Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.80
      1 /* $NetBSD: udf_subr.c,v 1.80 2008/12/16 22:35:36 christos Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.80 2008/12/16 22:35:36 christos Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_compat_netbsd.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/sysctl.h>
     43 #include <sys/namei.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vnode.h>
     47 #include <miscfs/genfs/genfs_node.h>
     48 #include <sys/mount.h>
     49 #include <sys/buf.h>
     50 #include <sys/file.h>
     51 #include <sys/device.h>
     52 #include <sys/disklabel.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/malloc.h>
     55 #include <sys/dirent.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/kauth.h>
     59 #include <fs/unicode.h>
     60 #include <dev/clock_subr.h>
     61 
     62 #include <fs/udf/ecma167-udf.h>
     63 #include <fs/udf/udf_mount.h>
     64 #include <sys/dirhash.h>
     65 
     66 #include "udf.h"
     67 #include "udf_subr.h"
     68 #include "udf_bswap.h"
     69 
     70 
     71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     72 
     73 #define UDF_SET_SYSTEMFILE(vp) \
     74 	/* XXXAD Is the vnode locked? */	\
     75 	(vp)->v_vflag |= VV_SYSTEM;		\
     76 	vref(vp);			\
     77 	vput(vp);			\
     78 
     79 extern int syncer_maxdelay;     /* maximum delay time */
     80 extern int (**udf_vnodeop_p)(void *);
     81 
     82 /* --------------------------------------------------------------------- */
     83 
     84 //#ifdef DEBUG
     85 #if 1
     86 
     87 #if 0
     88 static void
     89 udf_dumpblob(boid *blob, uint32_t dlen)
     90 {
     91 	int i, j;
     92 
     93 	printf("blob = %p\n", blob);
     94 	printf("dump of %d bytes\n", dlen);
     95 
     96 	for (i = 0; i < dlen; i+ = 16) {
     97 		printf("%04x ", i);
     98 		for (j = 0; j < 16; j++) {
     99 			if (i+j < dlen) {
    100 				printf("%02x ", blob[i+j]);
    101 			} else {
    102 				printf("   ");
    103 			}
    104 		}
    105 		for (j = 0; j < 16; j++) {
    106 			if (i+j < dlen) {
    107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    108 					printf("%c", blob[i+j]);
    109 				} else {
    110 					printf(".");
    111 				}
    112 			}
    113 		}
    114 		printf("\n");
    115 	}
    116 	printf("\n");
    117 	Debugger();
    118 }
    119 #endif
    120 
    121 static void
    122 udf_dump_discinfo(struct udf_mount *ump)
    123 {
    124 	char   bits[128];
    125 	struct mmc_discinfo *di = &ump->discinfo;
    126 
    127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    128 		return;
    129 
    130 	printf("Device/media info  :\n");
    131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    132 	printf("\tderived class      %d\n", di->mmc_class);
    133 	printf("\tsector size        %d\n", di->sector_size);
    134 	printf("\tdisc state         %d\n", di->disc_state);
    135 	printf("\tlast ses state     %d\n", di->last_session_state);
    136 	printf("\tbg format state    %d\n", di->bg_format_state);
    137 	printf("\tfrst track         %d\n", di->first_track);
    138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
    142 	printf("\tdisc flags         %s\n", bits);
    143 	printf("\tdisc id            %x\n", di->disc_id);
    144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    145 
    146 	printf("\tnum sessions       %d\n", di->num_sessions);
    147 	printf("\tnum tracks         %d\n", di->num_tracks);
    148 
    149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
    150 	printf("\tcapabilities cur   %s\n", bits);
    151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
    152 	printf("\tcapabilities cap   %s\n", bits);
    153 }
    154 #else
    155 #define udf_dump_discinfo(a);
    156 #endif
    157 
    158 
    159 /* --------------------------------------------------------------------- */
    160 
    161 /* not called often */
    162 int
    163 udf_update_discinfo(struct udf_mount *ump)
    164 {
    165 	struct vnode *devvp = ump->devvp;
    166 	struct partinfo dpart;
    167 	struct mmc_discinfo *di;
    168 	int error;
    169 
    170 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    171 	di = &ump->discinfo;
    172 	memset(di, 0, sizeof(struct mmc_discinfo));
    173 
    174 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    175 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    176 	if (error == 0) {
    177 		udf_dump_discinfo(ump);
    178 		return 0;
    179 	}
    180 
    181 	/* disc partition support */
    182 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    183 	if (error)
    184 		return ENODEV;
    185 
    186 	/* set up a disc info profile for partitions */
    187 	di->mmc_profile		= 0x01;	/* disc type */
    188 	di->mmc_class		= MMC_CLASS_DISC;
    189 	di->disc_state		= MMC_STATE_CLOSED;
    190 	di->last_session_state	= MMC_STATE_CLOSED;
    191 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    192 	di->link_block_penalty	= 0;
    193 
    194 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    195 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    196 	di->mmc_cap    = di->mmc_cur;
    197 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    198 
    199 	/* TODO problem with last_possible_lba on resizable VND; request */
    200 	di->last_possible_lba = dpart.part->p_size;
    201 	di->sector_size       = dpart.disklab->d_secsize;
    202 
    203 	di->num_sessions = 1;
    204 	di->num_tracks   = 1;
    205 
    206 	di->first_track  = 1;
    207 	di->first_track_last_session = di->last_track_last_session = 1;
    208 
    209 	udf_dump_discinfo(ump);
    210 	return 0;
    211 }
    212 
    213 
    214 int
    215 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    216 {
    217 	struct vnode *devvp = ump->devvp;
    218 	struct mmc_discinfo *di = &ump->discinfo;
    219 	int error, class;
    220 
    221 	DPRINTF(VOLUMES, ("read track info\n"));
    222 
    223 	class = di->mmc_class;
    224 	if (class != MMC_CLASS_DISC) {
    225 		/* tracknr specified in struct ti */
    226 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    227 		return error;
    228 	}
    229 
    230 	/* disc partition support */
    231 	if (ti->tracknr != 1)
    232 		return EIO;
    233 
    234 	/* create fake ti (TODO check for resized vnds) */
    235 	ti->sessionnr  = 1;
    236 
    237 	ti->track_mode = 0;	/* XXX */
    238 	ti->data_mode  = 0;	/* XXX */
    239 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    240 
    241 	ti->track_start    = 0;
    242 	ti->packet_size    = 1;
    243 
    244 	/* TODO support for resizable vnd */
    245 	ti->track_size    = di->last_possible_lba;
    246 	ti->next_writable = di->last_possible_lba;
    247 	ti->last_recorded = ti->next_writable;
    248 	ti->free_blocks   = 0;
    249 
    250 	return 0;
    251 }
    252 
    253 
    254 int
    255 udf_setup_writeparams(struct udf_mount *ump)
    256 {
    257 	struct mmc_writeparams mmc_writeparams;
    258 	int error;
    259 
    260 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    261 		return 0;
    262 
    263 	/*
    264 	 * only CD burning normally needs setting up, but other disc types
    265 	 * might need other settings to be made. The MMC framework will set up
    266 	 * the nessisary recording parameters according to the disc
    267 	 * characteristics read in. Modifications can be made in the discinfo
    268 	 * structure passed to change the nature of the disc.
    269 	 */
    270 
    271 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    272 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    273 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    274 
    275 	/*
    276 	 * UDF dictates first track to determine track mode for the whole
    277 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    278 	 * To prevent problems with a `reserved' track in front we start with
    279 	 * the 2nd track and if that is not valid, go for the 1st.
    280 	 */
    281 	mmc_writeparams.tracknr = 2;
    282 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    283 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    284 
    285 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    286 			FKIOCTL, NOCRED);
    287 	if (error) {
    288 		mmc_writeparams.tracknr = 1;
    289 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    290 				&mmc_writeparams, FKIOCTL, NOCRED);
    291 	}
    292 	return error;
    293 }
    294 
    295 
    296 int
    297 udf_synchronise_caches(struct udf_mount *ump)
    298 {
    299 	struct mmc_op mmc_op;
    300 
    301 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    302 
    303 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    304 		return 0;
    305 
    306 	/* discs are done now */
    307 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    308 		return 0;
    309 
    310 	bzero(&mmc_op, sizeof(struct mmc_op));
    311 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    312 
    313 	/* ignore return code */
    314 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    315 
    316 	return 0;
    317 }
    318 
    319 /* --------------------------------------------------------------------- */
    320 
    321 /* track/session searching for mounting */
    322 int
    323 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    324 		  int *first_tracknr, int *last_tracknr)
    325 {
    326 	struct mmc_trackinfo trackinfo;
    327 	uint32_t tracknr, start_track, num_tracks;
    328 	int error;
    329 
    330 	/* if negative, sessionnr is relative to last session */
    331 	if (args->sessionnr < 0) {
    332 		args->sessionnr += ump->discinfo.num_sessions;
    333 	}
    334 
    335 	/* sanity */
    336 	if (args->sessionnr < 0)
    337 		args->sessionnr = 0;
    338 	if (args->sessionnr > ump->discinfo.num_sessions)
    339 		args->sessionnr = ump->discinfo.num_sessions;
    340 
    341 	/* search the tracks for this session, zero session nr indicates last */
    342 	if (args->sessionnr == 0)
    343 		args->sessionnr = ump->discinfo.num_sessions;
    344 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    345 		args->sessionnr--;
    346 
    347 	/* sanity again */
    348 	if (args->sessionnr < 0)
    349 		args->sessionnr = 0;
    350 
    351 	/* search the first and last track of the specified session */
    352 	num_tracks  = ump->discinfo.num_tracks;
    353 	start_track = ump->discinfo.first_track;
    354 
    355 	/* search for first track of this session */
    356 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    357 		/* get track info */
    358 		trackinfo.tracknr = tracknr;
    359 		error = udf_update_trackinfo(ump, &trackinfo);
    360 		if (error)
    361 			return error;
    362 
    363 		if (trackinfo.sessionnr == args->sessionnr)
    364 			break;
    365 	}
    366 	*first_tracknr = tracknr;
    367 
    368 	/* search for last track of this session */
    369 	for (;tracknr <= num_tracks; tracknr++) {
    370 		/* get track info */
    371 		trackinfo.tracknr = tracknr;
    372 		error = udf_update_trackinfo(ump, &trackinfo);
    373 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    374 			tracknr--;
    375 			break;
    376 		}
    377 	}
    378 	if (tracknr > num_tracks)
    379 		tracknr--;
    380 
    381 	*last_tracknr = tracknr;
    382 
    383 	if (*last_tracknr < *first_tracknr) {
    384 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    385 			"drive returned garbage\n");
    386 		return EINVAL;
    387 	}
    388 
    389 	assert(*last_tracknr >= *first_tracknr);
    390 	return 0;
    391 }
    392 
    393 
    394 /*
    395  * NOTE: this is the only routine in this file that directly peeks into the
    396  * metadata file but since its at a larval state of the mount it can't hurt.
    397  *
    398  * XXX candidate for udf_allocation.c
    399  * XXX clean me up!, change to new node reading code.
    400  */
    401 
    402 static void
    403 udf_check_track_metadata_overlap(struct udf_mount *ump,
    404 	struct mmc_trackinfo *trackinfo)
    405 {
    406 	struct part_desc *part;
    407 	struct file_entry      *fe;
    408 	struct extfile_entry   *efe;
    409 	struct short_ad        *s_ad;
    410 	struct long_ad         *l_ad;
    411 	uint32_t track_start, track_end;
    412 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    413 	uint32_t sector_size, len, alloclen, plb_num;
    414 	uint8_t *pos;
    415 	int addr_type, icblen, icbflags, flags;
    416 
    417 	/* get our track extents */
    418 	track_start = trackinfo->track_start;
    419 	track_end   = track_start + trackinfo->track_size;
    420 
    421 	/* get our base partition extent */
    422 	KASSERT(ump->node_part == ump->fids_part);
    423 	part = ump->partitions[ump->node_part];
    424 	phys_part_start = udf_rw32(part->start_loc);
    425 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    426 
    427 	/* no use if its outside the physical partition */
    428 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    429 		return;
    430 
    431 	/*
    432 	 * now follow all extents in the fe/efe to see if they refer to this
    433 	 * track
    434 	 */
    435 
    436 	sector_size = ump->discinfo.sector_size;
    437 
    438 	/* XXX should we claim exclusive access to the metafile ? */
    439 	/* TODO: move to new node read code */
    440 	fe  = ump->metadata_node->fe;
    441 	efe = ump->metadata_node->efe;
    442 	if (fe) {
    443 		alloclen = udf_rw32(fe->l_ad);
    444 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    445 		icbflags = udf_rw16(fe->icbtag.flags);
    446 	} else {
    447 		assert(efe);
    448 		alloclen = udf_rw32(efe->l_ad);
    449 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    450 		icbflags = udf_rw16(efe->icbtag.flags);
    451 	}
    452 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    453 
    454 	while (alloclen) {
    455 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    456 			icblen = sizeof(struct short_ad);
    457 			s_ad   = (struct short_ad *) pos;
    458 			len        = udf_rw32(s_ad->len);
    459 			plb_num    = udf_rw32(s_ad->lb_num);
    460 		} else {
    461 			/* should not be present, but why not */
    462 			icblen = sizeof(struct long_ad);
    463 			l_ad   = (struct long_ad *) pos;
    464 			len        = udf_rw32(l_ad->len);
    465 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    466 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    467 		}
    468 		/* process extent */
    469 		flags   = UDF_EXT_FLAGS(len);
    470 		len     = UDF_EXT_LEN(len);
    471 
    472 		part_start = phys_part_start + plb_num;
    473 		part_end   = part_start + (len / sector_size);
    474 
    475 		if ((part_start >= track_start) && (part_end <= track_end)) {
    476 			/* extent is enclosed within this track */
    477 			ump->metadata_track = *trackinfo;
    478 			return;
    479 		}
    480 
    481 		pos        += icblen;
    482 		alloclen   -= icblen;
    483 	}
    484 }
    485 
    486 
    487 int
    488 udf_search_writing_tracks(struct udf_mount *ump)
    489 {
    490 	struct mmc_trackinfo trackinfo;
    491 	struct part_desc *part;
    492 	uint32_t tracknr, start_track, num_tracks;
    493 	uint32_t track_start, track_end, part_start, part_end;
    494 	int node_alloc, error;
    495 
    496 	/*
    497 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    498 	 * the last session might be open but in the UDF device model at most
    499 	 * three tracks can be open: a reserved track for delayed ISO VRS
    500 	 * writing, a data track and a metadata track. We search here for the
    501 	 * data track and the metadata track. Note that the reserved track is
    502 	 * troublesome but can be detected by its small size of < 512 sectors.
    503 	 */
    504 
    505 	num_tracks  = ump->discinfo.num_tracks;
    506 	start_track = ump->discinfo.first_track;
    507 
    508 	/* fetch info on first and possibly only track */
    509 	trackinfo.tracknr = start_track;
    510 	error = udf_update_trackinfo(ump, &trackinfo);
    511 	if (error)
    512 		return error;
    513 
    514 	/* copy results to our mount point */
    515 	ump->data_track     = trackinfo;
    516 	ump->metadata_track = trackinfo;
    517 
    518 	/* if not sequential, we're done */
    519 	if (num_tracks == 1)
    520 		return 0;
    521 
    522 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    523 		/* get track info */
    524 		trackinfo.tracknr = tracknr;
    525 		error = udf_update_trackinfo(ump, &trackinfo);
    526 		if (error)
    527 			return error;
    528 
    529 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    530 			continue;
    531 
    532 		track_start = trackinfo.track_start;
    533 		track_end   = track_start + trackinfo.track_size;
    534 
    535 		/* check for overlap on data partition */
    536 		part = ump->partitions[ump->data_part];
    537 		part_start = udf_rw32(part->start_loc);
    538 		part_end   = part_start + udf_rw32(part->part_len);
    539 		if ((part_start < track_end) && (part_end > track_start)) {
    540 			ump->data_track = trackinfo;
    541 			/* TODO check if UDF partition data_part is writable */
    542 		}
    543 
    544 		/* check for overlap on metadata partition */
    545 		node_alloc = ump->vtop_alloc[ump->node_part];
    546 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    547 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    548 			udf_check_track_metadata_overlap(ump, &trackinfo);
    549 		} else {
    550 			ump->metadata_track = trackinfo;
    551 		}
    552 	}
    553 
    554 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    555 		return EROFS;
    556 
    557 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    558 		return EROFS;
    559 
    560 	return 0;
    561 }
    562 
    563 /* --------------------------------------------------------------------- */
    564 
    565 /*
    566  * Check if the blob starts with a good UDF tag. Tags are protected by a
    567  * checksum over the reader except one byte at position 4 that is the checksum
    568  * itself.
    569  */
    570 
    571 int
    572 udf_check_tag(void *blob)
    573 {
    574 	struct desc_tag *tag = blob;
    575 	uint8_t *pos, sum, cnt;
    576 
    577 	/* check TAG header checksum */
    578 	pos = (uint8_t *) tag;
    579 	sum = 0;
    580 
    581 	for(cnt = 0; cnt < 16; cnt++) {
    582 		if (cnt != 4)
    583 			sum += *pos;
    584 		pos++;
    585 	}
    586 	if (sum != tag->cksum) {
    587 		/* bad tag header checksum; this is not a valid tag */
    588 		return EINVAL;
    589 	}
    590 
    591 	return 0;
    592 }
    593 
    594 
    595 /*
    596  * check tag payload will check descriptor CRC as specified.
    597  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    598  */
    599 
    600 int
    601 udf_check_tag_payload(void *blob, uint32_t max_length)
    602 {
    603 	struct desc_tag *tag = blob;
    604 	uint16_t crc, crc_len;
    605 
    606 	crc_len = udf_rw16(tag->desc_crc_len);
    607 
    608 	/* check payload CRC if applicable */
    609 	if (crc_len == 0)
    610 		return 0;
    611 
    612 	if (crc_len > max_length)
    613 		return EIO;
    614 
    615 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    616 	if (crc != udf_rw16(tag->desc_crc)) {
    617 		/* bad payload CRC; this is a broken tag */
    618 		return EINVAL;
    619 	}
    620 
    621 	return 0;
    622 }
    623 
    624 
    625 void
    626 udf_validate_tag_sum(void *blob)
    627 {
    628 	struct desc_tag *tag = blob;
    629 	uint8_t *pos, sum, cnt;
    630 
    631 	/* calculate TAG header checksum */
    632 	pos = (uint8_t *) tag;
    633 	sum = 0;
    634 
    635 	for(cnt = 0; cnt < 16; cnt++) {
    636 		if (cnt != 4) sum += *pos;
    637 		pos++;
    638 	}
    639 	tag->cksum = sum;	/* 8 bit */
    640 }
    641 
    642 
    643 /* assumes sector number of descriptor to be saved already present */
    644 void
    645 udf_validate_tag_and_crc_sums(void *blob)
    646 {
    647 	struct desc_tag *tag  = blob;
    648 	uint8_t         *btag = (uint8_t *) tag;
    649 	uint16_t crc, crc_len;
    650 
    651 	crc_len = udf_rw16(tag->desc_crc_len);
    652 
    653 	/* check payload CRC if applicable */
    654 	if (crc_len > 0) {
    655 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    656 		tag->desc_crc = udf_rw16(crc);
    657 	}
    658 
    659 	/* calculate TAG header checksum */
    660 	udf_validate_tag_sum(blob);
    661 }
    662 
    663 /* --------------------------------------------------------------------- */
    664 
    665 /*
    666  * XXX note the different semantics from udfclient: for FIDs it still rounds
    667  * up to sectors. Use udf_fidsize() for a correct length.
    668  */
    669 
    670 int
    671 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    672 {
    673 	uint32_t size, tag_id, num_lb, elmsz;
    674 
    675 	tag_id = udf_rw16(dscr->tag.id);
    676 
    677 	switch (tag_id) {
    678 	case TAGID_LOGVOL :
    679 		size  = sizeof(struct logvol_desc) - 1;
    680 		size += udf_rw32(dscr->lvd.mt_l);
    681 		break;
    682 	case TAGID_UNALLOC_SPACE :
    683 		elmsz = sizeof(struct extent_ad);
    684 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    685 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    686 		break;
    687 	case TAGID_FID :
    688 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    689 		size = (size + 3) & ~3;
    690 		break;
    691 	case TAGID_LOGVOL_INTEGRITY :
    692 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    693 		size += udf_rw32(dscr->lvid.l_iu);
    694 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    695 		break;
    696 	case TAGID_SPACE_BITMAP :
    697 		size  = sizeof(struct space_bitmap_desc) - 1;
    698 		size += udf_rw32(dscr->sbd.num_bytes);
    699 		break;
    700 	case TAGID_SPARING_TABLE :
    701 		elmsz = sizeof(struct spare_map_entry);
    702 		size  = sizeof(struct udf_sparing_table) - elmsz;
    703 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    704 		break;
    705 	case TAGID_FENTRY :
    706 		size  = sizeof(struct file_entry);
    707 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    708 		break;
    709 	case TAGID_EXTFENTRY :
    710 		size  = sizeof(struct extfile_entry);
    711 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    712 		break;
    713 	case TAGID_FSD :
    714 		size  = sizeof(struct fileset_desc);
    715 		break;
    716 	default :
    717 		size = sizeof(union dscrptr);
    718 		break;
    719 	}
    720 
    721 	if ((size == 0) || (lb_size == 0))
    722 		return 0;
    723 
    724 	if (lb_size == 1)
    725 		return size;
    726 
    727 	/* round up in sectors */
    728 	num_lb = (size + lb_size -1) / lb_size;
    729 	return num_lb * lb_size;
    730 }
    731 
    732 
    733 int
    734 udf_fidsize(struct fileid_desc *fid)
    735 {
    736 	uint32_t size;
    737 
    738 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    739 		panic("got udf_fidsize on non FID\n");
    740 
    741 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    742 	size = (size + 3) & ~3;
    743 
    744 	return size;
    745 }
    746 
    747 /* --------------------------------------------------------------------- */
    748 
    749 void
    750 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    751 {
    752 	int ret;
    753 
    754 	mutex_enter(&udf_node->node_mutex);
    755 	/* wait until free */
    756 	while (udf_node->i_flags & IN_LOCKED) {
    757 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    758 		/* TODO check if we should return error; abort */
    759 		if (ret == EWOULDBLOCK) {
    760 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    761 				"wanted at %s:%d, previously locked at %s:%d\n",
    762 				udf_node, fname, lineno,
    763 				udf_node->lock_fname, udf_node->lock_lineno));
    764 		}
    765 	}
    766 	/* grab */
    767 	udf_node->i_flags |= IN_LOCKED | flag;
    768 	/* debug */
    769 	udf_node->lock_fname  = fname;
    770 	udf_node->lock_lineno = lineno;
    771 
    772 	mutex_exit(&udf_node->node_mutex);
    773 }
    774 
    775 
    776 void
    777 udf_unlock_node(struct udf_node *udf_node, int flag)
    778 {
    779 	mutex_enter(&udf_node->node_mutex);
    780 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    781 	cv_broadcast(&udf_node->node_lock);
    782 	mutex_exit(&udf_node->node_mutex);
    783 }
    784 
    785 
    786 /* --------------------------------------------------------------------- */
    787 
    788 static int
    789 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    790 {
    791 	int error;
    792 
    793 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    794 			(union dscrptr **) dst);
    795 	if (!error) {
    796 		/* blank terminator blocks are not allowed here */
    797 		if (*dst == NULL)
    798 			return ENOENT;
    799 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    800 			error = ENOENT;
    801 			free(*dst, M_UDFVOLD);
    802 			*dst = NULL;
    803 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    804 		}
    805 	}
    806 
    807 	return error;
    808 }
    809 
    810 
    811 int
    812 udf_read_anchors(struct udf_mount *ump)
    813 {
    814 	struct udf_args *args = &ump->mount_args;
    815 	struct mmc_trackinfo first_track;
    816 	struct mmc_trackinfo second_track;
    817 	struct mmc_trackinfo last_track;
    818 	struct anchor_vdp **anchorsp;
    819 	uint32_t track_start;
    820 	uint32_t track_end;
    821 	uint32_t positions[4];
    822 	int first_tracknr, last_tracknr;
    823 	int error, anch, ok, first_anchor;
    824 
    825 	/* search the first and last track of the specified session */
    826 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    827 	if (!error) {
    828 		first_track.tracknr = first_tracknr;
    829 		error = udf_update_trackinfo(ump, &first_track);
    830 	}
    831 	if (!error) {
    832 		last_track.tracknr = last_tracknr;
    833 		error = udf_update_trackinfo(ump, &last_track);
    834 	}
    835 	if ((!error) && (first_tracknr != last_tracknr)) {
    836 		second_track.tracknr = first_tracknr+1;
    837 		error = udf_update_trackinfo(ump, &second_track);
    838 	}
    839 	if (error) {
    840 		printf("UDF mount: reading disc geometry failed\n");
    841 		return 0;
    842 	}
    843 
    844 	track_start = first_track.track_start;
    845 
    846 	/* `end' is not as straitforward as start. */
    847 	track_end =   last_track.track_start
    848 		    + last_track.track_size - last_track.free_blocks - 1;
    849 
    850 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    851 		/* end of track is not straitforward here */
    852 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    853 			track_end = last_track.last_recorded;
    854 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    855 			track_end = last_track.next_writable
    856 				    - ump->discinfo.link_block_penalty;
    857 	}
    858 
    859 	/* its no use reading a blank track */
    860 	first_anchor = 0;
    861 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    862 		first_anchor = 1;
    863 
    864 	/* get our packet size */
    865 	ump->packet_size = first_track.packet_size;
    866 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    867 		ump->packet_size = second_track.packet_size;
    868 
    869 	if (ump->packet_size <= 1) {
    870 		/* take max, but not bigger than 64 */
    871 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    872 		ump->packet_size = MIN(ump->packet_size, 64);
    873 	}
    874 	KASSERT(ump->packet_size >= 1);
    875 
    876 	/* read anchors start+256, start+512, end-256, end */
    877 	positions[0] = track_start+256;
    878 	positions[1] =   track_end-256;
    879 	positions[2] =   track_end;
    880 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    881 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    882 
    883 	ok = 0;
    884 	anchorsp = ump->anchors;
    885 	for (anch = first_anchor; anch < 4; anch++) {
    886 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    887 		    positions[anch]));
    888 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    889 		if (!error) {
    890 			anchorsp++;
    891 			ok++;
    892 		}
    893 	}
    894 
    895 	/* VATs are only recorded on sequential media, but initialise */
    896 	ump->first_possible_vat_location = track_start + 2;
    897 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    898 
    899 	return ok;
    900 }
    901 
    902 /* --------------------------------------------------------------------- */
    903 
    904 /* we dont try to be smart; we just record the parts */
    905 #define UDF_UPDATE_DSCR(name, dscr) \
    906 	if (name) \
    907 		free(name, M_UDFVOLD); \
    908 	name = dscr;
    909 
    910 static int
    911 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    912 {
    913 	struct part_desc *part;
    914 	uint16_t phys_part, raw_phys_part;
    915 
    916 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    917 	    udf_rw16(dscr->tag.id)));
    918 	switch (udf_rw16(dscr->tag.id)) {
    919 	case TAGID_PRI_VOL :		/* primary partition		*/
    920 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    921 		break;
    922 	case TAGID_LOGVOL :		/* logical volume		*/
    923 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    924 		break;
    925 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    926 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    927 		break;
    928 	case TAGID_IMP_VOL :		/* implementation		*/
    929 		/* XXX do we care about multiple impl. descr ? */
    930 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    931 		break;
    932 	case TAGID_PARTITION :		/* physical partition		*/
    933 		/* not much use if its not allocated */
    934 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    935 			free(dscr, M_UDFVOLD);
    936 			break;
    937 		}
    938 
    939 		/*
    940 		 * BUGALERT: some rogue implementations use random physical
    941 		 * partion numbers to break other implementations so lookup
    942 		 * the number.
