Home | History | Annotate | Line # | Download | only in udf
udf_subr.c revision 1.91
      1 /* $NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2006, 2008 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26  *
     27  */
     28 
     29 
     30 #include <sys/cdefs.h>
     31 #ifndef lint
     32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.91 2009/05/20 15:30:26 reinoud Exp $");
     33 #endif /* not lint */
     34 
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_compat_netbsd.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/sysctl.h>
     43 #include <sys/namei.h>
     44 #include <sys/proc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/vnode.h>
     47 #include <miscfs/genfs/genfs_node.h>
     48 #include <sys/mount.h>
     49 #include <sys/buf.h>
     50 #include <sys/file.h>
     51 #include <sys/device.h>
     52 #include <sys/disklabel.h>
     53 #include <sys/ioctl.h>
     54 #include <sys/malloc.h>
     55 #include <sys/dirent.h>
     56 #include <sys/stat.h>
     57 #include <sys/conf.h>
     58 #include <sys/kauth.h>
     59 #include <fs/unicode.h>
     60 #include <dev/clock_subr.h>
     61 
     62 #include <fs/udf/ecma167-udf.h>
     63 #include <fs/udf/udf_mount.h>
     64 #include <sys/dirhash.h>
     65 
     66 #include "udf.h"
     67 #include "udf_subr.h"
     68 #include "udf_bswap.h"
     69 
     70 
     71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data)
     72 
     73 #define UDF_SET_SYSTEMFILE(vp) \
     74 	/* XXXAD Is the vnode locked? */	\
     75 	(vp)->v_vflag |= VV_SYSTEM;		\
     76 	vref(vp);			\
     77 	vput(vp);			\
     78 
     79 extern int syncer_maxdelay;     /* maximum delay time */
     80 extern int (**udf_vnodeop_p)(void *);
     81 
     82 /* --------------------------------------------------------------------- */
     83 
     84 //#ifdef DEBUG
     85 #if 1
     86 
     87 #if 0
     88 static void
     89 udf_dumpblob(boid *blob, uint32_t dlen)
     90 {
     91 	int i, j;
     92 
     93 	printf("blob = %p\n", blob);
     94 	printf("dump of %d bytes\n", dlen);
     95 
     96 	for (i = 0; i < dlen; i+ = 16) {
     97 		printf("%04x ", i);
     98 		for (j = 0; j < 16; j++) {
     99 			if (i+j < dlen) {
    100 				printf("%02x ", blob[i+j]);
    101 			} else {
    102 				printf("   ");
    103 			}
    104 		}
    105 		for (j = 0; j < 16; j++) {
    106 			if (i+j < dlen) {
    107 				if (blob[i+j]>32 && blob[i+j]! = 127) {
    108 					printf("%c", blob[i+j]);
    109 				} else {
    110 					printf(".");
    111 				}
    112 			}
    113 		}
    114 		printf("\n");
    115 	}
    116 	printf("\n");
    117 	Debugger();
    118 }
    119 #endif
    120 
    121 static void
    122 udf_dump_discinfo(struct udf_mount *ump)
    123 {
    124 	char   bits[128];
    125 	struct mmc_discinfo *di = &ump->discinfo;
    126 
    127 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    128 		return;
    129 
    130 	printf("Device/media info  :\n");
    131 	printf("\tMMC profile        0x%02x\n", di->mmc_profile);
    132 	printf("\tderived class      %d\n", di->mmc_class);
    133 	printf("\tsector size        %d\n", di->sector_size);
    134 	printf("\tdisc state         %d\n", di->disc_state);
    135 	printf("\tlast ses state     %d\n", di->last_session_state);
    136 	printf("\tbg format state    %d\n", di->bg_format_state);
    137 	printf("\tfrst track         %d\n", di->first_track);
    138 	printf("\tfst on last ses    %d\n", di->first_track_last_session);
    139 	printf("\tlst on last ses    %d\n", di->last_track_last_session);
    140 	printf("\tlink block penalty %d\n", di->link_block_penalty);
    141 	snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags);
    142 	printf("\tdisc flags         %s\n", bits);
    143 	printf("\tdisc id            %x\n", di->disc_id);
    144 	printf("\tdisc barcode       %"PRIx64"\n", di->disc_barcode);
    145 
    146 	printf("\tnum sessions       %d\n", di->num_sessions);
    147 	printf("\tnum tracks         %d\n", di->num_tracks);
    148 
    149 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur);
    150 	printf("\tcapabilities cur   %s\n", bits);
    151 	snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap);
    152 	printf("\tcapabilities cap   %s\n", bits);
    153 }
    154 
    155 static void
    156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo)
    157 {
    158 	char   bits[128];
    159 
    160 	if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
    161 		return;
    162 
    163 	printf("Trackinfo for track %d:\n", trackinfo->tracknr);
    164 	printf("\tsessionnr           %d\n", trackinfo->sessionnr);
    165 	printf("\ttrack mode          %d\n", trackinfo->track_mode);
    166 	printf("\tdata mode           %d\n", trackinfo->data_mode);
    167 	snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags);
    168 	printf("\tflags               %s\n", bits);
    169 
    170 	printf("\ttrack start         %d\n", trackinfo->track_start);
    171 	printf("\tnext_writable       %d\n", trackinfo->next_writable);
    172 	printf("\tfree_blocks         %d\n", trackinfo->free_blocks);
    173 	printf("\tpacket_size         %d\n", trackinfo->packet_size);
    174 	printf("\ttrack size          %d\n", trackinfo->track_size);
    175 	printf("\tlast recorded block %d\n", trackinfo->last_recorded);
    176 }
    177 
    178 #else
    179 #define udf_dump_discinfo(a);
    180 #define udf_dump_trackinfo(a);
    181 #endif
    182 
    183 
    184 /* --------------------------------------------------------------------- */
    185 
    186 /* not called often */
    187 int
    188 udf_update_discinfo(struct udf_mount *ump)
    189 {
    190 	struct vnode *devvp = ump->devvp;
    191 	struct partinfo dpart;
    192 	struct mmc_discinfo *di;
    193 	int error;
    194 
    195 	DPRINTF(VOLUMES, ("read/update disc info\n"));
    196 	di = &ump->discinfo;
    197 	memset(di, 0, sizeof(struct mmc_discinfo));
    198 
    199 	/* check if we're on a MMC capable device, i.e. CD/DVD */
    200 	error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED);
    201 	if (error == 0) {
    202 		udf_dump_discinfo(ump);
    203 		return 0;
    204 	}
    205 
    206 	/* disc partition support */
    207 	error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED);
    208 	if (error)
    209 		return ENODEV;
    210 
    211 	/* set up a disc info profile for partitions */
    212 	di->mmc_profile		= 0x01;	/* disc type */
    213 	di->mmc_class		= MMC_CLASS_DISC;
    214 	di->disc_state		= MMC_STATE_CLOSED;
    215 	di->last_session_state	= MMC_STATE_CLOSED;
    216 	di->bg_format_state	= MMC_BGFSTATE_COMPLETED;
    217 	di->link_block_penalty	= 0;
    218 
    219 	di->mmc_cur     = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
    220 		MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
    221 	di->mmc_cap    = di->mmc_cur;
    222 	di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
    223 
    224 	/* TODO problem with last_possible_lba on resizable VND; request */
    225 	di->last_possible_lba = dpart.part->p_size;
    226 	di->sector_size       = dpart.disklab->d_secsize;
    227 
    228 	di->num_sessions = 1;
    229 	di->num_tracks   = 1;
    230 
    231 	di->first_track  = 1;
    232 	di->first_track_last_session = di->last_track_last_session = 1;
    233 
    234 	udf_dump_discinfo(ump);
    235 	return 0;
    236 }
    237 
    238 
    239 int
    240 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
    241 {
    242 	struct vnode *devvp = ump->devvp;
    243 	struct mmc_discinfo *di = &ump->discinfo;
    244 	int error, class;
    245 
    246 	DPRINTF(VOLUMES, ("read track info\n"));
    247 
    248 	class = di->mmc_class;
    249 	if (class != MMC_CLASS_DISC) {
    250 		/* tracknr specified in struct ti */
    251 		error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED);
    252 		return error;
    253 	}
    254 
    255 	/* disc partition support */
    256 	if (ti->tracknr != 1)
    257 		return EIO;
    258 
    259 	/* create fake ti (TODO check for resized vnds) */
    260 	ti->sessionnr  = 1;
    261 
    262 	ti->track_mode = 0;	/* XXX */
    263 	ti->data_mode  = 0;	/* XXX */
    264 	ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
    265 
    266 	ti->track_start    = 0;
    267 	ti->packet_size    = 1;
    268 
    269 	/* TODO support for resizable vnd */
    270 	ti->track_size    = di->last_possible_lba;
    271 	ti->next_writable = di->last_possible_lba;
    272 	ti->last_recorded = ti->next_writable;
    273 	ti->free_blocks   = 0;
    274 
    275 	return 0;
    276 }
    277 
    278 
    279 int
    280 udf_setup_writeparams(struct udf_mount *ump)
    281 {
    282 	struct mmc_writeparams mmc_writeparams;
    283 	int error;
    284 
    285 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    286 		return 0;
    287 
    288 	/*
    289 	 * only CD burning normally needs setting up, but other disc types
    290 	 * might need other settings to be made. The MMC framework will set up
    291 	 * the nessisary recording parameters according to the disc
    292 	 * characteristics read in. Modifications can be made in the discinfo
    293 	 * structure passed to change the nature of the disc.
    294 	 */
    295 
    296 	memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams));
    297 	mmc_writeparams.mmc_class  = ump->discinfo.mmc_class;
    298 	mmc_writeparams.mmc_cur    = ump->discinfo.mmc_cur;
    299 
    300 	/*
    301 	 * UDF dictates first track to determine track mode for the whole
    302 	 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1]
    303 	 * To prevent problems with a `reserved' track in front we start with
    304 	 * the 2nd track and if that is not valid, go for the 1st.
    305 	 */
    306 	mmc_writeparams.tracknr = 2;
    307 	mmc_writeparams.data_mode  = MMC_DATAMODE_DEFAULT;	/* XA disc */
    308 	mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT;	/* data */
    309 
    310 	error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams,
    311 			FKIOCTL, NOCRED);
    312 	if (error) {
    313 		mmc_writeparams.tracknr = 1;
    314 		error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS,
    315 				&mmc_writeparams, FKIOCTL, NOCRED);
    316 	}
    317 	return error;
    318 }
    319 
    320 
    321 int
    322 udf_synchronise_caches(struct udf_mount *ump)
    323 {
    324 	struct mmc_op mmc_op;
    325 
    326 	DPRINTF(CALL, ("udf_synchronise_caches()\n"));
    327 
    328 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
    329 		return 0;
    330 
    331 	/* discs are done now */
    332 	if (ump->discinfo.mmc_class == MMC_CLASS_DISC)
    333 		return 0;
    334 
    335 	memset(&mmc_op, 0, sizeof(struct mmc_op));
    336 	mmc_op.operation = MMC_OP_SYNCHRONISECACHE;
    337 
    338 	/* ignore return code */
    339 	(void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    340 
    341 	return 0;
    342 }
    343 
    344 /* --------------------------------------------------------------------- */
    345 
    346 /* track/session searching for mounting */
    347 int
    348 udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
    349 		  int *first_tracknr, int *last_tracknr)
    350 {
    351 	struct mmc_trackinfo trackinfo;
    352 	uint32_t tracknr, start_track, num_tracks;
    353 	int error;
    354 
    355 	/* if negative, sessionnr is relative to last session */
    356 	if (args->sessionnr < 0) {
    357 		args->sessionnr += ump->discinfo.num_sessions;
    358 	}
    359 
    360 	/* sanity */
    361 	if (args->sessionnr < 0)
    362 		args->sessionnr = 0;
    363 	if (args->sessionnr > ump->discinfo.num_sessions)
    364 		args->sessionnr = ump->discinfo.num_sessions;
    365 
    366 	/* search the tracks for this session, zero session nr indicates last */
    367 	if (args->sessionnr == 0)
    368 		args->sessionnr = ump->discinfo.num_sessions;
    369 	if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
    370 		args->sessionnr--;
    371 
    372 	/* sanity again */
    373 	if (args->sessionnr < 0)
    374 		args->sessionnr = 0;
    375 
    376 	/* search the first and last track of the specified session */
    377 	num_tracks  = ump->discinfo.num_tracks;
    378 	start_track = ump->discinfo.first_track;
    379 
    380 	/* search for first track of this session */
    381 	for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
    382 		/* get track info */
    383 		trackinfo.tracknr = tracknr;
    384 		error = udf_update_trackinfo(ump, &trackinfo);
    385 		if (error)
    386 			return error;
    387 
    388 		if (trackinfo.sessionnr == args->sessionnr)
    389 			break;
    390 	}
    391 	*first_tracknr = tracknr;
    392 
    393 	/* search for last track of this session */
    394 	for (;tracknr <= num_tracks; tracknr++) {
    395 		/* get track info */
    396 		trackinfo.tracknr = tracknr;
    397 		error = udf_update_trackinfo(ump, &trackinfo);
    398 		if (error || (trackinfo.sessionnr != args->sessionnr)) {
    399 			tracknr--;
    400 			break;
    401 		}
    402 	}
    403 	if (tracknr > num_tracks)
    404 		tracknr--;
    405 
    406 	*last_tracknr = tracknr;
    407 
    408 	if (*last_tracknr < *first_tracknr) {
    409 		printf( "udf_search_tracks: sanity check on drive+disc failed, "
    410 			"drive returned garbage\n");
    411 		return EINVAL;
    412 	}
    413 
    414 	assert(*last_tracknr >= *first_tracknr);
    415 	return 0;
    416 }
    417 
    418 
    419 /*
    420  * NOTE: this is the only routine in this file that directly peeks into the
    421  * metadata file but since its at a larval state of the mount it can't hurt.
    422  *
    423  * XXX candidate for udf_allocation.c
    424  * XXX clean me up!, change to new node reading code.
    425  */
    426 
    427 static void
    428 udf_check_track_metadata_overlap(struct udf_mount *ump,
    429 	struct mmc_trackinfo *trackinfo)
    430 {
    431 	struct part_desc *part;
    432 	struct file_entry      *fe;
    433 	struct extfile_entry   *efe;
    434 	struct short_ad        *s_ad;
    435 	struct long_ad         *l_ad;
    436 	uint32_t track_start, track_end;
    437 	uint32_t phys_part_start, phys_part_end, part_start, part_end;
    438 	uint32_t sector_size, len, alloclen, plb_num;
    439 	uint8_t *pos;
    440 	int addr_type, icblen, icbflags, flags;
    441 
    442 	/* get our track extents */
    443 	track_start = trackinfo->track_start;
    444 	track_end   = track_start + trackinfo->track_size;
    445 
    446 	/* get our base partition extent */
    447 	KASSERT(ump->node_part == ump->fids_part);
    448 	part = ump->partitions[ump->node_part];
    449 	phys_part_start = udf_rw32(part->start_loc);
    450 	phys_part_end   = phys_part_start + udf_rw32(part->part_len);
    451 
    452 	/* no use if its outside the physical partition */
    453 	if ((phys_part_start >= track_end) || (phys_part_end < track_start))
    454 		return;
    455 
    456 	/*
    457 	 * now follow all extents in the fe/efe to see if they refer to this
    458 	 * track
    459 	 */
    460 
    461 	sector_size = ump->discinfo.sector_size;
    462 
    463 	/* XXX should we claim exclusive access to the metafile ? */
    464 	/* TODO: move to new node read code */
    465 	fe  = ump->metadata_node->fe;
    466 	efe = ump->metadata_node->efe;
    467 	if (fe) {
    468 		alloclen = udf_rw32(fe->l_ad);
    469 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
    470 		icbflags = udf_rw16(fe->icbtag.flags);
    471 	} else {
    472 		assert(efe);
    473 		alloclen = udf_rw32(efe->l_ad);
    474 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
    475 		icbflags = udf_rw16(efe->icbtag.flags);
    476 	}
    477 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
    478 
    479 	while (alloclen) {
    480 		if (addr_type == UDF_ICB_SHORT_ALLOC) {
    481 			icblen = sizeof(struct short_ad);
    482 			s_ad   = (struct short_ad *) pos;
    483 			len        = udf_rw32(s_ad->len);
    484 			plb_num    = udf_rw32(s_ad->lb_num);
    485 		} else {
    486 			/* should not be present, but why not */
    487 			icblen = sizeof(struct long_ad);
    488 			l_ad   = (struct long_ad *) pos;
    489 			len        = udf_rw32(l_ad->len);
    490 			plb_num    = udf_rw32(l_ad->loc.lb_num);
    491 			/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
    492 		}
    493 		/* process extent */
    494 		flags   = UDF_EXT_FLAGS(len);
    495 		len     = UDF_EXT_LEN(len);
    496 
    497 		part_start = phys_part_start + plb_num;
    498 		part_end   = part_start + (len / sector_size);
    499 
    500 		if ((part_start >= track_start) && (part_end <= track_end)) {
    501 			/* extent is enclosed within this track */
    502 			ump->metadata_track = *trackinfo;
    503 			return;
    504 		}
    505 
    506 		pos        += icblen;
    507 		alloclen   -= icblen;
    508 	}
    509 }
    510 
    511 
    512 int
    513 udf_search_writing_tracks(struct udf_mount *ump)
    514 {
    515 	struct vnode *devvp = ump->devvp;
    516 	struct mmc_trackinfo trackinfo;
    517 	struct mmc_op        mmc_op;
    518 	struct part_desc *part;
    519 	uint32_t tracknr, start_track, num_tracks;
    520 	uint32_t track_start, track_end, part_start, part_end;
    521 	int node_alloc, error;
    522 
    523 	/*
    524 	 * in the CD/(HD)DVD/BD recordable device model a few tracks within
    525 	 * the last session might be open but in the UDF device model at most
    526 	 * three tracks can be open: a reserved track for delayed ISO VRS
    527 	 * writing, a data track and a metadata track. We search here for the
    528 	 * data track and the metadata track. Note that the reserved track is
    529 	 * troublesome but can be detected by its small size of < 512 sectors.
    530 	 */
    531 
    532 	/* update discinfo since it might have changed */
    533 	error = udf_update_discinfo(ump);
    534 	if (error)
    535 		return error;
    536 
    537 	num_tracks  = ump->discinfo.num_tracks;
    538 	start_track = ump->discinfo.first_track;
    539 
    540 	/* fetch info on first and possibly only track */
    541 	trackinfo.tracknr = start_track;
    542 	error = udf_update_trackinfo(ump, &trackinfo);
    543 	if (error)
    544 		return error;
    545 
    546 	/* copy results to our mount point */
    547 	ump->data_track     = trackinfo;
    548 	ump->metadata_track = trackinfo;
    549 
    550 	/* if not sequential, we're done */
    551 	if (num_tracks == 1)
    552 		return 0;
    553 
    554 	for (tracknr = start_track;tracknr <= num_tracks; tracknr++) {
    555 		/* get track info */
    556 		trackinfo.tracknr = tracknr;
    557 		error = udf_update_trackinfo(ump, &trackinfo);
    558 		if (error)
    559 			return error;
    560 
    561 		/*
    562 		 * If this track is marked damaged, ask for repair. This is an
    563 		 * optional command, so ignore its error but report warning.
    564 		 */
    565 		if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) {
    566 			memset(&mmc_op, 0, sizeof(mmc_op));
    567 			mmc_op.operation   = MMC_OP_REPAIRTRACK;
    568 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
    569 			mmc_op.tracknr     = tracknr;
    570 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED);
    571 			if (error)
    572 				(void)printf("Drive can't explicitly repair "
    573 					"damaged track %d, but it might "
    574 					"autorepair\n", tracknr);
    575 
    576 			/* reget track info */
    577 			error = udf_update_trackinfo(ump, &trackinfo);
    578 			if (error)
    579 				return error;
    580 		}
    581 		if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    582 			continue;
    583 
    584 		track_start = trackinfo.track_start;
    585 		track_end   = track_start + trackinfo.track_size;
    586 
    587 		/* check for overlap on data partition */
    588 		part = ump->partitions[ump->data_part];
    589 		part_start = udf_rw32(part->start_loc);
    590 		part_end   = part_start + udf_rw32(part->part_len);
    591 		if ((part_start < track_end) && (part_end > track_start)) {
    592 			ump->data_track = trackinfo;
    593 			/* TODO check if UDF partition data_part is writable */
    594 		}
    595 
    596 		/* check for overlap on metadata partition */
    597 		node_alloc = ump->vtop_alloc[ump->node_part];
    598 		if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) ||
    599 		    (node_alloc == UDF_ALLOC_METABITMAP)) {
    600 			udf_check_track_metadata_overlap(ump, &trackinfo);
    601 		} else {
    602 			ump->metadata_track = trackinfo;
    603 		}
    604 	}
    605 
    606 	if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    607 		return EROFS;
    608 
    609 	if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0)
    610 		return EROFS;
    611 
    612 	return 0;
    613 }
    614 
    615 /* --------------------------------------------------------------------- */
    616 
    617 /*
    618  * Check if the blob starts with a good UDF tag. Tags are protected by a
    619  * checksum over the reader except one byte at position 4 that is the checksum
    620  * itself.
    621  */
    622 
    623 int
    624 udf_check_tag(void *blob)
    625 {
    626 	struct desc_tag *tag = blob;
    627 	uint8_t *pos, sum, cnt;
    628 
    629 	/* check TAG header checksum */
    630 	pos = (uint8_t *) tag;
    631 	sum = 0;
    632 
    633 	for(cnt = 0; cnt < 16; cnt++) {
    634 		if (cnt != 4)
    635 			sum += *pos;
    636 		pos++;
    637 	}
    638 	if (sum != tag->cksum) {
    639 		/* bad tag header checksum; this is not a valid tag */
    640 		return EINVAL;
    641 	}
    642 
    643 	return 0;
    644 }
    645 
    646 
    647 /*
    648  * check tag payload will check descriptor CRC as specified.
    649  * If the descriptor is too long, it will return EIO otherwise EINVAL.
    650  */
    651 
    652 int
    653 udf_check_tag_payload(void *blob, uint32_t max_length)
    654 {
    655 	struct desc_tag *tag = blob;
    656 	uint16_t crc, crc_len;
    657 
    658 	crc_len = udf_rw16(tag->desc_crc_len);
    659 
    660 	/* check payload CRC if applicable */
    661 	if (crc_len == 0)
    662 		return 0;
    663 
    664 	if (crc_len > max_length)
    665 		return EIO;
    666 
    667 	crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
    668 	if (crc != udf_rw16(tag->desc_crc)) {
    669 		/* bad payload CRC; this is a broken tag */
    670 		return EINVAL;
    671 	}
    672 
    673 	return 0;
    674 }
    675 
    676 
    677 void
    678 udf_validate_tag_sum(void *blob)
    679 {
    680 	struct desc_tag *tag = blob;
    681 	uint8_t *pos, sum, cnt;
    682 
    683 	/* calculate TAG header checksum */
    684 	pos = (uint8_t *) tag;
    685 	sum = 0;
    686 
    687 	for(cnt = 0; cnt < 16; cnt++) {
    688 		if (cnt != 4) sum += *pos;
    689 		pos++;
    690 	}
    691 	tag->cksum = sum;	/* 8 bit */
    692 }
    693 
    694 
    695 /* assumes sector number of descriptor to be saved already present */
    696 void
    697 udf_validate_tag_and_crc_sums(void *blob)
    698 {
    699 	struct desc_tag *tag  = blob;
    700 	uint8_t         *btag = (uint8_t *) tag;
    701 	uint16_t crc, crc_len;
    702 
    703 	crc_len = udf_rw16(tag->desc_crc_len);
    704 
    705 	/* check payload CRC if applicable */
    706 	if (crc_len > 0) {
    707 		crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
    708 		tag->desc_crc = udf_rw16(crc);
    709 	}
    710 
    711 	/* calculate TAG header checksum */
    712 	udf_validate_tag_sum(blob);
    713 }
    714 
    715 /* --------------------------------------------------------------------- */
    716 
    717 /*
    718  * XXX note the different semantics from udfclient: for FIDs it still rounds
    719  * up to sectors. Use udf_fidsize() for a correct length.
    720  */
    721 
    722 int
    723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size)
    724 {
    725 	uint32_t size, tag_id, num_lb, elmsz;
    726 
    727 	tag_id = udf_rw16(dscr->tag.id);
    728 
    729 	switch (tag_id) {
    730 	case TAGID_LOGVOL :
    731 		size  = sizeof(struct logvol_desc) - 1;
    732 		size += udf_rw32(dscr->lvd.mt_l);
    733 		break;
    734 	case TAGID_UNALLOC_SPACE :
    735 		elmsz = sizeof(struct extent_ad);
    736 		size  = sizeof(struct unalloc_sp_desc) - elmsz;
    737 		size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
    738 		break;
    739 	case TAGID_FID :
    740 		size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
    741 		size = (size + 3) & ~3;
    742 		break;
    743 	case TAGID_LOGVOL_INTEGRITY :
    744 		size  = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
    745 		size += udf_rw32(dscr->lvid.l_iu);
    746 		size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
    747 		break;
    748 	case TAGID_SPACE_BITMAP :
    749 		size  = sizeof(struct space_bitmap_desc) - 1;
    750 		size += udf_rw32(dscr->sbd.num_bytes);
    751 		break;
    752 	case TAGID_SPARING_TABLE :
    753 		elmsz = sizeof(struct spare_map_entry);
    754 		size  = sizeof(struct udf_sparing_table) - elmsz;
    755 		size += udf_rw16(dscr->spt.rt_l) * elmsz;
    756 		break;
    757 	case TAGID_FENTRY :
    758 		size  = sizeof(struct file_entry);
    759 		size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
    760 		break;
    761 	case TAGID_EXTFENTRY :
    762 		size  = sizeof(struct extfile_entry);
    763 		size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
    764 		break;
    765 	case TAGID_FSD :
    766 		size  = sizeof(struct fileset_desc);
    767 		break;
    768 	default :
    769 		size = sizeof(union dscrptr);
    770 		break;
    771 	}
    772 
    773 	if ((size == 0) || (lb_size == 0))
    774 		return 0;
    775 
    776 	if (lb_size == 1)
    777 		return size;
    778 
    779 	/* round up in sectors */
    780 	num_lb = (size + lb_size -1) / lb_size;
    781 	return num_lb * lb_size;
    782 }
    783 
    784 
    785 int
    786 udf_fidsize(struct fileid_desc *fid)
    787 {
    788 	uint32_t size;
    789 
    790 	if (udf_rw16(fid->tag.id) != TAGID_FID)
    791 		panic("got udf_fidsize on non FID\n");
    792 
    793 	size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
    794 	size = (size + 3) & ~3;
    795 
    796 	return size;
    797 }
    798 
    799 /* --------------------------------------------------------------------- */
    800 
    801 void
    802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno)
    803 {
    804 	int ret;
    805 
    806 	mutex_enter(&udf_node->node_mutex);
    807 	/* wait until free */
    808 	while (udf_node->i_flags & IN_LOCKED) {
    809 		ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8);
    810 		/* TODO check if we should return error; abort */
    811 		if (ret == EWOULDBLOCK) {
    812 			DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block "
    813 				"wanted at %s:%d, previously locked at %s:%d\n",
    814 				udf_node, fname, lineno,
    815 				udf_node->lock_fname, udf_node->lock_lineno));
    816 		}
    817 	}
    818 	/* grab */
    819 	udf_node->i_flags |= IN_LOCKED | flag;
    820 	/* debug */
    821 	udf_node->lock_fname  = fname;
    822 	udf_node->lock_lineno = lineno;
    823 
    824 	mutex_exit(&udf_node->node_mutex);
    825 }
    826 
    827 
    828 void
    829 udf_unlock_node(struct udf_node *udf_node, int flag)
    830 {
    831 	mutex_enter(&udf_node->node_mutex);
    832 	udf_node->i_flags &= ~(IN_LOCKED | flag);
    833 	cv_broadcast(&udf_node->node_lock);
    834 	mutex_exit(&udf_node->node_mutex);
    835 }
    836 
    837 
    838 /* --------------------------------------------------------------------- */
    839 
    840 static int
    841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
    842 {
    843 	int error;
    844 
    845 	error = udf_read_phys_dscr(ump, sector, M_UDFVOLD,
    846 			(union dscrptr **) dst);
    847 	if (!error) {
    848 		/* blank terminator blocks are not allowed here */
    849 		if (*dst == NULL)
    850 			return ENOENT;
    851 		if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
    852 			error = ENOENT;
    853 			free(*dst, M_UDFVOLD);
    854 			*dst = NULL;
    855 			DPRINTF(VOLUMES, ("Not an anchor\n"));
    856 		}
    857 	}
    858 
    859 	return error;
    860 }
    861 
    862 
    863 int
    864 udf_read_anchors(struct udf_mount *ump)
    865 {
    866 	struct udf_args *args = &ump->mount_args;
    867 	struct mmc_trackinfo first_track;
    868 	struct mmc_trackinfo second_track;
    869 	struct mmc_trackinfo last_track;
    870 	struct anchor_vdp **anchorsp;
    871 	uint32_t track_start;
    872 	uint32_t track_end;
    873 	uint32_t positions[4];
    874 	int first_tracknr, last_tracknr;
    875 	int error, anch, ok, first_anchor;
    876 
    877 	/* search the first and last track of the specified session */
    878 	error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
    879 	if (!error) {
    880 		first_track.tracknr = first_tracknr;
    881 		error = udf_update_trackinfo(ump, &first_track);
    882 	}
    883 	if (!error) {
    884 		last_track.tracknr = last_tracknr;
    885 		error = udf_update_trackinfo(ump, &last_track);
    886 	}
    887 	if ((!error) && (first_tracknr != last_tracknr)) {
    888 		second_track.tracknr = first_tracknr+1;
    889 		error = udf_update_trackinfo(ump, &second_track);
    890 	}
    891 	if (error) {
    892 		printf("UDF mount: reading disc geometry failed\n");
    893 		return 0;
    894 	}
    895 
    896 	track_start = first_track.track_start;
    897 
    898 	/* `end' is not as straitforward as start. */
    899 	track_end =   last_track.track_start
    900 		    + last_track.track_size - last_track.free_blocks - 1;
    901 
    902 	if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
    903 		/* end of track is not straitforward here */
    904 		if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
    905 			track_end = last_track.last_recorded;
    906 		else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
    907 			track_end = last_track.next_writable
    908 				    - ump->discinfo.link_block_penalty;
    909 	}
    910 
    911 	/* its no use reading a blank track */
    912 	first_anchor = 0;
    913 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    914 		first_anchor = 1;
    915 
    916 	/* get our packet size */
    917 	ump->packet_size = first_track.packet_size;
    918 	if (first_track.flags & MMC_TRACKINFO_BLANK)
    919 		ump->packet_size = second_track.packet_size;
    920 
    921 	if (ump->packet_size <= 1) {
    922 		/* take max, but not bigger than 64 */
    923 		ump->packet_size = MAXPHYS / ump->discinfo.sector_size;
    924 		ump->packet_size = MIN(ump->packet_size, 64);
    925 	}
    926 	KASSERT(ump->packet_size >= 1);
    927 
    928 	/* read anchors start+256, start+512, end-256, end */
    929 	positions[0] = track_start+256;
    930 	positions[1] =   track_end-256;
    931 	positions[2] =   track_end;
    932 	positions[3] = track_start+512;	/* [UDF 2.60/6.11.2] */
    933 	/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
    934 
    935 	ok = 0;
    936 	anchorsp = ump->anchors;
    937 	for (anch = first_anchor; anch < 4; anch++) {
    938 		DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
    939 		    positions[anch]));
    940 		error = udf_read_anchor(ump, positions[anch], anchorsp);
    941 		if (!error) {
    942 			anchorsp++;
    943 			ok++;
    944 		}
    945 	}
    946 
    947 	/* VATs are only recorded on sequential media, but initialise */
    948 	ump->first_possible_vat_location = track_start + 2;
    949 	ump->last_possible_vat_location  = track_end + last_track.packet_size;
    950 
    951 	return ok;
    952 }
    953 
    954 /* --------------------------------------------------------------------- */
    955 
    956 /* we dont try to be smart; we just record the parts */
    957 #define UDF_UPDATE_DSCR(name, dscr) \
    958 	if (name) \
    959 		free(name, M_UDFVOLD); \
    960 	name = dscr;
    961 
    962 static int
    963 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
    964 {
    965 	struct part_desc *part;
    966 	uint16_t phys_part, raw_phys_part;
    967 
    968 	DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
    969 	    udf_rw16(dscr->tag.id)));
    970 	switch (udf_rw16(dscr->tag.id)) {
    971 	case TAGID_PRI_VOL :		/* primary partition		*/
    972 		UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
    973 		break;
    974 	case TAGID_LOGVOL :		/* logical volume		*/
    975 		UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
    976 		break;
    977 	case TAGID_UNALLOC_SPACE :	/* unallocated space		*/
    978 		UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
    979 		break;
    980 	case TAGID_IMP_VOL :		/* implementation		*/
    981 		/* XXX do we care about multiple impl. descr ? */
    982 		UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
    983 		break;
    984 	case TAGID_PARTITION :		/* physical partition		*/
    985 		/* not much use if its not allocated */
    986 		if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
    987 			free(dscr, M_UDFVOLD);
    988 			break;
    989 		}
    990 
    991 		/*
    992 		 * BUGALERT: some rogue implementations use random physical
    993 		 * partion numbers to break other implementations so lookup
    994 		 * the number.
