Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.75
      1 /* $NetBSD: udf_subr.c,v 1.75 2008/11/28 15:29:47 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.75 2008/11/28 15:29:47 reinoud Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_quota.h"
     38 #include "opt_compat_netbsd.h"
     39 #endif
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/namei.h>
     45 #include <sys/proc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/vnode.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <sys/mount.h>
     50 #include <sys/buf.h>
     51 #include <sys/file.h>
     52 #include <sys/device.h>
     53 #include <sys/disklabel.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/malloc.h>
     56 #include <sys/dirent.h>
     57 #include <sys/stat.h>
     58 #include <sys/conf.h>
     59 #include <sys/kauth.h>
     60 #include <fs/unicode.h>
     61 #include <dev/clock_subr.h>
     62 
     63 #include <fs/udf/ecma167-udf.h>
     64 #include <fs/udf/udf_mount.h>
     65 #include <sys/dirhash.h>
     66 
     67 #include "udf.h"
     68 #include "udf_subr.h"
     69 #include "udf_bswap.h"
     70 
     71 
     72 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     73 
     74 #define UDF_SET_SYSTEMFILE(vp) \
     75 	/* XXXAD Is the vnode locked? */	\
     76 	(vp)->v_vflag |= VV_SYSTEM;		\
     77 	vref(vp);			\
     78 	vput(vp);			\
     79 
     80 extern int syncer_maxdelay;     /* maximum delay time */
     81 extern int (**udf_vnodeop_p)(void *);
     82 
     83 /* --------------------------------------------------------------------- */
     84 
     85 //#ifdef DEBUG
     86 #if 1
     87 
     88 #if 0
     89 static void
     90 udf_dumpblob(boid *blob, uint32_t dlen)
     91 {
     92 	int i, j;
     93 
     94 	printf("blob = %p\n", blob);
     95 	printf("dump of %d bytes\n", dlen);
     96 
     97 	for (i = 0; i < dlen; i+ = 16) {
     98 		printf("%04x ", i);
     99 		for (j = 0; j < 16; j++) {
    100 			if (i+j < dlen) {
    101 				printf("%02x ", blob[i+j]);
    102 			} else {
    103 				printf("   ");
    104 			}
    105 		}
    106 		for (j = 0; j < 16; j++) {
    107 			if (i+j < dlen) {
    108 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    109 					printf("%c", blob[i+j]);
    110 				} else {
    111 					printf(".");
    112 				}
    113 			}
    114 		}
    115 		printf("\n");
    116 	}
    117 	printf("\n");
    118 	Debugger();
    119 }
    120 #endif
    121 
    122 static void
    123 udf_dump_discinfo(struct udf_mount *ump)
    124 {
    125 	char   bits[128];
    126 	struct mmc_discinfo *di = &ump->discinfo;
    127 
    128 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    129 		return;
    130 
    131 	printf("Device/media info  :\n");
    132 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    133 	printf("\tderived class      %d\n", di->mmc_class);
    134 	printf("\tsector size        %d\n", di->sector_size);
    135 	printf("\tdisc state         %d\n", di->disc_state);
    136 	printf("\tlast ses state     %d\n", di->last_session_state);
    137 	printf("\tbg format state    %d\n", di->bg_format_state);
    138 	printf("\tfrst track         %d\n", di->first_track);
    139 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    140 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    141 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    142 	bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
    143 		sizeof(bits));
    144 	printf("\tdisc flags         %s\n", bits);
    145 	printf("\tdisc id            %x\n", di->disc_id);
    146 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    147 
    148 	printf("\tnum sessions       %d\n", di->num_sessions);
    149 	printf("\tnum tracks         %d\n", di->num_tracks);
    150 
    151 	bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    152 	printf("\tcapabilities cur   %s\n", bits);
    153 	bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
    154 	printf("\tcapabilities cap   %s\n", bits);
    155 }
    156 #else
    157 #define udf_dump_discinfo(a);
    158 #endif
    159 
    160 
    161 /* --------------------------------------------------------------------- */
    162 
    163 /* not called often */
    164 int
    165 udf_update_discinfo(struct udf_mount *ump)
    166 {
    167 	struct vnode *devvp = ump->devvp;
    168 	struct partinfo dpart;
    169 	struct mmc_discinfo *di;
    170 	int error;
    171 
    172 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    173 	di = &ump->discinfo;
    174 	memset(di, 0, sizeof(struct mmc_discinfo));
    175 
    176 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    177 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    178 	if (error == 0) {
    179 		udf_dump_discinfo(ump);
    180 		return 0;
    181 	}
    182 
    183 	/* disc partition support */
    184 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    185 	if (error)
    186 		return ENODEV;
    187 
    188 	/* set up a disc info profile for partitions */
    189 	di->mmc_profile		= 0x01;	/* disc type */
    190 	di->mmc_class		= MMC_CLASS_DISC;
    191 	di->disc_state		= MMC_STATE_CLOSED;
    192 	di->last_session_state	= MMC_STATE_CLOSED;
    193 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    194 	di->link_block_penalty	= 0;
    195 
    196 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    197 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    198 	di->mmc_cap    = di->mmc_cur;
    199 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    200 
    201 	/* TODO problem with last_possible_lba on resizable VND; request */
    202 	di->last_possible_lba = dpart.part->p_size;
    203 	di->sector_size       = dpart.disklab->d_secsize;
    204 
    205 	di->num_sessions = 1;
    206 	di->num_tracks   = 1;
    207 
    208 	di->first_track  = 1;
    209 	di->first_track_last_session = di->last_track_last_session = 1;
    210 
    211 	udf_dump_discinfo(ump);
    212 	return 0;
    213 }
    214 
    215 
    216 int
    217 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    218 {
    219 	struct vnode *devvp = ump->devvp;
    220 	struct mmc_discinfo *di = &ump->discinfo;
    221 	int error, class;
    222 
    223 	DPRINTF(VOLUMES, ("read track info\n"));
    224 
    225 	class = di->mmc_class;
    226 	if (class != MMC_CLASS_DISC) {
    227 		/* tracknr specified in struct ti */
    228 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    229 		return error;
    230 	}
    231 
    232 	/* disc partition support */
    233 	if (ti->tracknr != 1)
    234 		return EIO;
    235 
    236 	/* create fake ti (TODO check for resized vnds) */
    237 	ti->sessionnr  = 1;
    238 
    239 	ti->track_mode = 0;	/* XXX */
    240 	ti->data_mode  = 0;	/* XXX */
    241 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    242 
    243 	ti->track_start    = 0;
    244 	ti->packet_size    = 1;
    245 
    246 	/* TODO support for resizable vnd */
    247 	ti->track_size    = di->last_possible_lba;
    248 	ti->next_writable = di->last_possible_lba;
    249 	ti->last_recorded = ti->next_writable;
    250 	ti->free_blocks   = 0;
    251 
    252 	return 0;
    253 }
    254 
    255 
    256 int
    257 udf_setup_writeparams(struct udf_mount *ump)
    258 {
    259 	struct mmc_writeparams mmc_writeparams;
    260 	int error;
    261 
    262 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    263 		return 0;
    264 
    265 	/*
    266 	 * only CD burning normally needs setting up, but other disc types
    267 	 * might need other settings to be made. The MMC framework will set up
    268 	 * the nessisary recording parameters according to the disc
    269 	 * characteristics read in. Modifications can be made in the discinfo
    270 	 * structure passed to change the nature of the disc.
    271 	 */
    272 
    273 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    274 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    275 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    276 
    277 	/*
    278 	 * UDF dictates first track to determine track mode for the whole
    279 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    280 	 * To prevent problems with a `reserved' track in front we start with
    281 	 * the 2nd track and if that is not valid, go for the 1st.
    282 	 */
    283 	mmc_writeparams.tracknr = 2;
    284 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    285 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    286 
    287 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    288 			FKIOCTL, NOCRED);
    289 	if (error) {
    290 		mmc_writeparams.tracknr = 1;
    291 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    292 				&mmc_writeparams, FKIOCTL, NOCRED);
    293 	}
    294 	return error;
    295 }
    296 
    297 
    298 int
    299 udf_synchronise_caches(struct udf_mount *ump)
    300 {
    301 	struct mmc_op mmc_op;
    302 
    303 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    304 
    305 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    306 		return 0;
    307 
    308 	/* discs are done now */
    309 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    310 		return 0;
    311 
    312 	bzero(&mmc_op, sizeof(struct mmc_op));
    313 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    314 
    315 	/* ignore return code */
    316 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    317 
    318 	return 0;
    319 }
    320 
    321 /* --------------------------------------------------------------------- */
    322 
    323 /* track/session searching for mounting */
    324 int
    325 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    326 		  int *first_tracknr, int *last_tracknr)
    327 {
    328 	struct mmc_trackinfo trackinfo;
    329 	uint32_t tracknr, start_track, num_tracks;
    330 	int error;
    331 
    332 	/* if negative, sessionnr is relative to last session */
    333 	if (args->sessionnr < 0) {
    334 		args->sessionnr += ump->discinfo.num_sessions;
    335 	}
    336 
    337 	/* sanity */
    338 	if (args->sessionnr < 0)
    339 		args->sessionnr = 0;
    340 	if (args->sessionnr > ump->discinfo.num_sessions)
    341 		args->sessionnr = ump->discinfo.num_sessions;
    342 
    343 	/* search the tracks for this session, zero session nr indicates last */
    344 	if (args->sessionnr == 0)
    345 		args->sessionnr = ump->discinfo.num_sessions;
    346 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    347 		args->sessionnr--;
    348 
    349 	/* sanity again */
    350 	if (args->sessionnr < 0)
    351 		args->sessionnr = 0;
    352 
    353 	/* search the first and last track of the specified session */
    354 	num_tracks  = ump->discinfo.num_tracks;
    355 	start_track = ump->discinfo.first_track;
    356 
    357 	/* search for first track of this session */
    358 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    359 		/* get track info */
    360 		trackinfo.tracknr = tracknr;
    361 		error = udf_update_trackinfo(ump, &trackinfo);
    362 		if (error)
    363 			return error;
    364 
    365 		if (trackinfo.sessionnr == args->sessionnr)
    366 			break;
    367 	}
    368 	*first_tracknr = tracknr;
    369 
    370 	/* search for last track of this session */
    371 	for (;tracknr <= num_tracks; tracknr++) {
    372 		/* get track info */
    373 		trackinfo.tracknr = tracknr;
    374 		error = udf_update_trackinfo(ump, &trackinfo);
    375 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    376 			tracknr--;
    377 			break;
    378 		}
    379 	}
    380 	if (tracknr > num_tracks)
    381 		tracknr--;
    382 
    383 	*last_tracknr = tracknr;
    384 
    385 	if (*last_tracknr < *first_tracknr) {
    386 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    387 			"drive returned garbage\n");
    388 		return EINVAL;
    389 	}
    390 
    391 	assert(*last_tracknr >= *first_tracknr);
    392 	return 0;
    393 }
    394 
    395 
    396 /*
    397  * NOTE: this is the only routine in this file that directly peeks into the
    398  * metadata file but since its at a larval state of the mount it can't hurt.
    399  *
    400  * XXX candidate for udf_allocation.c
    401  * XXX clean me up!, change to new node reading code.
    402  */
    403 
    404 static void
    405 udf_check_track_metadata_overlap(struct udf_mount *ump,
    406 	struct mmc_trackinfo *trackinfo)
    407 {
    408 	struct part_desc *part;
    409 	struct file_entry      *fe;
    410 	struct extfile_entry   *efe;
    411 	struct short_ad        *s_ad;
    412 	struct long_ad         *l_ad;
    413 	uint32_t track_start, track_end;
    414 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    415 	uint32_t sector_size, len, alloclen, plb_num;
    416 	uint8_t *pos;
    417 	int addr_type, icblen, icbflags, flags;
    418 
    419 	/* get our track extents */
    420 	track_start = trackinfo->track_start;
    421 	track_end   = track_start + trackinfo->track_size;
    422 
    423 	/* get our base partition extent */
    424 	KASSERT(ump->node_part == ump->fids_part);
    425 	part = ump->partitions[ump->node_part];
    426 	phys_part_start = udf_rw32(part->start_loc);
    427 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    428 
    429 	/* no use if its outside the physical partition */
    430 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    431 		return;
    432 
    433 	/*
    434 	 * now follow all extents in the fe/efe to see if they refer to this
    435 	 * track
    436 	 */
    437 
    438 	sector_size = ump->discinfo.sector_size;
    439 
    440 	/* XXX should we claim exclusive access to the metafile ? */
    441 	/* TODO: move to new node read code */
    442 	fe  = ump->metadata_node->fe;
    443 	efe = ump->metadata_node->efe;
    444 	if (fe) {
    445 		alloclen = udf_rw32(fe->l_ad);
    446 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    447 		icbflags = udf_rw16(fe->icbtag.flags);
    448 	} else {
    449 		assert(efe);
    450 		alloclen = udf_rw32(efe->l_ad);
    451 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    452 		icbflags = udf_rw16(efe->icbtag.flags);
    453 	}
    454 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    455 
    456 	while (alloclen) {
    457 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    458 			icblen = sizeof(struct short_ad);
    459 			s_ad   = (struct short_ad *) pos;
    460 			len        = udf_rw32(s_ad->len);
    461 			plb_num    = udf_rw32(s_ad->lb_num);
    462 		} else {
    463 			/* should not be present, but why not */
    464 			icblen = sizeof(struct long_ad);
    465 			l_ad   = (struct long_ad *) pos;
    466 			len        = udf_rw32(l_ad->len);
    467 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    468 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    469 		}
    470 		/* process extent */
    471 		flags   = UDF_EXT_FLAGS(len);
    472 		len     = UDF_EXT_LEN(len);
    473 
    474 		part_start = phys_part_start + plb_num;
    475 		part_end   = part_start + (len / sector_size);
    476 
    477 		if ((part_start >= track_start) && (part_end <= track_end)) {
    478 			/* extent is enclosed within this track */
    479 			ump->metadata_track = *trackinfo;
    480 			return;
    481 		}
    482 
    483 		pos        += icblen;
    484 		alloclen   -= icblen;
    485 	}
    486 }
    487 
    488 
    489 int
    490 udf_search_writing_tracks(struct udf_mount *ump)
    491 {
    492 	struct mmc_trackinfo trackinfo;
    493 	struct part_desc *part;
    494 	uint32_t tracknr, start_track, num_tracks;
    495 	uint32_t track_start, track_end, part_start, part_end;
    496 	int node_alloc, error;
    497 
    498 	/*
    499 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    500 	 * the last session might be open but in the UDF device model at most
    501 	 * three tracks can be open: a reserved track for delayed ISO VRS
    502 	 * writing, a data track and a metadata track. We search here for the
    503 	 * data track and the metadata track. Note that the reserved track is
    504 	 * troublesome but can be detected by its small size of < 512 sectors.
    505 	 */
    506 
    507 	num_tracks  = ump->discinfo.num_tracks;
    508 	start_track = ump->discinfo.first_track;
    509 
    510 	/* fetch info on first and possibly only track */
    511 	trackinfo.tracknr = start_track;
    512 	error = udf_update_trackinfo(ump, &trackinfo);
    513 	if (error)
    514 		return error;
    515 
    516 	/* copy results to our mount point */
    517 	ump->data_track     = trackinfo;
    518 	ump->metadata_track = trackinfo;
    519 
    520 	/* if not sequential, we're done */
    521 	if (num_tracks == 1)
    522 		return 0;
    523 
    524 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    525 		/* get track info */
    526 		trackinfo.tracknr = tracknr;
    527 		error = udf_update_trackinfo(ump, &trackinfo);
    528 		if (error)
    529 			return error;
    530 
    531 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    532 			continue;
    533 
    534 		track_start = trackinfo.track_start;
    535 		track_end   = track_start + trackinfo.track_size;
    536 
    537 		/* check for overlap on data partition */
    538 		part = ump->partitions[ump->data_part];
    539 		part_start = udf_rw32(part->start_loc);
    540 		part_end   = part_start + udf_rw32(part->part_len);
    541 		if ((part_start < track_end) && (part_end > track_start)) {
    542 			ump->data_track = trackinfo;
    543 			/* TODO check if UDF partition data_part is writable */
    544 		}
    545 
    546 		/* check for overlap on metadata partition */
    547 		node_alloc = ump->vtop_alloc[ump->node_part];
    548 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    549 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    550 			udf_check_track_metadata_overlap(ump, &trackinfo);
    551 		} else {
    552 			ump->metadata_track = trackinfo;
    553 		}
    554 	}
    555 
    556 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    557 		return EROFS;
    558 
    559 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    560 		return EROFS;
    561 
    562 	return 0;
    563 }
    564 
    565 /* --------------------------------------------------------------------- */
    566 
    567 /*
    568  * Check if the blob starts with a good UDF tag. Tags are protected by a
    569  * checksum over the reader except one byte at position 4 that is the checksum
    570  * itself.
    571  */
    572 
    573 int
    574 udf_check_tag(void *blob)
    575 {
    576 	struct desc_tag *tag = blob;
    577 	uint8_t *pos, sum, cnt;
    578 
    579 	/* check TAG header checksum */
    580 	pos = (uint8_t *) tag;
    581 	sum = 0;
    582 
    583 	for(cnt = 0; cnt < 16; cnt++) {
    584 		if (cnt != 4)
    585 			sum += *pos;
    586 		pos++;
    587 	}
    588 	if (sum != tag->cksum) {
    589 		/* bad tag header checksum; this is not a valid tag */
    590 		return EINVAL;
    591 	}
    592 
    593 	return 0;
    594 }
    595 
    596 
    597 /*
    598  * check tag payload will check descriptor CRC as specified.
    599  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    600  */
    601 
    602 int
    603 udf_check_tag_payload(void *blob, uint32_t max_length)
    604 {
    605 	struct desc_tag *tag = blob;
    606 	uint16_t crc, crc_len;
    607 
    608 	crc_len = udf_rw16(tag->desc_crc_len);
    609 
    610 	/* check payload CRC if applicable */
    611 	if (crc_len == 0)
    612 		return 0;
    613 
    614 	if (crc_len > max_length)
    615 		return EIO;
    616 
    617 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    618 	if (crc != udf_rw16(tag->desc_crc)) {
    619 		/* bad payload CRC; this is a broken tag */
    620 		return EINVAL;
    621 	}
    622 
    623 	return 0;
    624 }
    625 
    626 
    627 void
    628 udf_validate_tag_sum(void *blob)
    629 {
    630 	struct desc_tag *tag = blob;
    631 	uint8_t *pos, sum, cnt;
    632 
    633 	/* calculate TAG header checksum */
    634 	pos = (uint8_t *) tag;
    635 	sum = 0;
    636 
    637 	for(cnt = 0; cnt < 16; cnt++) {
    638 		if (cnt != 4) sum += *pos;
    639 		pos++;
    640 	}
    641 	tag->cksum = sum;	/* 8 bit */
    642 }
    643 
    644 
    645 /* assumes sector number of descriptor to be saved already present */
    646 void
    647 udf_validate_tag_and_crc_sums(void *blob)
    648 {
    649 	struct desc_tag *tag  = blob;
    650 	uint8_t         *btag = (uint8_t *) tag;
    651 	uint16_t crc, crc_len;
    652 
    653 	crc_len = udf_rw16(tag->desc_crc_len);
    654 
    655 	/* check payload CRC if applicable */
    656 	if (crc_len > 0) {
    657 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    658 		tag->desc_crc = udf_rw16(crc);
    659 	}
    660 
    661 	/* calculate TAG header checksum */
    662 	udf_validate_tag_sum(blob);
    663 }
    664 
    665 /* --------------------------------------------------------------------- */
    666 
    667 /*
    668  * XXX note the different semantics from udfclient: for FIDs it still rounds
    669  * up to sectors. Use udf_fidsize() for a correct length.
    670  */
    671 
    672 int
    673 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    674 {
    675 	uint32_t size, tag_id, num_lb, elmsz;
    676 
    677 	tag_id = udf_rw16(dscr->tag.id);
    678 
    679 	switch (tag_id) {
    680 	case TAGID_LOGVOL :
    681 		size  = sizeof(struct logvol_desc) - 1;
    682 		size += udf_rw32(dscr->lvd.mt_l);
    683 		break;
    684 	case TAGID_UNALLOC_SPACE :
    685 		elmsz = sizeof(struct extent_ad);
    686 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    687 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    688 		break;
    689 	case TAGID_FID :
    690 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    691 		size = (size + 3) & ~3;
    692 		break;
    693 	case TAGID_LOGVOL_INTEGRITY :
    694 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    695 		size += udf_rw32(dscr->lvid.l_iu);
    696 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    697 		break;
    698 	case TAGID_SPACE_BITMAP :
    699 		size  = sizeof(struct space_bitmap_desc) - 1;
    700 		size += udf_rw32(dscr->sbd.num_bytes);
    701 		break;
    702 	case TAGID_SPARING_TABLE :
    703 		elmsz = sizeof(struct spare_map_entry);
    704 		size  = sizeof(struct udf_sparing_table) - elmsz;
    705 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    706 		break;
    707 	case TAGID_FENTRY :
    708 		size  = sizeof(struct file_entry);
    709 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    710 		break;
    711 	case TAGID_EXTFENTRY :
    712 		size  = sizeof(struct extfile_entry);
    713 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    714 		break;
    715 	case TAGID_FSD :
    716 		size  = sizeof(struct fileset_desc);
    717 		break;
    718 	default :
    719 		size = sizeof(union dscrptr);
    720 		break;
    721 	}
    722 
    723 	if ((size == 0) || (lb_size == 0))
    724 		return 0;
    725 
    726 	if (lb_size == 1)
    727 		return size;
    728 
    729 	/* round up in sectors */
    730 	num_lb = (size + lb_size -1) / lb_size;
    731 	return num_lb * lb_size;
    732 }
    733 
    734 
    735 int
    736 udf_fidsize(struct fileid_desc *fid)
    737 {
    738 	uint32_t size;
    739 
    740 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    741 		panic("got udf_fidsize on non FID\n");
    742 
    743 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    744 	size = (size + 3) & ~3;
    745 
    746 	return size;
    747 }
    748 
    749 /* --------------------------------------------------------------------- */
    750 
    751 void
    752 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    753 {
    754 	int ret;
    755 
    756 	mutex_enter(&udf_node->node_mutex);
    757 	/* wait until free */
    758 	while (udf_node->i_flags & IN_LOCKED) {
    759 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    760 		/* TODO check if we should return error; abort */
    761 		if (ret == EWOULDBLOCK) {
    762 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    763 				"wanted at %s:%d, previously locked at %s:%d\n",
    764 				udf_node, fname, lineno,
    765 				udf_node->lock_fname, udf_node->lock_lineno));
    766 		}
    767 	}
    768 	/* grab */
    769 	udf_node->i_flags |= IN_LOCKED | flag;
    770 	/* debug */
    771 	udf_node->lock_fname  = fname;
    772 	udf_node->lock_lineno = lineno;
    773 
    774 	mutex_exit(&udf_node->node_mutex);
    775 }
    776 
    777 
    778 void
    779 udf_unlock_node(struct udf_node *udf_node, int flag)
    780 {
    781 	mutex_enter(&udf_node->node_mutex);
    782 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    783 	cv_broadcast(&udf_node->node_lock);
    784 	mutex_exit(&udf_node->node_mutex);
    785 }
    786 
    787 
    788 /* --------------------------------------------------------------------- */
    789 
    790 static int
    791 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    792 {
    793 	int error;
    794 
    795 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    796 			(union dscrptr **) dst);
    797 	if (!error) {
    798 		/* blank terminator blocks are not allowed here */
    799 		if (*dst == NULL)
    800 			return ENOENT;
    801 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    802 			error = ENOENT;
    803 			free(*dst, M_UDFVOLD);
    804 			*dst = NULL;
    805 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    806 		}
    807 	}
    808 
    809 	return error;
    810 }
    811 
    812 
    813 int
    814 udf_read_anchors(struct udf_mount *ump)
    815 {
    816 	struct udf_args *args = &ump->mount_args;
    817 	struct mmc_trackinfo first_track;
    818 	struct mmc_trackinfo second_track;
    819 	struct mmc_trackinfo last_track;
    820 	struct anchor_vdp **anchorsp;
    821 	uint32_t track_start;
    822 	uint32_t track_end;
    823 	uint32_t positions[4];
    824 	int first_tracknr, last_tracknr;
    825 	int error, anch, ok, first_anchor;
    826 
    827 	/* search the first and last track of the specified session */
    828 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    829 	if (!error) {
    830 		first_track.tracknr = first_tracknr;
    831 		error = udf_update_trackinfo(ump, &first_track);
    832 	}
    833 	if (!error) {
    834 		last_track.tracknr = last_tracknr;
    835 		error = udf_update_trackinfo(ump, &last_track);
    836 	}
    837 	if ((!error) && (first_tracknr != last_tracknr)) {
    838 		second_track.tracknr = first_tracknr+1;
    839 		error = udf_update_trackinfo(ump, &second_track);
    840 	}
    841 	if (error) {
    842 		printf("UDF mount: reading disc geometry failed\n");
    843 		return 0;
    844 	}
    845 
    846 	track_start = first_track.track_start;
    847 
    848 	/* `end' is not as straitforward as start. */
    849 	track_end =   last_track.track_start
    850 		    + last_track.track_size - last_track.free_blocks - 1;
    851 
    852 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    853 		/* end of track is not straitforward here */
    854 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    855 			track_end = last_track.last_recorded;
    856 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    857 			track_end = last_track.next_writable
    858 				    - ump->discinfo.link_block_penalty;
    859 	}
    860 
    861 	/* its no use reading a blank track */
    862 	first_anchor = 0;
    863 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    864 		first_anchor = 1;
    865 
    866 	/* get our packet size */
    867 	ump->packet_size = first_track.packet_size;
    868 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    869 		ump->packet_size = second_track.packet_size;
    870 
    871 	if (ump->packet_size <= 1) {
    872 		/* take max, but not bigger than 64 */
    873 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    874 		ump->packet_size = MIN(ump->packet_size, 64);
    875 	}
    876 	KASSERT(ump->packet_size >= 1);
    877 
    878 	/* read anchors start+256, start+512, end-256, end */
    879 	positions[0] = track_start+256;
    880 	positions[1] =   track_end-256;
    881 	positions[2] =   track_end;
    882 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    883 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    884 
    885 	ok = 0;
    886 	anchorsp = ump->anchors;
    887 	for (anch = first_anchor; anch < 4; anch++) {
    888 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    889 		    positions[anch]));
    890 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    891 		if (!error) {
    892 			anchorsp++;
    893 			ok++;
    894 		}
    895 	}
    896 
    897 	/* VATs are only recorded on sequential media, but initialise */
    898 	ump->first_possible_vat_location = track_start + 2;
    899 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    900 
    901 	return ok;
    902 }
    903 
    904 /* --------------------------------------------------------------------- */
    905 
    906 /* we dont try to be smart; we just record the parts */
    907 #define UDF_UPDATE_DSCR(name, dscr) \
    908 	if (name) \
    909 		free(name, M_UDFVOLD); \
    910 	name = dscr;
    911 
    912 static int
    913 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    914 {
    915 	struct part_desc *part;
    916 	uint16_t phys_part, raw_phys_part;
    917 
    918 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    919 	    udf_rw16(dscr->tag.id)));
    920 	switch (udf_rw16(dscr->tag.id)) {
    921 	case TAGID_PRI_VOL :		/* primary partition		*/
    922 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    923 		break;
    924 	case TAGID_LOGVOL :		/* logical volume		*/
    925 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    926 		break;
    927 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    928 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    929 		break;
    930 	case TAGID_IMP_VOL :		/* implementation		*/
    931 		/* XXX do we care about multiple impl. descr ? */
    932 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    933 		break;
    934 	case TAGID_PARTITION :		/* physical partition		*/
    935 		/* not much use if its not allocated */
    936 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    937 			free(dscr, M_UDFVOLD);
    938 			break;
    939 		}
    940 
    941 		/*
    942 		 * BUGALERT: some rogue implementations use random physical
    943 		 * partion numbers to break other implementations so lookup
    944 		 * the number.