    943 		 */
    944 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    945 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    946 			part = ump->partitions[phys_part];
    947 			if (part == NULL)
    948 				break;
    949 			if (udf_rw16(part->part_num) == raw_phys_part)
    950 				break;
    951 		}
    952 		if (phys_part == UDF_PARTITIONS) {
    953 			free(dscr, M_UDFVOLD);
    954 			return EINVAL;
    955 		}
    956 
    957 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
    958 		break;
    959 	case TAGID_VOL :		/* volume space extender; rare	*/
    960 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
    961 		free(dscr, M_UDFVOLD);
    962 		break;
    963 	default :
    964 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
    965 		    udf_rw16(dscr->tag.id)));
    966 		free(dscr, M_UDFVOLD);
    967 	}
    968 
    969 	return 0;
    970 }
    971 #undef UDF_UPDATE_DSCR
    972 
    973 /* --------------------------------------------------------------------- */
    974 
    975 static int
    976 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
    977 {
    978 	union dscrptr *dscr;
    979 	uint32_t sector_size, dscr_size;
    980 	int error;
    981 
    982 	sector_size = ump->discinfo.sector_size;
    983 
    984 	/* loc is sectornr, len is in bytes */
    985 	error = EIO;
    986 	while (len) {
    987 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
    988 		if (error)
    989 			return error;
    990 
    991 		/* blank block is a terminator */
    992 		if (dscr == NULL)
    993 			return 0;
    994 
    995 		/* TERM descriptor is a terminator */
    996 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
    997 			free(dscr, M_UDFVOLD);
    998 			return 0;
    999 		}
   1000 
   1001 		/* process all others */
   1002 		dscr_size = udf_tagsize(dscr, sector_size);
   1003 		error = udf_process_vds_descriptor(ump, dscr);
   1004 		if (error) {
   1005 			free(dscr, M_UDFVOLD);
   1006 			break;
   1007 		}
   1008 		assert((dscr_size % sector_size) == 0);
   1009 
   1010 		len -= dscr_size;
   1011 		loc += dscr_size / sector_size;
   1012 	}
   1013 
   1014 	return error;
   1015 }
   1016 
   1017 
   1018 int
   1019 udf_read_vds_space(struct udf_mount *ump)
   1020 {
   1021 	/* struct udf_args *args = &ump->mount_args; */
   1022 	struct anchor_vdp *anchor, *anchor2;
   1023 	size_t size;
   1024 	uint32_t main_loc, main_len;
   1025 	uint32_t reserve_loc, reserve_len;
   1026 	int error;
   1027 
   1028 	/*
   1029 	 * read in VDS space provided by the anchors; if one descriptor read
   1030 	 * fails, try the mirror sector.
   1031 	 *
   1032 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1033 	 * avoids the `compatibility features' of DirectCD that may confuse
   1034 	 * stuff completely.
   1035 	 */
   1036 
   1037 	anchor  = ump->anchors[0];
   1038 	anchor2 = ump->anchors[1];
   1039 	assert(anchor);
   1040 
   1041 	if (anchor2) {
   1042 		size = sizeof(struct extent_ad);
   1043 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1044 			anchor = anchor2;
   1045 		/* reserve is specified to be a literal copy of main */
   1046 	}
   1047 
   1048 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1049 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1050 
   1051 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1052 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1053 
   1054 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1055 	if (error) {
   1056 		printf("UDF mount: reading in reserve VDS extent\n");
   1057 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1058 	}
   1059 
   1060 	return error;
   1061 }
   1062 
   1063 /* --------------------------------------------------------------------- */
   1064 
   1065 /*
   1066  * Read in the logical volume integrity sequence pointed to by our logical
   1067  * volume descriptor. Its a sequence that can be extended using fields in the
   1068  * integrity descriptor itself. On sequential media only one is found, on
   1069  * rewritable media a sequence of descriptors can be found as a form of
   1070  * history keeping and on non sequential write-once media the chain is vital
   1071  * to allow more and more descriptors to be written. The last descriptor
   1072  * written in an extent needs to claim space for a new extent.
   1073  */
   1074 
   1075 static int
   1076 udf_retrieve_lvint(struct udf_mount *ump)
   1077 {
   1078 	union dscrptr *dscr;
   1079 	struct logvol_int_desc *lvint;
   1080 	struct udf_lvintq *trace;
   1081 	uint32_t lb_size, lbnum, len;
   1082 	int dscr_type, error, trace_len;
   1083 
   1084 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1085 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1086 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1087 
   1088 	/* clean trace */
   1089 	memset(ump->lvint_trace, 0,
   1090 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1091 
   1092 	trace_len    = 0;
   1093 	trace        = ump->lvint_trace;
   1094 	trace->start = lbnum;
   1095 	trace->end   = lbnum + len/lb_size;
   1096 	trace->pos   = 0;
   1097 	trace->wpos  = 0;
   1098 
   1099 	lvint = NULL;
   1100 	dscr  = NULL;
   1101 	error = 0;
   1102 	while (len) {
   1103 		trace->pos  = lbnum - trace->start;
   1104 		trace->wpos = trace->pos + 1;
   1105 
   1106 		/* read in our integrity descriptor */
   1107 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1108 		if (!error) {
   1109 			if (dscr == NULL) {
   1110 				trace->wpos = trace->pos;
   1111 				break;		/* empty terminates */
   1112 			}
   1113 			dscr_type = udf_rw16(dscr->tag.id);
   1114 			if (dscr_type == TAGID_TERM) {
   1115 				trace->wpos = trace->pos;
   1116 				break;		/* clean terminator */
   1117 			}
   1118 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1119 				/* fatal... corrupt disc */
   1120 				error = ENOENT;
   1121 				break;
   1122 			}
   1123 			if (lvint)
   1124 				free(lvint, M_UDFVOLD);
   1125 			lvint = &dscr->lvid;
   1126 			dscr = NULL;
   1127 		} /* else hope for the best... maybe the next is ok */
   1128 
   1129 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1130 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1131 
   1132 		/* proceed sequential */
   1133 		lbnum += 1;
   1134 		len    -= lb_size;
   1135 
   1136 		/* are we linking to a new piece? */
   1137 		if (dscr && lvint->next_extent.len) {
   1138 			len    = udf_rw32(lvint->next_extent.len);
   1139 			lbnum = udf_rw32(lvint->next_extent.loc);
   1140 
   1141 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1142 				/* IEK! segment link full... */
   1143 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1144 				error = EINVAL;
   1145 			} else {
   1146 				trace++;
   1147 				trace_len++;
   1148 
   1149 				trace->start = lbnum;
   1150 				trace->end   = lbnum + len/lb_size;
   1151 				trace->pos   = 0;
   1152 				trace->wpos  = 0;
   1153 			}
   1154 		}
   1155 	}
   1156 
   1157 	/* clean up the mess, esp. when there is an error */
   1158 	if (dscr)
   1159 		free(dscr, M_UDFVOLD);
   1160 
   1161 	if (error && lvint) {
   1162 		free(lvint, M_UDFVOLD);
   1163 		lvint = NULL;
   1164 	}
   1165 
   1166 	if (!lvint)
   1167 		error = ENOENT;
   1168 
   1169 	ump->logvol_integrity = lvint;
   1170 	return error;
   1171 }
   1172 
   1173 
   1174 static int
   1175 udf_loose_lvint_history(struct udf_mount *ump)
   1176 {
   1177 	union dscrptr **bufs, *dscr, *last_dscr;
   1178 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1179 	struct logvol_int_desc *lvint;
   1180 	uint32_t in_ext, in_pos, in_len;
   1181 	uint32_t out_ext, out_wpos, out_len;
   1182 	uint32_t lb_size, packet_size, lb_num;
   1183 	uint32_t len, start;
   1184 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1185 	int losing;
   1186 	int error;
   1187 
   1188 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1189 
   1190 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1191 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1192 
   1193 	/* search smallest extent */
   1194 	trace = &ump->lvint_trace[0];
   1195 	minext = trace->end - trace->start;
   1196 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1197 		trace = &ump->lvint_trace[ext];
   1198 		extlen = trace->end - trace->start;
   1199 		if (extlen == 0)
   1200 			break;
   1201 		minext = MIN(minext, extlen);
   1202 	}
   1203 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1204 	/* no sense wiping all */
   1205 	if (losing == minext)
   1206 		losing--;
   1207 
   1208 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1209 
   1210 	/* get buffer for pieces */
   1211 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1212 
   1213 	in_ext    = 0;
   1214 	in_pos    = losing;
   1215 	in_trace  = &ump->lvint_trace[in_ext];
   1216 	in_len    = in_trace->end - in_trace->start;
   1217 	out_ext   = 0;
   1218 	out_wpos  = 0;
   1219 	out_trace = &ump->lvint_trace[out_ext];
   1220 	out_len   = out_trace->end - out_trace->start;
   1221 
   1222 	last_dscr = NULL;
   1223 	for(;;) {
   1224 		out_trace->pos  = out_wpos;
   1225 		out_trace->wpos = out_trace->pos;
   1226 		if (in_pos >= in_len) {
   1227 			in_ext++;
   1228 			in_pos = 0;
   1229 			in_trace = &ump->lvint_trace[in_ext];
   1230 			in_len   = in_trace->end - in_trace->start;
   1231 		}
   1232 		if (out_wpos >= out_len) {
   1233 			out_ext++;
   1234 			out_wpos = 0;
   1235 			out_trace = &ump->lvint_trace[out_ext];
   1236 			out_len   = out_trace->end - out_trace->start;
   1237 		}
   1238 		/* copy overlap contents */
   1239 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1240 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1241 		if (cpy_len == 0)
   1242 			break;
   1243 
   1244 		/* copy */
   1245 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1246 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1247 			/* read in our integrity descriptor */
   1248 			lb_num = in_trace->start + in_pos + cnt;
   1249 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1250 				&dscr);
   1251 			if (error) {
   1252 				/* copy last one */
   1253 				dscr = last_dscr;
   1254 			}
   1255 			bufs[cnt] = dscr;
   1256 			if (!error) {
   1257 				if (dscr == NULL) {
   1258 					out_trace->pos  = out_wpos + cnt;
   1259 					out_trace->wpos = out_trace->pos;
   1260 					break;		/* empty terminates */
   1261 				}
   1262 				dscr_type = udf_rw16(dscr->tag.id);
   1263 				if (dscr_type == TAGID_TERM) {
   1264 					out_trace->pos  = out_wpos + cnt;
   1265 					out_trace->wpos = out_trace->pos;
   1266 					break;		/* clean terminator */
   1267 				}
   1268 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1269 					panic(  "UDF integrity sequence "
   1270 						"corrupted while mounted!\n");
   1271 				}
   1272 				last_dscr = dscr;
   1273 			}
   1274 		}
   1275 
   1276 		/* patch up if first entry was on error */
   1277 		if (bufs[0] == NULL) {
   1278 			for (cnt = 0; cnt < cpy_len; cnt++)
   1279 				if (bufs[cnt] != NULL)
   1280 					break;
   1281 			last_dscr = bufs[cnt];
   1282 			for (; cnt > 0; cnt--) {
   1283 				bufs[cnt] = last_dscr;
   1284 			}
   1285 		}
   1286 
   1287 		/* glue + write out */
   1288 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1289 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1290 			lb_num = out_trace->start + out_wpos + cnt;
   1291 			lvint  = &bufs[cnt]->lvid;
   1292 
   1293 			/* set continuation */
   1294 			len = 0;
   1295 			start = 0;
   1296 			if (out_wpos + cnt == out_len) {
   1297 				/* get continuation */
   1298 				trace = &ump->lvint_trace[out_ext+1];
   1299 				len   = trace->end - trace->start;
   1300 				start = trace->start;
   1301 			}
   1302 			lvint->next_extent.len = udf_rw32(len);
   1303 			lvint->next_extent.loc = udf_rw32(start);
   1304 
   1305 			lb_num = trace->start + trace->wpos;
   1306 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1307 				bufs[cnt], lb_num, lb_num);
   1308 			DPRINTFIF(VOLUMES, error,
   1309 				("error writing lvint lb_num\n"));
   1310 		}
   1311 
   1312 		/* free non repeating descriptors */
   1313 		last_dscr = NULL;
   1314 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1315 			if (bufs[cnt] != last_dscr)
   1316 				free(bufs[cnt], M_UDFVOLD);
   1317 			last_dscr = bufs[cnt];
   1318 		}
   1319 
   1320 		/* advance */
   1321 		in_pos   += cpy_len;
   1322 		out_wpos += cpy_len;
   1323 	}
   1324 
   1325 	free(bufs, M_TEMP);
   1326 
   1327 	return 0;
   1328 }
   1329 
   1330 
   1331 static int
   1332 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1333 {
   1334 	struct udf_lvintq *trace;
   1335 	struct timeval  now_v;
   1336 	struct timespec now_s;
   1337 	uint32_t sector;
   1338 	int logvol_integrity;
   1339 	int space, error;
   1340 
   1341 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1342 
   1343 again:
   1344 	/* get free space in last chunk */
   1345 	trace = ump->lvint_trace;
   1346 	while (trace->wpos > (trace->end - trace->start)) {
   1347 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1348 				  "wpos = %d\n", trace->start, trace->end,
   1349 				  trace->pos, trace->wpos));
   1350 		trace++;
   1351 	}
   1352 
   1353 	/* check if there is space to append */
   1354 	space = (trace->end - trace->start) - trace->wpos;
   1355 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1356 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1357 			  trace->wpos, space));
   1358 
   1359 	/* get state */
   1360 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1361 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1362 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1363 			/* don't allow this logvol to be opened */
   1364 			/* TODO extent LVINT space if possible */
   1365 			return EROFS;
   1366 		}
   1367 	}
   1368 
   1369 	if (space < 1) {
   1370 		if (lvflag & UDF_APPENDONLY_LVINT)
   1371 			return EROFS;
   1372 		/* loose history by re-writing extents */
   1373 		error = udf_loose_lvint_history(ump);
   1374 		if (error)
   1375 			return error;
   1376 		goto again;
   1377 	}
   1378 
   1379 	/* update our integrity descriptor to identify us and timestamp it */
   1380 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1381 	microtime(&now_v);
   1382 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1383 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1384 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1385 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1386 
   1387 	/* writeout integrity descriptor */
   1388 	sector = trace->start + trace->wpos;
   1389 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1390 			(union dscrptr *) ump->logvol_integrity,
   1391 			sector, sector);
   1392 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1393 	if (error)
   1394 		return error;
   1395 
   1396 	/* advance write position */
   1397 	trace->wpos++; space--;
   1398 	if (space >= 1) {
   1399 		/* append terminator */
   1400 		sector = trace->start + trace->wpos;
   1401 		error = udf_write_terminator(ump, sector);
   1402 
   1403 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1404 	}
   1405 
   1406 	space = (trace->end - trace->start) - trace->wpos;
   1407 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1408 		"space = %d\n", trace->start, trace->end, trace->pos,
   1409 		trace->wpos, space));
   1410 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1411 		"successfull\n"));
   1412 
   1413 	return error;
   1414 }
   1415 
   1416 /* --------------------------------------------------------------------- */
   1417 
   1418 static int
   1419 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1420 {
   1421 	union dscrptr        *dscr;
   1422 	/* struct udf_args *args = &ump->mount_args; */
   1423 	struct part_desc     *partd;
   1424 	struct part_hdr_desc *parthdr;
   1425 	struct udf_bitmap    *bitmap;
   1426 	uint32_t phys_part;
   1427 	uint32_t lb_num, len;
   1428 	int error, dscr_type;
   1429 
   1430 	/* unallocated space map */
   1431 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1432 		partd = ump->partitions[phys_part];
   1433 		if (partd == NULL)
   1434 			continue;
   1435 		parthdr = &partd->_impl_use.part_hdr;
   1436 
   1437 		lb_num  = udf_rw32(partd->start_loc);
   1438 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1439 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1440 		if (len == 0)
   1441 			continue;
   1442 
   1443 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1444 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1445 		if (!error && dscr) {
   1446 			/* analyse */
   1447 			dscr_type = udf_rw16(dscr->tag.id);
   1448 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1449 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1450 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1451 
   1452 				/* fill in ump->part_unalloc_bits */
   1453 				bitmap = &ump->part_unalloc_bits[phys_part];
   1454 				bitmap->blob  = (uint8_t *) dscr;
   1455 				bitmap->bits  = dscr->sbd.data;
   1456 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1457 				bitmap->pages = NULL;	/* TODO */
   1458 				bitmap->data_pos     = 0;
   1459 				bitmap->metadata_pos = 0;
   1460 			} else {
   1461 				free(dscr, M_UDFVOLD);
   1462 
   1463 				printf( "UDF mount: error reading unallocated "
   1464 					"space bitmap\n");
   1465 				return EROFS;
   1466 			}
   1467 		} else {
   1468 			/* blank not allowed */
   1469 			printf("UDF mount: blank unallocated space bitmap\n");
   1470 			return EROFS;
   1471 		}
   1472 	}
   1473 
   1474 	/* unallocated space table (not supported) */
   1475 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1476 		partd = ump->partitions[phys_part];
   1477 		if (partd == NULL)
   1478 			continue;
   1479 		parthdr = &partd->_impl_use.part_hdr;
   1480 
   1481 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1482 		if (len) {
   1483 			printf("UDF mount: space tables not supported\n");
   1484 			return EROFS;
   1485 		}
   1486 	}
   1487 
   1488 	/* freed space map */
   1489 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1490 		partd = ump->partitions[phys_part];
   1491 		if (partd == NULL)
   1492 			continue;
   1493 		parthdr = &partd->_impl_use.part_hdr;
   1494 
   1495 		/* freed space map */
   1496 		lb_num  = udf_rw32(partd->start_loc);
   1497 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1498 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1499 		if (len == 0)
   1500 			continue;
   1501 
   1502 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1503 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1504 		if (!error && dscr) {
   1505 			/* analyse */
   1506 			dscr_type = udf_rw16(dscr->tag.id);
   1507 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1508 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1509 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1510 
   1511 				/* fill in ump->part_freed_bits */
   1512 				bitmap = &ump->part_unalloc_bits[phys_part];
   1513 				bitmap->blob  = (uint8_t *) dscr;
   1514 				bitmap->bits  = dscr->sbd.data;
   1515 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1516 				bitmap->pages = NULL;	/* TODO */
   1517 				bitmap->data_pos     = 0;
   1518 				bitmap->metadata_pos = 0;
   1519 			} else {
   1520 				free(dscr, M_UDFVOLD);
   1521 
   1522 				printf( "UDF mount: error reading freed  "
   1523 					"space bitmap\n");
   1524 				return EROFS;
   1525 			}
   1526 		} else {
   1527 			/* blank not allowed */
   1528 			printf("UDF mount: blank freed space bitmap\n");
   1529 			return EROFS;
   1530 		}
   1531 	}
   1532 
   1533 	/* freed space table (not supported) */
   1534 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1535 		partd = ump->partitions[phys_part];
   1536 		if (partd == NULL)
   1537 			continue;
   1538 		parthdr = &partd->_impl_use.part_hdr;
   1539 
   1540 		len     = udf_rw32(parthdr->freed_space_table.len);
   1541 		if (len) {
   1542 			printf("UDF mount: space tables not supported\n");
   1543 			return EROFS;
   1544 		}
   1545 	}
   1546 
   1547 	return 0;
   1548 }
   1549 
   1550 
   1551 /* TODO implement async writeout */
   1552 int
   1553 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1554 {
   1555 	union dscrptr        *dscr;
   1556 	/* struct udf_args *args = &ump->mount_args; */
   1557 	struct part_desc     *partd;
   1558 	struct part_hdr_desc *parthdr;
   1559 	uint32_t phys_part;
   1560 	uint32_t lb_num, len, ptov;
   1561 	int error_all, error;
   1562 
   1563 	error_all = 0;
   1564 	/* unallocated space map */
   1565 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1566 		partd = ump->partitions[phys_part];
   1567 		if (partd == NULL)
   1568 			continue;
   1569 		parthdr = &partd->_impl_use.part_hdr;
   1570 
   1571 		ptov   = udf_rw32(partd->start_loc);
   1572 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1573 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1574 		if (len == 0)
   1575 			continue;
   1576 
   1577 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1578 			lb_num + ptov));
   1579 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1580 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1581 				(union dscrptr *) dscr,
   1582 				ptov + lb_num, lb_num);
   1583 		if (error) {
   1584 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1585 			error_all = error;
   1586 		}
   1587 	}
   1588 
   1589 	/* freed space map */
   1590 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1591 		partd = ump->partitions[phys_part];
   1592 		if (partd == NULL)
   1593 			continue;
   1594 		parthdr = &partd->_impl_use.part_hdr;
   1595 
   1596 		/* freed space map */
   1597 		ptov   = udf_rw32(partd->start_loc);
   1598 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1599 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1600 		if (len == 0)
   1601 			continue;
   1602 
   1603 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1604 			lb_num + ptov));
   1605 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1606 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1607 				(union dscrptr *) dscr,
   1608 				ptov + lb_num, lb_num);
   1609 		if (error) {
   1610 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1611 			error_all = error;
   1612 		}
   1613 	}
   1614 
   1615 	return error_all;
   1616 }
   1617 
   1618 
   1619 static int
   1620 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1621 {
   1622 	struct udf_node	     *bitmap_node;
   1623 	union dscrptr        *dscr;
   1624 	struct udf_bitmap    *bitmap;
   1625 	uint64_t inflen;
   1626 	int error, dscr_type;
   1627 
   1628 	bitmap_node = ump->metadatabitmap_node;
   1629 
   1630 	/* only read in when metadata bitmap node is read in */
   1631 	if (bitmap_node == NULL)
   1632 		return 0;
   1633 
   1634 	if (bitmap_node->fe) {
   1635 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1636 	} else {
   1637 		KASSERT(bitmap_node->efe);
   1638 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1639 	}
   1640 
   1641 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1642 		"%"PRIu64" bytes\n", inflen));
   1643 
   1644 	/* allocate space for bitmap */
   1645 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1646 	if (!dscr)
   1647 		return ENOMEM;
   1648 
   1649 	/* set vnode type to regular file or we can't read from it! */
   1650 	bitmap_node->vnode->v_type = VREG;
   1651 
   1652 	/* read in complete metadata bitmap file */
   1653 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1654 			dscr,
   1655 			inflen, 0,
   1656 			UIO_SYSSPACE,
   1657 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1658 			NULL, NULL);
   1659 	if (error) {
   1660 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1661 		goto errorout;
   1662 	}
   1663 
   1664 	/* analyse */
   1665 	dscr_type = udf_rw16(dscr->tag.id);
   1666 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1667 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1668 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1669 
   1670 		/* fill in bitmap bits */
   1671 		bitmap = &ump->metadata_unalloc_bits;
   1672 		bitmap->blob  = (uint8_t *) dscr;
   1673 		bitmap->bits  = dscr->sbd.data;
   1674 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1675 		bitmap->pages = NULL;	/* TODO */
   1676 		bitmap->data_pos     = 0;
   1677 		bitmap->metadata_pos = 0;
   1678 	} else {
   1679 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1680 		goto errorout;
   1681 	}
   1682 
   1683 	return 0;
   1684 
   1685 errorout:
   1686 	free(dscr, M_UDFVOLD);
   1687 	printf( "UDF mount: error reading unallocated "
   1688 		"space bitmap for metadata partition\n");
   1689 	return EROFS;
   1690 }
   1691 
   1692 
   1693 int
   1694 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1695 {
   1696 	struct udf_node	     *bitmap_node;
   1697 	union dscrptr        *dscr;
   1698 	uint64_t inflen, new_inflen;
   1699 	int dummy, error;
   1700 
   1701 	bitmap_node = ump->metadatabitmap_node;
   1702 
   1703 	/* only write out when metadata bitmap node is known */
   1704 	if (bitmap_node == NULL)
   1705 		return 0;
   1706 
   1707 	if (bitmap_node->fe) {
   1708 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1709 	} else {
   1710 		KASSERT(bitmap_node->efe);
   1711 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1712 	}
   1713 
   1714 	/* reduce length to zero */
   1715 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1716 	new_inflen = udf_tagsize(dscr, 1);
   1717 
   1718 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
   1719 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
   1720 
   1721 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1722 	if (error)
   1723 		printf("Error resizing metadata space bitmap\n");
   1724 
   1725 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1726 			dscr,
   1727 			new_inflen, 0,
   1728 			UIO_SYSSPACE,
   1729 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1730 			NULL, NULL);
   1731 
   1732 	bitmap_node->i_flags |= IN_MODIFIED;
   1733 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
   1734 
   1735 	error = VOP_FSYNC(bitmap_node->vnode,
   1736 			FSCRED, FSYNC_WAIT, 0, 0);
   1737 
   1738 	if (error)
   1739 		printf( "Error writing out metadata partition unalloced "
   1740 			"space bitmap!\n");
   1741 
   1742 	return error;
   1743 }
   1744 
   1745 
   1746 /* --------------------------------------------------------------------- */
   1747 
   1748 /*
   1749  * Checks if ump's vds information is correct and complete
   1750  */
   1751 
   1752 int
   1753 udf_process_vds(struct udf_mount *ump) {
   1754 	union udf_pmap *mapping;
   1755 	/* struct udf_args *args = &ump->mount_args; */
   1756 	struct logvol_int_desc *lvint;
   1757 	struct udf_logvol_info *lvinfo;
   1758 	struct part_desc *part;
   1759 	uint32_t n_pm, mt_l;
   1760 	uint8_t *pmap_pos;
   1761 	char *domain_name, *map_name;
   1762 	const char *check_name;
   1763 	char bits[128];
   1764 	int pmap_stype, pmap_size;
   1765 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1766 	int n_phys, n_virt, n_spar, n_meta;
   1767 	int len, error;
   1768 
   1769 	if (ump == NULL)
   1770 		return ENOENT;
   1771 
   1772 	/* we need at least an anchor (trivial, but for safety) */
   1773 	if (ump->anchors[0] == NULL)
   1774 		return EINVAL;
   1775 
   1776 	/* we need at least one primary and one logical volume descriptor */
   1777 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1778 		return EINVAL;
   1779 
   1780 	/* we need at least one partition descriptor */
   1781 	if (ump->partitions[0] == NULL)
   1782 		return EINVAL;
   1783 
   1784 	/* check logical volume sector size verses device sector size */
   1785 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1786 		printf("UDF mount: format violation, lb_size != sector size\n");
   1787 		return EINVAL;
   1788 	}
   1789 
   1790 	/* check domain name */
   1791 	domain_name = ump->logical_vol->domain_id.id;
   1792 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1793 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1794 		return EINVAL;
   1795 	}
   1796 
   1797 	/* retrieve logical volume integrity sequence */
   1798 	error = udf_retrieve_lvint(ump);
   1799 
   1800 	/*
   1801 	 * We need at least one logvol integrity descriptor recorded.  Note
   1802 	 * that its OK to have an open logical volume integrity here. The VAT
   1803 	 * will close/update the integrity.
