node->i_flags &= ~(IN_NODE_REBUILD);
5464 }
5465
5466 if (udf_node->fe) {
5467 KASSERT(udf_node->efe == NULL);
5468 dscr = (union dscrptr *) udf_node->fe;
5469 } else {
5470 KASSERT(udf_node->efe);
5471 KASSERT(udf_node->fe == NULL);
5472 dscr = (union dscrptr *) udf_node->efe;
5473 }
5474 KASSERT(dscr);
5475
5476 loc = &udf_node->write_loc;
5477 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
5478 return error;
5479 }
5480
5481 /* --------------------------------------------------------------------- */
5482
5483 int
5484 udf_dispose_node(struct udf_node *udf_node)
5485 {
5486 struct vnode *vp;
5487 int extnr;
5488
5489 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
5490 if (!udf_node) {
5491 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
5492 return 0;
5493 }
5494
5495 vp = udf_node->vnode;
5496 #ifdef DIAGNOSTIC
5497 if (vp->v_numoutput)
5498 panic("disposing UDF node with pending I/O's, udf_node = %p, "
5499 "v_numoutput = %d", udf_node, vp->v_numoutput);
5500 #endif
5501
5502 /* wait until out of sync (just in case we happen to stumble over one */
5503 KASSERT(!mutex_owned(&mntvnode_lock));
5504 mutex_enter(&mntvnode_lock);
5505 while (udf_node->i_flags & IN_SYNCED) {
5506 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
5507 hz/16);
5508 }
5509 mutex_exit(&mntvnode_lock);
5510
5511 /* TODO extended attributes and streamdir */
5512
5513 /* remove dirhash if present */
5514 dirhash_purge(&udf_node->dir_hash);
5515
5516 /* remove from our hash lookup table */
5517 udf_deregister_node(udf_node);
5518
5519 /* destroy our lock */
5520 mutex_destroy(&udf_node->node_mutex);
5521 cv_destroy(&udf_node->node_lock);
5522
5523 /* dissociate our udf_node from the vnode */
5524 genfs_node_destroy(udf_node->vnode);
5525 vp->v_data = NULL;
5526
5527 /* free associated memory and the node itself */
5528 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
5529 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
5530 udf_node->ext[extnr]);
5531 udf_node->ext[extnr] = (void *) 0xdeadcccc;
5532 }
5533
5534 if (udf_node->fe)
5535 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5536 udf_node->fe);
5537 if (udf_node->efe)
5538 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
5539 udf_node->efe);
5540
5541 udf_node->fe = (void *) 0xdeadaaaa;
5542 udf_node->efe = (void *) 0xdeadbbbb;
5543 udf_node->ump = (void *) 0xdeadbeef;
5544 pool_put(&udf_node_pool, udf_node);
5545
5546 return 0;
5547 }
5548
5549
5550
5551 /*
5552 * create a new node using the specified vnodeops, vap and cnp but with the
5553 * udf_file_type. This allows special files to be created. Use with care.
5554 */
5555
5556 static int
5557 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
5558 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
5559 {
5560 union dscrptr *dscr;
5561 struct udf_node *dir_node = VTOI(dvp);;
5562 struct udf_node *udf_node;
5563 struct udf_mount *ump = dir_node->ump;
5564 struct vnode *nvp;
5565 struct long_ad node_icb_loc;
5566 uint64_t parent_unique_id;
5567 uint64_t lmapping;
5568 uint32_t lb_size, lb_num;
5569 uint16_t vpart_num;
5570 uid_t uid;
5571 gid_t gid, parent_gid;
5572 int fid_size, error;
5573
5574 lb_size = udf_rw32(ump->logical_vol->lb_size);
5575 *vpp = NULL;
5576
5577 /* allocate vnode */
5578 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
5579 if (error)
5580 return error;
5581
5582 /* lock node */
5583 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
5584 if (error) {
5585 nvp->v_data = NULL;
5586 ungetnewvnode(nvp);
5587 return error;
5588 }
5589
5590 /* get disc allocation for one logical block */
5591 vpart_num = ump->node_part;
5592 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
5593 vpart_num, &lmapping);
5594 lb_num = lmapping;
5595 if (error) {
5596 vlockmgr(nvp->v_vnlock, LK_RELEASE);
5597 ungetnewvnode(nvp);
5598 return error;
5599 }
5600
5601 /* initialise pointer to location */
5602 memset(&node_icb_loc, 0, sizeof(struct long_ad));
5603 node_icb_loc.len = lb_size;
5604 node_icb_loc.loc.lb_num = udf_rw32(lb_num);
5605 node_icb_loc.loc.part_num = udf_rw16(vpart_num);
5606
5607 /* build udf_node (do initialise!) */
5608 udf_node = pool_get(&udf_node_pool, PR_WAITOK);
5609 memset(udf_node, 0, sizeof(struct udf_node));
5610
5611 /* initialise crosslinks, note location of fe/efe for hashing */
5612 /* bugalert: synchronise with udf_get_node() */
5613 udf_node->ump = ump;
5614 udf_node->vnode = nvp;
5615 nvp->v_data = udf_node;