    945 		 */
    946 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    947 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    948 			part = ump->partitions[phys_part];
    949 			if (part == NULL)
    950 				break;
    951 			if (udf_rw16(part->part_num) == raw_phys_part)
    952 				break;
    953 		}
    954 		if (phys_part == UDF_PARTITIONS) {
    955 			free(dscr, M_UDFVOLD);
    956 			return EINVAL;
    957 		}
    958 
    959 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
    960 		break;
    961 	case TAGID_VOL :		/* volume space extender; rare	*/
    962 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    963 		free(dscr, M_UDFVOLD);
    964 		break;
    965 	default :
    966 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    967 		    udf_rw16(dscr->tag.id)));
    968 		free(dscr, M_UDFVOLD);
    969 	}
    970 
    971 	return 0;
    972 }
    973 #undef UDF_UPDATE_DSCR
    974 
    975 /* --------------------------------------------------------------------- */
    976 
    977 static int
    978 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    979 {
    980 	union dscrptr *dscr;
    981 	uint32_t sector_size, dscr_size;
    982 	int error;
    983 
    984 	sector_size = ump->discinfo.sector_size;
    985 
    986 	/* loc is sectornr, len is in bytes */
    987 	error = EIO;
    988 	while (len) {
    989 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
    990 		if (error)
    991 			return error;
    992 
    993 		/* blank block is a terminator */
    994 		if (dscr == NULL)
    995 			return 0;
    996 
    997 		/* TERM descriptor is a terminator */
    998 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
    999 			free(dscr, M_UDFVOLD);
   1000 			return 0;
   1001 		}
   1002 
   1003 		/* process all others */
   1004 		dscr_size = udf_tagsize(dscr, sector_size);
   1005 		error = udf_process_vds_descriptor(ump, dscr);
   1006 		if (error) {
   1007 			free(dscr, M_UDFVOLD);
   1008 			break;
   1009 		}
   1010 		assert((dscr_size % sector_size) == 0);
   1011 
   1012 		len -= dscr_size;
   1013 		loc += dscr_size / sector_size;
   1014 	}
   1015 
   1016 	return error;
   1017 }
   1018 
   1019 
   1020 int
   1021 udf_read_vds_space(struct udf_mount *ump)
   1022 {
   1023 	/* struct udf_args *args = &ump->mount_args; */
   1024 	struct anchor_vdp *anchor, *anchor2;
   1025 	size_t size;
   1026 	uint32_t main_loc, main_len;
   1027 	uint32_t reserve_loc, reserve_len;
   1028 	int error;
   1029 
   1030 	/*
   1031 	 * read in VDS space provided by the anchors; if one descriptor read
   1032 	 * fails, try the mirror sector.
   1033 	 *
   1034 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1035 	 * avoids the `compatibility features' of DirectCD that may confuse
   1036 	 * stuff completely.
   1037 	 */
   1038 
   1039 	anchor  = ump->anchors[0];
   1040 	anchor2 = ump->anchors[1];
   1041 	assert(anchor);
   1042 
   1043 	if (anchor2) {
   1044 		size = sizeof(struct extent_ad);
   1045 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1046 			anchor = anchor2;
   1047 		/* reserve is specified to be a literal copy of main */
   1048 	}
   1049 
   1050 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1051 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1052 
   1053 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1054 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1055 
   1056 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1057 	if (error) {
   1058 		printf("UDF mount: reading in reserve VDS extent\n");
   1059 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1060 	}
   1061 
   1062 	return error;
   1063 }
   1064 
   1065 /* --------------------------------------------------------------------- */
   1066 
   1067 /*
   1068  * Read in the logical volume integrity sequence pointed to by our logical
   1069  * volume descriptor. Its a sequence that can be extended using fields in the
   1070  * integrity descriptor itself. On sequential media only one is found, on
   1071  * rewritable media a sequence of descriptors can be found as a form of
   1072  * history keeping and on non sequential write-once media the chain is vital
   1073  * to allow more and more descriptors to be written. The last descriptor
   1074  * written in an extent needs to claim space for a new extent.
   1075  */
   1076 
   1077 static int
   1078 udf_retrieve_lvint(struct udf_mount *ump)
   1079 {
   1080 	union dscrptr *dscr;
   1081 	struct logvol_int_desc *lvint;
   1082 	struct udf_lvintq *trace;
   1083 	uint32_t lb_size, lbnum, len;
   1084 	int dscr_type, error, trace_len;
   1085 
   1086 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1087 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1088 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1089 
   1090 	/* clean trace */
   1091 	memset(ump->lvint_trace, 0,
   1092 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1093 
   1094 	trace_len    = 0;
   1095 	trace        = ump->lvint_trace;
   1096 	trace->start = lbnum;
   1097 	trace->end   = lbnum + len/lb_size;
   1098 	trace->pos   = 0;
   1099 	trace->wpos  = 0;
   1100 
   1101 	lvint = NULL;
   1102 	dscr  = NULL;
   1103 	error = 0;
   1104 	while (len) {
   1105 		trace->pos  = lbnum - trace->start;
   1106 		trace->wpos = trace->pos + 1;
   1107 
   1108 		/* read in our integrity descriptor */
   1109 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1110 		if (!error) {
   1111 			if (dscr == NULL) {
   1112 				trace->wpos = trace->pos;
   1113 				break;		/* empty terminates */
   1114 			}
   1115 			dscr_type = udf_rw16(dscr->tag.id);
   1116 			if (dscr_type == TAGID_TERM) {
   1117 				trace->wpos = trace->pos;
   1118 				break;		/* clean terminator */
   1119 			}
   1120 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1121 				/* fatal... corrupt disc */
   1122 				error = ENOENT;
   1123 				break;
   1124 			}
   1125 			if (lvint)
   1126 				free(lvint, M_UDFVOLD);
   1127 			lvint = &dscr->lvid;
   1128 			dscr = NULL;
   1129 		} /* else hope for the best... maybe the next is ok */
   1130 
   1131 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1132 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1133 
   1134 		/* proceed sequential */
   1135 		lbnum += 1;
   1136 		len    -= lb_size;
   1137 
   1138 		/* are we linking to a new piece? */
   1139 		if (dscr && lvint->next_extent.len) {
   1140 			len    = udf_rw32(lvint->next_extent.len);
   1141 			lbnum = udf_rw32(lvint->next_extent.loc);
   1142 
   1143 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1144 				/* IEK! segment link full... */
   1145 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1146 				error = EINVAL;
   1147 			} else {
   1148 				trace++;
   1149 				trace_len++;
   1150 
   1151 				trace->start = lbnum;
   1152 				trace->end   = lbnum + len/lb_size;
   1153 				trace->pos   = 0;
   1154 				trace->wpos  = 0;
   1155 			}
   1156 		}
   1157 	}
   1158 
   1159 	/* clean up the mess, esp. when there is an error */
   1160 	if (dscr)
   1161 		free(dscr, M_UDFVOLD);
   1162 
   1163 	if (error && lvint) {
   1164 		free(lvint, M_UDFVOLD);
   1165 		lvint = NULL;
   1166 	}
   1167 
   1168 	if (!lvint)
   1169 		error = ENOENT;
   1170 
   1171 	ump->logvol_integrity = lvint;
   1172 	return error;
   1173 }
   1174 
   1175 
   1176 static int
   1177 udf_loose_lvint_history(struct udf_mount *ump)
   1178 {
   1179 	union dscrptr **bufs, *dscr, *last_dscr;
   1180 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1181 	struct logvol_int_desc *lvint;
   1182 	uint32_t in_ext, in_pos, in_len;
   1183 	uint32_t out_ext, out_wpos, out_len;
   1184 	uint32_t lb_size, packet_size, lb_num;
   1185 	uint32_t len, start;
   1186 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1187 	int losing;
   1188 	int error;
   1189 
   1190 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1191 
   1192 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1193 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1194 
   1195 	/* search smallest extent */
   1196 	trace = &ump->lvint_trace[0];
   1197 	minext = trace->end - trace->start;
   1198 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1199 		trace = &ump->lvint_trace[ext];
   1200 		extlen = trace->end - trace->start;
   1201 		if (extlen == 0)
   1202 			break;
   1203 		minext = MIN(minext, extlen);
   1204 	}
   1205 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1206 	/* no sense wiping all */
   1207 	if (losing == minext)
   1208 		losing--;
   1209 
   1210 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1211 
   1212 	/* get buffer for pieces */
   1213 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1214 
   1215 	in_ext    = 0;
   1216 	in_pos    = losing;
   1217 	in_trace  = &ump->lvint_trace[in_ext];
   1218 	in_len    = in_trace->end - in_trace->start;
   1219 	out_ext   = 0;
   1220 	out_wpos  = 0;
   1221 	out_trace = &ump->lvint_trace[out_ext];
   1222 	out_len   = out_trace->end - out_trace->start;
   1223 
   1224 	last_dscr = NULL;
   1225 	for(;;) {
   1226 		out_trace->pos  = out_wpos;
   1227 		out_trace->wpos = out_trace->pos;
   1228 		if (in_pos >= in_len) {
   1229 			in_ext++;
   1230 			in_pos = 0;
   1231 			in_trace = &ump->lvint_trace[in_ext];
   1232 			in_len   = in_trace->end - in_trace->start;
   1233 		}
   1234 		if (out_wpos >= out_len) {
   1235 			out_ext++;
   1236 			out_wpos = 0;
   1237 			out_trace = &ump->lvint_trace[out_ext];
   1238 			out_len   = out_trace->end - out_trace->start;
   1239 		}
   1240 		/* copy overlap contents */
   1241 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1242 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1243 		if (cpy_len == 0)
   1244 			break;
   1245 
   1246 		/* copy */
   1247 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1248 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1249 			/* read in our integrity descriptor */
   1250 			lb_num = in_trace->start + in_pos + cnt;
   1251 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1252 				&dscr);
   1253 			if (error) {
   1254 				/* copy last one */
   1255 				dscr = last_dscr;
   1256 			}
   1257 			bufs[cnt] = dscr;
   1258 			if (!error) {
   1259 				if (dscr == NULL) {
   1260 					out_trace->pos  = out_wpos + cnt;
   1261 					out_trace->wpos = out_trace->pos;
   1262 					break;		/* empty terminates */
   1263 				}
   1264 				dscr_type = udf_rw16(dscr->tag.id);
   1265 				if (dscr_type == TAGID_TERM) {
   1266 					out_trace->pos  = out_wpos + cnt;
   1267 					out_trace->wpos = out_trace->pos;
   1268 					break;		/* clean terminator */
   1269 				}
   1270 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1271 					panic(  "UDF integrity sequence "
   1272 						"corrupted while mounted!\n");
   1273 				}
   1274 				last_dscr = dscr;
   1275 			}
   1276 		}
   1277 
   1278 		/* patch up if first entry was on error */
   1279 		if (bufs[0] == NULL) {
   1280 			for (cnt = 0; cnt < cpy_len; cnt++)
   1281 				if (bufs[cnt] != NULL)
   1282 					break;
   1283 			last_dscr = bufs[cnt];
   1284 			for (; cnt > 0; cnt--) {
   1285 				bufs[cnt] = last_dscr;
   1286 			}
   1287 		}
   1288 
   1289 		/* glue + write out */
   1290 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1291 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1292 			lb_num = out_trace->start + out_wpos + cnt;
   1293 			lvint  = &bufs[cnt]->lvid;
   1294 
   1295 			/* set continuation */
   1296 			len = 0;
   1297 			start = 0;
   1298 			if (out_wpos + cnt == out_len) {
   1299 				/* get continuation */
   1300 				trace = &ump->lvint_trace[out_ext+1];
   1301 				len   = trace->end - trace->start;
   1302 				start = trace->start;
   1303 			}
   1304 			lvint->next_extent.len = udf_rw32(len);
   1305 			lvint->next_extent.loc = udf_rw32(start);
   1306 
   1307 			lb_num = trace->start + trace->wpos;
   1308 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1309 				bufs[cnt], lb_num, lb_num);
   1310 			DPRINTFIF(VOLUMES, error,
   1311 				("error writing lvint lb_num\n"));
   1312 		}
   1313 
   1314 		/* free non repeating descriptors */
   1315 		last_dscr = NULL;
   1316 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1317 			if (bufs[cnt] != last_dscr)
   1318 				free(bufs[cnt], M_UDFVOLD);
   1319 			last_dscr = bufs[cnt];
   1320 		}
   1321 
   1322 		/* advance */
   1323 		in_pos   += cpy_len;
   1324 		out_wpos += cpy_len;
   1325 	}
   1326 
   1327 	free(bufs, M_TEMP);
   1328 
   1329 	return 0;
   1330 }
   1331 
   1332 
   1333 static int
   1334 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1335 {
   1336 	struct udf_lvintq *trace;
   1337 	struct timeval  now_v;
   1338 	struct timespec now_s;
   1339 	uint32_t sector;
   1340 	int logvol_integrity;
   1341 	int space, error;
   1342 
   1343 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1344 
   1345 again:
   1346 	/* get free space in last chunk */
   1347 	trace = ump->lvint_trace;
   1348 	while (trace->wpos > (trace->end - trace->start)) {
   1349 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1350 				  "wpos = %d\n", trace->start, trace->end,
   1351 				  trace->pos, trace->wpos));
   1352 		trace++;
   1353 	}
   1354 
   1355 	/* check if there is space to append */
   1356 	space = (trace->end - trace->start) - trace->wpos;
   1357 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1358 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1359 			  trace->wpos, space));
   1360 
   1361 	/* get state */
   1362 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1363 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1364 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1365 			/* don't allow this logvol to be opened */
   1366 			/* TODO extent LVINT space if possible */
   1367 			return EROFS;
   1368 		}
   1369 	}
   1370 
   1371 	if (space < 1) {
   1372 		if (lvflag & UDF_APPENDONLY_LVINT)
   1373 			return EROFS;
   1374 		/* loose history by re-writing extents */
   1375 		error = udf_loose_lvint_history(ump);
   1376 		if (error)
   1377 			return error;
   1378 		goto again;
   1379 	}
   1380 
   1381 	/* update our integrity descriptor to identify us and timestamp it */
   1382 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1383 	microtime(&now_v);
   1384 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1385 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1386 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1387 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1388 
   1389 	/* writeout integrity descriptor */
   1390 	sector = trace->start + trace->wpos;
   1391 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1392 			(union dscrptr *) ump->logvol_integrity,
   1393 			sector, sector);
   1394 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1395 	if (error)
   1396 		return error;
   1397 
   1398 	/* advance write position */
   1399 	trace->wpos++; space--;
   1400 	if (space >= 1) {
   1401 		/* append terminator */
   1402 		sector = trace->start + trace->wpos;
   1403 		error = udf_write_terminator(ump, sector);
   1404 
   1405 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1406 	}
   1407 
   1408 	space = (trace->end - trace->start) - trace->wpos;
   1409 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1410 		"space = %d\n", trace->start, trace->end, trace->pos,
   1411 		trace->wpos, space));
   1412 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1413 		"successfull\n"));
   1414 
   1415 	return error;
   1416 }
   1417 
   1418 /* --------------------------------------------------------------------- */
   1419 
   1420 static int
   1421 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1422 {
   1423 	union dscrptr        *dscr;
   1424 	/* struct udf_args *args = &ump->mount_args; */
   1425 	struct part_desc     *partd;
   1426 	struct part_hdr_desc *parthdr;
   1427 	struct udf_bitmap    *bitmap;
   1428 	uint32_t phys_part;
   1429 	uint32_t lb_num, len;
   1430 	int error, dscr_type;
   1431 
   1432 	/* unallocated space map */
   1433 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1434 		partd = ump->partitions[phys_part];
   1435 		if (partd == NULL)
   1436 			continue;
   1437 		parthdr = &partd->_impl_use.part_hdr;
   1438 
   1439 		lb_num  = udf_rw32(partd->start_loc);
   1440 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1441 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1442 		if (len == 0)
   1443 			continue;
   1444 
   1445 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1446 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1447 		if (!error && dscr) {
   1448 			/* analyse */
   1449 			dscr_type = udf_rw16(dscr->tag.id);
   1450 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1451 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1452 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1453 
   1454 				/* fill in ump->part_unalloc_bits */
   1455 				bitmap = &ump->part_unalloc_bits[phys_part];
   1456 				bitmap->blob  = (uint8_t *) dscr;
   1457 				bitmap->bits  = dscr->sbd.data;
   1458 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1459 				bitmap->pages = NULL;	/* TODO */
   1460 				bitmap->data_pos     = 0;
   1461 				bitmap->metadata_pos = 0;
   1462 			} else {
   1463 				free(dscr, M_UDFVOLD);
   1464 
   1465 				printf( "UDF mount: error reading unallocated "
   1466 					"space bitmap\n");
   1467 				return EROFS;
   1468 			}
   1469 		} else {
   1470 			/* blank not allowed */
   1471 			printf("UDF mount: blank unallocated space bitmap\n");
   1472 			return EROFS;
   1473 		}
   1474 	}
   1475 
   1476 	/* unallocated space table (not supported) */
   1477 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1478 		partd = ump->partitions[phys_part];
   1479 		if (partd == NULL)
   1480 			continue;
   1481 		parthdr = &partd->_impl_use.part_hdr;
   1482 
   1483 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1484 		if (len) {
   1485 			printf("UDF mount: space tables not supported\n");
   1486 			return EROFS;
   1487 		}
   1488 	}
   1489 
   1490 	/* freed space map */
   1491 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1492 		partd = ump->partitions[phys_part];
   1493 		if (partd == NULL)
   1494 			continue;
   1495 		parthdr = &partd->_impl_use.part_hdr;
   1496 
   1497 		/* freed space map */
   1498 		lb_num  = udf_rw32(partd->start_loc);
   1499 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1500 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1501 		if (len == 0)
   1502 			continue;
   1503 
   1504 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1505 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1506 		if (!error && dscr) {
   1507 			/* analyse */
   1508 			dscr_type = udf_rw16(dscr->tag.id);
   1509 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1510 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1511 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1512 
   1513 				/* fill in ump->part_freed_bits */
   1514 				bitmap = &ump->part_unalloc_bits[phys_part];
   1515 				bitmap->blob  = (uint8_t *) dscr;
   1516 				bitmap->bits  = dscr->sbd.data;
   1517 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1518 				bitmap->pages = NULL;	/* TODO */
   1519 				bitmap->data_pos     = 0;
   1520 				bitmap->metadata_pos = 0;
   1521 			} else {
   1522 				free(dscr, M_UDFVOLD);
   1523 
   1524 				printf( "UDF mount: error reading freed  "
   1525 					"space bitmap\n");
   1526 				return EROFS;
   1527 			}
   1528 		} else {
   1529 			/* blank not allowed */
   1530 			printf("UDF mount: blank freed space bitmap\n");
   1531 			return EROFS;
   1532 		}
   1533 	}
   1534 
   1535 	/* freed space table (not supported) */
   1536 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1537 		partd = ump->partitions[phys_part];
   1538 		if (partd == NULL)
   1539 			continue;
   1540 		parthdr = &partd->_impl_use.part_hdr;
   1541 
   1542 		len     = udf_rw32(parthdr->freed_space_table.len);
   1543 		if (len) {
   1544 			printf("UDF mount: space tables not supported\n");
   1545 			return EROFS;
   1546 		}
   1547 	}
   1548 
   1549 	return 0;
   1550 }
   1551 
   1552 
   1553 /* TODO implement async writeout */
   1554 int
   1555 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1556 {
   1557 	union dscrptr        *dscr;
   1558 	/* struct udf_args *args = &ump->mount_args; */
   1559 	struct part_desc     *partd;
   1560 	struct part_hdr_desc *parthdr;
   1561 	uint32_t phys_part;
   1562 	uint32_t lb_num, len, ptov;
   1563 	int error_all, error;
   1564 
   1565 	error_all = 0;
   1566 	/* unallocated space map */
   1567 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1568 		partd = ump->partitions[phys_part];
   1569 		if (partd == NULL)
   1570 			continue;
   1571 		parthdr = &partd->_impl_use.part_hdr;
   1572 
   1573 		ptov   = udf_rw32(partd->start_loc);
   1574 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1575 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1576 		if (len == 0)
   1577 			continue;
   1578 
   1579 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1580 			lb_num + ptov));
   1581 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1582 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1583 				(union dscrptr *) dscr,
   1584 				ptov + lb_num, lb_num);
   1585 		if (error) {
   1586 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1587 			error_all = error;
   1588 		}
   1589 	}
   1590 
   1591 	/* freed space map */
   1592 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1593 		partd = ump->partitions[phys_part];
   1594 		if (partd == NULL)
   1595 			continue;
   1596 		parthdr = &partd->_impl_use.part_hdr;
   1597 
   1598 		/* freed space map */
   1599 		ptov   = udf_rw32(partd->start_loc);
   1600 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1601 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1602 		if (len == 0)
   1603 			continue;
   1604 
   1605 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1606 			lb_num + ptov));
   1607 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1608 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1609 				(union dscrptr *) dscr,
   1610 				ptov + lb_num, lb_num);
   1611 		if (error) {
   1612 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1613 			error_all = error;
   1614 		}
   1615 	}
   1616 
   1617 	return error_all;
   1618 }
   1619 
   1620 
   1621 static int
   1622 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1623 {
   1624 	struct udf_node	     *bitmap_node;
   1625 	union dscrptr        *dscr;
   1626 	struct udf_bitmap    *bitmap;
   1627 	uint64_t inflen;
   1628 	int error, dscr_type;
   1629 
   1630 	bitmap_node = ump->metadatabitmap_node;
   1631 
   1632 	/* only read in when metadata bitmap node is read in */
   1633 	if (bitmap_node == NULL)
   1634 		return 0;
   1635 
   1636 	if (bitmap_node->fe) {
   1637 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1638 	} else {
   1639 		KASSERT(bitmap_node->efe);
   1640 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1641 	}
   1642 
   1643 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1644 		"%"PRIu64" bytes\n", inflen));
   1645 
   1646 	/* allocate space for bitmap */
   1647 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1648 	if (!dscr)
   1649 		return ENOMEM;
   1650 
   1651 	/* set vnode type to regular file or we can't read from it! */
   1652 	bitmap_node->vnode->v_type = VREG;
   1653 
   1654 	/* read in complete metadata bitmap file */
   1655 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1656 			dscr,
   1657 			inflen, 0,
   1658 			UIO_SYSSPACE,
   1659 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1660 			NULL, NULL);
   1661 	if (error) {
   1662 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1663 		goto errorout;
   1664 	}
   1665 
   1666 	/* analyse */
   1667 	dscr_type = udf_rw16(dscr->tag.id);
   1668 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1669 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1670 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1671 
   1672 		/* fill in bitmap bits */
   1673 		bitmap = &ump->metadata_unalloc_bits;
   1674 		bitmap->blob  = (uint8_t *) dscr;
   1675 		bitmap->bits  = dscr->sbd.data;
   1676 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1677 		bitmap->pages = NULL;	/* TODO */
   1678 		bitmap->data_pos     = 0;
   1679 		bitmap->metadata_pos = 0;
   1680 	} else {
   1681 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1682 		goto errorout;
   1683 	}
   1684 
   1685 	return 0;
   1686 
   1687 errorout:
   1688 	free(dscr, M_UDFVOLD);
   1689 	printf( "UDF mount: error reading unallocated "
   1690 		"space bitmap for metadata partition\n");
   1691 	return EROFS;
   1692 }
   1693 
   1694 
   1695 int
   1696 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1697 {
   1698 	struct udf_node	     *bitmap_node;
   1699 	union dscrptr        *dscr;
   1700 	uint64_t inflen, new_inflen;
   1701 	int dummy, error;
   1702 
   1703 	bitmap_node = ump->metadatabitmap_node;
   1704 
   1705 	/* only write out when metadata bitmap node is known */
   1706 	if (bitmap_node == NULL)
   1707 		return 0;
   1708 
   1709 	if (bitmap_node->fe) {
   1710 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1711 	} else {
   1712 		KASSERT(bitmap_node->efe);
   1713 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1714 	}
   1715 
   1716 	/* reduce length to zero */
   1717 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1718 	new_inflen = udf_tagsize(dscr, 1);
   1719 
   1720 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
   1721 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
   1722 
   1723 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1724 	if (error)
   1725 		printf("Error resizing metadata space bitmap\n");
   1726 
   1727 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1728 			dscr,
   1729 			new_inflen, 0,
   1730 			UIO_SYSSPACE,
   1731 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1732 			NULL, NULL);
   1733 
   1734 	bitmap_node->i_flags |= IN_MODIFIED;
   1735 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
   1736 
   1737 	error = VOP_FSYNC(bitmap_node->vnode,
   1738 			FSCRED, FSYNC_WAIT, 0, 0);
   1739 
   1740 	if (error)
   1741 		printf( "Error writing out metadata partition unalloced "
   1742 			"space bitmap!\n");
   1743 
   1744 	return error;
   1745 }
   1746 
   1747 
   1748 /* --------------------------------------------------------------------- */
   1749 
   1750 /*
   1751  * Checks if ump's vds information is correct and complete
   1752  */
   1753 
   1754 int
   1755 udf_process_vds(struct udf_mount *ump) {
   1756 	union udf_pmap *mapping;
   1757 	/* struct udf_args *args = &ump->mount_args; */
   1758 	struct logvol_int_desc *lvint;
   1759 	struct udf_logvol_info *lvinfo;
   1760 	struct part_desc *part;
   1761 	uint32_t n_pm, mt_l;
   1762 	uint8_t *pmap_pos;
   1763 	char *domain_name, *map_name;
   1764 	const char *check_name;
   1765 	char bits[128];
   1766 	int pmap_stype, pmap_size;
   1767 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1768 	int n_phys, n_virt, n_spar, n_meta;
   1769 	int len, error;
   1770 
   1771 	if (ump == NULL)
   1772 		return ENOENT;
   1773 
   1774 	/* we need at least an anchor (trivial, but for safety) */
   1775 	if (ump->anchors[0] == NULL)
   1776 		return EINVAL;
   1777 
   1778 	/* we need at least one primary and one logical volume descriptor */
   1779 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1780 		return EINVAL;
   1781 
   1782 	/* we need at least one partition descriptor */
   1783 	if (ump->partitions[0] == NULL)
   1784 		return EINVAL;
   1785 
   1786 	/* check logical volume sector size verses device sector size */
   1787 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1788 		printf("UDF mount: format violation, lb_size != sector size\n");
   1789 		return EINVAL;
   1790 	}
   1791 
   1792 	/* check domain name */
   1793 	domain_name = ump->logical_vol->domain_id.id;
   1794 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1795 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1796 		return EINVAL;
   1797 	}
   1798 
   1799 	/* retrieve logical volume integrity sequence */
   1800 	error = udf_retrieve_lvint(ump);
   1801 
   1802 	/*
   1803 	 * We need at least one logvol integrity descriptor recorded.  Note
   1804 	 * that its OK to have an open logical volume integrity here. The VAT
   1805 	 * will close/update the integrity.