   1804 	 */
   1805 	if (ump->logvol_integrity == NULL)
   1806 		return EINVAL;
   1807 
   1808 	/* process derived structures */
   1809 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1810 	lvint  = ump->logvol_integrity;
   1811 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1812 	ump->logvol_info = lvinfo;
   1813 
   1814 	/* TODO check udf versions? */
   1815 
   1816 	/*
   1817 	 * check logvol mappings: effective virt->log partmap translation
   1818 	 * check and recording of the mapping results. Saves expensive
   1819 	 * strncmp() in tight places.
   1820 	 */
   1821 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1822 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1823 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1824 	pmap_pos =  ump->logical_vol->maps;
   1825 
   1826 	if (n_pm > UDF_PMAPS) {
   1827 		printf("UDF mount: too many mappings\n");
   1828 		return EINVAL;
   1829 	}
   1830 
   1831 	/* count types and set partition numbers */
   1832 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1833 	n_phys = n_virt = n_spar = n_meta = 0;
   1834 	for (log_part = 0; log_part < n_pm; log_part++) {
   1835 		mapping = (union udf_pmap *) pmap_pos;
   1836 		pmap_stype = pmap_pos[0];
   1837 		pmap_size  = pmap_pos[1];
   1838 		switch (pmap_stype) {
   1839 		case 1:	/* physical mapping */
   1840 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1841 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1842 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1843 			n_phys++;
   1844 			ump->data_part = log_part;
   1845 			ump->node_part = log_part;
   1846 			ump->fids_part = log_part;
   1847 			break;
   1848 		case 2: /* virtual/sparable/meta mapping */
   1849 			map_name  = mapping->pm2.part_id.id;
   1850 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1851 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1852 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1853 			len = UDF_REGID_ID_SIZE;
   1854 
   1855 			check_name = "*UDF Virtual Partition";
   1856 			if (strncmp(map_name, check_name, len) == 0) {
   1857 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1858 				n_virt++;
   1859 				ump->node_part = log_part;
   1860 				break;
   1861 			}
   1862 			check_name = "*UDF Sparable Partition";
   1863 			if (strncmp(map_name, check_name, len) == 0) {
   1864 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1865 				n_spar++;
   1866 				ump->data_part = log_part;
   1867 				ump->node_part = log_part;
   1868 				ump->fids_part = log_part;
   1869 				break;
   1870 			}
   1871 			check_name = "*UDF Metadata Partition";
   1872 			if (strncmp(map_name, check_name, len) == 0) {
   1873 				pmap_type = UDF_VTOP_TYPE_META;
   1874 				n_meta++;
   1875 				ump->node_part = log_part;
   1876 				ump->fids_part = log_part;
   1877 				break;
   1878 			}
   1879 			break;
   1880 		default:
   1881 			return EINVAL;
   1882 		}
   1883 
   1884 		/*
   1885 		 * BUGALERT: some rogue implementations use random physical
   1886 		 * partion numbers to break other implementations so lookup
   1887 		 * the number.
   1888 		 */
   1889 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1890 			part = ump->partitions[phys_part];
   1891 			if (part == NULL)
   1892 				continue;
   1893 			if (udf_rw16(part->part_num) == raw_phys_part)
   1894 				break;
   1895 		}
   1896 
   1897 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1898 		    raw_phys_part, phys_part, pmap_type));
   1899 
   1900 		if (phys_part == UDF_PARTITIONS)
   1901 			return EINVAL;
   1902 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1903 			return EINVAL;
   1904 
   1905 		ump->vtop   [log_part] = phys_part;
   1906 		ump->vtop_tp[log_part] = pmap_type;
   1907 
   1908 		pmap_pos += pmap_size;
   1909 	}
   1910 	/* not winning the beauty contest */
   1911 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1912 
   1913 	/* test some basic UDF assertions/requirements */
   1914 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1915 		return EINVAL;
   1916 
   1917 	if (n_virt) {
   1918 		if ((n_phys == 0) || n_spar || n_meta)
   1919 			return EINVAL;
   1920 	}
   1921 	if (n_spar + n_phys == 0)
   1922 		return EINVAL;
   1923 
   1924 	/* select allocation type for each logical partition */
   1925 	for (log_part = 0; log_part < n_pm; log_part++) {
   1926 		maps_on = ump->vtop[log_part];
   1927 		switch (ump->vtop_tp[log_part]) {
   1928 		case UDF_VTOP_TYPE_PHYS :
   1929 			assert(maps_on == log_part);
   1930 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1931 			break;
   1932 		case UDF_VTOP_TYPE_VIRT :
   1933 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   1934 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1935 			break;
   1936 		case UDF_VTOP_TYPE_SPARABLE :
   1937 			assert(maps_on == log_part);
   1938 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1939 			break;
   1940 		case UDF_VTOP_TYPE_META :
   1941 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   1942 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1943 				/* special case for UDF 2.60 */
   1944 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   1945 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1946 			}
   1947 			break;
   1948 		default:
   1949 			panic("bad alloction type in udf's ump->vtop\n");
   1950 		}
   1951 	}
   1952 
   1953 	/* determine logical volume open/closure actions */
   1954 	if (n_virt) {
   1955 		ump->lvopen  = 0;
   1956 		if (ump->discinfo.last_session_state == MMC_STATE_CLOSED)
   1957 			ump->lvopen |= UDF_OPEN_SESSION ;
   1958 		ump->lvclose = UDF_WRITE_VAT;
   1959 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   1960 			ump->lvclose |= UDF_CLOSE_SESSION;
   1961 	} else {
   1962 		/* `normal' rewritable or non sequential media */
   1963 		ump->lvopen  = UDF_WRITE_LVINT;
   1964 		ump->lvclose = UDF_WRITE_LVINT;
   1965 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   1966 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   1967 	}
   1968 
   1969 	/*
   1970 	 * Determine sheduler error behaviour. For virtual partions, update
   1971 	 * the trackinfo; for sparable partitions replace a whole block on the
   1972 	 * sparable table. Allways requeue.
   1973 	 */
   1974 	ump->lvreadwrite = 0;
   1975 	if (n_virt)
   1976 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   1977 	if (n_spar)
   1978 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   1979 
   1980 	/*
   1981 	 * Select our sheduler
   1982 	 */
   1983 	ump->strategy = &udf_strat_rmw;
   1984 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   1985 		ump->strategy = &udf_strat_sequential;
   1986 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   1987 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   1988 			ump->strategy = &udf_strat_direct;
   1989 	if (n_spar)
   1990 		ump->strategy = &udf_strat_rmw;
   1991 
   1992 #if 0
   1993 	/* read-only access won't benefit from the other shedulers */
   1994 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   1995 		ump->strategy = &udf_strat_direct;
   1996 #endif
   1997 
   1998 	/* print results */
   1999 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   2000 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2001 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2002 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2003 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2004 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2005 
   2006 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
   2007 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2008 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
   2009 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2010 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
   2011 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2012 
   2013 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2014 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2015 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2016 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2017 
   2018 	/* signal its OK for now */
   2019 	return 0;
   2020 }
   2021 
   2022 /* --------------------------------------------------------------------- */
   2023 
   2024 /*
   2025  * Update logical volume name in all structures that keep a record of it. We
   2026  * use memmove since each of them might be specified as a source.
   2027  *
   2028  * Note that it doesn't update the VAT structure!
   2029  */
   2030 
   2031 static void
   2032 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2033 {
   2034 	struct logvol_desc     *lvd = NULL;
   2035 	struct fileset_desc    *fsd = NULL;
   2036 	struct udf_lv_info     *lvi = NULL;
   2037 
   2038 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2039 	lvd = ump->logical_vol;
   2040 	fsd = ump->fileset_desc;
   2041 	if (ump->implementation)
   2042 		lvi = &ump->implementation->_impl_use.lv_info;
   2043 
   2044 	/* logvol's id might be specified as origional so use memmove here */
   2045 	memmove(lvd->logvol_id, logvol_id, 128);
   2046 	if (fsd)
   2047 		memmove(fsd->logvol_id, logvol_id, 128);
   2048 	if (lvi)
   2049 		memmove(lvi->logvol_id, logvol_id, 128);
   2050 }
   2051 
   2052 /* --------------------------------------------------------------------- */
   2053 
   2054 void
   2055 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2056 	uint32_t sector)
   2057 {
   2058 	assert(ump->logical_vol);
   2059 
   2060 	tag->id 		= udf_rw16(tagid);
   2061 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2062 	tag->cksum		= 0;
   2063 	tag->reserved		= 0;
   2064 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2065 	tag->tag_loc            = udf_rw32(sector);
   2066 }
   2067 
   2068 
   2069 uint64_t
   2070 udf_advance_uniqueid(struct udf_mount *ump)
   2071 {
   2072 	uint64_t unique_id;
   2073 
   2074 	mutex_enter(&ump->logvol_mutex);
   2075 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2076 	if (unique_id < 0x10)
   2077 		unique_id = 0x10;
   2078 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2079 	mutex_exit(&ump->logvol_mutex);
   2080 
   2081 	return unique_id;
   2082 }
   2083 
   2084 
   2085 static void
   2086 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2087 {
   2088 	struct udf_mount *ump = udf_node->ump;
   2089 	uint32_t num_dirs, num_files;
   2090 	int udf_file_type;
   2091 
   2092 	/* get file type */
   2093 	if (udf_node->fe) {
   2094 		udf_file_type = udf_node->fe->icbtag.file_type;
   2095 	} else {
   2096 		udf_file_type = udf_node->efe->icbtag.file_type;
   2097 	}
   2098 
   2099 	/* adjust file count */
   2100 	mutex_enter(&ump->allocate_mutex);
   2101 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2102 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2103 		ump->logvol_info->num_directories =
   2104 			udf_rw32((num_dirs + sign));
   2105 	} else {
   2106 		num_files = udf_rw32(ump->logvol_info->num_files);
   2107 		ump->logvol_info->num_files =
   2108 			udf_rw32((num_files + sign));
   2109 	}
   2110 	mutex_exit(&ump->allocate_mutex);
   2111 }
   2112 
   2113 
   2114 void
   2115 udf_osta_charset(struct charspec *charspec)
   2116 {
   2117 	bzero(charspec, sizeof(struct charspec));
   2118 	charspec->type = 0;
   2119 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2120 }
   2121 
   2122 
   2123 /* first call udf_set_regid and then the suffix */
   2124 void
   2125 udf_set_regid(struct regid *regid, char const *name)
   2126 {
   2127 	bzero(regid, sizeof(struct regid));
   2128 	regid->flags    = 0;		/* not dirty and not protected */
   2129 	strcpy((char *) regid->id, name);
   2130 }
   2131 
   2132 
   2133 void
   2134 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2135 {
   2136 	uint16_t *ver;
   2137 
   2138 	ver  = (uint16_t *) regid->id_suffix;
   2139 	*ver = ump->logvol_info->min_udf_readver;
   2140 }
   2141 
   2142 
   2143 void
   2144 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2145 {
   2146 	uint16_t *ver;
   2147 
   2148 	ver  = (uint16_t *) regid->id_suffix;
   2149 	*ver = ump->logvol_info->min_udf_readver;
   2150 
   2151 	regid->id_suffix[2] = 4;	/* unix */
   2152 	regid->id_suffix[3] = 8;	/* NetBSD */
   2153 }
   2154 
   2155 
   2156 void
   2157 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2158 {
   2159 	regid->id_suffix[0] = 4;	/* unix */
   2160 	regid->id_suffix[1] = 8;	/* NetBSD */
   2161 }
   2162 
   2163 
   2164 void
   2165 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2166 {
   2167 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2168 	regid->id_suffix[1] = APP_VERSION_SUB;
   2169 }
   2170 
   2171 static int
   2172 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2173 	struct long_ad *parent, uint64_t unique_id)
   2174 {
   2175 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2176 	int fidsize = 40;
   2177 
   2178 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2179 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2180 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2181 	fid->icb = *parent;
   2182 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2183 	fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH;
   2184 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2185 
   2186 	return fidsize;
   2187 }
   2188 
   2189 /* --------------------------------------------------------------------- */
   2190 
   2191 /*
   2192  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2193  *
   2194  * (a) inside the file's (e)fe in the length of the extended attribute area
   2195  * before the allocation descriptors/filedata
   2196  *
   2197  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2198  *
   2199  * (c) in the e(fe)'s associated stream directory that can hold various
   2200  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2201  * for NT/Unix ACL's and OS/2 attributes.
   2202  *
   2203  * NOTE: Extended attributes are read randomly but allways written
   2204  * *atomicaly*. For ACL's this interface is propably different but not known
   2205  * to me yet.
   2206  *
   2207  * Order of extended attributes in a space :
   2208  *   ECMA 167 EAs
   2209  *   Non block aligned Implementation Use EAs
   2210  *   Block aligned Implementation Use EAs
   2211  *   Application Use EAs
   2212  */
   2213 
   2214 static int
   2215 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2216 {
   2217 	uint16_t   *spos;
   2218 
   2219 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2220 		/* checksum valid? */
   2221 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2222 		spos = (uint16_t *) implext->data;
   2223 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2224 			return EINVAL;
   2225 	}
   2226 	return 0;
   2227 }
   2228 
   2229 static void
   2230 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2231 {
   2232 	uint16_t   *spos;
   2233 
   2234 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2235 		/* set checksum */
   2236 		spos = (uint16_t *) implext->data;
   2237 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2238 	}
   2239 }
   2240 
   2241 
   2242 int
   2243 udf_extattr_search_intern(struct udf_node *node,
   2244 	uint32_t sattr, char const *sattrname,
   2245 	uint32_t *offsetp, uint32_t *lengthp)
   2246 {
   2247 	struct extattrhdr_desc    *eahdr;
   2248 	struct extattr_entry      *attrhdr;
   2249 	struct impl_extattr_entry *implext;
   2250 	uint32_t    offset, a_l, sector_size;
   2251 	 int32_t    l_ea;
   2252 	uint8_t    *pos;
   2253 	int         error;
   2254 
   2255 	/* get mountpoint */
   2256 	sector_size = node->ump->discinfo.sector_size;
   2257 
   2258 	/* get information from fe/efe */
   2259 	if (node->fe) {
   2260 		l_ea  = udf_rw32(node->fe->l_ea);
   2261 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2262 	} else {
   2263 		assert(node->efe);
   2264 		l_ea  = udf_rw32(node->efe->l_ea);
   2265 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2266 	}
   2267 
   2268 	/* something recorded here? */
   2269 	if (l_ea == 0)
   2270 		return ENOENT;
   2271 
   2272 	/* check extended attribute tag; what to do if it fails? */
   2273 	error = udf_check_tag(eahdr);
   2274 	if (error)
   2275 		return EINVAL;
   2276 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2277 		return EINVAL;
   2278 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2279 	if (error)
   2280 		return EINVAL;
   2281 
   2282 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2283 
   2284 	/* looking for Ecma-167 attributes? */
   2285 	offset = sizeof(struct extattrhdr_desc);
   2286 
   2287 	/* looking for either implemenation use or application use */
   2288 	if (sattr == 2048) {				/* [4/48.10.8] */
   2289 		offset = udf_rw32(eahdr->impl_attr_loc);
   2290 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2291 			return ENOENT;
   2292 	}
   2293 	if (sattr == 65536) {				/* [4/48.10.9] */
   2294 		offset = udf_rw32(eahdr->appl_attr_loc);
   2295 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2296 			return ENOENT;
   2297 	}
   2298 
   2299 	/* paranoia check offset and l_ea */
   2300 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2301 		return EINVAL;
   2302 
   2303 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2304 
   2305 	/* find our extended attribute  */
   2306 	l_ea -= offset;
   2307 	pos = (uint8_t *) eahdr + offset;
   2308 
   2309 	while (l_ea >= sizeof(struct extattr_entry)) {
   2310 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2311 		attrhdr = (struct extattr_entry *) pos;
   2312 		implext = (struct impl_extattr_entry *) pos;
   2313 
   2314 		/* get complete attribute length and check for roque values */
   2315 		a_l = udf_rw32(attrhdr->a_l);
   2316 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2317 				udf_rw32(attrhdr->type),
   2318 				attrhdr->subtype, a_l, l_ea));
   2319 		if ((a_l == 0) || (a_l > l_ea))
   2320 			return EINVAL;
   2321 
   2322 		if (attrhdr->type != sattr)
   2323 			goto next_attribute;
   2324 
   2325 		/* we might have found it! */
   2326 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2327 			*offsetp = offset;
   2328 			*lengthp = a_l;
   2329 			return 0;		/* success */
   2330 		}
   2331 
   2332 		/*
   2333 		 * Implementation use and application use extended attributes
   2334 		 * have a name to identify. They share the same structure only
   2335 		 * UDF implementation use extended attributes have a checksum
   2336 		 * we need to check
   2337 		 */
   2338 
   2339 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2340 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2341 			/* we have found our appl/implementation attribute */
   2342 			*offsetp = offset;
   2343 			*lengthp = a_l;
   2344 			return 0;		/* success */
   2345 		}
   2346 
   2347 next_attribute:
   2348 		/* next attribute */
   2349 		pos    += a_l;
   2350 		l_ea   -= a_l;
   2351 		offset += a_l;
   2352 	}
   2353 	/* not found */
   2354 	return ENOENT;
   2355 }
   2356 
   2357 
   2358 static void
   2359 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2360 	struct extattr_entry *extattr)
   2361 {
   2362 	struct file_entry      *fe;
   2363 	struct extfile_entry   *efe;
   2364 	struct extattrhdr_desc *extattrhdr;
   2365 	struct impl_extattr_entry *implext;
   2366 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2367 	uint32_t *l_eap, l_ad;
   2368 	uint16_t *spos;
   2369 	uint8_t *bpos, *data;
   2370 
   2371 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2372 		fe    = &dscr->fe;
   2373 		data  = fe->data;
   2374 		l_eap = &fe->l_ea;
   2375 		l_ad  = udf_rw32(fe->l_ad);
   2376 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2377 		efe   = &dscr->efe;
   2378 		data  = efe->data;
   2379 		l_eap = &efe->l_ea;
   2380 		l_ad  = udf_rw32(efe->l_ad);
   2381 	} else {
   2382 		panic("Bad tag passed to udf_extattr_insert_internal");
   2383 	}
   2384 
   2385 	/* can't append already written to file descriptors yet */
   2386 	assert(l_ad == 0);
   2387 
   2388 	/* should have a header! */
   2389 	extattrhdr = (struct extattrhdr_desc *) data;
   2390 	l_ea = udf_rw32(*l_eap);
   2391 	if (l_ea == 0) {
   2392 		/* create empty extended attribute header */
   2393 		exthdr_len = sizeof(struct extattrhdr_desc);
   2394 
   2395 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2396 			/* loc */ 0);
   2397 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2398 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2399 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2400 
   2401 		/* record extended attribute header length */
   2402 		l_ea = exthdr_len;
   2403 		*l_eap = udf_rw32(l_ea);
   2404 	}
   2405 
   2406 	/* extract locations */
   2407 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2408 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2409 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2410 		impl_attr_loc = l_ea;
   2411 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2412 		appl_attr_loc = l_ea;
   2413 
   2414 	/* Ecma 167 EAs */
   2415 	if (udf_rw32(extattr->type) < 2048) {
   2416 		assert(impl_attr_loc == l_ea);
   2417 		assert(appl_attr_loc == l_ea);
   2418 	}
   2419 
   2420 	/* implementation use extended attributes */
   2421 	if (udf_rw32(extattr->type) == 2048) {
   2422 		assert(appl_attr_loc == l_ea);
   2423 
   2424 		/* calculate and write extended attribute header checksum */
   2425 		implext = (struct impl_extattr_entry *) extattr;
   2426 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2427 		spos = (uint16_t *) implext->data;
   2428 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2429 	}
   2430 
   2431 	/* application use extended attributes */
   2432 	assert(udf_rw32(extattr->type) != 65536);
   2433 	assert(appl_attr_loc == l_ea);
   2434 
   2435 	/* append the attribute at the end of the current space */
   2436 	bpos = data + udf_rw32(*l_eap);
   2437 	a_l  = udf_rw32(extattr->a_l);
   2438 
   2439 	/* update impl. attribute locations */
   2440 	if (udf_rw32(extattr->type) < 2048) {
   2441 		impl_attr_loc = l_ea + a_l;
   2442 		appl_attr_loc = l_ea + a_l;
   2443 	}
   2444 	if (udf_rw32(extattr->type) == 2048) {
   2445 		appl_attr_loc = l_ea + a_l;
   2446 	}
   2447 
   2448 	/* copy and advance */
   2449 	memcpy(bpos, extattr, a_l);
   2450 	l_ea += a_l;
   2451 	*l_eap = udf_rw32(l_ea);
   2452 
   2453 	/* do the `dance` again backwards */
   2454 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2455 		if (impl_attr_loc == l_ea)
   2456 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2457 		if (appl_attr_loc == l_ea)
   2458 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2459 	}
   2460 
   2461 	/* store offsets */
   2462 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2463 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2464 }
   2465 
   2466 
   2467 /* --------------------------------------------------------------------- */
   2468 
   2469 static int
   2470 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2471 {
   2472 	struct udf_mount       *ump;
   2473 	struct udf_logvol_info *lvinfo;
   2474 	struct impl_extattr_entry     *implext;
   2475 	struct vatlvext_extattr_entry  lvext;
   2476 	const char *extstr = "*UDF VAT LVExtension";
   2477 	uint64_t    vat_uniqueid;
   2478 	uint32_t    offset, a_l;
   2479 	uint8_t    *ea_start, *lvextpos;
   2480 	int         error;
   2481 
   2482 	/* get mountpoint and lvinfo */
   2483 	ump    = vat_node->ump;
   2484 	lvinfo = ump->logvol_info;
   2485 
   2486 	/* get information from fe/efe */
   2487 	if (vat_node->fe) {
   2488 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2489 		ea_start     = vat_node->fe->data;
   2490 	} else {
   2491 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2492 		ea_start     = vat_node->efe->data;
   2493 	}
   2494 
   2495 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2496 	if (error)
   2497 		return error;
   2498 
   2499 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2500 	error = udf_impl_extattr_check(implext);
   2501 	if (error)
   2502 		return error;
   2503 
   2504 	/* paranoia */
   2505 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2506 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2507 		return EINVAL;
   2508 	}
   2509 
   2510 	/*
   2511 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2512 	 * bug in the specification it might not be word aligned so
   2513 	 * copy first to avoid panics on some machines (!!)