5616 udf_node->loc = node_icb_loc;
5617 udf_node->write_loc = node_icb_loc;
5618 udf_node->lockf = 0;
5619 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
5620 cv_init(&udf_node->node_lock, "udf_nlk");
5621 udf_node->outstanding_bufs = 0;
5622 udf_node->outstanding_nodedscr = 0;
5623
5624 /* initialise genfs */
5625 genfs_node_init(nvp, &udf_genfsops);
5626
5627 /* insert into the hash lookup */
5628 udf_register_node(udf_node);
5629
5630 /* get parent's unique ID for refering '..' if its a directory */
5631 if (dir_node->fe) {
5632 parent_unique_id = udf_rw64(dir_node->fe->unique_id);
5633 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid);
5634 } else {
5635 parent_unique_id = udf_rw64(dir_node->efe->unique_id);
5636 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid);
5637 }
5638
5639 /* get descriptor */
5640 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
5641
5642 /* choose a fe or an efe for it */
5643 if (ump->logical_vol->tag.descriptor_ver == 2) {
5644 udf_node->fe = &dscr->fe;
5645 fid_size = udf_create_new_fe(ump, udf_node->fe,
5646 udf_file_type, &udf_node->loc,
5647 &dir_node->loc, parent_unique_id);
5648 /* TODO add extended attribute for creation time */
5649 } else {
5650 udf_node->efe = &dscr->efe;
5651 fid_size = udf_create_new_efe(ump, udf_node->efe,
5652 udf_file_type, &udf_node->loc,
5653 &dir_node->loc, parent_unique_id);
5654 }
5655 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
5656
5657 /* update vnode's size and type */
5658 nvp->v_type = vap->va_type;
5659 uvm_vnp_setsize(nvp, fid_size);
5660
5661 /* set access mode */
5662 udf_setaccessmode(udf_node, vap->va_mode);
5663
5664 /* set ownership */
5665 uid = kauth_cred_geteuid(cnp->cn_cred);
5666 gid = parent_gid;
5667 udf_setownership(udf_node, uid, gid);
5668
5669 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
5670 if (error) {
5671 /* free disc allocation for node */
5672 udf_free_allocated_space(ump, lb_num, vpart_num, 1);
5673
5674 /* recycle udf_node */
5675 udf_dispose_node(udf_node);
5676 vput(nvp);
5677
5678 *vpp = NULL;
5679 return error;
5680 }
5681
5682 /* adjust file count */
5683 udf_adjust_filecount(udf_node, 1);
5684
5685 /* return result */
5686 *vpp = nvp;
5687
5688 return 0;
5689 }
5690
5691
5692 int
5693 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
5694 struct componentname *cnp)
5695 {
5696 int (**vnodeops)(void *);
5697 int udf_file_type;
5698
5699 DPRINTF(NODE, ("udf_create_node called\n"));
5700
5701 /* what type are we creating ? */
5702 vnodeops = udf_vnodeop_p;
5703 /* start with a default */
5704 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5705
5706 *vpp = NULL;
5707
5708 switch (vap->va_type) {
5709 case VREG :
5710 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
5711 break;
5712 case VDIR :
5713 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
5714 break;
5715 case VLNK :
5716 udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
5717 break;
5718 case VBLK :
5719 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
5720 /* specfs */
5721 return ENOTSUP;
5722 break;
5723 case VCHR :
5724 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
5725 /* specfs */
5726 return ENOTSUP;
5727 break;
5728 case VFIFO :
5729 udf_file_type = UDF_ICB_FILETYPE_FIFO;
5730 /* specfs */
5731 return ENOTSUP;
5732 break;
5733 case VSOCK :
5734 udf_file_type = UDF_ICB_FILETYPE_SOCKET;
5735 /* specfs */
5736 return ENOTSUP;
5737 break;
5738 case VNON :
5739 case VBAD :
5740 default :
5741 /* nothing; can we even create these? */
5742 return EINVAL;
5743 }
5744
5745 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
5746 }
5747
5748 /* --------------------------------------------------------------------- */
5749
5750 static void
5751 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
5752 {
5753 struct udf_mount *ump = udf_node->ump;
5754 uint32_t lb_size, lb_num, len, num_lb;
5755 uint16_t vpart_num;
5756
5757 /* is there really one? */
5758 if (mem == NULL)
5759 return;
5760
5761 /* got a descriptor here */
5762 len = UDF_EXT_LEN(udf_rw32(loc->len));
5763 lb_num = udf_rw32(loc->loc.lb_num);
5764 vpart_num = udf_rw16(loc->loc.part_num);
5765
5766 lb_size = udf_rw32(ump->logical_vol->lb_size);
5767 num_lb = (len + lb_size -1) / lb_size;
5768
5769 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
5770 }
5771
5772 void
5773 udf_delete_node(struct udf_node *udf_node)
5774 {
5775 void *dscr;
5776 struct udf_mount *ump;
