init_sysctl.c revision 1.1 1 /* $NetBSD: init_sysctl.c,v 1.1 2003/12/04 19:38:23 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "pty.h"
41 #include "rnd.h"
42
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/sysctl.h>
46 #include <sys/errno.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/unistd.h>
50 #include <sys/disklabel.h>
51 #include <sys/rnd.h>
52 #include <sys/vnode.h>
53 #include <sys/mount.h>
54 #include <sys/namei.h>
55 #include <sys/msgbuf.h>
56 #include <dev/cons.h>
57 #include <sys/socketvar.h>
58 #include <sys/file.h>
59 #include <sys/tty.h>
60 #include <sys/malloc.h>
61 #include <sys/resource.h>
62 #include <sys/resourcevar.h>
63 #include <sys/exec.h>
64 #include <sys/conf.h>
65 #include <sys/device.h>
66
67 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
68 #include <sys/ipc.h>
69 #endif
70 #ifdef SYSVMSG
71 #include <sys/msg.h>
72 #endif
73 #ifdef SYSVSEM
74 #include <sys/sem.h>
75 #endif
76 #ifdef SYSVSHM
77 #include <sys/shm.h>
78 #endif
79
80 /*
81 * try over estimating by 5 procs/lwps
82 */
83 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
84 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
85
86 /*
87 * convert pointer to 64 int for struct kinfo_proc2
88 */
89 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
90
91 #ifndef MULTIPROCESSOR
92 #define sysctl_ncpus() (1)
93 #else /* MULTIPROCESSOR */
94 #ifndef CPU_INFO_FOREACH
95 #define CPU_INFO_ITERATOR int
96 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
97 #endif
98 static int
99 sysctl_ncpus(void)
100 {
101 struct cpu_info *ci;
102 CPU_INFO_ITERATOR cii;
103
104 int ncpus = 0;
105 for (CPU_INFO_FOREACH(cii, ci))
106 ncpus++;
107 return (ncpus);
108 }
109 #endif /* MULTIPROCESSOR */
110
111 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
112 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
113 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
114 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
115 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
116 static int sysctl_kern_file(SYSCTLFN_PROTO);
117 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
118 static int sysctl_msgbuf(SYSCTLFN_PROTO);
119 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
120 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
121 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
122 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
123 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
124 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
125 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
126 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
127 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
128 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
129 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
130 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
131 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
132 static int sysctl_doeproc(SYSCTLFN_PROTO);
133 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
134 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
135 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
136
137 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
138 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
139
140 /*
141 * ********************************************************************
142 * section 1: setup routines
143 * ********************************************************************
144 * these functions are stuffed into a link set for sysctl setup
145 * functions. they're never called or referenced from anywhere else.
146 * ********************************************************************
147 */
148
149 /*
150 * sets up the base nodes...
151 */
152 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
153 {
154
155 sysctl_createv(SYSCTL_PERMANENT,
156 CTLTYPE_NODE, "kern", NULL,
157 NULL, 0, NULL, 0,
158 CTL_KERN, CTL_EOL);
159 sysctl_createv(SYSCTL_PERMANENT,
160 CTLTYPE_NODE, "vm", NULL,
161 NULL, 0, NULL, 0,
162 CTL_VM, CTL_EOL);
163 sysctl_createv(SYSCTL_PERMANENT,
164 CTLTYPE_NODE, "vfs", NULL,
165 NULL, 0, NULL, 0,
166 CTL_VFS, CTL_EOL);
167 sysctl_createv(SYSCTL_PERMANENT,
168 CTLTYPE_NODE, "net", NULL,
169 NULL, 0, NULL, 0,
170 CTL_NET, CTL_EOL);
171 sysctl_createv(SYSCTL_PERMANENT,
172 CTLTYPE_NODE, "debug", NULL,
173 NULL, 0, NULL, 0,
174 CTL_DEBUG, CTL_EOL);
175 sysctl_createv(SYSCTL_PERMANENT,
176 CTLTYPE_NODE, "hw", NULL,
177 NULL, 0, NULL, 0,
178 CTL_HW, CTL_EOL);
179 sysctl_createv(SYSCTL_PERMANENT,
180 CTLTYPE_NODE, "machdep", NULL,
181 NULL, 0, NULL, 0,
182 CTL_MACHDEP, CTL_EOL);
183 /*
184 * this node is inserted so that the sysctl nodes in libc can
185 * operate.
186 */
187 sysctl_createv(SYSCTL_PERMANENT,
188 CTLTYPE_NODE, "user", NULL,
189 NULL, 0, NULL, 0,
190 CTL_USER, CTL_EOL);
191 sysctl_createv(SYSCTL_PERMANENT,
192 CTLTYPE_NODE, "ddb", NULL,
193 NULL, 0, NULL, 0,
194 CTL_DDB, CTL_EOL);
195 sysctl_createv(SYSCTL_PERMANENT,
196 CTLTYPE_NODE, "proc", NULL,
197 NULL, 0, NULL, 0,
198 CTL_PROC, CTL_EOL);
199 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
200 CTLTYPE_NODE, "vendor", NULL,
201 NULL, 0, NULL, 0,
202 CTL_VENDOR, CTL_EOL);
203 sysctl_createv(SYSCTL_PERMANENT,
204 CTLTYPE_NODE, "emul", NULL,
205 NULL, 0, NULL, 0,
206 CTL_EMUL, CTL_EOL);
207 }
208
209 /*
210 * this setup routine is a replacement for kern_sysctl()
211 */
212 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
213 {
214 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
215 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
216 extern int dumponpanic; /* defined in kern/subr_prf.c */
217
218 sysctl_createv(SYSCTL_PERMANENT,
219 CTLTYPE_NODE, "kern", NULL,
220 NULL, 0, NULL, 0,
221 CTL_KERN, CTL_EOL);
222
223 sysctl_createv(SYSCTL_PERMANENT,
224 CTLTYPE_STRING, "ostype", NULL,
225 NULL, 0, &ostype, 0,
226 CTL_KERN, KERN_OSTYPE, CTL_EOL);
227 sysctl_createv(SYSCTL_PERMANENT,
228 CTLTYPE_STRING, "osrelease", NULL,
229 NULL, 0, &osrelease, 0,
230 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
231 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
232 CTLTYPE_INT, "osrevision", NULL,
233 NULL, __NetBSD_Version__, NULL, 0,
234 CTL_KERN, KERN_OSREV, CTL_EOL);
235 sysctl_createv(SYSCTL_PERMANENT,
236 CTLTYPE_STRING, "version", NULL,
237 NULL, 0, &version, 0,
238 CTL_KERN, KERN_VERSION, CTL_EOL);
239 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
240 CTLTYPE_INT, "maxvnodes", NULL,
241 sysctl_kern_maxvnodes, 0, NULL, 0,
242 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
243 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
244 CTLTYPE_INT, "maxproc", NULL,
245 sysctl_kern_maxproc, 0, NULL, 0,
246 CTL_KERN, KERN_MAXPROC, CTL_EOL);
247 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
248 CTLTYPE_INT, "maxfiles", NULL,
249 NULL, 0, &maxfiles, 0,
250 CTL_KERN, KERN_MAXFILES, CTL_EOL);
251 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
252 CTLTYPE_INT, "argmax", NULL,
253 NULL, ARG_MAX, NULL, 0,
254 CTL_KERN, KERN_ARGMAX, CTL_EOL);
255 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
256 CTLTYPE_INT, "securelevel", NULL,
257 sysctl_kern_securelevel, 0, &securelevel, 0,
258 CTL_KERN, KERN_SECURELVL, CTL_EOL);
259 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
260 CTLTYPE_STRING, "hostname", NULL,
261 NULL, 0, &hostname, MAXHOSTNAMELEN,
262 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
263 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
264 CTLTYPE_INT, "hostid", NULL,
265 sysctl_kern_hostid, 0, NULL, 0,
266 CTL_KERN, KERN_HOSTID, CTL_EOL);
267 sysctl_createv(SYSCTL_PERMANENT,
268 CTLTYPE_STRUCT, "clockrate", NULL,
269 sysctl_kern_clockrate, 0, NULL,
270 sizeof(struct clockinfo),
271 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
272 sysctl_createv(SYSCTL_PERMANENT,
273 CTLTYPE_STRUCT, "vnode", NULL,
274 sysctl_kern_vnode, 0, NULL, 0,
275 CTL_KERN, KERN_VNODE, CTL_EOL);
276 sysctl_createv(SYSCTL_PERMANENT,
277 CTLTYPE_STRUCT, "file", NULL,
278 sysctl_kern_file, 0, NULL, 0,
279 CTL_KERN, KERN_FILE, CTL_EOL);
280 #ifndef GPROF
281 sysctl_createv(SYSCTL_PERMANENT,
282 CTLTYPE_NODE, "profiling", NULL,
283 sysctl_notavail, 0, NULL, 0,
284 CTL_KERN, KERN_PROF, CTL_EOL);
285 #endif
286 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
287 CTLTYPE_INT, "posix1version", NULL,
288 NULL, _POSIX_VERSION, NULL, 0,
289 CTL_KERN, KERN_POSIX1, CTL_EOL);
290 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
291 CTLTYPE_INT, "ngroups", NULL,
292 NULL, NGROUPS_MAX, NULL, 0,
293 CTL_KERN, KERN_NGROUPS, CTL_EOL);
294 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
295 CTLTYPE_INT, "job_control", NULL,
296 NULL, 1, NULL, 0,
297 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
298 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
299 CTLTYPE_INT, "saved_ids", NULL, NULL,
300 #ifdef _POSIX_SAVED_IDS
301 1,
302 #else /* _POSIX_SAVED_IDS */
303 0,
304 #endif /* _POSIX_SAVED_IDS */
305 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
306 sysctl_createv(SYSCTL_PERMANENT,
307 CTLTYPE_STRUCT, "boottime", NULL,
308 NULL, 0, &boottime, sizeof(boottime),
309 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
310 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
311 CTLTYPE_STRING, "domainname", NULL,
312 NULL, 0, &domainname, MAXHOSTNAMELEN,
313 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
314 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
315 CTLTYPE_INT, "maxpartitions", NULL,
316 NULL, MAXPARTITIONS, NULL, 0,