   1806 	 */
   1807 	if (ump->logvol_integrity == NULL)
   1808 		return EINVAL;
   1809 
   1810 	/* process derived structures */
   1811 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1812 	lvint  = ump->logvol_integrity;
   1813 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1814 	ump->logvol_info = lvinfo;
   1815 
   1816 	/* TODO check udf versions? */
   1817 
   1818 	/*
   1819 	 * check logvol mappings: effective virt->log partmap translation
   1820 	 * check and recording of the mapping results. Saves expensive
   1821 	 * strncmp() in tight places.
   1822 	 */
   1823 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1824 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1825 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1826 	pmap_pos =  ump->logical_vol->maps;
   1827 
   1828 	if (n_pm > UDF_PMAPS) {
   1829 		printf("UDF mount: too many mappings\n");
   1830 		return EINVAL;
   1831 	}
   1832 
   1833 	/* count types and set partition numbers */
   1834 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1835 	n_phys = n_virt = n_spar = n_meta = 0;
   1836 	for (log_part = 0; log_part < n_pm; log_part++) {
   1837 		mapping = (union udf_pmap *) pmap_pos;
   1838 		pmap_stype = pmap_pos[0];
   1839 		pmap_size  = pmap_pos[1];
   1840 		switch (pmap_stype) {
   1841 		case 1:	/* physical mapping */
   1842 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1843 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1844 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1845 			n_phys++;
   1846 			ump->data_part = log_part;
   1847 			ump->node_part = log_part;
   1848 			ump->fids_part = log_part;
   1849 			break;
   1850 		case 2: /* virtual/sparable/meta mapping */
   1851 			map_name  = mapping->pm2.part_id.id;
   1852 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1853 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1854 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1855 			len = UDF_REGID_ID_SIZE;
   1856 
   1857 			check_name = "*UDF Virtual Partition";
   1858 			if (strncmp(map_name, check_name, len) == 0) {
   1859 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1860 				n_virt++;
   1861 				ump->node_part = log_part;
   1862 				break;
   1863 			}
   1864 			check_name = "*UDF Sparable Partition";
   1865 			if (strncmp(map_name, check_name, len) == 0) {
   1866 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1867 				n_spar++;
   1868 				ump->data_part = log_part;
   1869 				ump->node_part = log_part;
   1870 				ump->fids_part = log_part;
   1871 				break;
   1872 			}
   1873 			check_name = "*UDF Metadata Partition";
   1874 			if (strncmp(map_name, check_name, len) == 0) {
   1875 				pmap_type = UDF_VTOP_TYPE_META;
   1876 				n_meta++;
   1877 				ump->node_part = log_part;
   1878 				ump->fids_part = log_part;
   1879 				break;
   1880 			}
   1881 			break;
   1882 		default:
   1883 			return EINVAL;
   1884 		}
   1885 
   1886 		/*
   1887 		 * BUGALERT: some rogue implementations use random physical
   1888 		 * partion numbers to break other implementations so lookup
   1889 		 * the number.
   1890 		 */
   1891 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1892 			part = ump->partitions[phys_part];
   1893 			if (part == NULL)
   1894 				continue;
   1895 			if (udf_rw16(part->part_num) == raw_phys_part)
   1896 				break;
   1897 		}
   1898 
   1899 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1900 		    raw_phys_part, phys_part, pmap_type));
   1901 
   1902 		if (phys_part == UDF_PARTITIONS)
   1903 			return EINVAL;
   1904 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1905 			return EINVAL;
   1906 
   1907 		ump->vtop   [log_part] = phys_part;
   1908 		ump->vtop_tp[log_part] = pmap_type;
   1909 
   1910 		pmap_pos += pmap_size;
   1911 	}
   1912 	/* not winning the beauty contest */
   1913 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1914 
   1915 	/* test some basic UDF assertions/requirements */
   1916 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1917 		return EINVAL;
   1918 
   1919 	if (n_virt) {
   1920 		if ((n_phys == 0) || n_spar || n_meta)
   1921 			return EINVAL;
   1922 	}
   1923 	if (n_spar + n_phys == 0)
   1924 		return EINVAL;
   1925 
   1926 	/* select allocation type for each logical partition */
   1927 	for (log_part = 0; log_part < n_pm; log_part++) {
   1928 		maps_on = ump->vtop[log_part];
   1929 		switch (ump->vtop_tp[log_part]) {
   1930 		case UDF_VTOP_TYPE_PHYS :
   1931 			assert(maps_on == log_part);
   1932 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1933 			break;
   1934 		case UDF_VTOP_TYPE_VIRT :
   1935 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   1936 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1937 			break;
   1938 		case UDF_VTOP_TYPE_SPARABLE :
   1939 			assert(maps_on == log_part);
   1940 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1941 			break;
   1942 		case UDF_VTOP_TYPE_META :
   1943 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   1944 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1945 				/* special case for UDF 2.60 */
   1946 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   1947 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1948 			}
   1949 			break;
   1950 		default:
   1951 			panic("bad alloction type in udf's ump->vtop\n");
   1952 		}
   1953 	}
   1954 
   1955 	/* determine logical volume open/closure actions */
   1956 	if (n_virt) {
   1957 		ump->lvopen  = 0;
   1958 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
   1959 			ump->lvopen |= UDF_OPEN_SESSION ;
   1960 		ump->lvclose = UDF_WRITE_VAT;
   1961 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   1962 			ump->lvclose |= UDF_CLOSE_SESSION;
   1963 	} else {
   1964 		/* `normal' rewritable or non sequential media */
   1965 		ump->lvopen  = UDF_WRITE_LVINT;
   1966 		ump->lvclose = UDF_WRITE_LVINT;
   1967 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   1968 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   1969 	}
   1970 
   1971 	/*
   1972 	 * Determine sheduler error behaviour. For virtual partions, update
   1973 	 * the trackinfo; for sparable partitions replace a whole block on the
   1974 	 * sparable table. Allways requeue.
   1975 	 */
   1976 	ump->lvreadwrite = 0;
   1977 	if (n_virt)
   1978 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   1979 	if (n_spar)
   1980 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   1981 
   1982 	/*
   1983 	 * Select our sheduler
   1984 	 */
   1985 	ump->strategy = &udf_strat_rmw;
   1986 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   1987 		ump->strategy = &udf_strat_sequential;
   1988 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   1989 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   1990 			ump->strategy = &udf_strat_direct;
   1991 	if (n_spar)
   1992 		ump->strategy = &udf_strat_rmw;
   1993 
   1994 #if 0
   1995 	/* read-only access won't benefit from the other shedulers */
   1996 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   1997 		ump->strategy = &udf_strat_direct;
   1998 #endif
   1999 
   2000 	/* print results */
   2001 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   2002 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2003 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2004 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2005 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2006 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2007 
   2008 	bitmask_snprintf(ump->lvopen,  UDFLOGVOL_BITS, bits, sizeof(bits));
   2009 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2010 	bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits));
   2011 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2012 	bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits));
   2013 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2014 
   2015 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2016 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2017 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2018 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2019 
   2020 	/* signal its OK for now */
   2021 	return 0;
   2022 }
   2023 
   2024 /* --------------------------------------------------------------------- */
   2025 
   2026 /*
   2027  * Update logical volume name in all structures that keep a record of it. We
   2028  * use memmove since each of them might be specified as a source.
   2029  *
   2030  * Note that it doesn't update the VAT structure!
   2031  */
   2032 
   2033 static void
   2034 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2035 {
   2036 	struct logvol_desc     *lvd = NULL;
   2037 	struct fileset_desc    *fsd = NULL;
   2038 	struct udf_lv_info     *lvi = NULL;
   2039 
   2040 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2041 	lvd = ump->logical_vol;
   2042 	fsd = ump->fileset_desc;
   2043 	if (ump->implementation)
   2044 		lvi = &ump->implementation->_impl_use.lv_info;
   2045 
   2046 	/* logvol's id might be specified as origional so use memmove here */
   2047 	memmove(lvd->logvol_id, logvol_id, 128);
   2048 	if (fsd)
   2049 		memmove(fsd->logvol_id, logvol_id, 128);
   2050 	if (lvi)
   2051 		memmove(lvi->logvol_id, logvol_id, 128);
   2052 }
   2053 
   2054 /* --------------------------------------------------------------------- */
   2055 
   2056 void
   2057 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2058 	uint32_t sector)
   2059 {
   2060 	assert(ump->logical_vol);
   2061 
   2062 	tag->id 		= udf_rw16(tagid);
   2063 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2064 	tag->cksum		= 0;
   2065 	tag->reserved		= 0;
   2066 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2067 	tag->tag_loc            = udf_rw32(sector);
   2068 }
   2069 
   2070 
   2071 uint64_t
   2072 udf_advance_uniqueid(struct udf_mount *ump)
   2073 {
   2074 	uint64_t unique_id;
   2075 
   2076 	mutex_enter(&ump->logvol_mutex);
   2077 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2078 	if (unique_id < 0x10)
   2079 		unique_id = 0x10;
   2080 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2081 	mutex_exit(&ump->logvol_mutex);
   2082 
   2083 	return unique_id;
   2084 }
   2085 
   2086 
   2087 static void
   2088 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2089 {
   2090 	struct udf_mount *ump = udf_node->ump;
   2091 	uint32_t num_dirs, num_files;
   2092 	int udf_file_type;
   2093 
   2094 	/* get file type */
   2095 	if (udf_node->fe) {
   2096 		udf_file_type = udf_node->fe->icbtag.file_type;
   2097 	} else {
   2098 		udf_file_type = udf_node->efe->icbtag.file_type;
   2099 	}
   2100 
   2101 	/* adjust file count */
   2102 	mutex_enter(&ump->allocate_mutex);
   2103 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2104 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2105 		ump->logvol_info->num_directories =
   2106 			udf_rw32((num_dirs + sign));
   2107 	} else {
   2108 		num_files = udf_rw32(ump->logvol_info->num_files);
   2109 		ump->logvol_info->num_files =
   2110 			udf_rw32((num_files + sign));
   2111 	}
   2112 	mutex_exit(&ump->allocate_mutex);
   2113 }
   2114 
   2115 
   2116 void
   2117 udf_osta_charset(struct charspec *charspec)
   2118 {
   2119 	bzero(charspec, sizeof(struct charspec));
   2120 	charspec->type = 0;
   2121 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2122 }
   2123 
   2124 
   2125 /* first call udf_set_regid and then the suffix */
   2126 void
   2127 udf_set_regid(struct regid *regid, char const *name)
   2128 {
   2129 	bzero(regid, sizeof(struct regid));
   2130 	regid->flags    = 0;		/* not dirty and not protected */
   2131 	strcpy((char *) regid->id, name);
   2132 }
   2133 
   2134 
   2135 void
   2136 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2137 {
   2138 	uint16_t *ver;
   2139 
   2140 	ver  = (uint16_t *) regid->id_suffix;
   2141 	*ver = ump->logvol_info->min_udf_readver;
   2142 }
   2143 
   2144 
   2145 void
   2146 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2147 {
   2148 	uint16_t *ver;
   2149 
   2150 	ver  = (uint16_t *) regid->id_suffix;
   2151 	*ver = ump->logvol_info->min_udf_readver;
   2152 
   2153 	regid->id_suffix[2] = 4;	/* unix */
   2154 	regid->id_suffix[3] = 8;	/* NetBSD */
   2155 }
   2156 
   2157 
   2158 void
   2159 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2160 {
   2161 	regid->id_suffix[0] = 4;	/* unix */
   2162 	regid->id_suffix[1] = 8;	/* NetBSD */
   2163 }
   2164 
   2165 
   2166 void
   2167 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2168 {
   2169 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2170 	regid->id_suffix[1] = APP_VERSION_SUB;
   2171 }
   2172 
   2173 static int
   2174 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2175 	struct long_ad *parent, uint64_t unique_id)
   2176 {
   2177 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2178 	int fidsize = 40;
   2179 
   2180 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2181 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2182 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2183 	fid->icb = *parent;
   2184 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2185 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
   2186 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2187 
   2188 	return fidsize;
   2189 }
   2190 
   2191 /* --------------------------------------------------------------------- */
   2192 
   2193 /*
   2194  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2195  *
   2196  * (a) inside the file's (e)fe in the length of the extended attribute area
   2197  * before the allocation descriptors/filedata
   2198  *
   2199  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2200  *
   2201  * (c) in the e(fe)'s associated stream directory that can hold various
   2202  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2203  * for NT/Unix ACL's and OS/2 attributes.
   2204  *
   2205  * NOTE: Extended attributes are read randomly but allways written
   2206  * *atomicaly*. For ACL's this interface is propably different but not known
   2207  * to me yet.
   2208  *
   2209  * Order of extended attributes in a space :
   2210  *   ECMA 167 EAs
   2211  *   Non block aligned Implementation Use EAs
   2212  *   Block aligned Implementation Use EAs
   2213  *   Application Use EAs
   2214  */
   2215 
   2216 static int
   2217 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2218 {
   2219 	uint16_t   *spos;
   2220 
   2221 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2222 		/* checksum valid? */
   2223 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2224 		spos = (uint16_t *) implext->data;
   2225 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2226 			return EINVAL;
   2227 	}
   2228 	return 0;
   2229 }
   2230 
   2231 static void
   2232 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2233 {
   2234 	uint16_t   *spos;
   2235 
   2236 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2237 		/* set checksum */
   2238 		spos = (uint16_t *) implext->data;
   2239 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2240 	}
   2241 }
   2242 
   2243 
   2244 int
   2245 udf_extattr_search_intern(struct udf_node *node,
   2246 	uint32_t sattr, char const *sattrname,
   2247 	uint32_t *offsetp, uint32_t *lengthp)
   2248 {
   2249 	struct extattrhdr_desc    *eahdr;
   2250 	struct extattr_entry      *attrhdr;
   2251 	struct impl_extattr_entry *implext;
   2252 	uint32_t    offset, a_l, sector_size;
   2253 	 int32_t    l_ea;
   2254 	uint8_t    *pos;
   2255 	int         error;
   2256 
   2257 	/* get mountpoint */
   2258 	sector_size = node->ump->discinfo.sector_size;
   2259 
   2260 	/* get information from fe/efe */
   2261 	if (node->fe) {
   2262 		l_ea  = udf_rw32(node->fe->l_ea);
   2263 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2264 	} else {
   2265 		assert(node->efe);
   2266 		l_ea  = udf_rw32(node->efe->l_ea);
   2267 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2268 	}
   2269 
   2270 	/* something recorded here? */
   2271 	if (l_ea == 0)
   2272 		return ENOENT;
   2273 
   2274 	/* check extended attribute tag; what to do if it fails? */
   2275 	error = udf_check_tag(eahdr);
   2276 	if (error)
   2277 		return EINVAL;
   2278 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2279 		return EINVAL;
   2280 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2281 	if (error)
   2282 		return EINVAL;
   2283 
   2284 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2285 
   2286 	/* looking for Ecma-167 attributes? */
   2287 	offset = sizeof(struct extattrhdr_desc);
   2288 
   2289 	/* looking for either implemenation use or application use */
   2290 	if (sattr == 2048) {				/* [4/48.10.8] */
   2291 		offset = udf_rw32(eahdr->impl_attr_loc);
   2292 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2293 			return ENOENT;
   2294 	}
   2295 	if (sattr == 65536) {				/* [4/48.10.9] */
   2296 		offset = udf_rw32(eahdr->appl_attr_loc);
   2297 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2298 			return ENOENT;
   2299 	}
   2300 
   2301 	/* paranoia check offset and l_ea */
   2302 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2303 		return EINVAL;
   2304 
   2305 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2306 
   2307 	/* find our extended attribute  */
   2308 	l_ea -= offset;
   2309 	pos = (uint8_t *) eahdr + offset;
   2310 
   2311 	while (l_ea >= sizeof(struct extattr_entry)) {
   2312 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2313 		attrhdr = (struct extattr_entry *) pos;
   2314 		implext = (struct impl_extattr_entry *) pos;
   2315 
   2316 		/* get complete attribute length and check for roque values */
   2317 		a_l = udf_rw32(attrhdr->a_l);
   2318 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2319 				udf_rw32(attrhdr->type),
   2320 				attrhdr->subtype, a_l, l_ea));
   2321 		if ((a_l == 0) || (a_l > l_ea))
   2322 			return EINVAL;
   2323 
   2324 		if (attrhdr->type != sattr)
   2325 			goto next_attribute;
   2326 
   2327 		/* we might have found it! */
   2328 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2329 			*offsetp = offset;
   2330 			*lengthp = a_l;
   2331 			return 0;		/* success */
   2332 		}
   2333 
   2334 		/*
   2335 		 * Implementation use and application use extended attributes
   2336 		 * have a name to identify. They share the same structure only
   2337 		 * UDF implementation use extended attributes have a checksum
   2338 		 * we need to check
   2339 		 */
   2340 
   2341 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2342 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2343 			/* we have found our appl/implementation attribute */
   2344 			*offsetp = offset;
   2345 			*lengthp = a_l;
   2346 			return 0;		/* success */
   2347 		}
   2348 
   2349 next_attribute:
   2350 		/* next attribute */
   2351 		pos    += a_l;
   2352 		l_ea   -= a_l;
   2353 		offset += a_l;
   2354 	}
   2355 	/* not found */
   2356 	return ENOENT;
   2357 }
   2358 
   2359 
   2360 static void
   2361 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2362 	struct extattr_entry *extattr)
   2363 {
   2364 	struct file_entry      *fe;
   2365 	struct extfile_entry   *efe;
   2366 	struct extattrhdr_desc *extattrhdr;
   2367 	struct impl_extattr_entry *implext;
   2368 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2369 	uint32_t *l_eap, l_ad;
   2370 	uint16_t *spos;
   2371 	uint8_t *bpos, *data;
   2372 
   2373 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2374 		fe    = &dscr->fe;
   2375 		data  = fe->data;
   2376 		l_eap = &fe->l_ea;
   2377 		l_ad  = udf_rw32(fe->l_ad);
   2378 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2379 		efe   = &dscr->efe;
   2380 		data  = efe->data;
   2381 		l_eap = &efe->l_ea;
   2382 		l_ad  = udf_rw32(efe->l_ad);
   2383 	} else {
   2384 		panic("Bad tag passed to udf_extattr_insert_internal");
   2385 	}
   2386 
   2387 	/* can't append already written to file descriptors yet */
   2388 	assert(l_ad == 0);
   2389 
   2390 	/* should have a header! */
   2391 	extattrhdr = (struct extattrhdr_desc *) data;
   2392 	l_ea = udf_rw32(*l_eap);
   2393 	if (l_ea == 0) {
   2394 		/* create empty extended attribute header */
   2395 		exthdr_len = sizeof(struct extattrhdr_desc);
   2396 
   2397 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2398 			/* loc */ 0);
   2399 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2400 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2401 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2402 
   2403 		/* record extended attribute header length */
   2404 		l_ea = exthdr_len;
   2405 		*l_eap = udf_rw32(l_ea);
   2406 	}
   2407 
   2408 	/* extract locations */
   2409 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2410 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2411 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2412 		impl_attr_loc = l_ea;
   2413 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2414 		appl_attr_loc = l_ea;
   2415 
   2416 	/* Ecma 167 EAs */
   2417 	if (udf_rw32(extattr->type) < 2048) {
   2418 		assert(impl_attr_loc == l_ea);
   2419 		assert(appl_attr_loc == l_ea);
   2420 	}
   2421 
   2422 	/* implementation use extended attributes */
   2423 	if (udf_rw32(extattr->type) == 2048) {
   2424 		assert(appl_attr_loc == l_ea);
   2425 
   2426 		/* calculate and write extended attribute header checksum */
   2427 		implext = (struct impl_extattr_entry *) extattr;
   2428 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2429 		spos = (uint16_t *) implext->data;
   2430 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2431 	}
   2432 
   2433 	/* application use extended attributes */
   2434 	assert(udf_rw32(extattr->type) != 65536);
   2435 	assert(appl_attr_loc == l_ea);
   2436 
   2437 	/* append the attribute at the end of the current space */
   2438 	bpos = data + udf_rw32(*l_eap);
   2439 	a_l  = udf_rw32(extattr->a_l);
   2440 
   2441 	/* update impl. attribute locations */
   2442 	if (udf_rw32(extattr->type) < 2048) {
   2443 		impl_attr_loc = l_ea + a_l;
   2444 		appl_attr_loc = l_ea + a_l;
   2445 	}
   2446 	if (udf_rw32(extattr->type) == 2048) {
   2447 		appl_attr_loc = l_ea + a_l;
   2448 	}
   2449 
   2450 	/* copy and advance */
   2451 	memcpy(bpos, extattr, a_l);
   2452 	l_ea += a_l;
   2453 	*l_eap = udf_rw32(l_ea);
   2454 
   2455 	/* do the `dance` again backwards */
   2456 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2457 		if (impl_attr_loc == l_ea)
   2458 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2459 		if (appl_attr_loc == l_ea)
   2460 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2461 	}
   2462 
   2463 	/* store offsets */
   2464 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2465 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2466 }
   2467 
   2468 
   2469 /* --------------------------------------------------------------------- */
   2470 
   2471 static int
   2472 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2473 {
   2474 	struct udf_mount       *ump;
   2475 	struct udf_logvol_info *lvinfo;
   2476 	struct impl_extattr_entry     *implext;
   2477 	struct vatlvext_extattr_entry  lvext;
   2478 	const char *extstr = "*UDF VAT LVExtension";
   2479 	uint64_t    vat_uniqueid;
   2480 	uint32_t    offset, a_l;
   2481 	uint8_t    *ea_start, *lvextpos;
   2482 	int         error;
   2483 
   2484 	/* get mountpoint and lvinfo */
   2485 	ump    = vat_node->ump;
   2486 	lvinfo = ump->logvol_info;
   2487 
   2488 	/* get information from fe/efe */
   2489 	if (vat_node->fe) {
   2490 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2491 		ea_start     = vat_node->fe->data;
   2492 	} else {
   2493 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2494 		ea_start     = vat_node->efe->data;
   2495 	}
   2496 
   2497 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2498 	if (error)
   2499 		return error;
   2500 
   2501 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2502 	error = udf_impl_extattr_check(implext);
   2503 	if (error)
   2504 		return error;
   2505 
   2506 	/* paranoia */
   2507 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2508 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2509 		return EINVAL;
   2510 	}
   2511 
   2512 	/*
   2513 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2514 	 * bug in the specification it might not be word aligned so
   2515 	 * copy first to avoid panics on some machines (!!)