5777 struct long_ad *loc;
5778 int extnr, lvint, dummy;
5779
5780 ump = udf_node->ump;
5781
5782 /* paranoia check on integrity; should be open!; we could panic */
5783 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
5784 if (lvint == UDF_INTEGRITY_CLOSED)
5785 printf("\tIntegrity was CLOSED!\n");
5786
5787 /* whatever the node type, change its size to zero */
5788 (void) udf_resize_node(udf_node, 0, &dummy);
5789
5790 /* force it to be `clean'; no use writing it out */
5791 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
5792 IN_CHANGE | IN_UPDATE | IN_MODIFY);
5793
5794 /* adjust file count */
5795 udf_adjust_filecount(udf_node, -1);
5796
5797 /*
5798 * Free its allocated descriptors; memory will be released when
5799 * vop_reclaim() is called.
5800 */
5801 loc = &udf_node->loc;
5802
5803 dscr = udf_node->fe;
5804 udf_free_descriptor_space(udf_node, loc, dscr);
5805 dscr = udf_node->efe;
5806 udf_free_descriptor_space(udf_node, loc, dscr);
5807
5808 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
5809 dscr = udf_node->ext[extnr];
5810 loc = &udf_node->ext_loc[extnr];
5811 udf_free_descriptor_space(udf_node, loc, dscr);
5812 }
5813 }
5814
5815 /* --------------------------------------------------------------------- */
5816
5817 /* set new filesize; node but be LOCKED on entry and is locked on exit */
5818 int
5819 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
5820 {
5821 struct file_entry *fe = udf_node->fe;
5822 struct extfile_entry *efe = udf_node->efe;
5823 uint64_t file_size;
5824 int error;
5825
5826 if (fe) {
5827 file_size = udf_rw64(fe->inf_len);
5828 } else {
5829 assert(udf_node->efe);
5830 file_size = udf_rw64(efe->inf_len);
5831 }
5832
5833 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
5834 file_size, new_size));
5835
5836 /* if not changing, we're done */
5837 if (file_size == new_size)
5838 return 0;
5839
5840 *extended = (new_size > file_size);
5841 if (*extended) {
5842 error = udf_grow_node(udf_node, new_size);
5843 } else {
5844 error = udf_shrink_node(udf_node, new_size);
5845 }
5846
5847 return error;
5848 }
5849
5850
5851 /* --------------------------------------------------------------------- */
5852
5853 void
5854 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
5855 struct timespec *mod, struct timespec *birth)
5856 {
5857 struct timespec now;
5858 struct file_entry *fe;
5859 struct extfile_entry *efe;
5860 struct filetimes_extattr_entry *ft_extattr;
5861 struct timestamp *atime, *mtime, *attrtime, *ctime;
5862 struct timestamp fe_ctime;
5863 struct timespec cur_birth;
5864 uint32_t offset, a_l;
5865 uint8_t *filedata;
5866 int error;
5867
5868 /* protect against rogue values */
5869 if (!udf_node)
5870 return;
5871
5872 fe = udf_node->fe;
5873 efe = udf_node->efe;
5874
5875 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
5876 return;
5877
5878 /* get descriptor information */
5879 if (fe) {
5880 atime = &fe->atime;
5881 mtime = &fe->mtime;
5882 attrtime = &fe->attrtime;
5883 filedata = fe->data;
5884
5885 /* initial save dummy setting */
5886 ctime = &fe_ctime;
5887
5888 /* check our extended attribute if present */
5889 error = udf_extattr_search_intern(udf_node,
5890 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
5891 if (!error) {
5892 ft_extattr = (struct filetimes_extattr_entry *)
5893 (filedata + offset);
5894 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
5895 ctime = &ft_extattr->times[0];
5896 }
5897 /* TODO create the extended attribute if not found ? */
5898 } else {
5899 assert(udf_node->efe);
5900 atime = &efe->atime;
5901 mtime = &efe->mtime;
5902 attrtime = &efe->attrtime;
5903 ctime = &efe->ctime;
5904 }
5905
5906 vfs_timestamp(&now);
5907
5908 /* set access time */
5909 if (udf_node->i_flags & IN_ACCESS) {
5910 if (acc == NULL)
5911 acc = &now;
5912 udf_timespec_to_timestamp(acc, atime);
5913 }
5914
5915 /* set modification time */
5916 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
5917 if (mod == NULL)
5918 mod = &now;
5919 udf_timespec_to_timestamp(mod, mtime);
5920
5921 /* ensure birthtime is older than set modification! */
5922 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
5923 if ((cur_birth.tv_sec > mod->tv_sec) ||
5924 ((cur_birth.tv_sec == mod->tv_sec) &&
5925 (cur_birth.tv_nsec > mod->tv_nsec))) {
5926 udf_timespec_to_timestamp(mod, ctime);
5927 }
5928 }
5929
5930 /* update birthtime if specified */
5931 /* XXX we asume here that given birthtime is older than mod */