   2514 	 */
   2515 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2516 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2517 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2518 
   2519 	/* check if it was updated the last time */
   2520 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2521 		lvinfo->num_files       = lvext.num_files;
   2522 		lvinfo->num_directories = lvext.num_directories;
   2523 		udf_update_logvolname(ump, lvext.logvol_id);
   2524 	} else {
   2525 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2526 		/* replace VAT LVExt by free space EA */
   2527 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2528 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2529 		udf_calc_impl_extattr_checksum(implext);
   2530 	}
   2531 
   2532 	return 0;
   2533 }
   2534 
   2535 
   2536 static int
   2537 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2538 {
   2539 	struct udf_mount       *ump;
   2540 	struct udf_logvol_info *lvinfo;
   2541 	struct impl_extattr_entry     *implext;
   2542 	struct vatlvext_extattr_entry  lvext;
   2543 	const char *extstr = "*UDF VAT LVExtension";
   2544 	uint64_t    vat_uniqueid;
   2545 	uint32_t    offset, a_l;
   2546 	uint8_t    *ea_start, *lvextpos;
   2547 	int         error;
   2548 
   2549 	/* get mountpoint and lvinfo */
   2550 	ump    = vat_node->ump;
   2551 	lvinfo = ump->logvol_info;
   2552 
   2553 	/* get information from fe/efe */
   2554 	if (vat_node->fe) {
   2555 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2556 		ea_start     = vat_node->fe->data;
   2557 	} else {
   2558 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2559 		ea_start     = vat_node->efe->data;
   2560 	}
   2561 
   2562 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2563 	if (error)
   2564 		return error;
   2565 	/* found, it existed */
   2566 
   2567 	/* paranoia */
   2568 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2569 	error = udf_impl_extattr_check(implext);
   2570 	if (error) {
   2571 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2572 		return error;
   2573 	}
   2574 	/* it is correct */
   2575 
   2576 	/*
   2577 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2578 	 * bug in the specification it might not be word aligned so
   2579 	 * copy first to avoid panics on some machines (!!)
   2580 	 */
   2581 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2582 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2583 
   2584 	lvext.unique_id_chk   = vat_uniqueid;
   2585 	lvext.num_files       = lvinfo->num_files;
   2586 	lvext.num_directories = lvinfo->num_directories;
   2587 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2588 
   2589 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2590 
   2591 	return 0;
   2592 }
   2593 
   2594 /* --------------------------------------------------------------------- */
   2595 
   2596 int
   2597 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2598 {
   2599 	struct udf_mount *ump = vat_node->ump;
   2600 
   2601 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2602 		return EINVAL;
   2603 
   2604 	memcpy(blob, ump->vat_table + offset, size);
   2605 	return 0;
   2606 }
   2607 
   2608 int
   2609 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2610 {
   2611 	struct udf_mount *ump = vat_node->ump;
   2612 	uint32_t offset_high;
   2613 	uint8_t *new_vat_table;
   2614 
   2615 	/* extent VAT allocation if needed */
   2616 	offset_high = offset + size;
   2617 	if (offset_high >= ump->vat_table_alloc_len) {
   2618 		/* realloc */
   2619 		new_vat_table = realloc(ump->vat_table,
   2620 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2621 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2622 		if (!new_vat_table) {
   2623 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2624 			return ENOMEM;
   2625 		}
   2626 		ump->vat_table = new_vat_table;
   2627 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2628 	}
   2629 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2630 
   2631 	memcpy(ump->vat_table + offset, blob, size);
   2632 	return 0;
   2633 }
   2634 
   2635 /* --------------------------------------------------------------------- */
   2636 
   2637 /* TODO support previous VAT location writeout */
   2638 static int
   2639 udf_update_vat_descriptor(struct udf_mount *ump)
   2640 {
   2641 	struct udf_node *vat_node = ump->vat_node;
   2642 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2643 	struct icb_tag *icbtag;
   2644 	struct udf_oldvat_tail *oldvat_tl;
   2645 	struct udf_vat *vat;
   2646 	uint64_t unique_id;
   2647 	uint32_t lb_size;
   2648 	uint8_t *raw_vat;
   2649 	int filetype, error;
   2650 
   2651 	KASSERT(vat_node);
   2652 	KASSERT(lvinfo);
   2653 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2654 
   2655 	/* get our new unique_id */
   2656 	unique_id = udf_advance_uniqueid(ump);
   2657 
   2658 	/* get information from fe/efe */
   2659 	if (vat_node->fe) {
   2660 		icbtag    = &vat_node->fe->icbtag;
   2661 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2662 	} else {
   2663 		icbtag = &vat_node->efe->icbtag;
   2664 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2665 	}
   2666 
   2667 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2668 	filetype = icbtag->file_type;
   2669 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2670 
   2671 	/* allocate piece to process head or tail of VAT file */
   2672 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2673 
   2674 	if (filetype == 0) {
   2675 		/*
   2676 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2677 		 * lvint if present.
   2678 		 */
   2679 		udf_update_vat_extattr_from_lvid(vat_node);
   2680 
   2681 		/* setup identifying regid */
   2682 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2683 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2684 
   2685 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2686 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2687 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2688 
   2689 		/* write out new tail of virtual allocation table file */
   2690 		error = udf_vat_write(vat_node, raw_vat,
   2691 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2692 	} else {
   2693 		/* compose the VAT2 header */
   2694 		vat = (struct udf_vat *) raw_vat;
   2695 		memset(vat, 0, sizeof(struct udf_vat));
   2696 
   2697 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2698 		vat->impl_use_len     = udf_rw16(0);
   2699 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2700 		vat->prev_vat         = udf_rw32(0xffffffff);
   2701 		vat->num_files        = lvinfo->num_files;
   2702 		vat->num_directories  = lvinfo->num_directories;
   2703 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2704 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2705 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2706 
   2707 		error = udf_vat_write(vat_node, raw_vat,
   2708 			sizeof(struct udf_vat), 0);
   2709 	}
   2710 	free(raw_vat, M_TEMP);
   2711 
   2712 	return error;	/* success! */
   2713 }
   2714 
   2715 
   2716 int
   2717 udf_writeout_vat(struct udf_mount *ump)
   2718 {
   2719 	struct udf_node *vat_node = ump->vat_node;
   2720 	uint32_t vat_length;
   2721 	int error;
   2722 
   2723 	KASSERT(vat_node);
   2724 
   2725 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2726 
   2727 	mutex_enter(&ump->allocate_mutex);
   2728 	udf_update_vat_descriptor(ump);
   2729 
   2730 	/* write out the VAT contents ; TODO intelligent writing */
   2731 	vat_length = ump->vat_table_len;
   2732 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2733 		ump->vat_table, ump->vat_table_len, 0,
   2734 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
   2735 	if (error) {
   2736 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2737 		goto out;
   2738 	}
   2739 
   2740 	mutex_exit(&ump->allocate_mutex);
   2741 
   2742 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2743 	error = VOP_FSYNC(ump->vat_node->vnode,
   2744 			FSCRED, FSYNC_WAIT, 0, 0);
   2745 	if (error)
   2746 		printf("udf_writeout_vat: error writing VAT node!\n");
   2747 out:
   2748 
   2749 	return error;
   2750 }
   2751 
   2752 /* --------------------------------------------------------------------- */
   2753 
   2754 /*
   2755  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2756  * descriptor. If OK, read in complete VAT file.
   2757  */
   2758 
   2759 static int
   2760 udf_check_for_vat(struct udf_node *vat_node)
   2761 {
   2762 	struct udf_mount *ump;
   2763 	struct icb_tag   *icbtag;
   2764 	struct timestamp *mtime;
   2765 	struct udf_vat   *vat;
   2766 	struct udf_oldvat_tail *oldvat_tl;
   2767 	struct udf_logvol_info *lvinfo;
   2768 	uint64_t  unique_id;
   2769 	uint32_t  vat_length;
   2770 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2771 	uint32_t  sector_size;
   2772 	uint32_t *raw_vat;
   2773 	uint8_t  *vat_table;
   2774 	char     *regid_name;
   2775 	int filetype;
   2776 	int error;
   2777 
   2778 	/* vat_length is really 64 bits though impossible */
   2779 
   2780 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2781 	if (!vat_node)
   2782 		return ENOENT;
   2783 
   2784 	/* get mount info */
   2785 	ump = vat_node->ump;
   2786 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2787 
   2788 	/* check assertions */
   2789 	assert(vat_node->fe || vat_node->efe);
   2790 	assert(ump->logvol_integrity);
   2791 
   2792 	/* set vnode type to regular file or we can't read from it! */
   2793 	vat_node->vnode->v_type = VREG;
   2794 
   2795 	/* get information from fe/efe */
   2796 	if (vat_node->fe) {
   2797 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2798 		icbtag    = &vat_node->fe->icbtag;
   2799 		mtime     = &vat_node->fe->mtime;
   2800 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2801 	} else {
   2802 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2803 		icbtag = &vat_node->efe->icbtag;
   2804 		mtime  = &vat_node->efe->mtime;
   2805 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2806 	}
   2807 
   2808 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2809 	filetype = icbtag->file_type;
   2810 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2811 		return ENOENT;
   2812 
   2813 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2814 
   2815 	vat_table_alloc_len =
   2816 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2817 			* UDF_VAT_CHUNKSIZE;
   2818 
   2819 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2820 		M_CANFAIL | M_WAITOK);
   2821 	if (vat_table == NULL) {
   2822 		printf("allocation of %d bytes failed for VAT\n",
   2823 			vat_table_alloc_len);
   2824 		return ENOMEM;
   2825 	}
   2826 
   2827 	/* allocate piece to read in head or tail of VAT file */
   2828 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2829 
   2830 	/*
   2831 	 * check contents of the file if its the old 1.50 VAT table format.
   2832 	 * Its notoriously broken and allthough some implementations support an
   2833 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2834 	 * to be useable since a lot of implementations don't maintain it.
   2835 	 */
   2836 	lvinfo = ump->logvol_info;
   2837 
   2838 	if (filetype == 0) {
   2839 		/* definition */
   2840 		vat_offset  = 0;
   2841 		vat_entries = (vat_length-36)/4;
   2842 
   2843 		/* read in tail of virtual allocation table file */
   2844 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2845 				(uint8_t *) raw_vat,
   2846 				sizeof(struct udf_oldvat_tail),
   2847 				vat_entries * 4,
   2848 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2849 				NULL, NULL);
   2850 		if (error)
   2851 			goto out;
   2852 
   2853 		/* check 1.50 VAT */
   2854 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2855 		regid_name = (char *) oldvat_tl->id.id;
   2856 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2857 		if (error) {
   2858 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2859 			error = ENOENT;
   2860 			goto out;
   2861 		}
   2862 
   2863 		/*
   2864 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2865 		 * if present.
   2866 		 */
   2867 		udf_update_lvid_from_vat_extattr(vat_node);
   2868 	} else {
   2869 		/* read in head of virtual allocation table file */
   2870 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2871 				(uint8_t *) raw_vat,
   2872 				sizeof(struct udf_vat), 0,
   2873 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2874 				NULL, NULL);
   2875 		if (error)
   2876 			goto out;
   2877 
   2878 		/* definition */
   2879 		vat = (struct udf_vat *) raw_vat;
   2880 		vat_offset  = vat->header_len;
   2881 		vat_entries = (vat_length - vat_offset)/4;
   2882 
   2883 		assert(lvinfo);
   2884 		lvinfo->num_files        = vat->num_files;
   2885 		lvinfo->num_directories  = vat->num_directories;
   2886 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2887 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2888 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2889 
   2890 		udf_update_logvolname(ump, vat->logvol_id);
   2891 	}
   2892 
   2893 	/* read in complete VAT file */
   2894 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2895 			vat_table,
   2896 			vat_length, 0,
   2897 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2898 			NULL, NULL);
   2899 	if (error)
   2900 		printf("read in of complete VAT file failed (error %d)\n",
   2901 			error);
   2902 	if (error)
   2903 		goto out;
   2904 
   2905 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2906 	ump->logvol_integrity->lvint_next_unique_id = unique_id;
   2907 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2908 	ump->logvol_integrity->time           = *mtime;
   2909 
   2910 	ump->vat_table_len = vat_length;
   2911 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2912 	ump->vat_table   = vat_table;
   2913 	ump->vat_offset  = vat_offset;
   2914 	ump->vat_entries = vat_entries;
   2915 	ump->vat_last_free_lb = 0;		/* start at beginning */
   2916 
   2917 out:
   2918 	if (error) {
   2919 		if (vat_table)
   2920 			free(vat_table, M_UDFVOLD);
   2921 	}
   2922 	free(raw_vat, M_TEMP);
   2923 
   2924 	return error;
   2925 }
   2926 
   2927 /* --------------------------------------------------------------------- */
   2928 
   2929 static int
   2930 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   2931 {
   2932 	struct udf_node *vat_node;
   2933 	struct long_ad	 icb_loc;
   2934 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   2935 	int error;
   2936 
   2937 	/* mapping info not needed */
   2938 	mapping = mapping;
   2939 
   2940 	vat_loc = ump->last_possible_vat_location;
   2941 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   2942 
   2943 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   2944 		vat_loc, early_vat_loc));
   2945 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   2946 	late_vat_loc  = vat_loc + 1024;
   2947 
   2948 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   2949 		vat_loc, early_vat_loc));
   2950 
   2951 	/* start looking from the end of the range */
   2952 	do {
   2953 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   2954 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   2955 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   2956 
   2957 		error = udf_get_node(ump, &icb_loc, &vat_node);
   2958 		if (!error) {
   2959 			error = udf_check_for_vat(vat_node);
   2960 			DPRINTFIF(VOLUMES, !error,
   2961 				("VAT accepted at %d\n", vat_loc));
   2962 			if (!error)
   2963 				break;
   2964 		}
   2965 		if (vat_node) {
   2966 			vput(vat_node->vnode);
   2967 			vat_node = NULL;
   2968 		}
   2969 		vat_loc--;	/* walk backwards */
   2970 	} while (vat_loc >= early_vat_loc);
   2971 
   2972 	/* keep our VAT node around */
   2973 	if (vat_node) {
   2974 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   2975 		ump->vat_node = vat_node;
   2976 	}
   2977 
   2978 	return error;
   2979 }
   2980 
   2981 /* --------------------------------------------------------------------- */
   2982 
   2983 static int
   2984 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   2985 {
   2986 	union dscrptr *dscr;
   2987 	struct part_map_spare *pms = &mapping->pms;
   2988 	uint32_t lb_num;
   2989 	int spar, error;
   2990 
   2991 	/*
   2992 	 * The partition mapping passed on to us specifies the information we
   2993 	 * need to locate and initialise the sparable partition mapping
   2994 	 * information we need.
   2995 	 */
   2996 
   2997 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   2998 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   2999 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   3000 
   3001 	for (spar = 0; spar < pms->n_st; spar++) {
   3002 		lb_num = pms->st_loc[spar];
   3003 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3004 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3005 		if (!error && dscr) {
   3006 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3007 				if (ump->sparing_table)
   3008 					free(ump->sparing_table, M_UDFVOLD);
   3009 				ump->sparing_table = &dscr->spt;
   3010 				dscr = NULL;
   3011 				DPRINTF(VOLUMES,
   3012 				    ("Sparing table accepted (%d entries)\n",
   3013 				     udf_rw16(ump->sparing_table->rt_l)));
   3014 				break;	/* we're done */
   3015 			}
   3016 		}
   3017 		if (dscr)
   3018 			free(dscr, M_UDFVOLD);
   3019 	}
   3020 
   3021 	if (ump->sparing_table)
   3022 		return 0;
   3023 
   3024 	return ENOENT;
   3025 }
   3026 
   3027 /* --------------------------------------------------------------------- */
   3028 
   3029 static int
   3030 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3031 {
   3032 	struct part_map_meta *pmm = &mapping->pmm;
   3033 	struct long_ad	 icb_loc;
   3034 	struct vnode *vp;
   3035 	int error;
   3036 
   3037 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3038 	icb_loc.loc.part_num = pmm->part_num;
   3039 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3040 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3041 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3042 	if (ump->metadata_node) {
   3043 		vp = ump->metadata_node->vnode;
   3044 		UDF_SET_SYSTEMFILE(vp);
   3045 	}
   3046 
   3047 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3048 	if (icb_loc.loc.lb_num != -1) {
   3049 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3050 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3051 		if (ump->metadatamirror_node) {
   3052 			vp = ump->metadatamirror_node->vnode;
   3053 			UDF_SET_SYSTEMFILE(vp);
   3054 		}
   3055 	}
   3056 
   3057 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3058 	if (icb_loc.loc.lb_num != -1) {
   3059 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3060 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3061 		if (ump->metadatabitmap_node) {
   3062 			vp = ump->metadatabitmap_node->vnode;
   3063 			UDF_SET_SYSTEMFILE(vp);
   3064 		}
   3065 	}
   3066 
   3067 	/* if we're mounting read-only we relax the requirements */
   3068 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3069 		error = EFAULT;
   3070 		if (ump->metadata_node)
   3071 			error = 0;
   3072 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3073 			printf( "udf mount: Metadata file not readable, "
   3074 				"substituting Metadata copy file\n");
   3075 			ump->metadata_node = ump->metadatamirror_node;
   3076 			ump->metadatamirror_node = NULL;
   3077 			error = 0;
   3078 		}
   3079 	} else {
   3080 		/* mounting read/write */
   3081 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3082 		if (error)
   3083 			error = EROFS;
   3084 	}
   3085 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3086 				   "metadata files\n"));
   3087 	return error;
   3088 }
   3089 
   3090 /* --------------------------------------------------------------------- */
   3091 
   3092 int
   3093 udf_read_vds_tables(struct udf_mount *ump)
   3094 {
   3095 	union udf_pmap *mapping;
   3096 	/* struct udf_args *args = &ump->mount_args; */
   3097 	uint32_t n_pm, mt_l;
   3098 	uint32_t log_part;
   3099 	uint8_t *pmap_pos;
   3100 	int pmap_size;
   3101 	int error;
   3102 
   3103 	/* Iterate (again) over the part mappings for locations   */
   3104 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3105 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   3106 	pmap_pos =  ump->logical_vol->maps;
   3107 
   3108 	for (log_part = 0; log_part < n_pm; log_part++) {
   3109 		mapping = (union udf_pmap *) pmap_pos;
   3110 		switch (ump->vtop_tp[log_part]) {
   3111 		case UDF_VTOP_TYPE_PHYS :
   3112 			/* nothing */
   3113 			break;
   3114 		case UDF_VTOP_TYPE_VIRT :
   3115 			/* search and load VAT */
   3116 			error = udf_search_vat(ump, mapping);
   3117 			if (error)
   3118 				return ENOENT;
   3119 			break;
   3120 		case UDF_VTOP_TYPE_SPARABLE :
   3121 			/* load one of the sparable tables */
   3122 			error = udf_read_sparables(ump, mapping);
   3123 			if (error)
   3124 				return ENOENT;
   3125 			break;
   3126 		case UDF_VTOP_TYPE_META :
   3127 			/* load the associated file descriptors */
   3128 			error = udf_read_metadata_nodes(ump, mapping);
   3129 			if (error)
   3130 				return ENOENT;
   3131 			break;
   3132 		default:
   3133 			break;
   3134 		}
   3135 		pmap_size  = pmap_pos[1];
   3136 		pmap_pos  += pmap_size;
   3137 	}
   3138 
   3139 	/* read in and check unallocated and free space info if writing */
   3140 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3141 		error = udf_read_physical_partition_spacetables(ump);
   3142 		if (error)
   3143 			return error;
   3144 
   3145 		/* also read in metadata partion spacebitmap if defined */
   3146 		error = udf_read_metadata_partition_spacetable(ump);
   3147 			return error;
   3148 	}
   3149 
   3150 	return 0;
   3151 }
   3152 
   3153 /* --------------------------------------------------------------------- */
   3154 
   3155 int
   3156 udf_read_rootdirs(struct udf_mount *ump)
   3157 {
   3158 	union dscrptr *dscr;
   3159 	/* struct udf_args *args = &ump->mount_args; */
   3160 	struct udf_node *rootdir_node, *streamdir_node;
   3161 	struct long_ad  fsd_loc, *dir_loc;
   3162 	uint32_t lb_num, dummy;
   3163 	uint32_t fsd_len;
   3164 	int dscr_type;
   3165 	int error;
   3166 
   3167 	/* TODO implement FSD reading in separate function like integrity? */
   3168 	/* get fileset descriptor sequence */
   3169 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3170 	fsd_len = udf_rw32(fsd_loc.len);
   3171 
   3172 	dscr  = NULL;
   3173 	error = 0;
   3174 	while (fsd_len || error) {
   3175 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3176 		/* translate fsd_loc to lb_num */
   3177 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3178 		if (error)
   3179 			break;
   3180 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3181 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3182 		/* end markers */
   3183 		if (error || (dscr == NULL))
   3184 			break;
   3185 
   3186 		/* analyse */
   3187 		dscr_type = udf_rw16(dscr->tag.id);
   3188 		if (dscr_type == TAGID_TERM)
   3189 			break;
   3190 		if (dscr_type != TAGID_FSD) {
   3191 			free(dscr, M_UDFVOLD);
   3192 			return ENOENT;
   3193 		}
   3194 
   3195 		/*
   3196 		 * TODO check for multiple fileset descriptors; its only
   3197 		 * picking the last now. Also check for FSD
   3198 		 * correctness/interpretability
   3199 		 */
   3200 
   3201 		/* update */
   3202 		if (ump->fileset_desc) {
   3203 			free(ump->fileset_desc, M_UDFVOLD);
   3204 		}
   3205 		ump->fileset_desc = &dscr->fsd;
   3206 		dscr = NULL;
   3207 
   3208 		/* continue to the next fsd */
   3209 		fsd_len -= ump->discinfo.sector_size;
   3210 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3211 
   3212 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3213 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3214 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3215 			fsd_loc = ump->fileset_desc->next_ex;
   3216 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3217 		}
   3218 	}
   3219 	if (dscr)
   3220 		free(dscr, M_UDFVOLD);
   3221 
   3222 	/* there has to be one */
   3223 	if (ump->fileset_desc == NULL)
   3224 		return ENOENT;
   3225 
   3226 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3227 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3228 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3229 
   3230 	/*
   3231 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3232 	 * the system stream dir. Some files in the system streamdir are not
   3233 	 * wanted in this implementation since they are not maintained. If
   3234 	 * writing is enabled we'll delete these files if they exist.