    995 		 */
    996 		raw_phys_part = udf_rw16(dscr->pd.part_num);
    997 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
    998 			part = ump->partitions[phys_part];
    999 			if (part == NULL)
   1000 				break;
   1001 			if (udf_rw16(part->part_num) == raw_phys_part)
   1002 				break;
   1003 		}
   1004 		if (phys_part == UDF_PARTITIONS) {
   1005 			free(dscr, M_UDFVOLD);
   1006 			return EINVAL;
   1007 		}
   1008 
   1009 		UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
   1010 		break;
   1011 	case TAGID_VOL :		/* volume space extender; rare	*/
   1012 		DPRINTF(VOLUMES, ("VDS extender ignored\n"));
   1013 		free(dscr, M_UDFVOLD);
   1014 		break;
   1015 	default :
   1016 		DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
   1017 		    udf_rw16(dscr->tag.id)));
   1018 		free(dscr, M_UDFVOLD);
   1019 	}
   1020 
   1021 	return 0;
   1022 }
   1023 #undef UDF_UPDATE_DSCR
   1024 
   1025 /* --------------------------------------------------------------------- */
   1026 
   1027 static int
   1028 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
   1029 {
   1030 	union dscrptr *dscr;
   1031 	uint32_t sector_size, dscr_size;
   1032 	int error;
   1033 
   1034 	sector_size = ump->discinfo.sector_size;
   1035 
   1036 	/* loc is sectornr, len is in bytes */
   1037 	error = EIO;
   1038 	while (len) {
   1039 		error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr);
   1040 		if (error)
   1041 			return error;
   1042 
   1043 		/* blank block is a terminator */
   1044 		if (dscr == NULL)
   1045 			return 0;
   1046 
   1047 		/* TERM descriptor is a terminator */
   1048 		if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
   1049 			free(dscr, M_UDFVOLD);
   1050 			return 0;
   1051 		}
   1052 
   1053 		/* process all others */
   1054 		dscr_size = udf_tagsize(dscr, sector_size);
   1055 		error = udf_process_vds_descriptor(ump, dscr);
   1056 		if (error) {
   1057 			free(dscr, M_UDFVOLD);
   1058 			break;
   1059 		}
   1060 		assert((dscr_size % sector_size) == 0);
   1061 
   1062 		len -= dscr_size;
   1063 		loc += dscr_size / sector_size;
   1064 	}
   1065 
   1066 	return error;
   1067 }
   1068 
   1069 
   1070 int
   1071 udf_read_vds_space(struct udf_mount *ump)
   1072 {
   1073 	/* struct udf_args *args = &ump->mount_args; */
   1074 	struct anchor_vdp *anchor, *anchor2;
   1075 	size_t size;
   1076 	uint32_t main_loc, main_len;
   1077 	uint32_t reserve_loc, reserve_len;
   1078 	int error;
   1079 
   1080 	/*
   1081 	 * read in VDS space provided by the anchors; if one descriptor read
   1082 	 * fails, try the mirror sector.
   1083 	 *
   1084 	 * check if 2nd anchor is different from 1st; if so, go for 2nd. This
   1085 	 * avoids the `compatibility features' of DirectCD that may confuse
   1086 	 * stuff completely.
   1087 	 */
   1088 
   1089 	anchor  = ump->anchors[0];
   1090 	anchor2 = ump->anchors[1];
   1091 	assert(anchor);
   1092 
   1093 	if (anchor2) {
   1094 		size = sizeof(struct extent_ad);
   1095 		if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
   1096 			anchor = anchor2;
   1097 		/* reserve is specified to be a literal copy of main */
   1098 	}
   1099 
   1100 	main_loc    = udf_rw32(anchor->main_vds_ex.loc);
   1101 	main_len    = udf_rw32(anchor->main_vds_ex.len);
   1102 
   1103 	reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
   1104 	reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
   1105 
   1106 	error = udf_read_vds_extent(ump, main_loc, main_len);
   1107 	if (error) {
   1108 		printf("UDF mount: reading in reserve VDS extent\n");
   1109 		error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
   1110 	}
   1111 
   1112 	return error;
   1113 }
   1114 
   1115 /* --------------------------------------------------------------------- */
   1116 
   1117 /*
   1118  * Read in the logical volume integrity sequence pointed to by our logical
   1119  * volume descriptor. Its a sequence that can be extended using fields in the
   1120  * integrity descriptor itself. On sequential media only one is found, on
   1121  * rewritable media a sequence of descriptors can be found as a form of
   1122  * history keeping and on non sequential write-once media the chain is vital
   1123  * to allow more and more descriptors to be written. The last descriptor
   1124  * written in an extent needs to claim space for a new extent.
   1125  */
   1126 
   1127 static int
   1128 udf_retrieve_lvint(struct udf_mount *ump)
   1129 {
   1130 	union dscrptr *dscr;
   1131 	struct logvol_int_desc *lvint;
   1132 	struct udf_lvintq *trace;
   1133 	uint32_t lb_size, lbnum, len;
   1134 	int dscr_type, error, trace_len;
   1135 
   1136 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1137 	len     = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
   1138 	lbnum   = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
   1139 
   1140 	/* clean trace */
   1141 	memset(ump->lvint_trace, 0,
   1142 	    UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq));
   1143 
   1144 	trace_len    = 0;
   1145 	trace        = ump->lvint_trace;
   1146 	trace->start = lbnum;
   1147 	trace->end   = lbnum + len/lb_size;
   1148 	trace->pos   = 0;
   1149 	trace->wpos  = 0;
   1150 
   1151 	lvint = NULL;
   1152 	dscr  = NULL;
   1153 	error = 0;
   1154 	while (len) {
   1155 		trace->pos  = lbnum - trace->start;
   1156 		trace->wpos = trace->pos + 1;
   1157 
   1158 		/* read in our integrity descriptor */
   1159 		error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr);
   1160 		if (!error) {
   1161 			if (dscr == NULL) {
   1162 				trace->wpos = trace->pos;
   1163 				break;		/* empty terminates */
   1164 			}
   1165 			dscr_type = udf_rw16(dscr->tag.id);
   1166 			if (dscr_type == TAGID_TERM) {
   1167 				trace->wpos = trace->pos;
   1168 				break;		/* clean terminator */
   1169 			}
   1170 			if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1171 				/* fatal... corrupt disc */
   1172 				error = ENOENT;
   1173 				break;
   1174 			}
   1175 			if (lvint)
   1176 				free(lvint, M_UDFVOLD);
   1177 			lvint = &dscr->lvid;
   1178 			dscr = NULL;
   1179 		} /* else hope for the best... maybe the next is ok */
   1180 
   1181 		DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
   1182 		    udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
   1183 
   1184 		/* proceed sequential */
   1185 		lbnum += 1;
   1186 		len    -= lb_size;
   1187 
   1188 		/* are we linking to a new piece? */
   1189 		if (dscr && lvint->next_extent.len) {
   1190 			len    = udf_rw32(lvint->next_extent.len);
   1191 			lbnum = udf_rw32(lvint->next_extent.loc);
   1192 
   1193 			if (trace_len >= UDF_LVDINT_SEGMENTS-1) {
   1194 				/* IEK! segment link full... */
   1195 				DPRINTF(VOLUMES, ("lvdint segments full\n"));
   1196 				error = EINVAL;
   1197 			} else {
   1198 				trace++;
   1199 				trace_len++;
   1200 
   1201 				trace->start = lbnum;
   1202 				trace->end   = lbnum + len/lb_size;
   1203 				trace->pos   = 0;
   1204 				trace->wpos  = 0;
   1205 			}
   1206 		}
   1207 	}
   1208 
   1209 	/* clean up the mess, esp. when there is an error */
   1210 	if (dscr)
   1211 		free(dscr, M_UDFVOLD);
   1212 
   1213 	if (error && lvint) {
   1214 		free(lvint, M_UDFVOLD);
   1215 		lvint = NULL;
   1216 	}
   1217 
   1218 	if (!lvint)
   1219 		error = ENOENT;
   1220 
   1221 	ump->logvol_integrity = lvint;
   1222 	return error;
   1223 }
   1224 
   1225 
   1226 static int
   1227 udf_loose_lvint_history(struct udf_mount *ump)
   1228 {
   1229 	union dscrptr **bufs, *dscr, *last_dscr;
   1230 	struct udf_lvintq *trace, *in_trace, *out_trace;
   1231 	struct logvol_int_desc *lvint;
   1232 	uint32_t in_ext, in_pos, in_len;
   1233 	uint32_t out_ext, out_wpos, out_len;
   1234 	uint32_t lb_size, packet_size, lb_num;
   1235 	uint32_t len, start;
   1236 	int ext, minext, extlen, cnt, cpy_len, dscr_type;
   1237 	int losing;
   1238 	int error;
   1239 
   1240 	DPRINTF(VOLUMES, ("need to lose some lvint history\n"));
   1241 
   1242 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   1243 	packet_size = ump->data_track.packet_size;	/* XXX data track */
   1244 
   1245 	/* search smallest extent */
   1246 	trace = &ump->lvint_trace[0];
   1247 	minext = trace->end - trace->start;
   1248 	for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) {
   1249 		trace = &ump->lvint_trace[ext];
   1250 		extlen = trace->end - trace->start;
   1251 		if (extlen == 0)
   1252 			break;
   1253 		minext = MIN(minext, extlen);
   1254 	}
   1255 	losing = MIN(minext, UDF_LVINT_LOSSAGE);
   1256 	/* no sense wiping all */
   1257 	if (losing == minext)
   1258 		losing--;
   1259 
   1260 	DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing));
   1261 
   1262 	/* get buffer for pieces */
   1263 	bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK);
   1264 
   1265 	in_ext    = 0;
   1266 	in_pos    = losing;
   1267 	in_trace  = &ump->lvint_trace[in_ext];
   1268 	in_len    = in_trace->end - in_trace->start;
   1269 	out_ext   = 0;
   1270 	out_wpos  = 0;
   1271 	out_trace = &ump->lvint_trace[out_ext];
   1272 	out_len   = out_trace->end - out_trace->start;
   1273 
   1274 	last_dscr = NULL;
   1275 	for(;;) {
   1276 		out_trace->pos  = out_wpos;
   1277 		out_trace->wpos = out_trace->pos;
   1278 		if (in_pos >= in_len) {
   1279 			in_ext++;
   1280 			in_pos = 0;
   1281 			in_trace = &ump->lvint_trace[in_ext];
   1282 			in_len   = in_trace->end - in_trace->start;
   1283 		}
   1284 		if (out_wpos >= out_len) {
   1285 			out_ext++;
   1286 			out_wpos = 0;
   1287 			out_trace = &ump->lvint_trace[out_ext];
   1288 			out_len   = out_trace->end - out_trace->start;
   1289 		}
   1290 		/* copy overlap contents */
   1291 		cpy_len = MIN(in_len - in_pos, out_len - out_wpos);
   1292 		cpy_len = MIN(cpy_len, in_len - in_trace->pos);
   1293 		if (cpy_len == 0)
   1294 			break;
   1295 
   1296 		/* copy */
   1297 		DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len));
   1298 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1299 			/* read in our integrity descriptor */
   1300 			lb_num = in_trace->start + in_pos + cnt;
   1301 			error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD,
   1302 				&dscr);
   1303 			if (error) {
   1304 				/* copy last one */
   1305 				dscr = last_dscr;
   1306 			}
   1307 			bufs[cnt] = dscr;
   1308 			if (!error) {
   1309 				if (dscr == NULL) {
   1310 					out_trace->pos  = out_wpos + cnt;
   1311 					out_trace->wpos = out_trace->pos;
   1312 					break;		/* empty terminates */
   1313 				}
   1314 				dscr_type = udf_rw16(dscr->tag.id);
   1315 				if (dscr_type == TAGID_TERM) {
   1316 					out_trace->pos  = out_wpos + cnt;
   1317 					out_trace->wpos = out_trace->pos;
   1318 					break;		/* clean terminator */
   1319 				}
   1320 				if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
   1321 					panic(  "UDF integrity sequence "
   1322 						"corrupted while mounted!\n");
   1323 				}
   1324 				last_dscr = dscr;
   1325 			}
   1326 		}
   1327 
   1328 		/* patch up if first entry was on error */
   1329 		if (bufs[0] == NULL) {
   1330 			for (cnt = 0; cnt < cpy_len; cnt++)
   1331 				if (bufs[cnt] != NULL)
   1332 					break;
   1333 			last_dscr = bufs[cnt];
   1334 			for (; cnt > 0; cnt--) {
   1335 				bufs[cnt] = last_dscr;
   1336 			}
   1337 		}
   1338 
   1339 		/* glue + write out */
   1340 		DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len));
   1341 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1342 			lb_num = out_trace->start + out_wpos + cnt;
   1343 			lvint  = &bufs[cnt]->lvid;
   1344 
   1345 			/* set continuation */
   1346 			len = 0;
   1347 			start = 0;
   1348 			if (out_wpos + cnt == out_len) {
   1349 				/* get continuation */
   1350 				trace = &ump->lvint_trace[out_ext+1];
   1351 				len   = trace->end - trace->start;
   1352 				start = trace->start;
   1353 			}
   1354 			lvint->next_extent.len = udf_rw32(len);
   1355 			lvint->next_extent.loc = udf_rw32(start);
   1356 
   1357 			lb_num = trace->start + trace->wpos;
   1358 			error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1359 				bufs[cnt], lb_num, lb_num);
   1360 			DPRINTFIF(VOLUMES, error,
   1361 				("error writing lvint lb_num\n"));
   1362 		}
   1363 
   1364 		/* free non repeating descriptors */
   1365 		last_dscr = NULL;
   1366 		for (cnt = 0; cnt < cpy_len; cnt++) {
   1367 			if (bufs[cnt] != last_dscr)
   1368 				free(bufs[cnt], M_UDFVOLD);
   1369 			last_dscr = bufs[cnt];
   1370 		}
   1371 
   1372 		/* advance */
   1373 		in_pos   += cpy_len;
   1374 		out_wpos += cpy_len;
   1375 	}
   1376 
   1377 	free(bufs, M_TEMP);
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 
   1383 static int
   1384 udf_writeout_lvint(struct udf_mount *ump, int lvflag)
   1385 {
   1386 	struct udf_lvintq *trace;
   1387 	struct timeval  now_v;
   1388 	struct timespec now_s;
   1389 	uint32_t sector;
   1390 	int logvol_integrity;
   1391 	int space, error;
   1392 
   1393 	DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n"));
   1394 
   1395 again:
   1396 	/* get free space in last chunk */
   1397 	trace = ump->lvint_trace;
   1398 	while (trace->wpos > (trace->end - trace->start)) {
   1399 		DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, "
   1400 				  "wpos = %d\n", trace->start, trace->end,
   1401 				  trace->pos, trace->wpos));
   1402 		trace++;
   1403 	}
   1404 
   1405 	/* check if there is space to append */
   1406 	space = (trace->end - trace->start) - trace->wpos;
   1407 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1408 			  "space = %d\n", trace->start, trace->end, trace->pos,
   1409 			  trace->wpos, space));
   1410 
   1411 	/* get state */
   1412 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   1413 	if (logvol_integrity == UDF_INTEGRITY_CLOSED) {
   1414 		if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) {
   1415 			/* don't allow this logvol to be opened */
   1416 			/* TODO extent LVINT space if possible */
   1417 			return EROFS;
   1418 		}
   1419 	}
   1420 
   1421 	if (space < 1) {
   1422 		if (lvflag & UDF_APPENDONLY_LVINT)
   1423 			return EROFS;
   1424 		/* loose history by re-writing extents */
   1425 		error = udf_loose_lvint_history(ump);
   1426 		if (error)
   1427 			return error;
   1428 		goto again;
   1429 	}
   1430 
   1431 	/* update our integrity descriptor to identify us and timestamp it */
   1432 	DPRINTF(VOLUMES, ("updating integrity descriptor\n"));
   1433 	microtime(&now_v);
   1434 	TIMEVAL_TO_TIMESPEC(&now_v, &now_s);
   1435 	udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time);
   1436 	udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME);
   1437 	udf_add_impl_regid(ump, &ump->logvol_info->impl_id);
   1438 
   1439 	/* writeout integrity descriptor */
   1440 	sector = trace->start + trace->wpos;
   1441 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1442 			(union dscrptr *) ump->logvol_integrity,
   1443 			sector, sector);
   1444 	DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error));
   1445 	if (error)
   1446 		return error;
   1447 
   1448 	/* advance write position */
   1449 	trace->wpos++; space--;
   1450 	if (space >= 1) {
   1451 		/* append terminator */
   1452 		sector = trace->start + trace->wpos;
   1453 		error = udf_write_terminator(ump, sector);
   1454 
   1455 		DPRINTF(VOLUMES, ("write terminator : error = %d\n", error));
   1456 	}
   1457 
   1458 	space = (trace->end - trace->start) - trace->wpos;
   1459 	DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, "
   1460 		"space = %d\n", trace->start, trace->end, trace->pos,
   1461 		trace->wpos, space));
   1462 	DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor "
   1463 		"successfull\n"));
   1464 
   1465 	return error;
   1466 }
   1467 
   1468 /* --------------------------------------------------------------------- */
   1469 
   1470 static int
   1471 udf_read_physical_partition_spacetables(struct udf_mount *ump)
   1472 {
   1473 	union dscrptr        *dscr;
   1474 	/* struct udf_args *args = &ump->mount_args; */
   1475 	struct part_desc     *partd;
   1476 	struct part_hdr_desc *parthdr;
   1477 	struct udf_bitmap    *bitmap;
   1478 	uint32_t phys_part;
   1479 	uint32_t lb_num, len;
   1480 	int error, dscr_type;
   1481 
   1482 	/* unallocated space map */
   1483 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1484 		partd = ump->partitions[phys_part];
   1485 		if (partd == NULL)
   1486 			continue;
   1487 		parthdr = &partd->_impl_use.part_hdr;
   1488 
   1489 		lb_num  = udf_rw32(partd->start_loc);
   1490 		lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1491 		len     = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1492 		if (len == 0)
   1493 			continue;
   1494 
   1495 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1496 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1497 		if (!error && dscr) {
   1498 			/* analyse */
   1499 			dscr_type = udf_rw16(dscr->tag.id);
   1500 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1501 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1502 				ump->part_unalloc_dscr[phys_part] = &dscr->sbd;
   1503 
   1504 				/* fill in ump->part_unalloc_bits */
   1505 				bitmap = &ump->part_unalloc_bits[phys_part];
   1506 				bitmap->blob  = (uint8_t *) dscr;
   1507 				bitmap->bits  = dscr->sbd.data;
   1508 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1509 				bitmap->pages = NULL;	/* TODO */
   1510 				bitmap->data_pos     = 0;
   1511 				bitmap->metadata_pos = 0;
   1512 			} else {
   1513 				free(dscr, M_UDFVOLD);
   1514 
   1515 				printf( "UDF mount: error reading unallocated "
   1516 					"space bitmap\n");
   1517 				return EROFS;
   1518 			}
   1519 		} else {
   1520 			/* blank not allowed */
   1521 			printf("UDF mount: blank unallocated space bitmap\n");
   1522 			return EROFS;
   1523 		}
   1524 	}
   1525 
   1526 	/* unallocated space table (not supported) */
   1527 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1528 		partd = ump->partitions[phys_part];
   1529 		if (partd == NULL)
   1530 			continue;
   1531 		parthdr = &partd->_impl_use.part_hdr;
   1532 
   1533 		len     = udf_rw32(parthdr->unalloc_space_table.len);
   1534 		if (len) {
   1535 			printf("UDF mount: space tables not supported\n");
   1536 			return EROFS;
   1537 		}
   1538 	}
   1539 
   1540 	/* freed space map */
   1541 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1542 		partd = ump->partitions[phys_part];
   1543 		if (partd == NULL)
   1544 			continue;
   1545 		parthdr = &partd->_impl_use.part_hdr;
   1546 
   1547 		/* freed space map */
   1548 		lb_num  = udf_rw32(partd->start_loc);
   1549 		lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1550 		len     = udf_rw32(parthdr->freed_space_bitmap.len);
   1551 		if (len == 0)
   1552 			continue;
   1553 
   1554 		DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num));
   1555 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   1556 		if (!error && dscr) {
   1557 			/* analyse */
   1558 			dscr_type = udf_rw16(dscr->tag.id);
   1559 			if (dscr_type == TAGID_SPACE_BITMAP) {
   1560 				DPRINTF(VOLUMES, ("Accepting space bitmap\n"));
   1561 				ump->part_freed_dscr[phys_part] = &dscr->sbd;
   1562 
   1563 				/* fill in ump->part_freed_bits */
   1564 				bitmap = &ump->part_unalloc_bits[phys_part];
   1565 				bitmap->blob  = (uint8_t *) dscr;
   1566 				bitmap->bits  = dscr->sbd.data;
   1567 				bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1568 				bitmap->pages = NULL;	/* TODO */
   1569 				bitmap->data_pos     = 0;
   1570 				bitmap->metadata_pos = 0;
   1571 			} else {
   1572 				free(dscr, M_UDFVOLD);
   1573 
   1574 				printf( "UDF mount: error reading freed  "
   1575 					"space bitmap\n");
   1576 				return EROFS;
   1577 			}
   1578 		} else {
   1579 			/* blank not allowed */
   1580 			printf("UDF mount: blank freed space bitmap\n");
   1581 			return EROFS;
   1582 		}
   1583 	}
   1584 
   1585 	/* freed space table (not supported) */
   1586 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1587 		partd = ump->partitions[phys_part];
   1588 		if (partd == NULL)
   1589 			continue;
   1590 		parthdr = &partd->_impl_use.part_hdr;
   1591 
   1592 		len     = udf_rw32(parthdr->freed_space_table.len);
   1593 		if (len) {
   1594 			printf("UDF mount: space tables not supported\n");
   1595 			return EROFS;
   1596 		}
   1597 	}
   1598 
   1599 	return 0;
   1600 }
   1601 
   1602 
   1603 /* TODO implement async writeout */
   1604 int
   1605 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor)
   1606 {
   1607 	union dscrptr        *dscr;
   1608 	/* struct udf_args *args = &ump->mount_args; */
   1609 	struct part_desc     *partd;
   1610 	struct part_hdr_desc *parthdr;
   1611 	uint32_t phys_part;
   1612 	uint32_t lb_num, len, ptov;
   1613 	int error_all, error;
   1614 
   1615 	error_all = 0;
   1616 	/* unallocated space map */
   1617 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1618 		partd = ump->partitions[phys_part];
   1619 		if (partd == NULL)
   1620 			continue;
   1621 		parthdr = &partd->_impl_use.part_hdr;
   1622 
   1623 		ptov   = udf_rw32(partd->start_loc);
   1624 		lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num);
   1625 		len    = udf_rw32(parthdr->unalloc_space_bitmap.len);
   1626 		if (len == 0)
   1627 			continue;
   1628 
   1629 		DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n",
   1630 			lb_num + ptov));
   1631 		dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part];
   1632 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1633 				(union dscrptr *) dscr,
   1634 				ptov + lb_num, lb_num);
   1635 		if (error) {
   1636 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1637 			error_all = error;
   1638 		}
   1639 	}
   1640 
   1641 	/* freed space map */
   1642 	for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1643 		partd = ump->partitions[phys_part];
   1644 		if (partd == NULL)
   1645 			continue;
   1646 		parthdr = &partd->_impl_use.part_hdr;
   1647 
   1648 		/* freed space map */
   1649 		ptov   = udf_rw32(partd->start_loc);
   1650 		lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num);
   1651 		len    = udf_rw32(parthdr->freed_space_bitmap.len);
   1652 		if (len == 0)
   1653 			continue;
   1654 
   1655 		DPRINTF(VOLUMES, ("Write freed space bitmap %d\n",
   1656 			lb_num + ptov));
   1657 		dscr = (union dscrptr *) ump->part_freed_dscr[phys_part];
   1658 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   1659 				(union dscrptr *) dscr,
   1660 				ptov + lb_num, lb_num);
   1661 		if (error) {
   1662 			DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error));
   1663 			error_all = error;
   1664 		}
   1665 	}
   1666 
   1667 	return error_all;
   1668 }
   1669 
   1670 
   1671 static int
   1672 udf_read_metadata_partition_spacetable(struct udf_mount *ump)
   1673 {
   1674 	struct udf_node	     *bitmap_node;
   1675 	union dscrptr        *dscr;
   1676 	struct udf_bitmap    *bitmap;
   1677 	uint64_t inflen;
   1678 	int error, dscr_type;
   1679 
   1680 	bitmap_node = ump->metadatabitmap_node;
   1681 
   1682 	/* only read in when metadata bitmap node is read in */
   1683 	if (bitmap_node == NULL)
   1684 		return 0;
   1685 
   1686 	if (bitmap_node->fe) {
   1687 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1688 	} else {
   1689 		KASSERT(bitmap_node->efe);
   1690 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1691 	}
   1692 
   1693 	DPRINTF(VOLUMES, ("Reading metadata space bitmap for "
   1694 		"%"PRIu64" bytes\n", inflen));
   1695 
   1696 	/* allocate space for bitmap */
   1697 	dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK);
   1698 	if (!dscr)
   1699 		return ENOMEM;
   1700 
   1701 	/* set vnode type to regular file or we can't read from it! */
   1702 	bitmap_node->vnode->v_type = VREG;
   1703 
   1704 	/* read in complete metadata bitmap file */
   1705 	error = vn_rdwr(UIO_READ, bitmap_node->vnode,
   1706 			dscr,
   1707 			inflen, 0,
   1708 			UIO_SYSSPACE,
   1709 			IO_SYNC | IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1710 			NULL, NULL);
   1711 	if (error) {
   1712 		DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n"));
   1713 		goto errorout;
   1714 	}
   1715 
   1716 	/* analyse */
   1717 	dscr_type = udf_rw16(dscr->tag.id);
   1718 	if (dscr_type == TAGID_SPACE_BITMAP) {
   1719 		DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n"));
   1720 		ump->metadata_unalloc_dscr = &dscr->sbd;
   1721 
   1722 		/* fill in bitmap bits */
   1723 		bitmap = &ump->metadata_unalloc_bits;
   1724 		bitmap->blob  = (uint8_t *) dscr;
   1725 		bitmap->bits  = dscr->sbd.data;
   1726 		bitmap->max_offset = udf_rw32(dscr->sbd.num_bits);
   1727 		bitmap->pages = NULL;	/* TODO */
   1728 		bitmap->data_pos     = 0;
   1729 		bitmap->metadata_pos = 0;
   1730 	} else {
   1731 		DPRINTF(VOLUMES, ("No valid bitmap found!\n"));
   1732 		goto errorout;
   1733 	}
   1734 
   1735 	return 0;
   1736 
   1737 errorout:
   1738 	free(dscr, M_UDFVOLD);
   1739 	printf( "UDF mount: error reading unallocated "
   1740 		"space bitmap for metadata partition\n");
   1741 	return EROFS;
   1742 }
   1743 
   1744 
   1745 int
   1746 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor)
   1747 {
   1748 	struct udf_node	     *bitmap_node;
   1749 	union dscrptr        *dscr;
   1750 	uint64_t inflen, new_inflen;
   1751 	int dummy, error;
   1752 
   1753 	bitmap_node = ump->metadatabitmap_node;
   1754 
   1755 	/* only write out when metadata bitmap node is known */
   1756 	if (bitmap_node == NULL)
   1757 		return 0;
   1758 
   1759 	if (bitmap_node->fe) {
   1760 		inflen = udf_rw64(bitmap_node->fe->inf_len);
   1761 	} else {
   1762 		KASSERT(bitmap_node->efe);
   1763 		inflen = udf_rw64(bitmap_node->efe->inf_len);
   1764 	}
   1765 
   1766 	/* reduce length to zero */
   1767 	dscr = (union dscrptr *) ump->metadata_unalloc_dscr;
   1768 	new_inflen = udf_tagsize(dscr, 1);
   1769 
   1770 	DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap from "
   1771 		"%"PRIu64" to %"PRIu64" bytes\n", inflen, new_inflen));
   1772 
   1773 	error = udf_resize_node(bitmap_node, new_inflen, &dummy);
   1774 	if (error)
   1775 		printf("Error resizing metadata space bitmap\n");
   1776 
   1777 	error = vn_rdwr(UIO_WRITE, bitmap_node->vnode,
   1778 			dscr,
   1779 			new_inflen, 0,
   1780 			UIO_SYSSPACE,
   1781 			IO_NODELOCKED | IO_ALTSEMANTICS, FSCRED,
   1782 			NULL, NULL);
   1783 
   1784 	bitmap_node->i_flags |= IN_MODIFIED;
   1785 	vflushbuf(bitmap_node->vnode, 1 /* sync */);
   1786 
   1787 	error = VOP_FSYNC(bitmap_node->vnode,
   1788 			FSCRED, FSYNC_WAIT, 0, 0);
   1789 
   1790 	if (error)
   1791 		printf( "Error writing out metadata partition unalloced "
   1792 			"space bitmap!\n");
   1793 
   1794 	return error;
   1795 }
   1796 
   1797 
   1798 /* --------------------------------------------------------------------- */
   1799 
   1800 /*
   1801  * Checks if ump's vds information is correct and complete
   1802  */
   1803 
   1804 int
   1805 udf_process_vds(struct udf_mount *ump) {
   1806 	union udf_pmap *mapping;
   1807 	/* struct udf_args *args = &ump->mount_args; */
   1808 	struct logvol_int_desc *lvint;
   1809 	struct udf_logvol_info *lvinfo;
   1810 	struct part_desc *part;
   1811 	uint32_t n_pm, mt_l;
   1812 	uint8_t *pmap_pos;
   1813 	char *domain_name, *map_name;
   1814 	const char *check_name;
   1815 	char bits[128];
   1816 	int pmap_stype, pmap_size;
   1817 	int pmap_type, log_part, phys_part, raw_phys_part, maps_on;
   1818 	int n_phys, n_virt, n_spar, n_meta;
   1819 	int len, error;
   1820 
   1821 	if (ump == NULL)
   1822 		return ENOENT;
   1823 
   1824 	/* we need at least an anchor (trivial, but for safety) */
   1825 	if (ump->anchors[0] == NULL)
   1826 		return EINVAL;
   1827 
   1828 	/* we need at least one primary and one logical volume descriptor */
   1829 	if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
   1830 		return EINVAL;
   1831 
   1832 	/* we need at least one partition descriptor */
   1833 	if (ump->partitions[0] == NULL)
   1834 		return EINVAL;
   1835 
   1836 	/* check logical volume sector size verses device sector size */
   1837 	if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
   1838 		printf("UDF mount: format violation, lb_size != sector size\n");
   1839 		return EINVAL;
   1840 	}
   1841 
   1842 	/* check domain name */
   1843 	domain_name = ump->logical_vol->domain_id.id;
   1844 	if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
   1845 		printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
   1846 		return EINVAL;
   1847 	}
   1848 
   1849 	/* retrieve logical volume integrity sequence */
   1850 	error = udf_retrieve_lvint(ump);
   1851 
   1852 	/*
   1853 	 * We need at least one logvol integrity descriptor recorded.  Note
   1854 	 * that its OK to have an open logical volume integrity here. The VAT
   1855 	 * will close/update the integrity.
