init_sysctl.c revision 1.14 1 /* $NetBSD: init_sysctl.c,v 1.14 2003/12/26 23:49:39 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_posix.h"
42 #include "pty.h"
43 #include "rnd.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/sysctl.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/unistd.h>
52 #include <sys/disklabel.h>
53 #include <sys/rnd.h>
54 #include <sys/vnode.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/msgbuf.h>
58 #include <dev/cons.h>
59 #include <sys/socketvar.h>
60 #include <sys/file.h>
61 #include <sys/tty.h>
62 #include <sys/malloc.h>
63 #include <sys/resource.h>
64 #include <sys/resourcevar.h>
65 #include <sys/exec.h>
66 #include <sys/conf.h>
67 #include <sys/device.h>
68
69 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
70 #include <sys/ipc.h>
71 #endif
72 #ifdef SYSVMSG
73 #include <sys/msg.h>
74 #endif
75 #ifdef SYSVSEM
76 #include <sys/sem.h>
77 #endif
78 #ifdef SYSVSHM
79 #include <sys/shm.h>
80 #endif
81
82 #include <machine/cpu.h>
83
84 /*
85 * try over estimating by 5 procs/lwps
86 */
87 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
88 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
89
90 /*
91 * convert pointer to 64 int for struct kinfo_proc2
92 */
93 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
94
95 #ifndef MULTIPROCESSOR
96 #define sysctl_ncpus() (1)
97 #else /* MULTIPROCESSOR */
98 #ifndef CPU_INFO_FOREACH
99 #define CPU_INFO_ITERATOR int
100 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
101 #endif
102 static int
103 sysctl_ncpus(void)
104 {
105 struct cpu_info *ci;
106 CPU_INFO_ITERATOR cii;
107
108 int ncpus = 0;
109 for (CPU_INFO_FOREACH(cii, ci))
110 ncpus++;
111 return (ncpus);
112 }
113 #endif /* MULTIPROCESSOR */
114
115 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
116 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
117 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
118 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
119 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
120 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
121 static int sysctl_kern_file(SYSCTLFN_PROTO);
122 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
123 static int sysctl_msgbuf(SYSCTLFN_PROTO);
124 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
125 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
126 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
127 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
128 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
129 #if NPTY > 0
130 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
131 #endif /* NPTY > 0 */
132 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
133 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
134 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
135 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
136 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
137 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
138 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
139 static int sysctl_doeproc(SYSCTLFN_PROTO);
140 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
141 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
142 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
143 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
144
145 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
146 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
147
148 /*
149 * ********************************************************************
150 * section 1: setup routines
151 * ********************************************************************
152 * these functions are stuffed into a link set for sysctl setup
153 * functions. they're never called or referenced from anywhere else.
154 * ********************************************************************
155 */
156
157 /*
158 * sets up the base nodes...
159 */
160 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
161 {
162
163 sysctl_createv(SYSCTL_PERMANENT,
164 CTLTYPE_NODE, "kern", NULL,
165 NULL, 0, NULL, 0,
166 CTL_KERN, CTL_EOL);
167 sysctl_createv(SYSCTL_PERMANENT,
168 CTLTYPE_NODE, "vm", NULL,
169 NULL, 0, NULL, 0,
170 CTL_VM, CTL_EOL);
171 sysctl_createv(SYSCTL_PERMANENT,
172 CTLTYPE_NODE, "vfs", NULL,
173 NULL, 0, NULL, 0,
174 CTL_VFS, CTL_EOL);
175 sysctl_createv(SYSCTL_PERMANENT,
176 CTLTYPE_NODE, "net", NULL,
177 NULL, 0, NULL, 0,
178 CTL_NET, CTL_EOL);
179 sysctl_createv(SYSCTL_PERMANENT,
180 CTLTYPE_NODE, "debug", NULL,
181 NULL, 0, NULL, 0,
182 CTL_DEBUG, CTL_EOL);
183 sysctl_createv(SYSCTL_PERMANENT,
184 CTLTYPE_NODE, "hw", NULL,
185 NULL, 0, NULL, 0,
186 CTL_HW, CTL_EOL);
187 sysctl_createv(SYSCTL_PERMANENT,
188 CTLTYPE_NODE, "machdep", NULL,
189 NULL, 0, NULL, 0,
190 CTL_MACHDEP, CTL_EOL);
191 /*
192 * this node is inserted so that the sysctl nodes in libc can
193 * operate.
194 */
195 sysctl_createv(SYSCTL_PERMANENT,
196 CTLTYPE_NODE, "user", NULL,
197 NULL, 0, NULL, 0,
198 CTL_USER, CTL_EOL);
199 sysctl_createv(SYSCTL_PERMANENT,
200 CTLTYPE_NODE, "ddb", NULL,
201 NULL, 0, NULL, 0,
202 CTL_DDB, CTL_EOL);
203 sysctl_createv(SYSCTL_PERMANENT,
204 CTLTYPE_NODE, "proc", NULL,
205 NULL, 0, NULL, 0,
206 CTL_PROC, CTL_EOL);
207 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
208 CTLTYPE_NODE, "vendor", NULL,
209 NULL, 0, NULL, 0,
210 CTL_VENDOR, CTL_EOL);
211 sysctl_createv(SYSCTL_PERMANENT,
212 CTLTYPE_NODE, "emul", NULL,
213 NULL, 0, NULL, 0,
214 CTL_EMUL, CTL_EOL);
215 }
216
217 /*
218 * this setup routine is a replacement for kern_sysctl()
219 */
220 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
221 {
222 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
223 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
224 extern int dumponpanic; /* defined in kern/subr_prf.c */
225
226 sysctl_createv(SYSCTL_PERMANENT,
227 CTLTYPE_NODE, "kern", NULL,
228 NULL, 0, NULL, 0,
229 CTL_KERN, CTL_EOL);
230
231 sysctl_createv(SYSCTL_PERMANENT,
232 CTLTYPE_STRING, "ostype", NULL,
233 NULL, 0, &ostype, 0,
234 CTL_KERN, KERN_OSTYPE, CTL_EOL);
235 sysctl_createv(SYSCTL_PERMANENT,
236 CTLTYPE_STRING, "osrelease", NULL,
237 NULL, 0, &osrelease, 0,
238 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
239 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
240 CTLTYPE_INT, "osrevision", NULL,
241 NULL, __NetBSD_Version__, NULL, 0,
242 CTL_KERN, KERN_OSREV, CTL_EOL);
243 sysctl_createv(SYSCTL_PERMANENT,
244 CTLTYPE_STRING, "version", NULL,
245 NULL, 0, &version, 0,
246 CTL_KERN, KERN_VERSION, CTL_EOL);
247 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
248 CTLTYPE_INT, "maxvnodes", NULL,
249 sysctl_kern_maxvnodes, 0, NULL, 0,
250 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
251 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
252 CTLTYPE_INT, "maxproc", NULL,
253 sysctl_kern_maxproc, 0, NULL, 0,
254 CTL_KERN, KERN_MAXPROC, CTL_EOL);
255 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
256 CTLTYPE_INT, "maxfiles", NULL,
257 NULL, 0, &maxfiles, 0,
258 CTL_KERN, KERN_MAXFILES, CTL_EOL);
259 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
260 CTLTYPE_INT, "argmax", NULL,
261 NULL, ARG_MAX, NULL, 0,
262 CTL_KERN, KERN_ARGMAX, CTL_EOL);
263 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
264 CTLTYPE_INT, "securelevel", NULL,
265 sysctl_kern_securelevel, 0, &securelevel, 0,
266 CTL_KERN, KERN_SECURELVL, CTL_EOL);
267 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
268 CTLTYPE_STRING, "hostname", NULL,
269 NULL, 0, &hostname, MAXHOSTNAMELEN,
270 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
271 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
272 CTLTYPE_INT, "hostid", NULL,
273 sysctl_kern_hostid, 0, NULL, 0,
274 CTL_KERN, KERN_HOSTID, CTL_EOL);
275 sysctl_createv(SYSCTL_PERMANENT,
276 CTLTYPE_STRUCT, "clockrate", NULL,
277 sysctl_kern_clockrate, 0, NULL,
278 sizeof(struct clockinfo),
279 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
280 sysctl_createv(SYSCTL_PERMANENT,
281 CTLTYPE_STRUCT, "vnode", NULL,
282 sysctl_kern_vnode, 0, NULL, 0,
283 CTL_KERN, KERN_VNODE, CTL_EOL);
284 sysctl_createv(SYSCTL_PERMANENT,
285 CTLTYPE_STRUCT, "file", NULL,
286 sysctl_kern_file, 0, NULL, 0,
287 CTL_KERN, KERN_FILE, CTL_EOL);
288 #ifndef GPROF
289 sysctl_createv(SYSCTL_PERMANENT,
290 CTLTYPE_NODE, "profiling", NULL,
291 sysctl_notavail, 0, NULL, 0,
292 CTL_KERN, KERN_PROF, CTL_EOL);
293 #endif
294 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
295 CTLTYPE_INT, "posix1version", NULL,
296 NULL, _POSIX_VERSION, NULL, 0,
297 CTL_KERN, KERN_POSIX1, CTL_EOL);
298 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
299 CTLTYPE_INT, "ngroups", NULL,
300 NULL, NGROUPS_MAX, NULL, 0,
301 CTL_KERN, KERN_NGROUPS, CTL_EOL);
302 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
303 CTLTYPE_INT, "job_control", NULL,
304 NULL, 1, NULL, 0,
305 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
306 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
307 CTLTYPE_INT, "saved_ids", NULL, NULL,
308 #ifdef _POSIX_SAVED_IDS
309 1,
310 #else /* _POSIX_SAVED_IDS */
311 0,
312 #endif /* _POSIX_SAVED_IDS */
313 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
314 sysctl_createv(SYSCTL_PERMANENT,
315 CTLTYPE_STRUCT, "boottime", NULL,
316 NULL, 0, &boottime, sizeof(boottime),
317 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
318 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
319 CTLTYPE_STRING, "domainname", NULL,
320 NULL, 0, &domainname, MAXHOSTNAMELEN,
321 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
322 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
323 CTLTYPE_INT, "maxpartitions", NULL,
324 NULL, MAXPARTITIONS, NULL, 0,