   3235 	 */
   3236 
   3237 	rootdir_node = streamdir_node = NULL;
   3238 	dir_loc = NULL;
   3239 
   3240 	/* try to read in the rootdir */
   3241 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3242 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3243 	if (error)
   3244 		return ENOENT;
   3245 
   3246 	/* aparently it read in fine */
   3247 
   3248 	/*
   3249 	 * Try the system stream directory; not very likely in the ones we
   3250 	 * test, but for completeness.
   3251 	 */
   3252 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3253 	if (udf_rw32(dir_loc->len)) {
   3254 		printf("udf_read_rootdirs: streamdir defined ");
   3255 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3256 		if (error) {
   3257 			printf("but error in streamdir reading\n");
   3258 		} else {
   3259 			printf("but ignored\n");
   3260 			/*
   3261 			 * TODO process streamdir `baddies' i.e. files we dont
   3262 			 * want if R/W
   3263 			 */
   3264 		}
   3265 	}
   3266 
   3267 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3268 
   3269 	/* release the vnodes again; they'll be auto-recycled later */
   3270 	if (streamdir_node) {
   3271 		vput(streamdir_node->vnode);
   3272 	}
   3273 	if (rootdir_node) {
   3274 		vput(rootdir_node->vnode);
   3275 	}
   3276 
   3277 	return 0;
   3278 }
   3279 
   3280 /* --------------------------------------------------------------------- */
   3281 
   3282 /* To make absolutely sure we are NOT returning zero, add one :) */
   3283 
   3284 long
   3285 udf_calchash(struct long_ad *icbptr)
   3286 {
   3287 	/* ought to be enough since each mountpoint has its own chain */
   3288 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3289 }
   3290 
   3291 
   3292 static struct udf_node *
   3293 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3294 {
   3295 	struct udf_node *node;
   3296 	struct vnode *vp;
   3297 	uint32_t hashline;
   3298 
   3299 loop:
   3300 	mutex_enter(&ump->ihash_lock);
   3301 
   3302 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   3303 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
   3304 		assert(node);
   3305 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
   3306 		    node->loc.loc.part_num == icbptr->loc.part_num) {
   3307 			vp = node->vnode;
   3308 			assert(vp);
   3309 			mutex_enter(&vp->v_interlock);
   3310 			mutex_exit(&ump->ihash_lock);
   3311 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   3312 				goto loop;
   3313 			return node;
   3314 		}
   3315 	}
   3316 	mutex_exit(&ump->ihash_lock);
   3317 
   3318 	return NULL;
   3319 }
   3320 
   3321 
   3322 static void
   3323 udf_sorted_list_insert(struct udf_node *node)
   3324 {
   3325 	struct udf_mount *ump;
   3326 	struct udf_node  *s_node, *last_node;
   3327 	uint32_t loc, s_loc;
   3328 
   3329 	ump = node->ump;
   3330 	last_node = NULL;	/* XXX gcc */
   3331 
   3332 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
   3333 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
   3334 		return;
   3335 	}
   3336 
   3337 	/*
   3338 	 * We sort on logical block number here and not on physical block
   3339 	 * number here. Ideally we should go for the physical block nr to get
   3340 	 * better sync performance though this sort will ensure that packets
   3341 	 * won't get spit up unnessisarily.
   3342 	 */
   3343 
   3344 	loc = udf_rw32(node->loc.loc.lb_num);
   3345 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
   3346 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
   3347 		if (s_loc > loc) {
   3348 			LIST_INSERT_BEFORE(s_node, node, sortchain);
   3349 			return;
   3350 		}
   3351 		last_node = s_node;
   3352 	}
   3353 	LIST_INSERT_AFTER(last_node, node, sortchain);
   3354 }
   3355 
   3356 
   3357 static void
   3358 udf_register_node(struct udf_node *node)
   3359 {
   3360 	struct udf_mount *ump;
   3361 	struct udf_node *chk;
   3362 	uint32_t hashline;
   3363 
   3364 	ump = node->ump;
   3365 	mutex_enter(&ump->ihash_lock);
   3366 
   3367 	/* add to our hash table */
   3368 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
   3369 #ifdef DEBUG
   3370 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
   3371 		assert(chk);
   3372 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
   3373 		    chk->loc.loc.part_num == node->loc.loc.part_num)
   3374 			panic("Double node entered\n");
   3375 	}
   3376 #else
   3377 	chk = NULL;
   3378 #endif
   3379 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
   3380 
   3381 	/* add to our sorted list */
   3382 	udf_sorted_list_insert(node);
   3383 
   3384 	mutex_exit(&ump->ihash_lock);
   3385 }
   3386 
   3387 
   3388 static void
   3389 udf_deregister_node(struct udf_node *node)
   3390 {
   3391 	struct udf_mount *ump;
   3392 
   3393 	ump = node->ump;
   3394 	mutex_enter(&ump->ihash_lock);
   3395 
   3396 	/* from hash and sorted list */
   3397 	LIST_REMOVE(node, hashchain);
   3398 	LIST_REMOVE(node, sortchain);
   3399 
   3400 	mutex_exit(&ump->ihash_lock);
   3401 }
   3402 
   3403 /* --------------------------------------------------------------------- */
   3404 
   3405 int
   3406 udf_open_logvol(struct udf_mount *ump)
   3407 {
   3408 	int logvol_integrity;
   3409 	int error;
   3410 
   3411 	/* already/still open? */
   3412 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3413 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3414 		return 0;
   3415 
   3416 	/* can we open it ? */
   3417 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3418 		return EROFS;
   3419 
   3420 	/* setup write parameters */
   3421 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3422 	if ((error = udf_setup_writeparams(ump)) != 0)
   3423 		return error;
   3424 
   3425 	/* determine data and metadata tracks (most likely same) */
   3426 	error = udf_search_writing_tracks(ump);
   3427 	if (error) {
   3428 		/* most likely lack of space */
   3429 		printf("udf_open_logvol: error searching writing tracks\n");
   3430 		return EROFS;
   3431 	}
   3432 
   3433 	/* writeout/update lvint on disc or only in memory */
   3434 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3435 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3436 		/* TODO implement writeout of VRS + VDS */
   3437 		printf( "udf_open_logvol:Opening a closed session not yet "
   3438 			"implemented\n");
   3439 		return EROFS;
   3440 
   3441 		/* determine data and metadata tracks again */
   3442 		error = udf_search_writing_tracks(ump);
   3443 	}
   3444 
   3445 	/* mark it open */
   3446 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3447 
   3448 	/* do we need to write it out? */
   3449 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3450 		error = udf_writeout_lvint(ump, ump->lvopen);
   3451 		/* if we couldn't write it mark it closed again */
   3452 		if (error) {
   3453 			ump->logvol_integrity->integrity_type =
   3454 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3455 			return error;
   3456 		}
   3457 	}
   3458 
   3459 	return 0;
   3460 }
   3461 
   3462 
   3463 int
   3464 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3465 {
   3466 	int logvol_integrity;
   3467 	int error = 0, error1 = 0, error2 = 0;
   3468 	int n;
   3469 
   3470 	/* already/still closed? */
   3471 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3472 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3473 		return 0;
   3474 
   3475 	/* writeout/update lvint or write out VAT */
   3476 	DPRINTF(VOLUMES, ("Closing logical volume\n"));
   3477 	if (ump->lvclose & UDF_WRITE_VAT) {
   3478 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3479 
   3480 		/* write out the VAT node */
   3481 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3482 		udf_writeout_vat(ump);
   3483 
   3484 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3485 		for (n = 0; n < 16; n++) {
   3486 			ump->vat_node->i_flags |= IN_MODIFIED;
   3487 			error = VOP_FSYNC(ump->vat_node->vnode,
   3488 					FSCRED, FSYNC_WAIT, 0, 0);
   3489 		}
   3490 		if (error) {
   3491 			printf("udf_close_logvol: writeout of VAT failed\n");
   3492 			return error;
   3493 		}
   3494 	}
   3495 
   3496 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3497 		/* sync writeout metadata spacetable if existing */
   3498 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3499 		if (error1)
   3500 			printf( "udf_close_logvol: writeout of metadata space "
   3501 				"bitmap failed\n");
   3502 
   3503 		/* sync writeout partition spacetables */
   3504 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3505 		if (error2)
   3506 			printf( "udf_close_logvol: writeout of space tables "
   3507 				"failed\n");
   3508 
   3509 		if (error1 || error2)
   3510 			return (error1 | error2);
   3511 
   3512 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3513 	}
   3514 
   3515 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3516 		printf("TODO: Closing a session is not yet implemented\n");
   3517 		return EROFS;
   3518 		ump->lvopen |= UDF_OPEN_SESSION;
   3519 	}
   3520 
   3521 	/* mark it closed */
   3522 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3523 
   3524 	/* do we need to write out the logical volume integrity */
   3525 	if (ump->lvclose & UDF_WRITE_LVINT)
   3526 		error = udf_writeout_lvint(ump, ump->lvopen);
   3527 	if (error) {
   3528 		/* HELP now what? mark it open again for now */
   3529 		ump->logvol_integrity->integrity_type =
   3530 			udf_rw32(UDF_INTEGRITY_OPEN);
   3531 		return error;
   3532 	}
   3533 
   3534 	(void) udf_synchronise_caches(ump);
   3535 
   3536 	return 0;
   3537 }
   3538 
   3539 /* --------------------------------------------------------------------- */
   3540 
   3541 /*
   3542  * Genfs interfacing
   3543  *
   3544  * static const struct genfs_ops udf_genfsops = {
   3545  * 	.gop_size = genfs_size,
   3546  * 		size of transfers
   3547  * 	.gop_alloc = udf_gop_alloc,
   3548  * 		allocate len bytes at offset
   3549  * 	.gop_write = genfs_gop_write,
   3550  * 		putpages interface code
   3551  * 	.gop_markupdate = udf_gop_markupdate,
   3552  * 		set update/modify flags etc.
   3553  * }
   3554  */
   3555 
   3556 /*
   3557  * Genfs interface. These four functions are the only ones defined though not
   3558  * documented... great....
   3559  */
   3560 
   3561 /*
   3562  * Callback from genfs to allocate len bytes at offset off; only called when
   3563  * filling up gaps in the allocation.
   3564  */
   3565 /* XXX should we check if there is space enough in udf_gop_alloc? */
   3566 static int
   3567 udf_gop_alloc(struct vnode *vp, off_t off,
   3568     off_t len, int flags, kauth_cred_t cred)
   3569 {
   3570 #if 0
   3571 	struct udf_node *udf_node = VTOI(vp);
   3572 	struct udf_mount *ump = udf_node->ump;
   3573 	uint32_t lb_size, num_lb;
   3574 #endif
   3575 
   3576 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
   3577 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
   3578 
   3579 	return 0;
   3580 }
   3581 
   3582 
   3583 /*
   3584  * callback from genfs to update our flags
   3585  */
   3586 static void
   3587 udf_gop_markupdate(struct vnode *vp, int flags)
   3588 {
   3589 	struct udf_node *udf_node = VTOI(vp);
   3590 	u_long mask = 0;
   3591 
   3592 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   3593 		mask = IN_ACCESS;
   3594 	}
   3595 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   3596 		if (vp->v_type == VREG) {
   3597 			mask |= IN_CHANGE | IN_UPDATE;
   3598 		} else {
   3599 			mask |= IN_MODIFY;
   3600 		}
   3601 	}
   3602 	if (mask) {
   3603 		udf_node->i_flags |= mask;
   3604 	}
   3605 }
   3606 
   3607 
   3608 static const struct genfs_ops udf_genfsops = {
   3609 	.gop_size = genfs_size,
   3610 	.gop_alloc = udf_gop_alloc,
   3611 	.gop_write = genfs_gop_write_rwmap,
   3612 	.gop_markupdate = udf_gop_markupdate,
   3613 };
   3614 
   3615 
   3616 /* --------------------------------------------------------------------- */
   3617 
   3618 int
   3619 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   3620 {
   3621 	union dscrptr *dscr;
   3622 	int error;
   3623 
   3624 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK);
   3625 	bzero(dscr, ump->discinfo.sector_size);
   3626 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   3627 
   3628 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   3629 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   3630 	(void) udf_validate_tag_and_crc_sums(dscr);
   3631 
   3632 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   3633 			dscr, sector, sector);
   3634 
   3635 	free(dscr, M_TEMP);
   3636 
   3637 	return error;
   3638 }
   3639 
   3640 
   3641 /* --------------------------------------------------------------------- */
   3642 
   3643 /* UDF<->unix converters */
   3644 
   3645 /* --------------------------------------------------------------------- */
   3646 
   3647 static mode_t
   3648 udf_perm_to_unix_mode(uint32_t perm)
   3649 {
   3650 	mode_t mode;
   3651 
   3652 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   3653 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   3654 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   3655 
   3656 	return mode;
   3657 }
   3658 
   3659 /* --------------------------------------------------------------------- */
   3660 
   3661 static uint32_t
   3662 unix_mode_to_udf_perm(mode_t mode)
   3663 {
   3664 	uint32_t perm;
   3665 
   3666 	perm  = ((mode & S_IRWXO)     );
   3667 	perm |= ((mode & S_IRWXG) << 2);
   3668 	perm |= ((mode & S_IRWXU) << 4);
   3669 	perm |= ((mode & S_IWOTH) << 3);
   3670 	perm |= ((mode & S_IWGRP) << 5);
   3671 	perm |= ((mode & S_IWUSR) << 7);
   3672 
   3673 	return perm;
   3674 }
   3675 
   3676 /* --------------------------------------------------------------------- */
   3677 
   3678 static uint32_t
   3679 udf_icb_to_unix_filetype(uint32_t icbftype)
   3680 {
   3681 	switch (icbftype) {
   3682 	case UDF_ICB_FILETYPE_DIRECTORY :
   3683 	case UDF_ICB_FILETYPE_STREAMDIR :
   3684 		return S_IFDIR;
   3685 	case UDF_ICB_FILETYPE_FIFO :
   3686 		return S_IFIFO;
   3687 	case UDF_ICB_FILETYPE_CHARDEVICE :
   3688 		return S_IFCHR;
   3689 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   3690 		return S_IFBLK;
   3691 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   3692 	case UDF_ICB_FILETYPE_REALTIME :
   3693 		return S_IFREG;
   3694 	case UDF_ICB_FILETYPE_SYMLINK :
   3695 		return S_IFLNK;
   3696 	case UDF_ICB_FILETYPE_SOCKET :
   3697 		return S_IFSOCK;
   3698 	}
   3699 	/* no idea what this is */
   3700 	return 0;
   3701 }
   3702 
   3703 /* --------------------------------------------------------------------- */
   3704 
   3705 void
   3706 udf_to_unix_name(char *result, int result_len, char *id, int len,
   3707 	struct charspec *chsp)
   3708 {
   3709 	uint16_t   *raw_name, *unix_name;
   3710 	uint16_t   *inchp, ch;
   3711 	uint8_t	   *outchp;
   3712 	const char *osta_id = "OSTA Compressed Unicode";
   3713 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   3714 
   3715 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   3716 	unix_name = raw_name + 1024;			/* split space in half */
   3717 	assert(sizeof(char) == sizeof(uint8_t));
   3718 	outchp = (uint8_t *) result;
   3719 
   3720 	is_osta_typ0  = (chsp->type == 0);
   3721 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3722 	if (is_osta_typ0) {
   3723 		/* TODO clean up */
   3724 		*raw_name = *unix_name = 0;
   3725 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   3726 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   3727 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   3728 		/* output UTF8 */
   3729 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   3730 			ch = *inchp;
   3731 			nout = wput_utf8(outchp, result_len, ch);
   3732 			outchp += nout; result_len -= nout;
   3733 			if (!ch) break;
   3734 		}
   3735 		*outchp++ = 0;
   3736 	} else {
   3737 		/* assume 8bit char length byte latin-1 */
   3738 		assert(*id == 8);
   3739 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   3740 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   3741 	}
   3742 	free(raw_name, M_UDFTEMP);
   3743 }
   3744 
   3745 /* --------------------------------------------------------------------- */
   3746 
   3747 void
   3748 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   3749 	struct charspec *chsp)
   3750 {
   3751 	uint16_t   *raw_name;
   3752 	uint16_t   *outchp;
   3753 	const char *inchp;
   3754 	const char *osta_id = "OSTA Compressed Unicode";
   3755 	int         udf_chars, is_osta_typ0, bits;
   3756 	size_t      cnt;
   3757 
   3758 	/* allocate temporary unicode-16 buffer */
   3759 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   3760 
   3761 	/* convert utf8 to unicode-16 */
   3762 	*raw_name = 0;
   3763 	inchp  = name;
   3764 	outchp = raw_name;
   3765 	bits = 8;
   3766 	for (cnt = name_len, udf_chars = 0; cnt;) {
   3767 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   3768 		*outchp = wget_utf8(&inchp, &cnt);
   3769 		if (*outchp > 0xff)
   3770 			bits=16;
   3771 		outchp++;
   3772 		udf_chars++;
   3773 	}
   3774 	/* null terminate just in case */
   3775 	*outchp++ = 0;
   3776 
   3777 	is_osta_typ0  = (chsp->type == 0);
   3778 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   3779 	if (is_osta_typ0) {
   3780 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   3781 				(unicode_t *) raw_name,
   3782 				(byte *) result);
   3783 	} else {
   3784 		printf("unix to udf name: no CHSP0 ?\n");
   3785 		/* XXX assume 8bit char length byte latin-1 */
   3786 		*result++ = 8; udf_chars = 1;
   3787 		strncpy(result, name + 1, name_len);
   3788 		udf_chars += name_len;
   3789 	}
   3790 	*result_len = udf_chars;
   3791 	free(raw_name, M_UDFTEMP);
   3792 }
   3793 
   3794 /* --------------------------------------------------------------------- */
   3795 
   3796 void
   3797 udf_timestamp_to_timespec(struct udf_mount *ump,
   3798 			  struct timestamp *timestamp,
   3799 			  struct timespec  *timespec)
   3800 {
   3801 	struct clock_ymdhms ymdhms;
   3802 	uint32_t usecs, secs, nsecs;
   3803 	uint16_t tz;
   3804 
   3805 	/* fill in ymdhms structure from timestamp */
   3806 	memset(&ymdhms, 0, sizeof(ymdhms));
   3807 	ymdhms.dt_year = udf_rw16(timestamp->year);
   3808 	ymdhms.dt_mon  = timestamp->month;
   3809 	ymdhms.dt_day  = timestamp->day;
   3810 	ymdhms.dt_wday = 0; /* ? */
   3811 	ymdhms.dt_hour = timestamp->hour;
   3812 	ymdhms.dt_min  = timestamp->minute;
   3813 	ymdhms.dt_sec  = timestamp->second;
   3814 
   3815 	secs = clock_ymdhms_to_secs(&ymdhms);
   3816 	usecs = timestamp->usec +
   3817 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   3818 	nsecs = usecs * 1000;
   3819 
   3820 	/*
   3821 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   3822 	 * compliment, so we gotta do some extra magic to handle it right.
   3823 	 */
   3824 	tz  = udf_rw16(timestamp->type_tz);
   3825 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   3826 	if (tz & 0x0800)		/* sign extention */
   3827 		tz |= 0xf000;
   3828 
   3829 	/* TODO check timezone conversion */
   3830 	/* check if we are specified a timezone to convert */
   3831 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   3832 		if ((int16_t) tz != -2047)
   3833 			secs -= (int16_t) tz * 60;
   3834 	} else {
   3835 		secs -= ump->mount_args.gmtoff;
   3836 	}
   3837 
   3838 	timespec->tv_sec  = secs;
   3839 	timespec->tv_nsec = nsecs;
   3840 }
   3841 
   3842 
   3843 void
   3844 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   3845 {
   3846 	struct clock_ymdhms ymdhms;
   3847 	uint32_t husec, usec, csec;
   3848 
   3849 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   3850 
   3851 	usec   = timespec->tv_nsec / 1000;
   3852 	husec  =  usec / 100;
   3853 	usec  -= husec * 100;				/* only 0-99 in usec  */
   3854 	csec   = husec / 100;				/* only 0-99 in csec  */
   3855 	husec -=  csec * 100;				/* only 0-99 in husec */
   3856 
   3857 	/* set method 1 for CUT/GMT */
   3858 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   3859 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   3860 	timestamp->month	= ymdhms.dt_mon;
   3861 	timestamp->day		= ymdhms.dt_day;
   3862 	timestamp->hour		= ymdhms.dt_hour;
   3863 	timestamp->minute	= ymdhms.dt_min;
   3864 	timestamp->second	= ymdhms.dt_sec;
   3865 	timestamp->centisec	= csec;
   3866 	timestamp->hund_usec	= husec;
   3867 	timestamp->usec		= usec;
   3868 }
   3869 
   3870 /* --------------------------------------------------------------------- */
   3871 
   3872 /*
   3873  * Attribute and filetypes converters with get/set pairs
   3874  */
   3875 
   3876 uint32_t
   3877 udf_getaccessmode(struct udf_node *udf_node)
   3878 {
   3879 	struct file_entry     *fe = udf_node->fe;;
   3880 	struct extfile_entry *efe = udf_node->efe;
   3881 	uint32_t udf_perm, icbftype;
   3882 	uint32_t mode, ftype;
   3883 	uint16_t icbflags;
   3884 
   3885 	UDF_LOCK_NODE(udf_node, 0);
   3886 	if (fe) {
   3887 		udf_perm = udf_rw32(fe->perm);
   3888 		icbftype = fe->icbtag.file_type;
   3889 		icbflags = udf_rw16(fe->icbtag.flags);
   3890 	} else {
   3891 		assert(udf_node->efe);
   3892 		udf_perm = udf_rw32(efe->perm);
   3893 		icbftype = efe->icbtag.file_type;
   3894 		icbflags = udf_rw16(efe->icbtag.flags);
   3895 	}
   3896 
   3897 	mode  = udf_perm_to_unix_mode(udf_perm);
   3898 	ftype = udf_icb_to_unix_filetype(icbftype);
   3899 
   3900 	/* set suid, sgid, sticky from flags in fe/efe */
   3901 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   3902 		mode |= S_ISUID;
   3903 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   3904 		mode |= S_ISGID;
   3905 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   3906 		mode |= S_ISVTX;
   3907 
   3908 	UDF_UNLOCK_NODE(udf_node, 0);
   3909 
   3910 	return mode | ftype;
   3911 }
   3912 
   3913 
   3914 void
   3915 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   3916 {
   3917 	struct file_entry    *fe  = udf_node->fe;
   3918 	struct extfile_entry *efe = udf_node->efe;
   3919 	uint32_t udf_perm;
   3920 	uint16_t icbflags;
   3921 
   3922 	UDF_LOCK_NODE(udf_node, 0);
   3923 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   3924 	if (fe) {
   3925 		icbflags = udf_rw16(fe->icbtag.flags);
   3926 	} else {
   3927 		icbflags = udf_rw16(efe->icbtag.flags);
   3928 	}
   3929 
   3930 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   3931 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   3932 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   3933 	if (mode & S_ISUID)
   3934 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   3935 	if (mode & S_ISGID)
   3936 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   3937 	if (mode & S_ISVTX)
   3938 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   3939 
   3940 	if (fe) {
   3941 		fe->perm  = udf_rw32(udf_perm);
   3942 		fe->icbtag.flags  = udf_rw16(icbflags);
   3943 	} else {
   3944 		efe->perm = udf_rw32(udf_perm);
   3945 		efe->icbtag.flags = udf_rw16(icbflags);
   3946 	}
   3947 
   3948 	UDF_UNLOCK_NODE(udf_node, 0);
   3949 }
   3950 
   3951 
   3952 void
   3953 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   3954 {
   3955 	struct udf_mount     *ump = udf_node->ump;
   3956 	struct file_entry    *fe  = udf_node->fe;
   3957 	struct extfile_entry *efe = udf_node->efe;
   3958 	uid_t uid;
   3959 	gid_t gid;
   3960 
   3961 	UDF_LOCK_NODE(udf_node, 0);
   3962 	if (fe) {
   3963 		uid = (uid_t)udf_rw32(fe->uid);
   3964 		gid = (gid_t)udf_rw32(fe->gid);
   3965 	} else {
   3966 		assert(udf_node->efe);
   3967 		uid = (uid_t)udf_rw32(efe->uid);
   3968 		gid = (gid_t)udf_rw32(efe->gid);
   3969 	}
   3970 
   3971 	/* do the uid/gid translation game */
   3972 	if (uid == (uid_t) -1)
   3973 		uid = ump->mount_args.anon_uid;
   3974 	if (gid == (gid_t) -1)
   3975 		gid = ump->mount_args.anon_gid;
   3976 
   3977 	*uidp = uid;
   3978 	*gidp = gid;
   3979 
   3980 	UDF_UNLOCK_NODE(udf_node, 0);
   3981 }
   3982 
   3983 
   3984 void
   3985 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   3986 {
   3987 	struct udf_mount     *ump = udf_node->ump;
   3988 	struct file_entry    *fe  = udf_node->fe;
   3989 	struct extfile_entry *efe = udf_node->efe;
   3990 	uid_t nobody_uid;
   3991 	gid_t nobody_gid;
   3992 
   3993 	UDF_LOCK_NODE(udf_node, 0);
   3994 
   3995 	/* do the uid/gid translation game */
   3996 	nobody_uid = ump->mount_args.nobody_uid;
   3997 	nobody_gid = ump->mount_args.nobody_gid;
   3998 	if (uid == nobody_uid)
   3999 		uid = (uid_t) -1;
   4000 	if (gid == nobody_gid)
   4001 		gid = (gid_t) -1;
   4002 
   4003 	if (fe) {
   4004 		fe->uid  = udf_rw32((uint32_t) uid);
   4005 		fe->gid  = udf_rw32((uint32_t) gid);
   4006 	} else {
   4007 		efe->uid = udf_rw32((uint32_t) uid);
   4008 		efe->gid = udf_rw32((uint32_t) gid);
   4009 	}
   4010 
   4011 	UDF_UNLOCK_NODE(udf_node, 0);
   4012 }
   4013 
   4014 
   4015 /* --------------------------------------------------------------------- */
   4016 
   4017 
   4018 static int
   4019 dirhash_fill(struct udf_node *dir_node)
   4020 {
   4021 	struct vnode *dvp = dir_node->vnode;
   4022 	struct dirhash *dirh;
   4023 	struct file_entry    *fe  = dir_node->fe;
   4024 	struct extfile_entry *efe = dir_node->efe;
   4025 	struct fileid_desc *fid;
   4026 	struct dirent *dirent;
   4027 	uint64_t file_size, pre_diroffset, diroffset;
   4028 	uint32_t lb_size;
   4029 	int error;
   4030 
   4031 	/* make sure we have a dirhash to work on */
   4032 	dirh = dir_node->dir_hash;
   4033 	KASSERT(dirh);
   4034 	KASSERT(dirh->refcnt > 0);
   4035 
   4036 	if (dirh->flags & DIRH_BROKEN)
   4037 		return EIO;
   4038 	if (dirh->flags & DIRH_COMPLETE)
   4039 		return 0;
   4040 
   4041 	/* make sure we have a clean dirhash to add to */
   4042 	dirhash_purge_entries(dirh);
   4043 
   4044 	/* get directory filesize */
   4045 	if (fe) {
   4046 		file_size = udf_rw64(fe->inf_len);
   4047 	} else {
   4048 		assert(efe);
   4049 		file_size = udf_rw64(efe->inf_len);
   4050 	}
   4051 
   4052 	/* allocate temporary space for fid */
   4053 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4054 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4055 
   4056 	/* allocate temporary space for dirent */
   4057 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4058 
   4059 	error = 0;
   4060 	diroffset = 0;
   4061 	while (diroffset < file_size) {
   4062 		/* transfer a new fid/dirent */
   4063 		pre_diroffset = diroffset;
   4064 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4065 		if (error) {
   4066 			/* TODO what to do? continue but not add? */
   4067 			dirh->flags |= DIRH_BROKEN;
   4068 			dirhash_purge_entries(dirh);
   4069 			break;
   4070 		}
   4071 
   4072 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4073 			/* register deleted extent for reuse */
   4074 			dirhash_enter_freed(dirh, pre_diroffset,
   4075 				udf_fidsize(fid));
   4076 		} else {
   4077 			/* append to the dirhash */
   4078 			dirhash_enter(dirh, dirent, pre_diroffset,
   4079 				udf_fidsize(fid), 0);
   4080 		}
   4081 	}
   4082 	dirh->flags |= DIRH_COMPLETE;
   4083 
   4084 	free(fid, M_UDFTEMP);
   4085 	free(dirent, M_UDFTEMP);
   4086 
   4087 	return error;
   4088 }
   4089 
   4090 
   4091 /* --------------------------------------------------------------------- */
   4092 
   4093 /*
   4094  * Directory read and manipulation functions.