   1856 	 */
   1857 	if (ump->logvol_integrity == NULL)
   1858 		return EINVAL;
   1859 
   1860 	/* process derived structures */
   1861 	n_pm   = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1862 	lvint  = ump->logvol_integrity;
   1863 	lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
   1864 	ump->logvol_info = lvinfo;
   1865 
   1866 	/* TODO check udf versions? */
   1867 
   1868 	/*
   1869 	 * check logvol mappings: effective virt->log partmap translation
   1870 	 * check and recording of the mapping results. Saves expensive
   1871 	 * strncmp() in tight places.
   1872 	 */
   1873 	DPRINTF(VOLUMES, ("checking logvol mappings\n"));
   1874 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   1875 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   1876 	pmap_pos =  ump->logical_vol->maps;
   1877 
   1878 	if (n_pm > UDF_PMAPS) {
   1879 		printf("UDF mount: too many mappings\n");
   1880 		return EINVAL;
   1881 	}
   1882 
   1883 	/* count types and set partition numbers */
   1884 	ump->data_part = ump->node_part = ump->fids_part = 0;
   1885 	n_phys = n_virt = n_spar = n_meta = 0;
   1886 	for (log_part = 0; log_part < n_pm; log_part++) {
   1887 		mapping = (union udf_pmap *) pmap_pos;
   1888 		pmap_stype = pmap_pos[0];
   1889 		pmap_size  = pmap_pos[1];
   1890 		switch (pmap_stype) {
   1891 		case 1:	/* physical mapping */
   1892 			/* volseq    = udf_rw16(mapping->pm1.vol_seq_num); */
   1893 			raw_phys_part = udf_rw16(mapping->pm1.part_num);
   1894 			pmap_type = UDF_VTOP_TYPE_PHYS;
   1895 			n_phys++;
   1896 			ump->data_part = log_part;
   1897 			ump->node_part = log_part;
   1898 			ump->fids_part = log_part;
   1899 			break;
   1900 		case 2: /* virtual/sparable/meta mapping */
   1901 			map_name  = mapping->pm2.part_id.id;
   1902 			/* volseq  = udf_rw16(mapping->pm2.vol_seq_num); */
   1903 			raw_phys_part = udf_rw16(mapping->pm2.part_num);
   1904 			pmap_type = UDF_VTOP_TYPE_UNKNOWN;
   1905 			len = UDF_REGID_ID_SIZE;
   1906 
   1907 			check_name = "*UDF Virtual Partition";
   1908 			if (strncmp(map_name, check_name, len) == 0) {
   1909 				pmap_type = UDF_VTOP_TYPE_VIRT;
   1910 				n_virt++;
   1911 				ump->node_part = log_part;
   1912 				break;
   1913 			}
   1914 			check_name = "*UDF Sparable Partition";
   1915 			if (strncmp(map_name, check_name, len) == 0) {
   1916 				pmap_type = UDF_VTOP_TYPE_SPARABLE;
   1917 				n_spar++;
   1918 				ump->data_part = log_part;
   1919 				ump->node_part = log_part;
   1920 				ump->fids_part = log_part;
   1921 				break;
   1922 			}
   1923 			check_name = "*UDF Metadata Partition";
   1924 			if (strncmp(map_name, check_name, len) == 0) {
   1925 				pmap_type = UDF_VTOP_TYPE_META;
   1926 				n_meta++;
   1927 				ump->node_part = log_part;
   1928 				ump->fids_part = log_part;
   1929 				break;
   1930 			}
   1931 			break;
   1932 		default:
   1933 			return EINVAL;
   1934 		}
   1935 
   1936 		/*
   1937 		 * BUGALERT: some rogue implementations use random physical
   1938 		 * partion numbers to break other implementations so lookup
   1939 		 * the number.
   1940 		 */
   1941 		for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
   1942 			part = ump->partitions[phys_part];
   1943 			if (part == NULL)
   1944 				continue;
   1945 			if (udf_rw16(part->part_num) == raw_phys_part)
   1946 				break;
   1947 		}
   1948 
   1949 		DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
   1950 		    raw_phys_part, phys_part, pmap_type));
   1951 
   1952 		if (phys_part == UDF_PARTITIONS)
   1953 			return EINVAL;
   1954 		if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
   1955 			return EINVAL;
   1956 
   1957 		ump->vtop   [log_part] = phys_part;
   1958 		ump->vtop_tp[log_part] = pmap_type;
   1959 
   1960 		pmap_pos += pmap_size;
   1961 	}
   1962 	/* not winning the beauty contest */
   1963 	ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
   1964 
   1965 	/* test some basic UDF assertions/requirements */
   1966 	if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
   1967 		return EINVAL;
   1968 
   1969 	if (n_virt) {
   1970 		if ((n_phys == 0) || n_spar || n_meta)
   1971 			return EINVAL;
   1972 	}
   1973 	if (n_spar + n_phys == 0)
   1974 		return EINVAL;
   1975 
   1976 	/* select allocation type for each logical partition */
   1977 	for (log_part = 0; log_part < n_pm; log_part++) {
   1978 		maps_on = ump->vtop[log_part];
   1979 		switch (ump->vtop_tp[log_part]) {
   1980 		case UDF_VTOP_TYPE_PHYS :
   1981 			assert(maps_on == log_part);
   1982 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1983 			break;
   1984 		case UDF_VTOP_TYPE_VIRT :
   1985 			ump->vtop_alloc[log_part] = UDF_ALLOC_VAT;
   1986 			ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1987 			break;
   1988 		case UDF_VTOP_TYPE_SPARABLE :
   1989 			assert(maps_on == log_part);
   1990 			ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP;
   1991 			break;
   1992 		case UDF_VTOP_TYPE_META :
   1993 			ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP;
   1994 			if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
   1995 				/* special case for UDF 2.60 */
   1996 				ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL;
   1997 				ump->vtop_alloc[maps_on]  = UDF_ALLOC_SEQUENTIAL;
   1998 			}
   1999 			break;
   2000 		default:
   2001 			panic("bad alloction type in udf's ump->vtop\n");
   2002 		}
   2003 	}
   2004 
   2005 	/* determine logical volume open/closure actions */
   2006 	if (n_virt) {
   2007 		ump->lvopen  = 0;
   2008 		if (ump->discinfo.last_session_state == MMC_STATE_EMPTY)
   2009 			ump->lvopen |= UDF_OPEN_SESSION ;
   2010 		ump->lvclose = UDF_WRITE_VAT;
   2011 		if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION)
   2012 			ump->lvclose |= UDF_CLOSE_SESSION;
   2013 	} else {
   2014 		/* `normal' rewritable or non sequential media */
   2015 		ump->lvopen  = UDF_WRITE_LVINT;
   2016 		ump->lvclose = UDF_WRITE_LVINT;
   2017 		if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0)
   2018 			ump->lvopen  |= UDF_APPENDONLY_LVINT;
   2019 	}
   2020 
   2021 	/*
   2022 	 * Determine sheduler error behaviour. For virtual partions, update
   2023 	 * the trackinfo; for sparable partitions replace a whole block on the
   2024 	 * sparable table. Allways requeue.
   2025 	 */
   2026 	ump->lvreadwrite = 0;
   2027 	if (n_virt)
   2028 		ump->lvreadwrite = UDF_UPDATE_TRACKINFO;
   2029 	if (n_spar)
   2030 		ump->lvreadwrite = UDF_REMAP_BLOCK;
   2031 
   2032 	/*
   2033 	 * Select our sheduler
   2034 	 */
   2035 	ump->strategy = &udf_strat_rmw;
   2036 	if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE))
   2037 		ump->strategy = &udf_strat_sequential;
   2038 	if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) ||
   2039 		(ump->discinfo.mmc_class == MMC_CLASS_UNKN))
   2040 			ump->strategy = &udf_strat_direct;
   2041 	if (n_spar)
   2042 		ump->strategy = &udf_strat_rmw;
   2043 
   2044 #if 0
   2045 	/* read-only access won't benefit from the other shedulers */
   2046 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   2047 		ump->strategy = &udf_strat_direct;
   2048 #endif
   2049 
   2050 	/* print results */
   2051 	DPRINTF(VOLUMES, ("\tdata partition    %d\n", ump->data_part));
   2052 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part]));
   2053 	DPRINTF(VOLUMES, ("\tnode partition    %d\n", ump->node_part));
   2054 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part]));
   2055 	DPRINTF(VOLUMES, ("\tfids partition    %d\n", ump->fids_part));
   2056 	DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part]));
   2057 
   2058 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen);
   2059 	DPRINTF(VOLUMES, ("\tactions on logvol open  %s\n", bits));
   2060 	snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose);
   2061 	DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits));
   2062 	snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite);
   2063 	DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits));
   2064 
   2065 	DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n",
   2066 		(ump->strategy == &udf_strat_direct) ? "Direct" :
   2067 		(ump->strategy == &udf_strat_sequential) ? "Sequential" :
   2068 		(ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!"));
   2069 
   2070 	/* signal its OK for now */
   2071 	return 0;
   2072 }
   2073 
   2074 /* --------------------------------------------------------------------- */
   2075 
   2076 /*
   2077  * Update logical volume name in all structures that keep a record of it. We
   2078  * use memmove since each of them might be specified as a source.
   2079  *
   2080  * Note that it doesn't update the VAT structure!
   2081  */
   2082 
   2083 static void
   2084 udf_update_logvolname(struct udf_mount *ump, char *logvol_id)
   2085 {
   2086 	struct logvol_desc     *lvd = NULL;
   2087 	struct fileset_desc    *fsd = NULL;
   2088 	struct udf_lv_info     *lvi = NULL;
   2089 
   2090 	DPRINTF(VOLUMES, ("Updating logical volume name\n"));
   2091 	lvd = ump->logical_vol;
   2092 	fsd = ump->fileset_desc;
   2093 	if (ump->implementation)
   2094 		lvi = &ump->implementation->_impl_use.lv_info;
   2095 
   2096 	/* logvol's id might be specified as origional so use memmove here */
   2097 	memmove(lvd->logvol_id, logvol_id, 128);
   2098 	if (fsd)
   2099 		memmove(fsd->logvol_id, logvol_id, 128);
   2100 	if (lvi)
   2101 		memmove(lvi->logvol_id, logvol_id, 128);
   2102 }
   2103 
   2104 /* --------------------------------------------------------------------- */
   2105 
   2106 void
   2107 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid,
   2108 	uint32_t sector)
   2109 {
   2110 	assert(ump->logical_vol);
   2111 
   2112 	tag->id 		= udf_rw16(tagid);
   2113 	tag->descriptor_ver	= ump->logical_vol->tag.descriptor_ver;
   2114 	tag->cksum		= 0;
   2115 	tag->reserved		= 0;
   2116 	tag->serial_num		= ump->logical_vol->tag.serial_num;
   2117 	tag->tag_loc            = udf_rw32(sector);
   2118 }
   2119 
   2120 
   2121 uint64_t
   2122 udf_advance_uniqueid(struct udf_mount *ump)
   2123 {
   2124 	uint64_t unique_id;
   2125 
   2126 	mutex_enter(&ump->logvol_mutex);
   2127 	unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id);
   2128 	if (unique_id < 0x10)
   2129 		unique_id = 0x10;
   2130 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1);
   2131 	mutex_exit(&ump->logvol_mutex);
   2132 
   2133 	return unique_id;
   2134 }
   2135 
   2136 
   2137 static void
   2138 udf_adjust_filecount(struct udf_node *udf_node, int sign)
   2139 {
   2140 	struct udf_mount *ump = udf_node->ump;
   2141 	uint32_t num_dirs, num_files;
   2142 	int udf_file_type;
   2143 
   2144 	/* get file type */
   2145 	if (udf_node->fe) {
   2146 		udf_file_type = udf_node->fe->icbtag.file_type;
   2147 	} else {
   2148 		udf_file_type = udf_node->efe->icbtag.file_type;
   2149 	}
   2150 
   2151 	/* adjust file count */
   2152 	mutex_enter(&ump->allocate_mutex);
   2153 	if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   2154 		num_dirs = udf_rw32(ump->logvol_info->num_directories);
   2155 		ump->logvol_info->num_directories =
   2156 			udf_rw32((num_dirs + sign));
   2157 	} else {
   2158 		num_files = udf_rw32(ump->logvol_info->num_files);
   2159 		ump->logvol_info->num_files =
   2160 			udf_rw32((num_files + sign));
   2161 	}
   2162 	mutex_exit(&ump->allocate_mutex);
   2163 }
   2164 
   2165 
   2166 void
   2167 udf_osta_charset(struct charspec *charspec)
   2168 {
   2169 	memset(charspec, 0, sizeof(struct charspec));
   2170 	charspec->type = 0;
   2171 	strcpy((char *) charspec->inf, "OSTA Compressed Unicode");
   2172 }
   2173 
   2174 
   2175 /* first call udf_set_regid and then the suffix */
   2176 void
   2177 udf_set_regid(struct regid *regid, char const *name)
   2178 {
   2179 	memset(regid, 0, sizeof(struct regid));
   2180 	regid->flags    = 0;		/* not dirty and not protected */
   2181 	strcpy((char *) regid->id, name);
   2182 }
   2183 
   2184 
   2185 void
   2186 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid)
   2187 {
   2188 	uint16_t *ver;
   2189 
   2190 	ver  = (uint16_t *) regid->id_suffix;
   2191 	*ver = ump->logvol_info->min_udf_readver;
   2192 }
   2193 
   2194 
   2195 void
   2196 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid)
   2197 {
   2198 	uint16_t *ver;
   2199 
   2200 	ver  = (uint16_t *) regid->id_suffix;
   2201 	*ver = ump->logvol_info->min_udf_readver;
   2202 
   2203 	regid->id_suffix[2] = 4;	/* unix */
   2204 	regid->id_suffix[3] = 8;	/* NetBSD */
   2205 }
   2206 
   2207 
   2208 void
   2209 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid)
   2210 {
   2211 	regid->id_suffix[0] = 4;	/* unix */
   2212 	regid->id_suffix[1] = 8;	/* NetBSD */
   2213 }
   2214 
   2215 
   2216 void
   2217 udf_add_app_regid(struct udf_mount *ump, struct regid *regid)
   2218 {
   2219 	regid->id_suffix[0] = APP_VERSION_MAIN;
   2220 	regid->id_suffix[1] = APP_VERSION_SUB;
   2221 }
   2222 
   2223 static int
   2224 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid,
   2225 	struct long_ad *parent, uint64_t unique_id)
   2226 {
   2227 	/* the size of an empty FID is 38 but needs to be a multiple of 4 */
   2228 	int fidsize = 40;
   2229 
   2230 	udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num));
   2231 	fid->file_version_num = udf_rw16(1);	/* UDF 2.3.4.1 */
   2232 	fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR;
   2233 	fid->icb = *parent;
   2234 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   2235 	fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH);
   2236 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   2237 
   2238 	return fidsize;
   2239 }
   2240 
   2241 /* --------------------------------------------------------------------- */
   2242 
   2243 /*
   2244  * Extended attribute support. UDF knows of 3 places for extended attributes:
   2245  *
   2246  * (a) inside the file's (e)fe in the length of the extended attribute area
   2247  * before the allocation descriptors/filedata
   2248  *
   2249  * (b) in a file referenced by (e)fe->ext_attr_icb and
   2250  *
   2251  * (c) in the e(fe)'s associated stream directory that can hold various
   2252  * sub-files. In the stream directory a few fixed named subfiles are reserved
   2253  * for NT/Unix ACL's and OS/2 attributes.
   2254  *
   2255  * NOTE: Extended attributes are read randomly but allways written
   2256  * *atomicaly*. For ACL's this interface is propably different but not known
   2257  * to me yet.
   2258  *
   2259  * Order of extended attributes in a space :
   2260  *   ECMA 167 EAs
   2261  *   Non block aligned Implementation Use EAs
   2262  *   Block aligned Implementation Use EAs
   2263  *   Application Use EAs
   2264  */
   2265 
   2266 static int
   2267 udf_impl_extattr_check(struct impl_extattr_entry *implext)
   2268 {
   2269 	uint16_t   *spos;
   2270 
   2271 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2272 		/* checksum valid? */
   2273 		DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n"));
   2274 		spos = (uint16_t *) implext->data;
   2275 		if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext))
   2276 			return EINVAL;
   2277 	}
   2278 	return 0;
   2279 }
   2280 
   2281 static void
   2282 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext)
   2283 {
   2284 	uint16_t   *spos;
   2285 
   2286 	if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) {
   2287 		/* set checksum */
   2288 		spos = (uint16_t *) implext->data;
   2289 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2290 	}
   2291 }
   2292 
   2293 
   2294 int
   2295 udf_extattr_search_intern(struct udf_node *node,
   2296 	uint32_t sattr, char const *sattrname,
   2297 	uint32_t *offsetp, uint32_t *lengthp)
   2298 {
   2299 	struct extattrhdr_desc    *eahdr;
   2300 	struct extattr_entry      *attrhdr;
   2301 	struct impl_extattr_entry *implext;
   2302 	uint32_t    offset, a_l, sector_size;
   2303 	 int32_t    l_ea;
   2304 	uint8_t    *pos;
   2305 	int         error;
   2306 
   2307 	/* get mountpoint */
   2308 	sector_size = node->ump->discinfo.sector_size;
   2309 
   2310 	/* get information from fe/efe */
   2311 	if (node->fe) {
   2312 		l_ea  = udf_rw32(node->fe->l_ea);
   2313 		eahdr = (struct extattrhdr_desc *) node->fe->data;
   2314 	} else {
   2315 		assert(node->efe);
   2316 		l_ea  = udf_rw32(node->efe->l_ea);
   2317 		eahdr = (struct extattrhdr_desc *) node->efe->data;
   2318 	}
   2319 
   2320 	/* something recorded here? */
   2321 	if (l_ea == 0)
   2322 		return ENOENT;
   2323 
   2324 	/* check extended attribute tag; what to do if it fails? */
   2325 	error = udf_check_tag(eahdr);
   2326 	if (error)
   2327 		return EINVAL;
   2328 	if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR)
   2329 		return EINVAL;
   2330 	error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc));
   2331 	if (error)
   2332 		return EINVAL;
   2333 
   2334 	DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea));
   2335 
   2336 	/* looking for Ecma-167 attributes? */
   2337 	offset = sizeof(struct extattrhdr_desc);
   2338 
   2339 	/* looking for either implemenation use or application use */
   2340 	if (sattr == 2048) {				/* [4/48.10.8] */
   2341 		offset = udf_rw32(eahdr->impl_attr_loc);
   2342 		if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2343 			return ENOENT;
   2344 	}
   2345 	if (sattr == 65536) {				/* [4/48.10.9] */
   2346 		offset = udf_rw32(eahdr->appl_attr_loc);
   2347 		if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT)
   2348 			return ENOENT;
   2349 	}
   2350 
   2351 	/* paranoia check offset and l_ea */
   2352 	if (l_ea + offset >= sector_size - sizeof(struct extattr_entry))
   2353 		return EINVAL;
   2354 
   2355 	DPRINTF(EXTATTR, ("Starting at offset %d\n", offset));
   2356 
   2357 	/* find our extended attribute  */
   2358 	l_ea -= offset;
   2359 	pos = (uint8_t *) eahdr + offset;
   2360 
   2361 	while (l_ea >= sizeof(struct extattr_entry)) {
   2362 		DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea));
   2363 		attrhdr = (struct extattr_entry *) pos;
   2364 		implext = (struct impl_extattr_entry *) pos;
   2365 
   2366 		/* get complete attribute length and check for roque values */
   2367 		a_l = udf_rw32(attrhdr->a_l);
   2368 		DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n",
   2369 				udf_rw32(attrhdr->type),
   2370 				attrhdr->subtype, a_l, l_ea));
   2371 		if ((a_l == 0) || (a_l > l_ea))
   2372 			return EINVAL;
   2373 
   2374 		if (attrhdr->type != sattr)
   2375 			goto next_attribute;
   2376 
   2377 		/* we might have found it! */
   2378 		if (attrhdr->type < 2048) {	/* Ecma-167 attribute */
   2379 			*offsetp = offset;
   2380 			*lengthp = a_l;
   2381 			return 0;		/* success */
   2382 		}
   2383 
   2384 		/*
   2385 		 * Implementation use and application use extended attributes
   2386 		 * have a name to identify. They share the same structure only
   2387 		 * UDF implementation use extended attributes have a checksum
   2388 		 * we need to check
   2389 		 */
   2390 
   2391 		DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id));
   2392 		if (strcmp(implext->imp_id.id, sattrname) == 0) {
   2393 			/* we have found our appl/implementation attribute */
   2394 			*offsetp = offset;
   2395 			*lengthp = a_l;
   2396 			return 0;		/* success */
   2397 		}
   2398 
   2399 next_attribute:
   2400 		/* next attribute */
   2401 		pos    += a_l;
   2402 		l_ea   -= a_l;
   2403 		offset += a_l;
   2404 	}
   2405 	/* not found */
   2406 	return ENOENT;
   2407 }
   2408 
   2409 
   2410 static void
   2411 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr,
   2412 	struct extattr_entry *extattr)
   2413 {
   2414 	struct file_entry      *fe;
   2415 	struct extfile_entry   *efe;
   2416 	struct extattrhdr_desc *extattrhdr;
   2417 	struct impl_extattr_entry *implext;
   2418 	uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len;
   2419 	uint32_t *l_eap, l_ad;
   2420 	uint16_t *spos;
   2421 	uint8_t *bpos, *data;
   2422 
   2423 	if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) {
   2424 		fe    = &dscr->fe;
   2425 		data  = fe->data;
   2426 		l_eap = &fe->l_ea;
   2427 		l_ad  = udf_rw32(fe->l_ad);
   2428 	} else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) {
   2429 		efe   = &dscr->efe;
   2430 		data  = efe->data;
   2431 		l_eap = &efe->l_ea;
   2432 		l_ad  = udf_rw32(efe->l_ad);
   2433 	} else {
   2434 		panic("Bad tag passed to udf_extattr_insert_internal");
   2435 	}
   2436 
   2437 	/* can't append already written to file descriptors yet */
   2438 	assert(l_ad == 0);
   2439 
   2440 	/* should have a header! */
   2441 	extattrhdr = (struct extattrhdr_desc *) data;
   2442 	l_ea = udf_rw32(*l_eap);
   2443 	if (l_ea == 0) {
   2444 		/* create empty extended attribute header */
   2445 		exthdr_len = sizeof(struct extattrhdr_desc);
   2446 
   2447 		udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR,
   2448 			/* loc */ 0);
   2449 		extattrhdr->impl_attr_loc = udf_rw32(exthdr_len);
   2450 		extattrhdr->appl_attr_loc = udf_rw32(exthdr_len);
   2451 		extattrhdr->tag.desc_crc_len = udf_rw16(8);
   2452 
   2453 		/* record extended attribute header length */
   2454 		l_ea = exthdr_len;
   2455 		*l_eap = udf_rw32(l_ea);
   2456 	}
   2457 
   2458 	/* extract locations */
   2459 	impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc);
   2460 	appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc);
   2461 	if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2462 		impl_attr_loc = l_ea;
   2463 	if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT)
   2464 		appl_attr_loc = l_ea;
   2465 
   2466 	/* Ecma 167 EAs */
   2467 	if (udf_rw32(extattr->type) < 2048) {
   2468 		assert(impl_attr_loc == l_ea);
   2469 		assert(appl_attr_loc == l_ea);
   2470 	}
   2471 
   2472 	/* implementation use extended attributes */
   2473 	if (udf_rw32(extattr->type) == 2048) {
   2474 		assert(appl_attr_loc == l_ea);
   2475 
   2476 		/* calculate and write extended attribute header checksum */
   2477 		implext = (struct impl_extattr_entry *) extattr;
   2478 		assert(udf_rw32(implext->iu_l) == 4);	/* [UDF 3.3.4.5] */
   2479 		spos = (uint16_t *) implext->data;
   2480 		*spos = udf_rw16(udf_ea_cksum((uint8_t *) implext));
   2481 	}
   2482 
   2483 	/* application use extended attributes */
   2484 	assert(udf_rw32(extattr->type) != 65536);
   2485 	assert(appl_attr_loc == l_ea);
   2486 
   2487 	/* append the attribute at the end of the current space */
   2488 	bpos = data + udf_rw32(*l_eap);
   2489 	a_l  = udf_rw32(extattr->a_l);
   2490 
   2491 	/* update impl. attribute locations */
   2492 	if (udf_rw32(extattr->type) < 2048) {
   2493 		impl_attr_loc = l_ea + a_l;
   2494 		appl_attr_loc = l_ea + a_l;
   2495 	}
   2496 	if (udf_rw32(extattr->type) == 2048) {
   2497 		appl_attr_loc = l_ea + a_l;
   2498 	}
   2499 
   2500 	/* copy and advance */
   2501 	memcpy(bpos, extattr, a_l);
   2502 	l_ea += a_l;
   2503 	*l_eap = udf_rw32(l_ea);
   2504 
   2505 	/* do the `dance` again backwards */
   2506 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) {
   2507 		if (impl_attr_loc == l_ea)
   2508 			impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT;
   2509 		if (appl_attr_loc == l_ea)
   2510 			appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT;
   2511 	}
   2512 
   2513 	/* store offsets */
   2514 	extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc);
   2515 	extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc);
   2516 }
   2517 
   2518 
   2519 /* --------------------------------------------------------------------- */
   2520 
   2521 static int
   2522 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node)
   2523 {
   2524 	struct udf_mount       *ump;
   2525 	struct udf_logvol_info *lvinfo;
   2526 	struct impl_extattr_entry     *implext;
   2527 	struct vatlvext_extattr_entry  lvext;
   2528 	const char *extstr = "*UDF VAT LVExtension";
   2529 	uint64_t    vat_uniqueid;
   2530 	uint32_t    offset, a_l;
   2531 	uint8_t    *ea_start, *lvextpos;
   2532 	int         error;
   2533 
   2534 	/* get mountpoint and lvinfo */
   2535 	ump    = vat_node->ump;
   2536 	lvinfo = ump->logvol_info;
   2537 
   2538 	/* get information from fe/efe */
   2539 	if (vat_node->fe) {
   2540 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2541 		ea_start     = vat_node->fe->data;
   2542 	} else {
   2543 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2544 		ea_start     = vat_node->efe->data;
   2545 	}
   2546 
   2547 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2548 	if (error)
   2549 		return error;
   2550 
   2551 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2552 	error = udf_impl_extattr_check(implext);
   2553 	if (error)
   2554 		return error;
   2555 
   2556 	/* paranoia */
   2557 	if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) {
   2558 		DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n"));
   2559 		return EINVAL;
   2560 	}
   2561 
   2562 	/*
   2563 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2564 	 * bug in the specification it might not be word aligned so
   2565 	 * copy first to avoid panics on some machines (!!)
   2566 	 */
   2567 	DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n"));
   2568 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2569 	memcpy(&lvext, lvextpos, sizeof(lvext));
   2570 
   2571 	/* check if it was updated the last time */
   2572 	if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) {
   2573 		lvinfo->num_files       = lvext.num_files;
   2574 		lvinfo->num_directories = lvext.num_directories;
   2575 		udf_update_logvolname(ump, lvext.logvol_id);
   2576 	} else {
   2577 		DPRINTF(VOLUMES, ("VAT LVExtension out of date\n"));
   2578 		/* replace VAT LVExt by free space EA */
   2579 		memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE);
   2580 		strcpy(implext->imp_id.id, "*UDF FreeEASpace");
   2581 		udf_calc_impl_extattr_checksum(implext);
   2582 	}
   2583 
   2584 	return 0;
   2585 }
   2586 
   2587 
   2588 static int
   2589 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node)
   2590 {
   2591 	struct udf_mount       *ump;
   2592 	struct udf_logvol_info *lvinfo;
   2593 	struct impl_extattr_entry     *implext;
   2594 	struct vatlvext_extattr_entry  lvext;
   2595 	const char *extstr = "*UDF VAT LVExtension";
   2596 	uint64_t    vat_uniqueid;
   2597 	uint32_t    offset, a_l;
   2598 	uint8_t    *ea_start, *lvextpos;
   2599 	int         error;
   2600 
   2601 	/* get mountpoint and lvinfo */
   2602 	ump    = vat_node->ump;
   2603 	lvinfo = ump->logvol_info;
   2604 
   2605 	/* get information from fe/efe */
   2606 	if (vat_node->fe) {
   2607 		vat_uniqueid = udf_rw64(vat_node->fe->unique_id);
   2608 		ea_start     = vat_node->fe->data;
   2609 	} else {
   2610 		vat_uniqueid = udf_rw64(vat_node->efe->unique_id);
   2611 		ea_start     = vat_node->efe->data;
   2612 	}
   2613 
   2614 	error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l);
   2615 	if (error)
   2616 		return error;
   2617 	/* found, it existed */
   2618 
   2619 	/* paranoia */
   2620 	implext = (struct impl_extattr_entry *) (ea_start + offset);
   2621 	error = udf_impl_extattr_check(implext);
   2622 	if (error) {
   2623 		DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n"));
   2624 		return error;
   2625 	}
   2626 	/* it is correct */
   2627 
   2628 	/*
   2629 	 * we have found our "VAT LVExtension attribute. BUT due to a
   2630 	 * bug in the specification it might not be word aligned so
   2631 	 * copy first to avoid panics on some machines (!!)