317 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
318 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
319 CTLTYPE_INT, "rawpartition", NULL,
320 NULL, RAW_PART, NULL, 0,
321 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
322 sysctl_createv(SYSCTL_PERMANENT,
323 CTLTYPE_STRUCT, "timex", NULL,
324 sysctl_notavail, 0, NULL, 0,
325 CTL_KERN, KERN_TIMEX, CTL_EOL);
326 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
327 CTLTYPE_INT, "autonicetime", NULL,
328 sysctl_kern_autonice, 0, &autonicetime, 0,
329 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
330 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
331 CTLTYPE_INT, "autoniceval", NULL,
332 sysctl_kern_autonice, 0, &autoniceval, 0,
333 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
334 sysctl_createv(SYSCTL_PERMANENT,
335 CTLTYPE_INT, "rtc_offset", NULL,
336 NULL, 0, &rtc_offset, 0,
337 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
338 sysctl_createv(SYSCTL_PERMANENT,
339 CTLTYPE_STRING, "root_device", NULL,
340 sysctl_root_device, 0, NULL, 0,
341 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
342 sysctl_createv(SYSCTL_PERMANENT,
343 CTLTYPE_INT, "msgbufsize", NULL,
344 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
345 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
346 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
347 CTLTYPE_INT, "fsync", NULL,
348 NULL, 1, NULL, 0,
349 CTL_KERN, KERN_FSYNC, CTL_EOL);
350 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
351 CTLTYPE_INT, "sysvmsg", NULL, NULL,
352 #ifdef SYSVMSG
353 1,
354 #else /* SYSVMSG */
355 0,
356 #endif /* SYSVMSG */
357 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
358 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
359 CTLTYPE_INT, "sysvsem", NULL, NULL,
360 #ifdef SYSVSEM
361 1,
362 #else /* SYSVSEM */
363 0,
364 #endif /* SYSVSEM */
365 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
366 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
367 CTLTYPE_INT, "sysvshm", NULL, NULL,
368 #ifdef SYSVSHM
369 1,
370 #else /* SYSVSHM */
371 0,
372 #endif /* SYSVSHM */
373 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
374 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
375 CTLTYPE_INT, "synchronized_io", NULL,
376 NULL, 1, NULL, 0,
377 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
378 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
379 CTLTYPE_INT, "iov_max", NULL,
380 NULL, IOV_MAX, NULL, 0,
381 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
382 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
383 CTLTYPE_INT, "mapped_files", NULL,
384 NULL, 1, NULL, 0,
385 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
386 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
387 CTLTYPE_INT, "memlock", NULL,
388 NULL, 1, NULL, 0,
389 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
390 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
391 CTLTYPE_INT, "memlock_range", NULL,
392 NULL, 1, NULL, 0,
393 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
394 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
395 CTLTYPE_INT, "memory_protection", NULL,
396 NULL, 1, NULL, 0,
397 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
398 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
399 CTLTYPE_INT, "login_name_max", NULL,
400 NULL, LOGIN_NAME_MAX, NULL, 0,
401 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
402 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
403 CTLTYPE_STRING, "defcorename", NULL,
404 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
405 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
406 sysctl_createv(SYSCTL_PERMANENT,
407 CTLTYPE_INT, "logsigexit", NULL,
408 NULL, 0, &kern_logsigexit, 0,
409 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
410 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
411 CTLTYPE_INT, "fscale", NULL,
412 NULL, FSCALE, NULL, 0,
413 CTL_KERN, KERN_FSCALE, CTL_EOL);
414 sysctl_createv(SYSCTL_PERMANENT,
415 CTLTYPE_INT, "ccpu", NULL,
416 NULL, 0, &ccpu, 0,
417 CTL_KERN, KERN_CCPU, CTL_EOL);
418 sysctl_createv(SYSCTL_PERMANENT,
419 CTLTYPE_STRUCT, "cp_time", NULL,
420 sysctl_kern_cptime, 0, NULL, 0,
421 CTL_KERN, KERN_CP_TIME, CTL_EOL);
422 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
423 sysctl_createv(SYSCTL_PERMANENT,
424 CTLTYPE_STRUCT, "sysvipc_info", NULL,
425 sysctl_kern_sysvipc, 0, NULL, 0,
426 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
427 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
428 sysctl_createv(SYSCTL_PERMANENT,
429 CTLTYPE_INT, "msgbuf", NULL,
430 sysctl_msgbuf, 0, NULL, 0,
431 CTL_KERN, KERN_MSGBUF, CTL_EOL);
432 sysctl_createv(SYSCTL_PERMANENT,
433 CTLTYPE_STRUCT, "consdev", NULL,
434 sysctl_consdev, 0, NULL, sizeof(dev_t),
435 CTL_KERN, KERN_CONSDEV, CTL_EOL);
436 #if NPTY > 0
437 sysctl_createv(SYSCTL_PERMANENT,
438 CTLTYPE_INT, "maxptys", NULL,
439 sysctl_kern_maxptys, 0, NULL, 0,
440 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
441 #endif /* NPTY > 0 */
442 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
443 CTLTYPE_INT, "maxphys", NULL,
444 NULL, MAXPHYS, NULL, 0,
445 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
446 sysctl_createv(SYSCTL_PERMANENT,
447 CTLTYPE_INT, "sbmax", NULL,
448 sysctl_kern_sbmax, 0, NULL, 0,
449 CTL_KERN, KERN_SBMAX, CTL_EOL);
450 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
451 CTLTYPE_INT, "monotonic_clock", NULL,
452 /* XXX _POSIX_VERSION */
453 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
454 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
455 sysctl_createv(SYSCTL_PERMANENT,
456 CTLTYPE_INT, "urandom", NULL,
457 sysctl_kern_urnd, 0, NULL, 0,
458 CTL_KERN, KERN_URND, CTL_EOL);
459 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
460 CTLTYPE_INT, "labelsector", NULL,
461 NULL, LABELSECTOR, NULL, 0,
462 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
463 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
464 CTLTYPE_INT, "labeloffset", NULL,
465 NULL, LABELOFFSET, NULL, 0,
466 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
467 sysctl_createv(SYSCTL_PERMANENT,
468 CTLTYPE_NODE, "lwp", NULL,
469 sysctl_kern_lwp, 0, NULL, 0,
470 CTL_KERN, KERN_LWP, CTL_EOL);
471 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
472 CTLTYPE_INT, "forkfsleep", NULL,
473 sysctl_kern_forkfsleep, 0, NULL, 0,
474 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
475 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
476 CTLTYPE_INT, "posix_threads", NULL,
477 /* XXX _POSIX_VERSION */
478 NULL, _POSIX_THREADS, NULL, 0,
479 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
480 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
481 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
482 #ifdef P1003_1B_SEMAPHORE
483 200112,
484 #else /* P1003_1B_SEMAPHORE */
485 0,
486 #endif /* P1003_1B_SEMAPHORE */
487 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
488 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
489 CTLTYPE_INT, "posix_barriers", NULL,
490 /* XXX _POSIX_VERSION */
491 NULL, _POSIX_BARRIERS, NULL, 0,
492 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
493 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
494 CTLTYPE_INT, "posix_timers", NULL,
495 /* XXX _POSIX_VERSION */
496 NULL, _POSIX_TIMERS, NULL, 0,
497 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
498 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
499 CTLTYPE_INT, "posix_spin_locks", NULL,
500 /* XXX _POSIX_VERSION */
501 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
502 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
503 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
504 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
505 /* XXX _POSIX_VERSION */
506 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
507 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
508 sysctl_createv(SYSCTL_PERMANENT,
509 CTLTYPE_INT, "dump_on_panic", NULL,
510 NULL, 0, &dumponpanic, 0,
511 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
512 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
513 CTLTYPE_INT, "somaxkva", NULL,
514 sysctl_kern_somaxkva, 0, NULL, 0,
515 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
516 sysctl_createv(SYSCTL_PERMANENT,
517 CTLTYPE_INT, "root_partition", NULL,
518 sysctl_kern_root_partition, 0, NULL, 0,
519 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
520 sysctl_createv(SYSCTL_PERMANENT,
521 CTLTYPE_STRUCT, "drivers", NULL,
522 sysctl_kern_drivers, 0, NULL, 0,
523 CTL_KERN, KERN_DRIVERS, CTL_EOL);
524 }
525
526 SYSCTL_SETUP(sysctl_kern_proc_setup,
527 "sysctl kern.proc/proc2/proc_args subtree setup")
528 {
529
530 sysctl_createv(SYSCTL_PERMANENT,
531 CTLTYPE_NODE, "kern", NULL,
532 NULL, 0, NULL, 0,
533 CTL_KERN, CTL_EOL);
534
535 sysctl_createv(SYSCTL_PERMANENT,
536 CTLTYPE_NODE, "proc", NULL,
537 sysctl_doeproc, 0, NULL, 0,
538 CTL_KERN, KERN_PROC, CTL_EOL);
539 sysctl_createv(SYSCTL_PERMANENT,
540 CTLTYPE_NODE, "proc2", NULL,
541 sysctl_doeproc, 0, NULL, 0,
542 CTL_KERN, KERN_PROC2, CTL_EOL);
543 sysctl_createv(SYSCTL_PERMANENT,
544 CTLTYPE_NODE, "proc_args", NULL,
545 sysctl_kern_proc_args, 0, NULL, 0,
546 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
547
548 /*
549 "nodes" under these:
550
551 KERN_PROC_ALL
552 KERN_PROC_PID pid
553 KERN_PROC_PGRP pgrp
554 KERN_PROC_SESSION sess
555 KERN_PROC_TTY tty
556 KERN_PROC_UID uid
557 KERN_PROC_RUID uid
558 KERN_PROC_GID gid
559 KERN_PROC_RGID gid
560
561 all in all, probably not worth the effort...