5932 if (birth && (birth->tv_sec != VNOVAL)) {
5933 udf_timespec_to_timestamp(birth, ctime);
5934 }
5935
5936 /* set change time */
5937 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
5938 udf_timespec_to_timestamp(&now, attrtime);
5939
5940 /* notify updates to the node itself */
5941 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
5942 udf_node->i_flags |= IN_ACCESSED;
5943 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
5944 udf_node->i_flags |= IN_MODIFIED;
5945
5946 /* clear modification flags */
5947 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
5948 }
5949
5950 /* --------------------------------------------------------------------- */
5951
5952 int
5953 udf_update(struct vnode *vp, struct timespec *acc,
5954 struct timespec *mod, struct timespec *birth, int updflags)
5955 {
5956 union dscrptr *dscrptr;
5957 struct udf_node *udf_node = VTOI(vp);
5958 struct udf_mount *ump = udf_node->ump;
5959 struct regid *impl_id;
5960 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
5961 int waitfor, flags;
5962
5963 #ifdef DEBUG
5964 char bits[128];
5965 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
5966 updflags));
5967 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
5968 DPRINTF(CALL, ("\tnode flags %s\n", bits));
5969 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
5970 #endif
5971
5972 /* set our times */
5973 udf_itimes(udf_node, acc, mod, birth);
5974
5975 /* set our implementation id */
5976 if (udf_node->fe) {
5977 dscrptr = (union dscrptr *) udf_node->fe;
5978 impl_id = &udf_node->fe->imp_id;
5979 } else {
5980 dscrptr = (union dscrptr *) udf_node->efe;
5981 impl_id = &udf_node->efe->imp_id;
5982 }
5983
5984 /* set our ID */
5985 udf_set_regid(impl_id, IMPL_NAME);
5986 udf_add_impl_regid(ump, impl_id);
5987
5988 /* update our crc! on RMW we are not allowed to change a thing */
5989 udf_validate_tag_and_crc_sums(dscrptr);
5990
5991 /* if called when mounted readonly, never write back */
5992 if (vp->v_mount->mnt_flag & MNT_RDONLY)
5993 return 0;
5994
5995 /* check if the node is dirty 'enough'*/
5996 if (updflags & UPDATE_CLOSE) {
5997 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
5998 } else {
5999 flags = udf_node->i_flags & IN_MODIFIED;
6000 }
6001 if (flags == 0)
6002 return 0;
6003
6004 /* determine if we need to write sync or async */
6005 waitfor = 0;
6006 if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
6007 /* sync mounted */
6008 waitfor = updflags & UPDATE_WAIT;
6009 if (updflags & UPDATE_DIROP)
6010 waitfor |= UPDATE_WAIT;
6011 }
6012 if (waitfor)
6013 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
6014
6015 return 0;
6016 }
6017
6018
6019 /* --------------------------------------------------------------------- */
6020
6021
6022 /*
6023 * Read one fid and process it into a dirent and advance to the next (*fid)
6024 * has to be allocated a logical block in size, (*dirent) struct dirent length
6025 */
6026
6027 int
6028 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
6029 struct fileid_desc *fid, struct dirent *dirent)
6030 {
6031 struct udf_node *dir_node = VTOI(vp);
6032 struct udf_mount *ump = dir_node->ump;
6033 struct file_entry *fe = dir_node->fe;
6034 struct extfile_entry *efe = dir_node->efe;
6035 uint32_t fid_size, lb_size;
6036 uint64_t file_size;
6037 char *fid_name;
6038 int enough, error;
6039
6040 assert(fid);
6041 assert(dirent);
6042 assert(dir_node);
6043 assert(offset);
6044 assert(*offset != 1);
6045
6046 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
6047 /* check if we're past the end of the directory */
6048 if (fe) {
6049 file_size = udf_rw64(fe->inf_len);
6050 } else {
6051 assert(dir_node->efe);
6052 file_size = udf_rw64(efe->inf_len);
6053 }
6054 if (*offset >= file_size)
6055 return EINVAL;
6056
6057 /* get maximum length of FID descriptor */
6058 lb_size = udf_rw32(ump->logical_vol->lb_size);
6059
6060 /* initialise return values */
6061 fid_size = 0;
6062 memset(dirent, 0, sizeof(struct dirent));
6063 memset(fid, 0, lb_size);
6064
6065 enough = (file_size - (*offset) >= UDF_FID_SIZE);
6066 if (!enough) {
6067 /* short dir ... */
6068 return EIO;
6069 }
6070
6071 error = vn_rdwr(UIO_READ, vp,
6072 fid, MIN(file_size - (*offset), lb_size), *offset,
6073 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
6074 NULL, NULL);
6075 if (error)
6076 return error;
6077
6078 DPRINTF(FIDS, ("\tfid piece read in fine\n"));
6079 /*
6080 * Check if we got a whole descriptor.