   2516 	 */
   2517 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2518 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2519 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2520 
   2521 	/* check if it was updated the last time */
   2522 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2523 		lvinfo->num_files       = lvext.num_files;
   2524 		lvinfo->num_directories = lvext.num_directories;
   2525 		udf_update_logvolname(ump, lvext.logvol_id);
   2526 	} else {
   2527 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2528 		/* replace VAT LVExt by free space EA */
   2529 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2530 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2531 		udf_calc_impl_extattr_checksum(implext);
   2532 	}
   2533 
   2534 	return 0;
   2535 }
   2536 
   2537 
   2538 static int
   2539 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2540 {
   2541 	struct udf_mount       *ump;
   2542 	struct udf_logvol_info *lvinfo;
   2543 	struct impl_extattr_entry     *implext;
   2544 	struct vatlvext_extattr_entry  lvext;
   2545 	const char *extstr = "*UDF VAT LVExtension";
   2546 	uint64_t    vat_uniqueid;
   2547 	uint32_t    offset, a_l;
   2548 	uint8_t    *ea_start, *lvextpos;
   2549 	int         error;
   2550 
   2551 	/* get mountpoint and lvinfo */
   2552 	ump    = vat_node->ump;
   2553 	lvinfo = ump->logvol_info;
   2554 
   2555 	/* get information from fe/efe */
   2556 	if (vat_node->fe) {
   2557 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2558 		ea_start     = vat_node->fe->data;
   2559 	} else {
   2560 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2561 		ea_start     = vat_node->efe->data;
   2562 	}
   2563 
   2564 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2565 	if (error)
   2566 		return error;
   2567 	/* found, it existed */
   2568 
   2569 	/* paranoia */
   2570 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2571 	error = udf_impl_extattr_check(implext);
   2572 	if (error) {
   2573 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2574 		return error;
   2575 	}
   2576 	/* it is correct */
   2577 
   2578 	/*
   2579 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2580 	 * bug in the specification it might not be word aligned so
   2581 	 * copy first to avoid panics on some machines (!!)
   2582 	 */
   2583 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2584 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2585 
   2586 	lvext.unique_id_chk   = vat_uniqueid;
   2587 	lvext.num_files       = lvinfo->num_files;
   2588 	lvext.num_directories = lvinfo->num_directories;
   2589 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2590 
   2591 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2592 
   2593 	return 0;
   2594 }
   2595 
   2596 /* --------------------------------------------------------------------- */
   2597 
   2598 int
   2599 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2600 {
   2601 	struct udf_mount *ump = vat_node->ump;
   2602 
   2603 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2604 		return EINVAL;
   2605 
   2606 	memcpy(blob, ump->vat_table + offset, size);
   2607 	return 0;
   2608 }
   2609 
   2610 int
   2611 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2612 {
   2613 	struct udf_mount *ump = vat_node->ump;
   2614 	uint32_t offset_high;
   2615 	uint8_t *new_vat_table;
   2616 
   2617 	/* extent VAT allocation if needed */
   2618 	offset_high = offset + size;
   2619 	if (offset_high >= ump->vat_table_alloc_len) {
   2620 		/* realloc */
   2621 		new_vat_table = realloc(ump->vat_table,
   2622 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2623 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2624 		if (!new_vat_table) {
   2625 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2626 			return ENOMEM;
   2627 		}
   2628 		ump->vat_table = new_vat_table;
   2629 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2630 	}
   2631 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2632 
   2633 	memcpy(ump->vat_table + offset, blob, size);
   2634 	return 0;
   2635 }
   2636 
   2637 /* --------------------------------------------------------------------- */
   2638 
   2639 /* TODO support previous VAT location writeout */
   2640 static int
   2641 udf_update_vat_descriptor(struct udf_mount *ump)
   2642 {
   2643 	struct udf_node *vat_node = ump->vat_node;
   2644 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2645 	struct icb_tag *icbtag;
   2646 	struct udf_oldvat_tail *oldvat_tl;
   2647 	struct udf_vat *vat;
   2648 	uint64_t unique_id;
   2649 	uint32_t lb_size;
   2650 	uint8_t *raw_vat;
   2651 	int filetype, error;
   2652 
   2653 	KASSERT(vat_node);
   2654 	KASSERT(lvinfo);
   2655 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2656 
   2657 	/* get our new unique_id */
   2658 	unique_id = udf_advance_uniqueid(ump);
   2659 
   2660 	/* get information from fe/efe */
   2661 	if (vat_node->fe) {
   2662 		icbtag    = &vat_node->fe->icbtag;
   2663 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2664 	} else {
   2665 		icbtag = &vat_node->efe->icbtag;
   2666 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2667 	}
   2668 
   2669 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2670 	filetype = icbtag->file_type;
   2671 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2672 
   2673 	/* allocate piece to process head or tail of VAT file */
   2674 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2675 
   2676 	if (filetype == 0) {
   2677 		/*
   2678 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2679 		 * lvint if present.
   2680 		 */
   2681 		udf_update_vat_extattr_from_lvid(vat_node);
   2682 
   2683 		/* setup identifying regid */
   2684 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2685 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2686 
   2687 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2688 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2689 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2690 
   2691 		/* write out new tail of virtual allocation table file */
   2692 		error = udf_vat_write(vat_node, raw_vat,
   2693 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2694 	} else {
   2695 		/* compose the VAT2 header */
   2696 		vat = (struct udf_vat *) raw_vat;
   2697 		memset(vat, 0, sizeof(struct udf_vat));
   2698 
   2699 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2700 		vat->impl_use_len     = udf_rw16(0);
   2701 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2702 		vat->prev_vat         = udf_rw32(0xffffffff);
   2703 		vat->num_files        = lvinfo->num_files;
   2704 		vat->num_directories  = lvinfo->num_directories;
   2705 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2706 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2707 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2708 
   2709 		error = udf_vat_write(vat_node, raw_vat,
   2710 			sizeof(struct udf_vat), 0);
   2711 	}
   2712 	free(raw_vat, M_TEMP);
   2713 
   2714 	return error;	/* success! */
   2715 }
   2716 
   2717 
   2718 int
   2719 udf_writeout_vat(struct udf_mount *ump)
   2720 {
   2721 	struct udf_node *vat_node = ump->vat_node;
   2722 	uint32_t vat_length;
   2723 	int error;
   2724 
   2725 	KASSERT(vat_node);
   2726 
   2727 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2728 
   2729 	mutex_enter(&ump->allocate_mutex);
   2730 	udf_update_vat_descriptor(ump);
   2731 
   2732 	/* write out the VAT contents ; TODO intelligent writing */
   2733 	vat_length = ump->vat_table_len;
   2734 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2735 		ump->vat_table, ump->vat_table_len, 0,
   2736 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
   2737 	if (error) {
   2738 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2739 		goto out;
   2740 	}
   2741 
   2742 	mutex_exit(&ump->allocate_mutex);
   2743 
   2744 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2745 	error = VOP_FSYNC(ump->vat_node->vnode,
   2746 			FSCRED, FSYNC_WAIT, 0, 0);
   2747 	if (error)
   2748 		printf("udf_writeout_vat: error writing VAT node!\n");
   2749 out:
   2750 
   2751 	return error;
   2752 }
   2753 
   2754 /* --------------------------------------------------------------------- */
   2755 
   2756 /*
   2757  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2758  * descriptor. If OK, read in complete VAT file.
   2759  */
   2760 
   2761 static int
   2762 udf_check_for_vat(struct udf_node *vat_node)
   2763 {
   2764 	struct udf_mount *ump;
   2765 	struct icb_tag   *icbtag;
   2766 	struct timestamp *mtime;
   2767 	struct udf_vat   *vat;
   2768 	struct udf_oldvat_tail *oldvat_tl;
   2769 	struct udf_logvol_info *lvinfo;
   2770 	uint64_t  unique_id;
   2771 	uint32_t  vat_length;
   2772 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2773 	uint32_t  sector_size;
   2774 	uint32_t *raw_vat;
   2775 	uint8_t  *vat_table;
   2776 	char     *regid_name;
   2777 	int filetype;
   2778 	int error;
   2779 
   2780 	/* vat_length is really 64 bits though impossible */
   2781 
   2782 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2783 	if (!vat_node)
   2784 		return ENOENT;
   2785 
   2786 	/* get mount info */
   2787 	ump = vat_node->ump;
   2788 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2789 
   2790 	/* check assertions */
   2791 	assert(vat_node->fe || vat_node->efe);
   2792 	assert(ump->logvol_integrity);
   2793 
   2794 	/* set vnode type to regular file or we can't read from it! */
   2795 	vat_node->vnode->v_type = VREG;
   2796 
   2797 	/* get information from fe/efe */
   2798 	if (vat_node->fe) {
   2799 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2800 		icbtag    = &vat_node->fe->icbtag;
   2801 		mtime     = &vat_node->fe->mtime;
   2802 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2803 	} else {
   2804 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2805 		icbtag = &vat_node->efe->icbtag;
   2806 		mtime  = &vat_node->efe->mtime;
   2807 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2808 	}
   2809 
   2810 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2811 	filetype = icbtag->file_type;
   2812 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2813 		return ENOENT;
   2814 
   2815 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2816 
   2817 	vat_table_alloc_len =
   2818 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2819 			* UDF_VAT_CHUNKSIZE;
   2820 
   2821 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2822 		M_CANFAIL | M_WAITOK);
   2823 	if (vat_table == NULL) {
   2824 		printf("allocation of %d bytes failed for VAT\n",
   2825 			vat_table_alloc_len);
   2826 		return ENOMEM;
   2827 	}
   2828 
   2829 	/* allocate piece to read in head or tail of VAT file */
   2830 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2831 
   2832 	/*
   2833 	 * check contents of the file if its the old 1.50 VAT table format.
   2834 	 * Its notoriously broken and allthough some implementations support an
   2835 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2836 	 * to be useable since a lot of implementations don't maintain it.
   2837 	 */
   2838 	lvinfo = ump->logvol_info;
   2839 
   2840 	if (filetype == 0) {
   2841 		/* definition */
   2842 		vat_offset  = 0;
   2843 		vat_entries = (vat_length-36)/4;
   2844 
   2845 		/* read in tail of virtual allocation table file */
   2846 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2847 				(uint8_t *) raw_vat,
   2848 				sizeof(struct udf_oldvat_tail),
   2849 				vat_entries * 4,
   2850 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2851 				NULL, NULL);
   2852 		if (error)
   2853 			goto out;
   2854 
   2855 		/* check 1.50 VAT */
   2856 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2857 		regid_name = (char *) oldvat_tl->id.id;
   2858 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2859 		if (error) {
   2860 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2861 			error = ENOENT;
   2862 			goto out;
   2863 		}
   2864 
   2865 		/*
   2866 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2867 		 * if present.
   2868 		 */
   2869 		udf_update_lvid_from_vat_extattr(vat_node);
   2870 	} else {
   2871 		/* read in head of virtual allocation table file */
   2872 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2873 				(uint8_t *) raw_vat,
   2874 				sizeof(struct udf_vat), 0,
   2875 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2876 				NULL, NULL);
   2877 		if (error)
   2878 			goto out;
   2879 
   2880 		/* definition */
   2881 		vat = (struct udf_vat *) raw_vat;
   2882 		vat_offset  = vat->header_len;
   2883 		vat_entries = (vat_length - vat_offset)/4;
   2884 
   2885 		assert(lvinfo);
   2886 		lvinfo->num_files        = vat->num_files;
   2887 		lvinfo->num_directories  = vat->num_directories;
   2888 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2889 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2890 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2891 
   2892 		udf_update_logvolname(ump, vat->logvol_id);
   2893 	}
   2894 
   2895 	/* read in complete VAT file */
   2896 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2897 			vat_table,
   2898 			vat_length, 0,
   2899 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2900 			NULL, NULL);
   2901 	if (error)
   2902 		printf("read in of complete VAT file failed (error %d)\n",
   2903 			error);
   2904 	if (error)
   2905 		goto out;
   2906 
   2907 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2908 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
   2909 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2910 	ump->logvol_integrity->time           = *mtime;
   2911 
   2912 	ump->vat_table_len = vat_length;
   2913 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2914 	ump->vat_table   = vat_table;
   2915 	ump->vat_offset  = vat_offset;
   2916 	ump->vat_entries = vat_entries;
   2917 	ump->vat_last_free_lb = 0;		/* start at beginning */
   2918 
   2919 out:
   2920 	if (error) {
   2921 		if (vat_table)
   2922 			free(vat_table, M_UDFVOLD);
   2923 	}
   2924 	free(raw_vat, M_TEMP);
   2925 
   2926 	return error;
   2927 }
   2928 
   2929 /* --------------------------------------------------------------------- */
   2930 
   2931 static int
   2932 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   2933 {
   2934 	struct udf_node *vat_node;
   2935 	struct long_ad	 icb_loc;
   2936 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   2937 	int error;
   2938 
   2939 	/* mapping info not needed */
   2940 	mapping = mapping;
   2941 
   2942 	vat_loc = ump->last_possible_vat_location;
   2943 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   2944 
   2945 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   2946 		vat_loc, early_vat_loc));
   2947 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   2948 	late_vat_loc  = vat_loc + 1024;
   2949 
   2950 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   2951 		vat_loc, early_vat_loc));
   2952 
   2953 	/* start looking from the end of the range */
   2954 	do {
   2955 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   2956 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   2957 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   2958 
   2959 		error = udf_get_node(ump, &icb_loc, &vat_node);
   2960 		if (!error) {
   2961 			error = udf_check_for_vat(vat_node);
   2962 			DPRINTFIF(VOLUMES, !error,
   2963 				("VAT accepted at %d\n", vat_loc));
   2964 			if (!error)
   2965 				break;
   2966 		}
   2967 		if (vat_node) {
   2968 			vput(vat_node->vnode);
   2969 			vat_node = NULL;
   2970 		}
   2971 		vat_loc--;	/* walk backwards */
   2972 	} while (vat_loc >= early_vat_loc);
   2973 
   2974 	/* keep our VAT node around */
   2975 	if (vat_node) {
   2976 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   2977 		ump->vat_node = vat_node;
   2978 	}
   2979 
   2980 	return error;
   2981 }
   2982 
   2983 /* --------------------------------------------------------------------- */
   2984 
   2985 static int
   2986 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   2987 {
   2988 	union dscrptr *dscr;
   2989 	struct part_map_spare *pms = &mapping->pms;
   2990 	uint32_t lb_num;
   2991 	int spar, error;
   2992 
   2993 	/*
   2994 	 * The partition mapping passed on to us specifies the information we
   2995 	 * need to locate and initialise the sparable partition mapping
   2996 	 * information we need.
   2997 	 */
   2998 
   2999 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   3000 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   3001 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   3002 
   3003 	for (spar = 0; spar < pms->n_st; spar++) {
   3004 		lb_num = pms->st_loc[spar];
   3005 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3006 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3007 		if (!error && dscr) {
   3008 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3009 				if (ump->sparing_table)
   3010 					free(ump->sparing_table, M_UDFVOLD);
   3011 				ump->sparing_table = &dscr->spt;
   3012 				dscr = NULL;
   3013 				DPRINTF(VOLUMES,
   3014 				    ("Sparing table accepted (%d entries)\n",
   3015 				     udf_rw16(ump->sparing_table->rt_l)));
   3016 				break;	/* we're done */
   3017 			}
   3018 		}
   3019 		if (dscr)
   3020 			free(dscr, M_UDFVOLD);
   3021 	}
   3022 
   3023 	if (ump->sparing_table)
   3024 		return 0;
   3025 
   3026 	return ENOENT;
   3027 }
   3028 
   3029 /* --------------------------------------------------------------------- */
   3030 
   3031 static int
   3032 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3033 {
   3034 	struct part_map_meta *pmm = &mapping->pmm;
   3035 	struct long_ad	 icb_loc;
   3036 	struct vnode *vp;
   3037 	int error;
   3038 
   3039 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3040 	icb_loc.loc.part_num = pmm->part_num;
   3041 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3042 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3043 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3044 	if (ump->metadata_node) {
   3045 		vp = ump->metadata_node->vnode;
   3046 		UDF_SET_SYSTEMFILE(vp);
   3047 	}
   3048 
   3049 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3050 	if (icb_loc.loc.lb_num != -1) {
   3051 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3052 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3053 		if (ump->metadatamirror_node) {
   3054 			vp = ump->metadatamirror_node->vnode;
   3055 			UDF_SET_SYSTEMFILE(vp);
   3056 		}
   3057 	}
   3058 
   3059 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3060 	if (icb_loc.loc.lb_num != -1) {
   3061 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3062 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3063 		if (ump->metadatabitmap_node) {
   3064 			vp = ump->metadatabitmap_node->vnode;
   3065 			UDF_SET_SYSTEMFILE(vp);
   3066 		}
   3067 	}
   3068 
   3069 	/* if we're mounting read-only we relax the requirements */
   3070 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3071 		error = EFAULT;
   3072 		if (ump->metadata_node)
   3073 			error = 0;
   3074 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3075 			printf( "udf mount: Metadata file not readable, "
   3076 				"substituting Metadata copy file\n");
   3077 			ump->metadata_node = ump->metadatamirror_node;
   3078 			ump->metadatamirror_node = NULL;
   3079 			error = 0;
   3080 		}
   3081 	} else {
   3082 		/* mounting read/write */
   3083 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3084 		if (error)
   3085 			error = EROFS;
   3086 	}
   3087 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3088 				   "metadata files\n"));
   3089 	return error;
   3090 }
   3091 
   3092 /* --------------------------------------------------------------------- */
   3093 
   3094 int
   3095 udf_read_vds_tables(struct udf_mount *ump)
   3096 {
   3097 	union udf_pmap *mapping;
   3098 	/* struct udf_args *args = &ump->mount_args; */
   3099 	uint32_t n_pm, mt_l;
   3100 	uint32_t log_part;
   3101 	uint8_t *pmap_pos;
   3102 	int pmap_size;
   3103 	int error;
   3104 
   3105 	/* Iterate (again) over the part mappings for locations   */
   3106 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3107 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   3108 	pmap_pos =  ump->logical_vol->maps;
   3109 
   3110 	for (log_part = 0; log_part < n_pm; log_part++) {
   3111 		mapping = (union udf_pmap *) pmap_pos;
   3112 		switch (ump->vtop_tp[log_part]) {
   3113 		case UDF_VTOP_TYPE_PHYS :
   3114 			/* nothing */
   3115 			break;
   3116 		case UDF_VTOP_TYPE_VIRT :
   3117 			/* search and load VAT */
   3118 			error = udf_search_vat(ump, mapping);
   3119 			if (error)
   3120 				return ENOENT;
   3121 			break;
   3122 		case UDF_VTOP_TYPE_SPARABLE :
   3123 			/* load one of the sparable tables */
   3124 			error = udf_read_sparables(ump, mapping);
   3125 			if (error)
   3126 				return ENOENT;
   3127 			break;
   3128 		case UDF_VTOP_TYPE_META :
   3129 			/* load the associated file descriptors */
   3130 			error = udf_read_metadata_nodes(ump, mapping);
   3131 			if (error)
   3132 				return ENOENT;
   3133 			break;
   3134 		default:
   3135 			break;
   3136 		}
   3137 		pmap_size  = pmap_pos[1];
   3138 		pmap_pos  += pmap_size;
   3139 	}
   3140 
   3141 	/* read in and check unallocated and free space info if writing */
   3142 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3143 		error = udf_read_physical_partition_spacetables(ump);
   3144 		if (error)
   3145 			return error;
   3146 
   3147 		/* also read in metadata partion spacebitmap if defined */
   3148 		error = udf_read_metadata_partition_spacetable(ump);
   3149 			return error;
   3150 	}
   3151 
   3152 	return 0;
   3153 }
   3154 
   3155 /* --------------------------------------------------------------------- */
   3156 
   3157 int
   3158 udf_read_rootdirs(struct udf_mount *ump)
   3159 {
   3160 	union dscrptr *dscr;
   3161 	/* struct udf_args *args = &ump->mount_args; */
   3162 	struct udf_node *rootdir_node, *streamdir_node;
   3163 	struct long_ad  fsd_loc, *dir_loc;
   3164 	uint32_t lb_num, dummy;
   3165 	uint32_t fsd_len;
   3166 	int dscr_type;
   3167 	int error;
   3168 
   3169 	/* TODO implement FSD reading in separate function like integrity? */
   3170 	/* get fileset descriptor sequence */
   3171 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3172 	fsd_len = udf_rw32(fsd_loc.len);
   3173 
   3174 	dscr  = NULL;
   3175 	error = 0;
   3176 	while (fsd_len || error) {
   3177 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3178 		/* translate fsd_loc to lb_num */
   3179 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3180 		if (error)
   3181 			break;
   3182 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3183 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3184 		/* end markers */
   3185 		if (error || (dscr == NULL))
   3186 			break;
   3187 
   3188 		/* analyse */
   3189 		dscr_type = udf_rw16(dscr->tag.id);
   3190 		if (dscr_type == TAGID_TERM)
   3191 			break;
   3192 		if (dscr_type != TAGID_FSD) {
   3193 			free(dscr, M_UDFVOLD);
   3194 			return ENOENT;
   3195 		}
   3196 
   3197 		/*
   3198 		 * TODO check for multiple fileset descriptors; its only
   3199 		 * picking the last now. Also check for FSD
   3200 		 * correctness/interpretability
   3201 		 */
   3202 
   3203 		/* update */
   3204 		if (ump->fileset_desc) {
   3205 			free(ump->fileset_desc, M_UDFVOLD);
   3206 		}
   3207 		ump->fileset_desc = &dscr->fsd;
   3208 		dscr = NULL;
   3209 
   3210 		/* continue to the next fsd */
   3211 		fsd_len -= ump->discinfo.sector_size;
   3212 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3213 
   3214 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3215 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3216 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3217 			fsd_loc = ump->fileset_desc->next_ex;
   3218 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3219 		}
   3220 	}
   3221 	if (dscr)
   3222 		free(dscr, M_UDFVOLD);
   3223 
   3224 	/* there has to be one */
   3225 	if (ump->fileset_desc == NULL)
   3226 		return ENOENT;
   3227 
   3228 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3229 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3230 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3231 
   3232 	/*
   3233 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3234 	 * the system stream dir. Some files in the system streamdir are not
   3235 	 * wanted in this implementation since they are not maintained. If
   3236 	 * writing is enabled we'll delete these files if they exist.