325 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
326 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
327 CTLTYPE_INT, "rawpartition", NULL,
328 NULL, RAW_PART, NULL, 0,
329 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
330 sysctl_createv(SYSCTL_PERMANENT,
331 CTLTYPE_STRUCT, "timex", NULL,
332 sysctl_notavail, 0, NULL, 0,
333 CTL_KERN, KERN_TIMEX, CTL_EOL);
334 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
335 CTLTYPE_INT, "autonicetime", NULL,
336 sysctl_kern_autonice, 0, &autonicetime, 0,
337 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
338 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
339 CTLTYPE_INT, "autoniceval", NULL,
340 sysctl_kern_autonice, 0, &autoniceval, 0,
341 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
342 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
343 CTLTYPE_INT, "rtc_offset", NULL,
344 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
345 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
346 sysctl_createv(SYSCTL_PERMANENT,
347 CTLTYPE_STRING, "root_device", NULL,
348 sysctl_root_device, 0, NULL, 0,
349 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
350 sysctl_createv(SYSCTL_PERMANENT,
351 CTLTYPE_INT, "msgbufsize", NULL,
352 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
353 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
354 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
355 CTLTYPE_INT, "fsync", NULL,
356 NULL, 1, NULL, 0,
357 CTL_KERN, KERN_FSYNC, CTL_EOL);
358 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
359 CTLTYPE_INT, "sysvmsg", NULL, NULL,
360 #ifdef SYSVMSG
361 1,
362 #else /* SYSVMSG */
363 0,
364 #endif /* SYSVMSG */
365 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
366 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
367 CTLTYPE_INT, "sysvsem", NULL, NULL,
368 #ifdef SYSVSEM
369 1,
370 #else /* SYSVSEM */
371 0,
372 #endif /* SYSVSEM */
373 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
374 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
375 CTLTYPE_INT, "sysvshm", NULL, NULL,
376 #ifdef SYSVSHM
377 1,
378 #else /* SYSVSHM */
379 0,
380 #endif /* SYSVSHM */
381 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
382 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
383 CTLTYPE_INT, "synchronized_io", NULL,
384 NULL, 1, NULL, 0,
385 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
386 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
387 CTLTYPE_INT, "iov_max", NULL,
388 NULL, IOV_MAX, NULL, 0,
389 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
390 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
391 CTLTYPE_INT, "mapped_files", NULL,
392 NULL, 1, NULL, 0,
393 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
394 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
395 CTLTYPE_INT, "memlock", NULL,
396 NULL, 1, NULL, 0,
397 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
398 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
399 CTLTYPE_INT, "memlock_range", NULL,
400 NULL, 1, NULL, 0,
401 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
402 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
403 CTLTYPE_INT, "memory_protection", NULL,
404 NULL, 1, NULL, 0,
405 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
406 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
407 CTLTYPE_INT, "login_name_max", NULL,
408 NULL, LOGIN_NAME_MAX, NULL, 0,
409 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
410 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
411 CTLTYPE_STRING, "defcorename", NULL,
412 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
413 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
414 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
415 CTLTYPE_INT, "logsigexit", NULL,
416 NULL, 0, &kern_logsigexit, 0,
417 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
418 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
419 CTLTYPE_INT, "fscale", NULL,
420 NULL, FSCALE, NULL, 0,
421 CTL_KERN, KERN_FSCALE, CTL_EOL);
422 sysctl_createv(SYSCTL_PERMANENT,
423 CTLTYPE_INT, "ccpu", NULL,
424 NULL, 0, &ccpu, 0,
425 CTL_KERN, KERN_CCPU, CTL_EOL);
426 sysctl_createv(SYSCTL_PERMANENT,
427 CTLTYPE_STRUCT, "cp_time", NULL,
428 sysctl_kern_cptime, 0, NULL, 0,
429 CTL_KERN, KERN_CP_TIME, CTL_EOL);
430 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
431 sysctl_createv(SYSCTL_PERMANENT,
432 CTLTYPE_STRUCT, "sysvipc_info", NULL,
433 sysctl_kern_sysvipc, 0, NULL, 0,
434 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
435 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
436 sysctl_createv(SYSCTL_PERMANENT,
437 CTLTYPE_INT, "msgbuf", NULL,
438 sysctl_msgbuf, 0, NULL, 0,
439 CTL_KERN, KERN_MSGBUF, CTL_EOL);
440 sysctl_createv(SYSCTL_PERMANENT,
441 CTLTYPE_STRUCT, "consdev", NULL,
442 sysctl_consdev, 0, NULL, sizeof(dev_t),
443 CTL_KERN, KERN_CONSDEV, CTL_EOL);
444 #if NPTY > 0
445 sysctl_createv(SYSCTL_PERMANENT,
446 CTLTYPE_INT, "maxptys", NULL,
447 sysctl_kern_maxptys, 0, NULL, 0,
448 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
449 #endif /* NPTY > 0 */
450 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
451 CTLTYPE_INT, "maxphys", NULL,
452 NULL, MAXPHYS, NULL, 0,
453 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
454 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
455 CTLTYPE_INT, "sbmax", NULL,
456 sysctl_kern_sbmax, 0, NULL, 0,
457 CTL_KERN, KERN_SBMAX, CTL_EOL);
458 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
459 CTLTYPE_INT, "monotonic_clock", NULL,
460 /* XXX _POSIX_VERSION */
461 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
462 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
463 sysctl_createv(SYSCTL_PERMANENT,
464 CTLTYPE_INT, "urandom", NULL,
465 sysctl_kern_urnd, 0, NULL, 0,
466 CTL_KERN, KERN_URND, CTL_EOL);
467 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
468 CTLTYPE_INT, "labelsector", NULL,
469 NULL, LABELSECTOR, NULL, 0,
470 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
471 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
472 CTLTYPE_INT, "labeloffset", NULL,
473 NULL, LABELOFFSET, NULL, 0,
474 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
475 sysctl_createv(SYSCTL_PERMANENT,
476 CTLTYPE_NODE, "lwp", NULL,
477 sysctl_kern_lwp, 0, NULL, 0,
478 CTL_KERN, KERN_LWP, CTL_EOL);
479 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
480 CTLTYPE_INT, "forkfsleep", NULL,
481 sysctl_kern_forkfsleep, 0, NULL, 0,
482 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
483 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
484 CTLTYPE_INT, "posix_threads", NULL,
485 /* XXX _POSIX_VERSION */
486 NULL, _POSIX_THREADS, NULL, 0,
487 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
488 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
489 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
490 #ifdef P1003_1B_SEMAPHORE
491 200112,
492 #else /* P1003_1B_SEMAPHORE */
493 0,
494 #endif /* P1003_1B_SEMAPHORE */
495 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
496 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
497 CTLTYPE_INT, "posix_barriers", NULL,
498 /* XXX _POSIX_VERSION */
499 NULL, _POSIX_BARRIERS, NULL, 0,
500 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
501 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
502 CTLTYPE_INT, "posix_timers", NULL,
503 /* XXX _POSIX_VERSION */
504 NULL, _POSIX_TIMERS, NULL, 0,
505 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
506 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
507 CTLTYPE_INT, "posix_spin_locks", NULL,
508 /* XXX _POSIX_VERSION */
509 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
510 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
511 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
512 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
513 /* XXX _POSIX_VERSION */
514 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
515 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
516 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
517 CTLTYPE_INT, "dump_on_panic", NULL,
518 NULL, 0, &dumponpanic, 0,
519 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
520 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
521 CTLTYPE_INT, "somaxkva", NULL,
522 sysctl_kern_somaxkva, 0, NULL, 0,
523 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
524 sysctl_createv(SYSCTL_PERMANENT,
525 CTLTYPE_INT, "root_partition", NULL,
526 sysctl_kern_root_partition, 0, NULL, 0,
527 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
528 sysctl_createv(SYSCTL_PERMANENT,
529 CTLTYPE_STRUCT, "drivers", NULL,
530 sysctl_kern_drivers, 0, NULL, 0,
531 CTL_KERN, KERN_DRIVERS, CTL_EOL);
532 }
533
534 SYSCTL_SETUP(sysctl_kern_proc_setup,
535 "sysctl kern.proc/proc2/proc_args subtree setup")
536 {
537
538 sysctl_createv(SYSCTL_PERMANENT,
539 CTLTYPE_NODE, "kern", NULL,
540 NULL, 0, NULL, 0,
541 CTL_KERN, CTL_EOL);
542
543 sysctl_createv(SYSCTL_PERMANENT,
544 CTLTYPE_NODE, "proc", NULL,
545 sysctl_doeproc, 0, NULL, 0,
546 CTL_KERN, KERN_PROC, CTL_EOL);
547 sysctl_createv(SYSCTL_PERMANENT,
548 CTLTYPE_NODE, "proc2", NULL,
549 sysctl_doeproc, 0, NULL, 0,
550 CTL_KERN, KERN_PROC2, CTL_EOL);
551 sysctl_createv(SYSCTL_PERMANENT,
552 CTLTYPE_NODE, "proc_args", NULL,
553 sysctl_kern_proc_args, 0, NULL, 0,
554 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
555
556 /*
557 "nodes" under these:
558
559 KERN_PROC_ALL
560 KERN_PROC_PID pid
561 KERN_PROC_PGRP pgrp
562 KERN_PROC_SESSION sess
563 KERN_PROC_TTY tty
564 KERN_PROC_UID uid
565 KERN_PROC_RUID uid
566 KERN_PROC_GID gid
567 KERN_PROC_RGID gid
568
569 all in all, probably not worth the effort...