562 */
563 }
564
565 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
566 {
567 u_int u;
568 u_quad_t q;
569
570 sysctl_createv(SYSCTL_PERMANENT,
571 CTLTYPE_NODE, "hw", NULL,
572 NULL, 0, NULL, 0,
573 CTL_HW, CTL_EOL);
574
575 sysctl_createv(SYSCTL_PERMANENT,
576 CTLTYPE_STRING, "machine", NULL,
577 NULL, 0, machine, 0,
578 CTL_HW, HW_MACHINE, CTL_EOL);
579 sysctl_createv(SYSCTL_PERMANENT,
580 CTLTYPE_STRING, "model", NULL,
581 NULL, 0, cpu_model, 0,
582 CTL_HW, HW_MODEL, CTL_EOL);
583 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
584 CTLTYPE_INT, "ncpu", NULL,
585 NULL, sysctl_ncpus(), NULL, 0,
586 CTL_HW, HW_NCPU, CTL_EOL);
587 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
588 CTLTYPE_INT, "byteorder", NULL,
589 NULL, BYTE_ORDER, NULL, 0,
590 CTL_HW, HW_BYTEORDER, CTL_EOL);
591 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
592 UINT_MAX : physmem * PAGE_SIZE;
593 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
594 CTLTYPE_INT, "physmem", NULL,
595 NULL, u, NULL, 0,
596 CTL_HW, HW_PHYSMEM, CTL_EOL);
597 sysctl_createv(SYSCTL_PERMANENT,
598 CTLTYPE_INT, "usermem", NULL,
599 sysctl_hw_usermem, 0, NULL, 0,
600 CTL_HW, HW_USERMEM, CTL_EOL);
601 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
602 CTLTYPE_INT, "pagesize", NULL,
603 NULL, PAGE_SIZE, NULL, 0,
604 CTL_HW, HW_PAGESIZE, CTL_EOL);
605 sysctl_createv(SYSCTL_PERMANENT,
606 CTLTYPE_STRING, "disknames", NULL,
607 sysctl_hw_disknames, 0, NULL, 0,
608 CTL_HW, HW_DISKNAMES, CTL_EOL);
609 sysctl_createv(SYSCTL_PERMANENT,
610 CTLTYPE_STRUCT, "diskstats", NULL,
611 sysctl_hw_diskstats, 0, NULL, 0,
612 CTL_HW, HW_DISKSTATS, CTL_EOL);
613 sysctl_createv(SYSCTL_PERMANENT,
614 CTLTYPE_STRING, "machine_arch", NULL,
615 NULL, 0, machine_arch, 0,
616 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
617 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
618 CTLTYPE_INT, "alignbytes", NULL,
619 NULL, ALIGNBYTES, NULL, 0,
620 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
621 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
622 CTLTYPE_STRING, "cnmagic", NULL,
623 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
624 CTL_HW, HW_CNMAGIC, CTL_EOL);
625 q = (u_quad_t)physmem * PAGE_SIZE;
626 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
627 CTLTYPE_QUAD, "physmem64", NULL,
628 NULL, q, NULL, 0,
629 CTL_HW, HW_PHYSMEM64, CTL_EOL);
630 sysctl_createv(SYSCTL_PERMANENT,
631 CTLTYPE_QUAD, "usermem64", NULL,
632 sysctl_hw_usermem, 0, NULL, 0,
633 CTL_HW, HW_USERMEM64, CTL_EOL);
634 }
635
636 #ifdef DEBUG
637 /*
638 * Debugging related system variables.
639 */
640 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
641 struct ctldebug debug5, debug6, debug7, debug8, debug9;
642 struct ctldebug debug10, debug11, debug12, debug13, debug14;
643 struct ctldebug debug15, debug16, debug17, debug18, debug19;
644 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
645 &debug0, &debug1, &debug2, &debug3, &debug4,
646 &debug5, &debug6, &debug7, &debug8, &debug9,
647 &debug10, &debug11, &debug12, &debug13, &debug14,
648 &debug15, &debug16, &debug17, &debug18, &debug19,
649 };
650
651 /*
652 * this setup routine is a replacement for debug_sysctl()
653 *
654 * note that it creates several nodes per defined debug variable
655 */
656 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
657 {
658 struct ctldebug *cdp;
659 char nodename[20];
660 int i;
661
662 /*
663 * two ways here:
664 *
665 * the "old" way (debug.name -> value) which was emulated by
666 * the sysctl(8) binary
667 *
668 * the new way, which the sysctl(8) binary was actually using
669
670 node debug
671 node debug.0
672 string debug.0.name
673 int debug.0.value
674 int debug.name
675
676 */
677
678 sysctl_createv(SYSCTL_PERMANENT,
679 CTLTYPE_NODE, "debug", NULL,
680 NULL, 0, NULL, 0,
681 CTL_DEBUG, CTL_EOL);
682
683 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
684 cdp = debugvars[i];
685 if (cdp->debugname == NULL || cdp->debugvar == NULL)
686 continue;
687
688 snprintf(nodename, sizeof(nodename), "debug%d", i);
689 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
690 CTLTYPE_NODE, nodename, NULL,
691 NULL, 0, NULL, 0,
692 CTL_DEBUG, i, CTL_EOL);
693 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
694 CTLTYPE_STRING, "name", NULL,
695 NULL, 0, cdp->debugname, 0,
696 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
697 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
698 CTLTYPE_INT, "value", NULL,
699 NULL, 0, cdp->debugvar, 0,
700 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
701 sysctl_createv(SYSCTL_PERMANENT,
702 CTLTYPE_INT, cdp->debugname, NULL,
703 NULL, 0, cdp->debugvar, 0,
704 CTL_DEBUG, CTL_CREATE, CTL_EOL);
705 }
706 }
707 #endif /* DEBUG */
708
709 /*
710 * ********************************************************************
711 * section 2: private node-specific helper routines.
712 * ********************************************************************
713 */
714
715 /*
716 * sysctl helper routine for kern.maxvnodes. handles ensuring that
717 * new values never falls below desiredvnodes and then calls reinit
718 * routines that needs to adjust to the new value.
719 */
720 static int
721 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
722 {
723 int error, new_vnodes;
724 struct sysctlnode node;
725
726 new_vnodes = desiredvnodes;
727 node = *rnode;
728 node.sysctl_data = &new_vnodes;
729 error = sysctl_lookup(SYSCTLFN_CALL(&node));
730 if (error || newp == NULL)
731 return (error);
732
733 if (new_vnodes < desiredvnodes)
734 return (EINVAL);
735 desiredvnodes = new_vnodes;
736 vfs_reinit();
737 nchreinit();
738
739 return (0);
740 }
741
742 /*
743 * sysctl helper routine for kern.maxvnodes. ensures that the new
744 * values are not too low or too high.
745 */
746 static int
747 sysctl_kern_maxproc(SYSCTLFN_ARGS)
748 {
749 int error, nmaxproc;
750 struct sysctlnode node;
751
752 nmaxproc = maxproc;
753 node = *rnode;
754 node.sysctl_data = &nmaxproc;
755 error = sysctl_lookup(SYSCTLFN_CALL(&node));
756 if (error || newp == NULL)
757 return (error);
758
759 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
760 return (EINVAL);
761 #ifdef __HAVE_CPU_MAXPROC
762 if (nmaxproc > cpu_maxproc())
763 return (EINVAL);
764 #endif
765 maxproc = nmaxproc;
766
767 return (0);
768 }
769
770 /*
771 * sysctl helper routine for kern.securelevel. ensures that the value
772 * only rises unless the caller has pid 1 (assumed to be init).
