init_sysctl.c revision 1.143.2.2 1 /* $NetBSD: init_sysctl.c,v 1.143.2.2 2008/12/13 01:15:07 haad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.143.2.2 2008/12/13 01:15:07 haad Exp $");
34
35 #include "opt_sysv.h"
36 #include "opt_compat_netbsd32.h"
37 #include "opt_sa.h"
38 #include "opt_posix.h"
39 #include "pty.h"
40 #include "rnd.h"
41
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/sysctl.h>
45 #include <sys/cpu.h>
46 #include <sys/errno.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/unistd.h>
50 #include <sys/disklabel.h>
51 #include <sys/rnd.h>
52 #include <sys/vnode.h>
53 #include <sys/mount.h>
54 #include <sys/namei.h>
55 #include <sys/msgbuf.h>
56 #include <dev/cons.h>
57 #include <sys/socketvar.h>
58 #include <sys/file.h>
59 #include <sys/filedesc.h>
60 #include <sys/tty.h>
61 #include <sys/malloc.h>
62 #include <sys/resource.h>
63 #include <sys/resourcevar.h>
64 #include <sys/exec.h>
65 #include <sys/conf.h>
66 #include <sys/device.h>
67 #include <sys/stat.h>
68 #include <sys/kauth.h>
69 #include <sys/ktrace.h>
70 #include <sys/ksem.h>
71
72 #include <miscfs/specfs/specdev.h>
73
74 #ifdef COMPAT_NETBSD32
75 #include <compat/netbsd32/netbsd32.h>
76 #endif
77
78 #ifdef KERN_SA
79 #include <sys/sa.h>
80 #endif
81
82 #include <sys/cpu.h>
83
84 #if defined(MODULAR) || defined(P1003_1B_SEMAPHORE)
85 int posix_semaphores = 200112;
86 #else
87 int posix_semaphores;
88 #endif
89
90 int security_setidcore_dump;
91 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
92 uid_t security_setidcore_owner = 0;
93 gid_t security_setidcore_group = 0;
94 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
95
96 static const u_int sysctl_flagmap[] = {
97 PK_ADVLOCK, P_ADVLOCK,
98 PK_EXEC, P_EXEC,
99 PK_NOCLDWAIT, P_NOCLDWAIT,
100 PK_32, P_32,
101 PK_CLDSIGIGN, P_CLDSIGIGN,
102 PK_SUGID, P_SUGID,
103 0
104 };
105
106 static const u_int sysctl_sflagmap[] = {
107 PS_NOCLDSTOP, P_NOCLDSTOP,
108 PS_WEXIT, P_WEXIT,
109 PS_STOPFORK, P_STOPFORK,
110 PS_STOPEXEC, P_STOPEXEC,
111 PS_STOPEXIT, P_STOPEXIT,
112 0
113 };
114
115 static const u_int sysctl_slflagmap[] = {
116 PSL_TRACED, P_TRACED,
117 PSL_FSTRACE, P_FSTRACE,
118 PSL_CHTRACED, P_CHTRACED,
119 PSL_SYSCALL, P_SYSCALL,
120 0
121 };
122
123 static const u_int sysctl_lflagmap[] = {
124 PL_CONTROLT, P_CONTROLT,
125 PL_PPWAIT, P_PPWAIT,
126 0
127 };
128
129 static const u_int sysctl_stflagmap[] = {
130 PST_PROFIL, P_PROFIL,
131 0
132
133 };
134
135 static const u_int sysctl_lwpflagmap[] = {
136 LW_INMEM, P_INMEM,
137 LW_SINTR, P_SINTR,
138 LW_SYSTEM, P_SYSTEM,
139 LW_SA, P_SA, /* WRS ??? */
140 0
141 };
142
143 static const u_int sysctl_lwpprflagmap[] = {
144 LPR_DETACHED, L_DETACHED,
145 0
146 };
147
148 /*
149 * try over estimating by 5 procs/lwps
150 */
151 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
152 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
153
154 static int dcopyout(struct lwp *, const void *, void *, size_t);
155
156 static int
157 dcopyout(struct lwp *l, const void *kaddr, void *uaddr, size_t len)
158 {
159 int error;
160
161 error = copyout(kaddr, uaddr, len);
162 ktrmibio(-1, UIO_READ, uaddr, len, error);
163
164 return error;
165 }
166
167 #ifdef DIAGNOSTIC
168 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
169 #endif
170 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
171 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
172 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
173 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
174 static int sysctl_setlen(SYSCTLFN_PROTO);
175 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
176 static int sysctl_kern_file(SYSCTLFN_PROTO);
177 static int sysctl_msgbuf(SYSCTLFN_PROTO);
178 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
179 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
180 #if NPTY > 0
181 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
182 #endif /* NPTY > 0 */
183 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
184 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
185 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
186 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
187 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
188 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
189 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
190 static int sysctl_kern_file2(SYSCTLFN_PROTO);
191 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
192 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
193 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
194 static int sysctl_doeproc(SYSCTLFN_PROTO);
195 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
196 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
197 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
198
199 static u_int sysctl_map_flags(const u_int *, u_int);
200 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
201 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
202 static void fill_file(struct kinfo_file *, const file_t *, const fdfile_t *,
203 int, pid_t);
204
205 /*
206 * ********************************************************************
207 * section 1: setup routines
208 * ********************************************************************
209 * These functions are stuffed into a link set for sysctl setup
210 * functions. They're never called or referenced from anywhere else.
211 * ********************************************************************
212 */
213
214 /*
215 * sets up the base nodes...
216 */
217 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
218 {
219
220 sysctl_createv(clog, 0, NULL, NULL,
221 CTLFLAG_PERMANENT,
222 CTLTYPE_NODE, "kern",
223 SYSCTL_DESCR("High kernel"),
224 NULL, 0, NULL, 0,
225 CTL_KERN, CTL_EOL);
226 sysctl_createv(clog, 0, NULL, NULL,
227 CTLFLAG_PERMANENT,
228 CTLTYPE_NODE, "vm",
229 SYSCTL_DESCR("Virtual memory"),
230 NULL, 0, NULL, 0,
231 CTL_VM, CTL_EOL);
232 sysctl_createv(clog, 0, NULL, NULL,
233 CTLFLAG_PERMANENT,
234 CTLTYPE_NODE, "vfs",
235 SYSCTL_DESCR("Filesystem"),
236 NULL, 0, NULL, 0,
237 CTL_VFS, CTL_EOL);
238 sysctl_createv(clog, 0, NULL, NULL,
239 CTLFLAG_PERMANENT,
240 CTLTYPE_NODE, "net",
241 SYSCTL_DESCR("Networking"),
242 NULL, 0, NULL, 0,
243 CTL_NET, CTL_EOL);
244 sysctl_createv(clog, 0, NULL, NULL,
245 CTLFLAG_PERMANENT,
246 CTLTYPE_NODE, "debug",
247 SYSCTL_DESCR("Debugging"),
248 NULL, 0, NULL, 0,
249 CTL_DEBUG, CTL_EOL);
250 sysctl_createv(clog, 0, NULL, NULL,
251 CTLFLAG_PERMANENT,
252 CTLTYPE_NODE, "hw",
253 SYSCTL_DESCR("Generic CPU, I/O"),
254 NULL, 0, NULL, 0,
255 CTL_HW, CTL_EOL);
256 sysctl_createv(clog, 0, NULL, NULL,
257 CTLFLAG_PERMANENT,
258 CTLTYPE_NODE, "machdep",
259 SYSCTL_DESCR("Machine dependent"),
260 NULL, 0, NULL, 0,
261 CTL_MACHDEP, CTL_EOL);
262 /*
263 * this node is inserted so that the sysctl nodes in libc can
264 * operate.
265 */
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT,
268 CTLTYPE_NODE, "user",
269 SYSCTL_DESCR("User-level"),
270 NULL, 0, NULL, 0,
271 CTL_USER, CTL_EOL);
272 sysctl_createv(clog, 0, NULL, NULL,
273 CTLFLAG_PERMANENT,
274 CTLTYPE_NODE, "ddb",
275 SYSCTL_DESCR("In-kernel debugger"),
276 NULL, 0, NULL, 0,
277 CTL_DDB, CTL_EOL);
278 sysctl_createv(clog, 0, NULL, NULL,
279 CTLFLAG_PERMANENT,
280 CTLTYPE_NODE, "proc",
281 SYSCTL_DESCR("Per-process"),
282 NULL, 0, NULL, 0,
283 CTL_PROC, CTL_EOL);
284 sysctl_createv(clog, 0, NULL, NULL,
285 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
286 CTLTYPE_NODE, "vendor",
287 SYSCTL_DESCR("Vendor specific"),
288 NULL, 0, NULL, 0,
289 CTL_VENDOR, CTL_EOL);
290 sysctl_createv(clog, 0, NULL, NULL,
291 CTLFLAG_PERMANENT,
292 CTLTYPE_NODE, "emul",
293 SYSCTL_DESCR("Emulation settings"),
294 NULL, 0, NULL, 0,
295 CTL_EMUL, CTL_EOL);
296 sysctl_createv(clog, 0, NULL, NULL,
297 CTLFLAG_PERMANENT,
298 CTLTYPE_NODE, "security",
299 SYSCTL_DESCR("Security"),
300 NULL, 0, NULL, 0,
301 CTL_SECURITY, CTL_EOL);
302 }
303
304 /*
305 * this setup routine is a replacement for kern_sysctl()
306 */
307 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
308 {
309 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
310 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
311 extern int dumponpanic; /* defined in kern/subr_prf.c */
312 const struct sysctlnode *rnode;
313
314 sysctl_createv(clog, 0, NULL, NULL,
315 CTLFLAG_PERMANENT,
316 CTLTYPE_NODE, "kern", NULL,
317 NULL, 0, NULL, 0,
318 CTL_KERN, CTL_EOL);
319
320 sysctl_createv(clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT,
322 CTLTYPE_STRING, "ostype",
323 SYSCTL_DESCR("Operating system type"),
324 NULL, 0, &ostype, 0,
325 CTL_KERN, KERN_OSTYPE, CTL_EOL);
326 sysctl_createv(clog, 0, NULL, NULL,
327 CTLFLAG_PERMANENT,
328 CTLTYPE_STRING, "osrelease",
329 SYSCTL_DESCR("Operating system release"),
330 NULL, 0, &osrelease, 0,
331 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
332 sysctl_createv(clog, 0, NULL, NULL,
333 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
334 CTLTYPE_INT, "osrevision",
335 SYSCTL_DESCR("Operating system revision"),
336 NULL, __NetBSD_Version__, NULL, 0,
337 CTL_KERN, KERN_OSREV, CTL_EOL);
338 sysctl_createv(clog, 0, NULL, NULL,
339 CTLFLAG_PERMANENT,
340 CTLTYPE_STRING, "version",
341 SYSCTL_DESCR("Kernel version"),
342 NULL, 0, &version, 0,
343 CTL_KERN, KERN_VERSION, CTL_EOL);
344 sysctl_createv(clog, 0, NULL, NULL,
345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
346 CTLTYPE_INT, "maxvnodes",
347 SYSCTL_DESCR("Maximum number of vnodes"),
348 sysctl_kern_maxvnodes, 0, NULL, 0,
349 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
350 sysctl_createv(clog, 0, NULL, NULL,
351 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
352 CTLTYPE_INT, "maxproc",
353 SYSCTL_DESCR("Maximum number of simultaneous processes"),
354 sysctl_kern_maxproc, 0, NULL, 0,
355 CTL_KERN, KERN_MAXPROC, CTL_EOL);
356 sysctl_createv(clog, 0, NULL, NULL,
357 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
358 CTLTYPE_INT, "maxfiles",
359 SYSCTL_DESCR("Maximum number of open files"),
360 NULL, 0, &maxfiles, 0,
361 CTL_KERN, KERN_MAXFILES, CTL_EOL);
362 sysctl_createv(clog, 0, NULL, NULL,
363 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
364 CTLTYPE_INT, "argmax",
365 SYSCTL_DESCR("Maximum number of bytes of arguments to "
366 "execve(2)"),
367 NULL, ARG_MAX, NULL, 0,
368 CTL_KERN, KERN_ARGMAX, CTL_EOL);
369 sysctl_createv(clog, 0, NULL, NULL,
370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
371 CTLTYPE_STRING, "hostname",
372 SYSCTL_DESCR("System hostname"),
373 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
374 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
375 sysctl_createv(clog, 0, NULL, NULL,
376 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
377 CTLTYPE_INT, "hostid",
378 SYSCTL_DESCR("System host ID number"),
379 sysctl_kern_hostid, 0, NULL, 0,
380 CTL_KERN, KERN_HOSTID, CTL_EOL);
381 sysctl_createv(clog, 0, NULL, NULL,
382 CTLFLAG_PERMANENT,
383 CTLTYPE_STRUCT, "clockrate",
384 SYSCTL_DESCR("Kernel clock rates"),
385 sysctl_kern_clockrate, 0, NULL,
386 sizeof(struct clockinfo),
387 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
388 sysctl_createv(clog, 0, NULL, NULL,
389 CTLFLAG_PERMANENT,
390 CTLTYPE_INT, "hardclock_ticks",
391 SYSCTL_DESCR("Number of hardclock ticks"),
392 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
393 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
394 sysctl_createv(clog, 0, NULL, NULL,
395 CTLFLAG_PERMANENT,
396 CTLTYPE_STRUCT, "vnode",
397 SYSCTL_DESCR("System vnode table"),