6081 * TODO Try to `resync' directory stream when something is very wrong.
6082 */
6083
6084 /* check if our FID header is OK */
6085 error = udf_check_tag(fid);
6086 if (error) {
6087 goto brokendir;
6088 }
6089 DPRINTF(FIDS, ("\ttag check ok\n"));
6090
6091 if (udf_rw16(fid->tag.id) != TAGID_FID) {
6092 error = EIO;
6093 goto brokendir;
6094 }
6095 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
6096
6097 /* check for length */
6098 fid_size = udf_fidsize(fid);
6099 enough = (file_size - (*offset) >= fid_size);
6100 if (!enough) {
6101 error = EIO;
6102 goto brokendir;
6103 }
6104 DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
6105
6106 /* check FID contents */
6107 error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
6108 brokendir:
6109 if (error) {
6110 /* note that is sometimes a bit quick to report */
6111 printf("BROKEN DIRECTORY ENTRY\n");
6112 /* RESYNC? */
6113 /* TODO: use udf_resync_fid_stream */
6114 return EIO;
6115 }
6116 DPRINTF(FIDS, ("\tpayload checked ok\n"));
6117
6118 /* we got a whole and valid descriptor! */
6119 DPRINTF(FIDS, ("\tinterpret FID\n"));
6120
6121 /* create resulting dirent structure */
6122 fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
6123 udf_to_unix_name(dirent->d_name, MAXNAMLEN,
6124 fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
6125
6126 /* '..' has no name, so provide one */
6127 if (fid->file_char & UDF_FILE_CHAR_PAR)
6128 strcpy(dirent->d_name, "..");
6129
6130 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
6131 dirent->d_namlen = strlen(dirent->d_name);
6132 dirent->d_reclen = _DIRENT_SIZE(dirent);
6133
6134 /*
6135 * Note that its not worth trying to go for the filetypes now... its
6136 * too expensive too
6137 */
6138 dirent->d_type = DT_UNKNOWN;
6139
6140 /* initial guess for filetype we can make */
6141 if (fid->file_char & UDF_FILE_CHAR_DIR)
6142 dirent->d_type = DT_DIR;
6143
6144 /* advance */
6145 *offset += fid_size;
6146
6147 return error;
6148 }
6149
6150
6151 /* --------------------------------------------------------------------- */
6152
6153 static void
6154 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
6155 int pass, int *ndirty)
6156 {
6157 struct udf_node *udf_node, *n_udf_node;
6158 struct vnode *vp;
6159 int vdirty, error;
6160 int on_type, on_flags, on_vnode;
6161
6162 derailed:
6163 KASSERT(mutex_owned(&mntvnode_lock));
6164
6165 DPRINTF(SYNC, ("sync_pass %d\n", pass));
6166 udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
6167 for (;udf_node; udf_node = n_udf_node) {
6168 DPRINTF(SYNC, ("."));
6169
6170 udf_node->i_flags &= ~IN_SYNCED;
6171 vp = udf_node->vnode;
6172
6173 mutex_enter(&vp->v_interlock);
6174 n_udf_node = LIST_NEXT(udf_node, sortchain);
6175 if (n_udf_node)
6176 n_udf_node->i_flags |= IN_SYNCED;
6177
6178 /* system nodes are not synced this way */
6179 if (vp->v_vflag & VV_SYSTEM) {
6180 mutex_exit(&vp->v_interlock);
6181 continue;
6182 }
6183
6184 /* check if its dirty enough to even try */
6185 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON);
6186 on_flags = ((udf_node->i_flags &
6187 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
6188 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
6189 && UVM_OBJ_IS_CLEAN(&vp->v_uobj);
6190 if (on_type || (on_flags || on_vnode)) { /* XXX */
6191 /* not dirty (enough?) */
6192 mutex_exit(&vp->v_interlock);
6193 continue;
6194 }
6195
6196 mutex_exit(&mntvnode_lock);
6197 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
6198 if (error) {
6199 mutex_enter(&mntvnode_lock);
6200 if (error == ENOENT)