   2632 	 */
   2633 	DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n"));
   2634 	lvextpos = implext->data + udf_rw32(implext->iu_l);
   2635 
   2636 	lvext.unique_id_chk   = vat_uniqueid;
   2637 	lvext.num_files       = lvinfo->num_files;
   2638 	lvext.num_directories = lvinfo->num_directories;
   2639 	memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128);
   2640 
   2641 	memcpy(lvextpos, &lvext, sizeof(lvext));
   2642 
   2643 	return 0;
   2644 }
   2645 
   2646 /* --------------------------------------------------------------------- */
   2647 
   2648 int
   2649 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2650 {
   2651 	struct udf_mount *ump = vat_node->ump;
   2652 
   2653 	if (offset + size > ump->vat_offset + ump->vat_entries * 4)
   2654 		return EINVAL;
   2655 
   2656 	memcpy(blob, ump->vat_table + offset, size);
   2657 	return 0;
   2658 }
   2659 
   2660 int
   2661 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset)
   2662 {
   2663 	struct udf_mount *ump = vat_node->ump;
   2664 	uint32_t offset_high;
   2665 	uint8_t *new_vat_table;
   2666 
   2667 	/* extent VAT allocation if needed */
   2668 	offset_high = offset + size;
   2669 	if (offset_high >= ump->vat_table_alloc_len) {
   2670 		/* realloc */
   2671 		new_vat_table = realloc(ump->vat_table,
   2672 			ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE,
   2673 			M_UDFVOLD, M_WAITOK | M_CANFAIL);
   2674 		if (!new_vat_table) {
   2675 			printf("udf_vat_write: can't extent VAT, out of mem\n");
   2676 			return ENOMEM;
   2677 		}
   2678 		ump->vat_table = new_vat_table;
   2679 		ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE;
   2680 	}
   2681 	ump->vat_table_len = MAX(ump->vat_table_len, offset_high);
   2682 
   2683 	memcpy(ump->vat_table + offset, blob, size);
   2684 	return 0;
   2685 }
   2686 
   2687 /* --------------------------------------------------------------------- */
   2688 
   2689 /* TODO support previous VAT location writeout */
   2690 static int
   2691 udf_update_vat_descriptor(struct udf_mount *ump)
   2692 {
   2693 	struct udf_node *vat_node = ump->vat_node;
   2694 	struct udf_logvol_info *lvinfo = ump->logvol_info;
   2695 	struct icb_tag *icbtag;
   2696 	struct udf_oldvat_tail *oldvat_tl;
   2697 	struct udf_vat *vat;
   2698 	uint64_t unique_id;
   2699 	uint32_t lb_size;
   2700 	uint8_t *raw_vat;
   2701 	int filetype, error;
   2702 
   2703 	KASSERT(vat_node);
   2704 	KASSERT(lvinfo);
   2705 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   2706 
   2707 	/* get our new unique_id */
   2708 	unique_id = udf_advance_uniqueid(ump);
   2709 
   2710 	/* get information from fe/efe */
   2711 	if (vat_node->fe) {
   2712 		icbtag    = &vat_node->fe->icbtag;
   2713 		vat_node->fe->unique_id = udf_rw64(unique_id);
   2714 	} else {
   2715 		icbtag = &vat_node->efe->icbtag;
   2716 		vat_node->efe->unique_id = udf_rw64(unique_id);
   2717 	}
   2718 
   2719 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2720 	filetype = icbtag->file_type;
   2721 	KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT));
   2722 
   2723 	/* allocate piece to process head or tail of VAT file */
   2724 	raw_vat = malloc(lb_size, M_TEMP, M_WAITOK);
   2725 
   2726 	if (filetype == 0) {
   2727 		/*
   2728 		 * Update "*UDF VAT LVExtension" extended attribute from the
   2729 		 * lvint if present.
   2730 		 */
   2731 		udf_update_vat_extattr_from_lvid(vat_node);
   2732 
   2733 		/* setup identifying regid */
   2734 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2735 		memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail));
   2736 
   2737 		udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl");
   2738 		udf_add_udf_regid(ump, &oldvat_tl->id);
   2739 		oldvat_tl->prev_vat = udf_rw32(0xffffffff);
   2740 
   2741 		/* write out new tail of virtual allocation table file */
   2742 		error = udf_vat_write(vat_node, raw_vat,
   2743 			sizeof(struct udf_oldvat_tail), ump->vat_entries * 4);
   2744 	} else {
   2745 		/* compose the VAT2 header */
   2746 		vat = (struct udf_vat *) raw_vat;
   2747 		memset(vat, 0, sizeof(struct udf_vat));
   2748 
   2749 		vat->header_len       = udf_rw16(152);	/* as per spec */
   2750 		vat->impl_use_len     = udf_rw16(0);
   2751 		memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128);
   2752 		vat->prev_vat         = udf_rw32(0xffffffff);
   2753 		vat->num_files        = lvinfo->num_files;
   2754 		vat->num_directories  = lvinfo->num_directories;
   2755 		vat->min_udf_readver  = lvinfo->min_udf_readver;
   2756 		vat->min_udf_writever = lvinfo->min_udf_writever;
   2757 		vat->max_udf_writever = lvinfo->max_udf_writever;
   2758 
   2759 		error = udf_vat_write(vat_node, raw_vat,
   2760 			sizeof(struct udf_vat), 0);
   2761 	}
   2762 	free(raw_vat, M_TEMP);
   2763 
   2764 	return error;	/* success! */
   2765 }
   2766 
   2767 
   2768 int
   2769 udf_writeout_vat(struct udf_mount *ump)
   2770 {
   2771 	struct udf_node *vat_node = ump->vat_node;
   2772 	uint32_t vat_length;
   2773 	int error;
   2774 
   2775 	KASSERT(vat_node);
   2776 
   2777 	DPRINTF(CALL, ("udf_writeout_vat\n"));
   2778 
   2779 	mutex_enter(&ump->allocate_mutex);
   2780 	udf_update_vat_descriptor(ump);
   2781 
   2782 	/* write out the VAT contents ; TODO intelligent writing */
   2783 	vat_length = ump->vat_table_len;
   2784 	error = vn_rdwr(UIO_WRITE, vat_node->vnode,
   2785 		ump->vat_table, ump->vat_table_len, 0,
   2786 		UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL);
   2787 	if (error) {
   2788 		printf("udf_writeout_vat: failed to write out VAT contents\n");
   2789 		goto out;
   2790 	}
   2791 
   2792 	mutex_exit(&ump->allocate_mutex);
   2793 
   2794 	vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   2795 	error = VOP_FSYNC(ump->vat_node->vnode,
   2796 			FSCRED, FSYNC_WAIT, 0, 0);
   2797 	if (error)
   2798 		printf("udf_writeout_vat: error writing VAT node!\n");
   2799 out:
   2800 
   2801 	return error;
   2802 }
   2803 
   2804 /* --------------------------------------------------------------------- */
   2805 
   2806 /*
   2807  * Read in relevant pieces of VAT file and check if its indeed a VAT file
   2808  * descriptor. If OK, read in complete VAT file.
   2809  */
   2810 
   2811 static int
   2812 udf_check_for_vat(struct udf_node *vat_node)
   2813 {
   2814 	struct udf_mount *ump;
   2815 	struct icb_tag   *icbtag;
   2816 	struct timestamp *mtime;
   2817 	struct udf_vat   *vat;
   2818 	struct udf_oldvat_tail *oldvat_tl;
   2819 	struct udf_logvol_info *lvinfo;
   2820 	uint64_t  unique_id;
   2821 	uint32_t  vat_length;
   2822 	uint32_t  vat_offset, vat_entries, vat_table_alloc_len;
   2823 	uint32_t  sector_size;
   2824 	uint32_t *raw_vat;
   2825 	uint8_t  *vat_table;
   2826 	char     *regid_name;
   2827 	int filetype;
   2828 	int error;
   2829 
   2830 	/* vat_length is really 64 bits though impossible */
   2831 
   2832 	DPRINTF(VOLUMES, ("Checking for VAT\n"));
   2833 	if (!vat_node)
   2834 		return ENOENT;
   2835 
   2836 	/* get mount info */
   2837 	ump = vat_node->ump;
   2838 	sector_size = udf_rw32(ump->logical_vol->lb_size);
   2839 
   2840 	/* check assertions */
   2841 	assert(vat_node->fe || vat_node->efe);
   2842 	assert(ump->logvol_integrity);
   2843 
   2844 	/* set vnode type to regular file or we can't read from it! */
   2845 	vat_node->vnode->v_type = VREG;
   2846 
   2847 	/* get information from fe/efe */
   2848 	if (vat_node->fe) {
   2849 		vat_length = udf_rw64(vat_node->fe->inf_len);
   2850 		icbtag    = &vat_node->fe->icbtag;
   2851 		mtime     = &vat_node->fe->mtime;
   2852 		unique_id = udf_rw64(vat_node->fe->unique_id);
   2853 	} else {
   2854 		vat_length = udf_rw64(vat_node->efe->inf_len);
   2855 		icbtag = &vat_node->efe->icbtag;
   2856 		mtime  = &vat_node->efe->mtime;
   2857 		unique_id = udf_rw64(vat_node->efe->unique_id);
   2858 	}
   2859 
   2860 	/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
   2861 	filetype = icbtag->file_type;
   2862 	if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
   2863 		return ENOENT;
   2864 
   2865 	DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
   2866 
   2867 	vat_table_alloc_len =
   2868 		((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE)
   2869 			* UDF_VAT_CHUNKSIZE;
   2870 
   2871 	vat_table = malloc(vat_table_alloc_len, M_UDFVOLD,
   2872 		M_CANFAIL | M_WAITOK);
   2873 	if (vat_table == NULL) {
   2874 		printf("allocation of %d bytes failed for VAT\n",
   2875 			vat_table_alloc_len);
   2876 		return ENOMEM;
   2877 	}
   2878 
   2879 	/* allocate piece to read in head or tail of VAT file */
   2880 	raw_vat = malloc(sector_size, M_TEMP, M_WAITOK);
   2881 
   2882 	/*
   2883 	 * check contents of the file if its the old 1.50 VAT table format.
   2884 	 * Its notoriously broken and allthough some implementations support an
   2885 	 * extention as defined in the UDF 1.50 errata document, its doubtfull
   2886 	 * to be useable since a lot of implementations don't maintain it.
   2887 	 */
   2888 	lvinfo = ump->logvol_info;
   2889 
   2890 	if (filetype == 0) {
   2891 		/* definition */
   2892 		vat_offset  = 0;
   2893 		vat_entries = (vat_length-36)/4;
   2894 
   2895 		/* read in tail of virtual allocation table file */
   2896 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2897 				(uint8_t *) raw_vat,
   2898 				sizeof(struct udf_oldvat_tail),
   2899 				vat_entries * 4,
   2900 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2901 				NULL, NULL);
   2902 		if (error)
   2903 			goto out;
   2904 
   2905 		/* check 1.50 VAT */
   2906 		oldvat_tl = (struct udf_oldvat_tail *) raw_vat;
   2907 		regid_name = (char *) oldvat_tl->id.id;
   2908 		error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
   2909 		if (error) {
   2910 			DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
   2911 			error = ENOENT;
   2912 			goto out;
   2913 		}
   2914 
   2915 		/*
   2916 		 * update LVID from "*UDF VAT LVExtension" extended attribute
   2917 		 * if present.
   2918 		 */
   2919 		udf_update_lvid_from_vat_extattr(vat_node);
   2920 	} else {
   2921 		/* read in head of virtual allocation table file */
   2922 		error = vn_rdwr(UIO_READ, vat_node->vnode,
   2923 				(uint8_t *) raw_vat,
   2924 				sizeof(struct udf_vat), 0,
   2925 				UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2926 				NULL, NULL);
   2927 		if (error)
   2928 			goto out;
   2929 
   2930 		/* definition */
   2931 		vat = (struct udf_vat *) raw_vat;
   2932 		vat_offset  = vat->header_len;
   2933 		vat_entries = (vat_length - vat_offset)/4;
   2934 
   2935 		assert(lvinfo);
   2936 		lvinfo->num_files        = vat->num_files;
   2937 		lvinfo->num_directories  = vat->num_directories;
   2938 		lvinfo->min_udf_readver  = vat->min_udf_readver;
   2939 		lvinfo->min_udf_writever = vat->min_udf_writever;
   2940 		lvinfo->max_udf_writever = vat->max_udf_writever;
   2941 
   2942 		udf_update_logvolname(ump, vat->logvol_id);
   2943 	}
   2944 
   2945 	/* read in complete VAT file */
   2946 	error = vn_rdwr(UIO_READ, vat_node->vnode,
   2947 			vat_table,
   2948 			vat_length, 0,
   2949 			UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED,
   2950 			NULL, NULL);
   2951 	if (error)
   2952 		printf("read in of complete VAT file failed (error %d)\n",
   2953 			error);
   2954 	if (error)
   2955 		goto out;
   2956 
   2957 	DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
   2958 	ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id);
   2959 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   2960 	ump->logvol_integrity->time           = *mtime;
   2961 
   2962 	ump->vat_table_len = vat_length;
   2963 	ump->vat_table_alloc_len = vat_table_alloc_len;
   2964 	ump->vat_table   = vat_table;
   2965 	ump->vat_offset  = vat_offset;
   2966 	ump->vat_entries = vat_entries;
   2967 	ump->vat_last_free_lb = 0;		/* start at beginning */
   2968 
   2969 out:
   2970 	if (error) {
   2971 		if (vat_table)
   2972 			free(vat_table, M_UDFVOLD);
   2973 	}
   2974 	free(raw_vat, M_TEMP);
   2975 
   2976 	return error;
   2977 }
   2978 
   2979 /* --------------------------------------------------------------------- */
   2980 
   2981 static int
   2982 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
   2983 {
   2984 	struct udf_node *vat_node;
   2985 	struct long_ad	 icb_loc;
   2986 	uint32_t early_vat_loc, late_vat_loc, vat_loc;
   2987 	int error;
   2988 
   2989 	/* mapping info not needed */
   2990 	mapping = mapping;
   2991 
   2992 	vat_loc = ump->last_possible_vat_location;
   2993 	early_vat_loc = vat_loc - 256;	/* 8 blocks of 32 sectors */
   2994 
   2995 	DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n",
   2996 		vat_loc, early_vat_loc));
   2997 	early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
   2998 	late_vat_loc  = vat_loc + 1024;
   2999 
   3000 	DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n",
   3001 		vat_loc, early_vat_loc));
   3002 
   3003 	/* start looking from the end of the range */
   3004 	do {
   3005 		DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
   3006 		icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
   3007 		icb_loc.loc.lb_num   = udf_rw32(vat_loc);
   3008 
   3009 		error = udf_get_node(ump, &icb_loc, &vat_node);
   3010 		if (!error) {
   3011 			error = udf_check_for_vat(vat_node);
   3012 			DPRINTFIF(VOLUMES, !error,
   3013 				("VAT accepted at %d\n", vat_loc));
   3014 			if (!error)
   3015 				break;
   3016 		}
   3017 		if (vat_node) {
   3018 			vput(vat_node->vnode);
   3019 			vat_node = NULL;
   3020 		}
   3021 		vat_loc--;	/* walk backwards */
   3022 	} while (vat_loc >= early_vat_loc);
   3023 
   3024 	/* keep our VAT node around */
   3025 	if (vat_node) {
   3026 		UDF_SET_SYSTEMFILE(vat_node->vnode);
   3027 		ump->vat_node = vat_node;
   3028 	}
   3029 
   3030 	return error;
   3031 }
   3032 
   3033 /* --------------------------------------------------------------------- */
   3034 
   3035 static int
   3036 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
   3037 {
   3038 	union dscrptr *dscr;
   3039 	struct part_map_spare *pms = &mapping->pms;
   3040 	uint32_t lb_num;
   3041 	int spar, error;
   3042 
   3043 	/*
   3044 	 * The partition mapping passed on to us specifies the information we
   3045 	 * need to locate and initialise the sparable partition mapping
   3046 	 * information we need.
   3047 	 */
   3048 
   3049 	DPRINTF(VOLUMES, ("Read sparable table\n"));
   3050 	ump->sparable_packet_size = udf_rw16(pms->packet_len);
   3051 	KASSERT(ump->sparable_packet_size >= ump->packet_size);	/* XXX */
   3052 
   3053 	for (spar = 0; spar < pms->n_st; spar++) {
   3054 		lb_num = pms->st_loc[spar];
   3055 		DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
   3056 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3057 		if (!error && dscr) {
   3058 			if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
   3059 				if (ump->sparing_table)
   3060 					free(ump->sparing_table, M_UDFVOLD);
   3061 				ump->sparing_table = &dscr->spt;
   3062 				dscr = NULL;
   3063 				DPRINTF(VOLUMES,
   3064 				    ("Sparing table accepted (%d entries)\n",
   3065 				     udf_rw16(ump->sparing_table->rt_l)));
   3066 				break;	/* we're done */
   3067 			}
   3068 		}
   3069 		if (dscr)
   3070 			free(dscr, M_UDFVOLD);
   3071 	}
   3072 
   3073 	if (ump->sparing_table)
   3074 		return 0;
   3075 
   3076 	return ENOENT;
   3077 }
   3078 
   3079 /* --------------------------------------------------------------------- */
   3080 
   3081 static int
   3082 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping)
   3083 {
   3084 	struct part_map_meta *pmm = &mapping->pmm;
   3085 	struct long_ad	 icb_loc;
   3086 	struct vnode *vp;
   3087 	int error;
   3088 
   3089 	DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
   3090 	icb_loc.loc.part_num = pmm->part_num;
   3091 	icb_loc.loc.lb_num   = pmm->meta_file_lbn;
   3092 	DPRINTF(VOLUMES, ("Metadata file\n"));
   3093 	error = udf_get_node(ump, &icb_loc, &ump->metadata_node);
   3094 	if (ump->metadata_node) {
   3095 		vp = ump->metadata_node->vnode;
   3096 		UDF_SET_SYSTEMFILE(vp);
   3097 	}
   3098 
   3099 	icb_loc.loc.lb_num   = pmm->meta_mirror_file_lbn;
   3100 	if (icb_loc.loc.lb_num != -1) {
   3101 		DPRINTF(VOLUMES, ("Metadata copy file\n"));
   3102 		error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node);
   3103 		if (ump->metadatamirror_node) {
   3104 			vp = ump->metadatamirror_node->vnode;
   3105 			UDF_SET_SYSTEMFILE(vp);
   3106 		}
   3107 	}
   3108 
   3109 	icb_loc.loc.lb_num   = pmm->meta_bitmap_file_lbn;
   3110 	if (icb_loc.loc.lb_num != -1) {
   3111 		DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
   3112 		error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node);
   3113 		if (ump->metadatabitmap_node) {
   3114 			vp = ump->metadatabitmap_node->vnode;
   3115 			UDF_SET_SYSTEMFILE(vp);
   3116 		}
   3117 	}
   3118 
   3119 	/* if we're mounting read-only we relax the requirements */
   3120 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
   3121 		error = EFAULT;
   3122 		if (ump->metadata_node)
   3123 			error = 0;
   3124 		if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) {
   3125 			printf( "udf mount: Metadata file not readable, "
   3126 				"substituting Metadata copy file\n");
   3127 			ump->metadata_node = ump->metadatamirror_node;
   3128 			ump->metadatamirror_node = NULL;
   3129 			error = 0;
   3130 		}
   3131 	} else {
   3132 		/* mounting read/write */
   3133 		/* XXX DISABLED! metadata writing is not working yet XXX */
   3134 		if (error)
   3135 			error = EROFS;
   3136 	}
   3137 	DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
   3138 				   "metadata files\n"));
   3139 	return error;
   3140 }
   3141 
   3142 /* --------------------------------------------------------------------- */
   3143 
   3144 int
   3145 udf_read_vds_tables(struct udf_mount *ump)
   3146 {
   3147 	union udf_pmap *mapping;
   3148 	/* struct udf_args *args = &ump->mount_args; */
   3149 	uint32_t n_pm, mt_l;
   3150 	uint32_t log_part;
   3151 	uint8_t *pmap_pos;
   3152 	int pmap_size;
   3153 	int error;
   3154 
   3155 	/* Iterate (again) over the part mappings for locations   */
   3156 	n_pm = udf_rw32(ump->logical_vol->n_pm);   /* num partmaps         */
   3157 	mt_l = udf_rw32(ump->logical_vol->mt_l);   /* partmaps data length */
   3158 	pmap_pos =  ump->logical_vol->maps;
   3159 
   3160 	for (log_part = 0; log_part < n_pm; log_part++) {
   3161 		mapping = (union udf_pmap *) pmap_pos;
   3162 		switch (ump->vtop_tp[log_part]) {
   3163 		case UDF_VTOP_TYPE_PHYS :
   3164 			/* nothing */
   3165 			break;
   3166 		case UDF_VTOP_TYPE_VIRT :
   3167 			/* search and load VAT */
   3168 			error = udf_search_vat(ump, mapping);
   3169 			if (error)
   3170 				return ENOENT;
   3171 			break;
   3172 		case UDF_VTOP_TYPE_SPARABLE :
   3173 			/* load one of the sparable tables */
   3174 			error = udf_read_sparables(ump, mapping);
   3175 			if (error)
   3176 				return ENOENT;
   3177 			break;
   3178 		case UDF_VTOP_TYPE_META :
   3179 			/* load the associated file descriptors */
   3180 			error = udf_read_metadata_nodes(ump, mapping);
   3181 			if (error)
   3182 				return ENOENT;
   3183 			break;
   3184 		default:
   3185 			break;
   3186 		}
   3187 		pmap_size  = pmap_pos[1];
   3188 		pmap_pos  += pmap_size;
   3189 	}
   3190 
   3191 	/* read in and check unallocated and free space info if writing */
   3192 	if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) {
   3193 		error = udf_read_physical_partition_spacetables(ump);
   3194 		if (error)
   3195 			return error;
   3196 
   3197 		/* also read in metadata partion spacebitmap if defined */
   3198 		error = udf_read_metadata_partition_spacetable(ump);
   3199 			return error;
   3200 	}
   3201 
   3202 	return 0;
   3203 }
   3204 
   3205 /* --------------------------------------------------------------------- */
   3206 
   3207 int
   3208 udf_read_rootdirs(struct udf_mount *ump)
   3209 {
   3210 	union dscrptr *dscr;
   3211 	/* struct udf_args *args = &ump->mount_args; */
   3212 	struct udf_node *rootdir_node, *streamdir_node;
   3213 	struct long_ad  fsd_loc, *dir_loc;
   3214 	uint32_t lb_num, dummy;
   3215 	uint32_t fsd_len;
   3216 	int dscr_type;
   3217 	int error;
   3218 
   3219 	/* TODO implement FSD reading in separate function like integrity? */
   3220 	/* get fileset descriptor sequence */
   3221 	fsd_loc = ump->logical_vol->lv_fsd_loc;
   3222 	fsd_len = udf_rw32(fsd_loc.len);
   3223 
   3224 	dscr  = NULL;
   3225 	error = 0;
   3226 	while (fsd_len || error) {
   3227 		DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
   3228 		/* translate fsd_loc to lb_num */
   3229 		error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
   3230 		if (error)
   3231 			break;
   3232 		DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
   3233 		error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr);
   3234 		/* end markers */
   3235 		if (error || (dscr == NULL))
   3236 			break;
   3237 
   3238 		/* analyse */
   3239 		dscr_type = udf_rw16(dscr->tag.id);
   3240 		if (dscr_type == TAGID_TERM)
   3241 			break;
   3242 		if (dscr_type != TAGID_FSD) {
   3243 			free(dscr, M_UDFVOLD);
   3244 			return ENOENT;
   3245 		}
   3246 
   3247 		/*
   3248 		 * TODO check for multiple fileset descriptors; its only
   3249 		 * picking the last now. Also check for FSD
   3250 		 * correctness/interpretability
   3251 		 */
   3252 
   3253 		/* update */
   3254 		if (ump->fileset_desc) {
   3255 			free(ump->fileset_desc, M_UDFVOLD);
   3256 		}
   3257 		ump->fileset_desc = &dscr->fsd;
   3258 		dscr = NULL;
   3259 
   3260 		/* continue to the next fsd */
   3261 		fsd_len -= ump->discinfo.sector_size;
   3262 		fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
   3263 
   3264 		/* follow up to fsd->next_ex (long_ad) if its not null */
   3265 		if (udf_rw32(ump->fileset_desc->next_ex.len)) {
   3266 			DPRINTF(VOLUMES, ("follow up FSD extent\n"));
   3267 			fsd_loc = ump->fileset_desc->next_ex;
   3268 			fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
   3269 		}
   3270 	}
   3271 	if (dscr)
   3272 		free(dscr, M_UDFVOLD);
   3273 
   3274 	/* there has to be one */
   3275 	if (ump->fileset_desc == NULL)
   3276 		return ENOENT;
   3277 
   3278 	DPRINTF(VOLUMES, ("FSD read in fine\n"));
   3279 	DPRINTF(VOLUMES, ("Updating fsd logical volume id\n"));
   3280 	udf_update_logvolname(ump, ump->logical_vol->logvol_id);
   3281 
   3282 	/*
   3283 	 * Now the FSD is known, read in the rootdirectory and if one exists,
   3284 	 * the system stream dir. Some files in the system streamdir are not
   3285 	 * wanted in this implementation since they are not maintained. If
   3286 	 * writing is enabled we'll delete these files if they exist.
   3287 	 */
   3288 
   3289 	rootdir_node = streamdir_node = NULL;
   3290 	dir_loc = NULL;
   3291 
   3292 	/* try to read in the rootdir */
   3293 	dir_loc = &ump->fileset_desc->rootdir_icb;
   3294 	error = udf_get_node(ump, dir_loc, &rootdir_node);
   3295 	if (error)
   3296 		return ENOENT;
   3297 
   3298 	/* aparently it read in fine */
   3299 
   3300 	/*
   3301 	 * Try the system stream directory; not very likely in the ones we
   3302 	 * test, but for completeness.
   3303 	 */
   3304 	dir_loc = &ump->fileset_desc->streamdir_icb;
   3305 	if (udf_rw32(dir_loc->len)) {
   3306 		printf("udf_read_rootdirs: streamdir defined ");
   3307 		error = udf_get_node(ump, dir_loc, &streamdir_node);
   3308 		if (error) {
   3309 			printf("but error in streamdir reading\n");
   3310 		} else {
   3311 			printf("but ignored\n");
   3312 			/*
   3313 			 * TODO process streamdir `baddies' i.e. files we dont
   3314 			 * want if R/W
   3315 			 */
   3316 		}
   3317 	}
   3318 
   3319 	DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
   3320 
   3321 	/* release the vnodes again; they'll be auto-recycled later */
   3322 	if (streamdir_node) {
   3323 		vput(streamdir_node->vnode);
   3324 	}
   3325 	if (rootdir_node) {
   3326 		vput(rootdir_node->vnode);
   3327 	}
   3328 
   3329 	return 0;
   3330 }
   3331 
   3332 /* --------------------------------------------------------------------- */
   3333 
   3334 /* To make absolutely sure we are NOT returning zero, add one :) */
   3335 
   3336 long
   3337 udf_calchash(struct long_ad *icbptr)
   3338 {
   3339 	/* ought to be enough since each mountpoint has its own chain */
   3340 	return udf_rw32(icbptr->loc.lb_num) + 1;
   3341 }
   3342 
   3343 
   3344 static struct udf_node *
   3345 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr)
   3346 {
   3347 	struct udf_node *node;
   3348 	struct vnode *vp;
   3349 	uint32_t hashline;
   3350 
   3351 loop:
   3352 	mutex_enter(&ump->ihash_lock);
   3353 
   3354 	hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
   3355 	LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) {
   3356 		assert(node);
   3357 		if (node->loc.loc.lb_num   == icbptr->loc.lb_num &&
   3358 		    node->loc.loc.part_num == icbptr->loc.part_num) {
   3359 			vp = node->vnode;
   3360 			assert(vp);
   3361 			mutex_enter(&vp->v_interlock);
   3362 			mutex_exit(&ump->ihash_lock);
   3363 			if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
   3364 				goto loop;
   3365 			return node;
   3366 		}
   3367 	}
   3368 	mutex_exit(&ump->ihash_lock);
   3369 
   3370 	return NULL;
   3371 }
   3372 
   3373 
   3374 static void
   3375 udf_sorted_list_insert(struct udf_node *node)
   3376 {
   3377 	struct udf_mount *ump;
   3378 	struct udf_node  *s_node, *last_node;
   3379 	uint32_t loc, s_loc;
   3380 
   3381 	ump = node->ump;
   3382 	last_node = NULL;	/* XXX gcc */
   3383 
   3384 	if (LIST_EMPTY(&ump->sorted_udf_nodes)) {
   3385 		LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain);
   3386 		return;
   3387 	}
   3388 
   3389 	/*
   3390 	 * We sort on logical block number here and not on physical block
   3391 	 * number here. Ideally we should go for the physical block nr to get
   3392 	 * better sync performance though this sort will ensure that packets
   3393 	 * won't get spit up unnessisarily.