   3237 	 */
   3238 
   3239 	rootdir_node = streamdir_node = NULL;
   3240 	dir_loc = NULL;
   3241 
   3242 	/* try to read in the rootdir */
   3243 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3244 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3245 	if (error)
   3246 		return ENOENT;
   3247 
   3248 	/* aparently it read in fine */
   3249 
   3250 	/*
   3251 	 * Try the system stream directory; not very likely in the ones we
   3252 	 * test, but for completeness.
   3253 	 */
   3254 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3255 	if (udf_rw32(dir_loc->len)) {
   3256 		printf("udf_read_rootdirs: streamdir defined ");
   3257 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3258 		if (error) {
   3259 			printf("but error in streamdir reading\n");
   3260 		} else {
   3261 			printf("but ignored\n");
   3262 			/*
   3263 			 * TODO process streamdir `baddies' i.e. files we dont
   3264 			 * want if R/W
   3265 			 */
   3266 		}
   3267 	}
   3268 
   3269 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3270 
   3271 	/* release the vnodes again; they'll be auto-recycled later */
   3272 	if (streamdir_node) {
   3273 		vput(streamdir_node->vnode);
   3274 	}
   3275 	if (rootdir_node) {
   3276 		vput(rootdir_node->vnode);
   3277 	}
   3278 
   3279 	return 0;
   3280 }
   3281 
   3282 /* --------------------------------------------------------------------- */
   3283 
   3284 /* To make absolutely sure we are NOT returning zero, add one :) */
   3285 
   3286 long
   3287 udf_calchash(struct long_ad *icbptr)
   3288 {
   3289 	/* ought to be enough since each mountpoint has its own chain */
   3290 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3291 }
   3292 
   3293 
   3294 static struct udf_node *
   3295 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3296 {
   3297 	struct udf_node *node;
   3298 	struct vnode *vp;
   3299 	uint32_t hashline;
   3300 
   3301 loop:
   3302 	mutex_enter(&ump->ihash_lock);
   3303 
   3304 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   3305 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
   3306 		assert(node);
   3307 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
   3308 		    node->loc.loc.part_num == icbptr->loc.part_num) {
   3309 			vp = node->vnode;
   3310 			assert(vp);
   3311 			mutex_enter(&vp->v_interlock);
   3312 			mutex_exit(&ump->ihash_lock);
   3313 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   3314 				goto loop;
   3315 			return node;
   3316 		}
   3317 	}
   3318 	mutex_exit(&ump->ihash_lock);
   3319 
   3320 	return NULL;
   3321 }
   3322 
   3323 
   3324 static void
   3325 udf_sorted_list_insert(struct udf_node *node)
   3326 {
   3327 	struct udf_mount *ump;
   3328 	struct udf_node  *s_node, *last_node;
   3329 	uint32_t loc, s_loc;
   3330 
   3331 	ump = node->ump;
   3332 	last_node = NULL;	/* XXX gcc */
   3333 
   3334 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
   3335 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
   3336 		return;
   3337 	}
   3338 
   3339 	/*
   3340 	 * We sort on logical block number here and not on physical block
   3341 	 * number here. Ideally we should go for the physical block nr to get
   3342 	 * better sync performance though this sort will ensure that packets
   3343 	 * won't get spit up unnessisarily.
   3344 	 */
   3345 
   3346 	loc = udf_rw32(node->loc.loc.lb_num);
   3347 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
   3348 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
   3349 		if (s_loc > loc) {
   3350 			LIST_INSERT_BEFORE(s_node, node, sortchain);
   3351 			return;
   3352 		}
   3353 		last_node = s_node;
   3354 	}
   3355 	LIST_INSERT_AFTER(last_node, node, sortchain);
   3356 }
   3357 
   3358 
   3359 static void
   3360 udf_register_node(struct udf_node *node)
   3361 {
   3362 	struct udf_mount *ump;
   3363 	struct udf_node *chk;
   3364 	uint32_t hashline;
   3365 
   3366 	ump = node->ump;
   3367 	mutex_enter(&ump->ihash_lock);
   3368 
   3369 	/* add to our hash table */
   3370 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
   3371 #ifdef DEBUG
   3372 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
   3373 		assert(chk);
   3374 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
   3375 		    chk->loc.loc.part_num == node->loc.loc.part_num)
   3376 			panic("Double node entered\n");
   3377 	}
   3378 #else
   3379 	chk = NULL;
   3380 #endif
   3381 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
   3382 
   3383 	/* add to our sorted list */
   3384 	udf_sorted_list_insert(node);
   3385 
   3386 	mutex_exit(&ump->ihash_lock);
   3387 }
   3388 
   3389 
   3390 static void
   3391 udf_deregister_node(struct udf_node *node)
   3392 {
   3393 	struct udf_mount *ump;
   3394 
   3395 	ump = node->ump;
   3396 	mutex_enter(&ump->ihash_lock);
   3397 
   3398 	/* from hash and sorted list */
   3399 	LIST_REMOVE(node, hashchain);
   3400 	LIST_REMOVE(node, sortchain);
   3401 
   3402 	mutex_exit(&ump->ihash_lock);
   3403 }
   3404 
   3405 /* --------------------------------------------------------------------- */
   3406 
   3407 int
   3408 udf_open_logvol(struct udf_mount *ump)
   3409 {
   3410 	int logvol_integrity;
   3411 	int error;
   3412 
   3413 	/* already/still open? */
   3414 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3415 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3416 		return 0;
   3417 
   3418 	/* can we open it ? */
   3419 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3420 		return EROFS;
   3421 
   3422 	/* setup write parameters */
   3423 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3424 	if ((error = udf_setup_writeparams(ump)) != 0)
   3425 		return error;
   3426 
   3427 	/* determine data and metadata tracks (most likely same) */
   3428 	error = udf_search_writing_tracks(ump);
   3429 	if (error) {
   3430 		/* most likely lack of space */
   3431 		printf("udf_open_logvol: error searching writing tracks\n");
   3432 		return EROFS;
   3433 	}
   3434 
   3435 	/* writeout/update lvint on disc or only in memory */
   3436 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3437 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3438 		/* TODO implement writeout of VRS + VDS */
   3439 		printf( "udf_open_logvol:Opening a closed session not yet "
   3440 			"implemented\n");
   3441 		return EROFS;
   3442 
   3443 		/* determine data and metadata tracks again */
   3444 		error = udf_search_writing_tracks(ump);
   3445 	}
   3446 
   3447 	/* mark it open */
   3448 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3449 
   3450 	/* do we need to write it out? */
   3451 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3452 		error = udf_writeout_lvint(ump, ump->lvopen);
   3453 		/* if we couldn't write it mark it closed again */
   3454 		if (error) {
   3455 			ump->logvol_integrity->integrity_type =
   3456 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3457 			return error;
   3458 		}
   3459 	}
   3460 
   3461 	return 0;
   3462 }
   3463 
   3464 
   3465 int
   3466 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3467 {
   3468 	int logvol_integrity;
   3469 	int error = 0, error1 = 0, error2 = 0;
   3470 	int n;
   3471 
   3472 	/* already/still closed? */
   3473 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3474 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3475 		return 0;
   3476 
   3477 	/* writeout/update lvint or write out VAT */
   3478 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
   3479 	if (ump->lvclose & UDF_WRITE_VAT) {
   3480 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3481 
   3482 		/* write out the VAT node */
   3483 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3484 		udf_writeout_vat(ump);
   3485 
   3486 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3487 		for (n = 0; n < 16; n++) {
   3488 			ump->vat_node->i_flags |= IN_MODIFIED;
   3489 			error = VOP_FSYNC(ump->vat_node->vnode,
   3490 					FSCRED, FSYNC_WAIT, 0, 0);
   3491 		}
   3492 		if (error) {
   3493 			printf("udf_close_logvol: writeout of VAT failed\n");
   3494 			return error;
   3495 		}
   3496 	}
   3497 
   3498 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3499 		/* sync writeout metadata spacetable if existing */
   3500 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3501 		if (error1)
   3502 			printf( "udf_close_logvol: writeout of metadata space "
   3503 				"bitmap failed\n");
   3504 
   3505 		/* sync writeout partition spacetables */
   3506 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3507 		if (error2)
   3508 			printf( "udf_close_logvol: writeout of space tables "
   3509 				"failed\n");
   3510 
   3511 		if (error1 || error2)
   3512 			return (error1 | error2);
   3513 
   3514 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3515 	}
   3516 
   3517 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3518 		printf("TODO: Closing a session is not yet implemented\n");
   3519 		return EROFS;
   3520 		ump->lvopen |= UDF_OPEN_SESSION;
   3521 	}
   3522 
   3523 	/* mark it closed */
   3524 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3525 
   3526 	/* do we need to write out the logical volume integrity */
   3527 	if (ump->lvclose & UDF_WRITE_LVINT)
   3528 		error = udf_writeout_lvint(ump, ump->lvopen);
   3529 	if (error) {
   3530 		/* HELP now what? mark it open again for now */
   3531 		ump->logvol_integrity->integrity_type =
   3532 			udf_rw32(UDF_INTEGRITY_OPEN);
   3533 		return error;
   3534 	}
   3535 
   3536 	(void) udf_synchronise_caches(ump);
   3537 
   3538 	return 0;
   3539 }
   3540 
   3541 /* --------------------------------------------------------------------- */
   3542 
   3543 /*
   3544  * Genfs interfacing
   3545  *
   3546  * static const struct genfs_ops udf_genfsops = {
   3547  * 	.gop_size = genfs_size,
   3548  * 		size of transfers
   3549  * 	.gop_alloc = udf_gop_alloc,
   3550  * 		allocate len bytes at offset
   3551  * 	.gop_write = genfs_gop_write,
   3552  * 		putpages interface code
   3553  * 	.gop_markupdate = udf_gop_markupdate,
   3554  * 		set update/modify flags etc.
   3555  * }
   3556  */
   3557 
   3558 /*
   3559  * Genfs interface. These four functions are the only ones defined though not
   3560  * documented... great....
   3561  */
   3562 
   3563 /*
   3564  * Callback from genfs to allocate len bytes at offset off; only called when
   3565  * filling up gaps in the allocation.
   3566  */
   3567 /* XXX should we check if there is space enough in udf_gop_alloc? */
   3568 static int
   3569 udf_gop_alloc(struct vnode *vp, off_t off,
   3570     off_t len, int flags, kauth_cred_t cred)
   3571 {
   3572 #if 0
   3573 	struct udf_node *udf_node = VTOI(vp);
   3574 	struct udf_mount *ump = udf_node->ump;
   3575 	uint32_t lb_size, num_lb;
   3576 #endif
   3577 
   3578 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
   3579 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
   3580 
   3581 	return 0;
   3582 }
   3583 
   3584 
   3585 /*
   3586  * callback from genfs to update our flags
   3587  */
   3588 static void
   3589 udf_gop_markupdate(struct vnode *vp, int flags)
   3590 {
   3591 	struct udf_node *udf_node = VTOI(vp);
   3592 	u_long mask = 0;
   3593 
   3594 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   3595 		mask = IN_ACCESS;
   3596 	}
   3597 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   3598 		if (vp->v_type == VREG) {
   3599 			mask |= IN_CHANGE | IN_UPDATE;
   3600 		} else {
   3601 			mask |= IN_MODIFY;
   3602 		}
   3603 	}
   3604 	if (mask) {
   3605 		udf_node->i_flags |= mask;
   3606 	}
   3607 }
   3608 
   3609 
   3610 static const struct genfs_ops udf_genfsops = {
   3611 	.gop_size = genfs_size,
   3612 	.gop_alloc = udf_gop_alloc,
   3613 	.gop_write = genfs_gop_write_rwmap,
   3614 	.gop_markupdate = udf_gop_markupdate,
   3615 };
   3616 
   3617 
   3618 /* --------------------------------------------------------------------- */
   3619 
   3620 int
   3621 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   3622 {
   3623 	union dscrptr *dscr;
   3624 	int error;
   3625 
   3626 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
   3627 	bzero(dscr, ump->discinfo.sector_size);
   3628 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   3629 
   3630 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   3631 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   3632 	(void) udf_validate_tag_and_crc_sums(dscr);
   3633 
   3634 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   3635 			dscr, sector, sector);
   3636 
   3637 	free(dscr, M_TEMP);
   3638 
   3639 	return error;
   3640 }
   3641 
   3642 
   3643 /* --------------------------------------------------------------------- */
   3644 
   3645 /* UDF<->unix converters */
   3646 
   3647 /* --------------------------------------------------------------------- */
   3648 
   3649 static mode_t
   3650 udf_perm_to_unix_mode(uint32_t perm)
   3651 {
   3652 	mode_t mode;
   3653 
   3654 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   3655 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   3656 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   3657 
   3658 	return mode;
   3659 }
   3660 
   3661 /* --------------------------------------------------------------------- */
   3662 
   3663 static uint32_t
   3664 unix_mode_to_udf_perm(mode_t mode)
   3665 {
   3666 	uint32_t perm;
   3667 
   3668 	perm  = ((mode & S_IRWXO)     );
   3669 	perm |= ((mode & S_IRWXG) << 2);
   3670 	perm |= ((mode & S_IRWXU) << 4);
   3671 	perm |= ((mode & S_IWOTH) << 3);
   3672 	perm |= ((mode & S_IWGRP) << 5);
   3673 	perm |= ((mode & S_IWUSR) << 7);
   3674 
   3675 	return perm;
   3676 }
   3677 
   3678 /* --------------------------------------------------------------------- */
   3679 
   3680 static uint32_t
   3681 udf_icb_to_unix_filetype(uint32_t icbftype)
   3682 {
   3683 	switch (icbftype) {
   3684 	case UDF_ICB_FILETYPE_DIRECTORY :
   3685 	case UDF_ICB_FILETYPE_STREAMDIR :
   3686 		return S_IFDIR;
   3687 	case UDF_ICB_FILETYPE_FIFO :
   3688 		return S_IFIFO;
   3689 	case UDF_ICB_FILETYPE_CHARDEVICE :
   3690 		return S_IFCHR;
   3691 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   3692 		return S_IFBLK;
   3693 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   3694 	case UDF_ICB_FILETYPE_REALTIME :
   3695 		return S_IFREG;
   3696 	case UDF_ICB_FILETYPE_SYMLINK :
   3697 		return S_IFLNK;
   3698 	case UDF_ICB_FILETYPE_SOCKET :
   3699 		return S_IFSOCK;
   3700 	}
   3701 	/* no idea what this is */
   3702 	return 0;
   3703 }
   3704 
   3705 /* --------------------------------------------------------------------- */
   3706 
   3707 void
   3708 udf_to_unix_name(char *result, int result_len, char *id, int len,
   3709 	struct charspec *chsp)
   3710 {
   3711 	uint16_t   *raw_name, *unix_name;
   3712 	uint16_t   *inchp, ch;
   3713 	uint8_t	   *outchp;
   3714 	const char *osta_id = "OSTA Compressed Unicode";
   3715 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   3716 
   3717 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   3718 	unix_name = raw_name + 1024;			/* split space in half */
   3719 	assert(sizeof(char) == sizeof(uint8_t));
   3720 	outchp = (uint8_t *) result;
   3721 
   3722 	is_osta_typ0  = (chsp->type == 0);
   3723 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3724 	if (is_osta_typ0) {
   3725 		/* TODO clean up */
   3726 		*raw_name = *unix_name = 0;
   3727 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   3728 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   3729 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   3730 		/* output UTF8 */
   3731 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   3732 			ch = *inchp;
   3733 			nout = wput_utf8(outchp, result_len, ch);
   3734 			outchp += nout; result_len -= nout;
   3735 			if (!ch) break;
   3736 		}
   3737 		*outchp++ = 0;
   3738 	} else {
   3739 		/* assume 8bit char length byte latin-1 */
   3740 		assert(*id == 8);
   3741 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   3742 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   3743 	}
   3744 	free(raw_name, M_UDFTEMP);
   3745 }
   3746 
   3747 /* --------------------------------------------------------------------- */
   3748 
   3749 void
   3750 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   3751 	struct charspec *chsp)
   3752 {
   3753 	uint16_t   *raw_name;
   3754 	uint16_t   *outchp;
   3755 	const char *inchp;
   3756 	const char *osta_id = "OSTA Compressed Unicode";
   3757 	int         udf_chars, is_osta_typ0, bits;
   3758 	size_t      cnt;
   3759 
   3760 	/* allocate temporary unicode-16 buffer */
   3761 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   3762 
   3763 	/* convert utf8 to unicode-16 */
   3764 	*raw_name = 0;
   3765 	inchp  = name;
   3766 	outchp = raw_name;
   3767 	bits = 8;
   3768 	for (cnt = name_len, udf_chars = 0; cnt;) {
   3769 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   3770 		*outchp = wget_utf8(&inchp, &cnt);
   3771 		if (*outchp > 0xff)
   3772 			bits=16;
   3773 		outchp++;
   3774 		udf_chars++;
   3775 	}
   3776 	/* null terminate just in case */
   3777 	*outchp++ = 0;
   3778 
   3779 	is_osta_typ0  = (chsp->type == 0);
   3780 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3781 	if (is_osta_typ0) {
   3782 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   3783 				(unicode_t *) raw_name,
   3784 				(byte *) result);
   3785 	} else {
   3786 		printf("unix to udf name: no CHSP0 ?\n");
   3787 		/* XXX assume 8bit char length byte latin-1 */
   3788 		*result++ = 8; udf_chars = 1;
   3789 		strncpy(result, name + 1, name_len);
   3790 		udf_chars += name_len;
   3791 	}
   3792 	*result_len = udf_chars;
   3793 	free(raw_name, M_UDFTEMP);
   3794 }
   3795 
   3796 /* --------------------------------------------------------------------- */
   3797 
   3798 void
   3799 udf_timestamp_to_timespec(struct udf_mount *ump,
   3800 			  struct timestamp *timestamp,
   3801 			  struct timespec  *timespec)
   3802 {
   3803 	struct clock_ymdhms ymdhms;
   3804 	uint32_t usecs, secs, nsecs;
   3805 	uint16_t tz;
   3806 
   3807 	/* fill in ymdhms structure from timestamp */
   3808 	memset(&ymdhms, 0, sizeof(ymdhms));
   3809 	ymdhms.dt_year = udf_rw16(timestamp->year);
   3810 	ymdhms.dt_mon  = timestamp->month;
   3811 	ymdhms.dt_day  = timestamp->day;
   3812 	ymdhms.dt_wday = 0; /* ? */
   3813 	ymdhms.dt_hour = timestamp->hour;
   3814 	ymdhms.dt_min  = timestamp->minute;
   3815 	ymdhms.dt_sec  = timestamp->second;
   3816 
   3817 	secs = clock_ymdhms_to_secs(&ymdhms);
   3818 	usecs = timestamp->usec +
   3819 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   3820 	nsecs = usecs * 1000;
   3821 
   3822 	/*
   3823 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   3824 	 * compliment, so we gotta do some extra magic to handle it right.
   3825 	 */
   3826 	tz  = udf_rw16(timestamp->type_tz);
   3827 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   3828 	if (tz & 0x0800)		/* sign extention */
   3829 		tz |= 0xf000;
   3830 
   3831 	/* TODO check timezone conversion */
   3832 	/* check if we are specified a timezone to convert */
   3833 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   3834 		if ((int16_t) tz != -2047)
   3835 			secs -= (int16_t) tz * 60;
   3836 	} else {
   3837 		secs -= ump->mount_args.gmtoff;
   3838 	}
   3839 
   3840 	timespec->tv_sec  = secs;
   3841 	timespec->tv_nsec = nsecs;
   3842 }
   3843 
   3844 
   3845 void
   3846 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   3847 {
   3848 	struct clock_ymdhms ymdhms;
   3849 	uint32_t husec, usec, csec;
   3850 
   3851 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   3852 
   3853 	usec   = timespec->tv_nsec / 1000;
   3854 	husec  =  usec / 100;
   3855 	usec  -= husec * 100;				/* only 0-99 in usec  */
   3856 	csec   = husec / 100;				/* only 0-99 in csec  */
   3857 	husec -=  csec * 100;				/* only 0-99 in husec */
   3858 
   3859 	/* set method 1 for CUT/GMT */
   3860 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   3861 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   3862 	timestamp->month	= ymdhms.dt_mon;
   3863 	timestamp->day		= ymdhms.dt_day;
   3864 	timestamp->hour		= ymdhms.dt_hour;
   3865 	timestamp->minute	= ymdhms.dt_min;
   3866 	timestamp->second	= ymdhms.dt_sec;
   3867 	timestamp->centisec	= csec;
   3868 	timestamp->hund_usec	= husec;
   3869 	timestamp->usec		= usec;
   3870 }
   3871 
   3872 /* --------------------------------------------------------------------- */
   3873 
   3874 /*
   3875  * Attribute and filetypes converters with get/set pairs
   3876  */
   3877 
   3878 uint32_t
   3879 udf_getaccessmode(struct udf_node *udf_node)
   3880 {
   3881 	struct file_entry     *fe = udf_node->fe;;
   3882 	struct extfile_entry *efe = udf_node->efe;
   3883 	uint32_t udf_perm, icbftype;
   3884 	uint32_t mode, ftype;
   3885 	uint16_t icbflags;
   3886 
   3887 	UDF_LOCK_NODE(udf_node, 0);
   3888 	if (fe) {
   3889 		udf_perm = udf_rw32(fe->perm);
   3890 		icbftype = fe->icbtag.file_type;
   3891 		icbflags = udf_rw16(fe->icbtag.flags);
   3892 	} else {
   3893 		assert(udf_node->efe);
   3894 		udf_perm = udf_rw32(efe->perm);
   3895 		icbftype = efe->icbtag.file_type;
   3896 		icbflags = udf_rw16(efe->icbtag.flags);
   3897 	}
   3898 
   3899 	mode  = udf_perm_to_unix_mode(udf_perm);
   3900 	ftype = udf_icb_to_unix_filetype(icbftype);
   3901 
   3902 	/* set suid, sgid, sticky from flags in fe/efe */
   3903 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   3904 		mode |= S_ISUID;
   3905 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   3906 		mode |= S_ISGID;
   3907 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   3908 		mode |= S_ISVTX;
   3909 
   3910 	UDF_UNLOCK_NODE(udf_node, 0);
   3911 
   3912 	return mode | ftype;
   3913 }
   3914 
   3915 
   3916 void
   3917 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   3918 {
   3919 	struct file_entry    *fe  = udf_node->fe;
   3920 	struct extfile_entry *efe = udf_node->efe;
   3921 	uint32_t udf_perm;
   3922 	uint16_t icbflags;
   3923 
   3924 	UDF_LOCK_NODE(udf_node, 0);
   3925 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   3926 	if (fe) {
   3927 		icbflags = udf_rw16(fe->icbtag.flags);
   3928 	} else {
   3929 		icbflags = udf_rw16(efe->icbtag.flags);
   3930 	}
   3931 
   3932 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   3933 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   3934 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   3935 	if (mode & S_ISUID)
   3936 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   3937 	if (mode & S_ISGID)
   3938 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   3939 	if (mode & S_ISVTX)
   3940 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   3941 
   3942 	if (fe) {
   3943 		fe->perm  = udf_rw32(udf_perm);
   3944 		fe->icbtag.flags  = udf_rw16(icbflags);
   3945 	} else {
   3946 		efe->perm = udf_rw32(udf_perm);
   3947 		efe->icbtag.flags = udf_rw16(icbflags);
   3948 	}
   3949 
   3950 	UDF_UNLOCK_NODE(udf_node, 0);
   3951 }
   3952 
   3953 
   3954 void
   3955 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   3956 {
   3957 	struct udf_mount     *ump = udf_node->ump;
   3958 	struct file_entry    *fe  = udf_node->fe;
   3959 	struct extfile_entry *efe = udf_node->efe;
   3960 	uid_t uid;
   3961 	gid_t gid;
   3962 
   3963 	UDF_LOCK_NODE(udf_node, 0);
   3964 	if (fe) {
   3965 		uid = (uid_t)udf_rw32(fe->uid);
   3966 		gid = (gid_t)udf_rw32(fe->gid);
   3967 	} else {
   3968 		assert(udf_node->efe);
   3969 		uid = (uid_t)udf_rw32(efe->uid);
   3970 		gid = (gid_t)udf_rw32(efe->gid);
   3971 	}
   3972 
   3973 	/* do the uid/gid translation game */
   3974 	if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) {
   3975 		uid = ump->mount_args.anon_uid;
   3976 		gid = ump->mount_args.anon_gid;
   3977 	}
   3978 	*uidp = uid;
   3979 	*gidp = gid;
   3980 
   3981 	UDF_UNLOCK_NODE(udf_node, 0);
   3982 }
   3983 
   3984 
   3985 void
   3986 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   3987 {
   3988 	struct udf_mount     *ump = udf_node->ump;
   3989 	struct file_entry    *fe  = udf_node->fe;
   3990 	struct extfile_entry *efe = udf_node->efe;
   3991 	uid_t nobody_uid;
   3992 	gid_t nobody_gid;
   3993 
   3994 	UDF_LOCK_NODE(udf_node, 0);
   3995 
   3996 	/* do the uid/gid translation game */
   3997 	nobody_uid = ump->mount_args.nobody_uid;
   3998 	nobody_gid = ump->mount_args.nobody_gid;
   3999 	if ((uid == nobody_uid) && (gid == nobody_gid)) {
   4000 		uid = (uid_t) -1;
   4001 		gid = (gid_t) -1;
   4002 	}
   4003 
   4004 	if (fe) {
   4005 		fe->uid  = udf_rw32((uint32_t) uid);
   4006 		fe->gid  = udf_rw32((uint32_t) gid);
   4007 	} else {
   4008 		efe->uid = udf_rw32((uint32_t) uid);
   4009 		efe->gid = udf_rw32((uint32_t) gid);
   4010 	}
   4011 
   4012 	UDF_UNLOCK_NODE(udf_node, 0);
   4013 }
   4014 
   4015 
   4016 /* --------------------------------------------------------------------- */
   4017 
   4018 
   4019 static int
   4020 dirhash_fill(struct udf_node *dir_node)
   4021 {
   4022 	struct vnode *dvp = dir_node->vnode;
   4023 	struct dirhash *dirh;
   4024 	struct file_entry    *fe  = dir_node->fe;
   4025 	struct extfile_entry *efe = dir_node->efe;
   4026 	struct fileid_desc *fid;
   4027 	struct dirent *dirent;
   4028 	uint64_t file_size, pre_diroffset, diroffset;
   4029 	uint32_t lb_size;
   4030 	int error;
   4031 
   4032 	/* make sure we have a dirhash to work on */
   4033 	dirh = dir_node->dir_hash;
   4034 	KASSERT(dirh);
   4035 	KASSERT(dirh->refcnt > 0);
   4036 
   4037 	if (dirh->flags & DIRH_BROKEN)
   4038 		return EIO;
   4039 	if (dirh->flags & DIRH_COMPLETE)
   4040 		return 0;
   4041 
   4042 	/* make sure we have a clean dirhash to add to */
   4043 	dirhash_purge_entries(dirh);
   4044 
   4045 	/* get directory filesize */
   4046 	if (fe) {
   4047 		file_size = udf_rw64(fe->inf_len);
   4048 	} else {
   4049 		assert(efe);
   4050 		file_size = udf_rw64(efe->inf_len);
   4051 	}
   4052 
   4053 	/* allocate temporary space for fid */
   4054 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4055 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4056 
   4057 	/* allocate temporary space for dirent */
   4058 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4059 
   4060 	error = 0;
   4061 	diroffset = 0;
   4062 	while (diroffset < file_size) {
   4063 		/* transfer a new fid/dirent */
   4064 		pre_diroffset = diroffset;
   4065 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4066 		if (error) {
   4067 			/* TODO what to do? continue but not add? */
   4068 			dirh->flags |= DIRH_BROKEN;
   4069 			dirhash_purge_entries(dirh);
   4070 			break;
   4071 		}
   4072 
   4073 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4074 			/* register deleted extent for reuse */
   4075 			dirhash_enter_freed(dirh, pre_diroffset,
   4076 				udf_fidsize(fid));
   4077 		} else {
   4078 			/* append to the dirhash */
   4079 			dirhash_enter(dirh, dirent, pre_diroffset,
   4080 				udf_fidsize(fid), 0);
   4081 		}
   4082 	}
   4083 	dirh->flags |= DIRH_COMPLETE;
   4084 
   4085 	free(fid, M_UDFTEMP);
   4086 	free(dirent, M_UDFTEMP);
   4087 
   4088 	return error;
   4089 }
   4090 
   4091 
   4092 /* --------------------------------------------------------------------- */
   4093 
   4094 /*
   4095  * Directory read and manipulation functions.