398 sysctl_kern_vnode, 0, NULL, 0,
399 CTL_KERN, KERN_VNODE, CTL_EOL);
400 sysctl_createv(clog, 0, NULL, NULL,
401 CTLFLAG_PERMANENT,
402 CTLTYPE_STRUCT, "file",
403 SYSCTL_DESCR("System open file table"),
404 sysctl_kern_file, 0, NULL, 0,
405 CTL_KERN, KERN_FILE, CTL_EOL);
406 #ifndef GPROF
407 sysctl_createv(clog, 0, NULL, NULL,
408 CTLFLAG_PERMANENT,
409 CTLTYPE_NODE, "profiling",
410 SYSCTL_DESCR("Profiling information (not available)"),
411 sysctl_notavail, 0, NULL, 0,
412 CTL_KERN, KERN_PROF, CTL_EOL);
413 #endif
414 sysctl_createv(clog, 0, NULL, NULL,
415 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
416 CTLTYPE_INT, "posix1version",
417 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
418 "with which the operating system attempts "
419 "to comply"),
420 NULL, _POSIX_VERSION, NULL, 0,
421 CTL_KERN, KERN_POSIX1, CTL_EOL);
422 sysctl_createv(clog, 0, NULL, NULL,
423 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
424 CTLTYPE_INT, "ngroups",
425 SYSCTL_DESCR("Maximum number of supplemental groups"),
426 NULL, NGROUPS_MAX, NULL, 0,
427 CTL_KERN, KERN_NGROUPS, CTL_EOL);
428 sysctl_createv(clog, 0, NULL, NULL,
429 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
430 CTLTYPE_INT, "job_control",
431 SYSCTL_DESCR("Whether job control is available"),
432 NULL, 1, NULL, 0,
433 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
434 sysctl_createv(clog, 0, NULL, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
436 CTLTYPE_INT, "saved_ids",
437 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
438 "available"), NULL,
439 #ifdef _POSIX_SAVED_IDS
440 1,
441 #else /* _POSIX_SAVED_IDS */
442 0,
443 #endif /* _POSIX_SAVED_IDS */
444 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
445 sysctl_createv(clog, 0, NULL, NULL,
446 CTLFLAG_PERMANENT,
447 CTLTYPE_STRUCT, "boottime",
448 SYSCTL_DESCR("System boot time"),
449 NULL, 0, &boottime, sizeof(boottime),
450 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
451 sysctl_createv(clog, 0, NULL, NULL,
452 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
453 CTLTYPE_STRING, "domainname",
454 SYSCTL_DESCR("YP domain name"),
455 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
456 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
457 sysctl_createv(clog, 0, NULL, NULL,
458 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
459 CTLTYPE_INT, "maxpartitions",
460 SYSCTL_DESCR("Maximum number of partitions allowed per "
461 "disk"),
462 NULL, MAXPARTITIONS, NULL, 0,
463 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
464 sysctl_createv(clog, 0, NULL, NULL,
465 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
466 CTLTYPE_INT, "rawpartition",
467 SYSCTL_DESCR("Raw partition of a disk"),
468 NULL, RAW_PART, NULL, 0,
469 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
470 sysctl_createv(clog, 0, NULL, NULL,
471 CTLFLAG_PERMANENT,
472 CTLTYPE_STRUCT, "timex", NULL,
473 sysctl_notavail, 0, NULL, 0,
474 CTL_KERN, KERN_TIMEX, CTL_EOL);
475 sysctl_createv(clog, 0, NULL, NULL,
476 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
477 CTLTYPE_INT, "rtc_offset",
478 SYSCTL_DESCR("Offset of real time clock from UTC in "
479 "minutes"),
480 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
481 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
482 sysctl_createv(clog, 0, NULL, NULL,
483 CTLFLAG_PERMANENT,
484 CTLTYPE_STRING, "root_device",
485 SYSCTL_DESCR("Name of the root device"),
486 sysctl_root_device, 0, NULL, 0,
487 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
488 sysctl_createv(clog, 0, NULL, NULL,
489 CTLFLAG_PERMANENT,
490 CTLTYPE_INT, "msgbufsize",
491 SYSCTL_DESCR("Size of the kernel message buffer"),
492 sysctl_msgbuf, 0, NULL, 0,
493 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
494 sysctl_createv(clog, 0, NULL, NULL,
495 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
496 CTLTYPE_INT, "fsync",
497 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
498 "Synchronization Option is available on "
499 "this system"),
500 NULL, 1, NULL, 0,
501 CTL_KERN, KERN_FSYNC, CTL_EOL);
502 sysctl_createv(clog, 0, NULL, NULL,
503 CTLFLAG_PERMANENT,
504 CTLTYPE_NODE, "ipc",
505 SYSCTL_DESCR("SysV IPC options"),
506 NULL, 0, NULL, 0,
507 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
508 sysctl_createv(clog, 0, NULL, NULL,
509 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
510 CTLTYPE_INT, "sysvmsg",
511 SYSCTL_DESCR("System V style message support available"),
512 NULL,
513 #ifdef SYSVMSG
514 1,
515 #else /* SYSVMSG */
516 0,
517 #endif /* SYSVMSG */
518 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_MSG, CTL_EOL);
519 sysctl_createv(clog, 0, NULL, NULL,
520 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
521 CTLTYPE_INT, "sysvsem",
522 SYSCTL_DESCR("System V style semaphore support "
523 "available"), NULL,
524 #ifdef SYSVSEM
525 1,
526 #else /* SYSVSEM */
527 0,
528 #endif /* SYSVSEM */
529 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SEM, CTL_EOL);
530 sysctl_createv(clog, 0, NULL, NULL,
531 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
532 CTLTYPE_INT, "sysvshm",
533 SYSCTL_DESCR("System V style shared memory support "
534 "available"), NULL,
535 #ifdef SYSVSHM
536 1,
537 #else /* SYSVSHM */
538 0,
539 #endif /* SYSVSHM */
540 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHM, CTL_EOL);
541 sysctl_createv(clog, 0, NULL, NULL,
542 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
543 CTLTYPE_INT, "synchronized_io",
544 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
545 "I/O Option is available on this system"),
546 NULL, 1, NULL, 0,
547 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
548 sysctl_createv(clog, 0, NULL, NULL,
549 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
550 CTLTYPE_INT, "iov_max",
551 SYSCTL_DESCR("Maximum number of iovec structures per "
552 "process"),
553 NULL, IOV_MAX, NULL, 0,
554 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
555 sysctl_createv(clog, 0, NULL, NULL,
556 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
557 CTLTYPE_INT, "mapped_files",
558 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
559 "Files Option is available on this system"),
560 NULL, 1, NULL, 0,
561 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
562 sysctl_createv(clog, 0, NULL, NULL,
563 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
564 CTLTYPE_INT, "memlock",
565 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
566 "Locking Option is available on this "
567 "system"),
568 NULL, 1, NULL, 0,
569 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
570 sysctl_createv(clog, 0, NULL, NULL,
571 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
572 CTLTYPE_INT, "memlock_range",
573 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
574 "Locking Option is available on this "
575 "system"),
576 NULL, 1, NULL, 0,
577 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
578 sysctl_createv(clog, 0, NULL, NULL,
579 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
580 CTLTYPE_INT, "memory_protection",
581 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
582 "Protection Option is available on this "
583 "system"),
584 NULL, 1, NULL, 0,
585 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
586 sysctl_createv(clog, 0, NULL, NULL,
587 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
588 CTLTYPE_INT, "login_name_max",
589 SYSCTL_DESCR("Maximum login name length"),
590 NULL, LOGIN_NAME_MAX, NULL, 0,
591 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
592 sysctl_createv(clog, 0, NULL, NULL,
593 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
594 CTLTYPE_STRING, "defcorename",
595 SYSCTL_DESCR("Default core file name"),
596 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
597 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
598 sysctl_createv(clog, 0, NULL, NULL,
599 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
600 CTLTYPE_INT, "logsigexit",
601 SYSCTL_DESCR("Log process exit when caused by signals"),
602 NULL, 0, &kern_logsigexit, 0,
603 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
604 sysctl_createv(clog, 0, NULL, NULL,
605 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
606 CTLTYPE_INT, "fscale",
607 SYSCTL_DESCR("Kernel fixed-point scale factor"),
608 NULL, FSCALE, NULL, 0,
609 CTL_KERN, KERN_FSCALE, CTL_EOL);
610 sysctl_createv(clog, 0, NULL, NULL,
611 CTLFLAG_PERMANENT,
612 CTLTYPE_INT, "ccpu",
613 SYSCTL_DESCR("Scheduler exponential decay value"),
614 NULL, 0, &ccpu, 0,
615 CTL_KERN, KERN_CCPU, CTL_EOL);
616 sysctl_createv(clog, 0, NULL, NULL,
617 CTLFLAG_PERMANENT,
618 CTLTYPE_STRUCT, "cp_time",
619 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
620 sysctl_kern_cptime, 0, NULL, 0,
621 CTL_KERN, KERN_CP_TIME, CTL_EOL);
622 sysctl_createv(clog, 0, NULL, NULL,
623 CTLFLAG_PERMANENT,
624 CTLTYPE_INT, "msgbuf",
625 SYSCTL_DESCR("Kernel message buffer"),
626 sysctl_msgbuf, 0, NULL, 0,
627 CTL_KERN, KERN_MSGBUF, CTL_EOL);
628 sysctl_createv(clog, 0, NULL, NULL,
629 CTLFLAG_PERMANENT,
630 CTLTYPE_STRUCT, "consdev",
631 SYSCTL_DESCR("Console device"),
632 sysctl_consdev, 0, NULL, sizeof(dev_t),
633 CTL_KERN, KERN_CONSDEV, CTL_EOL);
634 #if NPTY > 0
635 sysctl_createv(clog, 0, NULL, NULL,
636 CTLFLAG_PERMANENT,
637 CTLTYPE_INT, "maxptys",
638 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
639 sysctl_kern_maxptys, 0, NULL, 0,
640 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
641 #endif /* NPTY > 0 */
642 sysctl_createv(clog, 0, NULL, NULL,
643 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
644 CTLTYPE_INT, "maxphys",
645 SYSCTL_DESCR("Maximum raw I/O transfer size"),
646 NULL, MAXPHYS, NULL, 0,
647 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
648 sysctl_createv(clog, 0, NULL, NULL,
649 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
650 CTLTYPE_INT, "sbmax",
651 SYSCTL_DESCR("Maximum socket buffer size"),
652 sysctl_kern_sbmax, 0, NULL, 0,
653 CTL_KERN, KERN_SBMAX, CTL_EOL);
654 sysctl_createv(clog, 0, NULL, NULL,
655 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
656 CTLTYPE_INT, "monotonic_clock",
657 SYSCTL_DESCR("Implementation version of the POSIX "
658 "1003.1b Monotonic Clock Option"),
659 /* XXX _POSIX_VERSION */
660 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
661 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
662 sysctl_createv(clog, 0, NULL, NULL,
663 CTLFLAG_PERMANENT,
664 CTLTYPE_INT, "urandom",
665 SYSCTL_DESCR("Random integer value"),
666 sysctl_kern_urnd, 0, NULL, 0,
667 CTL_KERN, KERN_URND, CTL_EOL);
668 sysctl_createv(clog, 0, NULL, NULL,
669 CTLFLAG_PERMANENT,
670 CTLTYPE_INT, "arandom",
671 SYSCTL_DESCR("n bytes of random data"),
672 sysctl_kern_arnd, 0, NULL, 0,
673 CTL_KERN, KERN_ARND, CTL_EOL);
674 sysctl_createv(clog, 0, NULL, NULL,
675 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
676 CTLTYPE_INT, "labelsector",
677 SYSCTL_DESCR("Sector number containing the disklabel"),
678 NULL, LABELSECTOR, NULL, 0,
679 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
680 sysctl_createv(clog, 0, NULL, NULL,
681 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
682 CTLTYPE_INT, "labeloffset",
683 SYSCTL_DESCR("Offset of the disklabel within the "
684 "sector"),
685 NULL, LABELOFFSET, NULL, 0,
686 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
687 sysctl_createv(clog, 0, NULL, NULL,
688 CTLFLAG_PERMANENT,
689 CTLTYPE_NODE, "lwp",
690 SYSCTL_DESCR("System-wide LWP information"),
691 sysctl_kern_lwp, 0, NULL, 0,
692 CTL_KERN, KERN_LWP, CTL_EOL);