773 */
774 static int
775 sysctl_kern_securelevel(SYSCTLFN_ARGS)
776 {
777 int newsecurelevel, error;
778 struct sysctlnode node;
779
780 newsecurelevel = securelevel;
781 node = *rnode;
782 node.sysctl_data = &newsecurelevel;
783 error = sysctl_lookup(SYSCTLFN_CALL(&node));
784 if (error || newp == NULL)
785 return (error);
786
787 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
788 return (EPERM);
789 securelevel = newsecurelevel;
790
791 return (error);
792 }
793
794 /*
795 * sysctl helper function for kern.hostid. the hostid is a long, but
796 * we export it as an int, so we need to give it a little help.
797 */
798 static int
799 sysctl_kern_hostid(SYSCTLFN_ARGS)
800 {
801 int error, inthostid;
802 struct sysctlnode node;
803
804 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
805 node = *rnode;
806 node.sysctl_data = &inthostid;
807 error = sysctl_lookup(SYSCTLFN_CALL(&node));
808 if (error || newp == NULL)
809 return (error);
810
811 hostid = inthostid;
812
813 return (0);
814 }
815
816 /*
817 * sysctl helper routine for kern.clockrate. assembles a struct on
818 * the fly to be returned to the caller.
819 */
820 static int
821 sysctl_kern_clockrate(SYSCTLFN_ARGS)
822 {
823 struct clockinfo clkinfo;
824 struct sysctlnode node;
825
826 clkinfo.tick = tick;
827 clkinfo.tickadj = tickadj;
828 clkinfo.hz = hz;
829 clkinfo.profhz = profhz;
830 clkinfo.stathz = stathz ? stathz : hz;
831
832 node = *rnode;
833 node.sysctl_data = &clkinfo;
834 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
835 }
836
837
838 /*
839 * sysctl helper routine for kern.file pseudo-subtree.
840 */
841 static int
842 sysctl_kern_file(SYSCTLFN_ARGS)
843 {
844 int error;
845 size_t buflen;
846 struct file *fp;
847 char *start, *where;
848
849 start = where = oldp;
850 buflen = *oldlenp;
851 if (where == NULL) {
852 /*
853 * overestimate by 10 files
854 */
855 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
856 return (0);
857 }
858
859 /*
860 * first copyout filehead
861 */
862 if (buflen < sizeof(filehead)) {
863 *oldlenp = 0;
864 return (0);
865 }
866 error = copyout(&filehead, where, sizeof(filehead));
867 if (error)
868 return (error);
869 buflen -= sizeof(filehead);
870 where += sizeof(filehead);
871
872 /*
873 * followed by an array of file structures
874 */
875 LIST_FOREACH(fp, &filehead, f_list) {
876 if (buflen < sizeof(struct file)) {
877 *oldlenp = where - start;
878 return (ENOMEM);
879 }
880 error = copyout(fp, where, sizeof(struct file));
881 if (error)
882 return (error);
883 buflen -= sizeof(struct file);
884 where += sizeof(struct file);
885 }
886 *oldlenp = where - start;
887 return (0);
888 }
889
890 /*
891 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
892 * asserts that the assigned value is in the correct range.
893 */
894 static int
895 sysctl_kern_autonice(SYSCTLFN_ARGS)
896 {
897 int error, t = 0;
898 struct sysctlnode node;
899
900 node = *rnode;
901 t = *(int*)node.sysctl_data;
902 node.sysctl_data = &t;
903 error = sysctl_lookup(SYSCTLFN_CALL(&node));
904 if (error || newp == NULL)
905 return (error);
906
907 switch (node.sysctl_num) {
908 case KERN_AUTONICETIME:
909 if (t >= 0)
910 autonicetime = t;
911 break;
912 case KERN_AUTONICEVAL:
913 if (t < PRIO_MIN)
914 t = PRIO_MIN;
915 else if (t > PRIO_MAX)
916 t = PRIO_MAX;
917 autoniceval = t;
918 break;
919 }
920
921 return (0);
922 }
923
924 /*
925 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
926 * former it merely checks the the message buffer is set up. for the
927 * latter, it also copies out the data if necessary.
928 */
929 static int
930 sysctl_msgbuf(SYSCTLFN_ARGS)
931 {
932 char *where = oldp;
933 size_t len, maxlen;
934 long beg, end;
935 int error;
936
937 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
938 msgbufenabled = 0;
939 return (ENXIO);
940 }
941
942 switch (rnode->sysctl_num) {
943 case KERN_MSGBUFSIZE:
944 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
945 case KERN_MSGBUF:
946 break;
947 default:
948 return (EOPNOTSUPP);
949 }
950
951 if (newp != NULL)
952 return (EPERM);
953
954 if (oldp == NULL) {
955 /* always return full buffer size */
956 *oldlenp = msgbufp->msg_bufs;
957 return (0);
958 }
959
960 error = 0;
961 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
962
963 /*
964 * First, copy from the write pointer to the end of
965 * message buffer.
966 */
967 beg = msgbufp->msg_bufx;
968 end = msgbufp->msg_bufs;
969 while (maxlen > 0) {
970 len = MIN(end - beg, maxlen);
971 if (len == 0)
972 break;
973 error = copyout(&msgbufp->msg_bufc[beg], where, len);
974 if (error)
975 break;
976 where += len;
977 maxlen -= len;
978
979 /*
980 * ... then, copy from the beginning of message buffer to
981 * the write pointer.
982 */
983 beg = 0;
984 end = msgbufp->msg_bufx;
985 }
986
987 return (error);
988 }
989
990 /*
991 * sysctl helper routine for kern.defcorename. in the case of a new
992 * string being assigned, check that it's not a zero-length string.
993 * (XXX the check in -current doesn't work, but do we really care?)
994 */
995 static int
996 sysctl_kern_defcorename(SYSCTLFN_ARGS)
997 {
998 int error;
999 char newcorename[MAXPATHLEN];
1000 struct sysctlnode node;
1001
1002 node = *rnode;
1003 node.sysctl_data = &newcorename[0];
1004 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1005 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1006 if (error || newp == NULL)
1007 return (error);
1008
1009 /*
1010 * when sysctl_lookup() deals with a string, it's guaranteed
1011 * to come back nul terminated. so there. :)
1012 */
1013 if (strlen(newcorename) == 0)
1014 return (EINVAL);
1015
1016 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1017
1018 return (0);
1019 }
1020
1021 /*
1022 * sysctl helper routine for kern.cp_time node. adds up cpu time
1023 * across all cpus.
1024 */
1025 static int
1026 sysctl_kern_cptime(SYSCTLFN_ARGS)
1027 {
1028 struct sysctlnode node = *rnode;
1029 u_int64_t *cp_time = NULL;
1030 int error;
1031
1032 #ifdef MULTIPROCESSOR
1033 int n = sysctl_ncpus(), i;
1034 struct cpu_info *ci;
1035 CPU_INFO_ITERATOR cii;
1036
1037 /*
1038 * if you specifically pass a buffer that is the size of the
1039 * sum, or if you are probing for the size, you get the "sum"
1040 * of cp_time (and the size thereof) across all processors.
1041 *
1042 * alternately, you can pass an additional mib number and get
1043 * cp_time for that particular processor.
1044 */
1045 switch (namelen) {
1046 case 0:
1047 if (*oldlenp == sizeof(*cp_time) * CPUSTATES || oldp == NULL) {
1048 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1049 cp_time = malloc(node.sysctl_size,
1050 M_TEMP, M_WAITOK|M_CANFAIL);
1051 n = -1; /* SUM */
1052 }
1053 else {
1054 node.sysctl_size = n * sizeof(cp_time) * CPUSTATES;
1055 cp_time = malloc(node.sysctl_size,
1056 M_TEMP, M_WAITOK|M_CANFAIL);
1057 n = -2; /* ALL */
1058 }
1059 break;
1060 case 1:
1061 if (name[0] < 0 || name[0] >= n)
1062 return (EINVAL); /* ENOSUCHPROCESSOR */
1063 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1064 cp_time = malloc(node.sysctl_size,
1065 M_TEMP, M_WAITOK|M_CANFAIL);
1066 n = name[0];
1067 /*
1068 * adjust these so that sysctl_lookup() will be happy
1069 */
1070 name++;
1071 namelen--;
1072 default:
1073 return (EINVAL);
1074 }
1075
1076 if (cp_time == NULL)
1077 return (ENOMEM);
1078 node.sysctl_data = cp_time;
1079 memset(cp_time, 0, node.sysctl_size);
1080
1081 for (CPU_INFO_FOREACH(cii, ci)) {
1082 /*
1083 * doing a sum or doing just this processor
1084 */
1085 if (n == -1 || n == 0)
1086 for (i = 0; i < CPUSTATES; i++)
1087 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1088 /*
1089 * if a specific processor was requested and we just
1090 * did it, we're done here
1091 */
1092 if (n == 0)
1093 break;
1094 /*
1095 * if doing "all", skip to next cp_time set for next processor
1096 */
1097 if (n == -2)
1098 cp_time += CPUSTATES;
1099 /*
1100 * if we're doing a specific processor, we're one
1101 * processor closer
1102 */
1103 if (n > 0)
1104 n--;
1105 }
1106
1107 #else /* MULTIPROCESSOR */
1108 if (namelen == 1 && name[0] == 0) {
1109 name++;
1110 namelen--;
1111 }
1112 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1113 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1114 #endif /* MULTIPROCESSOR */
1115
1116 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1117 if (cp_time != NULL)
1118 free(cp_time, M_TEMP);
1119
1120 return (error);
1121 }
1122
1123 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1124 /*
1125 * sysctl helper routine for kern.sysvipc_info subtree.