   4096  *
   4097  */
   4098 
   4099 int
   4100 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4101        struct long_ad *icb_loc, int *found)
   4102 {
   4103 	struct udf_node  *dir_node = VTOI(vp);
   4104 	struct dirhash       *dirh;
   4105 	struct dirhash_entry *dirh_ep;
   4106 	struct fileid_desc *fid;
   4107 	struct dirent *dirent;
   4108 	uint64_t diroffset;
   4109 	uint32_t lb_size;
   4110 	int hit, error;
   4111 
   4112 	/* set default return */
   4113 	*found = 0;
   4114 
   4115 	/* get our dirhash and make sure its read in */
   4116 	dirhash_get(&dir_node->dir_hash);
   4117 	error = dirhash_fill(dir_node);
   4118 	if (error) {
   4119 		dirhash_put(dir_node->dir_hash);
   4120 		return error;
   4121 	}
   4122 	dirh = dir_node->dir_hash;
   4123 
   4124 	/* allocate temporary space for fid */
   4125 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4126 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4127 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4128 
   4129 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4130 		namelen, namelen, name));
   4131 
   4132 	/* search our dirhash hits */
   4133 	memset(icb_loc, 0, sizeof(*icb_loc));
   4134 	dirh_ep = NULL;
   4135 	for (;;) {
   4136 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4137 		/* if no hit, abort the search */
   4138 		if (!hit)
   4139 			break;
   4140 
   4141 		/* check this hit */
   4142 		diroffset = dirh_ep->offset;
   4143 
   4144 		/* transfer a new fid/dirent */
   4145 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4146 		if (error)
   4147 			break;
   4148 
   4149 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4150 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4151 
   4152 		/* see if its our entry */
   4153 		KASSERT(dirent->d_namlen == namelen);
   4154 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4155 			*found = 1;
   4156 			*icb_loc = fid->icb;
   4157 			break;
   4158 		}
   4159 	}
   4160 	free(fid, M_UDFTEMP);
   4161 	free(dirent, M_UDFTEMP);
   4162 
   4163 	dirhash_put(dir_node->dir_hash);
   4164 
   4165 	return error;
   4166 }
   4167 
   4168 /* --------------------------------------------------------------------- */
   4169 
   4170 static int
   4171 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4172 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4173 	uint64_t parent_unique_id)
   4174 {
   4175 	struct timespec now;
   4176 	struct icb_tag *icb;
   4177 	struct filetimes_extattr_entry *ft_extattr;
   4178 	uint64_t unique_id;
   4179 	uint32_t fidsize, lb_num;
   4180 	uint8_t *bpos;
   4181 	int crclen, attrlen;
   4182 
   4183 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4184 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4185 	icb = &fe->icbtag;
   4186 
   4187 	/*
   4188 	 * Always use strategy type 4 unless on WORM wich we don't support
   4189 	 * (yet). Fill in defaults and set for internal allocation of data.
   4190 	 */
   4191 	icb->strat_type      = udf_rw16(4);
   4192 	icb->max_num_entries = udf_rw16(1);
   4193 	icb->file_type       = file_type;	/* 8 bit */
   4194 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4195 
   4196 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4197 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4198 
   4199 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4200 
   4201 	vfs_timestamp(&now);
   4202 	udf_timespec_to_timestamp(&now, &fe->atime);
   4203 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4204 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4205 
   4206 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4207 	udf_add_impl_regid(ump, &fe->imp_id);
   4208 
   4209 	unique_id = udf_advance_uniqueid(ump);
   4210 	fe->unique_id = udf_rw64(unique_id);
   4211 	fe->l_ea = udf_rw32(0);
   4212 
   4213 	/* create extended attribute to record our creation time */
   4214 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4215 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4216 	memset(ft_extattr, 0, attrlen);
   4217 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4218 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4219 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4220 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4221 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4222 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4223 
   4224 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4225 		(struct extattr_entry *) ft_extattr);
   4226 	free(ft_extattr, M_UDFTEMP);
   4227 
   4228 	/* if its a directory, create '..' */
   4229 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4230 	fidsize = 0;
   4231 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4232 		fidsize = udf_create_parentfid(ump,
   4233 			(struct fileid_desc *) bpos, parent_icb,
   4234 			parent_unique_id);
   4235 	}
   4236 
   4237 	/* record fidlength information */
   4238 	fe->inf_len = udf_rw64(fidsize);
   4239 	fe->l_ad    = udf_rw32(fidsize);
   4240 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4241 
   4242 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4243 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4244 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4245 
   4246 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4247 
   4248 	return fidsize;
   4249 }
   4250 
   4251 /* --------------------------------------------------------------------- */
   4252 
   4253 static int
   4254 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4255 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4256 	uint64_t parent_unique_id)
   4257 {
   4258 	struct timespec now;
   4259 	struct icb_tag *icb;
   4260 	uint64_t unique_id;
   4261 	uint32_t fidsize, lb_num;
   4262 	uint8_t *bpos;
   4263 	int crclen;
   4264 
   4265 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4266 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4267 	icb = &efe->icbtag;
   4268 
   4269 	/*
   4270 	 * Always use strategy type 4 unless on WORM wich we don't support
   4271 	 * (yet). Fill in defaults and set for internal allocation of data.
   4272 	 */
   4273 	icb->strat_type      = udf_rw16(4);
   4274 	icb->max_num_entries = udf_rw16(1);
   4275 	icb->file_type       = file_type;	/* 8 bit */
   4276 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4277 
   4278 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4279 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4280 
   4281 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4282 
   4283 	vfs_timestamp(&now);
   4284 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4285 	udf_timespec_to_timestamp(&now, &efe->atime);
   4286 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4287 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4288 
   4289 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4290 	udf_add_impl_regid(ump, &efe->imp_id);
   4291 
   4292 	unique_id = udf_advance_uniqueid(ump);
   4293 	efe->unique_id = udf_rw64(unique_id);
   4294 	efe->l_ea = udf_rw32(0);
   4295 
   4296 	/* if its a directory, create '..' */
   4297 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4298 	fidsize = 0;
   4299 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4300 		fidsize = udf_create_parentfid(ump,
   4301 			(struct fileid_desc *) bpos, parent_icb,
   4302 			parent_unique_id);
   4303 	}
   4304 
   4305 	/* record fidlength information */
   4306 	efe->obj_size = udf_rw64(fidsize);
   4307 	efe->inf_len  = udf_rw64(fidsize);
   4308 	efe->l_ad     = udf_rw32(fidsize);
   4309 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4310 
   4311 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4312 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4313 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4314 
   4315 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4316 
   4317 	return fidsize;
   4318 }
   4319 
   4320 /* --------------------------------------------------------------------- */
   4321 
   4322 int
   4323 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4324 	struct udf_node *udf_node, struct componentname *cnp)
   4325 {
   4326 	struct vnode *dvp = dir_node->vnode;
   4327 	struct dirhash       *dirh;
   4328 	struct dirhash_entry *dirh_ep;
   4329 	struct file_entry    *fe  = dir_node->fe;
   4330 	struct extfile_entry *efe = dir_node->efe;
   4331 	struct fileid_desc *fid;
   4332 	struct dirent *dirent;
   4333 	uint64_t file_size, diroffset;
   4334 	uint32_t lb_size, fidsize;
   4335 	int found, error;
   4336 	char const *name  = cnp->cn_nameptr;
   4337 	int namelen = cnp->cn_namelen;
   4338 	int hit, refcnt;
   4339 
   4340 	/* get our dirhash and make sure its read in */
   4341 	dirhash_get(&dir_node->dir_hash);
   4342 	error = dirhash_fill(dir_node);
   4343 	if (error) {
   4344 		dirhash_put(dir_node->dir_hash);
   4345 		return error;
   4346 	}
   4347 	dirh = dir_node->dir_hash;
   4348 
   4349 	/* get directory filesize */
   4350 	if (fe) {
   4351 		file_size = udf_rw64(fe->inf_len);
   4352 	} else {
   4353 		assert(efe);
   4354 		file_size = udf_rw64(efe->inf_len);
   4355 	}
   4356 
   4357 	/* allocate temporary space for fid */
   4358 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4359 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4360 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4361 
   4362 	/* search our dirhash hits */
   4363 	found = 0;
   4364 	dirh_ep = NULL;
   4365 	for (;;) {
   4366 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4367 		/* if no hit, abort the search */
   4368 		if (!hit)
   4369 			break;
   4370 
   4371 		/* check this hit */
   4372 		diroffset = dirh_ep->offset;
   4373 
   4374 		/* transfer a new fid/dirent */
   4375 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4376 		if (error)
   4377 			break;
   4378 
   4379 		/* see if its our entry */
   4380 		KASSERT(dirent->d_namlen == namelen);
   4381 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4382 			found = 1;
   4383 			break;
   4384 		}
   4385 	}
   4386 
   4387 	if (!found)
   4388 		error = ENOENT;
   4389 	if (error)
   4390 		goto error_out;
   4391 
   4392 	/* mark deleted */
   4393 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4394 #ifdef UDF_COMPLETE_DELETE
   4395 	memset(&fid->icb, 0, sizeof(fid->icb));
   4396 #endif
   4397 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4398 
   4399 	/* get size of fid and compensate for the read_fid_stream advance */
   4400 	fidsize = udf_fidsize(fid);
   4401 	diroffset -= fidsize;
   4402 
   4403 	/* write out */
   4404 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4405 			fid, fidsize, diroffset,
   4406 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4407 			FSCRED, NULL, NULL);
   4408 	if (error)
   4409 		goto error_out;
   4410 
   4411 	/* get reference count of attached node */
   4412 	if (udf_node->fe) {
   4413 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4414 	} else {
   4415 		KASSERT(udf_node->efe);
   4416 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4417 	}
   4418 #ifdef UDF_COMPLETE_DELETE
   4419 	/* substract reference counter in attached node */
   4420 	refcnt -= 1;
   4421 	if (udf_node->fe) {
   4422 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4423 	} else {
   4424 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4425 	}
   4426 
   4427 	/* prevent writeout when refcnt == 0 */
   4428 	if (refcnt == 0)
   4429 		udf_node->i_flags |= IN_DELETED;
   4430 
   4431 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4432 		int drefcnt;
   4433 
   4434 		/* substract reference counter in directory node */
   4435 		/* note subtract 2 (?) for its was also backreferenced */
   4436 		if (dir_node->fe) {
   4437 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4438 			drefcnt -= 1;
   4439 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4440 		} else {
   4441 			KASSERT(dir_node->efe);
   4442 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4443 			drefcnt -= 1;
   4444 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4445 		}
   4446 	}
   4447 
   4448 	udf_node->i_flags |= IN_MODIFIED;
   4449 	dir_node->i_flags |= IN_MODIFIED;
   4450 #endif
   4451 	/* if it is/was a hardlink adjust the file count */
   4452 	if (refcnt > 0)
   4453 		udf_adjust_filecount(udf_node, -1);
   4454 
   4455 	/* remove from the dirhash */
   4456 	dirhash_remove(dirh, dirent, diroffset,
   4457 		udf_fidsize(fid));
   4458 
   4459 error_out:
   4460 	free(fid, M_UDFTEMP);
   4461 	free(dirent, M_UDFTEMP);
   4462 
   4463 	dirhash_put(dir_node->dir_hash);
   4464 
   4465 	return error;
   4466 }
   4467 
   4468 /* --------------------------------------------------------------------- */
   4469 
   4470 /*
   4471  * We are not allowed to split the fid tag itself over an logical block so
   4472  * check the space remaining in the logical block.
   4473  *
   4474  * We try to select the smallest candidate for recycling or when none is
   4475  * found, append a new one at the end of the directory.
   4476  */
   4477 
   4478 int
   4479 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   4480 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   4481 {
   4482 	struct vnode *dvp = dir_node->vnode;
   4483 	struct dirhash       *dirh;
   4484 	struct dirhash_entry *dirh_ep;
   4485 	struct fileid_desc   *fid;
   4486 	struct icb_tag       *icbtag;
   4487 	struct charspec osta_charspec;
   4488 	struct dirent   dirent;
   4489 	uint64_t unique_id, dir_size;
   4490 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   4491 	uint32_t chosen_size, chosen_size_diff;
   4492 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   4493 	int file_char, refcnt, icbflags, addr_type, hit, error;
   4494 
   4495 	/* get our dirhash and make sure its read in */
   4496 	dirhash_get(&dir_node->dir_hash);
   4497 	error = dirhash_fill(dir_node);
   4498 	if (error) {
   4499 		dirhash_put(dir_node->dir_hash);
   4500 		return error;
   4501 	}
   4502 	dirh = dir_node->dir_hash;
   4503 
   4504 	/* get info */
   4505 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4506 	udf_osta_charset(&osta_charspec);
   4507 
   4508 	if (dir_node->fe) {
   4509 		dir_size = udf_rw64(dir_node->fe->inf_len);
   4510 		icbtag   = &dir_node->fe->icbtag;
   4511 	} else {
   4512 		dir_size = udf_rw64(dir_node->efe->inf_len);
   4513 		icbtag   = &dir_node->efe->icbtag;
   4514 	}
   4515 
   4516 	icbflags   = udf_rw16(icbtag->flags);
   4517 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4518 
   4519 	if (udf_node->fe) {
   4520 		unique_id = udf_rw64(udf_node->fe->unique_id);
   4521 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   4522 	} else {
   4523 		unique_id = udf_rw64(udf_node->efe->unique_id);
   4524 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   4525 	}
   4526 
   4527 	if (refcnt > 0) {
   4528 		unique_id = udf_advance_uniqueid(ump);
   4529 		udf_adjust_filecount(udf_node, 1);
   4530 	}
   4531 
   4532 	/* determine file characteristics */
   4533 	file_char = 0;	/* visible non deleted file and not stream metadata */
   4534 	if (vap->va_type == VDIR)
   4535 		file_char = UDF_FILE_CHAR_DIR;
   4536 
   4537 	/* malloc scrap buffer */
   4538 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   4539 	bzero(fid, lb_size);
   4540 
   4541 	/* calculate _minimum_ fid size */
   4542 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4543 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4544 	fidsize = UDF_FID_SIZE + fid->l_fi;
   4545 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   4546 
   4547 	/* find position that will fit the FID */
   4548 	chosen_fid_pos   = dir_size;
   4549 	chosen_size      = 0;
   4550 	chosen_size_diff = UINT_MAX;
   4551 
   4552 	/* shut up gcc */
   4553 	dirent.d_namlen = 0;
   4554 
   4555 	/* search our dirhash hits */
   4556 	error = 0;
   4557 	dirh_ep = NULL;
   4558 	for (;;) {
   4559 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
   4560 		/* if no hit, abort the search */
   4561 		if (!hit)
   4562 			break;
   4563 
   4564 		/* check this hit for size */
   4565 		this_fidsize = dirh_ep->entry_size;
   4566 
   4567 		/* check this hit */
   4568 		fid_pos     = dirh_ep->offset;
   4569 		end_fid_pos = fid_pos + this_fidsize;
   4570 		size_diff   = this_fidsize - fidsize;
   4571 		lb_rest = lb_size - (end_fid_pos % lb_size);
   4572 
   4573 #ifndef UDF_COMPLETE_DELETE
   4574 		/* transfer a new fid/dirent */
   4575 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   4576 		if (error)
   4577 			goto error_out;
   4578 
   4579 		/* only reuse entries that are wiped */
   4580 		/* check if the len + loc are marked zero */
   4581 		if (udf_rw32(fid->icb.len != 0))
   4582 			continue;
   4583 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   4584 			continue;
   4585 		if (udf_rw16(fid->icb.loc.part_num != 0))
   4586 			continue;
   4587 #endif	/* UDF_COMPLETE_DELETE */
   4588 
   4589 		/* select if not splitting the tag and its smaller */
   4590 		if ((size_diff >= 0)  &&
   4591 			(size_diff < chosen_size_diff) &&
   4592 			(lb_rest >= sizeof(struct desc_tag)))
   4593 		{
   4594 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   4595 			if ((size_diff == 0) || (size_diff >= 32)) {
   4596 				chosen_fid_pos   = fid_pos;
   4597 				chosen_size      = this_fidsize;
   4598 				chosen_size_diff = size_diff;
   4599 			}
   4600 		}
   4601 	}
   4602 
   4603 
   4604 	/* extend directory if no other candidate found */
   4605 	if (chosen_size == 0) {
   4606 		chosen_fid_pos   = dir_size;
   4607 		chosen_size      = fidsize;
   4608 		chosen_size_diff = 0;
   4609 
   4610 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   4611 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   4612 			/* pre-grow directory to see if we're to switch */
   4613 			udf_grow_node(dir_node, dir_size + chosen_size);
   4614 
   4615 			icbflags   = udf_rw16(icbtag->flags);
   4616 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4617 		}
   4618 
   4619 		/* make sure the next fid desc_tag won't be splitted */
   4620 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   4621 			end_fid_pos = chosen_fid_pos + chosen_size;
   4622 			lb_rest = lb_size - (end_fid_pos % lb_size);
   4623 
   4624 			/* pad with implementation use regid if needed */
   4625 			if (lb_rest < sizeof(struct desc_tag))
   4626 				chosen_size += 32;
   4627 		}
   4628 	}
   4629 	chosen_size_diff = chosen_size - fidsize;
   4630 
   4631 	/* populate the FID */
   4632 	memset(fid, 0, lb_size);
   4633 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   4634 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   4635 	fid->file_char           = file_char;
   4636 	fid->icb                 = udf_node->loc;
   4637 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   4638 	fid->l_iu                = udf_rw16(0);
   4639 
   4640 	if (chosen_size > fidsize) {
   4641 		/* insert implementation-use regid to space it correctly */
   4642 		fid->l_iu = udf_rw16(chosen_size_diff);
   4643 
   4644 		/* set implementation use */
   4645 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   4646 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   4647 	}
   4648 
   4649 	/* fill in name */
   4650 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   4651 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4652 
   4653 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
   4654 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4655 
   4656 	/* writeout FID/update parent directory */
   4657 	error = vn_rdwr(UIO_WRITE, dvp,
   4658 			fid, chosen_size, chosen_fid_pos,
   4659 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4660 			FSCRED, NULL, NULL);
   4661 
   4662 	if (error)
   4663 		goto error_out;
   4664 
   4665 	/* add reference counter in attached node */
   4666 	if (udf_node->fe) {
   4667 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4668 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   4669 	} else {
   4670 		KASSERT(udf_node->efe);
   4671 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4672 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   4673 	}
   4674 
   4675 	/* mark not deleted if it was... just in case, but do warn */
   4676 	if (udf_node->i_flags & IN_DELETED) {
   4677 		printf("udf: warning, marking a file undeleted\n");
   4678 		udf_node->i_flags &= ~IN_DELETED;
   4679 	}
   4680 
   4681 	if (file_char & UDF_FILE_CHAR_DIR) {
   4682 		/* add reference counter in directory node for '..' */
   4683 		if (dir_node->fe) {
   4684 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   4685 			refcnt++;
   4686 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   4687 		} else {
   4688 			KASSERT(dir_node->efe);
   4689 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   4690 			refcnt++;
   4691 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   4692 		}
   4693 	}
   4694 
   4695 	/* append to the dirhash */
   4696 	dirent.d_namlen = cnp->cn_namelen;
   4697 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
   4698 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
   4699 		udf_fidsize(fid), 1);
   4700 
   4701 	/* note updates */
   4702 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   4703 	/* VN_KNOTE(udf_node,  ...) */
   4704 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   4705 
   4706 error_out:
   4707 	free(fid, M_TEMP);
   4708 
   4709 	dirhash_put(dir_node->dir_hash);
   4710 
   4711 	return error;
   4712 }
   4713 
   4714 /* --------------------------------------------------------------------- */
   4715 
   4716 /*
   4717  * Each node can have an attached streamdir node though not recursively. These
   4718  * are otherwise known as named substreams/named extended attributes that have
   4719  * no size limitations.
   4720  *
   4721  * `Normal' extended attributes are indicated with a number and are recorded
   4722  * in either the fe/efe descriptor itself for small descriptors or recorded in
   4723  * the attached extended attribute file. Since these spaces can get
   4724  * fragmented, care ought to be taken.
   4725  *
   4726  * Since the size of the space reserved for allocation descriptors is limited,
   4727  * there is a mechanim provided for extending this space; this is done by a
   4728  * special extent to allow schrinking of the allocations without breaking the
   4729  * linkage to the allocation extent descriptor.