693 sysctl_createv(clog, 0, NULL, NULL,
694 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
695 CTLTYPE_INT, "forkfsleep",
696 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
697 "to process limits"),
698 sysctl_kern_forkfsleep, 0, NULL, 0,
699 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
700 sysctl_createv(clog, 0, NULL, NULL,
701 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
702 CTLTYPE_INT, "posix_threads",
703 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
704 "Threads option to which the system "
705 "attempts to conform"),
706 /* XXX _POSIX_VERSION */
707 NULL, _POSIX_THREADS, NULL, 0,
708 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
709 sysctl_createv(clog, 0, NULL, NULL,
710 CTLFLAG_PERMANENT,
711 CTLTYPE_INT, "posix_semaphores",
712 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
713 "Semaphores option to which the system "
714 "attempts to conform"), NULL,
715 0, &posix_semaphores,
716 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
717 sysctl_createv(clog, 0, NULL, NULL,
718 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
719 CTLTYPE_INT, "posix_barriers",
720 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
721 "Barriers option to which the system "
722 "attempts to conform"),
723 /* XXX _POSIX_VERSION */
724 NULL, _POSIX_BARRIERS, NULL, 0,
725 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
726 sysctl_createv(clog, 0, NULL, NULL,
727 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
728 CTLTYPE_INT, "posix_timers",
729 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
730 "Timers option to which the system "
731 "attempts to conform"),
732 /* XXX _POSIX_VERSION */
733 NULL, _POSIX_TIMERS, NULL, 0,
734 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
735 sysctl_createv(clog, 0, NULL, NULL,
736 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
737 CTLTYPE_INT, "posix_spin_locks",
738 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
739 "Locks option to which the system attempts "
740 "to conform"),
741 /* XXX _POSIX_VERSION */
742 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
743 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
744 sysctl_createv(clog, 0, NULL, NULL,
745 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
746 CTLTYPE_INT, "posix_reader_writer_locks",
747 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
748 "Read-Write Locks option to which the "
749 "system attempts to conform"),
750 /* XXX _POSIX_VERSION */
751 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
752 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
753 sysctl_createv(clog, 0, NULL, NULL,
754 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
755 CTLTYPE_INT, "dump_on_panic",
756 SYSCTL_DESCR("Perform a crash dump on system panic"),
757 NULL, 0, &dumponpanic, 0,
758 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
759 #ifdef DIAGNOSTIC
760 sysctl_createv(clog, 0, NULL, NULL,
761 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
762 CTLTYPE_INT, "panic_now",
763 SYSCTL_DESCR("Trigger a panic"),
764 sysctl_kern_trigger_panic, 0, NULL, 0,
765 CTL_KERN, CTL_CREATE, CTL_EOL);
766 #endif
767 sysctl_createv(clog, 0, NULL, NULL,
768 CTLFLAG_PERMANENT,
769 CTLTYPE_INT, "root_partition",
770 SYSCTL_DESCR("Root partition on the root device"),
771 sysctl_kern_root_partition, 0, NULL, 0,
772 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
773 sysctl_createv(clog, 0, NULL, NULL,
774 CTLFLAG_PERMANENT,
775 CTLTYPE_STRUCT, "drivers",
776 SYSCTL_DESCR("List of all drivers with block and "
777 "character device numbers"),
778 sysctl_kern_drivers, 0, NULL, 0,
779 CTL_KERN, KERN_DRIVERS, CTL_EOL);
780 sysctl_createv(clog, 0, NULL, NULL,
781 CTLFLAG_PERMANENT,
782 CTLTYPE_STRUCT, "file2",
783 SYSCTL_DESCR("System open file table"),
784 sysctl_kern_file2, 0, NULL, 0,
785 CTL_KERN, KERN_FILE2, CTL_EOL);
786 sysctl_createv(clog, 0, NULL, NULL,
787 CTLFLAG_PERMANENT,
788 CTLTYPE_STRUCT, "cp_id",
789 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
790 sysctl_kern_cpid, 0, NULL, 0,
791 CTL_KERN, KERN_CP_ID, CTL_EOL);
792 sysctl_createv(clog, 0, NULL, &rnode,
793 CTLFLAG_PERMANENT,
794 CTLTYPE_NODE, "coredump",
795 SYSCTL_DESCR("Coredump settings."),
796 NULL, 0, NULL, 0,
797 CTL_KERN, CTL_CREATE, CTL_EOL);
798 sysctl_createv(clog, 0, &rnode, &rnode,
799 CTLFLAG_PERMANENT,
800 CTLTYPE_NODE, "setid",
801 SYSCTL_DESCR("Set-id processes' coredump settings."),
802 NULL, 0, NULL, 0,
803 CTL_CREATE, CTL_EOL);
804 sysctl_createv(clog, 0, &rnode, NULL,
805 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
806 CTLTYPE_INT, "dump",
807 SYSCTL_DESCR("Allow set-id processes to dump core."),
808 sysctl_security_setidcore, 0, &security_setidcore_dump,
809 sizeof(security_setidcore_dump),
810 CTL_CREATE, CTL_EOL);
811 sysctl_createv(clog, 0, &rnode, NULL,
812 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
813 CTLTYPE_STRING, "path",
814 SYSCTL_DESCR("Path pattern for set-id coredumps."),
815 sysctl_security_setidcorename, 0,
816 &security_setidcore_path,
817 sizeof(security_setidcore_path),
818 CTL_CREATE, CTL_EOL);
819 sysctl_createv(clog, 0, &rnode, NULL,
820 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
821 CTLTYPE_INT, "owner",
822 SYSCTL_DESCR("Owner id for set-id processes' cores."),
823 sysctl_security_setidcore, 0, &security_setidcore_owner,
824 0,
825 CTL_CREATE, CTL_EOL);
826 sysctl_createv(clog, 0, &rnode, NULL,
827 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
828 CTLTYPE_INT, "group",
829 SYSCTL_DESCR("Group id for set-id processes' cores."),
830 sysctl_security_setidcore, 0, &security_setidcore_group,
831 0,
832 CTL_CREATE, CTL_EOL);
833 sysctl_createv(clog, 0, &rnode, NULL,
834 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
835 CTLTYPE_INT, "mode",
836 SYSCTL_DESCR("Mode for set-id processes' cores."),
837 sysctl_security_setidcore, 0, &security_setidcore_mode,
838 0,
839 CTL_CREATE, CTL_EOL);
840 #ifdef KERN_SA
841 sysctl_createv(clog, 0, NULL, NULL,
842 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
843 CTLTYPE_INT, "no_sa_support",
844 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
845 NULL, 0, &sa_system_disabled, 0,
846 CTL_KERN, CTL_CREATE, CTL_EOL);
847 #else
848 sysctl_createv(clog, 0, NULL, NULL,
849 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
850 CTLTYPE_INT, "no_sa_support",
851 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
852 NULL, 1, NULL, 0,
853 CTL_KERN, CTL_CREATE, CTL_EOL);
854 #endif
855
856 /* kern.posix. */
857 sysctl_createv(clog, 0, NULL, &rnode,
858 CTLFLAG_PERMANENT,
859 CTLTYPE_NODE, "posix",
860 SYSCTL_DESCR("POSIX options"),
861 NULL, 0, NULL, 0,
862 CTL_KERN, CTL_CREATE, CTL_EOL);
863 sysctl_createv(clog, 0, &rnode, NULL,
864 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
865 CTLTYPE_INT, "semmax",
866 SYSCTL_DESCR("Maximal number of semaphores"),
867 NULL, 0, &ksem_max, 0,
868 CTL_CREATE, CTL_EOL);
869 }
870
871 SYSCTL_SETUP(sysctl_kern_proc_setup,
872 "sysctl kern.proc/proc2/proc_args subtree setup")
873 {
874
875 sysctl_createv(clog, 0, NULL, NULL,
876 CTLFLAG_PERMANENT,
877 CTLTYPE_NODE, "kern", NULL,
878 NULL, 0, NULL, 0,
879 CTL_KERN, CTL_EOL);
880
881 sysctl_createv(clog, 0, NULL, NULL,
882 CTLFLAG_PERMANENT,
883 CTLTYPE_NODE, "proc",
884 SYSCTL_DESCR("System-wide process information"),
885 sysctl_doeproc, 0, NULL, 0,
886 CTL_KERN, KERN_PROC, CTL_EOL);
887 sysctl_createv(clog, 0, NULL, NULL,
888 CTLFLAG_PERMANENT,
889 CTLTYPE_NODE, "proc2",
890 SYSCTL_DESCR("Machine-independent process information"),
891 sysctl_doeproc, 0, NULL, 0,
892 CTL_KERN, KERN_PROC2, CTL_EOL);
893 sysctl_createv(clog, 0, NULL, NULL,
894 CTLFLAG_PERMANENT,
895 CTLTYPE_NODE, "proc_args",
896 SYSCTL_DESCR("Process argument information"),
897 sysctl_kern_proc_args, 0, NULL, 0,
898 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
899
900 /*
901 "nodes" under these:
902
903 KERN_PROC_ALL
904 KERN_PROC_PID pid
905 KERN_PROC_PGRP pgrp
906 KERN_PROC_SESSION sess
907 KERN_PROC_TTY tty
908 KERN_PROC_UID uid
909 KERN_PROC_RUID uid
910 KERN_PROC_GID gid
911 KERN_PROC_RGID gid
912
913 all in all, probably not worth the effort...
914 */
915 }
916
917 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
918 {
919 u_int u;
920 u_quad_t q;
921
922 sysctl_createv(clog, 0, NULL, NULL,
923 CTLFLAG_PERMANENT,
924 CTLTYPE_NODE, "hw", NULL,
925 NULL, 0, NULL, 0,
926 CTL_HW, CTL_EOL);
927
928 sysctl_createv(clog, 0, NULL, NULL,
929 CTLFLAG_PERMANENT,
930 CTLTYPE_STRING, "machine",
931 SYSCTL_DESCR("Machine class"),
932 NULL, 0, machine, 0,
933 CTL_HW, HW_MACHINE, CTL_EOL);
934 sysctl_createv(clog, 0, NULL, NULL,
935 CTLFLAG_PERMANENT,
936 CTLTYPE_STRING, "model",
937 SYSCTL_DESCR("Machine model"),
938 NULL, 0, cpu_model, 0,
939 CTL_HW, HW_MODEL, CTL_EOL);
940 sysctl_createv(clog, 0, NULL, NULL,
941 CTLFLAG_PERMANENT,
942 CTLTYPE_INT, "ncpu",
943 SYSCTL_DESCR("Number of CPUs configured"),
944 NULL, 0, &ncpu, 0,
945 CTL_HW, HW_NCPU, CTL_EOL);
946 sysctl_createv(clog, 0, NULL, NULL,
947 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
948 CTLTYPE_INT, "byteorder",
949 SYSCTL_DESCR("System byte order"),
950 NULL, BYTE_ORDER, NULL, 0,
951 CTL_HW, HW_BYTEORDER, CTL_EOL);
952 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
953 UINT_MAX : physmem * PAGE_SIZE;
954 sysctl_createv(clog, 0, NULL, NULL,
955 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
956 CTLTYPE_INT, "physmem",
957 SYSCTL_DESCR("Bytes of physical memory"),
958 NULL, u, NULL, 0,
959 CTL_HW, HW_PHYSMEM, CTL_EOL);
960 sysctl_createv(clog, 0, NULL, NULL,
961 CTLFLAG_PERMANENT,
962 CTLTYPE_INT, "usermem",
963 SYSCTL_DESCR("Bytes of non-kernel memory"),
964 sysctl_hw_usermem, 0, NULL, 0,
965 CTL_HW, HW_USERMEM, CTL_EOL);
966 sysctl_createv(clog, 0, NULL, NULL,
967 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
968 CTLTYPE_INT, "pagesize",
969 SYSCTL_DESCR("Software page size"),
970 NULL, PAGE_SIZE, NULL, 0,
971 CTL_HW, HW_PAGESIZE, CTL_EOL);
972 sysctl_createv(clog, 0, NULL, NULL,
973 CTLFLAG_PERMANENT,
974 CTLTYPE_STRING, "machine_arch",
975 SYSCTL_DESCR("Machine CPU class"),
976 NULL, 0, machine_arch, 0,
977 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
978 sysctl_createv(clog, 0, NULL, NULL,
979 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
980 CTLTYPE_INT, "alignbytes",
981 SYSCTL_DESCR("Alignment constraint for all possible "
982 "data types"),
983 NULL, ALIGNBYTES, NULL, 0,
984 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
985 sysctl_createv(clog, 0, NULL, NULL,
986 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
987 CTLTYPE_STRING, "cnmagic",
988 SYSCTL_DESCR("Console magic key sequence"),
989 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
990 CTL_HW, HW_CNMAGIC, CTL_EOL);
991 q = (u_quad_t)physmem * PAGE_SIZE;
992 sysctl_createv(clog, 0, NULL, NULL,
993 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
994 CTLTYPE_QUAD, "physmem64",
995 SYSCTL_DESCR("Bytes of physical memory"),
996 NULL, q, NULL, 0,
997 CTL_HW, HW_PHYSMEM64, CTL_EOL);
998 sysctl_createv(clog, 0, NULL, NULL,
999 CTLFLAG_PERMANENT,
1000 CTLTYPE_QUAD, "usermem64",
1001 SYSCTL_DESCR("Bytes of non-kernel memory"),
1002 sysctl_hw_usermem, 0, NULL, 0,
1003 CTL_HW, HW_USERMEM64, CTL_EOL);
1004 sysctl_createv(clog, 0, NULL, NULL,
1005 CTLFLAG_PERMANENT,
1006 CTLTYPE_INT, "ncpuonline",
1007 SYSCTL_DESCR("Number of CPUs online"),
1008 NULL, 0, &ncpuonline, 0,
1009 CTL_HW, HW_NCPUONLINE, CTL_EOL);
1010 }
1011
1012 #ifdef DEBUG
1013 /*
1014 * Debugging related system variables.