570 */
571 }
572
573 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
574 {
575 u_int u;
576 u_quad_t q;
577
578 sysctl_createv(SYSCTL_PERMANENT,
579 CTLTYPE_NODE, "hw", NULL,
580 NULL, 0, NULL, 0,
581 CTL_HW, CTL_EOL);
582
583 sysctl_createv(SYSCTL_PERMANENT,
584 CTLTYPE_STRING, "machine", NULL,
585 NULL, 0, machine, 0,
586 CTL_HW, HW_MACHINE, CTL_EOL);
587 sysctl_createv(SYSCTL_PERMANENT,
588 CTLTYPE_STRING, "model", NULL,
589 NULL, 0, cpu_model, 0,
590 CTL_HW, HW_MODEL, CTL_EOL);
591 sysctl_createv(SYSCTL_PERMANENT,
592 CTLTYPE_INT, "ncpu", NULL,
593 sysctl_hw_ncpu, 0, NULL, 0,
594 CTL_HW, HW_NCPU, CTL_EOL);
595 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
596 CTLTYPE_INT, "byteorder", NULL,
597 NULL, BYTE_ORDER, NULL, 0,
598 CTL_HW, HW_BYTEORDER, CTL_EOL);
599 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
600 UINT_MAX : physmem * PAGE_SIZE;
601 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
602 CTLTYPE_INT, "physmem", NULL,
603 NULL, u, NULL, 0,
604 CTL_HW, HW_PHYSMEM, CTL_EOL);
605 sysctl_createv(SYSCTL_PERMANENT,
606 CTLTYPE_INT, "usermem", NULL,
607 sysctl_hw_usermem, 0, NULL, 0,
608 CTL_HW, HW_USERMEM, CTL_EOL);
609 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
610 CTLTYPE_INT, "pagesize", NULL,
611 NULL, PAGE_SIZE, NULL, 0,
612 CTL_HW, HW_PAGESIZE, CTL_EOL);
613 sysctl_createv(SYSCTL_PERMANENT,
614 CTLTYPE_STRING, "disknames", NULL,
615 sysctl_hw_disknames, 0, NULL, 0,
616 CTL_HW, HW_DISKNAMES, CTL_EOL);
617 sysctl_createv(SYSCTL_PERMANENT,
618 CTLTYPE_STRUCT, "diskstats", NULL,
619 sysctl_hw_diskstats, 0, NULL, 0,
620 CTL_HW, HW_DISKSTATS, CTL_EOL);
621 sysctl_createv(SYSCTL_PERMANENT,
622 CTLTYPE_STRING, "machine_arch", NULL,
623 NULL, 0, machine_arch, 0,
624 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
625 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
626 CTLTYPE_INT, "alignbytes", NULL,
627 NULL, ALIGNBYTES, NULL, 0,
628 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
629 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
630 CTLTYPE_STRING, "cnmagic", NULL,
631 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
632 CTL_HW, HW_CNMAGIC, CTL_EOL);
633 q = (u_quad_t)physmem * PAGE_SIZE;
634 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
635 CTLTYPE_QUAD, "physmem64", NULL,
636 NULL, q, NULL, 0,
637 CTL_HW, HW_PHYSMEM64, CTL_EOL);
638 sysctl_createv(SYSCTL_PERMANENT,
639 CTLTYPE_QUAD, "usermem64", NULL,
640 sysctl_hw_usermem, 0, NULL, 0,
641 CTL_HW, HW_USERMEM64, CTL_EOL);
642 }
643
644 #ifdef DEBUG
645 /*
646 * Debugging related system variables.
647 */
648 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
649 struct ctldebug debug5, debug6, debug7, debug8, debug9;
650 struct ctldebug debug10, debug11, debug12, debug13, debug14;
651 struct ctldebug debug15, debug16, debug17, debug18, debug19;
652 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
653 &debug0, &debug1, &debug2, &debug3, &debug4,
654 &debug5, &debug6, &debug7, &debug8, &debug9,
655 &debug10, &debug11, &debug12, &debug13, &debug14,
656 &debug15, &debug16, &debug17, &debug18, &debug19,
657 };
658
659 /*
660 * this setup routine is a replacement for debug_sysctl()
661 *
662 * note that it creates several nodes per defined debug variable
663 */
664 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
665 {
666 struct ctldebug *cdp;
667 char nodename[20];
668 int i;
669
670 /*
671 * two ways here:
672 *
673 * the "old" way (debug.name -> value) which was emulated by
674 * the sysctl(8) binary
675 *
676 * the new way, which the sysctl(8) binary was actually using
677
678 node debug
679 node debug.0
680 string debug.0.name
681 int debug.0.value
682 int debug.name
683
684 */
685
686 sysctl_createv(SYSCTL_PERMANENT,
687 CTLTYPE_NODE, "debug", NULL,
688 NULL, 0, NULL, 0,
689 CTL_DEBUG, CTL_EOL);
690
691 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
692 cdp = debugvars[i];
693 if (cdp->debugname == NULL || cdp->debugvar == NULL)
694 continue;
695
696 snprintf(nodename, sizeof(nodename), "debug%d", i);
697 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
698 CTLTYPE_NODE, nodename, NULL,
699 NULL, 0, NULL, 0,
700 CTL_DEBUG, i, CTL_EOL);
701 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
702 CTLTYPE_STRING, "name", NULL,
703 NULL, 0, cdp->debugname, 0,
704 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
705 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
706 CTLTYPE_INT, "value", NULL,
707 NULL, 0, cdp->debugvar, 0,
708 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
709 sysctl_createv(SYSCTL_PERMANENT,
710 CTLTYPE_INT, cdp->debugname, NULL,
711 NULL, 0, cdp->debugvar, 0,
712 CTL_DEBUG, CTL_CREATE, CTL_EOL);
713 }
714 }
715 #endif /* DEBUG */
716
717 /*
718 * ********************************************************************
719 * section 2: private node-specific helper routines.
720 * ********************************************************************
721 */
722
723 /*
724 * sysctl helper routine for kern.maxvnodes. drain vnodes if
725 * new value is lower than desiredvnodes and then calls reinit
726 * routines that needs to adjust to the new value.
727 */
728 static int
729 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
730 {
731 int error, new_vnodes, old_vnodes;
732 struct sysctlnode node;
733
734 new_vnodes = desiredvnodes;
735 node = *rnode;
736 node.sysctl_data = &new_vnodes;
737 error = sysctl_lookup(SYSCTLFN_CALL(&node));
738 if (error || newp == NULL)
739 return (error);
740
741 old_vnodes = desiredvnodes;
742 desiredvnodes = new_vnodes;
743 if (new_vnodes < old_vnodes) {
744 error = vfs_drainvnodes(new_vnodes, l->l_proc);
745 if (error) {
746 desiredvnodes = old_vnodes;
747 return (error);
748 }
749 }
750 vfs_reinit();
751 nchreinit();
752
753 return (0);
754 }
755
756 /*
757 * sysctl helper routine for rtc_offset - set time after changes
758 */
759 static int
760 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
761 {
762 struct timeval tv, delta;
763 int s, error, new_rtc_offset;
764 struct sysctlnode node;
765
766 new_rtc_offset = rtc_offset;
767 node = *rnode;
768 node.sysctl_data = &new_rtc_offset;
769 error = sysctl_lookup(SYSCTLFN_CALL(&node));
770 if (error || newp == NULL)
771 return (error);
772
773 if (securelevel > 0)
774 return (EPERM);
775 if (rtc_offset == new_rtc_offset)
776 return (0);
777
778 /* if we change the offset, adjust the time */
779 s = splclock();
780 tv = time;
781 splx(s);
782 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
783 delta.tv_usec = 0;
784 timeradd(&tv, &delta, &tv);
785 rtc_offset = new_rtc_offset;
786 settime(&tv);
787
788 return (0);
789 }
790
791 /*
792 * sysctl helper routine for kern.maxvnodes. ensures that the new
793 * values are not too low or too high.