1126 */
1127
1128 #define FILL_PERM(src, dst) do { \
1129 (dst)._key = (src)._key; \
1130 (dst).uid = (src).uid; \
1131 (dst).gid = (src).gid; \
1132 (dst).cuid = (src).cuid; \
1133 (dst).cgid = (src).cgid; \
1134 (dst).mode = (src).mode; \
1135 (dst)._seq = (src)._seq; \
1136 } while (/*CONSTCOND*/ 0);
1137 #define FILL_MSG(src, dst) do { \
1138 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1139 (dst).msg_qnum = (src).msg_qnum; \
1140 (dst).msg_qbytes = (src).msg_qbytes; \
1141 (dst)._msg_cbytes = (src)._msg_cbytes; \
1142 (dst).msg_lspid = (src).msg_lspid; \
1143 (dst).msg_lrpid = (src).msg_lrpid; \
1144 (dst).msg_stime = (src).msg_stime; \
1145 (dst).msg_rtime = (src).msg_rtime; \
1146 (dst).msg_ctime = (src).msg_ctime; \
1147 } while (/*CONSTCOND*/ 0)
1148 #define FILL_SEM(src, dst) do { \
1149 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1150 (dst).sem_nsems = (src).sem_nsems; \
1151 (dst).sem_otime = (src).sem_otime; \
1152 (dst).sem_ctime = (src).sem_ctime; \
1153 } while (/*CONSTCOND*/ 0)
1154 #define FILL_SHM(src, dst) do { \
1155 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1156 (dst).shm_segsz = (src).shm_segsz; \
1157 (dst).shm_lpid = (src).shm_lpid; \
1158 (dst).shm_cpid = (src).shm_cpid; \
1159 (dst).shm_atime = (src).shm_atime; \
1160 (dst).shm_dtime = (src).shm_dtime; \
1161 (dst).shm_ctime = (src).shm_ctime; \
1162 (dst).shm_nattch = (src).shm_nattch; \
1163 } while (/*CONSTCOND*/ 0)
1164
1165 static int
1166 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1167 {
1168 void *where = oldp;
1169 size_t *sizep = oldlenp;
1170 #ifdef SYSVMSG
1171 struct msg_sysctl_info *msgsi = NULL;
1172 #endif
1173 #ifdef SYSVSEM
1174 struct sem_sysctl_info *semsi = NULL;
1175 #endif
1176 #ifdef SYSVSHM
1177 struct shm_sysctl_info *shmsi = NULL;
1178 #endif
1179 size_t infosize, dssize, tsize, buflen;
1180 void *buf = NULL;
1181 char *start;
1182 int32_t nds;
1183 int i, error, ret;
1184
1185 if (namelen != 1)
1186 return (EINVAL);
1187
1188 start = where;
1189 buflen = *sizep;
1190
1191 switch (*name) {
1192 case KERN_SYSVIPC_MSG_INFO:
1193 #ifdef SYSVMSG
1194 infosize = sizeof(msgsi->msginfo);
1195 nds = msginfo.msgmni;
1196 dssize = sizeof(msgsi->msgids[0]);
1197 break;
1198 #else
1199 return (EINVAL);
1200 #endif
1201 case KERN_SYSVIPC_SEM_INFO:
1202 #ifdef SYSVSEM
1203 infosize = sizeof(semsi->seminfo);
1204 nds = seminfo.semmni;
1205 dssize = sizeof(semsi->semids[0]);
1206 break;
1207 #else
1208 return (EINVAL);
1209 #endif
1210 case KERN_SYSVIPC_SHM_INFO:
1211 #ifdef SYSVSHM
1212 infosize = sizeof(shmsi->shminfo);
1213 nds = shminfo.shmmni;
1214 dssize = sizeof(shmsi->shmids[0]);
1215 break;
1216 #else
1217 return (EINVAL);
1218 #endif
1219 default:
1220 return (EINVAL);
1221 }
1222 /*
1223 * Round infosize to 64 bit boundary if requesting more than just
1224 * the info structure or getting the total data size.
1225 */
1226 if (where == NULL || *sizep > infosize)
1227 infosize = ((infosize + 7) / 8) * 8;
1228 tsize = infosize + nds * dssize;
1229
1230 /* Return just the total size required. */
1231 if (where == NULL) {
1232 *sizep = tsize;
1233 return (0);
1234 }
1235
1236 /* Not enough room for even the info struct. */
1237 if (buflen < infosize) {
1238 *sizep = 0;
1239 return (ENOMEM);
1240 }
1241 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1242 memset(buf, 0, min(tsize, buflen));
1243
1244 switch (*name) {
1245 #ifdef SYSVMSG
1246 case KERN_SYSVIPC_MSG_INFO:
1247 msgsi = (struct msg_sysctl_info *)buf;
1248 msgsi->msginfo = msginfo;
1249 break;
1250 #endif
1251 #ifdef SYSVSEM
1252 case KERN_SYSVIPC_SEM_INFO:
1253 semsi = (struct sem_sysctl_info *)buf;
1254 semsi->seminfo = seminfo;
1255 break;
1256 #endif
1257 #ifdef SYSVSHM
1258 case KERN_SYSVIPC_SHM_INFO:
1259 shmsi = (struct shm_sysctl_info *)buf;
1260 shmsi->shminfo = shminfo;
1261 break;
1262 #endif
1263 }
1264 buflen -= infosize;
1265
1266 ret = 0;
1267 if (buflen > 0) {
1268 /* Fill in the IPC data structures. */
1269 for (i = 0; i < nds; i++) {
1270 if (buflen < dssize) {
1271 ret = ENOMEM;
1272 break;
1273 }
1274 switch (*name) {
1275 #ifdef SYSVMSG
1276 case KERN_SYSVIPC_MSG_INFO:
1277 FILL_MSG(msqids[i], msgsi->msgids[i]);
1278 break;
1279 #endif
1280 #ifdef SYSVSEM
1281 case KERN_SYSVIPC_SEM_INFO:
1282 FILL_SEM(sema[i], semsi->semids[i]);
1283 break;
1284 #endif
1285 #ifdef SYSVSHM
1286 case KERN_SYSVIPC_SHM_INFO:
1287 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1288 break;
1289 #endif
1290 }
1291 buflen -= dssize;
1292 }
1293 }
1294 *sizep -= buflen;
1295 error = copyout(buf, start, *sizep);
1296 /* If copyout succeeded, use return code set earlier. */
1297 if (error == 0)
1298 error = ret;
1299 if (buf)
1300 free(buf, M_TEMP);
1301 return (error);
1302 }
1303
1304 #undef FILL_PERM
1305 #undef FILL_MSG
1306 #undef FILL_SEM
1307 #undef FILL_SHM
1308
1309 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1310
1311 #if NPTY > 0
1312 /*
1313 * sysctl helper routine for kern.maxptys. ensures that any new value
1314 * is acceptable to the pty subsystem.
1315 */
1316 static int
1317 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1318 {
1319 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1320 int error, max;
1321 struct sysctlnode node;
1322
1323 /* get current value of maxptys */
1324 max = pty_maxptys(0, 0);
1325
1326 node = *rnode;
1327 node.sysctl_data = &max;
1328 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1329 if (error || newp == NULL)
1330 return (error);
1331
1332 if (max != pty_maxptys(max, 1))
1333 return (EINVAL);
1334
1335 return (0);
1336 }
1337 #endif /* NPTY > 0 */
1338
1339 /*
1340 * sysctl helper routine for kern.sbmax. basically just ensures that
1341 * any new value is not too small.
1342 */
1343 static int
1344 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1345 {
1346 int error, new_sbmax;
1347 struct sysctlnode node;
1348
1349 new_sbmax = sb_max;
1350 node = *rnode;
1351 node.sysctl_data = &new_sbmax;
1352 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1353 if (error || newp == NULL)
1354 return (error);
1355
1356 error = sb_max_set(new_sbmax);
1357
1358 return (error);
1359 }
1360
1361 /*
1362 * sysctl helper routine for kern.urandom node. picks a random number
1363 * for you.
1364 */
1365 static int
1366 sysctl_kern_urnd(SYSCTLFN_ARGS)
1367 {
1368 #if NRND > 0
1369 int v;
1370
1371 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1372 struct sysctlnode node = *rnode;
1373 node.sysctl_data = &v;
1374 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1375 }
1376 else
1377 return (EIO); /*XXX*/
1378 #else
1379 return (EOPNOTSUPP);
1380 #endif
1381 }
1382
1383 /*
1384 * sysctl helper routine to do kern.lwp.* work.