6201 goto derailed;
6202 *ndirty += 1;
6203 continue;
6204 }
6205
6206 switch (pass) {
6207 case 1:
6208 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
6209 break;
6210 case 2:
6211 vdirty = vp->v_numoutput;
6212 if (vp->v_tag == VT_UDF)
6213 vdirty += udf_node->outstanding_bufs +
6214 udf_node->outstanding_nodedscr;
6215 if (vdirty == 0)
6216 VOP_FSYNC(vp, cred, 0,0,0);
6217 *ndirty += vdirty;
6218 break;
6219 case 3:
6220 vdirty = vp->v_numoutput;
6221 if (vp->v_tag == VT_UDF)
6222 vdirty += udf_node->outstanding_bufs +
6223 udf_node->outstanding_nodedscr;
6224 *ndirty += vdirty;
6225 break;
6226 }
6227
6228 vput(vp);
6229 mutex_enter(&mntvnode_lock);
6230 }
6231 DPRINTF(SYNC, ("END sync_pass %d\n", pass));
6232 }
6233
6234
6235 void
6236 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
6237 {
6238 int dummy, ndirty;
6239
6240 mutex_enter(&mntvnode_lock);
6241 recount:
6242 dummy = 0;
6243 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6244 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
6245 udf_sync_pass(ump, cred, waitfor, 1, &dummy);
6246
6247 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6248 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
6249 udf_sync_pass(ump, cred, waitfor, 2, &dummy);
6250
6251 if (waitfor == MNT_WAIT) {
6252 ndirty = ump->devvp->v_numoutput;
6253 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
6254 ndirty));
6255 udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
6256 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
6257 ndirty));
6258
6259 if (ndirty) {
6260 /* 1/4 second wait */
6261 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
6262 hz/4);
6263 goto recount;
6264 }
6265 }
6266
6267 mutex_exit(&mntvnode_lock);
6268 }
6269
6270 /* --------------------------------------------------------------------- */
6271
6272 /*
6273 * Read and write file extent in/from the buffer.
6274 *
6275 * The splitup of the extent into seperate request-buffers is to minimise
6276 * copying around as much as possible.
6277 *
6278 * block based file reading and writing
6279 */
6280
6281 static int
6282 udf_read_internal(struct udf_node *node, uint8_t *blob)
6283 {
6284 struct udf_mount *ump;
6285 struct file_entry *fe = node->fe;
6286 struct extfile_entry *efe = node->efe;
6287 uint64_t inflen;
6288 uint32_t sector_size;
6289 uint8_t *pos;
6290 int icbflags, addr_type;
6291
6292 /* get extent and do some paranoia checks */
6293 ump = node->ump;
6294 sector_size = ump->discinfo.sector_size;
6295
6296 if (fe) {
6297 inflen = udf_rw64(fe->inf_len);
6298 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6299 icbflags = udf_rw16(fe->icbtag.flags);
6300 } else {
6301 assert(node->efe);
6302 inflen = udf_rw64(efe->inf_len);
6303 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6304 icbflags = udf_rw16(efe->icbtag.flags);
6305 }
6306 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6307
6308 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6309 assert(inflen < sector_size);
6310
6311 /* copy out info */
6312 memset(blob, 0, sector_size);
6313 memcpy(blob, pos, inflen);
6314
6315 return 0;
6316 }
6317
6318
6319 static int
6320 udf_write_internal(struct udf_node *node, uint8_t *blob)
6321 {
6322 struct udf_mount *ump;
6323 struct file_entry *fe = node->fe;
6324 struct extfile_entry *efe = node->efe;
6325 uint64_t inflen;
6326 uint32_t sector_size;
6327 uint8_t *pos;
6328 int icbflags, addr_type;
6329
6330 /* get extent and do some paranoia checks */
6331 ump = node->ump;
6332 sector_size = ump->discinfo.sector_size;
6333