794 */
795 static int
796 sysctl_kern_maxproc(SYSCTLFN_ARGS)
797 {
798 int error, nmaxproc;
799 struct sysctlnode node;
800
801 nmaxproc = maxproc;
802 node = *rnode;
803 node.sysctl_data = &nmaxproc;
804 error = sysctl_lookup(SYSCTLFN_CALL(&node));
805 if (error || newp == NULL)
806 return (error);
807
808 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
809 return (EINVAL);
810 #ifdef __HAVE_CPU_MAXPROC
811 if (nmaxproc > cpu_maxproc())
812 return (EINVAL);
813 #endif
814 maxproc = nmaxproc;
815
816 return (0);
817 }
818
819 /*
820 * sysctl helper routine for kern.securelevel. ensures that the value
821 * only rises unless the caller has pid 1 (assumed to be init).
822 */
823 static int
824 sysctl_kern_securelevel(SYSCTLFN_ARGS)
825 {
826 int newsecurelevel, error;
827 struct sysctlnode node;
828
829 newsecurelevel = securelevel;
830 node = *rnode;
831 node.sysctl_data = &newsecurelevel;
832 error = sysctl_lookup(SYSCTLFN_CALL(&node));
833 if (error || newp == NULL)
834 return (error);
835
836 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
837 return (EPERM);
838 securelevel = newsecurelevel;
839
840 return (error);
841 }
842
843 /*
844 * sysctl helper function for kern.hostid. the hostid is a long, but
845 * we export it as an int, so we need to give it a little help.
846 */
847 static int
848 sysctl_kern_hostid(SYSCTLFN_ARGS)
849 {
850 int error, inthostid;
851 struct sysctlnode node;
852
853 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
854 node = *rnode;
855 node.sysctl_data = &inthostid;
856 error = sysctl_lookup(SYSCTLFN_CALL(&node));
857 if (error || newp == NULL)
858 return (error);
859
860 hostid = inthostid;
861
862 return (0);
863 }
864
865 /*
866 * sysctl helper routine for kern.clockrate. assembles a struct on
867 * the fly to be returned to the caller.
868 */
869 static int
870 sysctl_kern_clockrate(SYSCTLFN_ARGS)
871 {
872 struct clockinfo clkinfo;
873 struct sysctlnode node;
874
875 clkinfo.tick = tick;
876 clkinfo.tickadj = tickadj;
877 clkinfo.hz = hz;
878 clkinfo.profhz = profhz;
879 clkinfo.stathz = stathz ? stathz : hz;
880
881 node = *rnode;
882 node.sysctl_data = &clkinfo;
883 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
884 }
885
886
887 /*
888 * sysctl helper routine for kern.file pseudo-subtree.
889 */
890 static int
891 sysctl_kern_file(SYSCTLFN_ARGS)
892 {
893 int error;
894 size_t buflen;
895 struct file *fp;
896 char *start, *where;
897
898 start = where = oldp;
899 buflen = *oldlenp;
900 if (where == NULL) {
901 /*
902 * overestimate by 10 files
903 */
904 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
905 return (0);
906 }
907
908 /*
909 * first copyout filehead
910 */
911 if (buflen < sizeof(filehead)) {
912 *oldlenp = 0;
913 return (0);
914 }
915 error = copyout(&filehead, where, sizeof(filehead));
916 if (error)
917 return (error);
918 buflen -= sizeof(filehead);
919 where += sizeof(filehead);
920
921 /*
922 * followed by an array of file structures
923 */
924 LIST_FOREACH(fp, &filehead, f_list) {
925 if (buflen < sizeof(struct file)) {
926 *oldlenp = where - start;
927 return (ENOMEM);
928 }
929 error = copyout(fp, where, sizeof(struct file));
930 if (error)
931 return (error);
932 buflen -= sizeof(struct file);
933 where += sizeof(struct file);
934 }
935 *oldlenp = where - start;
936 return (0);
937 }
938
939 /*
940 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
941 * asserts that the assigned value is in the correct range.
942 */
943 static int
944 sysctl_kern_autonice(SYSCTLFN_ARGS)
945 {
946 int error, t = 0;
947 struct sysctlnode node;
948
949 node = *rnode;
950 t = *(int*)node.sysctl_data;
951 node.sysctl_data = &t;
952 error = sysctl_lookup(SYSCTLFN_CALL(&node));
953 if (error || newp == NULL)
954 return (error);
955
956 switch (node.sysctl_num) {
957 case KERN_AUTONICETIME:
958 if (t >= 0)
959 autonicetime = t;
960 break;
961 case KERN_AUTONICEVAL:
962 if (t < PRIO_MIN)
963 t = PRIO_MIN;
964 else if (t > PRIO_MAX)
965 t = PRIO_MAX;
966 autoniceval = t;
967 break;
968 }
969
970 return (0);
971 }
972
973 /*
974 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
975 * former it merely checks the the message buffer is set up. for the
976 * latter, it also copies out the data if necessary.
977 */
978 static int
979 sysctl_msgbuf(SYSCTLFN_ARGS)
980 {
981 char *where = oldp;
982 size_t len, maxlen;
983 long beg, end;
984 int error;
985
986 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
987 msgbufenabled = 0;
988 return (ENXIO);
989 }
990
991 switch (rnode->sysctl_num) {
992 case KERN_MSGBUFSIZE:
993 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
994 case KERN_MSGBUF:
995 break;
996 default:
997 return (EOPNOTSUPP);
998 }
999
1000 if (newp != NULL)
1001 return (EPERM);
1002
1003 if (oldp == NULL) {
1004 /* always return full buffer size */
1005 *oldlenp = msgbufp->msg_bufs;
1006 return (0);
1007 }
1008
1009 error = 0;
1010 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1011
1012 /*
1013 * First, copy from the write pointer to the end of
1014 * message buffer.
1015 */
1016 beg = msgbufp->msg_bufx;
1017 end = msgbufp->msg_bufs;
1018 while (maxlen > 0) {
1019 len = MIN(end - beg, maxlen);
1020 if (len == 0)
1021 break;
1022 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1023 if (error)
1024 break;
1025 where += len;
1026 maxlen -= len;
1027
1028 /*
1029 * ... then, copy from the beginning of message buffer to
1030 * the write pointer.
1031 */
1032 beg = 0;
1033 end = msgbufp->msg_bufx;
1034 }
1035
1036 return (error);
1037 }
1038
1039 /*
1040 * sysctl helper routine for kern.defcorename. in the case of a new
1041 * string being assigned, check that it's not a zero-length string.
1042 * (XXX the check in -current doesn't work, but do we really care?)
1043 */
1044 static int
1045 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1046 {
1047 int error;
1048 char newcorename[MAXPATHLEN];
1049 struct sysctlnode node;
1050
1051 node = *rnode;
1052 node.sysctl_data = &newcorename[0];
1053 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1054 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1055 if (error || newp == NULL)
1056 return (error);
1057
1058 /*
1059 * when sysctl_lookup() deals with a string, it's guaranteed
1060 * to come back nul terminated. so there. :)
1061 */
1062 if (strlen(newcorename) == 0)
1063 return (EINVAL);
1064
1065 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1066
1067 return (0);
1068 }
1069
1070 /*
1071 * sysctl helper routine for kern.cp_time node. adds up cpu time
1072 * across all cpus.
1073 */
1074 static int
1075 sysctl_kern_cptime(SYSCTLFN_ARGS)
1076 {
1077 struct sysctlnode node = *rnode;
1078
1079 #ifndef MULTIPROCESSOR
1080
1081 if (namelen == 1 && name[0] == 0) {
1082 /*
1083 * you're allowed to ask for the zero'th processor
1084 */
1085 name++;
1086 namelen--;
1087 }
1088 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1089 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1090 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1091
1092 #else /* MULTIPROCESSOR */
1093
1094 u_int64_t *cp_time = NULL;
1095 int error, n = sysctl_ncpus(), i;
1096 struct cpu_info *ci;
1097 CPU_INFO_ITERATOR cii;
1098
1099 /*
1100 * if you specifically pass a buffer that is the size of the
1101 * sum, or if you are probing for the size, you get the "sum"
1102 * of cp_time (and the size thereof) across all processors.
1103 *
1104 * alternately, you can pass an additional mib number and get
1105 * cp_time for that particular processor.
1106 */
1107 switch (namelen) {
1108 case 0:
1109 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1110 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1111 n = -1; /* SUM */
1112 }
1113 else {
1114 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1115 n = -2; /* ALL */
1116 }
1117 break;
1118 case 1:
1119 if (name[0] < 0 || name[0] >= n)
1120 return (EINVAL); /* ENOSUCHPROCESSOR */
1121 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1122 n = name[0];
1123 /*
1124 * adjust these so that sysctl_lookup() will be happy
1125 */
1126 name++;
1127 namelen--;
1128 break;
1129 default:
1130 return (EINVAL);
1131 }
1132
1133 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1134 if (cp_time == NULL)
1135 return (ENOMEM);
1136 node.sysctl_data = cp_time;
1137 memset(cp_time, 0, node.sysctl_size);
1138
1139 for (CPU_INFO_FOREACH(cii, ci)) {
1140 if (n <= 0)
1141 for (i = 0; i < CPUSTATES; i++)
1142 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1143 /*
1144 * if a specific processor was requested and we just
1145 * did it, we're done here
1146 */
1147 if (n == 0)
1148 break;
1149 /*
1150 * if doing "all", skip to next cp_time set for next processor
1151 */
1152 if (n == -2)
1153 cp_time += CPUSTATES;
1154 /*
1155 * if we're doing a specific processor, we're one
1156 * processor closer
1157 */
1158 if (n > 0)
1159 n--;
1160 }
1161
1162 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1163 free(node.sysctl_data, M_TEMP);
1164 return (error);
1165
1166 #endif /* MULTIPROCESSOR */
1167 }
1168
1169 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1170 /*
1171 * sysctl helper routine for kern.sysvipc_info subtree.