1385 */
1386 static int
1387 sysctl_kern_lwp(SYSCTLFN_ARGS)
1388 {
1389 struct kinfo_lwp klwp;
1390 struct proc *p;
1391 struct lwp *l2;
1392 char *where, *dp;
1393 int pid, elem_size, elem_count;
1394 int buflen, needed, error;
1395
1396 dp = where = oldp;
1397 buflen = where != NULL ? *oldlenp : 0;
1398 error = needed = 0;
1399
1400 if (newp != NULL || namelen != 4)
1401 return (EINVAL);
1402 pid = name[1];
1403 elem_size = name[2];
1404 elem_count = name[3];
1405
1406 p = pfind(pid);
1407 if (p == NULL)
1408 return (ESRCH);
1409 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1410 if (buflen >= elem_size && elem_count > 0) {
1411 fill_lwp(l2, &klwp);
1412 /*
1413 * Copy out elem_size, but not larger than
1414 * the size of a struct kinfo_proc2.
1415 */
1416 error = copyout(&klwp, dp,
1417 min(sizeof(klwp), elem_size));
1418 if (error)
1419 goto cleanup;
1420 dp += elem_size;
1421 buflen -= elem_size;
1422 elem_count--;
1423 }
1424 needed += elem_size;
1425 }
1426
1427 if (where != NULL) {
1428 *oldlenp = dp - where;
1429 if (needed > *oldlenp)
1430 return (ENOMEM);
1431 } else {
1432 needed += KERN_PROCSLOP;
1433 *oldlenp = needed;
1434 }
1435 return (0);
1436 cleanup:
1437 return (error);
1438 }
1439
1440 /*
1441 * sysctl helper routine for kern.forkfsleep node. ensures that the
1442 * given value is not too large or two small, and is at least one
1443 * timer tick if not zero.
1444 */
1445 static int
1446 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1447 {
1448 /* userland sees value in ms, internally is in ticks */
1449 extern int forkfsleep; /* defined in kern/kern_fork.c */
1450 int error, timo, lsleep;
1451 struct sysctlnode node;
1452
1453 lsleep = forkfsleep * 1000 / hz;
1454 node = *rnode;
1455 node.sysctl_data = &lsleep;
1456 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1457 if (error || newp == NULL)
1458 return (error);
1459
1460 /* refuse negative values, and overly 'long time' */
1461 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1462 return (EINVAL);
1463
1464 timo = mstohz(lsleep);
1465
1466 /* if the interval is >0 ms && <1 tick, use 1 tick */
1467 if (lsleep != 0 && timo == 0)
1468 forkfsleep = 1;
1469 else
1470 forkfsleep = timo;
1471
1472 return (0);
1473 }
1474
1475 /*
1476 * sysctl helper routine for kern.somaxkva. ensures that the given
1477 * value is not too small.
1478 * (XXX should we maybe make sure it's not too large as well?)
1479 */
1480 static int
1481 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1482 {
1483 int error, new_somaxkva;
1484 struct sysctlnode node;
1485
1486 new_somaxkva = somaxkva;
1487 node = *rnode;
1488 node.sysctl_data = &new_somaxkva;
1489 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1490 if (error || newp == NULL)
1491 return (error);
1492
1493 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1494 return (EINVAL);
1495 somaxkva = new_somaxkva;
1496
1497 return (error);
1498 }
1499
1500 /*
1501 * sysctl helper routine for kern.root_partition
1502 */
1503 static int
1504 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1505 {
1506 int rootpart = DISKPART(rootdev);
1507 struct sysctlnode node = *rnode;
1508
1509 node.sysctl_data = &rootpart;
1510 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1511 }
1512
1513 /*
1514 * sysctl helper function for kern.drivers
1515 */
1516 static int
1517 sysctl_kern_drivers(SYSCTLFN_ARGS)
1518 {
1519 int error;
1520 size_t buflen;
1521 struct kinfo_drivers kd;
1522 char *start, *where;
1523 const char *dname;
1524 int i;
1525 extern struct devsw_conv *devsw_conv;
1526 extern int max_devsw_convs;
1527
1528 if (newp != NULL || namelen != 0)
1529 return (EINVAL);
1530
1531 start = where = oldp;
1532 buflen = *oldlenp;
1533 if (where == NULL) {
1534 *oldlenp = max_devsw_convs * sizeof kd;
1535 return 0;
1536 }
1537
1538 /*
1539 * An array of kinfo_drivers structures
1540 */
1541 error = 0;
1542 for (i = 0; i < max_devsw_convs; i++) {
1543 dname = devsw_conv[i].d_name;
1544 if (dname == NULL)
1545 continue;
1546 if (buflen < sizeof kd) {
1547 error = ENOMEM;
1548 break;
1549 }
1550 kd.d_bmajor = devsw_conv[i].d_bmajor;
1551 kd.d_cmajor = devsw_conv[i].d_cmajor;
1552 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1553 error = copyout(&kd, where, sizeof kd);
1554 if (error != 0)
1555 break;
1556 buflen -= sizeof kd;
1557 where += sizeof kd;
1558 }
1559 *oldlenp = where - start;
1560 return error;
1561 }
1562
1563 static int
1564 sysctl_doeproc(SYSCTLFN_ARGS)
1565 {
1566 struct eproc eproc;
1567 struct kinfo_proc2 kproc2;
1568 struct kinfo_proc *dp;
1569 struct proc *p;
1570 const struct proclist_desc *pd;
1571 char *where, *dp2;
1572 int type, op, arg;
1573 u_int elem_size, elem_count;
1574 size_t buflen, needed;
1575 int error;
1576
1577 dp = oldp;
1578 dp2 = where = oldp;
1579 buflen = where != NULL ? *oldlenp : 0;
1580 error = 0;
1581 needed = 0;
1582 type = rnode->sysctl_num;
1583
1584 if (type == KERN_PROC) {
1585 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1586 return (EINVAL);
1587 op = name[0];
1588 if (op != KERN_PROC_ALL)
1589 arg = name[1];
1590 else
1591 arg = 0; /* Quell compiler warning */
1592 elem_size = elem_count = 0; /* Ditto */
1593 } else {
1594 if (namelen != 4)
1595 return (EINVAL);
1596 op = name[0];
1597 arg = name[1];
1598 elem_size = name[2];
1599 elem_count = name[3];
1600 }
1601
1602 proclist_lock_read();
1603
1604 pd = proclists;
1605 again:
1606 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1607 /*
1608 * Skip embryonic processes.
1609 */
1610 if (p->p_stat == SIDL)
1611 continue;
1612 /*
1613 * TODO - make more efficient (see notes below).
1614 * do by session.
1615 */
1616 switch (op) {
1617
1618 case KERN_PROC_PID:
1619 /* could do this with just a lookup */
1620 if (p->p_pid != (pid_t)arg)
1621 continue;
1622 break;
1623
1624 case KERN_PROC_PGRP:
1625 /* could do this by traversing pgrp */
1626 if (p->p_pgrp->pg_id != (pid_t)arg)
1627 continue;
1628 break;
1629
1630 case KERN_PROC_SESSION:
1631 if (p->p_session->s_sid != (pid_t)arg)
1632 continue;
1633 break;
1634
1635 case KERN_PROC_TTY:
1636 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1637 if ((p->p_flag & P_CONTROLT) == 0 ||
1638 p->p_session->s_ttyp == NULL ||
1639 p->p_session->s_ttyvp != NULL)
1640 continue;
1641 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1642 p->p_session->s_ttyp == NULL) {
1643 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1644 continue;
1645 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1646 continue;
1647 break;
1648
1649 case KERN_PROC_UID:
1650 if (p->p_ucred->cr_uid != (uid_t)arg)
1651 continue;
1652 break;
1653
1654 case KERN_PROC_RUID:
1655 if (p->p_cred->p_ruid != (uid_t)arg)
1656 continue;
1657 break;
1658
1659 case KERN_PROC_GID:
1660 if (p->p_ucred->cr_gid != (uid_t)arg)
1661 continue;
1662 break;
1663
1664 case KERN_PROC_RGID:
1665 if (p->p_cred->p_rgid != (uid_t)arg)
1666 continue;
1667 break;
1668
1669 case KERN_PROC_ALL:
1670 /* allow everything */
1671 break;
1672
1673 default:
1674 error = EINVAL;
1675 goto cleanup;
1676 }
1677 if (type == KERN_PROC) {
1678 if (buflen >= sizeof(struct kinfo_proc)) {
1679 fill_eproc(p, &eproc);
1680 error = copyout(p, &dp->kp_proc,
1681 sizeof(struct proc));
1682 if (error)
1683 goto cleanup;
1684 error = copyout(&eproc, &dp->kp_eproc,
1685 sizeof(eproc));
1686 if (error)
1687 goto cleanup;
1688 dp++;
1689 buflen -= sizeof(struct kinfo_proc);
1690 }
1691 needed += sizeof(struct kinfo_proc);
1692 } else { /* KERN_PROC2 */
1693 if (buflen >= elem_size && elem_count > 0) {
1694 fill_kproc2(p, &kproc2);
1695 /*
1696 * Copy out elem_size, but not larger than
1697 * the size of a struct kinfo_proc2.