6334 if (fe) {
6335 inflen = udf_rw64(fe->inf_len);
6336 pos = &fe->data[0] + udf_rw32(fe->l_ea);
6337 icbflags = udf_rw16(fe->icbtag.flags);
6338 } else {
6339 assert(node->efe);
6340 inflen = udf_rw64(efe->inf_len);
6341 pos = &efe->data[0] + udf_rw32(efe->l_ea);
6342 icbflags = udf_rw16(efe->icbtag.flags);
6343 }
6344 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
6345
6346 assert(addr_type == UDF_ICB_INTERN_ALLOC);
6347 assert(inflen < sector_size);
6348
6349 /* copy in blob */
6350 /* memset(pos, 0, inflen); */
6351 memcpy(pos, blob, inflen);
6352
6353 return 0;
6354 }
6355
6356
6357 void
6358 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
6359 {
6360 struct buf *nestbuf;
6361 struct udf_mount *ump = udf_node->ump;
6362 uint64_t *mapping;
6363 uint64_t run_start;
6364 uint32_t sector_size;
6365 uint32_t buf_offset, sector, rbuflen, rblk;
6366 uint32_t from, lblkno;
6367 uint32_t sectors;
6368 uint8_t *buf_pos;
6369 int error, run_length, isdir, what;
6370
6371 sector_size = udf_node->ump->discinfo.sector_size;
6372
6373 from = buf->b_blkno;
6374 sectors = buf->b_bcount / sector_size;
6375
6376 isdir = (udf_node->vnode->v_type == VDIR);
6377 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6378
6379 /* assure we have enough translation slots */
6380 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
6381 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
6382
6383 if (sectors > UDF_MAX_MAPPINGS) {
6384 printf("udf_read_filebuf: implementation limit on bufsize\n");
6385 buf->b_error = EIO;
6386 biodone(buf);
6387 return;
6388 }
6389
6390 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6391
6392 error = 0;
6393 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
6394 error = udf_translate_file_extent(udf_node, from, sectors, mapping);
6395 if (error) {
6396 buf->b_error = error;
6397 biodone(buf);
6398 goto out;
6399 }
6400 DPRINTF(READ, ("\ttranslate extent went OK\n"));
6401
6402 /* pre-check if its an internal */
6403 if (*mapping == UDF_TRANS_INTERN) {
6404 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
6405 if (error)
6406 buf->b_error = error;
6407 biodone(buf);
6408 goto out;
6409 }
6410 DPRINTF(READ, ("\tnot intern\n"));
6411
6412 #ifdef DEBUG
6413 if (udf_verbose & UDF_DEBUG_TRANSLATE) {
6414 printf("Returned translation table:\n");
6415 for (sector = 0; sector < sectors; sector++) {
6416 printf("%d : %"PRIu64"\n", sector, mapping[sector]);
6417 }
6418 }
6419 #endif
6420
6421 /* request read-in of data from disc sheduler */
6422 buf->b_resid = buf->b_bcount;
6423 for (sector = 0; sector < sectors; sector++) {
6424 buf_offset = sector * sector_size;
6425 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6426 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
6427
6428 /* check if its zero or unmapped to stop reading */
6429 switch (mapping[sector]) {
6430 case UDF_TRANS_UNMAPPED:
6431 case UDF_TRANS_ZERO:
6432 /* copy zero sector TODO runlength like below */
6433 memset(buf_pos, 0, sector_size);
6434 DPRINTF(READ, ("\treturning zero sector\n"));
6435 nestiobuf_done(buf, sector_size, 0);
6436 break;
6437 default :
6438 DPRINTF(READ, ("\tread sector "
6439 "%"PRIu64"\n", mapping[sector]));
6440
6441 lblkno = from + sector;
6442 run_start = mapping[sector];
6443 run_length = 1;
6444 while (sector < sectors-1) {
6445 if (mapping[sector+1] != mapping[sector]+1)
6446 break;
6447 run_length++;
6448 sector++;
6449 }
6450
6451 /*
6452 * nest an iobuf and mark it for async reading. Since
6453 * we're using nested buffers, they can't be cached by
6454 * design.