   3394 	 */
   3395 
   3396 	loc = udf_rw32(node->loc.loc.lb_num);
   3397 	LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) {
   3398 		s_loc = udf_rw32(s_node->loc.loc.lb_num);
   3399 		if (s_loc > loc) {
   3400 			LIST_INSERT_BEFORE(s_node, node, sortchain);
   3401 			return;
   3402 		}
   3403 		last_node = s_node;
   3404 	}
   3405 	LIST_INSERT_AFTER(last_node, node, sortchain);
   3406 }
   3407 
   3408 
   3409 static void
   3410 udf_register_node(struct udf_node *node)
   3411 {
   3412 	struct udf_mount *ump;
   3413 	struct udf_node *chk;
   3414 	uint32_t hashline;
   3415 
   3416 	ump = node->ump;
   3417 	mutex_enter(&ump->ihash_lock);
   3418 
   3419 	/* add to our hash table */
   3420 	hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK;
   3421 #ifdef DEBUG
   3422 	LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) {
   3423 		assert(chk);
   3424 		if (chk->loc.loc.lb_num   == node->loc.loc.lb_num &&
   3425 		    chk->loc.loc.part_num == node->loc.loc.part_num)
   3426 			panic("Double node entered\n");
   3427 	}
   3428 #else
   3429 	chk = NULL;
   3430 #endif
   3431 	LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain);
   3432 
   3433 	/* add to our sorted list */
   3434 	udf_sorted_list_insert(node);
   3435 
   3436 	mutex_exit(&ump->ihash_lock);
   3437 }
   3438 
   3439 
   3440 static void
   3441 udf_deregister_node(struct udf_node *node)
   3442 {
   3443 	struct udf_mount *ump;
   3444 
   3445 	ump = node->ump;
   3446 	mutex_enter(&ump->ihash_lock);
   3447 
   3448 	/* from hash and sorted list */
   3449 	LIST_REMOVE(node, hashchain);
   3450 	LIST_REMOVE(node, sortchain);
   3451 
   3452 	mutex_exit(&ump->ihash_lock);
   3453 }
   3454 
   3455 /* --------------------------------------------------------------------- */
   3456 
   3457 static int
   3458 udf_validate_session_start(struct udf_mount *ump)
   3459 {
   3460 	struct mmc_trackinfo trackinfo;
   3461 	struct vrs_desc *vrs;
   3462 	uint32_t tracknr, sessionnr, sector, sector_size;
   3463 	uint32_t iso9660_vrs, write_track_start;
   3464 	uint8_t *buffer, *blank, *pos;
   3465 	int blks, max_sectors, vrs_len;
   3466 	int error;
   3467 
   3468 	/* disc appendable? */
   3469 	if (ump->discinfo.disc_state == MMC_STATE_FULL)
   3470 		return EROFS;
   3471 
   3472 	/* already written here? if so, there should be an ISO VDS */
   3473 	if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE)
   3474 		return 0;
   3475 
   3476 	/*
   3477 	 * Check if the first track of the session is blank and if so, copy or
   3478 	 * create a dummy ISO descriptor so the disc is valid again.
   3479 	 */
   3480 
   3481 	tracknr = ump->discinfo.first_track_last_session;
   3482 	memset(&trackinfo, 0, sizeof(struct mmc_trackinfo));
   3483 	trackinfo.tracknr = tracknr;
   3484 	error = udf_update_trackinfo(ump, &trackinfo);
   3485 	if (error)
   3486 		return error;
   3487 
   3488 	udf_dump_trackinfo(&trackinfo);
   3489 	KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED));
   3490 	KASSERT(trackinfo.sessionnr > 1);
   3491 
   3492 	KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID);
   3493 	write_track_start = trackinfo.next_writable;
   3494 
   3495 	/* we have to copy the ISO VRS from a former session */
   3496 	DPRINTF(VOLUMES, ("validate_session_start: "
   3497 			"blank or reserved track, copying VRS\n"));
   3498 
   3499 	/* sessionnr should be the session we're mounting */
   3500 	sessionnr = ump->mount_args.sessionnr;
   3501 
   3502 	/* start at the first track */
   3503 	tracknr   = ump->discinfo.first_track;
   3504 	while (tracknr <= ump->discinfo.num_tracks) {
   3505 		trackinfo.tracknr = tracknr;
   3506 		error = udf_update_trackinfo(ump, &trackinfo);
   3507 		if (error) {
   3508 			DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3509 			return error;
   3510 		}
   3511 		if (trackinfo.sessionnr == sessionnr)
   3512 			break;
   3513 		tracknr++;
   3514 	}
   3515 	if (trackinfo.sessionnr != sessionnr) {
   3516 		DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n"));
   3517 		return ENOENT;
   3518 	}
   3519 
   3520 	DPRINTF(VOLUMES, ("found possible former ISO VRS at\n"));
   3521 	udf_dump_trackinfo(&trackinfo);
   3522 
   3523         /*
   3524          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3525          * minimum ISO `sector size' 2048
   3526          */
   3527 	sector_size = ump->discinfo.sector_size;
   3528 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3529 		 + trackinfo.track_start;
   3530 
   3531 	buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK);
   3532 	max_sectors = UDF_ISO_VRS_SIZE / sector_size;
   3533 	blks = MAX(1, 2048 / sector_size);
   3534 
   3535 	error = 0;
   3536 	for (sector = 0; sector < max_sectors; sector += blks) {
   3537 		pos = buffer + sector * sector_size;
   3538 		error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos,
   3539 			iso9660_vrs + sector, blks);
   3540 		if (error)
   3541 			break;
   3542 		/* check this ISO descriptor */
   3543 		vrs = (struct vrs_desc *) pos;
   3544 		DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier));
   3545 		if (strncmp(vrs->identifier, VRS_CD001, 5) == 0)
   3546 			continue;
   3547 		if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0)
   3548 			continue;
   3549 		if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0)
   3550 			continue;
   3551 		if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0)
   3552 			continue;
   3553 		if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0)
   3554 			continue;
   3555 		if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0)
   3556 			break;
   3557 		/* now what? for now, end of sequence */
   3558 		break;
   3559 	}
   3560 	vrs_len = sector + blks;
   3561 	if (error) {
   3562 		DPRINTF(VOLUMES, ("error reading old ISO VRS\n"));
   3563 		DPRINTF(VOLUMES, ("creating minimal ISO VRS\n"));
   3564 
   3565 		memset(buffer, 0, UDF_ISO_VRS_SIZE);
   3566 
   3567 		vrs = (struct vrs_desc *) (buffer);
   3568 		vrs->struct_type = 0;
   3569 		vrs->version     = 1;
   3570 		memcpy(vrs->identifier,VRS_BEA01, 5);
   3571 
   3572 		vrs = (struct vrs_desc *) (buffer + 2048);
   3573 		vrs->struct_type = 0;
   3574 		vrs->version     = 1;
   3575 		if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   3576 			memcpy(vrs->identifier,VRS_NSR02, 5);
   3577 		} else {
   3578 			memcpy(vrs->identifier,VRS_NSR03, 5);
   3579 		}
   3580 
   3581 		vrs = (struct vrs_desc *) (buffer + 4096);
   3582 		vrs->struct_type = 0;
   3583 		vrs->version     = 1;
   3584 		memcpy(vrs->identifier, VRS_TEA01, 5);
   3585 
   3586 		vrs_len = 3*blks;
   3587 	}
   3588 
   3589 	DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len));
   3590 
   3591         /*
   3592          * location of iso9660 vrs is defined as first sector AFTER 32kb,
   3593          * minimum ISO `sector size' 2048
   3594          */
   3595 	sector_size = ump->discinfo.sector_size;
   3596 	iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size)
   3597 		 + write_track_start;
   3598 
   3599 	/* write out 32 kb */
   3600 	blank = malloc(sector_size, M_TEMP, M_WAITOK);
   3601 	memset(blank, 0, sector_size);
   3602 	error = 0;
   3603 	for (sector = write_track_start; sector < iso9660_vrs; sector ++) {
   3604 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3605 			blank, sector, 1);
   3606 		if (error)
   3607 			break;
   3608 	}
   3609 	if (!error) {
   3610 		/* write out our ISO VRS */
   3611 		KASSERT(sector == iso9660_vrs);
   3612 		error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer,
   3613 				sector, vrs_len);
   3614 		sector += vrs_len;
   3615 	}
   3616 	if (!error) {
   3617 		/* fill upto the first anchor at S+256 */
   3618 		for (; sector < write_track_start+256; sector++) {
   3619 			error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE,
   3620 				blank, sector, 1);
   3621 			if (error)
   3622 				break;
   3623 		}
   3624 	}
   3625 	if (!error) {
   3626 		/* write out anchor; write at ABSOLUTE place! */
   3627 		error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE,
   3628 			(union dscrptr *) ump->anchors[0], sector, sector);
   3629 		if (error)
   3630 			printf("writeout of anchor failed!\n");
   3631 	}
   3632 
   3633 	free(blank, M_TEMP);
   3634 	free(buffer, M_TEMP);
   3635 
   3636 	if (error)
   3637 		printf("udf_open_session: error writing iso vrs! : "
   3638 				"leaving disc in compromised state!\n");
   3639 
   3640 	/* synchronise device caches */
   3641 	(void) udf_synchronise_caches(ump);
   3642 
   3643 	return error;
   3644 }
   3645 
   3646 
   3647 int
   3648 udf_open_logvol(struct udf_mount *ump)
   3649 {
   3650 	int logvol_integrity;
   3651 	int error;
   3652 
   3653 	/* already/still open? */
   3654 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3655 	if (logvol_integrity == UDF_INTEGRITY_OPEN)
   3656 		return 0;
   3657 
   3658 	/* can we open it ? */
   3659 	if (ump->vfs_mountp->mnt_flag & MNT_RDONLY)
   3660 		return EROFS;
   3661 
   3662 	/* setup write parameters */
   3663 	DPRINTF(VOLUMES, ("Setting up write parameters\n"));
   3664 	if ((error = udf_setup_writeparams(ump)) != 0)
   3665 		return error;
   3666 
   3667 	/* determine data and metadata tracks (most likely same) */
   3668 	error = udf_search_writing_tracks(ump);
   3669 	if (error) {
   3670 		/* most likely lack of space */
   3671 		printf("udf_open_logvol: error searching writing tracks\n");
   3672 		return EROFS;
   3673 	}
   3674 
   3675 	/* writeout/update lvint on disc or only in memory */
   3676 	DPRINTF(VOLUMES, ("Opening logical volume\n"));
   3677 	if (ump->lvopen & UDF_OPEN_SESSION) {
   3678 		/* TODO optional track reservation opening */
   3679 		error = udf_validate_session_start(ump);
   3680 		if (error)
   3681 			return error;
   3682 
   3683 		/* determine data and metadata tracks again */
   3684 		error = udf_search_writing_tracks(ump);
   3685 	}
   3686 
   3687 	/* mark it open */
   3688 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN);
   3689 
   3690 	/* do we need to write it out? */
   3691 	if (ump->lvopen & UDF_WRITE_LVINT) {
   3692 		error = udf_writeout_lvint(ump, ump->lvopen);
   3693 		/* if we couldn't write it mark it closed again */
   3694 		if (error) {
   3695 			ump->logvol_integrity->integrity_type =
   3696 						udf_rw32(UDF_INTEGRITY_CLOSED);
   3697 			return error;
   3698 		}
   3699 	}
   3700 
   3701 	return 0;
   3702 }
   3703 
   3704 
   3705 int
   3706 udf_close_logvol(struct udf_mount *ump, int mntflags)
   3707 {
   3708 	struct vnode *devvp = ump->devvp;
   3709 	struct mmc_op mmc_op;
   3710 	int logvol_integrity;
   3711 	int error = 0, error1 = 0, error2 = 0;
   3712 	int tracknr;
   3713 	int nvats, n, nok;
   3714 
   3715 	/* already/still closed? */
   3716 	logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type);
   3717 	if (logvol_integrity == UDF_INTEGRITY_CLOSED)
   3718 		return 0;
   3719 
   3720 	/* writeout/update lvint or write out VAT */
   3721 	DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n"));
   3722 #ifdef DIAGNOSTIC
   3723 	if (ump->lvclose & UDF_CLOSE_SESSION)
   3724 		KASSERT(ump->lvclose & UDF_WRITE_VAT);
   3725 #endif
   3726 
   3727 	if (ump->lvclose & UDF_WRITE_VAT) {
   3728 		DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n"));
   3729 
   3730 		/* write out the VAT data and all its descriptors */
   3731 		DPRINTF(VOLUMES, ("writeout vat_node\n"));
   3732 		udf_writeout_vat(ump);
   3733 		vflushbuf(ump->vat_node->vnode, 1 /* sync */);
   3734 
   3735 		(void) VOP_FSYNC(ump->vat_node->vnode,
   3736 				FSCRED, FSYNC_WAIT, 0, 0);
   3737 
   3738 		if (ump->lvclose & UDF_CLOSE_SESSION) {
   3739 			DPRINTF(VOLUMES, ("udf_close_logvol: closing session "
   3740 				"as requested\n"));
   3741 		}
   3742 
   3743 		/* at least two DVD packets and 3 CD-R packets */
   3744 		nvats = 32;
   3745 
   3746 #if notyet
   3747 		/*
   3748 		 * TODO calculate the available space and if the disc is
   3749 		 * allmost full, write out till end-256-1 with banks, write
   3750 		 * AVDP and fill up with VATs, then close session and close
   3751 		 * disc.
   3752 		 */
   3753 		if (ump->lvclose & UDF_FINALISE_DISC) {
   3754 			error = udf_write_phys_dscr_sync(ump, NULL,
   3755 					UDF_C_FLOAT_DSCR,
   3756 					(union dscrptr *) ump->anchors[0],
   3757 					0, 0);
   3758 			if (error)
   3759 				printf("writeout of anchor failed!\n");
   3760 
   3761 			/* pad space with VAT ICBs */
   3762 			nvats = 256;
   3763 		}
   3764 #endif
   3765 
   3766 		/* write out a number of VAT nodes */
   3767 		nok = 0;
   3768 		for (n = 0; n < nvats; n++) {
   3769 			/* will now only write last FE/EFE */
   3770 			ump->vat_node->i_flags |= IN_MODIFIED;
   3771 			error = VOP_FSYNC(ump->vat_node->vnode,
   3772 					FSCRED, FSYNC_WAIT, 0, 0);
   3773 			if (!error)
   3774 				nok++;
   3775 		}
   3776 		if (nok < 14) {
   3777 			/* arbitrary; but at least one or two CD frames */
   3778 			printf("writeout of at least 14 VATs failed\n");
   3779 			return error;
   3780 		}
   3781 	}
   3782 
   3783 	/* NOTE the disc is in a (minimal) valid state now; no erroring out */
   3784 
   3785 	/* finish closing of session */
   3786 	if (ump->lvclose & UDF_CLOSE_SESSION) {
   3787 		error = udf_validate_session_start(ump);
   3788 		if (error)
   3789 			return error;
   3790 
   3791 		/* close all associated tracks */
   3792 		tracknr = ump->discinfo.first_track_last_session;
   3793 		error = 0;
   3794 		while (tracknr <= ump->discinfo.last_track_last_session) {
   3795 			DPRINTF(VOLUMES, ("\tclosing possible open "
   3796 				"track %d\n", tracknr));
   3797 			memset(&mmc_op, 0, sizeof(mmc_op));
   3798 			mmc_op.operation   = MMC_OP_CLOSETRACK;
   3799 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3800 			mmc_op.tracknr     = tracknr;
   3801 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3802 					FKIOCTL, NOCRED);
   3803 			if (error)
   3804 				printf("udf_close_logvol: closing of "
   3805 					"track %d failed\n", tracknr);
   3806 			tracknr ++;
   3807 		}
   3808 		if (!error) {
   3809 			DPRINTF(VOLUMES, ("closing session\n"));
   3810 			memset(&mmc_op, 0, sizeof(mmc_op));
   3811 			mmc_op.operation   = MMC_OP_CLOSESESSION;
   3812 			mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3813 			mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3814 			error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3815 					FKIOCTL, NOCRED);
   3816 			if (error)
   3817 				printf("udf_close_logvol: closing of session"
   3818 						"failed\n");
   3819 		}
   3820 		if (!error)
   3821 			ump->lvopen |= UDF_OPEN_SESSION;
   3822 		if (error) {
   3823 			printf("udf_close_logvol: leaving disc as it is\n");
   3824 			ump->lvclose &= ~UDF_FINALISE_DISC;
   3825 		}
   3826 	}
   3827 
   3828 	if (ump->lvclose & UDF_FINALISE_DISC) {
   3829 		memset(&mmc_op, 0, sizeof(mmc_op));
   3830 		mmc_op.operation   = MMC_OP_FINALISEDISC;
   3831 		mmc_op.mmc_profile = ump->discinfo.mmc_profile;
   3832 		mmc_op.sessionnr   = ump->discinfo.num_sessions;
   3833 		error = VOP_IOCTL(devvp, MMCOP, &mmc_op,
   3834 				FKIOCTL, NOCRED);
   3835 		if (error)
   3836 			printf("udf_close_logvol: finalising disc"
   3837 					"failed\n");
   3838 	}
   3839 
   3840 	/* write out partition bitmaps if requested */
   3841 	if (ump->lvclose & UDF_WRITE_PART_BITMAPS) {
   3842 		/* sync writeout metadata spacetable if existing */
   3843 		error1 = udf_write_metadata_partition_spacetable(ump, true);
   3844 		if (error1)
   3845 			printf( "udf_close_logvol: writeout of metadata space "
   3846 				"bitmap failed\n");
   3847 
   3848 		/* sync writeout partition spacetables */
   3849 		error2 = udf_write_physical_partition_spacetables(ump, true);
   3850 		if (error2)
   3851 			printf( "udf_close_logvol: writeout of space tables "
   3852 				"failed\n");
   3853 
   3854 		if (error1 || error2)
   3855 			return (error1 | error2);
   3856 
   3857 		ump->lvclose &= ~UDF_WRITE_PART_BITMAPS;
   3858 	}
   3859 
   3860 	/* mark it closed */
   3861 	ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
   3862 
   3863 	/* do we need to write out the logical volume integrity? */
   3864 	if (ump->lvclose & UDF_WRITE_LVINT)
   3865 		error = udf_writeout_lvint(ump, ump->lvopen);
   3866 	if (error) {
   3867 		/* HELP now what? mark it open again for now */
   3868 		ump->logvol_integrity->integrity_type =
   3869 			udf_rw32(UDF_INTEGRITY_OPEN);
   3870 		return error;
   3871 	}
   3872 
   3873 	(void) udf_synchronise_caches(ump);
   3874 
   3875 	return 0;
   3876 }
   3877 
   3878 /* --------------------------------------------------------------------- */
   3879 
   3880 /*
   3881  * Genfs interfacing
   3882  *
   3883  * static const struct genfs_ops udf_genfsops = {
   3884  * 	.gop_size = genfs_size,
   3885  * 		size of transfers
   3886  * 	.gop_alloc = udf_gop_alloc,
   3887  * 		allocate len bytes at offset
   3888  * 	.gop_write = genfs_gop_write,
   3889  * 		putpages interface code
   3890  * 	.gop_markupdate = udf_gop_markupdate,
   3891  * 		set update/modify flags etc.
   3892  * }
   3893  */
   3894 
   3895 /*
   3896  * Genfs interface. These four functions are the only ones defined though not
   3897  * documented... great....
   3898  */
   3899 
   3900 /*
   3901  * Callback from genfs to allocate len bytes at offset off; only called when
   3902  * filling up gaps in the allocation.
   3903  */
   3904 /* XXX should we check if there is space enough in udf_gop_alloc? */
   3905 static int
   3906 udf_gop_alloc(struct vnode *vp, off_t off,
   3907     off_t len, int flags, kauth_cred_t cred)
   3908 {
   3909 #if 0
   3910 	struct udf_node *udf_node = VTOI(vp);
   3911 	struct udf_mount *ump = udf_node->ump;
   3912 	uint32_t lb_size, num_lb;
   3913 #endif
   3914 
   3915 	DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n"));
   3916 	DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len));
   3917 
   3918 	return 0;
   3919 }
   3920 
   3921 
   3922 /*
   3923  * callback from genfs to update our flags
   3924  */
   3925 static void
   3926 udf_gop_markupdate(struct vnode *vp, int flags)
   3927 {
   3928 	struct udf_node *udf_node = VTOI(vp);
   3929 	u_long mask = 0;
   3930 
   3931 	if ((flags & GOP_UPDATE_ACCESSED) != 0) {
   3932 		mask = IN_ACCESS;
   3933 	}
   3934 	if ((flags & GOP_UPDATE_MODIFIED) != 0) {
   3935 		if (vp->v_type == VREG) {
   3936 			mask |= IN_CHANGE | IN_UPDATE;
   3937 		} else {
   3938 			mask |= IN_MODIFY;
   3939 		}
   3940 	}
   3941 	if (mask) {
   3942 		udf_node->i_flags |= mask;
   3943 	}
   3944 }
   3945 
   3946 
   3947 static const struct genfs_ops udf_genfsops = {
   3948 	.gop_size = genfs_size,
   3949 	.gop_alloc = udf_gop_alloc,
   3950 	.gop_write = genfs_gop_write_rwmap,
   3951 	.gop_markupdate = udf_gop_markupdate,
   3952 };
   3953 
   3954 
   3955 /* --------------------------------------------------------------------- */
   3956 
   3957 int
   3958 udf_write_terminator(struct udf_mount *ump, uint32_t sector)
   3959 {
   3960 	union dscrptr *dscr;
   3961 	int error;
   3962 
   3963 	dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO);
   3964 	udf_inittag(ump, &dscr->tag, TAGID_TERM, sector);
   3965 
   3966 	/* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */
   3967 	dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH);
   3968 	(void) udf_validate_tag_and_crc_sums(dscr);
   3969 
   3970 	error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR,
   3971 			dscr, sector, sector);
   3972 
   3973 	free(dscr, M_TEMP);
   3974 
   3975 	return error;
   3976 }
   3977 
   3978 
   3979 /* --------------------------------------------------------------------- */
   3980 
   3981 /* UDF<->unix converters */
   3982 
   3983 /* --------------------------------------------------------------------- */
   3984 
   3985 static mode_t
   3986 udf_perm_to_unix_mode(uint32_t perm)
   3987 {
   3988 	mode_t mode;
   3989 
   3990 	mode  = ((perm & UDF_FENTRY_PERM_USER_MASK)      );
   3991 	mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK  ) >> 2);
   3992 	mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
   3993 
   3994 	return mode;
   3995 }
   3996 
   3997 /* --------------------------------------------------------------------- */
   3998 
   3999 static uint32_t
   4000 unix_mode_to_udf_perm(mode_t mode)
   4001 {
   4002 	uint32_t perm;
   4003 
   4004 	perm  = ((mode & S_IRWXO)     );
   4005 	perm |= ((mode & S_IRWXG) << 2);
   4006 	perm |= ((mode & S_IRWXU) << 4);
   4007 	perm |= ((mode & S_IWOTH) << 3);
   4008 	perm |= ((mode & S_IWGRP) << 5);
   4009 	perm |= ((mode & S_IWUSR) << 7);
   4010 
   4011 	return perm;
   4012 }
   4013 
   4014 /* --------------------------------------------------------------------- */
   4015 
   4016 static uint32_t
   4017 udf_icb_to_unix_filetype(uint32_t icbftype)
   4018 {
   4019 	switch (icbftype) {
   4020 	case UDF_ICB_FILETYPE_DIRECTORY :
   4021 	case UDF_ICB_FILETYPE_STREAMDIR :
   4022 		return S_IFDIR;
   4023 	case UDF_ICB_FILETYPE_FIFO :
   4024 		return S_IFIFO;
   4025 	case UDF_ICB_FILETYPE_CHARDEVICE :
   4026 		return S_IFCHR;
   4027 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   4028 		return S_IFBLK;
   4029 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   4030 	case UDF_ICB_FILETYPE_REALTIME :
   4031 		return S_IFREG;
   4032 	case UDF_ICB_FILETYPE_SYMLINK :
   4033 		return S_IFLNK;
   4034 	case UDF_ICB_FILETYPE_SOCKET :
   4035 		return S_IFSOCK;
   4036 	}
   4037 	/* no idea what this is */
   4038 	return 0;
   4039 }
   4040 
   4041 /* --------------------------------------------------------------------- */
   4042 
   4043 void
   4044 udf_to_unix_name(char *result, int result_len, char *id, int len,
   4045 	struct charspec *chsp)
   4046 {
   4047 	uint16_t   *raw_name, *unix_name;
   4048 	uint16_t   *inchp, ch;
   4049 	uint8_t	   *outchp;
   4050 	const char *osta_id = "OSTA Compressed Unicode";
   4051 	int         ucode_chars, nice_uchars, is_osta_typ0, nout;
   4052 
   4053 	raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
   4054 	unix_name = raw_name + 1024;			/* split space in half */
   4055 	assert(sizeof(char) == sizeof(uint8_t));
   4056 	outchp = (uint8_t *) result;
   4057 
   4058 	is_osta_typ0  = (chsp->type == 0);
   4059 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4060 	if (is_osta_typ0) {
   4061 		/* TODO clean up */
   4062 		*raw_name = *unix_name = 0;
   4063 		ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
   4064 		ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
   4065 		nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
   4066 		/* output UTF8 */
   4067 		for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
   4068 			ch = *inchp;
   4069 			nout = wput_utf8(outchp, result_len, ch);
   4070 			outchp += nout; result_len -= nout;
   4071 			if (!ch) break;
   4072 		}
   4073 		*outchp++ = 0;
   4074 	} else {
   4075 		/* assume 8bit char length byte latin-1 */
   4076 		assert(*id == 8);
   4077 		assert(strlen((char *) (id+1)) <= MAXNAMLEN);
   4078 		strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
   4079 	}
   4080 	free(raw_name, M_UDFTEMP);
   4081 }
   4082 
   4083 /* --------------------------------------------------------------------- */
   4084 
   4085 void
   4086 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len,
   4087 	struct charspec *chsp)
   4088 {
   4089 	uint16_t   *raw_name;
   4090 	uint16_t   *outchp;
   4091 	const char *inchp;
   4092 	const char *osta_id = "OSTA Compressed Unicode";
   4093 	int         udf_chars, is_osta_typ0, bits;
   4094 	size_t      cnt;
   4095 
   4096 	/* allocate temporary unicode-16 buffer */
   4097 	raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
   4098 
   4099 	/* convert utf8 to unicode-16 */
   4100 	*raw_name = 0;
   4101 	inchp  = name;
   4102 	outchp = raw_name;
   4103 	bits = 8;
   4104 	for (cnt = name_len, udf_chars = 0; cnt;) {
   4105 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/
   4106 		*outchp = wget_utf8(&inchp, &cnt);
   4107 		if (*outchp > 0xff)
   4108 			bits=16;
   4109 		outchp++;
   4110 		udf_chars++;
   4111 	}
   4112 	/* null terminate just in case */
   4113 	*outchp++ = 0;
   4114 
   4115 	is_osta_typ0  = (chsp->type == 0);
   4116 	is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0);
   4117 	if (is_osta_typ0) {
   4118 		udf_chars = udf_CompressUnicode(udf_chars, bits,
   4119 				(unicode_t *) raw_name,
   4120 				(byte *) result);
   4121 	} else {
   4122 		printf("unix to udf name: no CHSP0 ?\n");
   4123 		/* XXX assume 8bit char length byte latin-1 */
   4124 		*result++ = 8; udf_chars = 1;
   4125 		strncpy(result, name + 1, name_len);
   4126 		udf_chars += name_len;
   4127 	}
   4128 	*result_len = udf_chars;
   4129 	free(raw_name, M_UDFTEMP);
   4130 }
   4131 
   4132 /* --------------------------------------------------------------------- */
   4133 
   4134 void
   4135 udf_timestamp_to_timespec(struct udf_mount *ump,
   4136 			  struct timestamp *timestamp,
   4137 			  struct timespec  *timespec)
   4138 {
   4139 	struct clock_ymdhms ymdhms;
   4140 	uint32_t usecs, secs, nsecs;
   4141 	uint16_t tz;
   4142 
   4143 	/* fill in ymdhms structure from timestamp */
   4144 	memset(&ymdhms, 0, sizeof(ymdhms));
   4145 	ymdhms.dt_year = udf_rw16(timestamp->year);
   4146 	ymdhms.dt_mon  = timestamp->month;
   4147 	ymdhms.dt_day  = timestamp->day;
   4148 	ymdhms.dt_wday = 0; /* ? */
   4149 	ymdhms.dt_hour = timestamp->hour;
   4150 	ymdhms.dt_min  = timestamp->minute;
   4151 	ymdhms.dt_sec  = timestamp->second;
   4152 
   4153 	secs = clock_ymdhms_to_secs(&ymdhms);
   4154 	usecs = timestamp->usec +
   4155 		100*timestamp->hund_usec + 10000*timestamp->centisec;
   4156 	nsecs = usecs * 1000;
   4157 
   4158 	/*
   4159 	 * Calculate the time zone.  The timezone is 12 bit signed 2's
   4160 	 * compliment, so we gotta do some extra magic to handle it right.