1172 */
1173
1174 #define FILL_PERM(src, dst) do { \
1175 (dst)._key = (src)._key; \
1176 (dst).uid = (src).uid; \
1177 (dst).gid = (src).gid; \
1178 (dst).cuid = (src).cuid; \
1179 (dst).cgid = (src).cgid; \
1180 (dst).mode = (src).mode; \
1181 (dst)._seq = (src)._seq; \
1182 } while (/*CONSTCOND*/ 0);
1183 #define FILL_MSG(src, dst) do { \
1184 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1185 (dst).msg_qnum = (src).msg_qnum; \
1186 (dst).msg_qbytes = (src).msg_qbytes; \
1187 (dst)._msg_cbytes = (src)._msg_cbytes; \
1188 (dst).msg_lspid = (src).msg_lspid; \
1189 (dst).msg_lrpid = (src).msg_lrpid; \
1190 (dst).msg_stime = (src).msg_stime; \
1191 (dst).msg_rtime = (src).msg_rtime; \
1192 (dst).msg_ctime = (src).msg_ctime; \
1193 } while (/*CONSTCOND*/ 0)
1194 #define FILL_SEM(src, dst) do { \
1195 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1196 (dst).sem_nsems = (src).sem_nsems; \
1197 (dst).sem_otime = (src).sem_otime; \
1198 (dst).sem_ctime = (src).sem_ctime; \
1199 } while (/*CONSTCOND*/ 0)
1200 #define FILL_SHM(src, dst) do { \
1201 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1202 (dst).shm_segsz = (src).shm_segsz; \
1203 (dst).shm_lpid = (src).shm_lpid; \
1204 (dst).shm_cpid = (src).shm_cpid; \
1205 (dst).shm_atime = (src).shm_atime; \
1206 (dst).shm_dtime = (src).shm_dtime; \
1207 (dst).shm_ctime = (src).shm_ctime; \
1208 (dst).shm_nattch = (src).shm_nattch; \
1209 } while (/*CONSTCOND*/ 0)
1210
1211 static int
1212 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1213 {
1214 void *where = oldp;
1215 size_t *sizep = oldlenp;
1216 #ifdef SYSVMSG
1217 struct msg_sysctl_info *msgsi = NULL;
1218 #endif
1219 #ifdef SYSVSEM
1220 struct sem_sysctl_info *semsi = NULL;
1221 #endif
1222 #ifdef SYSVSHM
1223 struct shm_sysctl_info *shmsi = NULL;
1224 #endif
1225 size_t infosize, dssize, tsize, buflen;
1226 void *buf = NULL;
1227 char *start;
1228 int32_t nds;
1229 int i, error, ret;
1230
1231 if (namelen != 1)
1232 return (EINVAL);
1233
1234 start = where;
1235 buflen = *sizep;
1236
1237 switch (*name) {
1238 case KERN_SYSVIPC_MSG_INFO:
1239 #ifdef SYSVMSG
1240 infosize = sizeof(msgsi->msginfo);
1241 nds = msginfo.msgmni;
1242 dssize = sizeof(msgsi->msgids[0]);
1243 break;
1244 #else
1245 return (EINVAL);
1246 #endif
1247 case KERN_SYSVIPC_SEM_INFO:
1248 #ifdef SYSVSEM
1249 infosize = sizeof(semsi->seminfo);
1250 nds = seminfo.semmni;
1251 dssize = sizeof(semsi->semids[0]);
1252 break;
1253 #else
1254 return (EINVAL);
1255 #endif
1256 case KERN_SYSVIPC_SHM_INFO:
1257 #ifdef SYSVSHM
1258 infosize = sizeof(shmsi->shminfo);
1259 nds = shminfo.shmmni;
1260 dssize = sizeof(shmsi->shmids[0]);
1261 break;
1262 #else
1263 return (EINVAL);
1264 #endif
1265 default:
1266 return (EINVAL);
1267 }
1268 /*
1269 * Round infosize to 64 bit boundary if requesting more than just
1270 * the info structure or getting the total data size.
1271 */
1272 if (where == NULL || *sizep > infosize)
1273 infosize = ((infosize + 7) / 8) * 8;
1274 tsize = infosize + nds * dssize;
1275
1276 /* Return just the total size required. */
1277 if (where == NULL) {
1278 *sizep = tsize;
1279 return (0);
1280 }
1281
1282 /* Not enough room for even the info struct. */
1283 if (buflen < infosize) {
1284 *sizep = 0;
1285 return (ENOMEM);
1286 }
1287 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1288 memset(buf, 0, min(tsize, buflen));
1289
1290 switch (*name) {
1291 #ifdef SYSVMSG
1292 case KERN_SYSVIPC_MSG_INFO:
1293 msgsi = (struct msg_sysctl_info *)buf;
1294 msgsi->msginfo = msginfo;
1295 break;
1296 #endif
1297 #ifdef SYSVSEM
1298 case KERN_SYSVIPC_SEM_INFO:
1299 semsi = (struct sem_sysctl_info *)buf;
1300 semsi->seminfo = seminfo;
1301 break;
1302 #endif
1303 #ifdef SYSVSHM
1304 case KERN_SYSVIPC_SHM_INFO:
1305 shmsi = (struct shm_sysctl_info *)buf;
1306 shmsi->shminfo = shminfo;
1307 break;
1308 #endif
1309 }
1310 buflen -= infosize;
1311
1312 ret = 0;
1313 if (buflen > 0) {
1314 /* Fill in the IPC data structures. */
1315 for (i = 0; i < nds; i++) {
1316 if (buflen < dssize) {
1317 ret = ENOMEM;
1318 break;
1319 }
1320 switch (*name) {
1321 #ifdef SYSVMSG
1322 case KERN_SYSVIPC_MSG_INFO:
1323 FILL_MSG(msqids[i], msgsi->msgids[i]);
1324 break;
1325 #endif
1326 #ifdef SYSVSEM
1327 case KERN_SYSVIPC_SEM_INFO:
1328 FILL_SEM(sema[i], semsi->semids[i]);
1329 break;
1330 #endif
1331 #ifdef SYSVSHM
1332 case KERN_SYSVIPC_SHM_INFO:
1333 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1334 break;
1335 #endif
1336 }
1337 buflen -= dssize;
1338 }
1339 }
1340 *sizep -= buflen;
1341 error = copyout(buf, start, *sizep);
1342 /* If copyout succeeded, use return code set earlier. */
1343 if (error == 0)
1344 error = ret;
1345 if (buf)
1346 free(buf, M_TEMP);
1347 return (error);
1348 }
1349
1350 #undef FILL_PERM
1351 #undef FILL_MSG
1352 #undef FILL_SEM
1353 #undef FILL_SHM
1354
1355 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1356
1357 #if NPTY > 0
1358 /*
1359 * sysctl helper routine for kern.maxptys. ensures that any new value
1360 * is acceptable to the pty subsystem.
1361 */
1362 static int
1363 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1364 {
1365 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1366 int error, max;
1367 struct sysctlnode node;
1368
1369 /* get current value of maxptys */
1370 max = pty_maxptys(0, 0);
1371
1372 node = *rnode;
1373 node.sysctl_data = &max;
1374 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1375 if (error || newp == NULL)
1376 return (error);
1377
1378 if (max != pty_maxptys(max, 1))
1379 return (EINVAL);
1380
1381 return (0);
1382 }
1383 #endif /* NPTY > 0 */
1384
1385 /*
1386 * sysctl helper routine for kern.sbmax. basically just ensures that
1387 * any new value is not too small.
1388 */
1389 static int
1390 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1391 {
1392 int error, new_sbmax;
1393 struct sysctlnode node;
1394
1395 new_sbmax = sb_max;
1396 node = *rnode;
1397 node.sysctl_data = &new_sbmax;
1398 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1399 if (error || newp == NULL)
1400 return (error);
1401
1402 error = sb_max_set(new_sbmax);
1403
1404 return (error);
1405 }
1406
1407 /*
1408 * sysctl helper routine for kern.urandom node. picks a random number
1409 * for you.
1410 */
1411 static int
1412 sysctl_kern_urnd(SYSCTLFN_ARGS)
1413 {
1414 #if NRND > 0
1415 int v;
1416
1417 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1418 struct sysctlnode node = *rnode;
1419 node.sysctl_data = &v;
1420 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1421 }
1422 else
1423 return (EIO); /*XXX*/
1424 #else
1425 return (EOPNOTSUPP);
1426 #endif
1427 }
1428
1429 /*
1430 * sysctl helper routine to do kern.lwp.* work.