   4095  *
   4096  */
   4097 
   4098 int
   4099 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4100        struct long_ad *icb_loc, int *found)
   4101 {
   4102 	struct udf_node  *dir_node = VTOI(vp);
   4103 	struct dirhash       *dirh;
   4104 	struct dirhash_entry *dirh_ep;
   4105 	struct fileid_desc *fid;
   4106 	struct dirent *dirent;
   4107 	uint64_t diroffset;
   4108 	uint32_t lb_size;
   4109 	int hit, error;
   4110 
   4111 	/* set default return */
   4112 	*found = 0;
   4113 
   4114 	/* get our dirhash and make sure its read in */
   4115 	dirhash_get(&dir_node->dir_hash);
   4116 	error = dirhash_fill(dir_node);
   4117 	if (error) {
   4118 		dirhash_put(dir_node->dir_hash);
   4119 		return error;
   4120 	}
   4121 	dirh = dir_node->dir_hash;
   4122 
   4123 	/* allocate temporary space for fid */
   4124 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4125 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4126 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4127 
   4128 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4129 		namelen, namelen, name));
   4130 
   4131 	/* search our dirhash hits */
   4132 	memset(icb_loc, 0, sizeof(*icb_loc));
   4133 	dirh_ep = NULL;
   4134 	for (;;) {
   4135 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4136 		/* if no hit, abort the search */
   4137 		if (!hit)
   4138 			break;
   4139 
   4140 		/* check this hit */
   4141 		diroffset = dirh_ep->offset;
   4142 
   4143 		/* transfer a new fid/dirent */
   4144 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4145 		if (error)
   4146 			break;
   4147 
   4148 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4149 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4150 
   4151 		/* see if its our entry */
   4152 		KASSERT(dirent->d_namlen == namelen);
   4153 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4154 			*found = 1;
   4155 			*icb_loc = fid->icb;
   4156 			break;
   4157 		}
   4158 	}
   4159 	free(fid, M_UDFTEMP);
   4160 	free(dirent, M_UDFTEMP);
   4161 
   4162 	dirhash_put(dir_node->dir_hash);
   4163 
   4164 	return error;
   4165 }
   4166 
   4167 /* --------------------------------------------------------------------- */
   4168 
   4169 static int
   4170 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4171 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4172 	uint64_t parent_unique_id)
   4173 {
   4174 	struct timespec now;
   4175 	struct icb_tag *icb;
   4176 	struct filetimes_extattr_entry *ft_extattr;
   4177 	uint64_t unique_id;
   4178 	uint32_t fidsize, lb_num;
   4179 	uint8_t *bpos;
   4180 	int crclen, attrlen;
   4181 
   4182 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4183 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4184 	icb = &fe->icbtag;
   4185 
   4186 	/*
   4187 	 * Always use strategy type 4 unless on WORM wich we don't support
   4188 	 * (yet). Fill in defaults and set for internal allocation of data.
   4189 	 */
   4190 	icb->strat_type      = udf_rw16(4);
   4191 	icb->max_num_entries = udf_rw16(1);
   4192 	icb->file_type       = file_type;	/* 8 bit */
   4193 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4194 
   4195 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4196 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4197 
   4198 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4199 
   4200 	vfs_timestamp(&now);
   4201 	udf_timespec_to_timestamp(&now, &fe->atime);
   4202 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4203 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4204 
   4205 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4206 	udf_add_impl_regid(ump, &fe->imp_id);
   4207 
   4208 	unique_id = udf_advance_uniqueid(ump);
   4209 	fe->unique_id = udf_rw64(unique_id);
   4210 	fe->l_ea = udf_rw32(0);
   4211 
   4212 	/* create extended attribute to record our creation time */
   4213 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4214 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4215 	memset(ft_extattr, 0, attrlen);
   4216 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4217 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4218 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4219 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4220 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4221 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4222 
   4223 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4224 		(struct extattr_entry *) ft_extattr);
   4225 	free(ft_extattr, M_UDFTEMP);
   4226 
   4227 	/* if its a directory, create '..' */
   4228 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4229 	fidsize = 0;
   4230 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4231 		fidsize = udf_create_parentfid(ump,
   4232 			(struct fileid_desc *) bpos, parent_icb,
   4233 			parent_unique_id);
   4234 	}
   4235 
   4236 	/* record fidlength information */
   4237 	fe->inf_len = udf_rw64(fidsize);
   4238 	fe->l_ad    = udf_rw32(fidsize);
   4239 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4240 
   4241 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4242 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4243 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4244 
   4245 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4246 
   4247 	return fidsize;
   4248 }
   4249 
   4250 /* --------------------------------------------------------------------- */
   4251 
   4252 static int
   4253 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4254 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4255 	uint64_t parent_unique_id)
   4256 {
   4257 	struct timespec now;
   4258 	struct icb_tag *icb;
   4259 	uint64_t unique_id;
   4260 	uint32_t fidsize, lb_num;
   4261 	uint8_t *bpos;
   4262 	int crclen;
   4263 
   4264 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4265 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4266 	icb = &efe->icbtag;
   4267 
   4268 	/*
   4269 	 * Always use strategy type 4 unless on WORM wich we don't support
   4270 	 * (yet). Fill in defaults and set for internal allocation of data.
   4271 	 */
   4272 	icb->strat_type      = udf_rw16(4);
   4273 	icb->max_num_entries = udf_rw16(1);
   4274 	icb->file_type       = file_type;	/* 8 bit */
   4275 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4276 
   4277 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4278 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4279 
   4280 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4281 
   4282 	vfs_timestamp(&now);
   4283 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4284 	udf_timespec_to_timestamp(&now, &efe->atime);
   4285 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4286 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4287 
   4288 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4289 	udf_add_impl_regid(ump, &efe->imp_id);
   4290 
   4291 	unique_id = udf_advance_uniqueid(ump);
   4292 	efe->unique_id = udf_rw64(unique_id);
   4293 	efe->l_ea = udf_rw32(0);
   4294 
   4295 	/* if its a directory, create '..' */
   4296 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4297 	fidsize = 0;
   4298 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4299 		fidsize = udf_create_parentfid(ump,
   4300 			(struct fileid_desc *) bpos, parent_icb,
   4301 			parent_unique_id);
   4302 	}
   4303 
   4304 	/* record fidlength information */
   4305 	efe->obj_size = udf_rw64(fidsize);
   4306 	efe->inf_len  = udf_rw64(fidsize);
   4307 	efe->l_ad     = udf_rw32(fidsize);
   4308 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4309 
   4310 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4311 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4312 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4313 
   4314 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4315 
   4316 	return fidsize;
   4317 }
   4318 
   4319 /* --------------------------------------------------------------------- */
   4320 
   4321 int
   4322 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4323 	struct udf_node *udf_node, struct componentname *cnp)
   4324 {
   4325 	struct vnode *dvp = dir_node->vnode;
   4326 	struct dirhash       *dirh;
   4327 	struct dirhash_entry *dirh_ep;
   4328 	struct file_entry    *fe  = dir_node->fe;
   4329 	struct extfile_entry *efe = dir_node->efe;
   4330 	struct fileid_desc *fid;
   4331 	struct dirent *dirent;
   4332 	uint64_t file_size, diroffset;
   4333 	uint32_t lb_size, fidsize;
   4334 	int found, error;
   4335 	char const *name  = cnp->cn_nameptr;
   4336 	int namelen = cnp->cn_namelen;
   4337 	int hit, refcnt;
   4338 
   4339 	/* get our dirhash and make sure its read in */
   4340 	dirhash_get(&dir_node->dir_hash);
   4341 	error = dirhash_fill(dir_node);
   4342 	if (error) {
   4343 		dirhash_put(dir_node->dir_hash);
   4344 		return error;
   4345 	}
   4346 	dirh = dir_node->dir_hash;
   4347 
   4348 	/* get directory filesize */
   4349 	if (fe) {
   4350 		file_size = udf_rw64(fe->inf_len);
   4351 	} else {
   4352 		assert(efe);
   4353 		file_size = udf_rw64(efe->inf_len);
   4354 	}
   4355 
   4356 	/* allocate temporary space for fid */
   4357 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4358 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4359 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4360 
   4361 	/* search our dirhash hits */
   4362 	found = 0;
   4363 	dirh_ep = NULL;
   4364 	for (;;) {
   4365 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4366 		/* if no hit, abort the search */
   4367 		if (!hit)
   4368 			break;
   4369 
   4370 		/* check this hit */
   4371 		diroffset = dirh_ep->offset;
   4372 
   4373 		/* transfer a new fid/dirent */
   4374 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4375 		if (error)
   4376 			break;
   4377 
   4378 		/* see if its our entry */
   4379 		KASSERT(dirent->d_namlen == namelen);
   4380 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4381 			found = 1;
   4382 			break;
   4383 		}
   4384 	}
   4385 
   4386 	if (!found)
   4387 		error = ENOENT;
   4388 	if (error)
   4389 		goto error_out;
   4390 
   4391 	/* mark deleted */
   4392 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4393 #ifdef UDF_COMPLETE_DELETE
   4394 	memset(&fid->icb, 0, sizeof(fid->icb));
   4395 #endif
   4396 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4397 
   4398 	/* get size of fid and compensate for the read_fid_stream advance */
   4399 	fidsize = udf_fidsize(fid);
   4400 	diroffset -= fidsize;
   4401 
   4402 	/* write out */
   4403 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4404 			fid, fidsize, diroffset,
   4405 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4406 			FSCRED, NULL, NULL);
   4407 	if (error)
   4408 		goto error_out;
   4409 
   4410 	/* get reference count of attached node */
   4411 	if (udf_node->fe) {
   4412 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4413 	} else {
   4414 		KASSERT(udf_node->efe);
   4415 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4416 	}
   4417 #ifdef UDF_COMPLETE_DELETE
   4418 	/* substract reference counter in attached node */
   4419 	refcnt -= 1;
   4420 	if (udf_node->fe) {
   4421 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4422 	} else {
   4423 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4424 	}
   4425 
   4426 	/* prevent writeout when refcnt == 0 */
   4427 	if (refcnt == 0)
   4428 		udf_node->i_flags |= IN_DELETED;
   4429 
   4430 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4431 		int drefcnt;
   4432 
   4433 		/* substract reference counter in directory node */
   4434 		/* note subtract 2 (?) for its was also backreferenced */
   4435 		if (dir_node->fe) {
   4436 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4437 			drefcnt -= 1;
   4438 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4439 		} else {
   4440 			KASSERT(dir_node->efe);
   4441 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4442 			drefcnt -= 1;
   4443 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4444 		}
   4445 	}
   4446 
   4447 	udf_node->i_flags |= IN_MODIFIED;
   4448 	dir_node->i_flags |= IN_MODIFIED;
   4449 #endif
   4450 	/* if it is/was a hardlink adjust the file count */
   4451 	if (refcnt > 0)
   4452 		udf_adjust_filecount(udf_node, -1);
   4453 
   4454 	/* remove from the dirhash */
   4455 	dirhash_remove(dirh, dirent, diroffset,
   4456 		udf_fidsize(fid));
   4457 
   4458 error_out:
   4459 	free(fid, M_UDFTEMP);
   4460 	free(dirent, M_UDFTEMP);
   4461 
   4462 	dirhash_put(dir_node->dir_hash);
   4463 
   4464 	return error;
   4465 }
   4466 
   4467 /* --------------------------------------------------------------------- */
   4468 
   4469 /*
   4470  * We are not allowed to split the fid tag itself over an logical block so
   4471  * check the space remaining in the logical block.
   4472  *
   4473  * We try to select the smallest candidate for recycling or when none is
   4474  * found, append a new one at the end of the directory.
   4475  */
   4476 
   4477 int
   4478 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   4479 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   4480 {
   4481 	struct vnode *dvp = dir_node->vnode;
   4482 	struct dirhash       *dirh;
   4483 	struct dirhash_entry *dirh_ep;
   4484 	struct fileid_desc   *fid;
   4485 	struct icb_tag       *icbtag;
   4486 	struct charspec osta_charspec;
   4487 	struct dirent   dirent;
   4488 	uint64_t unique_id, dir_size;
   4489 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   4490 	uint32_t chosen_size, chosen_size_diff;
   4491 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   4492 	int file_char, refcnt, icbflags, addr_type, hit, error;
   4493 
   4494 	/* get our dirhash and make sure its read in */
   4495 	dirhash_get(&dir_node->dir_hash);
   4496 	error = dirhash_fill(dir_node);
   4497 	if (error) {
   4498 		dirhash_put(dir_node->dir_hash);
   4499 		return error;
   4500 	}
   4501 	dirh = dir_node->dir_hash;
   4502 
   4503 	/* get info */
   4504 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4505 	udf_osta_charset(&osta_charspec);
   4506 
   4507 	if (dir_node->fe) {
   4508 		dir_size = udf_rw64(dir_node->fe->inf_len);
   4509 		icbtag   = &dir_node->fe->icbtag;
   4510 	} else {
   4511 		dir_size = udf_rw64(dir_node->efe->inf_len);
   4512 		icbtag   = &dir_node->efe->icbtag;
   4513 	}
   4514 
   4515 	icbflags   = udf_rw16(icbtag->flags);
   4516 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4517 
   4518 	if (udf_node->fe) {
   4519 		unique_id = udf_rw64(udf_node->fe->unique_id);
   4520 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   4521 	} else {
   4522 		unique_id = udf_rw64(udf_node->efe->unique_id);
   4523 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   4524 	}
   4525 
   4526 	if (refcnt > 0) {
   4527 		unique_id = udf_advance_uniqueid(ump);
   4528 		udf_adjust_filecount(udf_node, 1);
   4529 	}
   4530 
   4531 	/* determine file characteristics */
   4532 	file_char = 0;	/* visible non deleted file and not stream metadata */
   4533 	if (vap->va_type == VDIR)
   4534 		file_char = UDF_FILE_CHAR_DIR;
   4535 
   4536 	/* malloc scrap buffer */
   4537 	fid = malloc(lb_size, M_TEMP, M_WAITOK);
   4538 	bzero(fid, lb_size);
   4539 
   4540 	/* calculate _minimum_ fid size */
   4541 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4542 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4543 	fidsize = UDF_FID_SIZE + fid->l_fi;
   4544 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   4545 
   4546 	/* find position that will fit the FID */
   4547 	chosen_fid_pos   = dir_size;
   4548 	chosen_size      = 0;
   4549 	chosen_size_diff = UINT_MAX;
   4550 
   4551 	/* shut up gcc */
   4552 	dirent.d_namlen = 0;
   4553 
   4554 	/* search our dirhash hits */
   4555 	error = 0;
   4556 	dirh_ep = NULL;
   4557 	for (;;) {
   4558 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
   4559 		/* if no hit, abort the search */
   4560 		if (!hit)
   4561 			break;
   4562 
   4563 		/* check this hit for size */
   4564 		this_fidsize = dirh_ep->entry_size;
   4565 
   4566 		/* check this hit */
   4567 		fid_pos     = dirh_ep->offset;
   4568 		end_fid_pos = fid_pos + this_fidsize;
   4569 		size_diff   = this_fidsize - fidsize;
   4570 		lb_rest = lb_size - (end_fid_pos % lb_size);
   4571 
   4572 #ifndef UDF_COMPLETE_DELETE
   4573 		/* transfer a new fid/dirent */
   4574 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   4575 		if (error)
   4576 			goto error_out;
   4577 
   4578 		/* only reuse entries that are wiped */
   4579 		/* check if the len + loc are marked zero */
   4580 		if (udf_rw32(fid->icb.len != 0))
   4581 			continue;
   4582 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   4583 			continue;
   4584 		if (udf_rw16(fid->icb.loc.part_num != 0))
   4585 			continue;
   4586 #endif	/* UDF_COMPLETE_DELETE */
   4587 
   4588 		/* select if not splitting the tag and its smaller */
   4589 		if ((size_diff >= 0)  &&
   4590 			(size_diff < chosen_size_diff) &&
   4591 			(lb_rest >= sizeof(struct desc_tag)))
   4592 		{
   4593 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   4594 			if ((size_diff == 0) || (size_diff >= 32)) {
   4595 				chosen_fid_pos   = fid_pos;
   4596 				chosen_size      = this_fidsize;
   4597 				chosen_size_diff = size_diff;
   4598 			}
   4599 		}
   4600 	}
   4601 
   4602 
   4603 	/* extend directory if no other candidate found */
   4604 	if (chosen_size == 0) {
   4605 		chosen_fid_pos   = dir_size;
   4606 		chosen_size      = fidsize;
   4607 		chosen_size_diff = 0;
   4608 
   4609 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   4610 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   4611 			/* pre-grow directory to see if we're to switch */
   4612 			udf_grow_node(dir_node, dir_size + chosen_size);
   4613 
   4614 			icbflags   = udf_rw16(icbtag->flags);
   4615 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4616 		}
   4617 
   4618 		/* make sure the next fid desc_tag won't be splitted */
   4619 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   4620 			end_fid_pos = chosen_fid_pos + chosen_size;
   4621 			lb_rest = lb_size - (end_fid_pos % lb_size);
   4622 
   4623 			/* pad with implementation use regid if needed */
   4624 			if (lb_rest < sizeof(struct desc_tag))
   4625 				chosen_size += 32;
   4626 		}
   4627 	}
   4628 	chosen_size_diff = chosen_size - fidsize;
   4629 
   4630 	/* populate the FID */
   4631 	memset(fid, 0, lb_size);
   4632 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   4633 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   4634 	fid->file_char           = file_char;
   4635 	fid->icb                 = udf_node->loc;
   4636 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   4637 	fid->l_iu                = udf_rw16(0);
   4638 
   4639 	if (chosen_size > fidsize) {
   4640 		/* insert implementation-use regid to space it correctly */
   4641 		fid->l_iu = udf_rw16(chosen_size_diff);
   4642 
   4643 		/* set implementation use */
   4644 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   4645 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   4646 	}
   4647 
   4648 	/* fill in name */
   4649 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   4650 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4651 
   4652 	fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH;
   4653 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4654 
   4655 	/* writeout FID/update parent directory */
   4656 	error = vn_rdwr(UIO_WRITE, dvp,
   4657 			fid, chosen_size, chosen_fid_pos,
   4658 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4659 			FSCRED, NULL, NULL);
   4660 
   4661 	if (error)
   4662 		goto error_out;
   4663 
   4664 	/* add reference counter in attached node */
   4665 	if (udf_node->fe) {
   4666 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4667 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   4668 	} else {
   4669 		KASSERT(udf_node->efe);
   4670 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4671 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   4672 	}
   4673 
   4674 	/* mark not deleted if it was... just in case, but do warn */
   4675 	if (udf_node->i_flags & IN_DELETED) {
   4676 		printf("udf: warning, marking a file undeleted\n");
   4677 		udf_node->i_flags &= ~IN_DELETED;
   4678 	}
   4679 
   4680 	if (file_char & UDF_FILE_CHAR_DIR) {
   4681 		/* add reference counter in directory node for '..' */
   4682 		if (dir_node->fe) {
   4683 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   4684 			refcnt++;
   4685 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   4686 		} else {
   4687 			KASSERT(dir_node->efe);
   4688 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   4689 			refcnt++;
   4690 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   4691 		}
   4692 	}
   4693 
   4694 	/* append to the dirhash */
   4695 	dirent.d_namlen = cnp->cn_namelen;
   4696 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
   4697 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
   4698 		udf_fidsize(fid), 1);
   4699 
   4700 	/* note updates */
   4701 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   4702 	/* VN_KNOTE(udf_node,  ...) */
   4703 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   4704 
   4705 error_out:
   4706 	free(fid, M_TEMP);
   4707 
   4708 	dirhash_put(dir_node->dir_hash);
   4709 
   4710 	return error;
   4711 }
   4712 
   4713 /* --------------------------------------------------------------------- */
   4714 
   4715 /*
   4716  * Each node can have an attached streamdir node though not recursively. These
   4717  * are otherwise known as named substreams/named extended attributes that have
   4718  * no size limitations.
   4719  *
   4720  * `Normal' extended attributes are indicated with a number and are recorded
   4721  * in either the fe/efe descriptor itself for small descriptors or recorded in
   4722  * the attached extended attribute file. Since these spaces can get
   4723  * fragmented, care ought to be taken.
   4724  *
   4725  * Since the size of the space reserved for allocation descriptors is limited,
   4726  * there is a mechanim provided for extending this space; this is done by a
   4727  * special extent to allow schrinking of the allocations without breaking the
   4728  * linkage to the allocation extent descriptor.