1698 */
1699 error = copyout(&kproc2, dp2,
1700 min(sizeof(kproc2), elem_size));
1701 if (error)
1702 goto cleanup;
1703 dp2 += elem_size;
1704 buflen -= elem_size;
1705 elem_count--;
1706 }
1707 needed += elem_size;
1708 }
1709 }
1710 pd++;
1711 if (pd->pd_list != NULL)
1712 goto again;
1713 proclist_unlock_read();
1714
1715 if (where != NULL) {
1716 if (type == KERN_PROC)
1717 *oldlenp = (char *)dp - where;
1718 else
1719 *oldlenp = dp2 - where;
1720 if (needed > *oldlenp)
1721 return (ENOMEM);
1722 } else {
1723 needed += KERN_PROCSLOP;
1724 *oldlenp = needed;
1725 }
1726 return (0);
1727 cleanup:
1728 proclist_unlock_read();
1729 return (error);
1730 }
1731
1732 /*
1733 * sysctl helper routine for kern.proc_args pseudo-subtree.
1734 */
1735 static int
1736 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1737 {
1738 struct ps_strings pss;
1739 struct proc *p, *up = l->l_proc;
1740 size_t len, upper_bound, xlen, i;
1741 struct uio auio;
1742 struct iovec aiov;
1743 vaddr_t argv;
1744 pid_t pid;
1745 int nargv, type, error;
1746 char *arg;
1747 char *tmp;
1748
1749 if (newp != NULL || namelen != 2)
1750 return (EINVAL);
1751 pid = name[0];
1752 type = name[1];
1753
1754 switch (type) {
1755 case KERN_PROC_ARGV:
1756 case KERN_PROC_NARGV:
1757 case KERN_PROC_ENV:
1758 case KERN_PROC_NENV:
1759 /* ok */
1760 break;
1761 default:
1762 return (EINVAL);
1763 }
1764
1765 /* check pid */
1766 if ((p = pfind(pid)) == NULL)
1767 return (EINVAL);
1768
1769 /* only root or same user change look at the environment */
1770 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1771 if (up->p_ucred->cr_uid != 0) {
1772 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1773 up->p_cred->p_ruid != p->p_cred->p_svuid)
1774 return (EPERM);
1775 }
1776 }
1777
1778 if (oldp == NULL) {
1779 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1780 *oldlenp = sizeof (int);
1781 else
1782 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1783 return (0);
1784 }
1785
1786 /*
1787 * Zombies don't have a stack, so we can't read their psstrings.
1788 * System processes also don't have a user stack.
1789 */
1790 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1791 return (EINVAL);
1792
1793 /*
1794 * Lock the process down in memory.
1795 */
1796 /* XXXCDC: how should locking work here? */
1797 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1798 return (EFAULT);
1799
1800 p->p_vmspace->vm_refcnt++; /* XXX */
1801
1802 /*
1803 * Allocate a temporary buffer to hold the arguments.
1804 */
1805 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1806
1807 /*
1808 * Read in the ps_strings structure.
1809 */
1810 aiov.iov_base = &pss;
1811 aiov.iov_len = sizeof(pss);
1812 auio.uio_iov = &aiov;
1813 auio.uio_iovcnt = 1;
1814 auio.uio_offset = (vaddr_t)p->p_psstr;
1815 auio.uio_resid = sizeof(pss);
1816 auio.uio_segflg = UIO_SYSSPACE;
1817 auio.uio_rw = UIO_READ;
1818 auio.uio_procp = NULL;
1819 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1820 if (error)
1821 goto done;
1822
1823 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1824 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1825 else
1826 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1827 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1828 error = copyout(&nargv, oldp, sizeof(nargv));
1829 *oldlenp = sizeof(nargv);
1830 goto done;
1831 }
1832 /*
1833 * Now read the address of the argument vector.
1834 */
1835 switch (type) {
1836 case KERN_PROC_ARGV:
1837 /* XXX compat32 stuff here */
1838 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1839 break;
1840 case KERN_PROC_ENV:
1841 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1842 break;
1843 default:
1844 return (EINVAL);
1845 }
1846 auio.uio_offset = (off_t)(long)tmp;
1847 aiov.iov_base = &argv;
1848 aiov.iov_len = sizeof(argv);
1849 auio.uio_iov = &aiov;
1850 auio.uio_iovcnt = 1;
1851 auio.uio_resid = sizeof(argv);
1852 auio.uio_segflg = UIO_SYSSPACE;
1853 auio.uio_rw = UIO_READ;
1854 auio.uio_procp = NULL;
1855 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1856 if (error)
1857 goto done;
1858
1859 /*
1860 * Now copy in the actual argument vector, one page at a time,
1861 * since we don't know how long the vector is (though, we do
1862 * know how many NUL-terminated strings are in the vector).
1863 */
1864 len = 0;
1865 upper_bound = *oldlenp;
1866 for (; nargv != 0 && len < upper_bound; len += xlen) {
1867 aiov.iov_base = arg;
1868 aiov.iov_len = PAGE_SIZE;
1869 auio.uio_iov = &aiov;
1870 auio.uio_iovcnt = 1;
1871 auio.uio_offset = argv + len;
1872 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1873 auio.uio_resid = xlen;
1874 auio.uio_segflg = UIO_SYSSPACE;
1875 auio.uio_rw = UIO_READ;
1876 auio.uio_procp = NULL;
1877 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1878 if (error)
1879 goto done;
1880
1881 for (i = 0; i < xlen && nargv != 0; i++) {
1882 if (arg[i] == '\0')
1883 nargv--; /* one full string */
1884 }
1885
1886 /*
1887 * Make sure we don't copyout past the end of the user's
1888 * buffer.
1889 */
1890 if (len + i > upper_bound)
1891 i = upper_bound - len;
1892
1893 error = copyout(arg, (char *)oldp + len, i);
1894 if (error)
1895 break;
1896
1897 if (nargv == 0) {
1898 len += i;
1899 break;
1900 }
1901 }
1902 *oldlenp = len;
1903
1904 done:
1905 uvmspace_free(p->p_vmspace);
1906
1907 free(arg, M_TEMP);
1908 return (error);
1909 }
1910
1911 /*
1912 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1913 * calculate on the fly taking into account integer overflow and the
1914 * current wired count.
1915 */
1916 static int
1917 sysctl_hw_usermem(SYSCTLFN_ARGS)
1918 {
1919 u_int ui;
1920 u_quad_t uq;
1921 struct sysctlnode node;
1922
1923 node = *rnode;
1924 switch (rnode->sysctl_num) {
1925 case HW_USERMEM:
1926 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1927 ui = UINT_MAX;
1928 else
1929 ui *= PAGE_SIZE;
1930 node.sysctl_data = &ui;
1931 break;
1932 case HW_USERMEM64:
1933 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1934 node.sysctl_data = &uq;
1935 break;
1936 default:
1937 return (EINVAL);
1938 }
1939
1940 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1941 }
1942
1943 /*
1944 * sysctl helper routine for kern.cnmagic node. pulls the old value
1945 * out, encoded, and stuffs the new value in for decoding.
1946 */
1947 static int
1948 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
1949 {
1950 char magic[CNS_LEN];
1951 int error;
1952 struct sysctlnode node;
1953
1954 if (oldp)
1955 cn_get_magic(magic, CNS_LEN);
1956 node = *rnode;
1957 node.sysctl_data = &magic[0];
1958 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1959 if (error || newp == NULL)
1960 return (error);
1961
1962 return (cn_set_magic(magic));
1963 }
1964
1965 /*
1966 * ********************************************************************
1967 * section 3: public helper routines that are used for more than one
1968 * node
1969 * ********************************************************************
1970 */
1971
1972 /*
1973 * sysctl helper routine for the kern.root_device node and some ports'
1974 * machdep.root_device nodes.
1975 */
1976 int
1977 sysctl_root_device(SYSCTLFN_ARGS)
1978 {
1979 struct sysctlnode node;
1980
1981 node = *rnode;
1982 node.sysctl_data = root_device->dv_xname;
1983 node.sysctl_size = strlen(root_device->dv_xname) + 1;
1984 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1985 }
1986
1987 /*
1988 * sysctl helper routine for kern.consdev, dependent on the current
1989 * state of the console. also used for machdep.console_device on some
1990 * ports.
1991 */
1992 int
1993 sysctl_consdev(SYSCTLFN_ARGS)
1994 {
1995 dev_t consdev;
1996 struct sysctlnode node;
1997
1998 if (cn_tab != NULL)
1999 consdev = cn_tab->cn_dev;
2000 else
2001 consdev = NODEV;
2002 node = *rnode;
2003 node.sysctl_data = &consdev;
2004 node.sysctl_size = sizeof(consdev);
2005 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2006 }
2007
2008 /*
2009 * ********************************************************************
2010 * section 4: support for some helpers
2011 * ********************************************************************
2012 */
2013
2014 /*
2015 * Fill in a kinfo_proc2 structure for the specified process.