1015 */
1016 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
1017 struct ctldebug debug5, debug6, debug7, debug8, debug9;
1018 struct ctldebug debug10, debug11, debug12, debug13, debug14;
1019 struct ctldebug debug15, debug16, debug17, debug18, debug19;
1020 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
1021 &debug0, &debug1, &debug2, &debug3, &debug4,
1022 &debug5, &debug6, &debug7, &debug8, &debug9,
1023 &debug10, &debug11, &debug12, &debug13, &debug14,
1024 &debug15, &debug16, &debug17, &debug18, &debug19,
1025 };
1026
1027 /*
1028 * this setup routine is a replacement for debug_sysctl()
1029 *
1030 * note that it creates several nodes per defined debug variable
1031 */
1032 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
1033 {
1034 struct ctldebug *cdp;
1035 char nodename[20];
1036 int i;
1037
1038 /*
1039 * two ways here:
1040 *
1041 * the "old" way (debug.name -> value) which was emulated by
1042 * the sysctl(8) binary
1043 *
1044 * the new way, which the sysctl(8) binary was actually using
1045
1046 node debug
1047 node debug.0
1048 string debug.0.name
1049 int debug.0.value
1050 int debug.name
1051
1052 */
1053
1054 sysctl_createv(clog, 0, NULL, NULL,
1055 CTLFLAG_PERMANENT,
1056 CTLTYPE_NODE, "debug", NULL,
1057 NULL, 0, NULL, 0,
1058 CTL_DEBUG, CTL_EOL);
1059
1060 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
1061 cdp = debugvars[i];
1062 if (cdp->debugname == NULL || cdp->debugvar == NULL)
1063 continue;
1064
1065 snprintf(nodename, sizeof(nodename), "debug%d", i);
1066 sysctl_createv(clog, 0, NULL, NULL,
1067 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1068 CTLTYPE_NODE, nodename, NULL,
1069 NULL, 0, NULL, 0,
1070 CTL_DEBUG, i, CTL_EOL);
1071 sysctl_createv(clog, 0, NULL, NULL,
1072 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1073 CTLTYPE_STRING, "name", NULL,
1074 /*XXXUNCONST*/
1075 NULL, 0, __UNCONST(cdp->debugname), 0,
1076 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1077 sysctl_createv(clog, 0, NULL, NULL,
1078 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1079 CTLTYPE_INT, "value", NULL,
1080 NULL, 0, cdp->debugvar, 0,
1081 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1082 sysctl_createv(clog, 0, NULL, NULL,
1083 CTLFLAG_PERMANENT,
1084 CTLTYPE_INT, cdp->debugname, NULL,
1085 NULL, 0, cdp->debugvar, 0,
1086 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1087 }
1088 }
1089 #endif /* DEBUG */
1090
1091 /*
1092 * ********************************************************************
1093 * section 2: private node-specific helper routines.
1094 * ********************************************************************
1095 */
1096
1097 #ifdef DIAGNOSTIC
1098 static int
1099 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1100 {
1101 int newtrig, error;
1102 struct sysctlnode node;
1103
1104 newtrig = 0;
1105 node = *rnode;
1106 node.sysctl_data = &newtrig;
1107 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1108 if (error || newp == NULL)
1109 return (error);
1110
1111 if (newtrig != 0)
1112 panic("Panic triggered");
1113
1114 return (error);
1115 }
1116 #endif
1117
1118 /*
1119 * sysctl helper routine for kern.maxvnodes. Drain vnodes if
1120 * new value is lower than desiredvnodes and then calls reinit
1121 * routines that needs to adjust to the new value.
1122 */
1123 static int
1124 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1125 {
1126 int error, new_vnodes, old_vnodes, new_max;
1127 struct sysctlnode node;
1128
1129 new_vnodes = desiredvnodes;
1130 node = *rnode;
1131 node.sysctl_data = &new_vnodes;
1132 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1133 if (error || newp == NULL)
1134 return (error);
1135
1136 /* Limits: 75% of KVA and physical memory. */
1137 new_max = calc_cache_size(kernel_map, 75, 75) / VNODE_COST;
1138 if (new_vnodes > new_max)
1139 new_vnodes = new_max;
1140
1141 old_vnodes = desiredvnodes;
1142 desiredvnodes = new_vnodes;
1143 if (new_vnodes < old_vnodes) {
1144 error = vfs_drainvnodes(new_vnodes, l);
1145 if (error) {
1146 desiredvnodes = old_vnodes;
1147 return (error);
1148 }
1149 }
1150 vfs_reinit();
1151 nchreinit();
1152
1153 return (0);
1154 }
1155
1156 /*
1157 * sysctl helper routine for rtc_offset - set time after changes
1158 */
1159 static int
1160 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1161 {
1162 struct timespec ts, delta;
1163 int error, new_rtc_offset;
1164 struct sysctlnode node;
1165
1166 new_rtc_offset = rtc_offset;
1167 node = *rnode;
1168 node.sysctl_data = &new_rtc_offset;
1169 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1170 if (error || newp == NULL)
1171 return (error);
1172
1173 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
1174 KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
1175 KAUTH_ARG(new_rtc_offset), NULL, NULL))
1176 return (EPERM);
1177 if (rtc_offset == new_rtc_offset)
1178 return (0);
1179
1180 /* if we change the offset, adjust the time */
1181 nanotime(&ts);
1182 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1183 delta.tv_nsec = 0;
1184 timespecadd(&ts, &delta, &ts);
1185 rtc_offset = new_rtc_offset;
1186 return (settime(l->l_proc, &ts));
1187 }
1188
1189 /*
1190 * sysctl helper routine for kern.maxproc. Ensures that the new
1191 * values are not too low or too high.
1192 */
1193 static int
1194 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1195 {
1196 int error, nmaxproc;
1197 struct sysctlnode node;
1198
1199 nmaxproc = maxproc;
1200 node = *rnode;
1201 node.sysctl_data = &nmaxproc;
1202 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1203 if (error || newp == NULL)
1204 return (error);
1205
1206 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1207 return (EINVAL);
1208 #ifdef __HAVE_CPU_MAXPROC
1209 if (nmaxproc > cpu_maxproc())
1210 return (EINVAL);
1211 #endif
1212 maxproc = nmaxproc;
1213
1214 return (0);
1215 }
1216
1217 /*
1218 * sysctl helper function for kern.hostid. The hostid is a long, but
1219 * we export it as an int, so we need to give it a little help.
1220 */
1221 static int
1222 sysctl_kern_hostid(SYSCTLFN_ARGS)
1223 {
1224 int error, inthostid;
1225 struct sysctlnode node;
1226
1227 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1228 node = *rnode;
1229 node.sysctl_data = &inthostid;
1230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1231 if (error || newp == NULL)
1232 return (error);
1233
1234 hostid = (unsigned)inthostid;
1235
1236 return (0);
1237 }
1238
1239 /*
1240 * sysctl helper function for kern.hostname and kern.domainnname.
1241 * resets the relevant recorded length when the underlying name is
1242 * changed.
1243 */
1244 static int
1245 sysctl_setlen(SYSCTLFN_ARGS)
1246 {
1247 int error;
1248
1249 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1250 if (error || newp == NULL)
1251 return (error);
1252
1253 switch (rnode->sysctl_num) {
1254 case KERN_HOSTNAME:
1255 hostnamelen = strlen((const char*)rnode->sysctl_data);
1256 break;
1257 case KERN_DOMAINNAME:
1258 domainnamelen = strlen((const char*)rnode->sysctl_data);
1259 break;
1260 }
1261
1262 return (0);
1263 }
1264
1265 /*
1266 * sysctl helper routine for kern.clockrate. Assembles a struct on
1267 * the fly to be returned to the caller.
1268 */
1269 static int
1270 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1271 {
1272 struct clockinfo clkinfo;
1273 struct sysctlnode node;
1274
1275 clkinfo.tick = tick;
1276 clkinfo.tickadj = tickadj;
1277 clkinfo.hz = hz;
1278 clkinfo.profhz = profhz;
1279 clkinfo.stathz = stathz ? stathz : hz;
1280
1281 node = *rnode;
1282 node.sysctl_data = &clkinfo;
1283 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1284 }
1285
1286
1287 /*
1288 * sysctl helper routine for kern.file pseudo-subtree.
1289 */
1290 static int
1291 sysctl_kern_file(SYSCTLFN_ARGS)
1292 {
1293 int error;
1294 size_t buflen;
1295 struct file *fp, *dp, *np, fbuf;
1296 char *start, *where;
1297
1298 start = where = oldp;
1299 buflen = *oldlenp;
1300 dp = NULL;
1301
1302 if (where == NULL) {
1303 /*
1304 * overestimate by 10 files
1305 */
1306 *oldlenp = sizeof(filehead) + (nfiles + 10) *
1307 sizeof(struct file);
1308 return (0);
1309 }
1310
1311 /*
1312 * first dcopyout filehead
1313 */
1314 if (buflen < sizeof(filehead)) {
1315 *oldlenp = 0;
1316 return (0);
1317 }
1318 sysctl_unlock();
1319 error = dcopyout(l, &filehead, where, sizeof(filehead));
1320 if (error) {
1321 sysctl_relock();
1322 return error;
1323 }
1324 buflen -= sizeof(filehead);
1325 where += sizeof(filehead);
1326
1327 /*
1328 * allocate dummy file descriptor to make position in list
1329 */
1330 if ((dp = fgetdummy()) == NULL) {
1331 sysctl_relock();
1332 return ENOMEM;
1333 }
1334
1335 /*
1336 * followed by an array of file structures
1337 */
1338 mutex_enter(&filelist_lock);
1339 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1340 np = LIST_NEXT(fp, f_list);
1341 mutex_enter(&fp->f_lock);
1342 if (fp->f_count == 0) {
1343 mutex_exit(&fp->f_lock);
1344 continue;
1345 }
1346 /*
1347 * XXX Need to prevent that from being an alternative way
1348 * XXX to getting process information.
1349 */
1350 if (kauth_authorize_generic(l->l_cred,
1351 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0) {
1352 mutex_exit(&fp->f_lock);
1353 continue;
1354 }
1355 if (buflen < sizeof(struct file)) {
1356 *oldlenp = where - start;
1357 mutex_exit(&fp->f_lock);
1358 error = ENOMEM;
1359 break;
1360 }
1361 memcpy(&fbuf, fp, sizeof(fbuf));
1362 LIST_INSERT_AFTER(fp, dp, f_list);
1363 mutex_exit(&fp->f_lock);
1364 mutex_exit(&filelist_lock);
1365 error = dcopyout(l, &fbuf, where, sizeof(fbuf));
1366 if (error) {
1367 mutex_enter(&filelist_lock);
1368 LIST_REMOVE(dp, f_list);
1369 break;
1370 }
1371 buflen -= sizeof(struct file);
1372 where += sizeof(struct file);
1373 mutex_enter(&filelist_lock);
1374 np = LIST_NEXT(dp, f_list);
1375 LIST_REMOVE(dp, f_list);
1376 }
1377 mutex_exit(&filelist_lock);
1378 *oldlenp = where - start;
1379 if (dp != NULL)
1380 fputdummy(dp);
1381 sysctl_relock();
1382 return (error);
1383 }
1384
1385 /*
1386 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. For the
1387 * former it merely checks the message buffer is set up. For the latter,
1388 * it also copies out the data if necessary.
1389 */
1390 static int
1391 sysctl_msgbuf(SYSCTLFN_ARGS)
1392 {
1393 char *where = oldp;
1394 size_t len, maxlen;
1395 long beg, end;
1396 extern kmutex_t log_lock;
1397 int error;
1398
1399 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1400 msgbufenabled = 0;
1401 return (ENXIO);
1402 }
1403
1404 switch (rnode->sysctl_num) {
1405 case KERN_MSGBUFSIZE: {
1406 struct sysctlnode node = *rnode;
1407 int msg_bufs = (int)msgbufp->msg_bufs;
1408 node.sysctl_data = &msg_bufs;
1409 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1410 }
1411 case KERN_MSGBUF:
1412 break;
1413 default:
1414 return (EOPNOTSUPP);
1415 }
1416
1417 if (newp != NULL)
1418 return (EPERM);
1419
1420 if (oldp == NULL) {
1421 /* always return full buffer size */
1422 *oldlenp = msgbufp->msg_bufs;
1423 return (0);
1424 }
1425
1426 sysctl_unlock();
1427
1428 /*
1429 * First, copy from the write pointer to the end of
1430 * message buffer.
1431 */
1432 error = 0;
1433 mutex_spin_enter(&log_lock);
1434 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1435 beg = msgbufp->msg_bufx;
1436 end = msgbufp->msg_bufs;
1437 mutex_spin_exit(&log_lock);
1438
1439 while (maxlen > 0) {
1440 len = MIN(end - beg, maxlen);
1441 if (len == 0)
1442 break;
1443 /* XXX unlocked, but hardly matters. */
1444 error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
1445 if (error)
1446 break;
1447 where += len;
1448 maxlen -= len;
1449
1450 /*
1451 * ... then, copy from the beginning of message buffer to
1452 * the write pointer.