   4161 	 */
   4162 	tz  = udf_rw16(timestamp->type_tz);
   4163 	tz &= 0x0fff;			/* only lower 12 bits are significant */
   4164 	if (tz & 0x0800)		/* sign extention */
   4165 		tz |= 0xf000;
   4166 
   4167 	/* TODO check timezone conversion */
   4168 	/* check if we are specified a timezone to convert */
   4169 	if (udf_rw16(timestamp->type_tz) & 0x1000) {
   4170 		if ((int16_t) tz != -2047)
   4171 			secs -= (int16_t) tz * 60;
   4172 	} else {
   4173 		secs -= ump->mount_args.gmtoff;
   4174 	}
   4175 
   4176 	timespec->tv_sec  = secs;
   4177 	timespec->tv_nsec = nsecs;
   4178 }
   4179 
   4180 
   4181 void
   4182 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp)
   4183 {
   4184 	struct clock_ymdhms ymdhms;
   4185 	uint32_t husec, usec, csec;
   4186 
   4187 	(void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms);
   4188 
   4189 	usec   = timespec->tv_nsec / 1000;
   4190 	husec  =  usec / 100;
   4191 	usec  -= husec * 100;				/* only 0-99 in usec  */
   4192 	csec   = husec / 100;				/* only 0-99 in csec  */
   4193 	husec -=  csec * 100;				/* only 0-99 in husec */
   4194 
   4195 	/* set method 1 for CUT/GMT */
   4196 	timestamp->type_tz	= udf_rw16((1<<12) + 0);
   4197 	timestamp->year		= udf_rw16(ymdhms.dt_year);
   4198 	timestamp->month	= ymdhms.dt_mon;
   4199 	timestamp->day		= ymdhms.dt_day;
   4200 	timestamp->hour		= ymdhms.dt_hour;
   4201 	timestamp->minute	= ymdhms.dt_min;
   4202 	timestamp->second	= ymdhms.dt_sec;
   4203 	timestamp->centisec	= csec;
   4204 	timestamp->hund_usec	= husec;
   4205 	timestamp->usec		= usec;
   4206 }
   4207 
   4208 /* --------------------------------------------------------------------- */
   4209 
   4210 /*
   4211  * Attribute and filetypes converters with get/set pairs
   4212  */
   4213 
   4214 uint32_t
   4215 udf_getaccessmode(struct udf_node *udf_node)
   4216 {
   4217 	struct file_entry     *fe = udf_node->fe;;
   4218 	struct extfile_entry *efe = udf_node->efe;
   4219 	uint32_t udf_perm, icbftype;
   4220 	uint32_t mode, ftype;
   4221 	uint16_t icbflags;
   4222 
   4223 	UDF_LOCK_NODE(udf_node, 0);
   4224 	if (fe) {
   4225 		udf_perm = udf_rw32(fe->perm);
   4226 		icbftype = fe->icbtag.file_type;
   4227 		icbflags = udf_rw16(fe->icbtag.flags);
   4228 	} else {
   4229 		assert(udf_node->efe);
   4230 		udf_perm = udf_rw32(efe->perm);
   4231 		icbftype = efe->icbtag.file_type;
   4232 		icbflags = udf_rw16(efe->icbtag.flags);
   4233 	}
   4234 
   4235 	mode  = udf_perm_to_unix_mode(udf_perm);
   4236 	ftype = udf_icb_to_unix_filetype(icbftype);
   4237 
   4238 	/* set suid, sgid, sticky from flags in fe/efe */
   4239 	if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
   4240 		mode |= S_ISUID;
   4241 	if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
   4242 		mode |= S_ISGID;
   4243 	if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
   4244 		mode |= S_ISVTX;
   4245 
   4246 	UDF_UNLOCK_NODE(udf_node, 0);
   4247 
   4248 	return mode | ftype;
   4249 }
   4250 
   4251 
   4252 void
   4253 udf_setaccessmode(struct udf_node *udf_node, mode_t mode)
   4254 {
   4255 	struct file_entry    *fe  = udf_node->fe;
   4256 	struct extfile_entry *efe = udf_node->efe;
   4257 	uint32_t udf_perm;
   4258 	uint16_t icbflags;
   4259 
   4260 	UDF_LOCK_NODE(udf_node, 0);
   4261 	udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS);
   4262 	if (fe) {
   4263 		icbflags = udf_rw16(fe->icbtag.flags);
   4264 	} else {
   4265 		icbflags = udf_rw16(efe->icbtag.flags);
   4266 	}
   4267 
   4268 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID;
   4269 	icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID;
   4270 	icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY;
   4271 	if (mode & S_ISUID)
   4272 		icbflags |= UDF_ICB_TAG_FLAGS_SETUID;
   4273 	if (mode & S_ISGID)
   4274 		icbflags |= UDF_ICB_TAG_FLAGS_SETGID;
   4275 	if (mode & S_ISVTX)
   4276 		icbflags |= UDF_ICB_TAG_FLAGS_STICKY;
   4277 
   4278 	if (fe) {
   4279 		fe->perm  = udf_rw32(udf_perm);
   4280 		fe->icbtag.flags  = udf_rw16(icbflags);
   4281 	} else {
   4282 		efe->perm = udf_rw32(udf_perm);
   4283 		efe->icbtag.flags = udf_rw16(icbflags);
   4284 	}
   4285 
   4286 	UDF_UNLOCK_NODE(udf_node, 0);
   4287 }
   4288 
   4289 
   4290 void
   4291 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp)
   4292 {
   4293 	struct udf_mount     *ump = udf_node->ump;
   4294 	struct file_entry    *fe  = udf_node->fe;
   4295 	struct extfile_entry *efe = udf_node->efe;
   4296 	uid_t uid;
   4297 	gid_t gid;
   4298 
   4299 	UDF_LOCK_NODE(udf_node, 0);
   4300 	if (fe) {
   4301 		uid = (uid_t)udf_rw32(fe->uid);
   4302 		gid = (gid_t)udf_rw32(fe->gid);
   4303 	} else {
   4304 		assert(udf_node->efe);
   4305 		uid = (uid_t)udf_rw32(efe->uid);
   4306 		gid = (gid_t)udf_rw32(efe->gid);
   4307 	}
   4308 
   4309 	/* do the uid/gid translation game */
   4310 	if (uid == (uid_t) -1)
   4311 		uid = ump->mount_args.anon_uid;
   4312 	if (gid == (gid_t) -1)
   4313 		gid = ump->mount_args.anon_gid;
   4314 
   4315 	*uidp = uid;
   4316 	*gidp = gid;
   4317 
   4318 	UDF_UNLOCK_NODE(udf_node, 0);
   4319 }
   4320 
   4321 
   4322 void
   4323 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid)
   4324 {
   4325 	struct udf_mount     *ump = udf_node->ump;
   4326 	struct file_entry    *fe  = udf_node->fe;
   4327 	struct extfile_entry *efe = udf_node->efe;
   4328 	uid_t nobody_uid;
   4329 	gid_t nobody_gid;
   4330 
   4331 	UDF_LOCK_NODE(udf_node, 0);
   4332 
   4333 	/* do the uid/gid translation game */
   4334 	nobody_uid = ump->mount_args.nobody_uid;
   4335 	nobody_gid = ump->mount_args.nobody_gid;
   4336 	if (uid == nobody_uid)
   4337 		uid = (uid_t) -1;
   4338 	if (gid == nobody_gid)
   4339 		gid = (gid_t) -1;
   4340 
   4341 	if (fe) {
   4342 		fe->uid  = udf_rw32((uint32_t) uid);
   4343 		fe->gid  = udf_rw32((uint32_t) gid);
   4344 	} else {
   4345 		efe->uid = udf_rw32((uint32_t) uid);
   4346 		efe->gid = udf_rw32((uint32_t) gid);
   4347 	}
   4348 
   4349 	UDF_UNLOCK_NODE(udf_node, 0);
   4350 }
   4351 
   4352 
   4353 /* --------------------------------------------------------------------- */
   4354 
   4355 
   4356 static int
   4357 dirhash_fill(struct udf_node *dir_node)
   4358 {
   4359 	struct vnode *dvp = dir_node->vnode;
   4360 	struct dirhash *dirh;
   4361 	struct file_entry    *fe  = dir_node->fe;
   4362 	struct extfile_entry *efe = dir_node->efe;
   4363 	struct fileid_desc *fid;
   4364 	struct dirent *dirent;
   4365 	uint64_t file_size, pre_diroffset, diroffset;
   4366 	uint32_t lb_size;
   4367 	int error;
   4368 
   4369 	/* make sure we have a dirhash to work on */
   4370 	dirh = dir_node->dir_hash;
   4371 	KASSERT(dirh);
   4372 	KASSERT(dirh->refcnt > 0);
   4373 
   4374 	if (dirh->flags & DIRH_BROKEN)
   4375 		return EIO;
   4376 	if (dirh->flags & DIRH_COMPLETE)
   4377 		return 0;
   4378 
   4379 	/* make sure we have a clean dirhash to add to */
   4380 	dirhash_purge_entries(dirh);
   4381 
   4382 	/* get directory filesize */
   4383 	if (fe) {
   4384 		file_size = udf_rw64(fe->inf_len);
   4385 	} else {
   4386 		assert(efe);
   4387 		file_size = udf_rw64(efe->inf_len);
   4388 	}
   4389 
   4390 	/* allocate temporary space for fid */
   4391 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4392 	fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4393 
   4394 	/* allocate temporary space for dirent */
   4395 	dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4396 
   4397 	error = 0;
   4398 	diroffset = 0;
   4399 	while (diroffset < file_size) {
   4400 		/* transfer a new fid/dirent */
   4401 		pre_diroffset = diroffset;
   4402 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4403 		if (error) {
   4404 			/* TODO what to do? continue but not add? */
   4405 			dirh->flags |= DIRH_BROKEN;
   4406 			dirhash_purge_entries(dirh);
   4407 			break;
   4408 		}
   4409 
   4410 		if ((fid->file_char & UDF_FILE_CHAR_DEL)) {
   4411 			/* register deleted extent for reuse */
   4412 			dirhash_enter_freed(dirh, pre_diroffset,
   4413 				udf_fidsize(fid));
   4414 		} else {
   4415 			/* append to the dirhash */
   4416 			dirhash_enter(dirh, dirent, pre_diroffset,
   4417 				udf_fidsize(fid), 0);
   4418 		}
   4419 	}
   4420 	dirh->flags |= DIRH_COMPLETE;
   4421 
   4422 	free(fid, M_UDFTEMP);
   4423 	free(dirent, M_UDFTEMP);
   4424 
   4425 	return error;
   4426 }
   4427 
   4428 
   4429 /* --------------------------------------------------------------------- */
   4430 
   4431 /*
   4432  * Directory read and manipulation functions.
   4433  *
   4434  */
   4435 
   4436 int
   4437 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
   4438        struct long_ad *icb_loc, int *found)
   4439 {
   4440 	struct udf_node  *dir_node = VTOI(vp);
   4441 	struct dirhash       *dirh;
   4442 	struct dirhash_entry *dirh_ep;
   4443 	struct fileid_desc *fid;
   4444 	struct dirent *dirent;
   4445 	uint64_t diroffset;
   4446 	uint32_t lb_size;
   4447 	int hit, error;
   4448 
   4449 	/* set default return */
   4450 	*found = 0;
   4451 
   4452 	/* get our dirhash and make sure its read in */
   4453 	dirhash_get(&dir_node->dir_hash);
   4454 	error = dirhash_fill(dir_node);
   4455 	if (error) {
   4456 		dirhash_put(dir_node->dir_hash);
   4457 		return error;
   4458 	}
   4459 	dirh = dir_node->dir_hash;
   4460 
   4461 	/* allocate temporary space for fid */
   4462 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4463 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4464 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4465 
   4466 	DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n",
   4467 		namelen, namelen, name));
   4468 
   4469 	/* search our dirhash hits */
   4470 	memset(icb_loc, 0, sizeof(*icb_loc));
   4471 	dirh_ep = NULL;
   4472 	for (;;) {
   4473 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4474 		/* if no hit, abort the search */
   4475 		if (!hit)
   4476 			break;
   4477 
   4478 		/* check this hit */
   4479 		diroffset = dirh_ep->offset;
   4480 
   4481 		/* transfer a new fid/dirent */
   4482 		error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
   4483 		if (error)
   4484 			break;
   4485 
   4486 		DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n",
   4487 			dirent->d_namlen, dirent->d_namlen, dirent->d_name));
   4488 
   4489 		/* see if its our entry */
   4490 		KASSERT(dirent->d_namlen == namelen);
   4491 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4492 			*found = 1;
   4493 			*icb_loc = fid->icb;
   4494 			break;
   4495 		}
   4496 	}
   4497 	free(fid, M_UDFTEMP);
   4498 	free(dirent, M_UDFTEMP);
   4499 
   4500 	dirhash_put(dir_node->dir_hash);
   4501 
   4502 	return error;
   4503 }
   4504 
   4505 /* --------------------------------------------------------------------- */
   4506 
   4507 static int
   4508 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type,
   4509 	struct long_ad *node_icb, struct long_ad *parent_icb,
   4510 	uint64_t parent_unique_id)
   4511 {
   4512 	struct timespec now;
   4513 	struct icb_tag *icb;
   4514 	struct filetimes_extattr_entry *ft_extattr;
   4515 	uint64_t unique_id;
   4516 	uint32_t fidsize, lb_num;
   4517 	uint8_t *bpos;
   4518 	int crclen, attrlen;
   4519 
   4520 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4521 	udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num);
   4522 	icb = &fe->icbtag;
   4523 
   4524 	/*
   4525 	 * Always use strategy type 4 unless on WORM wich we don't support
   4526 	 * (yet). Fill in defaults and set for internal allocation of data.
   4527 	 */
   4528 	icb->strat_type      = udf_rw16(4);
   4529 	icb->max_num_entries = udf_rw16(1);
   4530 	icb->file_type       = file_type;	/* 8 bit */
   4531 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4532 
   4533 	fe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4534 	fe->link_cnt = udf_rw16(0);		/* explicit setting */
   4535 
   4536 	fe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4537 
   4538 	vfs_timestamp(&now);
   4539 	udf_timespec_to_timestamp(&now, &fe->atime);
   4540 	udf_timespec_to_timestamp(&now, &fe->attrtime);
   4541 	udf_timespec_to_timestamp(&now, &fe->mtime);
   4542 
   4543 	udf_set_regid(&fe->imp_id, IMPL_NAME);
   4544 	udf_add_impl_regid(ump, &fe->imp_id);
   4545 
   4546 	unique_id = udf_advance_uniqueid(ump);
   4547 	fe->unique_id = udf_rw64(unique_id);
   4548 	fe->l_ea = udf_rw32(0);
   4549 
   4550 	/* create extended attribute to record our creation time */
   4551 	attrlen = UDF_FILETIMES_ATTR_SIZE(1);
   4552 	ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK);
   4553 	memset(ft_extattr, 0, attrlen);
   4554 	ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO);
   4555 	ft_extattr->hdr.subtype = 1;	/* [4/48.10.5] */
   4556 	ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1));
   4557 	ft_extattr->d_l     = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */
   4558 	ft_extattr->existence = UDF_FILETIMES_FILE_CREATION;
   4559 	udf_timespec_to_timestamp(&now, &ft_extattr->times[0]);
   4560 
   4561 	udf_extattr_insert_internal(ump, (union dscrptr *) fe,
   4562 		(struct extattr_entry *) ft_extattr);
   4563 	free(ft_extattr, M_UDFTEMP);
   4564 
   4565 	/* if its a directory, create '..' */
   4566 	bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea);
   4567 	fidsize = 0;
   4568 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4569 		fidsize = udf_create_parentfid(ump,
   4570 			(struct fileid_desc *) bpos, parent_icb,
   4571 			parent_unique_id);
   4572 	}
   4573 
   4574 	/* record fidlength information */
   4575 	fe->inf_len = udf_rw64(fidsize);
   4576 	fe->l_ad    = udf_rw32(fidsize);
   4577 	fe->logblks_rec = udf_rw64(0);		/* intern */
   4578 
   4579 	crclen  = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4580 	crclen += udf_rw32(fe->l_ea) + fidsize;
   4581 	fe->tag.desc_crc_len = udf_rw16(crclen);
   4582 
   4583 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fe);
   4584 
   4585 	return fidsize;
   4586 }
   4587 
   4588 /* --------------------------------------------------------------------- */
   4589 
   4590 static int
   4591 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe,
   4592 	int file_type, struct long_ad *node_icb, struct long_ad *parent_icb,
   4593 	uint64_t parent_unique_id)
   4594 {
   4595 	struct timespec now;
   4596 	struct icb_tag *icb;
   4597 	uint64_t unique_id;
   4598 	uint32_t fidsize, lb_num;
   4599 	uint8_t *bpos;
   4600 	int crclen;
   4601 
   4602 	lb_num = udf_rw32(node_icb->loc.lb_num);
   4603 	udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num);
   4604 	icb = &efe->icbtag;
   4605 
   4606 	/*
   4607 	 * Always use strategy type 4 unless on WORM wich we don't support
   4608 	 * (yet). Fill in defaults and set for internal allocation of data.
   4609 	 */
   4610 	icb->strat_type      = udf_rw16(4);
   4611 	icb->max_num_entries = udf_rw16(1);
   4612 	icb->file_type       = file_type;	/* 8 bit */
   4613 	icb->flags           = udf_rw16(UDF_ICB_INTERN_ALLOC);
   4614 
   4615 	efe->perm     = udf_rw32(0x7fff);	/* all is allowed   */
   4616 	efe->link_cnt = udf_rw16(0);		/* explicit setting */
   4617 
   4618 	efe->ckpoint  = udf_rw32(1);		/* user supplied file version */
   4619 
   4620 	vfs_timestamp(&now);
   4621 	udf_timespec_to_timestamp(&now, &efe->ctime);
   4622 	udf_timespec_to_timestamp(&now, &efe->atime);
   4623 	udf_timespec_to_timestamp(&now, &efe->attrtime);
   4624 	udf_timespec_to_timestamp(&now, &efe->mtime);
   4625 
   4626 	udf_set_regid(&efe->imp_id, IMPL_NAME);
   4627 	udf_add_impl_regid(ump, &efe->imp_id);
   4628 
   4629 	unique_id = udf_advance_uniqueid(ump);
   4630 	efe->unique_id = udf_rw64(unique_id);
   4631 	efe->l_ea = udf_rw32(0);
   4632 
   4633 	/* if its a directory, create '..' */
   4634 	bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea);
   4635 	fidsize = 0;
   4636 	if (file_type == UDF_ICB_FILETYPE_DIRECTORY) {
   4637 		fidsize = udf_create_parentfid(ump,
   4638 			(struct fileid_desc *) bpos, parent_icb,
   4639 			parent_unique_id);
   4640 	}
   4641 
   4642 	/* record fidlength information */
   4643 	efe->obj_size = udf_rw64(fidsize);
   4644 	efe->inf_len  = udf_rw64(fidsize);
   4645 	efe->l_ad     = udf_rw32(fidsize);
   4646 	efe->logblks_rec = udf_rw64(0);		/* intern */
   4647 
   4648 	crclen  = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH;
   4649 	crclen += udf_rw32(efe->l_ea) + fidsize;
   4650 	efe->tag.desc_crc_len = udf_rw16(crclen);
   4651 
   4652 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) efe);
   4653 
   4654 	return fidsize;
   4655 }
   4656 
   4657 /* --------------------------------------------------------------------- */
   4658 
   4659 int
   4660 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node,
   4661 	struct udf_node *udf_node, struct componentname *cnp)
   4662 {
   4663 	struct vnode *dvp = dir_node->vnode;
   4664 	struct dirhash       *dirh;
   4665 	struct dirhash_entry *dirh_ep;
   4666 	struct file_entry    *fe  = dir_node->fe;
   4667 	struct extfile_entry *efe = dir_node->efe;
   4668 	struct fileid_desc *fid;
   4669 	struct dirent *dirent;
   4670 	uint64_t file_size, diroffset;
   4671 	uint32_t lb_size, fidsize;
   4672 	int found, error;
   4673 	char const *name  = cnp->cn_nameptr;
   4674 	int namelen = cnp->cn_namelen;
   4675 	int hit, refcnt;
   4676 
   4677 	/* get our dirhash and make sure its read in */
   4678 	dirhash_get(&dir_node->dir_hash);
   4679 	error = dirhash_fill(dir_node);
   4680 	if (error) {
   4681 		dirhash_put(dir_node->dir_hash);
   4682 		return error;
   4683 	}
   4684 	dirh = dir_node->dir_hash;
   4685 
   4686 	/* get directory filesize */
   4687 	if (fe) {
   4688 		file_size = udf_rw64(fe->inf_len);
   4689 	} else {
   4690 		assert(efe);
   4691 		file_size = udf_rw64(efe->inf_len);
   4692 	}
   4693 
   4694 	/* allocate temporary space for fid */
   4695 	lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
   4696 	fid     = malloc(lb_size, M_UDFTEMP, M_WAITOK);
   4697 	dirent  = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
   4698 
   4699 	/* search our dirhash hits */
   4700 	found = 0;
   4701 	dirh_ep = NULL;
   4702 	for (;;) {
   4703 		hit = dirhash_lookup(dirh, name, namelen, &dirh_ep);
   4704 		/* if no hit, abort the search */
   4705 		if (!hit)
   4706 			break;
   4707 
   4708 		/* check this hit */
   4709 		diroffset = dirh_ep->offset;
   4710 
   4711 		/* transfer a new fid/dirent */
   4712 		error = udf_read_fid_stream(dvp, &diroffset, fid, dirent);
   4713 		if (error)
   4714 			break;
   4715 
   4716 		/* see if its our entry */
   4717 		KASSERT(dirent->d_namlen == namelen);
   4718 		if (strncmp(dirent->d_name, name, namelen) == 0) {
   4719 			found = 1;
   4720 			break;
   4721 		}
   4722 	}
   4723 
   4724 	if (!found)
   4725 		error = ENOENT;
   4726 	if (error)
   4727 		goto error_out;
   4728 
   4729 	/* mark deleted */
   4730 	fid->file_char |= UDF_FILE_CHAR_DEL;
   4731 #ifdef UDF_COMPLETE_DELETE
   4732 	memset(&fid->icb, 0, sizeof(fid->icb));
   4733 #endif
   4734 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4735 
   4736 	/* get size of fid and compensate for the read_fid_stream advance */
   4737 	fidsize = udf_fidsize(fid);
   4738 	diroffset -= fidsize;
   4739 
   4740 	/* write out */
   4741 	error = vn_rdwr(UIO_WRITE, dir_node->vnode,
   4742 			fid, fidsize, diroffset,
   4743 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4744 			FSCRED, NULL, NULL);
   4745 	if (error)
   4746 		goto error_out;
   4747 
   4748 	/* get reference count of attached node */
   4749 	if (udf_node->fe) {
   4750 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   4751 	} else {
   4752 		KASSERT(udf_node->efe);
   4753 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   4754 	}
   4755 #ifdef UDF_COMPLETE_DELETE
   4756 	/* substract reference counter in attached node */
   4757 	refcnt -= 1;
   4758 	if (udf_node->fe) {
   4759 		udf_node->fe->link_cnt = udf_rw16(refcnt);
   4760 	} else {
   4761 		udf_node->efe->link_cnt = udf_rw16(refcnt);
   4762 	}
   4763 
   4764 	/* prevent writeout when refcnt == 0 */
   4765 	if (refcnt == 0)
   4766 		udf_node->i_flags |= IN_DELETED;
   4767 
   4768 	if (fid->file_char & UDF_FILE_CHAR_DIR) {
   4769 		int drefcnt;
   4770 
   4771 		/* substract reference counter in directory node */
   4772 		/* note subtract 2 (?) for its was also backreferenced */
   4773 		if (dir_node->fe) {
   4774 			drefcnt  = udf_rw16(dir_node->fe->link_cnt);
   4775 			drefcnt -= 1;
   4776 			dir_node->fe->link_cnt = udf_rw16(drefcnt);
   4777 		} else {
   4778 			KASSERT(dir_node->efe);
   4779 			drefcnt  = udf_rw16(dir_node->efe->link_cnt);
   4780 			drefcnt -= 1;
   4781 			dir_node->efe->link_cnt = udf_rw16(drefcnt);
   4782 		}
   4783 	}
   4784 
   4785 	udf_node->i_flags |= IN_MODIFIED;
   4786 	dir_node->i_flags |= IN_MODIFIED;
   4787 #endif
   4788 	/* if it is/was a hardlink adjust the file count */
   4789 	if (refcnt > 0)
   4790 		udf_adjust_filecount(udf_node, -1);
   4791 
   4792 	/* remove from the dirhash */
   4793 	dirhash_remove(dirh, dirent, diroffset,
   4794 		udf_fidsize(fid));
   4795 
   4796 error_out:
   4797 	free(fid, M_UDFTEMP);
   4798 	free(dirent, M_UDFTEMP);
   4799 
   4800 	dirhash_put(dir_node->dir_hash);
   4801 
   4802 	return error;
   4803 }
   4804 
   4805 /* --------------------------------------------------------------------- */
   4806 
   4807 /*
   4808  * We are not allowed to split the fid tag itself over an logical block so
   4809  * check the space remaining in the logical block.
   4810  *
   4811  * We try to select the smallest candidate for recycling or when none is
   4812  * found, append a new one at the end of the directory.
   4813  */
   4814 
   4815 int
   4816 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node,
   4817 	struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp)
   4818 {
   4819 	struct vnode *dvp = dir_node->vnode;
   4820 	struct dirhash       *dirh;
   4821 	struct dirhash_entry *dirh_ep;
   4822 	struct fileid_desc   *fid;
   4823 	struct icb_tag       *icbtag;
   4824 	struct charspec osta_charspec;
   4825 	struct dirent   dirent;
   4826 	uint64_t unique_id, dir_size;
   4827 	uint64_t fid_pos, end_fid_pos, chosen_fid_pos;
   4828 	uint32_t chosen_size, chosen_size_diff;
   4829 	int lb_size, lb_rest, fidsize, this_fidsize, size_diff;
   4830 	int file_char, refcnt, icbflags, addr_type, hit, error;
   4831 
   4832 	/* get our dirhash and make sure its read in */
   4833 	dirhash_get(&dir_node->dir_hash);
   4834 	error = dirhash_fill(dir_node);
   4835 	if (error) {
   4836 		dirhash_put(dir_node->dir_hash);
   4837 		return error;
   4838 	}
   4839 	dirh = dir_node->dir_hash;
   4840 
   4841 	/* get info */
   4842 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   4843 	udf_osta_charset(&osta_charspec);
   4844 
   4845 	if (dir_node->fe) {
   4846 		dir_size = udf_rw64(dir_node->fe->inf_len);
   4847 		icbtag   = &dir_node->fe->icbtag;
   4848 	} else {
   4849 		dir_size = udf_rw64(dir_node->efe->inf_len);
   4850 		icbtag   = &dir_node->efe->icbtag;
   4851 	}
   4852 
   4853 	icbflags   = udf_rw16(icbtag->flags);
   4854 	addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4855 
   4856 	if (udf_node->fe) {
   4857 		unique_id = udf_rw64(udf_node->fe->unique_id);
   4858 		refcnt    = udf_rw16(udf_node->fe->link_cnt);
   4859 	} else {
   4860 		unique_id = udf_rw64(udf_node->efe->unique_id);
   4861 		refcnt    = udf_rw16(udf_node->efe->link_cnt);
   4862 	}
   4863 
   4864 	if (refcnt > 0) {
   4865 		unique_id = udf_advance_uniqueid(ump);
   4866 		udf_adjust_filecount(udf_node, 1);
   4867 	}
   4868 
   4869 	/* determine file characteristics */
   4870 	file_char = 0;	/* visible non deleted file and not stream metadata */
   4871 	if (vap->va_type == VDIR)
   4872 		file_char = UDF_FILE_CHAR_DIR;
   4873 
   4874 	/* malloc scrap buffer */
   4875 	fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO);
   4876 
   4877 	/* calculate _minimum_ fid size */
   4878 	unix_to_udf_name((char *) fid->data, &fid->l_fi,
   4879 		cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4880 	fidsize = UDF_FID_SIZE + fid->l_fi;
   4881 	fidsize = (fidsize + 3) & ~3;		/* multiple of 4 */
   4882 
   4883 	/* find position that will fit the FID */
   4884 	chosen_fid_pos   = dir_size;
   4885 	chosen_size      = 0;
   4886 	chosen_size_diff = UINT_MAX;
   4887 
   4888 	/* shut up gcc */
   4889 	dirent.d_namlen = 0;
   4890 
   4891 	/* search our dirhash hits */
   4892 	error = 0;
   4893 	dirh_ep = NULL;
   4894 	for (;;) {
   4895 		hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep);
   4896 		/* if no hit, abort the search */
   4897 		if (!hit)
   4898 			break;
   4899 
   4900 		/* check this hit for size */
   4901 		this_fidsize = dirh_ep->entry_size;
   4902 
   4903 		/* check this hit */
   4904 		fid_pos     = dirh_ep->offset;
   4905 		end_fid_pos = fid_pos + this_fidsize;
   4906 		size_diff   = this_fidsize - fidsize;
   4907 		lb_rest = lb_size - (end_fid_pos % lb_size);
   4908 
   4909 #ifndef UDF_COMPLETE_DELETE
   4910 		/* transfer a new fid/dirent */
   4911 		error = udf_read_fid_stream(vp, &fid_pos, fid, dirent);
   4912 		if (error)
   4913 			goto error_out;
   4914 
   4915 		/* only reuse entries that are wiped */
   4916 		/* check if the len + loc are marked zero */
   4917 		if (udf_rw32(fid->icb.len) != 0)
   4918 			continue;
   4919 		if (udf_rw32(fid->icb.loc.lb_num) != 0)
   4920 			continue;
   4921 		if (udf_rw16(fid->icb.loc.part_num) != 0)
   4922 			continue;
   4923 #endif	/* UDF_COMPLETE_DELETE */
   4924 
   4925 		/* select if not splitting the tag and its smaller */
   4926 		if ((size_diff >= 0)  &&
   4927 			(size_diff < chosen_size_diff) &&
   4928 			(lb_rest >= sizeof(struct desc_tag)))
   4929 		{
   4930 			/* UDF 2.3.4.2+3 specifies rules for iu size */
   4931 			if ((size_diff == 0) || (size_diff >= 32)) {
   4932 				chosen_fid_pos   = fid_pos;
   4933 				chosen_size      = this_fidsize;
   4934 				chosen_size_diff = size_diff;
   4935 			}
   4936 		}
   4937 	}
   4938 
   4939 
   4940 	/* extend directory if no other candidate found */
   4941 	if (chosen_size == 0) {
   4942 		chosen_fid_pos   = dir_size;
   4943 		chosen_size      = fidsize;
   4944 		chosen_size_diff = 0;
   4945 
   4946 		/* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */
   4947 		if (addr_type == UDF_ICB_INTERN_ALLOC) {
   4948 			/* pre-grow directory to see if we're to switch */
   4949 			udf_grow_node(dir_node, dir_size + chosen_size);
   4950 
   4951 			icbflags   = udf_rw16(icbtag->flags);
   4952 			addr_type  = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   4953 		}
   4954 
   4955 		/* make sure the next fid desc_tag won't be splitted */
   4956 		if (addr_type != UDF_ICB_INTERN_ALLOC) {
   4957 			end_fid_pos = chosen_fid_pos + chosen_size;
   4958 			lb_rest = lb_size - (end_fid_pos % lb_size);
   4959 
   4960 			/* pad with implementation use regid if needed */
   4961 			if (lb_rest < sizeof(struct desc_tag))
   4962 				chosen_size += 32;
   4963 		}
   4964 	}
   4965 	chosen_size_diff = chosen_size - fidsize;
   4966 
   4967 	/* populate the FID */
   4968 	memset(fid, 0, lb_size);
   4969 	udf_inittag(ump, &fid->tag, TAGID_FID, 0);
   4970 	fid->file_version_num    = udf_rw16(1);	/* UDF 2.3.4.1 */
   4971 	fid->file_char           = file_char;
   4972 	fid->icb                 = udf_node->loc;
   4973 	fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id);
   4974 	fid->l_iu                = udf_rw16(0);
   4975 
   4976 	if (chosen_size > fidsize) {
   4977 		/* insert implementation-use regid to space it correctly */
   4978 		fid->l_iu = udf_rw16(chosen_size_diff);
   4979 
   4980 		/* set implementation use */
   4981 		udf_set_regid((struct regid *) fid->data, IMPL_NAME);
   4982 		udf_add_impl_regid(ump, (struct regid *) fid->data);
   4983 	}
   4984 
   4985 	/* fill in name */
   4986 	unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu),
   4987 		&fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec);
   4988 
   4989 	fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH);
   4990 	(void) udf_validate_tag_and_crc_sums((union dscrptr *) fid);
   4991 
   4992 	/* writeout FID/update parent directory */
   4993 	error = vn_rdwr(UIO_WRITE, dvp,
   4994 			fid, chosen_size, chosen_fid_pos,
   4995 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED,
   4996 			FSCRED, NULL, NULL);
   4997 
   4998 	if (error)
   4999 		goto error_out;
   5000 
   5001 	/* add reference counter in attached node */
   5002 	if (udf_node->fe) {
   5003 		refcnt = udf_rw16(udf_node->fe->link_cnt);
   5004 		udf_node->fe->link_cnt = udf_rw16(refcnt+1);
   5005 	} else {
   5006 		KASSERT(udf_node->efe);
   5007 		refcnt = udf_rw16(udf_node->efe->link_cnt);
   5008 		udf_node->efe->link_cnt = udf_rw16(refcnt+1);
   5009 	}
   5010 
   5011 	/* mark not deleted if it was... just in case, but do warn */
   5012 	if (udf_node->i_flags & IN_DELETED) {
   5013 		printf("udf: warning, marking a file undeleted\n");
   5014 		udf_node->i_flags &= ~IN_DELETED;
   5015 	}
   5016 
   5017 	if (file_char & UDF_FILE_CHAR_DIR) {
   5018 		/* add reference counter in directory node for '..' */
   5019 		if (dir_node->fe) {
   5020 			refcnt = udf_rw16(dir_node->fe->link_cnt);
   5021 			refcnt++;
   5022 			dir_node->fe->link_cnt = udf_rw16(refcnt);
   5023 		} else {
   5024 			KASSERT(dir_node->efe);
   5025 			refcnt = udf_rw16(dir_node->efe->link_cnt);
   5026 			refcnt++;
   5027 			dir_node->efe->link_cnt = udf_rw16(refcnt);
   5028 		}
   5029 	}
   5030 
   5031 	/* append to the dirhash */
   5032 	dirent.d_namlen = cnp->cn_namelen;
   5033 	memcpy(dirent.d_name, cnp->cn_nameptr, cnp->cn_namelen);
   5034 	dirhash_enter(dirh, &dirent, chosen_fid_pos,
   5035 		udf_fidsize(fid), 1);
   5036 
   5037 	/* note updates */
   5038 	udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */
   5039 	/* VN_KNOTE(udf_node,  ...) */
   5040 	udf_update(udf_node->vnode, NULL, NULL, NULL, 0);
   5041 
   5042 error_out:
   5043 	free(fid, M_TEMP);
   5044 
   5045 	dirhash_put(dir_node->dir_hash);
   5046 
   5047 	return error;
   5048 }
   5049 
   5050 /* --------------------------------------------------------------------- */
   5051 
   5052 /*
   5053  * Each node can have an attached streamdir node though not recursively. These
   5054  * are otherwise known as named substreams/named extended attributes that have
   5055  * no size limitations.