   4730  */
   4731 
   4732 int
   4733 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   4734 	     struct udf_node **udf_noderes)
   4735 {
   4736 	union dscrptr   *dscr;
   4737 	struct udf_node *udf_node;
   4738 	struct vnode    *nvp;
   4739 	struct long_ad   icb_loc, last_fe_icb_loc;
   4740 	uint64_t file_size;
   4741 	uint32_t lb_size, sector, dummy;
   4742 	uint8_t  *file_data;
   4743 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   4744 	int slot, eof, error;
   4745 
   4746 	DPRINTF(NODE, ("udf_get_node called\n"));
   4747 	*udf_noderes = udf_node = NULL;
   4748 
   4749 	/* lock to disallow simultanious creation of same udf_node */
   4750 	mutex_enter(&ump->get_node_lock);
   4751 
   4752 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   4753 	/* lookup in hash table */
   4754 	assert(ump);
   4755 	assert(node_icb_loc);
   4756 	udf_node = udf_hash_lookup(ump, node_icb_loc);
   4757 	if (udf_node) {
   4758 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   4759 		/* vnode is returned locked */
   4760 		*udf_noderes = udf_node;
   4761 		mutex_exit(&ump->get_node_lock);
   4762 		return 0;
   4763 	}
   4764 
   4765 	/* garbage check: translate udf_node_icb_loc to sectornr */
   4766 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   4767 	if (error) {
   4768 		/* no use, this will fail anyway */
   4769 		mutex_exit(&ump->get_node_lock);
   4770 		return EINVAL;
   4771 	}
   4772 
   4773 	/* build udf_node (do initialise!) */
   4774 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   4775 	memset(udf_node, 0, sizeof(struct udf_node));
   4776 
   4777 	DPRINTF(NODE, ("\tget new vnode\n"));
   4778 	/* give it a vnode */
   4779 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   4780         if (error) {
   4781 		pool_put(&udf_node_pool, udf_node);
   4782 		mutex_exit(&ump->get_node_lock);
   4783 		return error;
   4784 	}
   4785 
   4786 	/* always return locked vnode */
   4787 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   4788 		/* recycle vnode and unlock; simultanious will fail too */
   4789 		ungetnewvnode(nvp);
   4790 		mutex_exit(&ump->get_node_lock);
   4791 		return error;
   4792 	}
   4793 
   4794 	/* initialise crosslinks, note location of fe/efe for hashing */
   4795 	udf_node->ump    =  ump;
   4796 	udf_node->vnode  =  nvp;
   4797 	nvp->v_data      =  udf_node;
   4798 	udf_node->loc    = *node_icb_loc;
   4799 	udf_node->lockf  =  0;
   4800 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   4801 	cv_init(&udf_node->node_lock, "udf_nlk");
   4802 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   4803 	udf_node->outstanding_bufs = 0;
   4804 	udf_node->outstanding_nodedscr = 0;
   4805 
   4806 	/* insert into the hash lookup */
   4807 	udf_register_node(udf_node);
   4808 
   4809 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   4810 	mutex_exit(&ump->get_node_lock);
   4811 
   4812 	icb_loc = *node_icb_loc;
   4813 	needs_indirect = 0;
   4814 	strat4096 = 0;
   4815 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   4816 	file_size = 0;
   4817 	file_data = NULL;
   4818 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4819 
   4820 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   4821 	do {
   4822 		/* try to read in fe/efe */
   4823 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   4824 
   4825 		/* blank sector marks end of sequence, check this */
   4826 		if ((dscr == NULL) &&  (!strat4096))
   4827 			error = ENOENT;
   4828 
   4829 		/* break if read error or blank sector */
   4830 		if (error || (dscr == NULL))
   4831 			break;
   4832 
   4833 		/* process descriptor based on the descriptor type */
   4834 		dscr_type = udf_rw16(dscr->tag.id);
   4835 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   4836 
   4837 		/* if dealing with an indirect entry, follow the link */
   4838 		if (dscr_type == TAGID_INDIRECTENTRY) {
   4839 			needs_indirect = 0;
   4840 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4841 			icb_loc = dscr->inde.indirect_icb;
   4842 			continue;
   4843 		}
   4844 
   4845 		/* only file entries and extended file entries allowed here */
   4846 		if ((dscr_type != TAGID_FENTRY) &&
   4847 		    (dscr_type != TAGID_EXTFENTRY)) {
   4848 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4849 			error = ENOENT;
   4850 			break;
   4851 		}
   4852 
   4853 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   4854 
   4855 		/* choose this one */
   4856 		last_fe_icb_loc = icb_loc;
   4857 
   4858 		/* record and process/update (ext)fentry */
   4859 		file_data = NULL;
   4860 		if (dscr_type == TAGID_FENTRY) {
   4861 			if (udf_node->fe)
   4862 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   4863 					udf_node->fe);
   4864 			udf_node->fe  = &dscr->fe;
   4865 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   4866 			udf_file_type = udf_node->fe->icbtag.file_type;
   4867 			file_size = udf_rw64(udf_node->fe->inf_len);
   4868 			file_data = udf_node->fe->data;
   4869 		} else {
   4870 			if (udf_node->efe)
   4871 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   4872 					udf_node->efe);
   4873 			udf_node->efe = &dscr->efe;
   4874 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   4875 			udf_file_type = udf_node->efe->icbtag.file_type;
   4876 			file_size = udf_rw64(udf_node->efe->inf_len);
   4877 			file_data = udf_node->efe->data;
   4878 		}
   4879 
   4880 		/* check recording strategy (structure) */
   4881 
   4882 		/*
   4883 		 * Strategy 4096 is a daisy linked chain terminating with an
   4884 		 * unrecorded sector or a TERM descriptor. The next
   4885 		 * descriptor is to be found in the sector that follows the
   4886 		 * current sector.
   4887 		 */
   4888 		if (strat == 4096) {
   4889 			strat4096 = 1;
   4890 			needs_indirect = 1;
   4891 
   4892 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   4893 		}
   4894 
   4895 		/*
   4896 		 * Strategy 4 is the normal strategy and terminates, but if
   4897 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   4898 		 */
   4899 
   4900 		if (strat == 4) {
   4901 			if (strat4096) {
   4902 				error = EINVAL;
   4903 				break;
   4904 			}
   4905 			break;		/* done */
   4906 		}
   4907 	} while (!error);
   4908 
   4909 	/* first round of cleanup code */
   4910 	if (error) {
   4911 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   4912 		/* recycle udf_node */
   4913 		udf_dispose_node(udf_node);
   4914 
   4915 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   4916 		nvp->v_data = NULL;
   4917 		ungetnewvnode(nvp);
   4918 
   4919 		return EINVAL;		/* error code ok? */
   4920 	}
   4921 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   4922 
   4923 	/* assert no references to dscr anymore beyong this point */
   4924 	assert((udf_node->fe) || (udf_node->efe));
   4925 	dscr = NULL;
   4926 
   4927 	/*
   4928 	 * Remember where to record an updated version of the descriptor. If
   4929 	 * there is a sequence of indirect entries, icb_loc will have been
   4930 	 * updated. Its the write disipline to allocate new space and to make
   4931 	 * sure the chain is maintained.
   4932 	 *
   4933 	 * `needs_indirect' flags if the next location is to be filled with
   4934 	 * with an indirect entry.
   4935 	 */
   4936 	udf_node->write_loc = icb_loc;
   4937 	udf_node->needs_indirect = needs_indirect;
   4938 
   4939 	/*
   4940 	 * Go trough all allocations extents of this descriptor and when
   4941 	 * encountering a redirect read in the allocation extension. These are
   4942 	 * daisy-chained.
   4943 	 */
   4944 	UDF_LOCK_NODE(udf_node, 0);
   4945 	udf_node->num_extensions = 0;
   4946 
   4947 	error   = 0;
   4948 	slot    = 0;
   4949 	for (;;) {
   4950 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   4951 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   4952 			"lb_num = %d, part = %d\n", slot, eof,
   4953 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   4954 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   4955 			udf_rw32(icb_loc.loc.lb_num),
   4956 			udf_rw16(icb_loc.loc.part_num)));
   4957 		if (eof)
   4958 			break;
   4959 		slot++;
   4960 
   4961 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   4962 			continue;
   4963 
   4964 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   4965 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   4966 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   4967 					"too many allocation extensions on "
   4968 					"udf_node\n"));
   4969 			error = EINVAL;
   4970 			break;
   4971 		}
   4972 
   4973 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   4974 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   4975 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   4976 					"extension size in udf_node\n"));
   4977 			error = EINVAL;
   4978 			break;
   4979 		}
   4980 
   4981 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   4982 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   4983 		/* load in allocation extent */
   4984 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   4985 		if (error || (dscr == NULL))
   4986 			break;
   4987 
   4988 		/* process read-in descriptor */
   4989 		dscr_type = udf_rw16(dscr->tag.id);
   4990 
   4991 		if (dscr_type != TAGID_ALLOCEXTENT) {
   4992 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4993 			error = ENOENT;
   4994 			break;
   4995 		}
   4996 
   4997 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   4998 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   4999 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5000 
   5001 		udf_node->num_extensions++;
   5002 
   5003 	} /* while */
   5004 	UDF_UNLOCK_NODE(udf_node, 0);
   5005 
   5006 	/* second round of cleanup code */
   5007 	if (error) {
   5008 		/* recycle udf_node */
   5009 		udf_dispose_node(udf_node);
   5010 
   5011 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5012 		nvp->v_data = NULL;
   5013 		ungetnewvnode(nvp);
   5014 
   5015 		return EINVAL;		/* error code ok? */
   5016 	}
   5017 
   5018 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5019 
   5020 	/*
   5021 	 * Translate UDF filetypes into vnode types.
   5022 	 *
   5023 	 * Systemfiles like the meta main and mirror files are not treated as
   5024 	 * normal files, so we type them as having no type. UDF dictates that
   5025 	 * they are not allowed to be visible.
   5026 	 */
   5027 
   5028 	switch (udf_file_type) {
   5029 	case UDF_ICB_FILETYPE_DIRECTORY :
   5030 	case UDF_ICB_FILETYPE_STREAMDIR :
   5031 		nvp->v_type = VDIR;
   5032 		break;
   5033 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5034 		nvp->v_type = VBLK;
   5035 		break;
   5036 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5037 		nvp->v_type = VCHR;
   5038 		break;
   5039 	case UDF_ICB_FILETYPE_SOCKET :
   5040 		nvp->v_type = VSOCK;
   5041 		break;
   5042 	case UDF_ICB_FILETYPE_FIFO :
   5043 		nvp->v_type = VFIFO;
   5044 		break;
   5045 	case UDF_ICB_FILETYPE_SYMLINK :
   5046 		nvp->v_type = VLNK;
   5047 		break;
   5048 	case UDF_ICB_FILETYPE_VAT :
   5049 	case UDF_ICB_FILETYPE_META_MAIN :
   5050 	case UDF_ICB_FILETYPE_META_MIRROR :
   5051 		nvp->v_type = VNON;
   5052 		break;
   5053 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5054 	case UDF_ICB_FILETYPE_REALTIME :
   5055 		nvp->v_type = VREG;
   5056 		break;
   5057 	default:
   5058 		/* YIKES, something else */
   5059 		nvp->v_type = VNON;
   5060 	}
   5061 
   5062 	/* TODO specfs, fifofs etc etc. vnops setting */
   5063 
   5064 	/* don't forget to set vnode's v_size */
   5065 	uvm_vnp_setsize(nvp, file_size);
   5066 
   5067 	/* TODO ext attr and streamdir udf_nodes */
   5068 
   5069 	*udf_noderes = udf_node;
   5070 
   5071 	return 0;
   5072 }
   5073 
   5074 /* --------------------------------------------------------------------- */
   5075 
   5076 int
   5077 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5078 {
   5079 	union dscrptr *dscr;
   5080 	struct long_ad *loc;
   5081 	int extnr, flags, error;
   5082 
   5083 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5084 
   5085 	KASSERT(udf_node->outstanding_bufs == 0);
   5086 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5087 
   5088 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5089 
   5090 	if (udf_node->i_flags & IN_DELETED) {
   5091 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5092 		return 0;
   5093 	}
   5094 
   5095 	/* lock node */
   5096 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
   5097 	UDF_LOCK_NODE(udf_node, flags);
   5098 
   5099 	/* at least one descriptor writeout */
   5100 	udf_node->outstanding_nodedscr = 1;
   5101 
   5102 	/* we're going to write out the descriptor so clear the flags */
   5103 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5104 
   5105 	/* if we were rebuild, write out the allocation extents */
   5106 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5107 		/* mark outstanding node descriptors and issue them */
   5108 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5109 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5110 			loc = &udf_node->ext_loc[extnr];
   5111 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5112 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5113 			if (error)
   5114 				return error;
   5115 		}
   5116 		/* mark allocation extents written out */
   5117 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5118 	}
   5119 
   5120 	if (udf_node->fe) {
   5121 		KASSERT(udf_node->efe == NULL);
   5122 		dscr = (union dscrptr *) udf_node->fe;
   5123 	} else {
   5124 		KASSERT(udf_node->efe);
   5125 		KASSERT(udf_node->fe == NULL);
   5126 		dscr = (union dscrptr *) udf_node->efe;
   5127 	}
   5128 	KASSERT(dscr);
   5129 
   5130 	loc = &udf_node->write_loc;
   5131 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5132 	return error;
   5133 }
   5134 
   5135 /* --------------------------------------------------------------------- */
   5136 
   5137 int
   5138 udf_dispose_node(struct udf_node *udf_node)
   5139 {
   5140 	struct vnode *vp;
   5141 	int extnr;
   5142 
   5143 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5144 	if (!udf_node) {
   5145 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5146 		return 0;
   5147 	}
   5148 
   5149 	vp  = udf_node->vnode;
   5150 #ifdef DIAGNOSTIC
   5151 	if (vp->v_numoutput)
   5152 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5153 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5154 #endif
   5155 
   5156 	/* wait until out of sync (just in case we happen to stumble over one */
   5157 	KASSERT(!mutex_owned(&mntvnode_lock));
   5158 	mutex_enter(&mntvnode_lock);
   5159 	while (udf_node->i_flags & IN_SYNCED) {
   5160 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
   5161 			hz/16);
   5162 	}
   5163 	mutex_exit(&mntvnode_lock);
   5164 
   5165 	/* TODO extended attributes and streamdir */
   5166 
   5167 	/* remove dirhash if present */
   5168 	dirhash_purge(&udf_node->dir_hash);
   5169 
   5170 	/* remove from our hash lookup table */
   5171 	udf_deregister_node(udf_node);
   5172 
   5173 	/* destroy our lock */
   5174 	mutex_destroy(&udf_node->node_mutex);
   5175 	cv_destroy(&udf_node->node_lock);
   5176 
   5177 	/* dissociate our udf_node from the vnode */
   5178 	genfs_node_destroy(udf_node->vnode);
   5179 	vp->v_data = NULL;
   5180 
   5181 	/* free associated memory and the node itself */
   5182 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5183 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5184 			udf_node->ext[extnr]);
   5185 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5186 	}
   5187 
   5188 	if (udf_node->fe)
   5189 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5190 			udf_node->fe);
   5191 	if (udf_node->efe)
   5192 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5193 			udf_node->efe);
   5194 
   5195 	udf_node->fe  = (void *) 0xdeadaaaa;
   5196 	udf_node->efe = (void *) 0xdeadbbbb;
   5197 	udf_node->ump = (void *) 0xdeadbeef;
   5198 	pool_put(&udf_node_pool, udf_node);
   5199 
   5200 	return 0;
   5201 }
   5202 
   5203 
   5204 
   5205 /*
   5206  * create a new node using the specified vnodeops, vap and cnp but with the
   5207  * udf_file_type. This allows special files to be created. Use with care.
   5208  */
   5209 
   5210 static int
   5211 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5212 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5213 {
   5214 	union dscrptr *dscr;
   5215 	struct udf_node *dir_node = VTOI(dvp);;
   5216 	struct udf_node *udf_node;
   5217 	struct udf_mount *ump = dir_node->ump;
   5218 	struct vnode *nvp;
   5219 	struct long_ad node_icb_loc;
   5220 	uint64_t parent_unique_id;
   5221 	uint64_t lmapping;
   5222 	uint32_t lb_size, lb_num;
   5223 	uint16_t vpart_num;
   5224 	uid_t uid;
   5225 	gid_t gid, parent_gid;
   5226 	int fid_size, error;
   5227 
   5228 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5229 	*vpp = NULL;
   5230 
   5231 	/* allocate vnode */
   5232 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5233         if (error)
   5234 		return error;
   5235 
   5236 	/* lock node */
   5237 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5238 	if (error) {
   5239 		nvp->v_data = NULL;
   5240 		ungetnewvnode(nvp);
   5241 		return error;
   5242 	}
   5243 
   5244 	/* get disc allocation for one logical block */
   5245 	vpart_num = ump->node_part;
   5246 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
   5247 			vpart_num, &lmapping);
   5248 	lb_num = lmapping;
   5249 	if (error) {
   5250 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5251 		ungetnewvnode(nvp);
   5252 		return error;
   5253 	}
   5254 
   5255 	/* initialise pointer to location */
   5256 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5257 	node_icb_loc.len = lb_size;
   5258 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5259 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5260 
   5261 	/* build udf_node (do initialise!) */
   5262 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5263 	memset(udf_node, 0, sizeof(struct udf_node));
   5264 
   5265 	/* initialise crosslinks, note location of fe/efe for hashing */
   5266 	/* bugalert: synchronise with udf_get_node() */
   5267 	udf_node->ump       = ump;
   5268 	udf_node->vnode     = nvp;
   5269 	nvp->v_data         = udf_node;
   5270 	udf_node->loc       = node_icb_loc;
   5271 	udf_node->write_loc = node_icb_loc;
   5272 	udf_node->lockf     = 0;
   5273 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5274 	cv_init(&udf_node->node_lock, "udf_nlk");
   5275 	udf_node->outstanding_bufs = 0;
   5276 	udf_node->outstanding_nodedscr = 0;
   5277 
   5278 	/* initialise genfs */
   5279 	genfs_node_init(nvp, &udf_genfsops);
   5280 
   5281 	/* insert into the hash lookup */
   5282 	udf_register_node(udf_node);
   5283 
   5284 	/* get parent's unique ID for refering '..' if its a directory */
   5285 	if (dir_node->fe) {
   5286 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5287 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5288 	} else {
   5289 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5290 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5291 	}
   5292 
   5293 	/* get descriptor */
   5294 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5295 
   5296 	/* choose a fe or an efe for it */
   5297 	if (ump->logical_vol->tag.descriptor_ver == 2) {
   5298 		udf_node->fe = &dscr->fe;
   5299 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5300 			udf_file_type, &udf_node->loc,
   5301 			&dir_node->loc, parent_unique_id);
   5302 		/* TODO add extended attribute for creation time */
   5303 	} else {
   5304 		udf_node->efe = &dscr->efe;
   5305 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5306 			udf_file_type, &udf_node->loc,
   5307 			&dir_node->loc, parent_unique_id);
   5308 	}
   5309 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5310 
   5311 	/* update vnode's size and type */
   5312 	nvp->v_type = vap->va_type;
   5313 	uvm_vnp_setsize(nvp, fid_size);
   5314 
   5315 	/* set access mode */
   5316 	udf_setaccessmode(udf_node, vap->va_mode);
   5317 
   5318 	/* set ownership */
   5319 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5320 	gid = parent_gid;
   5321 	udf_setownership(udf_node, uid, gid);
   5322 
   5323 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5324 	if (error) {
   5325 		/* free disc allocation for node */
   5326 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5327 
   5328 		/* recycle udf_node */
   5329 		udf_dispose_node(udf_node);
   5330 		vput(nvp);
   5331 
   5332 		*vpp = NULL;
   5333 		return error;
   5334 	}
   5335 
   5336 	/* adjust file count */
   5337 	udf_adjust_filecount(udf_node, 1);
   5338 
   5339 	/* return result */
   5340 	*vpp = nvp;
   5341 
   5342 	return 0;
   5343 }
   5344 
   5345 
   5346 int
   5347 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5348 	struct componentname *cnp)
   5349 {
   5350 	int (**vnodeops)(void *);
   5351 	int udf_file_type;
   5352 
   5353 	DPRINTF(NODE, ("udf_create_node called\n"));
   5354 
   5355 	/* what type are we creating ? */
   5356 	vnodeops = udf_vnodeop_p;
   5357 	/* start with a default */
   5358 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5359 
   5360 	*vpp = NULL;
   5361 
   5362 	switch (vap->va_type) {
   5363 	case VREG :
   5364 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5365 		break;
   5366 	case VDIR :
   5367 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5368 		break;
   5369 	case VLNK :
   5370 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5371 		break;
   5372 	case VBLK :
   5373 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5374 		/* specfs */
   5375 		return ENOTSUP;
   5376 		break;
   5377 	case VCHR :
   5378 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5379 		/* specfs */
   5380 		return ENOTSUP;
   5381 		break;
   5382 	case VFIFO :
   5383 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5384 		/* specfs */
   5385 		return ENOTSUP;
   5386 		break;
   5387 	case VSOCK :
   5388 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5389 		/* specfs */
   5390 		return ENOTSUP;
   5391 		break;
   5392 	case VNON :
   5393 	case VBAD :
   5394 	default :
   5395 		/* nothing; can we even create these? */
   5396 		return EINVAL;
   5397 	}
   5398 
   5399 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5400 }
   5401 
   5402 /* --------------------------------------------------------------------- */
   5403 
   5404 static void
   5405 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5406 {
   5407 	struct udf_mount *ump = udf_node->ump;
   5408 	uint32_t lb_size, lb_num, len, num_lb;
   5409 	uint16_t vpart_num;
   5410 
   5411 	/* is there really one? */
   5412 	if (mem == NULL)
   5413 		return;
   5414 
   5415 	/* got a descriptor here */
   5416 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5417 	lb_num    = udf_rw32(loc->loc.lb_num);
   5418 	vpart_num = udf_rw16(loc->loc.part_num);
   5419 
   5420 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5421 	num_lb = (len + lb_size -1) / lb_size;
   5422 
   5423 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5424 }
   5425 
   5426 void
   5427 udf_delete_node(struct udf_node *udf_node)
   5428 {
   5429 	void *dscr;
   5430 	struct udf_mount *ump;
   5431 	struct long_ad *loc;
   5432 	int extnr, lvint, dummy;
   5433 
   5434 	ump = udf_node->ump;
   5435 
   5436 	/* paranoia check on integrity; should be open!; we could panic */
   5437 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5438 	if (lvint == UDF_INTEGRITY_CLOSED)
   5439 		printf("\tIntegrity was CLOSED!\n");
   5440 
   5441 	/* whatever the node type, change its size to zero */
   5442 	(void) udf_resize_node(udf_node, 0, &dummy);
   5443 
   5444 	/* force it to be `clean'; no use writing it out */
   5445 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   5446 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5447 
   5448 	/* adjust file count */
   5449 	udf_adjust_filecount(udf_node, -1);
   5450 
   5451 	/*
   5452 	 * Free its allocated descriptors; memory will be released when
   5453 	 * vop_reclaim() is called.