1453 */
1454 beg = 0;
1455 end = msgbufp->msg_bufx;
1456 }
1457
1458 sysctl_relock();
1459 return (error);
1460 }
1461
1462 /*
1463 * sysctl helper routine for kern.defcorename. In the case of a new
1464 * string being assigned, check that it's not a zero-length string.
1465 * (XXX the check in -current doesn't work, but do we really care?)
1466 */
1467 static int
1468 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1469 {
1470 int error;
1471 char *newcorename;
1472 struct sysctlnode node;
1473
1474 newcorename = PNBUF_GET();
1475 node = *rnode;
1476 node.sysctl_data = &newcorename[0];
1477 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1478 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1479 if (error || newp == NULL) {
1480 goto done;
1481 }
1482
1483 /*
1484 * when sysctl_lookup() deals with a string, it's guaranteed
1485 * to come back nul terminated. So there. :)
1486 */
1487 if (strlen(newcorename) == 0) {
1488 error = EINVAL;
1489 } else {
1490 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1491 error = 0;
1492 }
1493 done:
1494 PNBUF_PUT(newcorename);
1495 return error;
1496 }
1497
1498 /*
1499 * sysctl helper routine for kern.cp_time node. Adds up cpu time
1500 * across all cpus.
1501 */
1502 static int
1503 sysctl_kern_cptime(SYSCTLFN_ARGS)
1504 {
1505 struct sysctlnode node = *rnode;
1506 uint64_t *cp_time = NULL;
1507 int error, n = ncpu, i;
1508 struct cpu_info *ci;
1509 CPU_INFO_ITERATOR cii;
1510
1511 /*
1512 * if you specifically pass a buffer that is the size of the
1513 * sum, or if you are probing for the size, you get the "sum"
1514 * of cp_time (and the size thereof) across all processors.
1515 *
1516 * alternately, you can pass an additional mib number and get
1517 * cp_time for that particular processor.
1518 */
1519 switch (namelen) {
1520 case 0:
1521 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1522 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1523 n = -1; /* SUM */
1524 }
1525 else {
1526 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1527 n = -2; /* ALL */
1528 }
1529 break;
1530 case 1:
1531 if (name[0] < 0 || name[0] >= n)
1532 return (ENOENT); /* ENOSUCHPROCESSOR */
1533 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1534 n = name[0];
1535 /*
1536 * adjust these so that sysctl_lookup() will be happy
1537 */
1538 name++;
1539 namelen--;
1540 break;
1541 default:
1542 return (EINVAL);
1543 }
1544
1545 cp_time = kmem_alloc(node.sysctl_size, KM_SLEEP);
1546 if (cp_time == NULL)
1547 return (ENOMEM);
1548 node.sysctl_data = cp_time;
1549 memset(cp_time, 0, node.sysctl_size);
1550
1551 for (CPU_INFO_FOREACH(cii, ci)) {
1552 if (n <= 0) {
1553 for (i = 0; i < CPUSTATES; i++) {
1554 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1555 }
1556 }
1557 /*
1558 * if a specific processor was requested and we just
1559 * did it, we're done here
1560 */
1561 if (n == 0)
1562 break;
1563 /*
1564 * if doing "all", skip to next cp_time set for next processor
1565 */
1566 if (n == -2)
1567 cp_time += CPUSTATES;
1568 /*
1569 * if we're doing a specific processor, we're one
1570 * processor closer
1571 */
1572 if (n > 0)
1573 n--;
1574 }
1575
1576 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1577 kmem_free(node.sysctl_data, node.sysctl_size);
1578 return (error);
1579 }
1580
1581 #if NPTY > 0
1582 /*
1583 * sysctl helper routine for kern.maxptys. Ensures that any new value
1584 * is acceptable to the pty subsystem.
1585 */
1586 static int
1587 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1588 {
1589 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1590 int error, xmax;
1591 struct sysctlnode node;
1592
1593 /* get current value of maxptys */
1594 xmax = pty_maxptys(0, 0);
1595
1596 node = *rnode;
1597 node.sysctl_data = &xmax;
1598 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1599 if (error || newp == NULL)
1600 return (error);
1601
1602 if (xmax != pty_maxptys(xmax, 1))
1603 return (EINVAL);
1604
1605 return (0);
1606 }
1607 #endif /* NPTY > 0 */
1608
1609 /*
1610 * sysctl helper routine for kern.sbmax. Basically just ensures that
1611 * any new value is not too small.
1612 */
1613 static int
1614 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1615 {
1616 int error, new_sbmax;
1617 struct sysctlnode node;
1618
1619 new_sbmax = sb_max;
1620 node = *rnode;
1621 node.sysctl_data = &new_sbmax;
1622 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1623 if (error || newp == NULL)
1624 return (error);
1625
1626 KERNEL_LOCK(1, NULL);
1627 error = sb_max_set(new_sbmax);
1628 KERNEL_UNLOCK_ONE(NULL);
1629
1630 return (error);
1631 }
1632
1633 /*
1634 * sysctl helper routine for kern.urandom node. Picks a random number
1635 * for you.
1636 */
1637 static int
1638 sysctl_kern_urnd(SYSCTLFN_ARGS)
1639 {
1640 #if NRND > 0
1641 int v, rv;
1642
1643 KERNEL_LOCK(1, NULL);
1644 rv = rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY);
1645 KERNEL_UNLOCK_ONE(NULL);
1646 if (rv == sizeof(v)) {
1647 struct sysctlnode node = *rnode;
1648 node.sysctl_data = &v;
1649 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1650 }
1651 else
1652 return (EIO); /*XXX*/
1653 #else
1654 return (EOPNOTSUPP);
1655 #endif
1656 }
1657
1658 /*
1659 * sysctl helper routine for kern.arandom node. Picks a random number
1660 * for you.
1661 */
1662 static int
1663 sysctl_kern_arnd(SYSCTLFN_ARGS)
1664 {
1665 #if NRND > 0
1666 int error;
1667 void *v;
1668 struct sysctlnode node = *rnode;
1669
1670 if (*oldlenp == 0)
1671 return 0;
1672 if (*oldlenp > 8192)
1673 return E2BIG;
1674
1675 v = kmem_alloc(*oldlenp, KM_SLEEP);
1676 arc4randbytes(v, *oldlenp);
1677 node.sysctl_data = v;
1678 node.sysctl_size = *oldlenp;
1679 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1680 kmem_free(v, *oldlenp);
1681 return error;
1682 #else
1683 return (EOPNOTSUPP);
1684 #endif
1685 }
1686 /*
1687 * sysctl helper routine to do kern.lwp.* work.
1688 */
1689 static int
1690 sysctl_kern_lwp(SYSCTLFN_ARGS)
1691 {
1692 struct kinfo_lwp klwp;
1693 struct proc *p;
1694 struct lwp *l2, *l3;
1695 char *where, *dp;
1696 int pid, elem_size, elem_count;
1697 int buflen, needed, error;
1698 bool gotit;
1699
1700 if (namelen == 1 && name[0] == CTL_QUERY)
1701 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1702
1703 dp = where = oldp;
1704 buflen = where != NULL ? *oldlenp : 0;
1705 error = needed = 0;
1706
1707 if (newp != NULL || namelen != 3)
1708 return (EINVAL);
1709 pid = name[0];
1710 elem_size = name[1];
1711 elem_count = name[2];
1712
1713 sysctl_unlock();
1714 if (pid == -1) {
1715 mutex_enter(proc_lock);
1716 LIST_FOREACH(p, &allproc, p_list) {
1717 /* Grab a hold on the process. */
1718 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
1719 continue;
1720 }
1721 mutex_exit(proc_lock);
1722
1723 mutex_enter(p->p_lock);
1724 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1725 if (buflen >= elem_size && elem_count > 0) {
1726 lwp_lock(l2);
1727 fill_lwp(l2, &klwp);
1728 lwp_unlock(l2);
1729 mutex_exit(p->p_lock);
1730
1731 /*
1732 * Copy out elem_size, but not
1733 * larger than the size of a
1734 * struct kinfo_proc2.
1735 */
1736 error = dcopyout(l, &klwp, dp,
1737 min(sizeof(klwp), elem_size));
1738 if (error) {
1739 rw_exit(&p->p_reflock);
1740 goto cleanup;
1741 }
1742 mutex_enter(p->p_lock);
1743 LIST_FOREACH(l3, &p->p_lwps,
1744 l_sibling) {
1745 if (l2 == l3)
1746 break;
1747 }
1748 if (l3 == NULL) {
1749 mutex_exit(p->p_lock);
1750 rw_exit(&p->p_reflock);
1751 error = EAGAIN;
1752 goto cleanup;
1753 }
1754 dp += elem_size;
1755 buflen -= elem_size;
1756 elem_count--;
1757 }
1758 needed += elem_size;
1759 }
1760 mutex_exit(p->p_lock);
1761
1762 /* Drop reference to process. */
1763 mutex_enter(proc_lock);
1764 rw_exit(&p->p_reflock);
1765 }
1766 mutex_exit(proc_lock);
1767 } else {
1768 mutex_enter(proc_lock);
1769 p = p_find(pid, PFIND_LOCKED);
1770 if (p == NULL) {
1771 error = ESRCH;
1772 mutex_exit(proc_lock);
1773 goto cleanup;
1774 }
1775 /* Grab a hold on the process. */
1776 gotit = rw_tryenter(&p->p_reflock, RW_READER);
1777 mutex_exit(proc_lock);
1778 if (!gotit) {
1779 error = ESRCH;
1780 goto cleanup;
1781 }
1782
1783 mutex_enter(p->p_lock);
1784 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1785 if (buflen >= elem_size && elem_count > 0) {
1786 lwp_lock(l2);
1787 fill_lwp(l2, &klwp);
1788 lwp_unlock(l2);
1789 mutex_exit(p->p_lock);
1790 /*
1791 * Copy out elem_size, but not larger than
1792 * the size of a struct kinfo_proc2.
1793 */
1794 error = dcopyout(l, &klwp, dp,
1795 min(sizeof(klwp), elem_size));
1796 if (error) {
1797 rw_exit(&p->p_reflock);
1798 goto cleanup;
1799 }
1800 mutex_enter(p->p_lock);
1801 LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
1802 if (l2 == l3)
1803 break;
1804 }
1805 if (l3 == NULL) {
1806 mutex_exit(p->p_lock);
1807 rw_exit(&p->p_reflock);
1808 error = EAGAIN;
1809 goto cleanup;
1810 }
1811 dp += elem_size;
1812 buflen -= elem_size;
1813 elem_count--;
1814 }
1815 needed += elem_size;
1816 }
1817 mutex_exit(p->p_lock);
1818
1819 /* Drop reference to process. */
1820 rw_exit(&p->p_reflock);
1821 }
1822
1823 if (where != NULL) {
1824 *oldlenp = dp - where;
1825 if (needed > *oldlenp) {
1826 sysctl_relock();
1827 return (ENOMEM);
1828 }
1829 } else {
1830 needed += KERN_LWPSLOP;
1831 *oldlenp = needed;
1832 }
1833 error = 0;
1834 cleanup:
1835 sysctl_relock();
1836 return (error);
1837 }
1838
1839 /*
1840 * sysctl helper routine for kern.forkfsleep node. Ensures that the
1841 * given value is not too large or two small, and is at least one
1842 * timer tick if not zero.