6455 */
6456 rbuflen = run_length * sector_size;
6457 rblk = run_start * (sector_size/DEV_BSIZE);
6458
6459 nestbuf = getiobuf(NULL, true);
6460 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6461 /* nestbuf is B_ASYNC */
6462
6463 /* identify this nestbuf */
6464 nestbuf->b_lblkno = lblkno;
6465 assert(nestbuf->b_vp == udf_node->vnode);
6466
6467 /* CD shedules on raw blkno */
6468 nestbuf->b_blkno = rblk;
6469 nestbuf->b_proc = NULL;
6470 nestbuf->b_rawblkno = rblk;
6471 nestbuf->b_udf_c_type = what;
6472
6473 udf_discstrat_queuebuf(ump, nestbuf);
6474 }
6475 }
6476 out:
6477 /* if we're synchronously reading, wait for the completion */
6478 if ((buf->b_flags & B_ASYNC) == 0)
6479 biowait(buf);
6480
6481 DPRINTF(READ, ("\tend of read_filebuf\n"));
6482 free(mapping, M_TEMP);
6483 return;
6484 }
6485
6486
6487 void
6488 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
6489 {
6490 struct buf *nestbuf;
6491 struct udf_mount *ump = udf_node->ump;
6492 uint64_t *mapping;
6493 uint64_t run_start;
6494 uint32_t lb_size;
6495 uint32_t buf_offset, lb_num, rbuflen, rblk;
6496 uint32_t from, lblkno;
6497 uint32_t num_lb;
6498 uint8_t *buf_pos;
6499 int error, run_length, isdir, what, s;
6500
6501 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
6502
6503 from = buf->b_blkno;
6504 num_lb = buf->b_bcount / lb_size;
6505
6506 isdir = (udf_node->vnode->v_type == VDIR);
6507 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
6508
6509 if (udf_node == ump->metadatabitmap_node)
6510 what = UDF_C_METADATA_SBM;
6511
6512 /* assure we have enough translation slots */
6513 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
6514 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
6515
6516 if (num_lb > UDF_MAX_MAPPINGS) {
6517 printf("udf_write_filebuf: implementation limit on bufsize\n");
6518 buf->b_error = EIO;
6519 biodone(buf);
6520 return;
6521 }
6522
6523 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
6524
6525 error = 0;
6526 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
6527 error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
6528 if (error) {
6529 buf->b_error = error;
6530 biodone(buf);
6531 goto out;
6532 }
6533 DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
6534
6535 /* if its internally mapped, we can write it in the descriptor itself */
6536 if (*mapping == UDF_TRANS_INTERN) {
6537 /* TODO paranoia check if we ARE going to have enough space */
6538 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
6539 if (error)
6540 buf->b_error = error;
6541 biodone(buf);
6542 goto out;
6543 }
6544 DPRINTF(WRITE, ("\tnot intern\n"));
6545
6546 /* request write out of data to disc sheduler */
6547 buf->b_resid = buf->b_bcount;
6548 for (lb_num = 0; lb_num < num_lb; lb_num++) {
6549 buf_offset = lb_num * lb_size;
6550 buf_pos = (uint8_t *) buf->b_data + buf_offset;
6551 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
6552
6553 /*
6554 * Mappings are not that important here. Just before we write
6555 * the lb_num we late-allocate them when needed and update the
6556 * mapping in the udf_node.
6557 */
6558
6559 /* XXX why not ignore the mapping altogether ? */
6560 /* TODO estimate here how much will be late-allocated */
6561 DPRINTF(WRITE, ("\twrite lb_num "
6562 "%"PRIu64, mapping[lb_num]));
6563
6564 lblkno = from + lb_num;
6565 run_start = mapping[lb_num];
6566 run_length = 1;
6567 while (lb_num < num_lb-1) {
6568 if (mapping[lb_num+1] != mapping[lb_num]+1)
6569 if (mapping[lb_num+1] != mapping[lb_num])
6570 break;
6571 run_length++;
6572 lb_num++;
6573 }
6574 DPRINTF(WRITE, ("+ %d\n", run_length));
6575
6576 /* nest an iobuf on the master buffer for the extent */
6577 rbuflen = run_length * lb_size;
6578 rblk = run_start * (lb_size/DEV_BSIZE);
6579
6580 #if 0
6581 /* if its zero or unmapped, our blknr gets -1 for unmapped */
6582 switch (mapping[lb_num]) {
6583 case UDF_TRANS_UNMAPPED:
6584 case UDF_TRANS_ZERO:
6585 rblk = -1;
6586 break;
6587 default:
6588 rblk = run_start * (lb_size/DEV_BSIZE);
6589 break;
6590 }
6591 #endif
6592
6593 nestbuf = getiobuf(NULL, true);
6594 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
6595 /* nestbuf is B_ASYNC */
6596
6597 /* identify this nestbuf */
6598 nestbuf->b_lblkno = lblkno;
6599 KASSERT(nestbuf->b_vp == udf_node->vnode);
6600
6601 /* CD shedules on raw blkno */
6602 nestbuf->b_blkno = rblk;
6603 nestbuf->b_proc = NULL;
6604 nestbuf->b_rawblkno = rblk;
6605 nestbuf->b_udf_c_type = what;
6606
6607 /* increment our outstanding bufs counter */
6608 s = splbio();
6609 udf_node->outstanding_bufs++;
6610 splx(s);
6611
6612 udf_discstrat_queuebuf(ump, nestbuf);
6613 }
6614 out:
6615 /* if we're synchronously writing, wait for the completion */
6616 if ((buf->b_flags & B_ASYNC) == 0)
6617 biowait(buf);
6618
6619 DPRINTF(WRITE, ("\tend of write_filebuf\n"));
6620 free(mapping, M_TEMP);
6621 return;
6622 }
6623
6624 /* --------------------------------------------------------------------- */
6625
6626
6627