   5454 	 */
   5455 	loc = &udf_node->loc;
   5456 
   5457 	dscr = udf_node->fe;
   5458 	udf_free_descriptor_space(udf_node, loc, dscr);
   5459 	dscr = udf_node->efe;
   5460 	udf_free_descriptor_space(udf_node, loc, dscr);
   5461 
   5462 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   5463 		dscr =  udf_node->ext[extnr];
   5464 		loc  = &udf_node->ext_loc[extnr];
   5465 		udf_free_descriptor_space(udf_node, loc, dscr);
   5466 	}
   5467 }
   5468 
   5469 /* --------------------------------------------------------------------- */
   5470 
   5471 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   5472 int
   5473 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   5474 {
   5475 	struct file_entry    *fe  = udf_node->fe;
   5476 	struct extfile_entry *efe = udf_node->efe;
   5477 	uint64_t file_size;
   5478 	int error;
   5479 
   5480 	if (fe) {
   5481 		file_size  = udf_rw64(fe->inf_len);
   5482 	} else {
   5483 		assert(udf_node->efe);
   5484 		file_size  = udf_rw64(efe->inf_len);
   5485 	}
   5486 
   5487 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   5488 			file_size, new_size));
   5489 
   5490 	/* if not changing, we're done */
   5491 	if (file_size == new_size)
   5492 		return 0;
   5493 
   5494 	*extended = (new_size > file_size);
   5495 	if (*extended) {
   5496 		error = udf_grow_node(udf_node, new_size);
   5497 	} else {
   5498 		error = udf_shrink_node(udf_node, new_size);
   5499 	}
   5500 
   5501 	return error;
   5502 }
   5503 
   5504 
   5505 /* --------------------------------------------------------------------- */
   5506 
   5507 void
   5508 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   5509 	struct timespec *mod, struct timespec *birth)
   5510 {
   5511 	struct timespec now;
   5512 	struct file_entry    *fe;
   5513 	struct extfile_entry *efe;
   5514 	struct filetimes_extattr_entry *ft_extattr;
   5515 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   5516 	struct timestamp  fe_ctime;
   5517 	struct timespec   cur_birth;
   5518 	uint32_t offset, a_l;
   5519 	uint8_t *filedata;
   5520 	int error;
   5521 
   5522 	/* protect against rogue values */
   5523 	if (!udf_node)
   5524 		return;
   5525 
   5526 	fe  = udf_node->fe;
   5527 	efe = udf_node->efe;
   5528 
   5529 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   5530 		return;
   5531 
   5532 	/* get descriptor information */
   5533 	if (fe) {
   5534 		atime    = &fe->atime;
   5535 		mtime    = &fe->mtime;
   5536 		attrtime = &fe->attrtime;
   5537 		filedata = fe->data;
   5538 
   5539 		/* initial save dummy setting */
   5540 		ctime    = &fe_ctime;
   5541 
   5542 		/* check our extended attribute if present */
   5543 		error = udf_extattr_search_intern(udf_node,
   5544 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   5545 		if (!error) {
   5546 			ft_extattr = (struct filetimes_extattr_entry *)
   5547 				(filedata + offset);
   5548 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   5549 				ctime = &ft_extattr->times[0];
   5550 		}
   5551 		/* TODO create the extended attribute if not found ? */
   5552 	} else {
   5553 		assert(udf_node->efe);
   5554 		atime    = &efe->atime;
   5555 		mtime    = &efe->mtime;
   5556 		attrtime = &efe->attrtime;
   5557 		ctime    = &efe->ctime;
   5558 	}
   5559 
   5560 	vfs_timestamp(&now);
   5561 
   5562 	/* set access time */
   5563 	if (udf_node->i_flags & IN_ACCESS) {
   5564 		if (acc == NULL)
   5565 			acc = &now;
   5566 		udf_timespec_to_timestamp(acc, atime);
   5567 	}
   5568 
   5569 	/* set modification time */
   5570 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   5571 		if (mod == NULL)
   5572 			mod = &now;
   5573 		udf_timespec_to_timestamp(mod, mtime);
   5574 
   5575 		/* ensure birthtime is older than set modification! */
   5576 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   5577 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   5578 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   5579 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   5580 			udf_timespec_to_timestamp(mod, ctime);
   5581 		}
   5582 	}
   5583 
   5584 	/* update birthtime if specified */
   5585 	/* XXX we asume here that given birthtime is older than mod */
   5586 	if (birth && (birth->tv_sec != VNOVAL)) {
   5587 		udf_timespec_to_timestamp(birth, ctime);
   5588 	}
   5589 
   5590 	/* set change time */
   5591 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   5592 		udf_timespec_to_timestamp(&now, attrtime);
   5593 
   5594 	/* notify updates to the node itself */
   5595 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   5596 		udf_node->i_flags |= IN_ACCESSED;
   5597 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   5598 		udf_node->i_flags |= IN_MODIFIED;
   5599 
   5600 	/* clear modification flags */
   5601 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5602 }
   5603 
   5604 /* --------------------------------------------------------------------- */
   5605 
   5606 int
   5607 udf_update(struct vnode *vp, struct timespec *acc,
   5608 	struct timespec *mod, struct timespec *birth, int updflags)
   5609 {
   5610 	union dscrptr *dscrptr;
   5611 	struct udf_node  *udf_node = VTOI(vp);
   5612 	struct udf_mount *ump = udf_node->ump;
   5613 	struct regid     *impl_id;
   5614 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   5615 	int waitfor, flags;
   5616 
   5617 #ifdef DEBUG
   5618 	char bits[128];
   5619 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   5620 		updflags));
   5621 	bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits));
   5622 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   5623 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   5624 #endif
   5625 
   5626 	/* set our times */
   5627 	udf_itimes(udf_node, acc, mod, birth);
   5628 
   5629 	/* set our implementation id */
   5630 	if (udf_node->fe) {
   5631 		dscrptr = (union dscrptr *) udf_node->fe;
   5632 		impl_id = &udf_node->fe->imp_id;
   5633 	} else {
   5634 		dscrptr = (union dscrptr *) udf_node->efe;
   5635 		impl_id = &udf_node->efe->imp_id;
   5636 	}
   5637 
   5638 	/* set our ID */
   5639 	udf_set_regid(impl_id, IMPL_NAME);
   5640 	udf_add_impl_regid(ump, impl_id);
   5641 
   5642 	/* update our crc! on RMW we are not allowed to change a thing */
   5643 	udf_validate_tag_and_crc_sums(dscrptr);
   5644 
   5645 	/* if called when mounted readonly, never write back */
   5646 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   5647 		return 0;
   5648 
   5649 	/* check if the node is dirty 'enough'*/
   5650 	if (updflags & UPDATE_CLOSE) {
   5651 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   5652 	} else {
   5653 		flags = udf_node->i_flags & IN_MODIFIED;
   5654 	}
   5655 	if (flags == 0)
   5656 		return 0;
   5657 
   5658 	/* determine if we need to write sync or async */
   5659 	waitfor = 0;
   5660 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   5661 		/* sync mounted */
   5662 		waitfor = updflags & UPDATE_WAIT;
   5663 		if (updflags & UPDATE_DIROP)
   5664 			waitfor |= UPDATE_WAIT;
   5665 	}
   5666 	if (waitfor)
   5667 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   5668 
   5669 	return 0;
   5670 }
   5671 
   5672 
   5673 /* --------------------------------------------------------------------- */
   5674 
   5675 
   5676 /*
   5677  * Read one fid and process it into a dirent and advance to the next (*fid)
   5678  * has to be allocated a logical block in size, (*dirent) struct dirent length
   5679  */
   5680 
   5681 int
   5682 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   5683 		    struct fileid_desc *fid, struct dirent *dirent)
   5684 {
   5685 	struct udf_node  *dir_node = VTOI(vp);
   5686 	struct udf_mount *ump = dir_node->ump;
   5687 	struct file_entry    *fe  = dir_node->fe;
   5688 	struct extfile_entry *efe = dir_node->efe;
   5689 	uint32_t      fid_size, lb_size;
   5690 	uint64_t      file_size;
   5691 	char         *fid_name;
   5692 	int           enough, error;
   5693 
   5694 	assert(fid);
   5695 	assert(dirent);
   5696 	assert(dir_node);
   5697 	assert(offset);
   5698 	assert(*offset != 1);
   5699 
   5700 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   5701 	/* check if we're past the end of the directory */
   5702 	if (fe) {
   5703 		file_size = udf_rw64(fe->inf_len);
   5704 	} else {
   5705 		assert(dir_node->efe);
   5706 		file_size = udf_rw64(efe->inf_len);
   5707 	}
   5708 	if (*offset >= file_size)
   5709 		return EINVAL;
   5710 
   5711 	/* get maximum length of FID descriptor */
   5712 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5713 
   5714 	/* initialise return values */
   5715 	fid_size = 0;
   5716 	memset(dirent, 0, sizeof(struct dirent));
   5717 	memset(fid, 0, lb_size);
   5718 
   5719 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   5720 	if (!enough) {
   5721 		/* short dir ... */
   5722 		return EIO;
   5723 	}
   5724 
   5725 	error = vn_rdwr(UIO_READ, vp,
   5726 			fid, MIN(file_size - (*offset), lb_size), *offset,
   5727 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   5728 			NULL, NULL);
   5729 	if (error)
   5730 		return error;
   5731 
   5732 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   5733 	/*
   5734 	 * Check if we got a whole descriptor.
   5735 	 * TODO Try to `resync' directory stream when something is very wrong.
   5736 	 */
   5737 
   5738 	/* check if our FID header is OK */
   5739 	error = udf_check_tag(fid);
   5740 	if (error) {
   5741 		goto brokendir;
   5742 	}
   5743 	DPRINTF(FIDS, ("\ttag check ok\n"));
   5744 
   5745 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   5746 		error = EIO;
   5747 		goto brokendir;
   5748 	}
   5749 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   5750 
   5751 	/* check for length */
   5752 	fid_size = udf_fidsize(fid);
   5753 	enough = (file_size - (*offset) >= fid_size);
   5754 	if (!enough) {
   5755 		error = EIO;
   5756 		goto brokendir;
   5757 	}
   5758 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   5759 
   5760 	/* check FID contents */
   5761 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   5762 brokendir:
   5763 	if (error) {
   5764 		/* note that is sometimes a bit quick to report */
   5765 		printf("BROKEN DIRECTORY ENTRY\n");
   5766 		/* RESYNC? */
   5767 		/* TODO: use udf_resync_fid_stream */
   5768 		return EIO;
   5769 	}
   5770 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   5771 
   5772 	/* we got a whole and valid descriptor! */
   5773 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   5774 
   5775 	/* create resulting dirent structure */
   5776 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   5777 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   5778 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   5779 
   5780 	/* '..' has no name, so provide one */
   5781 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   5782 		strcpy(dirent->d_name, "..");
   5783 
   5784 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   5785 	dirent->d_namlen = strlen(dirent->d_name);
   5786 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   5787 
   5788 	/*
   5789 	 * Note that its not worth trying to go for the filetypes now... its
   5790 	 * too expensive too
   5791 	 */
   5792 	dirent->d_type = DT_UNKNOWN;
   5793 
   5794 	/* initial guess for filetype we can make */
   5795 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   5796 		dirent->d_type = DT_DIR;
   5797 
   5798 	/* advance */
   5799 	*offset += fid_size;
   5800 
   5801 	return error;
   5802 }
   5803 
   5804 
   5805 /* --------------------------------------------------------------------- */
   5806 
   5807 static void
   5808 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   5809 	int pass, int *ndirty)
   5810 {
   5811 	struct udf_node *udf_node, *n_udf_node;
   5812 	struct vnode *vp;
   5813 	int vdirty, error;
   5814 	int on_type, on_flags, on_vnode;
   5815 
   5816 derailed:
   5817 	KASSERT(mutex_owned(&mntvnode_lock));
   5818 
   5819 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   5820 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
   5821 	for (;udf_node; udf_node = n_udf_node) {
   5822 		DPRINTF(SYNC, ("."));
   5823 
   5824 		udf_node->i_flags &= ~IN_SYNCED;
   5825 		vp = udf_node->vnode;
   5826 
   5827 		mutex_enter(&vp->v_interlock);
   5828 		n_udf_node = LIST_NEXT(udf_node, sortchain);
   5829 		if (n_udf_node)
   5830 			n_udf_node->i_flags |= IN_SYNCED;
   5831 
   5832 		/* system nodes are not synced this way */
   5833 		if (vp->v_vflag & VV_SYSTEM) {
   5834 			mutex_exit(&vp->v_interlock);
   5835 			continue;
   5836 		}
   5837 
   5838 		/* check if its dirty enough to even try */
   5839 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   5840 		on_flags = ((udf_node->i_flags &
   5841 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   5842 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   5843 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   5844 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   5845 			/* not dirty (enough?) */
   5846 			mutex_exit(&vp->v_interlock);
   5847 			continue;
   5848 		}
   5849 
   5850 		mutex_exit(&mntvnode_lock);
   5851 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   5852 		if (error) {
   5853 			mutex_enter(&mntvnode_lock);
   5854 			if (error == ENOENT)
   5855 				goto derailed;
   5856 			*ndirty += 1;
   5857 			continue;
   5858 		}
   5859 
   5860 		switch (pass) {
   5861 		case 1:
   5862 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   5863 			break;
   5864 		case 2:
   5865 			vdirty = vp->v_numoutput;
   5866 			if (vp->v_tag == VT_UDF)
   5867 				vdirty += udf_node->outstanding_bufs +
   5868 					udf_node->outstanding_nodedscr;
   5869 			if (vdirty == 0)
   5870 				VOP_FSYNC(vp, cred, 0,0,0);
   5871 			*ndirty += vdirty;
   5872 			break;
   5873 		case 3:
   5874 			vdirty = vp->v_numoutput;
   5875 			if (vp->v_tag == VT_UDF)
   5876 				vdirty += udf_node->outstanding_bufs +
   5877 					udf_node->outstanding_nodedscr;
   5878 			*ndirty += vdirty;
   5879 			break;
   5880 		}
   5881 
   5882 		vput(vp);
   5883 		mutex_enter(&mntvnode_lock);
   5884 	}
   5885 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   5886 }
   5887 
   5888 
   5889 void
   5890 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   5891 {
   5892 	int dummy, ndirty;
   5893 
   5894 	mutex_enter(&mntvnode_lock);
   5895 recount:
   5896 	dummy = 0;
   5897 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   5898 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   5899 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   5900 
   5901 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   5902 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   5903 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   5904 
   5905 	if (waitfor == MNT_WAIT) {
   5906 		ndirty = ump->devvp->v_numoutput;
   5907 		DPRINTF(NODE, ("counting pending blocks: on devvp %d\n",
   5908 			ndirty));
   5909 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   5910 		DPRINTF(NODE, ("counted num dirty pending blocks %d\n",
   5911 			ndirty));
   5912 
   5913 		if (ndirty) {
   5914 			/* 1/4 second wait */
   5915 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   5916 				hz/4);
   5917 			goto recount;
   5918 		}
   5919 	}
   5920 
   5921 	mutex_exit(&mntvnode_lock);
   5922 }
   5923 
   5924 /* --------------------------------------------------------------------- */
   5925 
   5926 /*
   5927  * Read and write file extent in/from the buffer.
   5928  *
   5929  * The splitup of the extent into seperate request-buffers is to minimise
   5930  * copying around as much as possible.
   5931  *
   5932  * block based file reading and writing
   5933  */
   5934 
   5935 static int
   5936 udf_read_internal(struct udf_node *node, uint8_t *blob)
   5937 {
   5938 	struct udf_mount *ump;
   5939 	struct file_entry     *fe = node->fe;
   5940 	struct extfile_entry *efe = node->efe;
   5941 	uint64_t inflen;
   5942 	uint32_t sector_size;
   5943 	uint8_t  *pos;
   5944 	int icbflags, addr_type;
   5945 
   5946 	/* get extent and do some paranoia checks */
   5947 	ump = node->ump;
   5948 	sector_size = ump->discinfo.sector_size;
   5949 
   5950 	if (fe) {
   5951 		inflen   = udf_rw64(fe->inf_len);
   5952 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   5953 		icbflags = udf_rw16(fe->icbtag.flags);
   5954 	} else {
   5955 		assert(node->efe);
   5956 		inflen   = udf_rw64(efe->inf_len);
   5957 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   5958 		icbflags = udf_rw16(efe->icbtag.flags);
   5959 	}
   5960 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5961 
   5962 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   5963 	assert(inflen < sector_size);
   5964 
   5965 	/* copy out info */
   5966 	memset(blob, 0, sector_size);
   5967 	memcpy(blob, pos, inflen);
   5968 
   5969 	return 0;
   5970 }
   5971 
   5972 
   5973 static int
   5974 udf_write_internal(struct udf_node *node, uint8_t *blob)
   5975 {
   5976 	struct udf_mount *ump;
   5977 	struct file_entry     *fe = node->fe;
   5978 	struct extfile_entry *efe = node->efe;
   5979 	uint64_t inflen;
   5980 	uint32_t sector_size;
   5981 	uint8_t  *pos;
   5982 	int icbflags, addr_type;
   5983 
   5984 	/* get extent and do some paranoia checks */
   5985 	ump = node->ump;
   5986 	sector_size = ump->discinfo.sector_size;
   5987 
   5988 	if (fe) {
   5989 		inflen   = udf_rw64(fe->inf_len);
   5990 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   5991 		icbflags = udf_rw16(fe->icbtag.flags);
   5992 	} else {
   5993 		assert(node->efe);
   5994 		inflen   = udf_rw64(efe->inf_len);
   5995 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   5996 		icbflags = udf_rw16(efe->icbtag.flags);
   5997 	}
   5998 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5999 
   6000 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6001 	assert(inflen < sector_size);
   6002 
   6003 	/* copy in blob */
   6004 	/* memset(pos, 0, inflen); */
   6005 	memcpy(pos, blob, inflen);
   6006 
   6007 	return 0;
   6008 }
   6009 
   6010 
   6011 void
   6012 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6013 {
   6014 	struct buf *nestbuf;
   6015 	struct udf_mount *ump = udf_node->ump;
   6016 	uint64_t   *mapping;
   6017 	uint64_t    run_start;
   6018 	uint32_t    sector_size;
   6019 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6020 	uint32_t    from, lblkno;
   6021 	uint32_t    sectors;
   6022 	uint8_t    *buf_pos;
   6023 	int error, run_length, isdir, what;
   6024 
   6025 	sector_size = udf_node->ump->discinfo.sector_size;
   6026 
   6027 	from    = buf->b_blkno;
   6028 	sectors = buf->b_bcount / sector_size;
   6029 
   6030 	isdir   = (udf_node->vnode->v_type == VDIR);
   6031 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6032 
   6033 	/* assure we have enough translation slots */
   6034 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6035 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6036 
   6037 	if (sectors > UDF_MAX_MAPPINGS) {
   6038 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6039 		buf->b_error  = EIO;
   6040 		biodone(buf);
   6041 		return;
   6042 	}
   6043 
   6044 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6045 
   6046 	error = 0;
   6047 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6048 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6049 	if (error) {
   6050 		buf->b_error  = error;
   6051 		biodone(buf);
   6052 		goto out;
   6053 	}
   6054 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6055 
   6056 	/* pre-check if its an internal */
   6057 	if (*mapping == UDF_TRANS_INTERN) {
   6058 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6059 		if (error)
   6060 			buf->b_error  = error;
   6061 		biodone(buf);
   6062 		goto out;
   6063 	}
   6064 	DPRINTF(READ, ("\tnot intern\n"));
   6065 
   6066 #ifdef DEBUG
   6067 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6068 		printf("Returned translation table:\n");
   6069 		for (sector = 0; sector < sectors; sector++) {
   6070 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6071 		}
   6072 	}
   6073 #endif
   6074 
   6075 	/* request read-in of data from disc sheduler */
   6076 	buf->b_resid = buf->b_bcount;
   6077 	for (sector = 0; sector < sectors; sector++) {
   6078 		buf_offset = sector * sector_size;
   6079 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6080 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6081 
   6082 		/* check if its zero or unmapped to stop reading */
   6083 		switch (mapping[sector]) {
   6084 		case UDF_TRANS_UNMAPPED:
   6085 		case UDF_TRANS_ZERO:
   6086 			/* copy zero sector TODO runlength like below */
   6087 			memset(buf_pos, 0, sector_size);
   6088 			DPRINTF(READ, ("\treturning zero sector\n"));
   6089 			nestiobuf_done(buf, sector_size, 0);
   6090 			break;
   6091 		default :
   6092 			DPRINTF(READ, ("\tread sector "
   6093 			    "%"PRIu64"\n", mapping[sector]));
   6094 
   6095 			lblkno = from + sector;
   6096 			run_start  = mapping[sector];
   6097 			run_length = 1;
   6098 			while (sector < sectors-1) {
   6099 				if (mapping[sector+1] != mapping[sector]+1)
   6100 					break;
   6101 				run_length++;
   6102 				sector++;
   6103 			}
   6104 
   6105 			/*
   6106 			 * nest an iobuf and mark it for async reading. Since
   6107 			 * we're using nested buffers, they can't be cached by
   6108 			 * design.
   6109 			 */
   6110 			rbuflen = run_length * sector_size;
   6111 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6112 
   6113 			nestbuf = getiobuf(NULL, true);
   6114 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6115 			/* nestbuf is B_ASYNC */
   6116 
   6117 			/* identify this nestbuf */
   6118 			nestbuf->b_lblkno   = lblkno;
   6119 			assert(nestbuf->b_vp == udf_node->vnode);
   6120 
   6121 			/* CD shedules on raw blkno */
   6122 			nestbuf->b_blkno      = rblk;
   6123 			nestbuf->b_proc       = NULL;
   6124 			nestbuf->b_rawblkno   = rblk;
   6125 			nestbuf->b_udf_c_type = what;
   6126 
   6127 			udf_discstrat_queuebuf(ump, nestbuf);
   6128 		}
   6129 	}
   6130 out:
   6131 	/* if we're synchronously reading, wait for the completion */
   6132 	if ((buf->b_flags & B_ASYNC) == 0)
   6133 		biowait(buf);
   6134 
   6135 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6136 	free(mapping, M_TEMP);
   6137 	return;
   6138 }
   6139 
   6140 
   6141 void
   6142 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6143 {
   6144 	struct buf *nestbuf;
   6145 	struct udf_mount *ump = udf_node->ump;
   6146 	uint64_t   *mapping;
   6147 	uint64_t    run_start;
   6148 	uint32_t    lb_size;
   6149 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6150 	uint32_t    from, lblkno;
   6151 	uint32_t    num_lb;
   6152 	uint8_t    *buf_pos;
   6153 	int error, run_length, isdir, what, s;
   6154 
   6155 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6156 
   6157 	from   = buf->b_blkno;
   6158 	num_lb = buf->b_bcount / lb_size;
   6159 
   6160 	isdir  = (udf_node->vnode->v_type == VDIR);
   6161 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6162 
   6163 	if (udf_node == ump->metadatabitmap_node)
   6164 		what = UDF_C_METADATA_SBM;
   6165 
   6166 	/* assure we have enough translation slots */
   6167 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6168 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6169 
   6170 	if (num_lb > UDF_MAX_MAPPINGS) {
   6171 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6172 		buf->b_error  = EIO;
   6173 		biodone(buf);
   6174 		return;
   6175 	}
   6176 
   6177 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6178 
   6179 	error = 0;
   6180 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6181 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6182 	if (error) {
   6183 		buf->b_error  = error;
   6184 		biodone(buf);
   6185 		goto out;
   6186 	}
   6187 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6188 
   6189 	/* if its internally mapped, we can write it in the descriptor itself */
   6190 	if (*mapping == UDF_TRANS_INTERN) {
   6191 		/* TODO paranoia check if we ARE going to have enough space */
   6192 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6193 		if (error)
   6194 			buf->b_error  = error;
   6195 		biodone(buf);
   6196 		goto out;
   6197 	}
   6198 	DPRINTF(WRITE, ("\tnot intern\n"));
   6199 
   6200 	/* request write out of data to disc sheduler */
   6201 	buf->b_resid = buf->b_bcount;
   6202 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6203 		buf_offset = lb_num * lb_size;
   6204 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6205 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6206 
   6207 		/*
   6208 		 * Mappings are not that important here. Just before we write
   6209 		 * the lb_num we late-allocate them when needed and update the
   6210 		 * mapping in the udf_node.
   6211 		 */
   6212 
   6213 		/* XXX why not ignore the mapping altogether ? */
   6214 		/* TODO estimate here how much will be late-allocated */
   6215 		DPRINTF(WRITE, ("\twrite lb_num "
   6216 		    "%"PRIu64, mapping[lb_num]));
   6217 
   6218 		lblkno = from + lb_num;
   6219 		run_start  = mapping[lb_num];
   6220 		run_length = 1;
   6221 		while (lb_num < num_lb-1) {
   6222 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6223 				if (mapping[lb_num+1] != mapping[lb_num])
   6224 					break;
   6225 			run_length++;
   6226 			lb_num++;
   6227 		}
   6228 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6229 
   6230 		/* nest an iobuf on the master buffer for the extent */
   6231 		rbuflen = run_length * lb_size;
   6232 		rblk = run_start * (lb_size/DEV_BSIZE);
   6233 
   6234 #if 0
   6235 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
   6236 		switch (mapping[lb_num]) {
   6237 		case UDF_TRANS_UNMAPPED:
   6238 		case UDF_TRANS_ZERO:
   6239 			rblk = -1;
   6240 			break;
   6241 		default:
   6242 			rblk = run_start * (lb_size/DEV_BSIZE);
   6243 			break;
   6244 		}
   6245 #endif
   6246 
   6247 		nestbuf = getiobuf(NULL, true);
   6248 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6249 		/* nestbuf is B_ASYNC */
   6250 
   6251 		/* identify this nestbuf */
   6252 		nestbuf->b_lblkno   = lblkno;
   6253 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6254 
   6255 		/* CD shedules on raw blkno */
   6256 		nestbuf->b_blkno      = rblk;
   6257 		nestbuf->b_proc       = NULL;
   6258 		nestbuf->b_rawblkno   = rblk;
   6259 		nestbuf->b_udf_c_type = what;
   6260 
   6261 		/* increment our outstanding bufs counter */
   6262 		s = splbio();
   6263 			udf_node->outstanding_bufs++;
   6264 		splx(s);
   6265 
   6266 		udf_discstrat_queuebuf(ump, nestbuf);
   6267 	}
   6268 out:
   6269 	/* if we're synchronously writing, wait for the completion */
   6270 	if ((buf->b_flags & B_ASYNC) == 0)
   6271 		biowait(buf);
   6272 
   6273 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6274 	free(mapping, M_TEMP);
   6275 	return;
   6276 }
   6277 
   6278 /* --------------------------------------------------------------------- */
   6279 
   6280 
   6281