1843 */
1844 static int
1845 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1846 {
1847 /* userland sees value in ms, internally is in ticks */
1848 extern int forkfsleep; /* defined in kern/kern_fork.c */
1849 int error, timo, lsleep;
1850 struct sysctlnode node;
1851
1852 lsleep = forkfsleep * 1000 / hz;
1853 node = *rnode;
1854 node.sysctl_data = &lsleep;
1855 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1856 if (error || newp == NULL)
1857 return (error);
1858
1859 /* refuse negative values, and overly 'long time' */
1860 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1861 return (EINVAL);
1862
1863 timo = mstohz(lsleep);
1864
1865 /* if the interval is >0 ms && <1 tick, use 1 tick */
1866 if (lsleep != 0 && timo == 0)
1867 forkfsleep = 1;
1868 else
1869 forkfsleep = timo;
1870
1871 return (0);
1872 }
1873
1874 /*
1875 * sysctl helper routine for kern.root_partition
1876 */
1877 static int
1878 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1879 {
1880 int rootpart = DISKPART(rootdev);
1881 struct sysctlnode node = *rnode;
1882
1883 node.sysctl_data = &rootpart;
1884 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1885 }
1886
1887 /*
1888 * sysctl helper function for kern.drivers
1889 */
1890 static int
1891 sysctl_kern_drivers(SYSCTLFN_ARGS)
1892 {
1893 int error;
1894 size_t buflen;
1895 struct kinfo_drivers kd;
1896 char *start, *where;
1897 const char *dname;
1898 int i;
1899 extern struct devsw_conv *devsw_conv;
1900 extern int max_devsw_convs;
1901
1902 if (newp != NULL || namelen != 0)
1903 return (EINVAL);
1904
1905 start = where = oldp;
1906 buflen = *oldlenp;
1907 if (where == NULL) {
1908 *oldlenp = max_devsw_convs * sizeof kd;
1909 return 0;
1910 }
1911
1912 /*
1913 * An array of kinfo_drivers structures
1914 */
1915 error = 0;
1916 sysctl_unlock();
1917 mutex_enter(&specfs_lock);
1918 for (i = 0; i < max_devsw_convs; i++) {
1919 dname = devsw_conv[i].d_name;
1920 if (dname == NULL)
1921 continue;
1922 if (buflen < sizeof kd) {
1923 error = ENOMEM;
1924 break;
1925 }
1926 memset(&kd, 0, sizeof(kd));
1927 kd.d_bmajor = devsw_conv[i].d_bmajor;
1928 kd.d_cmajor = devsw_conv[i].d_cmajor;
1929 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1930 mutex_exit(&specfs_lock);
1931 error = dcopyout(l, &kd, where, sizeof kd);
1932 mutex_enter(&specfs_lock);
1933 if (error != 0)
1934 break;
1935 buflen -= sizeof kd;
1936 where += sizeof kd;
1937 }
1938 mutex_exit(&specfs_lock);
1939 sysctl_relock();
1940 *oldlenp = where - start;
1941 return error;
1942 }
1943
1944 /*
1945 * sysctl helper function for kern.file2
1946 */
1947 static int
1948 sysctl_kern_file2(SYSCTLFN_ARGS)
1949 {
1950 struct proc *p;
1951 struct file *fp, *tp, *np;
1952 struct filedesc *fd;
1953 struct kinfo_file kf;
1954 char *dp;
1955 u_int i, op;
1956 size_t len, needed, elem_size, out_size;
1957 int error, arg, elem_count;
1958 fdfile_t *ff;
1959
1960 if (namelen == 1 && name[0] == CTL_QUERY)
1961 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1962
1963 if (namelen != 4)
1964 return (EINVAL);
1965
1966 error = 0;
1967 dp = oldp;
1968 len = (oldp != NULL) ? *oldlenp : 0;
1969 op = name[0];
1970 arg = name[1];
1971 elem_size = name[2];
1972 elem_count = name[3];
1973 out_size = MIN(sizeof(kf), elem_size);
1974 needed = 0;
1975
1976 if (elem_size < 1 || elem_count < 0)
1977 return (EINVAL);
1978
1979 switch (op) {
1980 case KERN_FILE_BYFILE:
1981 /*
1982 * doesn't use arg so it must be zero
1983 */
1984 if (arg != 0)
1985 return (EINVAL);
1986 sysctl_unlock();
1987 /*
1988 * allocate dummy file descriptor to make position in list
1989 */
1990 if ((tp = fgetdummy()) == NULL) {
1991 sysctl_relock();
1992 return ENOMEM;
1993 }
1994 mutex_enter(&filelist_lock);
1995 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1996 np = LIST_NEXT(fp, f_list);
1997 mutex_enter(&fp->f_lock);
1998 if (fp->f_count == 0) {
1999 mutex_exit(&fp->f_lock);
2000 continue;
2001 }
2002 /*
2003 * XXX Need to prevent that from being an alternative
2004 * XXX way for getting process information.
2005 */
2006 if (kauth_authorize_generic(l->l_cred,
2007 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0) {
2008 mutex_exit(&fp->f_lock);
2009 continue;
2010 }
2011 if (len >= elem_size && elem_count > 0) {
2012 fill_file(&kf, fp, NULL, 0, 0);
2013 LIST_INSERT_AFTER(fp, tp, f_list);
2014 mutex_exit(&fp->f_lock);
2015 mutex_exit(&filelist_lock);
2016 error = dcopyout(l, &kf, dp, out_size);
2017 mutex_enter(&filelist_lock);
2018 np = LIST_NEXT(tp, f_list);
2019 LIST_REMOVE(tp, f_list);
2020 if (error) {
2021 break;
2022 }
2023 dp += elem_size;
2024 len -= elem_size;
2025 } else {
2026 mutex_exit(&fp->f_lock);
2027 }
2028 if (elem_count > 0) {
2029 needed += elem_size;
2030 if (elem_count != INT_MAX)
2031 elem_count--;
2032 }
2033 }
2034 mutex_exit(&filelist_lock);
2035 fputdummy(tp);
2036 sysctl_relock();
2037 break;
2038 case KERN_FILE_BYPID:
2039 if (arg < -1)
2040 /* -1 means all processes */
2041 return (EINVAL);
2042 sysctl_unlock();
2043 mutex_enter(proc_lock);
2044 LIST_FOREACH(p, &allproc, p_list) {
2045 if (p->p_stat == SIDL) {
2046 /* skip embryonic processes */
2047 continue;
2048 }
2049 if (arg > 0 && p->p_pid != arg) {
2050 /* pick only the one we want */
2051 /* XXX want 0 to mean "kernel files" */
2052 continue;
2053 }
2054 mutex_enter(p->p_lock);
2055 error = kauth_authorize_process(l->l_cred,
2056 KAUTH_PROCESS_CANSEE, p,
2057 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2058 NULL, NULL);
2059 mutex_exit(p->p_lock);
2060 if (error != 0) {
2061 /*
2062 * Don't leak kauth retval if we're silently
2063 * skipping this entry.
2064 */
2065 error = 0;
2066 continue;
2067 }
2068
2069 /*
2070 * Grab a hold on the process.
2071 */
2072 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2073 continue;
2074 }
2075 mutex_exit(proc_lock);
2076
2077 /* XXX Do we need to check permission per file? */
2078 fd = p->p_fd;
2079 mutex_enter(&fd->fd_lock);
2080 for (i = 0; i < fd->fd_nfiles; i++) {
2081 if ((ff = fd->fd_ofiles[i]) == NULL) {
2082 continue;
2083 }
2084 mutex_enter(&ff->ff_lock);
2085 if ((fp = ff->ff_file) == NULL) {
2086 mutex_exit(&ff->ff_lock);
2087 continue;
2088 }
2089 if (len >= elem_size && elem_count > 0) {
2090 mutex_enter(&fp->f_lock);
2091 fill_file(&kf, fp, ff, i, p->p_pid);
2092 mutex_exit(&fp->f_lock);
2093 mutex_exit(&ff->ff_lock);
2094 mutex_exit(&fd->fd_lock);
2095 error = dcopyout(l, &kf, dp, out_size);
2096 mutex_enter(&fd->fd_lock);
2097 if (error)
2098 break;
2099 dp += elem_size;
2100 len -= elem_size;
2101 } else {
2102 mutex_exit(&ff->ff_lock);
2103 }
2104 if (elem_count > 0) {
2105 needed += elem_size;
2106 if (elem_count != INT_MAX)
2107 elem_count--;
2108 }
2109 }
2110 mutex_exit(&fd->fd_lock);
2111
2112 /*
2113 * Release reference to process.
2114 */
2115 mutex_enter(proc_lock);
2116 rw_exit(&p->p_reflock);
2117 }
2118 mutex_exit(proc_lock);
2119 sysctl_relock();
2120 break;
2121 default:
2122 return (EINVAL);
2123 }
2124
2125 if (oldp == NULL)
2126 needed += KERN_FILESLOP * elem_size;
2127 *oldlenp = needed;
2128
2129 return (error);
2130 }
2131
2132 static void
2133 fill_file(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2134 int i, pid_t pid)
2135 {
2136
2137 memset(kp, 0, sizeof(*kp));
2138
2139 kp->ki_fileaddr = PTRTOUINT64(fp);
2140 kp->ki_flag = fp->f_flag;
2141 kp->ki_iflags = fp->f_iflags;
2142 kp->ki_ftype = fp->f_type;
2143 kp->ki_count = fp->f_count;
2144 kp->ki_msgcount = fp->f_msgcount;
2145 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2146 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2147 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2148 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2149 kp->ki_foffset = fp->f_offset;
2150 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2151
2152 /* vnode information to glue this file to something */
2153 if (fp->f_type == DTYPE_VNODE) {
2154 struct vnode *vp = (struct vnode *)fp->f_data;
2155
2156 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2157 kp->ki_vsize = vp->v_size;
2158 kp->ki_vtype = vp->v_type;
2159 kp->ki_vtag = vp->v_tag;
2160 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2161 }
2162
2163 /* process information when retrieved via KERN_FILE_BYPID */
2164 if (ff != NULL) {
2165 kp->ki_pid = pid;
2166 kp->ki_fd = i;
2167 kp->ki_ofileflags = ff->ff_exclose;
2168 kp->ki_usecount = ff->ff_refcnt;
2169 }
2170 }
2171
2172 static int
2173 sysctl_doeproc(SYSCTLFN_ARGS)
2174 {
2175 struct eproc *eproc;
2176 struct kinfo_proc2 *kproc2;
2177 struct kinfo_proc *dp;
2178 struct proc *p, *next, *marker;
2179 char *where, *dp2;
2180 int type, op, arg, error;
2181 u_int elem_size, elem_count;
2182 size_t buflen, needed;
2183 bool match, zombie, mmmbrains;
2184
2185 if (namelen == 1 && name[0] == CTL_QUERY)
2186 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2187
2188 dp = oldp;
2189 dp2 = where = oldp;
2190 buflen = where != NULL ? *oldlenp : 0;
2191 error = 0;
2192 needed = 0;
2193 type = rnode->sysctl_num;
2194
2195 if (type == KERN_PROC) {
2196 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2197 return (EINVAL);
2198 op = name[0];
2199 if (op != KERN_PROC_ALL)
2200 arg = name[1];
2201 else
2202 arg = 0; /* Quell compiler warning */
2203 elem_size = elem_count = 0; /* Ditto */
2204 } else {
2205 if (namelen != 4)
2206 return (EINVAL);
2207 op = name[0];
2208 arg = name[1];
2209 elem_size = name[2];
2210 elem_count = name[3];
2211 }
2212
2213 sysctl_unlock();
2214
2215 if (type == KERN_PROC) {
2216 eproc = kmem_alloc(sizeof(*eproc), KM_SLEEP);
2217 kproc2 = NULL;
2218 } else {
2219 eproc = NULL;
2220 kproc2 = kmem_alloc(sizeof(*kproc2), KM_SLEEP);
2221 }
2222 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2223
2224 mutex_enter(proc_lock);
2225 mmmbrains = false;
2226 for (p = LIST_FIRST(&allproc);; p = next) {
2227 if (p == NULL) {
2228 if (!mmmbrains) {
2229 p = LIST_FIRST(&zombproc);
2230 mmmbrains = true;
2231 }
2232 if (p == NULL)
2233 break;
2234 }
2235 next = LIST_NEXT(p, p_list);
2236
2237 /*
2238 * Skip embryonic processes.
2239 */
2240 if (p->p_stat == SIDL)
2241 continue;
2242
2243 mutex_enter(p->p_lock);
2244 error = kauth_authorize_process(l->l_cred,
2245 KAUTH_PROCESS_CANSEE, p,
2246 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2247 if (error != 0) {
2248 mutex_exit(p->p_lock);
2249 continue;
2250 }
2251
2252 /*
2253 * TODO - make more efficient (see notes below).
2254 * do by session.
2255 */
2256 switch (op) {
2257 case KERN_PROC_PID:
2258 /* could do this with just a lookup */
2259 match = (p->p_pid == (pid_t)arg);
2260 break;
2261
2262 case KERN_PROC_PGRP:
2263 /* could do this by traversing pgrp */
2264 match = (p->p_pgrp->pg_id == (pid_t)arg);
2265 break;
2266
2267 case KERN_PROC_SESSION:
2268 match = (p->p_session->s_sid == (pid_t)arg);
2269 break;
2270
2271 case KERN_PROC_TTY:
2272 match = true;
2273 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2274 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2275 p->p_session->s_ttyp == NULL ||
2276 p->p_session->s_ttyvp != NULL) {
2277 match = false;
2278 }
2279 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2280 p->p_session->s_ttyp == NULL) {
2281 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2282 match = false;
2283 }
2284 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2285 match = false;
2286 }
2287 break;
2288
2289 case KERN_PROC_UID:
2290 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2291 break;
2292
2293 case KERN_PROC_RUID:
2294 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2295 break;
2296
2297 case KERN_PROC_GID:
2298 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2299 break;
2300
2301 case KERN_PROC_RGID:
2302 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2303 break;
2304
2305 case KERN_PROC_ALL:
2306 match = true;
2307 /* allow everything */
2308 break;
2309
2310 default:
2311 error = EINVAL;
2312 mutex_exit(p->p_lock);
2313 goto cleanup;
2314 }
2315 if (!match) {
2316 mutex_exit(p->p_lock);
2317 continue;
2318 }
2319
2320 /*
2321 * Grab a hold on the process.
2322 */
2323 if (mmmbrains) {
2324 zombie = true;
2325 } else {
2326 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2327 }
2328 if (zombie) {
2329 LIST_INSERT_AFTER(p, marker, p_list);
2330 }
2331
2332 if (type == KERN_PROC) {
2333 if (buflen >= sizeof(struct kinfo_proc)) {
2334 fill_eproc(p, eproc, zombie);
2335 mutex_exit(p->p_lock);
2336 mutex_exit(proc_lock);
2337 error = dcopyout(l, p, &dp->kp_proc,
2338 sizeof(struct proc));
2339 mutex_enter(proc_lock);
2340 if (error) {
2341 goto bah;
2342 }
2343 error = dcopyout(l, eproc, &dp->kp_eproc,
2344 sizeof(*eproc));
2345 if (error) {
2346 goto bah;
2347 }
2348 dp++;
2349 buflen -= sizeof(struct kinfo_proc);
2350 } else {
2351 mutex_exit(p->p_lock);
2352 }
2353 needed += sizeof(struct kinfo_proc);
2354 } else { /* KERN_PROC2 */
2355 if (buflen >= elem_size && elem_count > 0) {
2356 fill_kproc2(p, kproc2, zombie);
2357 mutex_exit(p->p_lock);
2358 mutex_exit(proc_lock);
2359 /*
2360 * Copy out elem_size, but not larger than
2361 * the size of a struct kinfo_proc2.