1431 */
1432 static int
1433 sysctl_kern_lwp(SYSCTLFN_ARGS)
1434 {
1435 struct kinfo_lwp klwp;
1436 struct proc *p;
1437 struct lwp *l2;
1438 char *where, *dp;
1439 int pid, elem_size, elem_count;
1440 int buflen, needed, error;
1441
1442 dp = where = oldp;
1443 buflen = where != NULL ? *oldlenp : 0;
1444 error = needed = 0;
1445
1446 if (newp != NULL || namelen != 3)
1447 return (EINVAL);
1448 pid = name[0];
1449 elem_size = name[1];
1450 elem_count = name[2];
1451
1452 p = pfind(pid);
1453 if (p == NULL)
1454 return (ESRCH);
1455 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1456 if (buflen >= elem_size && elem_count > 0) {
1457 fill_lwp(l2, &klwp);
1458 /*
1459 * Copy out elem_size, but not larger than
1460 * the size of a struct kinfo_proc2.
1461 */
1462 error = copyout(&klwp, dp,
1463 min(sizeof(klwp), elem_size));
1464 if (error)
1465 goto cleanup;
1466 dp += elem_size;
1467 buflen -= elem_size;
1468 elem_count--;
1469 }
1470 needed += elem_size;
1471 }
1472
1473 if (where != NULL) {
1474 *oldlenp = dp - where;
1475 if (needed > *oldlenp)
1476 return (ENOMEM);
1477 } else {
1478 needed += KERN_PROCSLOP;
1479 *oldlenp = needed;
1480 }
1481 return (0);
1482 cleanup:
1483 return (error);
1484 }
1485
1486 /*
1487 * sysctl helper routine for kern.forkfsleep node. ensures that the
1488 * given value is not too large or two small, and is at least one
1489 * timer tick if not zero.
1490 */
1491 static int
1492 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1493 {
1494 /* userland sees value in ms, internally is in ticks */
1495 extern int forkfsleep; /* defined in kern/kern_fork.c */
1496 int error, timo, lsleep;
1497 struct sysctlnode node;
1498
1499 lsleep = forkfsleep * 1000 / hz;
1500 node = *rnode;
1501 node.sysctl_data = &lsleep;
1502 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1503 if (error || newp == NULL)
1504 return (error);
1505
1506 /* refuse negative values, and overly 'long time' */
1507 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1508 return (EINVAL);
1509
1510 timo = mstohz(lsleep);
1511
1512 /* if the interval is >0 ms && <1 tick, use 1 tick */
1513 if (lsleep != 0 && timo == 0)
1514 forkfsleep = 1;
1515 else
1516 forkfsleep = timo;
1517
1518 return (0);
1519 }
1520
1521 /*
1522 * sysctl helper routine for kern.somaxkva. ensures that the given
1523 * value is not too small.
1524 * (XXX should we maybe make sure it's not too large as well?)
1525 */
1526 static int
1527 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1528 {
1529 int error, new_somaxkva;
1530 struct sysctlnode node;
1531
1532 new_somaxkva = somaxkva;
1533 node = *rnode;
1534 node.sysctl_data = &new_somaxkva;
1535 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1536 if (error || newp == NULL)
1537 return (error);
1538
1539 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1540 return (EINVAL);
1541 somaxkva = new_somaxkva;
1542
1543 return (error);
1544 }
1545
1546 /*
1547 * sysctl helper routine for kern.root_partition
1548 */
1549 static int
1550 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1551 {
1552 int rootpart = DISKPART(rootdev);
1553 struct sysctlnode node = *rnode;
1554
1555 node.sysctl_data = &rootpart;
1556 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1557 }
1558
1559 /*
1560 * sysctl helper function for kern.drivers
1561 */
1562 static int
1563 sysctl_kern_drivers(SYSCTLFN_ARGS)
1564 {
1565 int error;
1566 size_t buflen;
1567 struct kinfo_drivers kd;
1568 char *start, *where;
1569 const char *dname;
1570 int i;
1571 extern struct devsw_conv *devsw_conv;
1572 extern int max_devsw_convs;
1573
1574 if (newp != NULL || namelen != 0)
1575 return (EINVAL);
1576
1577 start = where = oldp;
1578 buflen = *oldlenp;
1579 if (where == NULL) {
1580 *oldlenp = max_devsw_convs * sizeof kd;
1581 return 0;
1582 }
1583
1584 /*
1585 * An array of kinfo_drivers structures
1586 */
1587 error = 0;
1588 for (i = 0; i < max_devsw_convs; i++) {
1589 dname = devsw_conv[i].d_name;
1590 if (dname == NULL)
1591 continue;
1592 if (buflen < sizeof kd) {
1593 error = ENOMEM;
1594 break;
1595 }
1596 kd.d_bmajor = devsw_conv[i].d_bmajor;
1597 kd.d_cmajor = devsw_conv[i].d_cmajor;
1598 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1599 error = copyout(&kd, where, sizeof kd);
1600 if (error != 0)
1601 break;
1602 buflen -= sizeof kd;
1603 where += sizeof kd;
1604 }
1605 *oldlenp = where - start;
1606 return error;
1607 }
1608
1609 static int
1610 sysctl_doeproc(SYSCTLFN_ARGS)
1611 {
1612 struct eproc eproc;
1613 struct kinfo_proc2 kproc2;
1614 struct kinfo_proc *dp;
1615 struct proc *p;
1616 const struct proclist_desc *pd;
1617 char *where, *dp2;
1618 int type, op, arg;
1619 u_int elem_size, elem_count;
1620 size_t buflen, needed;
1621 int error;
1622
1623 dp = oldp;
1624 dp2 = where = oldp;
1625 buflen = where != NULL ? *oldlenp : 0;
1626 error = 0;
1627 needed = 0;
1628 type = rnode->sysctl_num;
1629
1630 if (type == KERN_PROC) {
1631 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1632 return (EINVAL);
1633 op = name[0];
1634 if (op != KERN_PROC_ALL)
1635 arg = name[1];
1636 else
1637 arg = 0; /* Quell compiler warning */
1638 elem_size = elem_count = 0; /* Ditto */
1639 } else {
1640 if (namelen != 4)
1641 return (EINVAL);
1642 op = name[0];
1643 arg = name[1];
1644 elem_size = name[2];
1645 elem_count = name[3];
1646 }
1647
1648 proclist_lock_read();
1649
1650 pd = proclists;
1651 again:
1652 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1653 /*
1654 * Skip embryonic processes.
1655 */
1656 if (p->p_stat == SIDL)
1657 continue;
1658 /*
1659 * TODO - make more efficient (see notes below).
1660 * do by session.
1661 */
1662 switch (op) {
1663
1664 case KERN_PROC_PID:
1665 /* could do this with just a lookup */
1666 if (p->p_pid != (pid_t)arg)
1667 continue;
1668 break;
1669
1670 case KERN_PROC_PGRP:
1671 /* could do this by traversing pgrp */
1672 if (p->p_pgrp->pg_id != (pid_t)arg)
1673 continue;
1674 break;
1675
1676 case KERN_PROC_SESSION:
1677 if (p->p_session->s_sid != (pid_t)arg)
1678 continue;
1679 break;
1680
1681 case KERN_PROC_TTY:
1682 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1683 if ((p->p_flag & P_CONTROLT) == 0 ||
1684 p->p_session->s_ttyp == NULL ||
1685 p->p_session->s_ttyvp != NULL)
1686 continue;
1687 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1688 p->p_session->s_ttyp == NULL) {
1689 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1690 continue;
1691 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1692 continue;
1693 break;
1694
1695 case KERN_PROC_UID:
1696 if (p->p_ucred->cr_uid != (uid_t)arg)
1697 continue;
1698 break;
1699
1700 case KERN_PROC_RUID:
1701 if (p->p_cred->p_ruid != (uid_t)arg)
1702 continue;
1703 break;
1704
1705 case KERN_PROC_GID:
1706 if (p->p_ucred->cr_gid != (uid_t)arg)
1707 continue;
1708 break;
1709
1710 case KERN_PROC_RGID:
1711 if (p->p_cred->p_rgid != (uid_t)arg)
1712 continue;
1713 break;
1714
1715 case KERN_PROC_ALL:
1716 /* allow everything */
1717 break;
1718
1719 default:
1720 error = EINVAL;
1721 goto cleanup;
1722 }
1723 if (type == KERN_PROC) {
1724 if (buflen >= sizeof(struct kinfo_proc)) {
1725 fill_eproc(p, &eproc);
1726 error = copyout(p, &dp->kp_proc,
1727 sizeof(struct proc));
1728 if (error)
1729 goto cleanup;
1730 error = copyout(&eproc, &dp->kp_eproc,
1731 sizeof(eproc));
1732 if (error)
1733 goto cleanup;
1734 dp++;
1735 buflen -= sizeof(struct kinfo_proc);
1736 }
1737 needed += sizeof(struct kinfo_proc);
1738 } else { /* KERN_PROC2 */
1739 if (buflen >= elem_size && elem_count > 0) {
1740 fill_kproc2(p, &kproc2);
1741 /*
1742 * Copy out elem_size, but not larger than
1743 * the size of a struct kinfo_proc2.