   4729  */
   4730 
   4731 int
   4732 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   4733 	     struct udf_node **udf_noderes)
   4734 {
   4735 	union dscrptr   *dscr;
   4736 	struct udf_node *udf_node;
   4737 	struct vnode    *nvp;
   4738 	struct long_ad   icb_loc, last_fe_icb_loc;
   4739 	uint64_t file_size;
   4740 	uint32_t lb_size, sector, dummy;
   4741 	uint8_t  *file_data;
   4742 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   4743 	int slot, eof, error;
   4744 
   4745 	DPRINTF(NODE, ("udf_get_node called\n"));
   4746 	*udf_noderes = udf_node = NULL;
   4747 
   4748 	/* lock to disallow simultanious creation of same udf_node */
   4749 	mutex_enter(&ump->get_node_lock);
   4750 
   4751 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   4752 	/* lookup in hash table */
   4753 	assert(ump);
   4754 	assert(node_icb_loc);
   4755 	udf_node = udf_hash_lookup(ump, node_icb_loc);
   4756 	if (udf_node) {
   4757 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   4758 		/* vnode is returned locked */
   4759 		*udf_noderes = udf_node;
   4760 		mutex_exit(&ump->get_node_lock);
   4761 		return 0;
   4762 	}
   4763 
   4764 	/* garbage check: translate udf_node_icb_loc to sectornr */
   4765 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   4766 	if (error) {
   4767 		/* no use, this will fail anyway */
   4768 		mutex_exit(&ump->get_node_lock);
   4769 		return EINVAL;
   4770 	}
   4771 
   4772 	/* build udf_node (do initialise!) */
   4773 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   4774 	memset(udf_node, 0, sizeof(struct udf_node));
   4775 
   4776 	DPRINTF(NODE, ("\tget new vnode\n"));
   4777 	/* give it a vnode */
   4778 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   4779         if (error) {
   4780 		pool_put(&udf_node_pool, udf_node);
   4781 		mutex_exit(&ump->get_node_lock);
   4782 		return error;
   4783 	}
   4784 
   4785 	/* always return locked vnode */
   4786 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   4787 		/* recycle vnode and unlock; simultanious will fail too */
   4788 		ungetnewvnode(nvp);
   4789 		mutex_exit(&ump->get_node_lock);
   4790 		return error;
   4791 	}
   4792 
   4793 	/* initialise crosslinks, note location of fe/efe for hashing */
   4794 	udf_node->ump    =  ump;
   4795 	udf_node->vnode  =  nvp;
   4796 	nvp->v_data      =  udf_node;
   4797 	udf_node->loc    = *node_icb_loc;
   4798 	udf_node->lockf  =  0;
   4799 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   4800 	cv_init(&udf_node->node_lock, "udf_nlk");
   4801 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   4802 	udf_node->outstanding_bufs = 0;
   4803 	udf_node->outstanding_nodedscr = 0;
   4804 
   4805 	if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, sizeof(struct long_ad)) == 0)
   4806 		nvp->v_vflag |= VV_ROOT;
   4807 
   4808 	/* insert into the hash lookup */
   4809 	udf_register_node(udf_node);
   4810 
   4811 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   4812 	mutex_exit(&ump->get_node_lock);
   4813 
   4814 	icb_loc = *node_icb_loc;
   4815 	needs_indirect = 0;
   4816 	strat4096 = 0;
   4817 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   4818 	file_size = 0;
   4819 	file_data = NULL;
   4820 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4821 
   4822 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   4823 	do {
   4824 		/* try to read in fe/efe */
   4825 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   4826 
   4827 		/* blank sector marks end of sequence, check this */
   4828 		if ((dscr == NULL) &&  (!strat4096))
   4829 			error = ENOENT;
   4830 
   4831 		/* break if read error or blank sector */
   4832 		if (error || (dscr == NULL))
   4833 			break;
   4834 
   4835 		/* process descriptor based on the descriptor type */
   4836 		dscr_type = udf_rw16(dscr->tag.id);
   4837 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   4838 
   4839 		/* if dealing with an indirect entry, follow the link */
   4840 		if (dscr_type == TAGID_INDIRECTENTRY) {
   4841 			needs_indirect = 0;
   4842 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4843 			icb_loc = dscr->inde.indirect_icb;
   4844 			continue;
   4845 		}
   4846 
   4847 		/* only file entries and extended file entries allowed here */
   4848 		if ((dscr_type != TAGID_FENTRY) &&
   4849 		    (dscr_type != TAGID_EXTFENTRY)) {
   4850 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4851 			error = ENOENT;
   4852 			break;
   4853 		}
   4854 
   4855 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   4856 
   4857 		/* choose this one */
   4858 		last_fe_icb_loc = icb_loc;
   4859 
   4860 		/* record and process/update (ext)fentry */
   4861 		file_data = NULL;
   4862 		if (dscr_type == TAGID_FENTRY) {
   4863 			if (udf_node->fe)
   4864 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   4865 					udf_node->fe);
   4866 			udf_node->fe  = &dscr->fe;
   4867 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   4868 			udf_file_type = udf_node->fe->icbtag.file_type;
   4869 			file_size = udf_rw64(udf_node->fe->inf_len);
   4870 			file_data = udf_node->fe->data;
   4871 		} else {
   4872 			if (udf_node->efe)
   4873 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   4874 					udf_node->efe);
   4875 			udf_node->efe = &dscr->efe;
   4876 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   4877 			udf_file_type = udf_node->efe->icbtag.file_type;
   4878 			file_size = udf_rw64(udf_node->efe->inf_len);
   4879 			file_data = udf_node->efe->data;
   4880 		}
   4881 
   4882 		/* check recording strategy (structure) */
   4883 
   4884 		/*
   4885 		 * Strategy 4096 is a daisy linked chain terminating with an
   4886 		 * unrecorded sector or a TERM descriptor. The next
   4887 		 * descriptor is to be found in the sector that follows the
   4888 		 * current sector.
   4889 		 */
   4890 		if (strat == 4096) {
   4891 			strat4096 = 1;
   4892 			needs_indirect = 1;
   4893 
   4894 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   4895 		}
   4896 
   4897 		/*
   4898 		 * Strategy 4 is the normal strategy and terminates, but if
   4899 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   4900 		 */
   4901 
   4902 		if (strat == 4) {
   4903 			if (strat4096) {
   4904 				error = EINVAL;
   4905 				break;
   4906 			}
   4907 			break;		/* done */
   4908 		}
   4909 	} while (!error);
   4910 
   4911 	/* first round of cleanup code */
   4912 	if (error) {
   4913 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   4914 		/* recycle udf_node */
   4915 		udf_dispose_node(udf_node);
   4916 
   4917 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   4918 		nvp->v_data = NULL;
   4919 		ungetnewvnode(nvp);
   4920 
   4921 		return EINVAL;		/* error code ok? */
   4922 	}
   4923 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   4924 
   4925 	/* assert no references to dscr anymore beyong this point */
   4926 	assert((udf_node->fe) || (udf_node->efe));
   4927 	dscr = NULL;
   4928 
   4929 	/*
   4930 	 * Remember where to record an updated version of the descriptor. If
   4931 	 * there is a sequence of indirect entries, icb_loc will have been
   4932 	 * updated. Its the write disipline to allocate new space and to make
   4933 	 * sure the chain is maintained.
   4934 	 *
   4935 	 * `needs_indirect' flags if the next location is to be filled with
   4936 	 * with an indirect entry.
   4937 	 */
   4938 	udf_node->write_loc = icb_loc;
   4939 	udf_node->needs_indirect = needs_indirect;
   4940 
   4941 	/*
   4942 	 * Go trough all allocations extents of this descriptor and when
   4943 	 * encountering a redirect read in the allocation extension. These are
   4944 	 * daisy-chained.
   4945 	 */
   4946 	UDF_LOCK_NODE(udf_node, 0);
   4947 	udf_node->num_extensions = 0;
   4948 
   4949 	error   = 0;
   4950 	slot    = 0;
   4951 	for (;;) {
   4952 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   4953 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   4954 			"lb_num = %d, part = %d\n", slot, eof,
   4955 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   4956 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   4957 			udf_rw32(icb_loc.loc.lb_num),
   4958 			udf_rw16(icb_loc.loc.part_num)));
   4959 		if (eof)
   4960 			break;
   4961 		slot++;
   4962 
   4963 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   4964 			continue;
   4965 
   4966 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   4967 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   4968 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   4969 					"too many allocation extensions on "
   4970 					"udf_node\n"));
   4971 			error = EINVAL;
   4972 			break;
   4973 		}
   4974 
   4975 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   4976 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   4977 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   4978 					"extension size in udf_node\n"));
   4979 			error = EINVAL;
   4980 			break;
   4981 		}
   4982 
   4983 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   4984 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   4985 		/* load in allocation extent */
   4986 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   4987 		if (error || (dscr == NULL))
   4988 			break;
   4989 
   4990 		/* process read-in descriptor */
   4991 		dscr_type = udf_rw16(dscr->tag.id);
   4992 
   4993 		if (dscr_type != TAGID_ALLOCEXTENT) {
   4994 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   4995 			error = ENOENT;
   4996 			break;
   4997 		}
   4998 
   4999 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5000 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5001 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5002 
   5003 		udf_node->num_extensions++;
   5004 
   5005 	} /* while */
   5006 	UDF_UNLOCK_NODE(udf_node, 0);
   5007 
   5008 	/* second round of cleanup code */
   5009 	if (error) {
   5010 		/* recycle udf_node */
   5011 		udf_dispose_node(udf_node);
   5012 
   5013 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5014 		nvp->v_data = NULL;
   5015 		ungetnewvnode(nvp);
   5016 
   5017 		return EINVAL;		/* error code ok? */
   5018 	}
   5019 
   5020 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5021 
   5022 	/*
   5023 	 * Translate UDF filetypes into vnode types.
   5024 	 *
   5025 	 * Systemfiles like the meta main and mirror files are not treated as
   5026 	 * normal files, so we type them as having no type. UDF dictates that
   5027 	 * they are not allowed to be visible.
   5028 	 */
   5029 
   5030 	switch (udf_file_type) {
   5031 	case UDF_ICB_FILETYPE_DIRECTORY :
   5032 	case UDF_ICB_FILETYPE_STREAMDIR :
   5033 		nvp->v_type = VDIR;
   5034 		break;
   5035 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5036 		nvp->v_type = VBLK;
   5037 		break;
   5038 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5039 		nvp->v_type = VCHR;
   5040 		break;
   5041 	case UDF_ICB_FILETYPE_SOCKET :
   5042 		nvp->v_type = VSOCK;
   5043 		break;
   5044 	case UDF_ICB_FILETYPE_FIFO :
   5045 		nvp->v_type = VFIFO;
   5046 		break;
   5047 	case UDF_ICB_FILETYPE_SYMLINK :
   5048 		nvp->v_type = VLNK;
   5049 		break;
   5050 	case UDF_ICB_FILETYPE_VAT :
   5051 	case UDF_ICB_FILETYPE_META_MAIN :
   5052 	case UDF_ICB_FILETYPE_META_MIRROR :
   5053 		nvp->v_type = VNON;
   5054 		break;
   5055 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5056 	case UDF_ICB_FILETYPE_REALTIME :
   5057 		nvp->v_type = VREG;
   5058 		break;
   5059 	default:
   5060 		/* YIKES, something else */
   5061 		nvp->v_type = VNON;
   5062 	}
   5063 
   5064 	/* TODO specfs, fifofs etc etc. vnops setting */
   5065 
   5066 	/* don't forget to set vnode's v_size */
   5067 	uvm_vnp_setsize(nvp, file_size);
   5068 
   5069 	/* TODO ext attr and streamdir udf_nodes */
   5070 
   5071 	*udf_noderes = udf_node;
   5072 
   5073 	return 0;
   5074 }
   5075 
   5076 /* --------------------------------------------------------------------- */
   5077 
   5078 int
   5079 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5080 {
   5081 	union dscrptr *dscr;
   5082 	struct long_ad *loc;
   5083 	int extnr, flags, error;
   5084 
   5085 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5086 
   5087 	KASSERT(udf_node->outstanding_bufs == 0);
   5088 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5089 
   5090 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5091 
   5092 	if (udf_node->i_flags & IN_DELETED) {
   5093 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5094 		return 0;
   5095 	}
   5096 
   5097 	/* lock node */
   5098 	flags = waitfor ? 0 : IN_CALLBACK_ULK;
   5099 	UDF_LOCK_NODE(udf_node, flags);
   5100 
   5101 	/* at least one descriptor writeout */
   5102 	udf_node->outstanding_nodedscr = 1;
   5103 
   5104 	/* we're going to write out the descriptor so clear the flags */
   5105 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5106 
   5107 	/* if we were rebuild, write out the allocation extents */
   5108 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5109 		/* mark outstanding node descriptors and issue them */
   5110 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5111 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5112 			loc = &udf_node->ext_loc[extnr];
   5113 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5114 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5115 			if (error)
   5116 				return error;
   5117 		}
   5118 		/* mark allocation extents written out */
   5119 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5120 	}
   5121 
   5122 	if (udf_node->fe) {
   5123 		KASSERT(udf_node->efe == NULL);
   5124 		dscr = (union dscrptr *) udf_node->fe;
   5125 	} else {
   5126 		KASSERT(udf_node->efe);
   5127 		KASSERT(udf_node->fe == NULL);
   5128 		dscr = (union dscrptr *) udf_node->efe;
   5129 	}
   5130 	KASSERT(dscr);
   5131 
   5132 	loc = &udf_node->write_loc;
   5133 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5134 	return error;
   5135 }
   5136 
   5137 /* --------------------------------------------------------------------- */
   5138 
   5139 int
   5140 udf_dispose_node(struct udf_node *udf_node)
   5141 {
   5142 	struct vnode *vp;
   5143 	int extnr;
   5144 
   5145 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5146 	if (!udf_node) {
   5147 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5148 		return 0;
   5149 	}
   5150 
   5151 	vp  = udf_node->vnode;
   5152 #ifdef DIAGNOSTIC
   5153 	if (vp->v_numoutput)
   5154 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5155 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5156 #endif
   5157 
   5158 	/* wait until out of sync (just in case we happen to stumble over one */
   5159 	KASSERT(!mutex_owned(&mntvnode_lock));
   5160 	mutex_enter(&mntvnode_lock);
   5161 	while (udf_node->i_flags & IN_SYNCED) {
   5162 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
   5163 			hz/16);
   5164 	}
   5165 	mutex_exit(&mntvnode_lock);
   5166 
   5167 	/* TODO extended attributes and streamdir */
   5168 
   5169 	/* remove dirhash if present */
   5170 	dirhash_purge(&udf_node->dir_hash);
   5171 
   5172 	/* remove from our hash lookup table */
   5173 	udf_deregister_node(udf_node);
   5174 
   5175 	/* destroy our lock */
   5176 	mutex_destroy(&udf_node->node_mutex);
   5177 	cv_destroy(&udf_node->node_lock);
   5178 
   5179 	/* dissociate our udf_node from the vnode */
   5180 	genfs_node_destroy(udf_node->vnode);
   5181 	vp->v_data = NULL;
   5182 
   5183 	/* free associated memory and the node itself */
   5184 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5185 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5186 			udf_node->ext[extnr]);
   5187 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5188 	}
   5189 
   5190 	if (udf_node->fe)
   5191 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5192 			udf_node->fe);
   5193 	if (udf_node->efe)
   5194 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5195 			udf_node->efe);
   5196 
   5197 	udf_node->fe  = (void *) 0xdeadaaaa;
   5198 	udf_node->efe = (void *) 0xdeadbbbb;
   5199 	udf_node->ump = (void *) 0xdeadbeef;
   5200 	pool_put(&udf_node_pool, udf_node);
   5201 
   5202 	return 0;
   5203 }
   5204 
   5205 
   5206 
   5207 /*
   5208  * create a new node using the specified vnodeops, vap and cnp but with the
   5209  * udf_file_type. This allows special files to be created. Use with care.
   5210  */
   5211 
   5212 static int
   5213 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5214 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5215 {
   5216 	union dscrptr *dscr;
   5217 	struct udf_node *dir_node = VTOI(dvp);;
   5218 	struct udf_node *udf_node;
   5219 	struct udf_mount *ump = dir_node->ump;
   5220 	struct vnode *nvp;
   5221 	struct long_ad node_icb_loc;
   5222 	uint64_t parent_unique_id;
   5223 	uint64_t lmapping;
   5224 	uint32_t lb_size, lb_num;
   5225 	uint16_t vpart_num;
   5226 	uid_t uid;
   5227 	gid_t gid, parent_gid;
   5228 	int fid_size, error;
   5229 
   5230 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5231 	*vpp = NULL;
   5232 
   5233 	/* allocate vnode */
   5234 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5235         if (error)
   5236 		return error;
   5237 
   5238 	/* lock node */
   5239 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5240 	if (error) {
   5241 		nvp->v_data = NULL;
   5242 		ungetnewvnode(nvp);
   5243 		return error;
   5244 	}
   5245 
   5246 	/* get disc allocation for one logical block */
   5247 	vpart_num = ump->node_part;
   5248 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
   5249 			vpart_num, &lmapping);
   5250 	lb_num = lmapping;
   5251 	if (error) {
   5252 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5253 		ungetnewvnode(nvp);
   5254 		return error;
   5255 	}
   5256 
   5257 	/* initialise pointer to location */
   5258 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5259 	node_icb_loc.len = lb_size;
   5260 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5261 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5262 
   5263 	/* build udf_node (do initialise!) */
   5264 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5265 	memset(udf_node, 0, sizeof(struct udf_node));
   5266 
   5267 	/* initialise crosslinks, note location of fe/efe for hashing */
   5268 	/* bugalert: synchronise with udf_get_node() */
   5269 	udf_node->ump       = ump;
   5270 	udf_node->vnode     = nvp;
   5271 	nvp->v_data         = udf_node;
   5272 	udf_node->loc       = node_icb_loc;
   5273 	udf_node->write_loc = node_icb_loc;
   5274 	udf_node->lockf     = 0;
   5275 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5276 	cv_init(&udf_node->node_lock, "udf_nlk");
   5277 	udf_node->outstanding_bufs = 0;
   5278 	udf_node->outstanding_nodedscr = 0;
   5279 
   5280 	/* initialise genfs */
   5281 	genfs_node_init(nvp, &udf_genfsops);
   5282 
   5283 	/* insert into the hash lookup */
   5284 	udf_register_node(udf_node);
   5285 
   5286 	/* get parent's unique ID for refering '..' if its a directory */
   5287 	if (dir_node->fe) {
   5288 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5289 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5290 	} else {
   5291 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5292 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5293 	}
   5294 
   5295 	/* get descriptor */
   5296 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5297 
   5298 	/* choose a fe or an efe for it */
   5299 	if (ump->logical_vol->tag.descriptor_ver == 2) {
   5300 		udf_node->fe = &dscr->fe;
   5301 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5302 			udf_file_type, &udf_node->loc,
   5303 			&dir_node->loc, parent_unique_id);
   5304 		/* TODO add extended attribute for creation time */
   5305 	} else {
   5306 		udf_node->efe = &dscr->efe;
   5307 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5308 			udf_file_type, &udf_node->loc,
   5309 			&dir_node->loc, parent_unique_id);
   5310 	}
   5311 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5312 
   5313 	/* update vnode's size and type */
   5314 	nvp->v_type = vap->va_type;
   5315 	uvm_vnp_setsize(nvp, fid_size);
   5316 
   5317 	/* set access mode */
   5318 	udf_setaccessmode(udf_node, vap->va_mode);
   5319 
   5320 	/* set ownership */
   5321 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5322 	gid = parent_gid;
   5323 	udf_setownership(udf_node, uid, gid);
   5324 
   5325 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5326 	if (error) {
   5327 		/* free disc allocation for node */
   5328 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5329 
   5330 		/* recycle udf_node */
   5331 		udf_dispose_node(udf_node);
   5332 		vput(nvp);
   5333 
   5334 		*vpp = NULL;
   5335 		return error;
   5336 	}
   5337 
   5338 	/* adjust file count */
   5339 	udf_adjust_filecount(udf_node, 1);
   5340 
   5341 	/* return result */
   5342 	*vpp = nvp;
   5343 
   5344 	return 0;
   5345 }
   5346 
   5347 
   5348 int
   5349 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5350 	struct componentname *cnp)
   5351 {
   5352 	int (**vnodeops)(void *);
   5353 	int udf_file_type;
   5354 
   5355 	DPRINTF(NODE, ("udf_create_node called\n"));
   5356 
   5357 	/* what type are we creating ? */
   5358 	vnodeops = udf_vnodeop_p;
   5359 	/* start with a default */
   5360 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5361 
   5362 	*vpp = NULL;
   5363 
   5364 	switch (vap->va_type) {
   5365 	case VREG :
   5366 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5367 		break;
   5368 	case VDIR :
   5369 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5370 		break;
   5371 	case VLNK :
   5372 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5373 		break;
   5374 	case VBLK :
   5375 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5376 		/* specfs */
   5377 		return ENOTSUP;
   5378 		break;
   5379 	case VCHR :
   5380 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5381 		/* specfs */
   5382 		return ENOTSUP;
   5383 		break;
   5384 	case VFIFO :
   5385 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5386 		/* specfs */
   5387 		return ENOTSUP;
   5388 		break;
   5389 	case VSOCK :
   5390 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5391 		/* specfs */
   5392 		return ENOTSUP;
   5393 		break;
   5394 	case VNON :
   5395 	case VBAD :
   5396 	default :
   5397 		/* nothing; can we even create these? */
   5398 		return EINVAL;
   5399 	}
   5400 
   5401 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5402 }
   5403 
   5404 /* --------------------------------------------------------------------- */
   5405 
   5406 static void
   5407 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5408 {
   5409 	struct udf_mount *ump = udf_node->ump;
   5410 	uint32_t lb_size, lb_num, len, num_lb;
   5411 	uint16_t vpart_num;
   5412 
   5413 	/* is there really one? */
   5414 	if (mem == NULL)
   5415 		return;
   5416 
   5417 	/* got a descriptor here */
   5418 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5419 	lb_num    = udf_rw32(loc->loc.lb_num);
   5420 	vpart_num = udf_rw16(loc->loc.part_num);
   5421 
   5422 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5423 	num_lb = (len + lb_size -1) / lb_size;
   5424 
   5425 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5426 }
   5427 
   5428 void
   5429 udf_delete_node(struct udf_node *udf_node)
   5430 {
   5431 	void *dscr;
   5432 	struct udf_mount *ump;
   5433 	struct long_ad *loc;
   5434 	int extnr, lvint, dummy;
   5435 
   5436 	ump = udf_node->ump;
   5437 
   5438 	/* paranoia check on integrity; should be open!; we could panic */
   5439 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5440 	if (lvint == UDF_INTEGRITY_CLOSED)
   5441 		printf("\tIntegrity was CLOSED!\n");
   5442 
   5443 	/* whatever the node type, change its size to zero */
   5444 	(void) udf_resize_node(udf_node, 0, &dummy);
   5445 
   5446 	/* force it to be `clean'; no use writing it out */
   5447 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   5448 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5449 
   5450 	/* adjust file count */
   5451 	udf_adjust_filecount(udf_node, -1);
   5452 
   5453 	/*
   5454 	 * Free its allocated descriptors; memory will be released when
   5455 	 * vop_reclaim() is called.