2362 */
2363 error = dcopyout(l, kproc2, dp2,
2364 min(sizeof(*kproc2), elem_size));
2365 mutex_enter(proc_lock);
2366 if (error) {
2367 goto bah;
2368 }
2369 dp2 += elem_size;
2370 buflen -= elem_size;
2371 elem_count--;
2372 } else {
2373 mutex_exit(p->p_lock);
2374 }
2375 needed += elem_size;
2376 }
2377
2378 /*
2379 * Release reference to process.
2380 */
2381 if (zombie) {
2382 next = LIST_NEXT(marker, p_list);
2383 LIST_REMOVE(marker, p_list);
2384 } else {
2385 rw_exit(&p->p_reflock);
2386 }
2387 }
2388 mutex_exit(proc_lock);
2389
2390 if (where != NULL) {
2391 if (type == KERN_PROC)
2392 *oldlenp = (char *)dp - where;
2393 else
2394 *oldlenp = dp2 - where;
2395 if (needed > *oldlenp) {
2396 error = ENOMEM;
2397 goto out;
2398 }
2399 } else {
2400 needed += KERN_PROCSLOP;
2401 *oldlenp = needed;
2402 }
2403 if (kproc2)
2404 kmem_free(kproc2, sizeof(*kproc2));
2405 if (eproc)
2406 kmem_free(eproc, sizeof(*eproc));
2407 if (marker)
2408 kmem_free(marker, sizeof(*marker));
2409 sysctl_relock();
2410 return 0;
2411 bah:
2412 if (zombie)
2413 LIST_REMOVE(marker, p_list);
2414 else
2415 rw_exit(&p->p_reflock);
2416 cleanup:
2417 mutex_exit(proc_lock);
2418 out:
2419 if (kproc2)
2420 kmem_free(kproc2, sizeof(*kproc2));
2421 if (eproc)
2422 kmem_free(eproc, sizeof(*eproc));
2423 if (marker)
2424 kmem_free(marker, sizeof(*marker));
2425 sysctl_relock();
2426 return error;
2427 }
2428
2429 /*
2430 * sysctl helper routine for kern.proc_args pseudo-subtree.
2431 */
2432 static int
2433 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2434 {
2435 struct ps_strings pss;
2436 struct proc *p;
2437 size_t len, i;
2438 struct uio auio;
2439 struct iovec aiov;
2440 pid_t pid;
2441 int nargv, type, error, argvlen;
2442 char *arg;
2443 char **argv = NULL;
2444 char *tmp;
2445 struct vmspace *vmspace;
2446 vaddr_t psstr_addr;
2447 vaddr_t offsetn;
2448 vaddr_t offsetv;
2449
2450 if (namelen == 1 && name[0] == CTL_QUERY)
2451 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2452
2453 if (newp != NULL || namelen != 2)
2454 return (EINVAL);
2455 pid = name[0];
2456 type = name[1];
2457 argv = NULL;
2458 argvlen = 0;
2459
2460 switch (type) {
2461 case KERN_PROC_ARGV:
2462 case KERN_PROC_NARGV:
2463 case KERN_PROC_ENV:
2464 case KERN_PROC_NENV:
2465 /* ok */
2466 break;
2467 default:
2468 return (EINVAL);
2469 }
2470
2471 sysctl_unlock();
2472
2473 /* check pid */
2474 mutex_enter(proc_lock);
2475 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2476 error = EINVAL;
2477 goto out_locked;
2478 }
2479 mutex_enter(p->p_lock);
2480
2481 /* Check permission. */
2482 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2483 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2484 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2485 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2486 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2487 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2488 else
2489 error = EINVAL; /* XXXGCC */
2490 if (error) {
2491 mutex_exit(p->p_lock);
2492 goto out_locked;
2493 }
2494
2495 if (oldp == NULL) {
2496 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2497 *oldlenp = sizeof (int);
2498 else
2499 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2500 error = 0;
2501 mutex_exit(p->p_lock);
2502 goto out_locked;
2503 }
2504
2505 /*
2506 * Zombies don't have a stack, so we can't read their psstrings.
2507 * System processes also don't have a user stack.
2508 */
2509 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2510 error = EINVAL;
2511 mutex_exit(p->p_lock);
2512 goto out_locked;
2513 }
2514
2515 /*
2516 * Lock the process down in memory.
2517 */
2518 psstr_addr = (vaddr_t)p->p_psstr;
2519 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2520 offsetn = p->p_psnargv;
2521 offsetv = p->p_psargv;
2522 } else {
2523 offsetn = p->p_psnenv;
2524 offsetv = p->p_psenv;
2525 }
2526 vmspace = p->p_vmspace;
2527 uvmspace_addref(vmspace);
2528 mutex_exit(p->p_lock);
2529 mutex_exit(proc_lock);
2530
2531 /*
2532 * Allocate a temporary buffer to hold the arguments.
2533 */
2534 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2535
2536 /*
2537 * Read in the ps_strings structure.
2538 */
2539 aiov.iov_base = &pss;
2540 aiov.iov_len = sizeof(pss);
2541 auio.uio_iov = &aiov;
2542 auio.uio_iovcnt = 1;
2543 auio.uio_offset = psstr_addr;
2544 auio.uio_resid = sizeof(pss);
2545 auio.uio_rw = UIO_READ;
2546 UIO_SETUP_SYSSPACE(&auio);
2547 error = uvm_io(&vmspace->vm_map, &auio);
2548 if (error)
2549 goto done;
2550
2551 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2552 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2553 error = dcopyout(l, &nargv, oldp, sizeof(nargv));
2554 *oldlenp = sizeof(nargv);
2555 goto done;
2556 }
2557 /*
2558 * Now read the address of the argument vector.
2559 */
2560 switch (type) {
2561 case KERN_PROC_ARGV:
2562 /* FALLTHROUGH */
2563 case KERN_PROC_ENV:
2564 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2565 break;
2566 default:
2567 error = EINVAL;
2568 goto done;
2569 }
2570
2571 #ifdef COMPAT_NETBSD32
2572 if (p->p_flag & PK_32)
2573 len = sizeof(netbsd32_charp) * nargv;
2574 else
2575 #endif
2576 len = sizeof(char *) * nargv;
2577
2578 if ((argvlen = len) != 0)
2579 argv = kmem_alloc(len, KM_SLEEP);
2580
2581 aiov.iov_base = argv;
2582 aiov.iov_len = len;
2583 auio.uio_iov = &aiov;
2584 auio.uio_iovcnt = 1;
2585 auio.uio_offset = (off_t)(unsigned long)tmp;
2586 auio.uio_resid = len;
2587 auio.uio_rw = UIO_READ;
2588 UIO_SETUP_SYSSPACE(&auio);
2589 error = uvm_io(&vmspace->vm_map, &auio);
2590 if (error)
2591 goto done;
2592
2593 /*
2594 * Now copy each string.
2595 */
2596 len = 0; /* bytes written to user buffer */
2597 for (i = 0; i < nargv; i++) {
2598 int finished = 0;
2599 vaddr_t base;
2600 size_t xlen;
2601 int j;
2602
2603 #ifdef COMPAT_NETBSD32
2604 if (p->p_flag & PK_32) {
2605 netbsd32_charp *argv32;
2606
2607 argv32 = (netbsd32_charp *)argv;
2608 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2609 } else
2610 #endif
2611 base = (vaddr_t)argv[i];
2612
2613 /*
2614 * The program has messed around with its arguments,
2615 * possibly deleting some, and replacing them with
2616 * NULL's. Treat this as the last argument and not
2617 * a failure.
2618 */
2619 if (base == 0)
2620 break;
2621
2622 while (!finished) {
2623 xlen = PAGE_SIZE - (base & PAGE_MASK);
2624
2625 aiov.iov_base = arg;
2626 aiov.iov_len = PAGE_SIZE;
2627 auio.uio_iov = &aiov;
2628 auio.uio_iovcnt = 1;
2629 auio.uio_offset = base;
2630 auio.uio_resid = xlen;
2631 auio.uio_rw = UIO_READ;
2632 UIO_SETUP_SYSSPACE(&auio);
2633 error = uvm_io(&vmspace->vm_map, &auio);
2634 if (error)
2635 goto done;
2636
2637 /* Look for the end of the string */
2638 for (j = 0; j < xlen; j++) {
2639 if (arg[j] == '\0') {
2640 xlen = j + 1;
2641 finished = 1;
2642 break;
2643 }
2644 }
2645
2646 /* Check for user buffer overflow */
2647 if (len + xlen > *oldlenp) {
2648 finished = 1;
2649 if (len > *oldlenp)
2650 xlen = 0;
2651 else
2652 xlen = *oldlenp - len;
2653 }
2654
2655 /* Copyout the page */
2656 error = dcopyout(l, arg, (char *)oldp + len, xlen);
2657 if (error)
2658 goto done;
2659
2660 len += xlen;
2661 base += xlen;
2662 }
2663 }
2664 *oldlenp = len;
2665
2666 done:
2667 if (argvlen != 0)
2668 kmem_free(argv, argvlen);
2669 uvmspace_free(vmspace);
2670 kmem_free(arg, PAGE_SIZE);
2671 sysctl_relock();
2672 return error;
2673
2674 out_locked:
2675 mutex_exit(proc_lock);
2676 sysctl_relock();
2677 return error;
2678 }
2679
2680 static int
2681 sysctl_security_setidcore(SYSCTLFN_ARGS)
2682 {
2683 int newsize, error;
2684 struct sysctlnode node;
2685
2686 node = *rnode;
2687 node.sysctl_data = &newsize;
2688 newsize = *(int *)rnode->sysctl_data;
2689 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2690 if (error || newp == NULL)
2691 return error;
2692
2693 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2694 0, NULL, NULL, NULL))
2695 return (EPERM);
2696
2697 *(int *)rnode->sysctl_data = newsize;
2698
2699 return 0;
2700 }
2701
2702 static int
2703 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2704 {
2705 int error;
2706 char *newsetidcorename;
2707 struct sysctlnode node;
2708
2709 newsetidcorename = PNBUF_GET();
2710 node = *rnode;
2711 node.sysctl_data = newsetidcorename;
2712 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2713 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2714 if (error || newp == NULL) {
2715 goto out;
2716 }
2717 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2718 0, NULL, NULL, NULL)) {
2719 error = EPERM;
2720 goto out;
2721 }
2722 if (strlen(newsetidcorename) == 0) {
2723 error = EINVAL;
2724 goto out;
2725 }
2726 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2727 out:
2728 PNBUF_PUT(newsetidcorename);
2729 return error;
2730 }
2731
2732 /*
2733 * sysctl helper routine for kern.cp_id node. Maps cpus to their
2734 * cpuids.
2735 */
2736 static int
2737 sysctl_kern_cpid(SYSCTLFN_ARGS)
2738 {
2739 struct sysctlnode node = *rnode;
2740 uint64_t *cp_id = NULL;
2741 int error, n = ncpu;
2742 struct cpu_info *ci;
2743 CPU_INFO_ITERATOR cii;
2744
2745 /*
2746 * Here you may either retrieve a single cpu id or the whole
2747 * set. The size you get back when probing depends on what
2748 * you ask for.
2749 */
2750 switch (namelen) {
2751 case 0:
2752 node.sysctl_size = n * sizeof(uint64_t);
2753 n = -2; /* ALL */
2754 break;
2755 case 1:
2756 if (name[0] < 0 || name[0] >= n)
2757 return (ENOENT); /* ENOSUCHPROCESSOR */
2758 node.sysctl_size = sizeof(uint64_t);
2759 n = name[0];
2760 /*
2761 * adjust these so that sysctl_lookup() will be happy
2762 */
2763 name++;
2764 namelen--;
2765 break;
2766 default:
2767 return (EINVAL);
2768 }
2769
2770 cp_id = kmem_alloc(node.sysctl_size, KM_SLEEP);
2771 if (cp_id == NULL)
2772 return (ENOMEM);
2773 node.sysctl_data = cp_id;
2774 memset(cp_id, 0, node.sysctl_size);
2775
2776 for (CPU_INFO_FOREACH(cii, ci)) {
2777 if (n <= 0)
2778 cp_id[0] = cpu_index(ci);
2779 /*
2780 * if a specific processor was requested and we just
2781 * did it, we're done here
2782 */
2783 if (n == 0)
2784 break;
2785 /*
2786 * if doing "all", skip to next cp_id slot for next processor
2787 */
2788 if (n == -2)
2789 cp_id++;
2790 /*
2791 * if we're doing a specific processor, we're one
2792 * processor closer
2793 */
2794 if (n > 0)
2795 n--;
2796 }
2797
2798 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2799 kmem_free(node.sysctl_data, node.sysctl_size);
2800 return (error);
2801 }
2802
2803 /*
2804 * sysctl helper routine for hw.usermem and hw.usermem64. Values are
2805 * calculate on the fly taking into account integer overflow and the
2806 * current wired count.