1744 */
1745 error = copyout(&kproc2, dp2,
1746 min(sizeof(kproc2), elem_size));
1747 if (error)
1748 goto cleanup;
1749 dp2 += elem_size;
1750 buflen -= elem_size;
1751 elem_count--;
1752 }
1753 needed += elem_size;
1754 }
1755 }
1756 pd++;
1757 if (pd->pd_list != NULL)
1758 goto again;
1759 proclist_unlock_read();
1760
1761 if (where != NULL) {
1762 if (type == KERN_PROC)
1763 *oldlenp = (char *)dp - where;
1764 else
1765 *oldlenp = dp2 - where;
1766 if (needed > *oldlenp)
1767 return (ENOMEM);
1768 } else {
1769 needed += KERN_LWPSLOP;
1770 *oldlenp = needed;
1771 }
1772 return (0);
1773 cleanup:
1774 proclist_unlock_read();
1775 return (error);
1776 }
1777
1778 /*
1779 * sysctl helper routine for kern.proc_args pseudo-subtree.
1780 */
1781 static int
1782 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1783 {
1784 struct ps_strings pss;
1785 struct proc *p, *up = l->l_proc;
1786 size_t len, upper_bound, xlen, i;
1787 struct uio auio;
1788 struct iovec aiov;
1789 vaddr_t argv;
1790 pid_t pid;
1791 int nargv, type, error;
1792 char *arg;
1793 char *tmp;
1794
1795 if (newp != NULL || namelen != 2)
1796 return (EINVAL);
1797 pid = name[0];
1798 type = name[1];
1799
1800 switch (type) {
1801 case KERN_PROC_ARGV:
1802 case KERN_PROC_NARGV:
1803 case KERN_PROC_ENV:
1804 case KERN_PROC_NENV:
1805 /* ok */
1806 break;
1807 default:
1808 return (EINVAL);
1809 }
1810
1811 /* check pid */
1812 if ((p = pfind(pid)) == NULL)
1813 return (EINVAL);
1814
1815 /* only root or same user change look at the environment */
1816 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1817 if (up->p_ucred->cr_uid != 0) {
1818 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1819 up->p_cred->p_ruid != p->p_cred->p_svuid)
1820 return (EPERM);
1821 }
1822 }
1823
1824 if (oldp == NULL) {
1825 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1826 *oldlenp = sizeof (int);
1827 else
1828 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1829 return (0);
1830 }
1831
1832 /*
1833 * Zombies don't have a stack, so we can't read their psstrings.
1834 * System processes also don't have a user stack.
1835 */
1836 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1837 return (EINVAL);
1838
1839 /*
1840 * Lock the process down in memory.
1841 */
1842 /* XXXCDC: how should locking work here? */
1843 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1844 return (EFAULT);
1845
1846 p->p_vmspace->vm_refcnt++; /* XXX */
1847
1848 /*
1849 * Allocate a temporary buffer to hold the arguments.
1850 */
1851 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1852
1853 /*
1854 * Read in the ps_strings structure.
1855 */
1856 aiov.iov_base = &pss;
1857 aiov.iov_len = sizeof(pss);
1858 auio.uio_iov = &aiov;
1859 auio.uio_iovcnt = 1;
1860 auio.uio_offset = (vaddr_t)p->p_psstr;
1861 auio.uio_resid = sizeof(pss);
1862 auio.uio_segflg = UIO_SYSSPACE;
1863 auio.uio_rw = UIO_READ;
1864 auio.uio_procp = NULL;
1865 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1866 if (error)
1867 goto done;
1868
1869 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1870 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1871 else
1872 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1873 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1874 error = copyout(&nargv, oldp, sizeof(nargv));
1875 *oldlenp = sizeof(nargv);
1876 goto done;
1877 }
1878 /*
1879 * Now read the address of the argument vector.
1880 */
1881 switch (type) {
1882 case KERN_PROC_ARGV:
1883 /* XXX compat32 stuff here */
1884 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1885 break;
1886 case KERN_PROC_ENV:
1887 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1888 break;
1889 default:
1890 return (EINVAL);
1891 }
1892 auio.uio_offset = (off_t)(long)tmp;
1893 aiov.iov_base = &argv;
1894 aiov.iov_len = sizeof(argv);
1895 auio.uio_iov = &aiov;
1896 auio.uio_iovcnt = 1;
1897 auio.uio_resid = sizeof(argv);
1898 auio.uio_segflg = UIO_SYSSPACE;
1899 auio.uio_rw = UIO_READ;
1900 auio.uio_procp = NULL;
1901 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1902 if (error)
1903 goto done;
1904
1905 /*
1906 * Now copy in the actual argument vector, one page at a time,
1907 * since we don't know how long the vector is (though, we do
1908 * know how many NUL-terminated strings are in the vector).
1909 */
1910 len = 0;
1911 upper_bound = *oldlenp;
1912 for (; nargv != 0 && len < upper_bound; len += xlen) {
1913 aiov.iov_base = arg;
1914 aiov.iov_len = PAGE_SIZE;
1915 auio.uio_iov = &aiov;
1916 auio.uio_iovcnt = 1;
1917 auio.uio_offset = argv + len;
1918 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1919 auio.uio_resid = xlen;
1920 auio.uio_segflg = UIO_SYSSPACE;
1921 auio.uio_rw = UIO_READ;
1922 auio.uio_procp = NULL;
1923 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1924 if (error)
1925 goto done;
1926
1927 for (i = 0; i < xlen && nargv != 0; i++) {
1928 if (arg[i] == '\0')
1929 nargv--; /* one full string */
1930 }
1931
1932 /*
1933 * Make sure we don't copyout past the end of the user's
1934 * buffer.
1935 */
1936 if (len + i > upper_bound)
1937 i = upper_bound - len;
1938
1939 error = copyout(arg, (char *)oldp + len, i);
1940 if (error)
1941 break;
1942
1943 if (nargv == 0) {
1944 len += i;
1945 break;
1946 }
1947 }
1948 *oldlenp = len;
1949
1950 done:
1951 uvmspace_free(p->p_vmspace);
1952
1953 free(arg, M_TEMP);
1954 return (error);
1955 }
1956
1957 /*
1958 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1959 * calculate on the fly taking into account integer overflow and the
1960 * current wired count.
1961 */
1962 static int
1963 sysctl_hw_usermem(SYSCTLFN_ARGS)
1964 {
1965 u_int ui;
1966 u_quad_t uq;
1967 struct sysctlnode node;
1968
1969 node = *rnode;
1970 switch (rnode->sysctl_num) {
1971 case HW_USERMEM:
1972 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1973 ui = UINT_MAX;
1974 else
1975 ui *= PAGE_SIZE;
1976 node.sysctl_data = &ui;
1977 break;
1978 case HW_USERMEM64:
1979 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1980 node.sysctl_data = &uq;
1981 break;
1982 default:
1983 return (EINVAL);
1984 }
1985
1986 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1987 }
1988
1989 /*
1990 * sysctl helper routine for kern.cnmagic node. pulls the old value
1991 * out, encoded, and stuffs the new value in for decoding.
1992 */
1993 static int
1994 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
1995 {
1996 char magic[CNS_LEN];
1997 int error;
1998 struct sysctlnode node;
1999
2000 if (oldp)
2001 cn_get_magic(magic, CNS_LEN);
2002 node = *rnode;
2003 node.sysctl_data = &magic[0];
2004 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2005 if (error || newp == NULL)
2006 return (error);
2007
2008 return (cn_set_magic(magic));
2009 }
2010
2011 static int
2012 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2013 {
2014 int ncpu;
2015 struct sysctlnode node;
2016
2017 ncpu = sysctl_ncpus();
2018 node = *rnode;
2019 node.sysctl_data = &ncpu;
2020
2021 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2022 }
2023
2024
2025 /*
2026 * ********************************************************************
2027 * section 3: public helper routines that are used for more than one
2028 * node
2029 * ********************************************************************
2030 */
2031
2032 /*
2033 * sysctl helper routine for the kern.root_device node and some ports'
2034 * machdep.root_device nodes.
2035 */
2036 int
2037 sysctl_root_device(SYSCTLFN_ARGS)
2038 {
2039 struct sysctlnode node;
2040
2041 node = *rnode;
2042 node.sysctl_data = root_device->dv_xname;
2043 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2044 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2045 }
2046
2047 /*
2048 * sysctl helper routine for kern.consdev, dependent on the current
2049 * state of the console. also used for machdep.console_device on some
2050 * ports.
2051 */
2052 int
2053 sysctl_consdev(SYSCTLFN_ARGS)
2054 {
2055 dev_t consdev;
2056 struct sysctlnode node;
2057
2058 if (cn_tab != NULL)
2059 consdev = cn_tab->cn_dev;
2060 else
2061 consdev = NODEV;
2062 node = *rnode;
2063 node.sysctl_data = &consdev;
2064 node.sysctl_size = sizeof(consdev);
2065 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2066 }
2067
2068 /*
2069 * ********************************************************************
2070 * section 4: support for some helpers
2071 * ********************************************************************
2072 */
2073
2074 /*
2075 * Fill in a kinfo_proc2 structure for the specified process.