   5056  *
   5057  * `Normal' extended attributes are indicated with a number and are recorded
   5058  * in either the fe/efe descriptor itself for small descriptors or recorded in
   5059  * the attached extended attribute file. Since these spaces can get
   5060  * fragmented, care ought to be taken.
   5061  *
   5062  * Since the size of the space reserved for allocation descriptors is limited,
   5063  * there is a mechanim provided for extending this space; this is done by a
   5064  * special extent to allow schrinking of the allocations without breaking the
   5065  * linkage to the allocation extent descriptor.
   5066  */
   5067 
   5068 int
   5069 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
   5070 	     struct udf_node **udf_noderes)
   5071 {
   5072 	union dscrptr   *dscr;
   5073 	struct udf_node *udf_node;
   5074 	struct vnode    *nvp;
   5075 	struct long_ad   icb_loc, last_fe_icb_loc;
   5076 	uint64_t file_size;
   5077 	uint32_t lb_size, sector, dummy;
   5078 	uint8_t  *file_data;
   5079 	int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
   5080 	int slot, eof, error;
   5081 
   5082 	DPRINTF(NODE, ("udf_get_node called\n"));
   5083 	*udf_noderes = udf_node = NULL;
   5084 
   5085 	/* lock to disallow simultanious creation of same udf_node */
   5086 	mutex_enter(&ump->get_node_lock);
   5087 
   5088 	DPRINTF(NODE, ("\tlookup in hash table\n"));
   5089 	/* lookup in hash table */
   5090 	assert(ump);
   5091 	assert(node_icb_loc);
   5092 	udf_node = udf_hash_lookup(ump, node_icb_loc);
   5093 	if (udf_node) {
   5094 		DPRINTF(NODE, ("\tgot it from the hash!\n"));
   5095 		/* vnode is returned locked */
   5096 		*udf_noderes = udf_node;
   5097 		mutex_exit(&ump->get_node_lock);
   5098 		return 0;
   5099 	}
   5100 
   5101 	/* garbage check: translate udf_node_icb_loc to sectornr */
   5102 	error = udf_translate_vtop(ump, node_icb_loc, &sector, &dummy);
   5103 	if (error) {
   5104 		/* no use, this will fail anyway */
   5105 		mutex_exit(&ump->get_node_lock);
   5106 		return EINVAL;
   5107 	}
   5108 
   5109 	/* build udf_node (do initialise!) */
   5110 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5111 	memset(udf_node, 0, sizeof(struct udf_node));
   5112 
   5113 	DPRINTF(NODE, ("\tget new vnode\n"));
   5114 	/* give it a vnode */
   5115 	error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
   5116         if (error) {
   5117 		pool_put(&udf_node_pool, udf_node);
   5118 		mutex_exit(&ump->get_node_lock);
   5119 		return error;
   5120 	}
   5121 
   5122 	/* always return locked vnode */
   5123 	if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
   5124 		/* recycle vnode and unlock; simultanious will fail too */
   5125 		ungetnewvnode(nvp);
   5126 		mutex_exit(&ump->get_node_lock);
   5127 		return error;
   5128 	}
   5129 
   5130 	/* initialise crosslinks, note location of fe/efe for hashing */
   5131 	udf_node->ump    =  ump;
   5132 	udf_node->vnode  =  nvp;
   5133 	nvp->v_data      =  udf_node;
   5134 	udf_node->loc    = *node_icb_loc;
   5135 	udf_node->lockf  =  0;
   5136 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5137 	cv_init(&udf_node->node_lock, "udf_nlk");
   5138 	genfs_node_init(nvp, &udf_genfsops);	/* inititise genfs */
   5139 	udf_node->outstanding_bufs = 0;
   5140 	udf_node->outstanding_nodedscr = 0;
   5141 
   5142 	/* check if we're fetching the root */
   5143 	if (ump->fileset_desc)
   5144 		if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb,
   5145 		    sizeof(struct long_ad)) == 0)
   5146 			nvp->v_vflag |= VV_ROOT;
   5147 
   5148 	/* insert into the hash lookup */
   5149 	udf_register_node(udf_node);
   5150 
   5151 	/* safe to unlock, the entry is in the hash table, vnode is locked */
   5152 	mutex_exit(&ump->get_node_lock);
   5153 
   5154 	icb_loc = *node_icb_loc;
   5155 	needs_indirect = 0;
   5156 	strat4096 = 0;
   5157 	udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
   5158 	file_size = 0;
   5159 	file_data = NULL;
   5160 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5161 
   5162 	DPRINTF(NODE, ("\tstart reading descriptors\n"));
   5163 	do {
   5164 		/* try to read in fe/efe */
   5165 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5166 
   5167 		/* blank sector marks end of sequence, check this */
   5168 		if ((dscr == NULL) &&  (!strat4096))
   5169 			error = ENOENT;
   5170 
   5171 		/* break if read error or blank sector */
   5172 		if (error || (dscr == NULL))
   5173 			break;
   5174 
   5175 		/* process descriptor based on the descriptor type */
   5176 		dscr_type = udf_rw16(dscr->tag.id);
   5177 		DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type));
   5178 
   5179 		/* if dealing with an indirect entry, follow the link */
   5180 		if (dscr_type == TAGID_INDIRECTENTRY) {
   5181 			needs_indirect = 0;
   5182 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5183 			icb_loc = dscr->inde.indirect_icb;
   5184 			continue;
   5185 		}
   5186 
   5187 		/* only file entries and extended file entries allowed here */
   5188 		if ((dscr_type != TAGID_FENTRY) &&
   5189 		    (dscr_type != TAGID_EXTFENTRY)) {
   5190 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5191 			error = ENOENT;
   5192 			break;
   5193 		}
   5194 
   5195 		KASSERT(udf_tagsize(dscr, lb_size) == lb_size);
   5196 
   5197 		/* choose this one */
   5198 		last_fe_icb_loc = icb_loc;
   5199 
   5200 		/* record and process/update (ext)fentry */
   5201 		file_data = NULL;
   5202 		if (dscr_type == TAGID_FENTRY) {
   5203 			if (udf_node->fe)
   5204 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5205 					udf_node->fe);
   5206 			udf_node->fe  = &dscr->fe;
   5207 			strat = udf_rw16(udf_node->fe->icbtag.strat_type);
   5208 			udf_file_type = udf_node->fe->icbtag.file_type;
   5209 			file_size = udf_rw64(udf_node->fe->inf_len);
   5210 			file_data = udf_node->fe->data;
   5211 		} else {
   5212 			if (udf_node->efe)
   5213 				udf_free_logvol_dscr(ump, &last_fe_icb_loc,
   5214 					udf_node->efe);
   5215 			udf_node->efe = &dscr->efe;
   5216 			strat = udf_rw16(udf_node->efe->icbtag.strat_type);
   5217 			udf_file_type = udf_node->efe->icbtag.file_type;
   5218 			file_size = udf_rw64(udf_node->efe->inf_len);
   5219 			file_data = udf_node->efe->data;
   5220 		}
   5221 
   5222 		/* check recording strategy (structure) */
   5223 
   5224 		/*
   5225 		 * Strategy 4096 is a daisy linked chain terminating with an
   5226 		 * unrecorded sector or a TERM descriptor. The next
   5227 		 * descriptor is to be found in the sector that follows the
   5228 		 * current sector.
   5229 		 */
   5230 		if (strat == 4096) {
   5231 			strat4096 = 1;
   5232 			needs_indirect = 1;
   5233 
   5234 			icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
   5235 		}
   5236 
   5237 		/*
   5238 		 * Strategy 4 is the normal strategy and terminates, but if
   5239 		 * we're in strategy 4096, we can't have strategy 4 mixed in
   5240 		 */
   5241 
   5242 		if (strat == 4) {
   5243 			if (strat4096) {
   5244 				error = EINVAL;
   5245 				break;
   5246 			}
   5247 			break;		/* done */
   5248 		}
   5249 	} while (!error);
   5250 
   5251 	/* first round of cleanup code */
   5252 	if (error) {
   5253 		DPRINTF(NODE, ("\tnode fe/efe failed!\n"));
   5254 		/* recycle udf_node */
   5255 		udf_dispose_node(udf_node);
   5256 
   5257 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5258 		nvp->v_data = NULL;
   5259 		ungetnewvnode(nvp);
   5260 
   5261 		return EINVAL;		/* error code ok? */
   5262 	}
   5263 	DPRINTF(NODE, ("\tnode fe/efe read in fine\n"));
   5264 
   5265 	/* assert no references to dscr anymore beyong this point */
   5266 	assert((udf_node->fe) || (udf_node->efe));
   5267 	dscr = NULL;
   5268 
   5269 	/*
   5270 	 * Remember where to record an updated version of the descriptor. If
   5271 	 * there is a sequence of indirect entries, icb_loc will have been
   5272 	 * updated. Its the write disipline to allocate new space and to make
   5273 	 * sure the chain is maintained.
   5274 	 *
   5275 	 * `needs_indirect' flags if the next location is to be filled with
   5276 	 * with an indirect entry.
   5277 	 */
   5278 	udf_node->write_loc = icb_loc;
   5279 	udf_node->needs_indirect = needs_indirect;
   5280 
   5281 	/*
   5282 	 * Go trough all allocations extents of this descriptor and when
   5283 	 * encountering a redirect read in the allocation extension. These are
   5284 	 * daisy-chained.
   5285 	 */
   5286 	UDF_LOCK_NODE(udf_node, 0);
   5287 	udf_node->num_extensions = 0;
   5288 
   5289 	error   = 0;
   5290 	slot    = 0;
   5291 	for (;;) {
   5292 		udf_get_adslot(udf_node, slot, &icb_loc, &eof);
   5293 		DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, "
   5294 			"lb_num = %d, part = %d\n", slot, eof,
   5295 			UDF_EXT_FLAGS(udf_rw32(icb_loc.len)),
   5296 			UDF_EXT_LEN(udf_rw32(icb_loc.len)),
   5297 			udf_rw32(icb_loc.loc.lb_num),
   5298 			udf_rw16(icb_loc.loc.part_num)));
   5299 		if (eof)
   5300 			break;
   5301 		slot++;
   5302 
   5303 		if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT)
   5304 			continue;
   5305 
   5306 		DPRINTF(NODE, ("\tgot redirect extent\n"));
   5307 		if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) {
   5308 			DPRINTF(ALLOC, ("udf_get_node: implementation limit, "
   5309 					"too many allocation extensions on "
   5310 					"udf_node\n"));
   5311 			error = EINVAL;
   5312 			break;
   5313 		}
   5314 
   5315 		/* length can only be *one* lb : UDF 2.50/2.3.7.1 */
   5316 		if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) {
   5317 			DPRINTF(ALLOC, ("udf_get_node: bad allocation "
   5318 					"extension size in udf_node\n"));
   5319 			error = EINVAL;
   5320 			break;
   5321 		}
   5322 
   5323 		DPRINTF(NODE, ("read allocation extent at lb_num %d\n",
   5324 			UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num))));
   5325 		/* load in allocation extent */
   5326 		error = udf_read_logvol_dscr(ump, &icb_loc, &dscr);
   5327 		if (error || (dscr == NULL))
   5328 			break;
   5329 
   5330 		/* process read-in descriptor */
   5331 		dscr_type = udf_rw16(dscr->tag.id);
   5332 
   5333 		if (dscr_type != TAGID_ALLOCEXTENT) {
   5334 			udf_free_logvol_dscr(ump, &icb_loc, dscr);
   5335 			error = ENOENT;
   5336 			break;
   5337 		}
   5338 
   5339 		DPRINTF(NODE, ("\trecording redirect extent\n"));
   5340 		udf_node->ext[udf_node->num_extensions] = &dscr->aee;
   5341 		udf_node->ext_loc[udf_node->num_extensions] = icb_loc;
   5342 
   5343 		udf_node->num_extensions++;
   5344 
   5345 	} /* while */
   5346 	UDF_UNLOCK_NODE(udf_node, 0);
   5347 
   5348 	/* second round of cleanup code */
   5349 	if (error) {
   5350 		/* recycle udf_node */
   5351 		udf_dispose_node(udf_node);
   5352 
   5353 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5354 		nvp->v_data = NULL;
   5355 		ungetnewvnode(nvp);
   5356 
   5357 		return EINVAL;		/* error code ok? */
   5358 	}
   5359 
   5360 	DPRINTF(NODE, ("\tnode read in fine\n"));
   5361 
   5362 	/*
   5363 	 * Translate UDF filetypes into vnode types.
   5364 	 *
   5365 	 * Systemfiles like the meta main and mirror files are not treated as
   5366 	 * normal files, so we type them as having no type. UDF dictates that
   5367 	 * they are not allowed to be visible.
   5368 	 */
   5369 
   5370 	switch (udf_file_type) {
   5371 	case UDF_ICB_FILETYPE_DIRECTORY :
   5372 	case UDF_ICB_FILETYPE_STREAMDIR :
   5373 		nvp->v_type = VDIR;
   5374 		break;
   5375 	case UDF_ICB_FILETYPE_BLOCKDEVICE :
   5376 		nvp->v_type = VBLK;
   5377 		break;
   5378 	case UDF_ICB_FILETYPE_CHARDEVICE :
   5379 		nvp->v_type = VCHR;
   5380 		break;
   5381 	case UDF_ICB_FILETYPE_SOCKET :
   5382 		nvp->v_type = VSOCK;
   5383 		break;
   5384 	case UDF_ICB_FILETYPE_FIFO :
   5385 		nvp->v_type = VFIFO;
   5386 		break;
   5387 	case UDF_ICB_FILETYPE_SYMLINK :
   5388 		nvp->v_type = VLNK;
   5389 		break;
   5390 	case UDF_ICB_FILETYPE_VAT :
   5391 	case UDF_ICB_FILETYPE_META_MAIN :
   5392 	case UDF_ICB_FILETYPE_META_MIRROR :
   5393 		nvp->v_type = VNON;
   5394 		break;
   5395 	case UDF_ICB_FILETYPE_RANDOMACCESS :
   5396 	case UDF_ICB_FILETYPE_REALTIME :
   5397 		nvp->v_type = VREG;
   5398 		break;
   5399 	default:
   5400 		/* YIKES, something else */
   5401 		nvp->v_type = VNON;
   5402 	}
   5403 
   5404 	/* TODO specfs, fifofs etc etc. vnops setting */
   5405 
   5406 	/* don't forget to set vnode's v_size */
   5407 	uvm_vnp_setsize(nvp, file_size);
   5408 
   5409 	/* TODO ext attr and streamdir udf_nodes */
   5410 
   5411 	*udf_noderes = udf_node;
   5412 
   5413 	return 0;
   5414 }
   5415 
   5416 /* --------------------------------------------------------------------- */
   5417 
   5418 int
   5419 udf_writeout_node(struct udf_node *udf_node, int waitfor)
   5420 {
   5421 	union dscrptr *dscr;
   5422 	struct long_ad *loc;
   5423 	int extnr, error;
   5424 
   5425 	DPRINTF(NODE, ("udf_writeout_node called\n"));
   5426 
   5427 	KASSERT(udf_node->outstanding_bufs == 0);
   5428 	KASSERT(udf_node->outstanding_nodedscr == 0);
   5429 
   5430 	KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd));
   5431 
   5432 	if (udf_node->i_flags & IN_DELETED) {
   5433 		DPRINTF(NODE, ("\tnode deleted; not writing out\n"));
   5434 		return 0;
   5435 	}
   5436 
   5437 	/* lock node */
   5438 	UDF_LOCK_NODE(udf_node, 0);
   5439 
   5440 	/* at least one descriptor writeout */
   5441 	udf_node->outstanding_nodedscr = 1;
   5442 
   5443 	/* we're going to write out the descriptor so clear the flags */
   5444 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED);
   5445 
   5446 	/* if we were rebuild, write out the allocation extents */
   5447 	if (udf_node->i_flags & IN_NODE_REBUILD) {
   5448 		/* mark outstanding node descriptors and issue them */
   5449 		udf_node->outstanding_nodedscr += udf_node->num_extensions;
   5450 		for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5451 			loc = &udf_node->ext_loc[extnr];
   5452 			dscr = (union dscrptr *) udf_node->ext[extnr];
   5453 			error = udf_write_logvol_dscr(udf_node, dscr, loc, 0);
   5454 			if (error)
   5455 				return error;
   5456 		}
   5457 		/* mark allocation extents written out */
   5458 		udf_node->i_flags &= ~(IN_NODE_REBUILD);
   5459 	}
   5460 
   5461 	if (udf_node->fe) {
   5462 		KASSERT(udf_node->efe == NULL);
   5463 		dscr = (union dscrptr *) udf_node->fe;
   5464 	} else {
   5465 		KASSERT(udf_node->efe);
   5466 		KASSERT(udf_node->fe == NULL);
   5467 		dscr = (union dscrptr *) udf_node->efe;
   5468 	}
   5469 	KASSERT(dscr);
   5470 
   5471 	loc = &udf_node->write_loc;
   5472 	error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor);
   5473 	return error;
   5474 }
   5475 
   5476 /* --------------------------------------------------------------------- */
   5477 
   5478 int
   5479 udf_dispose_node(struct udf_node *udf_node)
   5480 {
   5481 	struct vnode *vp;
   5482 	int extnr;
   5483 
   5484 	DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node));
   5485 	if (!udf_node) {
   5486 		DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
   5487 		return 0;
   5488 	}
   5489 
   5490 	vp  = udf_node->vnode;
   5491 #ifdef DIAGNOSTIC
   5492 	if (vp->v_numoutput)
   5493 		panic("disposing UDF node with pending I/O's, udf_node = %p, "
   5494 				"v_numoutput = %d", udf_node, vp->v_numoutput);
   5495 #endif
   5496 
   5497 	/* wait until out of sync (just in case we happen to stumble over one */
   5498 	KASSERT(!mutex_owned(&mntvnode_lock));
   5499 	mutex_enter(&mntvnode_lock);
   5500 	while (udf_node->i_flags & IN_SYNCED) {
   5501 		cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock,
   5502 			hz/16);
   5503 	}
   5504 	mutex_exit(&mntvnode_lock);
   5505 
   5506 	/* TODO extended attributes and streamdir */
   5507 
   5508 	/* remove dirhash if present */
   5509 	dirhash_purge(&udf_node->dir_hash);
   5510 
   5511 	/* remove from our hash lookup table */
   5512 	udf_deregister_node(udf_node);
   5513 
   5514 	/* destroy our lock */
   5515 	mutex_destroy(&udf_node->node_mutex);
   5516 	cv_destroy(&udf_node->node_lock);
   5517 
   5518 	/* dissociate our udf_node from the vnode */
   5519 	genfs_node_destroy(udf_node->vnode);
   5520 	vp->v_data = NULL;
   5521 
   5522 	/* free associated memory and the node itself */
   5523 	for (extnr = 0; extnr < udf_node->num_extensions; extnr++) {
   5524 		udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr],
   5525 			udf_node->ext[extnr]);
   5526 		udf_node->ext[extnr] = (void *) 0xdeadcccc;
   5527 	}
   5528 
   5529 	if (udf_node->fe)
   5530 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5531 			udf_node->fe);
   5532 	if (udf_node->efe)
   5533 		udf_free_logvol_dscr(udf_node->ump, &udf_node->loc,
   5534 			udf_node->efe);
   5535 
   5536 	udf_node->fe  = (void *) 0xdeadaaaa;
   5537 	udf_node->efe = (void *) 0xdeadbbbb;
   5538 	udf_node->ump = (void *) 0xdeadbeef;
   5539 	pool_put(&udf_node_pool, udf_node);
   5540 
   5541 	return 0;
   5542 }
   5543 
   5544 
   5545 
   5546 /*
   5547  * create a new node using the specified vnodeops, vap and cnp but with the
   5548  * udf_file_type. This allows special files to be created. Use with care.
   5549  */
   5550 
   5551 static int
   5552 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type,
   5553 	int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp)
   5554 {
   5555 	union dscrptr *dscr;
   5556 	struct udf_node *dir_node = VTOI(dvp);;
   5557 	struct udf_node *udf_node;
   5558 	struct udf_mount *ump = dir_node->ump;
   5559 	struct vnode *nvp;
   5560 	struct long_ad node_icb_loc;
   5561 	uint64_t parent_unique_id;
   5562 	uint64_t lmapping;
   5563 	uint32_t lb_size, lb_num;
   5564 	uint16_t vpart_num;
   5565 	uid_t uid;
   5566 	gid_t gid, parent_gid;
   5567 	int fid_size, error;
   5568 
   5569 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5570 	*vpp = NULL;
   5571 
   5572 	/* allocate vnode */
   5573 	error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp);
   5574         if (error)
   5575 		return error;
   5576 
   5577 	/* lock node */
   5578 	error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
   5579 	if (error) {
   5580 		nvp->v_data = NULL;
   5581 		ungetnewvnode(nvp);
   5582 		return error;
   5583 	}
   5584 
   5585 	/* get disc allocation for one logical block */
   5586 	vpart_num = ump->node_part;
   5587 	error = udf_pre_allocate_space(ump, UDF_C_NODE, 1,
   5588 			vpart_num, &lmapping);
   5589 	lb_num = lmapping;
   5590 	if (error) {
   5591 		vlockmgr(nvp->v_vnlock, LK_RELEASE);
   5592 		ungetnewvnode(nvp);
   5593 		return error;
   5594 	}
   5595 
   5596 	/* initialise pointer to location */
   5597 	memset(&node_icb_loc, 0, sizeof(struct long_ad));
   5598 	node_icb_loc.len = udf_rw32(lb_size);
   5599 	node_icb_loc.loc.lb_num   = udf_rw32(lb_num);
   5600 	node_icb_loc.loc.part_num = udf_rw16(vpart_num);
   5601 
   5602 	/* build udf_node (do initialise!) */
   5603 	udf_node = pool_get(&udf_node_pool, PR_WAITOK);
   5604 	memset(udf_node, 0, sizeof(struct udf_node));
   5605 
   5606 	/* initialise crosslinks, note location of fe/efe for hashing */
   5607 	/* bugalert: synchronise with udf_get_node() */
   5608 	udf_node->ump       = ump;
   5609 	udf_node->vnode     = nvp;
   5610 	nvp->v_data         = udf_node;
   5611 	udf_node->loc       = node_icb_loc;
   5612 	udf_node->write_loc = node_icb_loc;
   5613 	udf_node->lockf     = 0;
   5614 	mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE);
   5615 	cv_init(&udf_node->node_lock, "udf_nlk");
   5616 	udf_node->outstanding_bufs = 0;
   5617 	udf_node->outstanding_nodedscr = 0;
   5618 
   5619 	/* initialise genfs */
   5620 	genfs_node_init(nvp, &udf_genfsops);
   5621 
   5622 	/* insert into the hash lookup */
   5623 	udf_register_node(udf_node);
   5624 
   5625 	/* get parent's unique ID for refering '..' if its a directory */
   5626 	if (dir_node->fe) {
   5627 		parent_unique_id = udf_rw64(dir_node->fe->unique_id);
   5628 		parent_gid       = (gid_t) udf_rw32(dir_node->fe->gid);
   5629 	} else {
   5630 		parent_unique_id = udf_rw64(dir_node->efe->unique_id);
   5631 		parent_gid       = (gid_t) udf_rw32(dir_node->efe->gid);
   5632 	}
   5633 
   5634 	/* get descriptor */
   5635 	udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr);
   5636 
   5637 	/* choose a fe or an efe for it */
   5638 	if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) {
   5639 		udf_node->fe = &dscr->fe;
   5640 		fid_size = udf_create_new_fe(ump, udf_node->fe,
   5641 			udf_file_type, &udf_node->loc,
   5642 			&dir_node->loc, parent_unique_id);
   5643 		/* TODO add extended attribute for creation time */
   5644 	} else {
   5645 		udf_node->efe = &dscr->efe;
   5646 		fid_size = udf_create_new_efe(ump, udf_node->efe,
   5647 			udf_file_type, &udf_node->loc,
   5648 			&dir_node->loc, parent_unique_id);
   5649 	}
   5650 	KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num);
   5651 
   5652 	/* update vnode's size and type */
   5653 	nvp->v_type = vap->va_type;
   5654 	uvm_vnp_setsize(nvp, fid_size);
   5655 
   5656 	/* set access mode */
   5657 	udf_setaccessmode(udf_node, vap->va_mode);
   5658 
   5659 	/* set ownership */
   5660 	uid = kauth_cred_geteuid(cnp->cn_cred);
   5661 	gid = parent_gid;
   5662 	udf_setownership(udf_node, uid, gid);
   5663 
   5664 	error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp);
   5665 	if (error) {
   5666 		/* free disc allocation for node */
   5667 		udf_free_allocated_space(ump, lb_num, vpart_num, 1);
   5668 
   5669 		/* recycle udf_node */
   5670 		udf_dispose_node(udf_node);
   5671 		vput(nvp);
   5672 
   5673 		*vpp = NULL;
   5674 		return error;
   5675 	}
   5676 
   5677 	/* adjust file count */
   5678 	udf_adjust_filecount(udf_node, 1);
   5679 
   5680 	/* return result */
   5681 	*vpp = nvp;
   5682 
   5683 	return 0;
   5684 }
   5685 
   5686 
   5687 int
   5688 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap,
   5689 	struct componentname *cnp)
   5690 {
   5691 	int (**vnodeops)(void *);
   5692 	int udf_file_type;
   5693 
   5694 	DPRINTF(NODE, ("udf_create_node called\n"));
   5695 
   5696 	/* what type are we creating ? */
   5697 	vnodeops = udf_vnodeop_p;
   5698 	/* start with a default */
   5699 	udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5700 
   5701 	*vpp = NULL;
   5702 
   5703 	switch (vap->va_type) {
   5704 	case VREG :
   5705 		udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS;
   5706 		break;
   5707 	case VDIR :
   5708 		udf_file_type = UDF_ICB_FILETYPE_DIRECTORY;
   5709 		break;
   5710 	case VLNK :
   5711 		udf_file_type = UDF_ICB_FILETYPE_SYMLINK;
   5712 		break;
   5713 	case VBLK :
   5714 		udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE;
   5715 		/* specfs */
   5716 		return ENOTSUP;
   5717 		break;
   5718 	case VCHR :
   5719 		udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE;
   5720 		/* specfs */
   5721 		return ENOTSUP;
   5722 		break;
   5723 	case VFIFO :
   5724 		udf_file_type = UDF_ICB_FILETYPE_FIFO;
   5725 		/* specfs */
   5726 		return ENOTSUP;
   5727 		break;
   5728 	case VSOCK :
   5729 		udf_file_type = UDF_ICB_FILETYPE_SOCKET;
   5730 		/* specfs */
   5731 		return ENOTSUP;
   5732 		break;
   5733 	case VNON :
   5734 	case VBAD :
   5735 	default :
   5736 		/* nothing; can we even create these? */
   5737 		return EINVAL;
   5738 	}
   5739 
   5740 	return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp);
   5741 }
   5742 
   5743 /* --------------------------------------------------------------------- */
   5744 
   5745 static void
   5746 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem)
   5747 {
   5748 	struct udf_mount *ump = udf_node->ump;
   5749 	uint32_t lb_size, lb_num, len, num_lb;
   5750 	uint16_t vpart_num;
   5751 
   5752 	/* is there really one? */
   5753 	if (mem == NULL)
   5754 		return;
   5755 
   5756 	/* got a descriptor here */
   5757 	len       = UDF_EXT_LEN(udf_rw32(loc->len));
   5758 	lb_num    = udf_rw32(loc->loc.lb_num);
   5759 	vpart_num = udf_rw16(loc->loc.part_num);
   5760 
   5761 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   5762 	num_lb = (len + lb_size -1) / lb_size;
   5763 
   5764 	udf_free_allocated_space(ump, lb_num, vpart_num, num_lb);
   5765 }
   5766 
   5767 void
   5768 udf_delete_node(struct udf_node *udf_node)
   5769 {
   5770 	void *dscr;
   5771 	struct udf_mount *ump;
   5772 	struct long_ad *loc;
   5773 	int extnr, lvint, dummy;
   5774 
   5775 	ump = udf_node->ump;
   5776 
   5777 	/* paranoia check on integrity; should be open!; we could panic */
   5778 	lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type);
   5779 	if (lvint == UDF_INTEGRITY_CLOSED)
   5780 		printf("\tIntegrity was CLOSED!\n");
   5781 
   5782 	/* whatever the node type, change its size to zero */
   5783 	(void) udf_resize_node(udf_node, 0, &dummy);
   5784 
   5785 	/* force it to be `clean'; no use writing it out */
   5786 	udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS |
   5787 		IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5788 
   5789 	/* adjust file count */
   5790 	udf_adjust_filecount(udf_node, -1);
   5791 
   5792 	/*
   5793 	 * Free its allocated descriptors; memory will be released when
   5794 	 * vop_reclaim() is called.