   5456 	 */
   5457 	loc = &udf_node->loc;
   5458 
   5459 	dscr = udf_node->fe;
   5460 	udf_free_descriptor_space(udf_node, loc, dscr);
   5461 	dscr = udf_node->efe;
   5462 	udf_free_descriptor_space(udf_node, loc, dscr);
   5463 
   5464 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   5465 		dscr =  udf_node->ext[extnr];
   5466 		loc  = &udf_node->ext_loc[extnr];
   5467 		udf_free_descriptor_space(udf_node, loc, dscr);
   5468 	}
   5469 }
   5470 
   5471 /* --------------------------------------------------------------------- */
   5472 
   5473 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   5474 int
   5475 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   5476 {
   5477 	struct file_entry    *fe  = udf_node->fe;
   5478 	struct extfile_entry *efe = udf_node->efe;
   5479 	uint64_t file_size;
   5480 	int error;
   5481 
   5482 	if (fe) {
   5483 		file_size  = udf_rw64(fe->inf_len);
   5484 	} else {
   5485 		assert(udf_node->efe);
   5486 		file_size  = udf_rw64(efe->inf_len);
   5487 	}
   5488 
   5489 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   5490 			file_size, new_size));
   5491 
   5492 	/* if not changing, we're done */
   5493 	if (file_size == new_size)
   5494 		return 0;
   5495 
   5496 	*extended = (new_size > file_size);
   5497 	if (*extended) {
   5498 		error = udf_grow_node(udf_node, new_size);
   5499 	} else {
   5500 		error = udf_shrink_node(udf_node, new_size);
   5501 	}
   5502 
   5503 	return error;
   5504 }
   5505 
   5506 
   5507 /* --------------------------------------------------------------------- */
   5508 
   5509 void
   5510 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   5511 	struct timespec *mod, struct timespec *birth)
   5512 {
   5513 	struct timespec now;
   5514 	struct file_entry    *fe;
   5515 	struct extfile_entry *efe;
   5516 	struct filetimes_extattr_entry *ft_extattr;
   5517 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   5518 	struct timestamp  fe_ctime;
   5519 	struct timespec   cur_birth;
   5520 	uint32_t offset, a_l;
   5521 	uint8_t *filedata;
   5522 	int error;
   5523 
   5524 	/* protect against rogue values */
   5525 	if (!udf_node)
   5526 		return;
   5527 
   5528 	fe  = udf_node->fe;
   5529 	efe = udf_node->efe;
   5530 
   5531 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   5532 		return;
   5533 
   5534 	/* get descriptor information */
   5535 	if (fe) {
   5536 		atime    = &fe->atime;
   5537 		mtime    = &fe->mtime;
   5538 		attrtime = &fe->attrtime;
   5539 		filedata = fe->data;
   5540 
   5541 		/* initial save dummy setting */
   5542 		ctime    = &fe_ctime;
   5543 
   5544 		/* check our extended attribute if present */
   5545 		error = udf_extattr_search_intern(udf_node,
   5546 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   5547 		if (!error) {
   5548 			ft_extattr = (struct filetimes_extattr_entry *)
   5549 				(filedata + offset);
   5550 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   5551 				ctime = &ft_extattr->times[0];
   5552 		}
   5553 		/* TODO create the extended attribute if not found ? */
   5554 	} else {
   5555 		assert(udf_node->efe);
   5556 		atime    = &efe->atime;
   5557 		mtime    = &efe->mtime;
   5558 		attrtime = &efe->attrtime;
   5559 		ctime    = &efe->ctime;
   5560 	}
   5561 
   5562 	vfs_timestamp(&now);
   5563 
   5564 	/* set access time */
   5565 	if (udf_node->i_flags & IN_ACCESS) {
   5566 		if (acc == NULL)
   5567 			acc = &now;
   5568 		udf_timespec_to_timestamp(acc, atime);
   5569 	}
   5570 
   5571 	/* set modification time */
   5572 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   5573 		if (mod == NULL)
   5574 			mod = &now;
   5575 		udf_timespec_to_timestamp(mod, mtime);
   5576 
   5577 		/* ensure birthtime is older than set modification! */
   5578 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   5579 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   5580 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   5581 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   5582 			udf_timespec_to_timestamp(mod, ctime);
   5583 		}
   5584 	}
   5585 
   5586 	/* update birthtime if specified */
   5587 	/* XXX we asume here that given birthtime is older than mod */
   5588 	if (birth && (birth->tv_sec != VNOVAL)) {
   5589 		udf_timespec_to_timestamp(birth, ctime);
   5590 	}
   5591 
   5592 	/* set change time */
   5593 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   5594 		udf_timespec_to_timestamp(&now, attrtime);
   5595 
   5596 	/* notify updates to the node itself */
   5597 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   5598 		udf_node->i_flags |= IN_ACCESSED;
   5599 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   5600 		udf_node->i_flags |= IN_MODIFIED;
   5601 
   5602 	/* clear modification flags */
   5603 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5604 }
   5605 
   5606 /* --------------------------------------------------------------------- */
   5607 
   5608 int
   5609 udf_update(struct vnode *vp, struct timespec *acc,
   5610 	struct timespec *mod, struct timespec *birth, int updflags)
   5611 {
   5612 	union dscrptr *dscrptr;
   5613 	struct udf_node  *udf_node = VTOI(vp);
   5614 	struct udf_mount *ump = udf_node->ump;
   5615 	struct regid     *impl_id;
   5616 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   5617 	int waitfor, flags;
   5618 
   5619 #ifdef DEBUG
   5620 	char bits[128];
   5621 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   5622 		updflags));
   5623 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
   5624 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   5625 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   5626 #endif
   5627 
   5628 	/* set our times */
   5629 	udf_itimes(udf_node, acc, mod, birth);
   5630 
   5631 	/* set our implementation id */
   5632 	if (udf_node->fe) {
   5633 		dscrptr = (union dscrptr *) udf_node->fe;
   5634 		impl_id = &udf_node->fe->imp_id;
   5635 	} else {
   5636 		dscrptr = (union dscrptr *) udf_node->efe;
   5637 		impl_id = &udf_node->efe->imp_id;
   5638 	}
   5639 
   5640 	/* set our ID */
   5641 	udf_set_regid(impl_id, IMPL_NAME);
   5642 	udf_add_impl_regid(ump, impl_id);
   5643 
   5644 	/* update our crc! on RMW we are not allowed to change a thing */
   5645 	udf_validate_tag_and_crc_sums(dscrptr);
   5646 
   5647 	/* if called when mounted readonly, never write back */
   5648 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   5649 		return 0;
   5650 
   5651 	/* check if the node is dirty 'enough'*/
   5652 	if (updflags & UPDATE_CLOSE) {
   5653 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   5654 	} else {
   5655 		flags = udf_node->i_flags & IN_MODIFIED;
   5656 	}
   5657 	if (flags == 0)
   5658 		return 0;
   5659 
   5660 	/* determine if we need to write sync or async */
   5661 	waitfor = 0;
   5662 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   5663 		/* sync mounted */
   5664 		waitfor = updflags & UPDATE_WAIT;
   5665 		if (updflags & UPDATE_DIROP)
   5666 			waitfor |= UPDATE_WAIT;
   5667 	}
   5668 	if (waitfor)
   5669 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   5670 
   5671 	return 0;
   5672 }
   5673 
   5674 
   5675 /* --------------------------------------------------------------------- */
   5676 
   5677 
   5678 /*
   5679  * Read one fid and process it into a dirent and advance to the next (*fid)
   5680  * has to be allocated a logical block in size, (*dirent) struct dirent length
   5681  */
   5682 
   5683 int
   5684 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   5685 		    struct fileid_desc *fid, struct dirent *dirent)
   5686 {
   5687 	struct udf_node  *dir_node = VTOI(vp);
   5688 	struct udf_mount *ump = dir_node->ump;
   5689 	struct file_entry    *fe  = dir_node->fe;
   5690 	struct extfile_entry *efe = dir_node->efe;
   5691 	uint32_t      fid_size, lb_size;
   5692 	uint64_t      file_size;
   5693 	char         *fid_name;
   5694 	int           enough, error;
   5695 
   5696 	assert(fid);
   5697 	assert(dirent);
   5698 	assert(dir_node);
   5699 	assert(offset);
   5700 	assert(*offset != 1);
   5701 
   5702 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   5703 	/* check if we're past the end of the directory */
   5704 	if (fe) {
   5705 		file_size = udf_rw64(fe->inf_len);
   5706 	} else {
   5707 		assert(dir_node->efe);
   5708 		file_size = udf_rw64(efe->inf_len);
   5709 	}
   5710 	if (*offset >= file_size)
   5711 		return EINVAL;
   5712 
   5713 	/* get maximum length of FID descriptor */
   5714 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5715 
   5716 	/* initialise return values */
   5717 	fid_size = 0;
   5718 	memset(dirent, 0, sizeof(struct dirent));
   5719 	memset(fid, 0, lb_size);
   5720 
   5721 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   5722 	if (!enough) {
   5723 		/* short dir ... */
   5724 		return EIO;
   5725 	}
   5726 
   5727 	error = vn_rdwr(UIO_READ, vp,
   5728 			fid, MIN(file_size - (*offset), lb_size), *offset,
   5729 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   5730 			NULL, NULL);
   5731 	if (error)
   5732 		return error;
   5733 
   5734 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   5735 	/*
   5736 	 * Check if we got a whole descriptor.
   5737 	 * TODO Try to `resync' directory stream when something is very wrong.
   5738 	 */
   5739 
   5740 	/* check if our FID header is OK */
   5741 	error = udf_check_tag(fid);
   5742 	if (error) {
   5743 		goto brokendir;
   5744 	}
   5745 	DPRINTF(FIDS, ("\ttag check ok\n"));
   5746 
   5747 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   5748 		error = EIO;
   5749 		goto brokendir;
   5750 	}
   5751 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   5752 
   5753 	/* check for length */
   5754 	fid_size = udf_fidsize(fid);
   5755 	enough = (file_size - (*offset) >= fid_size);
   5756 	if (!enough) {
   5757 		error = EIO;
   5758 		goto brokendir;
   5759 	}
   5760 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   5761 
   5762 	/* check FID contents */
   5763 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   5764 brokendir:
   5765 	if (error) {
   5766 		/* note that is sometimes a bit quick to report */
   5767 		printf("BROKEN DIRECTORY ENTRY\n");
   5768 		/* RESYNC? */
   5769 		/* TODO: use udf_resync_fid_stream */
   5770 		return EIO;
   5771 	}
   5772 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   5773 
   5774 	/* we got a whole and valid descriptor! */
   5775 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   5776 
   5777 	/* create resulting dirent structure */
   5778 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   5779 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   5780 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   5781 
   5782 	/* '..' has no name, so provide one */
   5783 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   5784 		strcpy(dirent->d_name, "..");
   5785 
   5786 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   5787 	dirent->d_namlen = strlen(dirent->d_name);
   5788 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   5789 
   5790 	/*
   5791 	 * Note that its not worth trying to go for the filetypes now... its
   5792 	 * too expensive too
   5793 	 */
   5794 	dirent->d_type = DT_UNKNOWN;
   5795 
   5796 	/* initial guess for filetype we can make */
   5797 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   5798 		dirent->d_type = DT_DIR;
   5799 
   5800 	/* advance */
   5801 	*offset += fid_size;
   5802 
   5803 	return error;
   5804 }
   5805 
   5806 
   5807 /* --------------------------------------------------------------------- */
   5808 
   5809 static void
   5810 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   5811 	int pass, int *ndirty)
   5812 {
   5813 	struct udf_node *udf_node, *n_udf_node;
   5814 	struct vnode *vp;
   5815 	int vdirty, error;
   5816 	int on_type, on_flags, on_vnode;
   5817 
   5818 derailed:
   5819 	KASSERT(mutex_owned(&mntvnode_lock));
   5820 
   5821 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   5822 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
   5823 	for (;udf_node; udf_node = n_udf_node) {
   5824 		DPRINTF(SYNC, ("."));
   5825 
   5826 		udf_node->i_flags &= ~IN_SYNCED;
   5827 		vp = udf_node->vnode;
   5828 
   5829 		mutex_enter(&vp->v_interlock);
   5830 		n_udf_node = LIST_NEXT(udf_node, sortchain);
   5831 		if (n_udf_node)
   5832 			n_udf_node->i_flags |= IN_SYNCED;
   5833 
   5834 		/* system nodes are not synced this way */
   5835 		if (vp->v_vflag & VV_SYSTEM) {
   5836 			mutex_exit(&vp->v_interlock);
   5837 			continue;
   5838 		}
   5839 
   5840 		/* check if its dirty enough to even try */
   5841 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   5842 		on_flags = ((udf_node->i_flags &
   5843 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   5844 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   5845 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   5846 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   5847 			/* not dirty (enough?) */
   5848 			mutex_exit(&vp->v_interlock);
   5849 			continue;
   5850 		}
   5851 
   5852 		mutex_exit(&mntvnode_lock);
   5853 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   5854 		if (error) {
   5855 			mutex_enter(&mntvnode_lock);
   5856 			if (error == ENOENT)
   5857 				goto derailed;
   5858 			*ndirty += 1;
   5859 			continue;
   5860 		}
   5861 
   5862 		switch (pass) {
   5863 		case 1:
   5864 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   5865 			break;
   5866 		case 2:
   5867 			vdirty = vp->v_numoutput;
   5868 			if (vp->v_tag == VT_UDF)
   5869 				vdirty += udf_node->outstanding_bufs +
   5870 					udf_node->outstanding_nodedscr;
   5871 			if (vdirty == 0)
   5872 				VOP_FSYNC(vp, cred, 0,0,0);
   5873 			*ndirty += vdirty;
   5874 			break;
   5875 		case 3:
   5876 			vdirty = vp->v_numoutput;
   5877 			if (vp->v_tag == VT_UDF)
   5878 				vdirty += udf_node->outstanding_bufs +
   5879 					udf_node->outstanding_nodedscr;
   5880 			*ndirty += vdirty;
   5881 			break;
   5882 		}
   5883 
   5884 		vput(vp);
   5885 		mutex_enter(&mntvnode_lock);
   5886 	}
   5887 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   5888 }
   5889 
   5890 
   5891 void
   5892 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   5893 {
   5894 	int dummy, ndirty;
   5895 
   5896 	mutex_enter(&mntvnode_lock);
   5897 recount:
   5898 	dummy = 0;
   5899 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   5900 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   5901 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   5902 
   5903 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   5904 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   5905 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   5906 
   5907 	if (waitfor == MNT_WAIT) {
   5908 		ndirty = ump->devvp->v_numoutput;
   5909 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
   5910 			ndirty));
   5911 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   5912 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
   5913 			ndirty));
   5914 
   5915 		if (ndirty) {
   5916 			/* 1/4 second wait */
   5917 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   5918 				hz/4);
   5919 			goto recount;
   5920 		}
   5921 	}
   5922 
   5923 	mutex_exit(&mntvnode_lock);
   5924 }
   5925 
   5926 /* --------------------------------------------------------------------- */
   5927 
   5928 /*
   5929  * Read and write file extent in/from the buffer.
   5930  *
   5931  * The splitup of the extent into seperate request-buffers is to minimise
   5932  * copying around as much as possible.
   5933  *
   5934  * block based file reading and writing
   5935  */
   5936 
   5937 static int
   5938 udf_read_internal(struct udf_node *node, uint8_t *blob)
   5939 {
   5940 	struct udf_mount *ump;
   5941 	struct file_entry     *fe = node->fe;
   5942 	struct extfile_entry *efe = node->efe;
   5943 	uint64_t inflen;
   5944 	uint32_t sector_size;
   5945 	uint8_t  *pos;
   5946 	int icbflags, addr_type;
   5947 
   5948 	/* get extent and do some paranoia checks */
   5949 	ump = node->ump;
   5950 	sector_size = ump->discinfo.sector_size;
   5951 
   5952 	if (fe) {
   5953 		inflen   = udf_rw64(fe->inf_len);
   5954 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   5955 		icbflags = udf_rw16(fe->icbtag.flags);
   5956 	} else {
   5957 		assert(node->efe);
   5958 		inflen   = udf_rw64(efe->inf_len);
   5959 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   5960 		icbflags = udf_rw16(efe->icbtag.flags);
   5961 	}
   5962 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   5963 
   5964 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   5965 	assert(inflen < sector_size);
   5966 
   5967 	/* copy out info */
   5968 	memset(blob, 0, sector_size);
   5969 	memcpy(blob, pos, inflen);
   5970 
   5971 	return 0;
   5972 }
   5973 
   5974 
   5975 static int
   5976 udf_write_internal(struct udf_node *node, uint8_t *blob)
   5977 {
   5978 	struct udf_mount *ump;
   5979 	struct file_entry     *fe = node->fe;
   5980 	struct extfile_entry *efe = node->efe;
   5981 	uint64_t inflen;
   5982 	uint32_t sector_size;
   5983 	uint8_t  *pos;
   5984 	int icbflags, addr_type;
   5985 
   5986 	/* get extent and do some paranoia checks */
   5987 	ump = node->ump;
   5988 	sector_size = ump->discinfo.sector_size;
   5989 
   5990 	if (fe) {
   5991 		inflen   = udf_rw64(fe->inf_len);
   5992 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   5993 		icbflags = udf_rw16(fe->icbtag.flags);
   5994 	} else {
   5995 		assert(node->efe);
   5996 		inflen   = udf_rw64(efe->inf_len);
   5997 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   5998 		icbflags = udf_rw16(efe->icbtag.flags);
   5999 	}
   6000 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6001 
   6002 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6003 	assert(inflen < sector_size);
   6004 
   6005 	/* copy in blob */
   6006 	/* memset(pos, 0, inflen); */
   6007 	memcpy(pos, blob, inflen);
   6008 
   6009 	return 0;
   6010 }
   6011 
   6012 
   6013 void
   6014 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6015 {
   6016 	struct buf *nestbuf;
   6017 	struct udf_mount *ump = udf_node->ump;
   6018 	uint64_t   *mapping;
   6019 	uint64_t    run_start;
   6020 	uint32_t    sector_size;
   6021 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6022 	uint32_t    from, lblkno;
   6023 	uint32_t    sectors;
   6024 	uint8_t    *buf_pos;
   6025 	int error, run_length, isdir, what;
   6026 
   6027 	sector_size = udf_node->ump->discinfo.sector_size;
   6028 
   6029 	from    = buf->b_blkno;
   6030 	sectors = buf->b_bcount / sector_size;
   6031 
   6032 	isdir   = (udf_node->vnode->v_type == VDIR);
   6033 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6034 
   6035 	/* assure we have enough translation slots */
   6036 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6037 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6038 
   6039 	if (sectors > UDF_MAX_MAPPINGS) {
   6040 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6041 		buf->b_error  = EIO;
   6042 		biodone(buf);
   6043 		return;
   6044 	}
   6045 
   6046 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6047 
   6048 	error = 0;
   6049 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6050 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6051 	if (error) {
   6052 		buf->b_error  = error;
   6053 		biodone(buf);
   6054 		goto out;
   6055 	}
   6056 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6057 
   6058 	/* pre-check if its an internal */
   6059 	if (*mapping == UDF_TRANS_INTERN) {
   6060 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6061 		if (error)
   6062 			buf->b_error  = error;
   6063 		biodone(buf);
   6064 		goto out;
   6065 	}
   6066 	DPRINTF(READ, ("\tnot intern\n"));
   6067 
   6068 #ifdef DEBUG
   6069 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6070 		printf("Returned translation table:\n");
   6071 		for (sector = 0; sector < sectors; sector++) {
   6072 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6073 		}
   6074 	}
   6075 #endif
   6076 
   6077 	/* request read-in of data from disc sheduler */
   6078 	buf->b_resid = buf->b_bcount;
   6079 	for (sector = 0; sector < sectors; sector++) {
   6080 		buf_offset = sector * sector_size;
   6081 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6082 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6083 
   6084 		/* check if its zero or unmapped to stop reading */
   6085 		switch (mapping[sector]) {
   6086 		case UDF_TRANS_UNMAPPED:
   6087 		case UDF_TRANS_ZERO:
   6088 			/* copy zero sector TODO runlength like below */
   6089 			memset(buf_pos, 0, sector_size);
   6090 			DPRINTF(READ, ("\treturning zero sector\n"));
   6091 			nestiobuf_done(buf, sector_size, 0);
   6092 			break;
   6093 		default :
   6094 			DPRINTF(READ, ("\tread sector "
   6095 			    "%"PRIu64"\n", mapping[sector]));
   6096 
   6097 			lblkno = from + sector;
   6098 			run_start  = mapping[sector];
   6099 			run_length = 1;
   6100 			while (sector < sectors-1) {
   6101 				if (mapping[sector+1] != mapping[sector]+1)
   6102 					break;
   6103 				run_length++;
   6104 				sector++;
   6105 			}
   6106 
   6107 			/*
   6108 			 * nest an iobuf and mark it for async reading. Since
   6109 			 * we're using nested buffers, they can't be cached by
   6110 			 * design.
   6111 			 */
   6112 			rbuflen = run_length * sector_size;
   6113 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6114 
   6115 			nestbuf = getiobuf(NULL, true);
   6116 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6117 			/* nestbuf is B_ASYNC */
   6118 
   6119 			/* identify this nestbuf */
   6120 			nestbuf->b_lblkno   = lblkno;
   6121 			assert(nestbuf->b_vp == udf_node->vnode);
   6122 
   6123 			/* CD shedules on raw blkno */
   6124 			nestbuf->b_blkno      = rblk;
   6125 			nestbuf->b_proc       = NULL;
   6126 			nestbuf->b_rawblkno   = rblk;
   6127 			nestbuf->b_udf_c_type = what;
   6128 
   6129 			udf_discstrat_queuebuf(ump, nestbuf);
   6130 		}
   6131 	}
   6132 out:
   6133 	/* if we're synchronously reading, wait for the completion */
   6134 	if ((buf->b_flags & B_ASYNC) == 0)
   6135 		biowait(buf);
   6136 
   6137 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6138 	free(mapping, M_TEMP);
   6139 	return;
   6140 }
   6141 
   6142 
   6143 void
   6144 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6145 {
   6146 	struct buf *nestbuf;
   6147 	struct udf_mount *ump = udf_node->ump;
   6148 	uint64_t   *mapping;
   6149 	uint64_t    run_start;
   6150 	uint32_t    lb_size;
   6151 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6152 	uint32_t    from, lblkno;
   6153 	uint32_t    num_lb;
   6154 	uint8_t    *buf_pos;
   6155 	int error, run_length, isdir, what, s;
   6156 
   6157 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6158 
   6159 	from   = buf->b_blkno;
   6160 	num_lb = buf->b_bcount / lb_size;
   6161 
   6162 	isdir  = (udf_node->vnode->v_type == VDIR);
   6163 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6164 
   6165 	if (udf_node == ump->metadatabitmap_node)
   6166 		what = UDF_C_METADATA_SBM;
   6167 
   6168 	/* assure we have enough translation slots */
   6169 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6170 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6171 
   6172 	if (num_lb > UDF_MAX_MAPPINGS) {
   6173 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6174 		buf->b_error  = EIO;
   6175 		biodone(buf);
   6176 		return;
   6177 	}
   6178 
   6179 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6180 
   6181 	error = 0;
   6182 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6183 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6184 	if (error) {
   6185 		buf->b_error  = error;
   6186 		biodone(buf);
   6187 		goto out;
   6188 	}
   6189 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6190 
   6191 	/* if its internally mapped, we can write it in the descriptor itself */
   6192 	if (*mapping == UDF_TRANS_INTERN) {
   6193 		/* TODO paranoia check if we ARE going to have enough space */
   6194 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6195 		if (error)
   6196 			buf->b_error  = error;
   6197 		biodone(buf);
   6198 		goto out;
   6199 	}
   6200 	DPRINTF(WRITE, ("\tnot intern\n"));
   6201 
   6202 	/* request write out of data to disc sheduler */
   6203 	buf->b_resid = buf->b_bcount;
   6204 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6205 		buf_offset = lb_num * lb_size;
   6206 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6207 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6208 
   6209 		/*
   6210 		 * Mappings are not that important here. Just before we write
   6211 		 * the lb_num we late-allocate them when needed and update the
   6212 		 * mapping in the udf_node.
   6213 		 */
   6214 
   6215 		/* XXX why not ignore the mapping altogether ? */
   6216 		/* TODO estimate here how much will be late-allocated */
   6217 		DPRINTF(WRITE, ("\twrite lb_num "
   6218 		    "%"PRIu64, mapping[lb_num]));
   6219 
   6220 		lblkno = from + lb_num;
   6221 		run_start  = mapping[lb_num];
   6222 		run_length = 1;
   6223 		while (lb_num < num_lb-1) {
   6224 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6225 				if (mapping[lb_num+1] != mapping[lb_num])
   6226 					break;
   6227 			run_length++;
   6228 			lb_num++;
   6229 		}
   6230 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6231 
   6232 		/* nest an iobuf on the master buffer for the extent */
   6233 		rbuflen = run_length * lb_size;
   6234 		rblk = run_start * (lb_size/DEV_BSIZE);
   6235 
   6236 #if 0
   6237 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
   6238 		switch (mapping[lb_num]) {
   6239 		case UDF_TRANS_UNMAPPED:
   6240 		case UDF_TRANS_ZERO:
   6241 			rblk = -1;
   6242 			break;
   6243 		default:
   6244 			rblk = run_start * (lb_size/DEV_BSIZE);
   6245 			break;
   6246 		}
   6247 #endif
   6248 
   6249 		nestbuf = getiobuf(NULL, true);
   6250 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6251 		/* nestbuf is B_ASYNC */
   6252 
   6253 		/* identify this nestbuf */
   6254 		nestbuf->b_lblkno   = lblkno;
   6255 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6256 
   6257 		/* CD shedules on raw blkno */
   6258 		nestbuf->b_blkno      = rblk;
   6259 		nestbuf->b_proc       = NULL;
   6260 		nestbuf->b_rawblkno   = rblk;
   6261 		nestbuf->b_udf_c_type = what;
   6262 
   6263 		/* increment our outstanding bufs counter */
   6264 		s = splbio();
   6265 			udf_node->outstanding_bufs++;
   6266 		splx(s);
   6267 
   6268 		udf_discstrat_queuebuf(ump, nestbuf);
   6269 	}
   6270 out:
   6271 	/* if we're synchronously writing, wait for the completion */
   6272 	if ((buf->b_flags & B_ASYNC) == 0)
   6273 		biowait(buf);
   6274 
   6275 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6276 	free(mapping, M_TEMP);
   6277 	return;
   6278 }
   6279 
   6280 /* --------------------------------------------------------------------- */
   6281 
   6282 
   6283