2076 */
2077 static void
2078 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2079 {
2080 struct tty *tp;
2081 struct lwp *l;
2082 struct timeval ut, st;
2083
2084 memset(ki, 0, sizeof(*ki));
2085
2086 ki->p_paddr = PTRTOINT64(p);
2087 ki->p_fd = PTRTOINT64(p->p_fd);
2088 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2089 ki->p_stats = PTRTOINT64(p->p_stats);
2090 ki->p_limit = PTRTOINT64(p->p_limit);
2091 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2092 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2093 ki->p_sess = PTRTOINT64(p->p_session);
2094 ki->p_tsess = 0; /* may be changed if controlling tty below */
2095 ki->p_ru = PTRTOINT64(p->p_ru);
2096
2097 ki->p_eflag = 0;
2098 ki->p_exitsig = p->p_exitsig;
2099 ki->p_flag = p->p_flag;
2100
2101 ki->p_pid = p->p_pid;
2102 if (p->p_pptr)
2103 ki->p_ppid = p->p_pptr->p_pid;
2104 else
2105 ki->p_ppid = 0;
2106 ki->p_sid = p->p_session->s_sid;
2107 ki->p__pgid = p->p_pgrp->pg_id;
2108
2109 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2110
2111 ki->p_uid = p->p_ucred->cr_uid;
2112 ki->p_ruid = p->p_cred->p_ruid;
2113 ki->p_gid = p->p_ucred->cr_gid;
2114 ki->p_rgid = p->p_cred->p_rgid;
2115 ki->p_svuid = p->p_cred->p_svuid;
2116 ki->p_svgid = p->p_cred->p_svgid;
2117
2118 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2119 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2120 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2121
2122 ki->p_jobc = p->p_pgrp->pg_jobc;
2123 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2124 ki->p_tdev = tp->t_dev;
2125 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2126 ki->p_tsess = PTRTOINT64(tp->t_session);
2127 } else {
2128 ki->p_tdev = NODEV;
2129 }
2130
2131 ki->p_estcpu = p->p_estcpu;
2132 ki->p_rtime_sec = p->p_rtime.tv_sec;
2133 ki->p_rtime_usec = p->p_rtime.tv_usec;
2134 ki->p_cpticks = p->p_cpticks;
2135 ki->p_pctcpu = p->p_pctcpu;
2136
2137 ki->p_uticks = p->p_uticks;
2138 ki->p_sticks = p->p_sticks;
2139 ki->p_iticks = p->p_iticks;
2140
2141 ki->p_tracep = PTRTOINT64(p->p_tracep);
2142 ki->p_traceflag = p->p_traceflag;
2143
2144
2145 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2146 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2147 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2148 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2149
2150 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2151 ki->p_realstat = p->p_stat;
2152 ki->p_nice = p->p_nice;
2153
2154 ki->p_xstat = p->p_xstat;
2155 ki->p_acflag = p->p_acflag;
2156
2157 strncpy(ki->p_comm, p->p_comm,
2158 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2159
2160 strncpy(ki->p_login, p->p_session->s_login,
2161 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2162
2163 ki->p_nlwps = p->p_nlwps;
2164 ki->p_nrlwps = p->p_nrlwps;
2165 ki->p_realflag = p->p_flag;
2166
2167 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2168 ki->p_vm_rssize = 0;
2169 ki->p_vm_tsize = 0;
2170 ki->p_vm_dsize = 0;
2171 ki->p_vm_ssize = 0;
2172 l = NULL;
2173 } else {
2174 struct vmspace *vm = p->p_vmspace;
2175
2176 ki->p_vm_rssize = vm_resident_count(vm);
2177 ki->p_vm_tsize = vm->vm_tsize;
2178 ki->p_vm_dsize = vm->vm_dsize;
2179 ki->p_vm_ssize = vm->vm_ssize;
2180
2181 /* Pick a "representative" LWP */
2182 l = proc_representative_lwp(p);
2183 ki->p_forw = PTRTOINT64(l->l_forw);
2184 ki->p_back = PTRTOINT64(l->l_back);
2185 ki->p_addr = PTRTOINT64(l->l_addr);
2186 ki->p_stat = l->l_stat;
2187 ki->p_flag |= l->l_flag;
2188 ki->p_swtime = l->l_swtime;
2189 ki->p_slptime = l->l_slptime;
2190 if (l->l_stat == LSONPROC) {
2191 KDASSERT(l->l_cpu != NULL);
2192 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2193 } else
2194 ki->p_schedflags = 0;
2195 ki->p_holdcnt = l->l_holdcnt;
2196 ki->p_priority = l->l_priority;
2197 ki->p_usrpri = l->l_usrpri;
2198 if (l->l_wmesg)
2199 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2200 ki->p_wchan = PTRTOINT64(l->l_wchan);
2201
2202 }
2203
2204 if (p->p_session->s_ttyvp)
2205 ki->p_eflag |= EPROC_CTTY;
2206 if (SESS_LEADER(p))
2207 ki->p_eflag |= EPROC_SLEADER;
2208
2209 /* XXX Is this double check necessary? */
2210 if (P_ZOMBIE(p)) {
2211 ki->p_uvalid = 0;
2212 } else {
2213 ki->p_uvalid = 1;
2214
2215 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2216 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2217
2218 calcru(p, &ut, &st, 0);
2219 ki->p_uutime_sec = ut.tv_sec;
2220 ki->p_uutime_usec = ut.tv_usec;
2221 ki->p_ustime_sec = st.tv_sec;
2222 ki->p_ustime_usec = st.tv_usec;
2223
2224 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2225 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2226 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2227 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2228 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2229 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2230 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2231 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2232 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2233 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2234 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2235 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2236 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2237 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2238
2239 timeradd(&p->p_stats->p_cru.ru_utime,
2240 &p->p_stats->p_cru.ru_stime, &ut);
2241 ki->p_uctime_sec = ut.tv_sec;
2242 ki->p_uctime_usec = ut.tv_usec;
2243 }
2244 #ifdef MULTIPROCESSOR
2245 if (l && l->l_cpu != NULL)
2246 ki->p_cpuid = l->l_cpu->ci_cpuid;
2247 else
2248 #endif
2249 ki->p_cpuid = KI_NOCPU;
2250 }
2251
2252 /*
2253 * Fill in a kinfo_lwp structure for the specified lwp.
2254 */
2255 static void
2256 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2257 {
2258
2259 kl->l_forw = PTRTOINT64(l->l_forw);
2260 kl->l_back = PTRTOINT64(l->l_back);
2261 kl->l_laddr = PTRTOINT64(l);
2262 kl->l_addr = PTRTOINT64(l->l_addr);
2263 kl->l_stat = l->l_stat;
2264 kl->l_lid = l->l_lid;
2265 kl->l_flag = l->l_flag;
2266
2267 kl->l_swtime = l->l_swtime;
2268 kl->l_slptime = l->l_slptime;
2269 if (l->l_stat == LSONPROC) {
2270 KDASSERT(l->l_cpu != NULL);
2271 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2272 } else
2273 kl->l_schedflags = 0;
2274 kl->l_holdcnt = l->l_holdcnt;
2275 kl->l_priority = l->l_priority;
2276 kl->l_usrpri = l->l_usrpri;
2277 if (l->l_wmesg)
2278 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2279 kl->l_wchan = PTRTOINT64(l->l_wchan);
2280 #ifdef MULTIPROCESSOR
2281 if (l->l_cpu != NULL)
2282 kl->l_cpuid = l->l_cpu->ci_cpuid;
2283 else
2284 #endif
2285 kl->l_cpuid = KI_NOCPU;
2286 }
2287
2288 /*
2289 * Fill in an eproc structure for the specified process.
2290 */
2291 void
2292 fill_eproc(struct proc *p, struct eproc *ep)
2293 {
2294 struct tty *tp;
2295 struct lwp *l;
2296
2297 ep->e_paddr = p;
2298 ep->e_sess = p->p_session;
2299 ep->e_pcred = *p->p_cred;
2300 ep->e_ucred = *p->p_ucred;
2301 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2302 ep->e_vm.vm_rssize = 0;
2303 ep->e_vm.vm_tsize = 0;
2304 ep->e_vm.vm_dsize = 0;
2305 ep->e_vm.vm_ssize = 0;
2306 /* ep->e_vm.vm_pmap = XXX; */
2307 } else {
2308 struct vmspace *vm = p->p_vmspace;
2309
2310 ep->e_vm.vm_rssize = vm_resident_count(vm);
2311 ep->e_vm.vm_tsize = vm->vm_tsize;
2312 ep->e_vm.vm_dsize = vm->vm_dsize;
2313 ep->e_vm.vm_ssize = vm->vm_ssize;
2314
2315 /* Pick a "representative" LWP */
2316 l = proc_representative_lwp(p);
2317
2318 if (l->l_wmesg)
2319 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2320 }
2321 if (p->p_pptr)
2322 ep->e_ppid = p->p_pptr->p_pid;
2323 else
2324 ep->e_ppid = 0;
2325 ep->e_pgid = p->p_pgrp->pg_id;
2326 ep->e_sid = ep->e_sess->s_sid;
2327 ep->e_jobc = p->p_pgrp->pg_jobc;
2328 if ((p->p_flag & P_CONTROLT) &&
2329 (tp = ep->e_sess->s_ttyp)) {
2330 ep->e_tdev = tp->t_dev;
2331 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2332 ep->e_tsess = tp->t_session;
2333 } else
2334 ep->e_tdev = NODEV;
2335
2336 ep->e_xsize = ep->e_xrssize = 0;
2337 ep->e_xccount = ep->e_xswrss = 0;
2338 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2339 if (SESS_LEADER(p))
2340 ep->e_flag |= EPROC_SLEADER;
2341 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2342 }
2343