   5795 	 */
   5796 	loc = &udf_node->loc;
   5797 
   5798 	dscr = udf_node->fe;
   5799 	udf_free_descriptor_space(udf_node, loc, dscr);
   5800 	dscr = udf_node->efe;
   5801 	udf_free_descriptor_space(udf_node, loc, dscr);
   5802 
   5803 	for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) {
   5804 		dscr =  udf_node->ext[extnr];
   5805 		loc  = &udf_node->ext_loc[extnr];
   5806 		udf_free_descriptor_space(udf_node, loc, dscr);
   5807 	}
   5808 }
   5809 
   5810 /* --------------------------------------------------------------------- */
   5811 
   5812 /* set new filesize; node but be LOCKED on entry and is locked on exit */
   5813 int
   5814 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended)
   5815 {
   5816 	struct file_entry    *fe  = udf_node->fe;
   5817 	struct extfile_entry *efe = udf_node->efe;
   5818 	uint64_t file_size;
   5819 	int error;
   5820 
   5821 	if (fe) {
   5822 		file_size  = udf_rw64(fe->inf_len);
   5823 	} else {
   5824 		assert(udf_node->efe);
   5825 		file_size  = udf_rw64(efe->inf_len);
   5826 	}
   5827 
   5828 	DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n",
   5829 			file_size, new_size));
   5830 
   5831 	/* if not changing, we're done */
   5832 	if (file_size == new_size)
   5833 		return 0;
   5834 
   5835 	*extended = (new_size > file_size);
   5836 	if (*extended) {
   5837 		error = udf_grow_node(udf_node, new_size);
   5838 	} else {
   5839 		error = udf_shrink_node(udf_node, new_size);
   5840 	}
   5841 
   5842 	return error;
   5843 }
   5844 
   5845 
   5846 /* --------------------------------------------------------------------- */
   5847 
   5848 void
   5849 udf_itimes(struct udf_node *udf_node, struct timespec *acc,
   5850 	struct timespec *mod, struct timespec *birth)
   5851 {
   5852 	struct timespec now;
   5853 	struct file_entry    *fe;
   5854 	struct extfile_entry *efe;
   5855 	struct filetimes_extattr_entry *ft_extattr;
   5856 	struct timestamp *atime, *mtime, *attrtime, *ctime;
   5857 	struct timestamp  fe_ctime;
   5858 	struct timespec   cur_birth;
   5859 	uint32_t offset, a_l;
   5860 	uint8_t *filedata;
   5861 	int error;
   5862 
   5863 	/* protect against rogue values */
   5864 	if (!udf_node)
   5865 		return;
   5866 
   5867 	fe  = udf_node->fe;
   5868 	efe = udf_node->efe;
   5869 
   5870 	if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY)))
   5871 		return;
   5872 
   5873 	/* get descriptor information */
   5874 	if (fe) {
   5875 		atime    = &fe->atime;
   5876 		mtime    = &fe->mtime;
   5877 		attrtime = &fe->attrtime;
   5878 		filedata = fe->data;
   5879 
   5880 		/* initial save dummy setting */
   5881 		ctime    = &fe_ctime;
   5882 
   5883 		/* check our extended attribute if present */
   5884 		error = udf_extattr_search_intern(udf_node,
   5885 			UDF_FILETIMES_ATTR_NO, "", &offset, &a_l);
   5886 		if (!error) {
   5887 			ft_extattr = (struct filetimes_extattr_entry *)
   5888 				(filedata + offset);
   5889 			if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION)
   5890 				ctime = &ft_extattr->times[0];
   5891 		}
   5892 		/* TODO create the extended attribute if not found ? */
   5893 	} else {
   5894 		assert(udf_node->efe);
   5895 		atime    = &efe->atime;
   5896 		mtime    = &efe->mtime;
   5897 		attrtime = &efe->attrtime;
   5898 		ctime    = &efe->ctime;
   5899 	}
   5900 
   5901 	vfs_timestamp(&now);
   5902 
   5903 	/* set access time */
   5904 	if (udf_node->i_flags & IN_ACCESS) {
   5905 		if (acc == NULL)
   5906 			acc = &now;
   5907 		udf_timespec_to_timestamp(acc, atime);
   5908 	}
   5909 
   5910 	/* set modification time */
   5911 	if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) {
   5912 		if (mod == NULL)
   5913 			mod = &now;
   5914 		udf_timespec_to_timestamp(mod, mtime);
   5915 
   5916 		/* ensure birthtime is older than set modification! */
   5917 		udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth);
   5918 		if ((cur_birth.tv_sec > mod->tv_sec) ||
   5919 			  ((cur_birth.tv_sec == mod->tv_sec) &&
   5920 			     (cur_birth.tv_nsec > mod->tv_nsec))) {
   5921 			udf_timespec_to_timestamp(mod, ctime);
   5922 		}
   5923 	}
   5924 
   5925 	/* update birthtime if specified */
   5926 	/* XXX we asume here that given birthtime is older than mod */
   5927 	if (birth && (birth->tv_sec != VNOVAL)) {
   5928 		udf_timespec_to_timestamp(birth, ctime);
   5929 	}
   5930 
   5931 	/* set change time */
   5932 	if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY))
   5933 		udf_timespec_to_timestamp(&now, attrtime);
   5934 
   5935 	/* notify updates to the node itself */
   5936 	if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY))
   5937 		udf_node->i_flags |= IN_ACCESSED;
   5938 	if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE))
   5939 		udf_node->i_flags |= IN_MODIFIED;
   5940 
   5941 	/* clear modification flags */
   5942 	udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY);
   5943 }
   5944 
   5945 /* --------------------------------------------------------------------- */
   5946 
   5947 int
   5948 udf_update(struct vnode *vp, struct timespec *acc,
   5949 	struct timespec *mod, struct timespec *birth, int updflags)
   5950 {
   5951 	union dscrptr *dscrptr;
   5952 	struct udf_node  *udf_node = VTOI(vp);
   5953 	struct udf_mount *ump = udf_node->ump;
   5954 	struct regid     *impl_id;
   5955 	int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC);
   5956 	int waitfor, flags;
   5957 
   5958 #ifdef DEBUG
   5959 	char bits[128];
   5960 	DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth,
   5961 		updflags));
   5962 	snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags);
   5963 	DPRINTF(CALL, ("\tnode flags %s\n", bits));
   5964 	DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async));
   5965 #endif
   5966 
   5967 	/* set our times */
   5968 	udf_itimes(udf_node, acc, mod, birth);
   5969 
   5970 	/* set our implementation id */
   5971 	if (udf_node->fe) {
   5972 		dscrptr = (union dscrptr *) udf_node->fe;
   5973 		impl_id = &udf_node->fe->imp_id;
   5974 	} else {
   5975 		dscrptr = (union dscrptr *) udf_node->efe;
   5976 		impl_id = &udf_node->efe->imp_id;
   5977 	}
   5978 
   5979 	/* set our ID */
   5980 	udf_set_regid(impl_id, IMPL_NAME);
   5981 	udf_add_impl_regid(ump, impl_id);
   5982 
   5983 	/* update our crc! on RMW we are not allowed to change a thing */
   5984 	udf_validate_tag_and_crc_sums(dscrptr);
   5985 
   5986 	/* if called when mounted readonly, never write back */
   5987 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
   5988 		return 0;
   5989 
   5990 	/* check if the node is dirty 'enough'*/
   5991 	if (updflags & UPDATE_CLOSE) {
   5992 		flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED);
   5993 	} else {
   5994 		flags = udf_node->i_flags & IN_MODIFIED;
   5995 	}
   5996 	if (flags == 0)
   5997 		return 0;
   5998 
   5999 	/* determine if we need to write sync or async */
   6000 	waitfor = 0;
   6001 	if ((flags & IN_MODIFIED) && (mnt_async == 0)) {
   6002 		/* sync mounted */
   6003 		waitfor = updflags & UPDATE_WAIT;
   6004 		if (updflags & UPDATE_DIROP)
   6005 			waitfor |= UPDATE_WAIT;
   6006 	}
   6007 	if (waitfor)
   6008 		return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0);
   6009 
   6010 	return 0;
   6011 }
   6012 
   6013 
   6014 /* --------------------------------------------------------------------- */
   6015 
   6016 
   6017 /*
   6018  * Read one fid and process it into a dirent and advance to the next (*fid)
   6019  * has to be allocated a logical block in size, (*dirent) struct dirent length
   6020  */
   6021 
   6022 int
   6023 udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
   6024 		    struct fileid_desc *fid, struct dirent *dirent)
   6025 {
   6026 	struct udf_node  *dir_node = VTOI(vp);
   6027 	struct udf_mount *ump = dir_node->ump;
   6028 	struct file_entry    *fe  = dir_node->fe;
   6029 	struct extfile_entry *efe = dir_node->efe;
   6030 	uint32_t      fid_size, lb_size;
   6031 	uint64_t      file_size;
   6032 	char         *fid_name;
   6033 	int           enough, error;
   6034 
   6035 	assert(fid);
   6036 	assert(dirent);
   6037 	assert(dir_node);
   6038 	assert(offset);
   6039 	assert(*offset != 1);
   6040 
   6041 	DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset));
   6042 	/* check if we're past the end of the directory */
   6043 	if (fe) {
   6044 		file_size = udf_rw64(fe->inf_len);
   6045 	} else {
   6046 		assert(dir_node->efe);
   6047 		file_size = udf_rw64(efe->inf_len);
   6048 	}
   6049 	if (*offset >= file_size)
   6050 		return EINVAL;
   6051 
   6052 	/* get maximum length of FID descriptor */
   6053 	lb_size = udf_rw32(ump->logical_vol->lb_size);
   6054 
   6055 	/* initialise return values */
   6056 	fid_size = 0;
   6057 	memset(dirent, 0, sizeof(struct dirent));
   6058 	memset(fid, 0, lb_size);
   6059 
   6060 	enough  = (file_size - (*offset) >= UDF_FID_SIZE);
   6061 	if (!enough) {
   6062 		/* short dir ... */
   6063 		return EIO;
   6064 	}
   6065 
   6066 	error = vn_rdwr(UIO_READ, vp,
   6067 			fid, MIN(file_size - (*offset), lb_size), *offset,
   6068 			UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED,
   6069 			NULL, NULL);
   6070 	if (error)
   6071 		return error;
   6072 
   6073 	DPRINTF(FIDS, ("\tfid piece read in fine\n"));
   6074 	/*
   6075 	 * Check if we got a whole descriptor.
   6076 	 * TODO Try to `resync' directory stream when something is very wrong.
   6077 	 */
   6078 
   6079 	/* check if our FID header is OK */
   6080 	error = udf_check_tag(fid);
   6081 	if (error) {
   6082 		goto brokendir;
   6083 	}
   6084 	DPRINTF(FIDS, ("\ttag check ok\n"));
   6085 
   6086 	if (udf_rw16(fid->tag.id) != TAGID_FID) {
   6087 		error = EIO;
   6088 		goto brokendir;
   6089 	}
   6090 	DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n"));
   6091 
   6092 	/* check for length */
   6093 	fid_size = udf_fidsize(fid);
   6094 	enough = (file_size - (*offset) >= fid_size);
   6095 	if (!enough) {
   6096 		error = EIO;
   6097 		goto brokendir;
   6098 	}
   6099 	DPRINTF(FIDS, ("\tthe complete fid is read in\n"));
   6100 
   6101 	/* check FID contents */
   6102 	error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
   6103 brokendir:
   6104 	if (error) {
   6105 		/* note that is sometimes a bit quick to report */
   6106 		printf("UDF: BROKEN DIRECTORY ENTRY\n");
   6107 		/* RESYNC? */
   6108 		/* TODO: use udf_resync_fid_stream */
   6109 		return EIO;
   6110 	}
   6111 	DPRINTF(FIDS, ("\tpayload checked ok\n"));
   6112 
   6113 	/* we got a whole and valid descriptor! */
   6114 	DPRINTF(FIDS, ("\tinterpret FID\n"));
   6115 
   6116 	/* create resulting dirent structure */
   6117 	fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
   6118 	udf_to_unix_name(dirent->d_name, MAXNAMLEN,
   6119 		fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
   6120 
   6121 	/* '..' has no name, so provide one */
   6122 	if (fid->file_char & UDF_FILE_CHAR_PAR)
   6123 		strcpy(dirent->d_name, "..");
   6124 
   6125 	dirent->d_fileno = udf_calchash(&fid->icb);	/* inode hash XXX */
   6126 	dirent->d_namlen = strlen(dirent->d_name);
   6127 	dirent->d_reclen = _DIRENT_SIZE(dirent);
   6128 
   6129 	/*
   6130 	 * Note that its not worth trying to go for the filetypes now... its
   6131 	 * too expensive too
   6132 	 */
   6133 	dirent->d_type = DT_UNKNOWN;
   6134 
   6135 	/* initial guess for filetype we can make */
   6136 	if (fid->file_char & UDF_FILE_CHAR_DIR)
   6137 		dirent->d_type = DT_DIR;
   6138 
   6139 	/* advance */
   6140 	*offset += fid_size;
   6141 
   6142 	return error;
   6143 }
   6144 
   6145 
   6146 /* --------------------------------------------------------------------- */
   6147 
   6148 static void
   6149 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor,
   6150 	int pass, int *ndirty)
   6151 {
   6152 	struct udf_node *udf_node, *n_udf_node;
   6153 	struct vnode *vp;
   6154 	int vdirty, error;
   6155 	int on_type, on_flags, on_vnode;
   6156 
   6157 derailed:
   6158 	KASSERT(mutex_owned(&mntvnode_lock));
   6159 
   6160 	DPRINTF(SYNC, ("sync_pass %d\n", pass));
   6161 	udf_node = LIST_FIRST(&ump->sorted_udf_nodes);
   6162 	for (;udf_node; udf_node = n_udf_node) {
   6163 		DPRINTF(SYNC, ("."));
   6164 
   6165 		udf_node->i_flags &= ~IN_SYNCED;
   6166 		vp = udf_node->vnode;
   6167 
   6168 		mutex_enter(&vp->v_interlock);
   6169 		n_udf_node = LIST_NEXT(udf_node, sortchain);
   6170 		if (n_udf_node)
   6171 			n_udf_node->i_flags |= IN_SYNCED;
   6172 
   6173 		/* system nodes are not synced this way */
   6174 		if (vp->v_vflag & VV_SYSTEM) {
   6175 			mutex_exit(&vp->v_interlock);
   6176 			continue;
   6177 		}
   6178 
   6179 		/* check if its dirty enough to even try */
   6180 		on_type  = (waitfor == MNT_LAZY || vp->v_type == VNON);
   6181 		on_flags = ((udf_node->i_flags &
   6182 			(IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0);
   6183 		on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd)
   6184 			&& UVM_OBJ_IS_CLEAN(&vp->v_uobj);
   6185 		if (on_type || (on_flags || on_vnode)) { /* XXX */
   6186 			/* not dirty (enough?) */
   6187 			mutex_exit(&vp->v_interlock);
   6188 			continue;
   6189 		}
   6190 
   6191 		mutex_exit(&mntvnode_lock);
   6192 		error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK);
   6193 		if (error) {
   6194 			mutex_enter(&mntvnode_lock);
   6195 			if (error == ENOENT)
   6196 				goto derailed;
   6197 			*ndirty += 1;
   6198 			continue;
   6199 		}
   6200 
   6201 		switch (pass) {
   6202 		case 1:
   6203 			VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0);
   6204 			break;
   6205 		case 2:
   6206 			vdirty = vp->v_numoutput;
   6207 			if (vp->v_tag == VT_UDF)
   6208 				vdirty += udf_node->outstanding_bufs +
   6209 					udf_node->outstanding_nodedscr;
   6210 			if (vdirty == 0)
   6211 				VOP_FSYNC(vp, cred, 0,0,0);
   6212 			*ndirty += vdirty;
   6213 			break;
   6214 		case 3:
   6215 			vdirty = vp->v_numoutput;
   6216 			if (vp->v_tag == VT_UDF)
   6217 				vdirty += udf_node->outstanding_bufs +
   6218 					udf_node->outstanding_nodedscr;
   6219 			*ndirty += vdirty;
   6220 			break;
   6221 		}
   6222 
   6223 		vput(vp);
   6224 		mutex_enter(&mntvnode_lock);
   6225 	}
   6226 	DPRINTF(SYNC, ("END sync_pass %d\n", pass));
   6227 }
   6228 
   6229 
   6230 void
   6231 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor)
   6232 {
   6233 	int dummy, ndirty;
   6234 
   6235 	mutex_enter(&mntvnode_lock);
   6236 recount:
   6237 	dummy = 0;
   6238 	DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6239 	DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n"));
   6240 	udf_sync_pass(ump, cred, waitfor, 1, &dummy);
   6241 
   6242 	DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6243 	DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n"));
   6244 	udf_sync_pass(ump, cred, waitfor, 2, &dummy);
   6245 
   6246 	if (waitfor == MNT_WAIT) {
   6247 		ndirty = ump->devvp->v_numoutput;
   6248 		DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n",
   6249 			ndirty));
   6250 		udf_sync_pass(ump, cred, waitfor, 3, &ndirty);
   6251 		DPRINTF(SYNC, ("counted num dirty pending blocks %d\n",
   6252 			ndirty));
   6253 
   6254 		if (ndirty) {
   6255 			/* 1/4 second wait */
   6256 			cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock,
   6257 				hz/4);
   6258 			goto recount;
   6259 		}
   6260 	}
   6261 
   6262 	mutex_exit(&mntvnode_lock);
   6263 }
   6264 
   6265 /* --------------------------------------------------------------------- */
   6266 
   6267 /*
   6268  * Read and write file extent in/from the buffer.
   6269  *
   6270  * The splitup of the extent into seperate request-buffers is to minimise
   6271  * copying around as much as possible.
   6272  *
   6273  * block based file reading and writing
   6274  */
   6275 
   6276 static int
   6277 udf_read_internal(struct udf_node *node, uint8_t *blob)
   6278 {
   6279 	struct udf_mount *ump;
   6280 	struct file_entry     *fe = node->fe;
   6281 	struct extfile_entry *efe = node->efe;
   6282 	uint64_t inflen;
   6283 	uint32_t sector_size;
   6284 	uint8_t  *pos;
   6285 	int icbflags, addr_type;
   6286 
   6287 	/* get extent and do some paranoia checks */
   6288 	ump = node->ump;
   6289 	sector_size = ump->discinfo.sector_size;
   6290 
   6291 	if (fe) {
   6292 		inflen   = udf_rw64(fe->inf_len);
   6293 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6294 		icbflags = udf_rw16(fe->icbtag.flags);
   6295 	} else {
   6296 		assert(node->efe);
   6297 		inflen   = udf_rw64(efe->inf_len);
   6298 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6299 		icbflags = udf_rw16(efe->icbtag.flags);
   6300 	}
   6301 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6302 
   6303 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6304 	assert(inflen < sector_size);
   6305 
   6306 	/* copy out info */
   6307 	memset(blob, 0, sector_size);
   6308 	memcpy(blob, pos, inflen);
   6309 
   6310 	return 0;
   6311 }
   6312 
   6313 
   6314 static int
   6315 udf_write_internal(struct udf_node *node, uint8_t *blob)
   6316 {
   6317 	struct udf_mount *ump;
   6318 	struct file_entry     *fe = node->fe;
   6319 	struct extfile_entry *efe = node->efe;
   6320 	uint64_t inflen;
   6321 	uint32_t sector_size;
   6322 	uint8_t  *pos;
   6323 	int icbflags, addr_type;
   6324 
   6325 	/* get extent and do some paranoia checks */
   6326 	ump = node->ump;
   6327 	sector_size = ump->discinfo.sector_size;
   6328 
   6329 	if (fe) {
   6330 		inflen   = udf_rw64(fe->inf_len);
   6331 		pos      = &fe->data[0] + udf_rw32(fe->l_ea);
   6332 		icbflags = udf_rw16(fe->icbtag.flags);
   6333 	} else {
   6334 		assert(node->efe);
   6335 		inflen   = udf_rw64(efe->inf_len);
   6336 		pos      = &efe->data[0] + udf_rw32(efe->l_ea);
   6337 		icbflags = udf_rw16(efe->icbtag.flags);
   6338 	}
   6339 	addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
   6340 
   6341 	assert(addr_type == UDF_ICB_INTERN_ALLOC);
   6342 	assert(inflen < sector_size);
   6343 
   6344 	/* copy in blob */
   6345 	/* memset(pos, 0, inflen); */
   6346 	memcpy(pos, blob, inflen);
   6347 
   6348 	return 0;
   6349 }
   6350 
   6351 
   6352 void
   6353 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf)
   6354 {
   6355 	struct buf *nestbuf;
   6356 	struct udf_mount *ump = udf_node->ump;
   6357 	uint64_t   *mapping;
   6358 	uint64_t    run_start;
   6359 	uint32_t    sector_size;
   6360 	uint32_t    buf_offset, sector, rbuflen, rblk;
   6361 	uint32_t    from, lblkno;
   6362 	uint32_t    sectors;
   6363 	uint8_t    *buf_pos;
   6364 	int error, run_length, isdir, what;
   6365 
   6366 	sector_size = udf_node->ump->discinfo.sector_size;
   6367 
   6368 	from    = buf->b_blkno;
   6369 	sectors = buf->b_bcount / sector_size;
   6370 
   6371 	isdir   = (udf_node->vnode->v_type == VDIR);
   6372 	what    = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6373 
   6374 	/* assure we have enough translation slots */
   6375 	KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS);
   6376 	KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS);
   6377 
   6378 	if (sectors > UDF_MAX_MAPPINGS) {
   6379 		printf("udf_read_filebuf: implementation limit on bufsize\n");
   6380 		buf->b_error  = EIO;
   6381 		biodone(buf);
   6382 		return;
   6383 	}
   6384 
   6385 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6386 
   6387 	error = 0;
   6388 	DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
   6389 	error = udf_translate_file_extent(udf_node, from, sectors, mapping);
   6390 	if (error) {
   6391 		buf->b_error  = error;
   6392 		biodone(buf);
   6393 		goto out;
   6394 	}
   6395 	DPRINTF(READ, ("\ttranslate extent went OK\n"));
   6396 
   6397 	/* pre-check if its an internal */
   6398 	if (*mapping == UDF_TRANS_INTERN) {
   6399 		error = udf_read_internal(udf_node, (uint8_t *) buf->b_data);
   6400 		if (error)
   6401 			buf->b_error  = error;
   6402 		biodone(buf);
   6403 		goto out;
   6404 	}
   6405 	DPRINTF(READ, ("\tnot intern\n"));
   6406 
   6407 #ifdef DEBUG
   6408 	if (udf_verbose & UDF_DEBUG_TRANSLATE) {
   6409 		printf("Returned translation table:\n");
   6410 		for (sector = 0; sector < sectors; sector++) {
   6411 			printf("%d : %"PRIu64"\n", sector, mapping[sector]);
   6412 		}
   6413 	}
   6414 #endif
   6415 
   6416 	/* request read-in of data from disc sheduler */
   6417 	buf->b_resid = buf->b_bcount;
   6418 	for (sector = 0; sector < sectors; sector++) {
   6419 		buf_offset = sector * sector_size;
   6420 		buf_pos    = (uint8_t *) buf->b_data + buf_offset;
   6421 		DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
   6422 
   6423 		/* check if its zero or unmapped to stop reading */
   6424 		switch (mapping[sector]) {
   6425 		case UDF_TRANS_UNMAPPED:
   6426 		case UDF_TRANS_ZERO:
   6427 			/* copy zero sector TODO runlength like below */
   6428 			memset(buf_pos, 0, sector_size);
   6429 			DPRINTF(READ, ("\treturning zero sector\n"));
   6430 			nestiobuf_done(buf, sector_size, 0);
   6431 			break;
   6432 		default :
   6433 			DPRINTF(READ, ("\tread sector "
   6434 			    "%"PRIu64"\n", mapping[sector]));
   6435 
   6436 			lblkno = from + sector;
   6437 			run_start  = mapping[sector];
   6438 			run_length = 1;
   6439 			while (sector < sectors-1) {
   6440 				if (mapping[sector+1] != mapping[sector]+1)
   6441 					break;
   6442 				run_length++;
   6443 				sector++;
   6444 			}
   6445 
   6446 			/*
   6447 			 * nest an iobuf and mark it for async reading. Since
   6448 			 * we're using nested buffers, they can't be cached by
   6449 			 * design.
   6450 			 */
   6451 			rbuflen = run_length * sector_size;
   6452 			rblk    = run_start  * (sector_size/DEV_BSIZE);
   6453 
   6454 			nestbuf = getiobuf(NULL, true);
   6455 			nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6456 			/* nestbuf is B_ASYNC */
   6457 
   6458 			/* identify this nestbuf */
   6459 			nestbuf->b_lblkno   = lblkno;
   6460 			assert(nestbuf->b_vp == udf_node->vnode);
   6461 
   6462 			/* CD shedules on raw blkno */
   6463 			nestbuf->b_blkno      = rblk;
   6464 			nestbuf->b_proc       = NULL;
   6465 			nestbuf->b_rawblkno   = rblk;
   6466 			nestbuf->b_udf_c_type = what;
   6467 
   6468 			udf_discstrat_queuebuf(ump, nestbuf);
   6469 		}
   6470 	}
   6471 out:
   6472 	/* if we're synchronously reading, wait for the completion */
   6473 	if ((buf->b_flags & B_ASYNC) == 0)
   6474 		biowait(buf);
   6475 
   6476 	DPRINTF(READ, ("\tend of read_filebuf\n"));
   6477 	free(mapping, M_TEMP);
   6478 	return;
   6479 }
   6480 
   6481 
   6482 void
   6483 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf)
   6484 {
   6485 	struct buf *nestbuf;
   6486 	struct udf_mount *ump = udf_node->ump;
   6487 	uint64_t   *mapping;
   6488 	uint64_t    run_start;
   6489 	uint32_t    lb_size;
   6490 	uint32_t    buf_offset, lb_num, rbuflen, rblk;
   6491 	uint32_t    from, lblkno;
   6492 	uint32_t    num_lb;
   6493 	int error, run_length, isdir, what, s;
   6494 
   6495 	lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size);
   6496 
   6497 	from   = buf->b_blkno;
   6498 	num_lb = buf->b_bcount / lb_size;
   6499 
   6500 	isdir  = (udf_node->vnode->v_type == VDIR);
   6501 	what   = isdir ? UDF_C_FIDS : UDF_C_USERDATA;
   6502 
   6503 	if (udf_node == ump->metadatabitmap_node)
   6504 		what = UDF_C_METADATA_SBM;
   6505 
   6506 	/* assure we have enough translation slots */
   6507 	KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS);
   6508 	KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS);
   6509 
   6510 	if (num_lb > UDF_MAX_MAPPINGS) {
   6511 		printf("udf_write_filebuf: implementation limit on bufsize\n");
   6512 		buf->b_error  = EIO;
   6513 		biodone(buf);
   6514 		return;
   6515 	}
   6516 
   6517 	mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK);
   6518 
   6519 	error = 0;
   6520 	DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb));
   6521 	error = udf_translate_file_extent(udf_node, from, num_lb, mapping);
   6522 	if (error) {
   6523 		buf->b_error  = error;
   6524 		biodone(buf);
   6525 		goto out;
   6526 	}
   6527 	DPRINTF(WRITE, ("\ttranslate extent went OK\n"));
   6528 
   6529 	/* if its internally mapped, we can write it in the descriptor itself */
   6530 	if (*mapping == UDF_TRANS_INTERN) {
   6531 		/* TODO paranoia check if we ARE going to have enough space */
   6532 		error = udf_write_internal(udf_node, (uint8_t *) buf->b_data);
   6533 		if (error)
   6534 			buf->b_error  = error;
   6535 		biodone(buf);
   6536 		goto out;
   6537 	}
   6538 	DPRINTF(WRITE, ("\tnot intern\n"));
   6539 
   6540 	/* request write out of data to disc sheduler */
   6541 	buf->b_resid = buf->b_bcount;
   6542 	for (lb_num = 0; lb_num < num_lb; lb_num++) {
   6543 		buf_offset = lb_num * lb_size;
   6544 		DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num));
   6545 
   6546 		/*
   6547 		 * Mappings are not that important here. Just before we write
   6548 		 * the lb_num we late-allocate them when needed and update the
   6549 		 * mapping in the udf_node.
   6550 		 */
   6551 
   6552 		/* XXX why not ignore the mapping altogether ? */
   6553 		/* TODO estimate here how much will be late-allocated */
   6554 		DPRINTF(WRITE, ("\twrite lb_num "
   6555 		    "%"PRIu64, mapping[lb_num]));
   6556 
   6557 		lblkno = from + lb_num;
   6558 		run_start  = mapping[lb_num];
   6559 		run_length = 1;
   6560 		while (lb_num < num_lb-1) {
   6561 			if (mapping[lb_num+1] != mapping[lb_num]+1)
   6562 				if (mapping[lb_num+1] != mapping[lb_num])
   6563 					break;
   6564 			run_length++;
   6565 			lb_num++;
   6566 		}
   6567 		DPRINTF(WRITE, ("+ %d\n", run_length));
   6568 
   6569 		/* nest an iobuf on the master buffer for the extent */
   6570 		rbuflen = run_length * lb_size;
   6571 		rblk = run_start * (lb_size/DEV_BSIZE);
   6572 
   6573 #if 0
   6574 		/* if its zero or unmapped, our blknr gets -1 for unmapped */
   6575 		switch (mapping[lb_num]) {
   6576 		case UDF_TRANS_UNMAPPED:
   6577 		case UDF_TRANS_ZERO:
   6578 			rblk = -1;
   6579 			break;
   6580 		default:
   6581 			rblk = run_start * (lb_size/DEV_BSIZE);
   6582 			break;
   6583 		}
   6584 #endif
   6585 
   6586 		nestbuf = getiobuf(NULL, true);
   6587 		nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
   6588 		/* nestbuf is B_ASYNC */
   6589 
   6590 		/* identify this nestbuf */
   6591 		nestbuf->b_lblkno   = lblkno;
   6592 		KASSERT(nestbuf->b_vp == udf_node->vnode);
   6593 
   6594 		/* CD shedules on raw blkno */
   6595 		nestbuf->b_blkno      = rblk;
   6596 		nestbuf->b_proc       = NULL;
   6597 		nestbuf->b_rawblkno   = rblk;
   6598 		nestbuf->b_udf_c_type = what;
   6599 
   6600 		/* increment our outstanding bufs counter */
   6601 		s = splbio();
   6602 			udf_node->outstanding_bufs++;
   6603 		splx(s);
   6604 
   6605 		udf_discstrat_queuebuf(ump, nestbuf);
   6606 	}
   6607 out:
   6608 	/* if we're synchronously writing, wait for the completion */
   6609 	if ((buf->b_flags & B_ASYNC) == 0)
   6610 		biowait(buf);
   6611 
   6612 	DPRINTF(WRITE, ("\tend of write_filebuf\n"));
   6613 	free(mapping, M_TEMP);
   6614 	return;
   6615 }
   6616 
   6617 /* --------------------------------------------------------------------- */
   6618 
   6619 
   6620