2016 */
2017 static void
2018 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2019 {
2020 struct tty *tp;
2021 struct lwp *l;
2022 struct timeval ut, st;
2023
2024 memset(ki, 0, sizeof(*ki));
2025
2026 ki->p_paddr = PTRTOINT64(p);
2027 ki->p_fd = PTRTOINT64(p->p_fd);
2028 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2029 ki->p_stats = PTRTOINT64(p->p_stats);
2030 ki->p_limit = PTRTOINT64(p->p_limit);
2031 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2032 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2033 ki->p_sess = PTRTOINT64(p->p_session);
2034 ki->p_tsess = 0; /* may be changed if controlling tty below */
2035 ki->p_ru = PTRTOINT64(p->p_ru);
2036
2037 ki->p_eflag = 0;
2038 ki->p_exitsig = p->p_exitsig;
2039 ki->p_flag = p->p_flag;
2040
2041 ki->p_pid = p->p_pid;
2042 if (p->p_pptr)
2043 ki->p_ppid = p->p_pptr->p_pid;
2044 else
2045 ki->p_ppid = 0;
2046 ki->p_sid = p->p_session->s_sid;
2047 ki->p__pgid = p->p_pgrp->pg_id;
2048
2049 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2050
2051 ki->p_uid = p->p_ucred->cr_uid;
2052 ki->p_ruid = p->p_cred->p_ruid;
2053 ki->p_gid = p->p_ucred->cr_gid;
2054 ki->p_rgid = p->p_cred->p_rgid;
2055 ki->p_svuid = p->p_cred->p_svuid;
2056 ki->p_svgid = p->p_cred->p_svgid;
2057
2058 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2059 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2060 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2061
2062 ki->p_jobc = p->p_pgrp->pg_jobc;
2063 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2064 ki->p_tdev = tp->t_dev;
2065 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2066 ki->p_tsess = PTRTOINT64(tp->t_session);
2067 } else {
2068 ki->p_tdev = NODEV;
2069 }
2070
2071 ki->p_estcpu = p->p_estcpu;
2072 ki->p_rtime_sec = p->p_rtime.tv_sec;
2073 ki->p_rtime_usec = p->p_rtime.tv_usec;
2074 ki->p_cpticks = p->p_cpticks;
2075 ki->p_pctcpu = p->p_pctcpu;
2076
2077 ki->p_uticks = p->p_uticks;
2078 ki->p_sticks = p->p_sticks;
2079 ki->p_iticks = p->p_iticks;
2080
2081 ki->p_tracep = PTRTOINT64(p->p_tracep);
2082 ki->p_traceflag = p->p_traceflag;
2083
2084
2085 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2086 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2087 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2088 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2089
2090 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2091 ki->p_realstat = p->p_stat;
2092 ki->p_nice = p->p_nice;
2093
2094 ki->p_xstat = p->p_xstat;
2095 ki->p_acflag = p->p_acflag;
2096
2097 strncpy(ki->p_comm, p->p_comm,
2098 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2099
2100 strncpy(ki->p_login, p->p_session->s_login,
2101 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2102
2103 ki->p_nlwps = p->p_nlwps;
2104 ki->p_nrlwps = p->p_nrlwps;
2105 ki->p_realflag = p->p_flag;
2106
2107 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2108 ki->p_vm_rssize = 0;
2109 ki->p_vm_tsize = 0;
2110 ki->p_vm_dsize = 0;
2111 ki->p_vm_ssize = 0;
2112 l = NULL;
2113 } else {
2114 struct vmspace *vm = p->p_vmspace;
2115
2116 ki->p_vm_rssize = vm_resident_count(vm);
2117 ki->p_vm_tsize = vm->vm_tsize;
2118 ki->p_vm_dsize = vm->vm_dsize;
2119 ki->p_vm_ssize = vm->vm_ssize;
2120
2121 /* Pick a "representative" LWP */
2122 l = proc_representative_lwp(p);
2123 ki->p_forw = PTRTOINT64(l->l_forw);
2124 ki->p_back = PTRTOINT64(l->l_back);
2125 ki->p_addr = PTRTOINT64(l->l_addr);
2126 ki->p_stat = l->l_stat;
2127 ki->p_flag |= l->l_flag;
2128 ki->p_swtime = l->l_swtime;
2129 ki->p_slptime = l->l_slptime;
2130 if (l->l_stat == LSONPROC) {
2131 KDASSERT(l->l_cpu != NULL);
2132 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2133 } else
2134 ki->p_schedflags = 0;
2135 ki->p_holdcnt = l->l_holdcnt;
2136 ki->p_priority = l->l_priority;
2137 ki->p_usrpri = l->l_usrpri;
2138 if (l->l_wmesg)
2139 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2140 ki->p_wchan = PTRTOINT64(l->l_wchan);
2141
2142 }
2143
2144 if (p->p_session->s_ttyvp)
2145 ki->p_eflag |= EPROC_CTTY;
2146 if (SESS_LEADER(p))
2147 ki->p_eflag |= EPROC_SLEADER;
2148
2149 /* XXX Is this double check necessary? */
2150 if (P_ZOMBIE(p)) {
2151 ki->p_uvalid = 0;
2152 } else {
2153 ki->p_uvalid = 1;
2154
2155 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2156 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2157
2158 calcru(p, &ut, &st, 0);
2159 ki->p_uutime_sec = ut.tv_sec;
2160 ki->p_uutime_usec = ut.tv_usec;
2161 ki->p_ustime_sec = st.tv_sec;
2162 ki->p_ustime_usec = st.tv_usec;
2163
2164 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2165 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2166 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2167 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2168 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2169 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2170 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2171 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2172 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2173 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2174 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2175 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2176 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2177 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2178
2179 timeradd(&p->p_stats->p_cru.ru_utime,
2180 &p->p_stats->p_cru.ru_stime, &ut);
2181 ki->p_uctime_sec = ut.tv_sec;
2182 ki->p_uctime_usec = ut.tv_usec;
2183 }
2184 #ifdef MULTIPROCESSOR
2185 if (l && l->l_cpu != NULL)
2186 ki->p_cpuid = l->l_cpu->ci_cpuid;
2187 else
2188 #endif
2189 ki->p_cpuid = KI_NOCPU;
2190 }
2191
2192 /*
2193 * Fill in a kinfo_lwp structure for the specified lwp.
2194 */
2195 static void
2196 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2197 {
2198
2199 kl->l_forw = PTRTOINT64(l->l_forw);
2200 kl->l_back = PTRTOINT64(l->l_back);
2201 kl->l_laddr = PTRTOINT64(l);
2202 kl->l_addr = PTRTOINT64(l->l_addr);
2203 kl->l_stat = l->l_stat;
2204 kl->l_lid = l->l_lid;
2205 kl->l_flag = l->l_flag;
2206
2207 kl->l_swtime = l->l_swtime;
2208 kl->l_slptime = l->l_slptime;
2209 if (l->l_stat == LSONPROC) {
2210 KDASSERT(l->l_cpu != NULL);
2211 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2212 } else
2213 kl->l_schedflags = 0;
2214 kl->l_holdcnt = l->l_holdcnt;
2215 kl->l_priority = l->l_priority;
2216 kl->l_usrpri = l->l_usrpri;
2217 if (l->l_wmesg)
2218 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2219 kl->l_wchan = PTRTOINT64(l->l_wchan);
2220 #ifdef MULTIPROCESSOR
2221 if (l->l_cpu != NULL)
2222 kl->l_cpuid = l->l_cpu->ci_cpuid;
2223 else
2224 #endif
2225 kl->l_cpuid = KI_NOCPU;
2226 }
2227
2228 /*
2229 * Fill in an eproc structure for the specified process.
2230 */
2231 void
2232 fill_eproc(struct proc *p, struct eproc *ep)
2233 {
2234 struct tty *tp;
2235 struct lwp *l;
2236
2237 ep->e_paddr = p;
2238 ep->e_sess = p->p_session;
2239 ep->e_pcred = *p->p_cred;
2240 ep->e_ucred = *p->p_ucred;
2241 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2242 ep->e_vm.vm_rssize = 0;
2243 ep->e_vm.vm_tsize = 0;
2244 ep->e_vm.vm_dsize = 0;
2245 ep->e_vm.vm_ssize = 0;
2246 /* ep->e_vm.vm_pmap = XXX; */
2247 } else {
2248 struct vmspace *vm = p->p_vmspace;
2249
2250 ep->e_vm.vm_rssize = vm_resident_count(vm);
2251 ep->e_vm.vm_tsize = vm->vm_tsize;
2252 ep->e_vm.vm_dsize = vm->vm_dsize;
2253 ep->e_vm.vm_ssize = vm->vm_ssize;
2254
2255 /* Pick a "representative" LWP */
2256 l = proc_representative_lwp(p);
2257
2258 if (l->l_wmesg)
2259 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2260 }
2261 if (p->p_pptr)
2262 ep->e_ppid = p->p_pptr->p_pid;
2263 else
2264 ep->e_ppid = 0;
2265 ep->e_pgid = p->p_pgrp->pg_id;
2266 ep->e_sid = ep->e_sess->s_sid;
2267 ep->e_jobc = p->p_pgrp->pg_jobc;
2268 if ((p->p_flag & P_CONTROLT) &&
2269 (tp = ep->e_sess->s_ttyp)) {
2270 ep->e_tdev = tp->t_dev;
2271 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2272 ep->e_tsess = tp->t_session;
2273 } else
2274 ep->e_tdev = NODEV;
2275
2276 ep->e_xsize = ep->e_xrssize = 0;
2277 ep->e_xccount = ep->e_xswrss = 0;
2278 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2279 if (SESS_LEADER(p))
2280 ep->e_flag |= EPROC_SLEADER;
2281 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2282 }
2283