2807 */
2808 static int
2809 sysctl_hw_usermem(SYSCTLFN_ARGS)
2810 {
2811 u_int ui;
2812 u_quad_t uq;
2813 struct sysctlnode node;
2814
2815 node = *rnode;
2816 switch (rnode->sysctl_num) {
2817 case HW_USERMEM:
2818 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2819 ui = UINT_MAX;
2820 else
2821 ui *= PAGE_SIZE;
2822 node.sysctl_data = &ui;
2823 break;
2824 case HW_USERMEM64:
2825 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2826 node.sysctl_data = &uq;
2827 break;
2828 default:
2829 return (EINVAL);
2830 }
2831
2832 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2833 }
2834
2835 /*
2836 * sysctl helper routine for kern.cnmagic node. Pulls the old value
2837 * out, encoded, and stuffs the new value in for decoding.
2838 */
2839 static int
2840 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2841 {
2842 char magic[CNS_LEN];
2843 int error;
2844 struct sysctlnode node;
2845
2846 if (oldp)
2847 cn_get_magic(magic, CNS_LEN);
2848 node = *rnode;
2849 node.sysctl_data = &magic[0];
2850 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2851 if (error || newp == NULL)
2852 return (error);
2853
2854 return (cn_set_magic(magic));
2855 }
2856
2857 /*
2858 * ********************************************************************
2859 * section 3: public helper routines that are used for more than one
2860 * node
2861 * ********************************************************************
2862 */
2863
2864 /*
2865 * sysctl helper routine for the kern.root_device node and some ports'
2866 * machdep.root_device nodes.
2867 */
2868 int
2869 sysctl_root_device(SYSCTLFN_ARGS)
2870 {
2871 struct sysctlnode node;
2872
2873 node = *rnode;
2874 node.sysctl_data = root_device->dv_xname;
2875 node.sysctl_size = strlen(device_xname(root_device)) + 1;
2876 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2877 }
2878
2879 /*
2880 * sysctl helper routine for kern.consdev, dependent on the current
2881 * state of the console. Also used for machdep.console_device on some
2882 * ports.
2883 */
2884 int
2885 sysctl_consdev(SYSCTLFN_ARGS)
2886 {
2887 dev_t consdev;
2888 struct sysctlnode node;
2889
2890 if (cn_tab != NULL)
2891 consdev = cn_tab->cn_dev;
2892 else
2893 consdev = NODEV;
2894 node = *rnode;
2895 node.sysctl_data = &consdev;
2896 node.sysctl_size = sizeof(consdev);
2897 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2898 }
2899
2900 /*
2901 * ********************************************************************
2902 * section 4: support for some helpers
2903 * ********************************************************************
2904 */
2905 /*
2906 * Find the most ``active'' lwp of a process and return it for ps display
2907 * purposes
2908 */
2909 static struct lwp *
2910 proc_active_lwp(struct proc *p)
2911 {
2912 static const int ostat[] = {
2913 0,
2914 2, /* LSIDL */
2915 6, /* LSRUN */
2916 5, /* LSSLEEP */
2917 4, /* LSSTOP */
2918 0, /* LSZOMB */
2919 1, /* LSDEAD */
2920 7, /* LSONPROC */
2921 3 /* LSSUSPENDED */
2922 };
2923
2924 struct lwp *l, *lp = NULL;
2925 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2926 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2927 if (lp == NULL ||
2928 ostat[l->l_stat] > ostat[lp->l_stat] ||
2929 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2930 l->l_cpticks > lp->l_cpticks)) {
2931 lp = l;
2932 continue;
2933 }
2934 }
2935 return lp;
2936 }
2937
2938
2939 /*
2940 * Fill in a kinfo_proc2 structure for the specified process.
2941 */
2942 static void
2943 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2944 {
2945 struct tty *tp;
2946 struct lwp *l, *l2;
2947 struct timeval ut, st, rt;
2948 sigset_t ss1, ss2;
2949 struct rusage ru;
2950 struct vmspace *vm;
2951
2952 KASSERT(mutex_owned(proc_lock));
2953 KASSERT(mutex_owned(p->p_lock));
2954
2955 sigemptyset(&ss1);
2956 sigemptyset(&ss2);
2957 memset(ki, 0, sizeof(*ki));
2958
2959 ki->p_paddr = PTRTOUINT64(p);
2960 ki->p_fd = PTRTOUINT64(p->p_fd);
2961 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2962 ki->p_stats = PTRTOUINT64(p->p_stats);
2963 ki->p_limit = PTRTOUINT64(p->p_limit);
2964 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2965 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2966 ki->p_sess = PTRTOUINT64(p->p_session);
2967 ki->p_tsess = 0; /* may be changed if controlling tty below */
2968 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2969 ki->p_eflag = 0;
2970 ki->p_exitsig = p->p_exitsig;
2971 ki->p_flag = sysctl_map_flags(sysctl_flagmap, p->p_flag);
2972 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2973 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2974 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2975 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2976 ki->p_pid = p->p_pid;
2977 if (p->p_pptr)
2978 ki->p_ppid = p->p_pptr->p_pid;
2979 else
2980 ki->p_ppid = 0;
2981 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2982 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2983 ki->p_gid = kauth_cred_getegid(p->p_cred);
2984 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2985 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2986 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2987 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2988 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2989 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2990 UIO_SYSSPACE);
2991
2992 ki->p_uticks = p->p_uticks;
2993 ki->p_sticks = p->p_sticks;
2994 ki->p_iticks = p->p_iticks;
2995 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2996 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2997 ki->p_traceflag = p->p_traceflag;
2998
2999 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
3000 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
3001
3002 ki->p_cpticks = 0;
3003 ki->p_pctcpu = p->p_pctcpu;
3004 ki->p_estcpu = 0;
3005 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
3006 ki->p_realstat = p->p_stat;
3007 ki->p_nice = p->p_nice;
3008 ki->p_xstat = p->p_xstat;
3009 ki->p_acflag = p->p_acflag;
3010
3011 strncpy(ki->p_comm, p->p_comm,
3012 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
3013 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
3014
3015 ki->p_nlwps = p->p_nlwps;
3016 ki->p_realflag = ki->p_flag;
3017
3018 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
3019 vm = p->p_vmspace;
3020 ki->p_vm_rssize = vm_resident_count(vm);
3021 ki->p_vm_tsize = vm->vm_tsize;
3022 ki->p_vm_dsize = vm->vm_dsize;
3023 ki->p_vm_ssize = vm->vm_ssize;
3024
3025 /* Pick the primary (first) LWP */
3026 l = proc_active_lwp(p);
3027 KASSERT(l != NULL);
3028 lwp_lock(l);
3029 ki->p_nrlwps = p->p_nrlwps;
3030 ki->p_forw = 0;
3031 ki->p_back = 0;
3032 ki->p_addr = PTRTOUINT64(l->l_addr);
3033 ki->p_stat = l->l_stat;
3034 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3035 ki->p_swtime = l->l_swtime;
3036 ki->p_slptime = l->l_slptime;
3037 if (l->l_stat == LSONPROC)
3038 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3039 else
3040 ki->p_schedflags = 0;
3041 ki->p_holdcnt = l->l_holdcnt;
3042 ki->p_priority = lwp_eprio(l);
3043 ki->p_usrpri = l->l_priority;
3044 if (l->l_wchan)
3045 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
3046 ki->p_wchan = PTRTOUINT64(l->l_wchan);
3047 ki->p_cpuid = cpu_index(l->l_cpu);
3048 lwp_unlock(l);
3049 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
3050 /* This is hardly correct, but... */
3051 sigplusset(&l->l_sigpend.sp_set, &ss1);
3052 sigplusset(&l->l_sigmask, &ss2);
3053 ki->p_cpticks += l->l_cpticks;
3054 ki->p_pctcpu += l->l_pctcpu;
3055 ki->p_estcpu += l->l_estcpu;
3056 }
3057 }
3058 sigplusset(&p->p_sigpend.sp_set, &ss2);
3059 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
3060 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
3061
3062 if (p->p_session != NULL) {
3063 ki->p_sid = p->p_session->s_sid;
3064 ki->p__pgid = p->p_pgrp->pg_id;
3065 if (p->p_session->s_ttyvp)
3066 ki->p_eflag |= EPROC_CTTY;
3067 if (SESS_LEADER(p))
3068 ki->p_eflag |= EPROC_SLEADER;
3069 strncpy(ki->p_login, p->p_session->s_login,
3070 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
3071 ki->p_jobc = p->p_pgrp->pg_jobc;
3072 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
3073 ki->p_tdev = tp->t_dev;
3074 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3075 ki->p_tsess = PTRTOUINT64(tp->t_session);
3076 } else {
3077 ki->p_tdev = NODEV;
3078 }
3079 }
3080
3081 if (!P_ZOMBIE(p) && !zombie) {
3082 ki->p_uvalid = 1;
3083 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
3084 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
3085
3086 calcru(p, &ut, &st, NULL, &rt);
3087 ki->p_rtime_sec = rt.tv_sec;
3088 ki->p_rtime_usec = rt.tv_usec;
3089 ki->p_uutime_sec = ut.tv_sec;
3090 ki->p_uutime_usec = ut.tv_usec;
3091 ki->p_ustime_sec = st.tv_sec;
3092 ki->p_ustime_usec = st.tv_usec;
3093
3094 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
3095 ki->p_uru_nvcsw = 0;
3096 ki->p_uru_nivcsw = 0;
3097 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
3098 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
3099 ki->p_uru_nivcsw += l2->l_nivcsw;
3100 ruadd(&ru, &l2->l_ru);
3101 }
3102 ki->p_uru_maxrss = ru.ru_maxrss;
3103 ki->p_uru_ixrss = ru.ru_ixrss;
3104 ki->p_uru_idrss = ru.ru_idrss;
3105 ki->p_uru_isrss = ru.ru_isrss;
3106 ki->p_uru_minflt = ru.ru_minflt;
3107 ki->p_uru_majflt = ru.ru_majflt;
3108 ki->p_uru_nswap = ru.ru_nswap;
3109 ki->p_uru_inblock = ru.ru_inblock;
3110 ki->p_uru_oublock = ru.ru_oublock;
3111 ki->p_uru_msgsnd = ru.ru_msgsnd;
3112 ki->p_uru_msgrcv = ru.ru_msgrcv;
3113 ki->p_uru_nsignals = ru.ru_nsignals;
3114
3115 timeradd(&p->p_stats->p_cru.ru_utime,
3116 &p->p_stats->p_cru.ru_stime, &ut);
3117 ki->p_uctime_sec = ut.tv_sec;
3118 ki->p_uctime_usec = ut.tv_usec;
3119 }
3120 }
3121
3122 /*
3123 * Fill in a kinfo_lwp structure for the specified lwp.
3124 */
3125 static void
3126 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3127 {
3128 struct proc *p = l->l_proc;
3129 struct timeval tv;
3130
3131 KASSERT(lwp_locked(l, NULL));
3132
3133 kl->l_forw = 0;
3134 kl->l_back = 0;
3135 kl->l_laddr = PTRTOUINT64(l);
3136 kl->l_addr = PTRTOUINT64(l->l_addr);
3137 kl->l_stat = l->l_stat;
3138 kl->l_lid = l->l_lid;
3139 kl->l_flag = sysctl_map_flags(sysctl_lwpprflagmap, l->l_prflag);
3140 kl->l_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3141
3142 kl->l_swtime = l->l_swtime;
3143 kl->l_slptime = l->l_slptime;
3144 if (l->l_stat == LSONPROC)
3145 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3146 else
3147 kl->l_schedflags = 0;
3148 kl->l_holdcnt = l->l_holdcnt;
3149 kl->l_priority = lwp_eprio(l);
3150 kl->l_usrpri = l->l_priority;
3151 if (l->l_wchan)
3152 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3153 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3154 kl->l_cpuid = cpu_index(l->l_cpu);
3155 bintime2timeval(&l->l_rtime, &tv);
3156 kl->l_rtime_sec = tv.tv_sec;
3157 kl->l_rtime_usec = tv.tv_usec;
3158 kl->l_cpticks = l->l_cpticks;
3159 kl->l_pctcpu = l->l_pctcpu;
3160 kl->l_pid = p->p_pid;
3161 if (l->l_name == NULL)
3162 kl->l_name[0] = '\0';
3163 else
3164 strlcpy(kl->l_name, l->l_name, sizeof(kl->l_name));
3165 }
3166
3167 /*
3168 * Fill in an eproc structure for the specified process.
3169 */
3170 void
3171 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
3172 {
3173 struct tty *tp;
3174 struct lwp *l;
3175
3176 KASSERT(mutex_owned(proc_lock));
3177 KASSERT(mutex_owned(p->p_lock));
3178
3179 memset(ep, 0, sizeof(*ep));
3180
3181 ep->e_paddr = p;
3182 ep->e_sess = p->p_session;
3183 if (p->p_cred) {
3184 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
3185 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
3186 }
3187 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
3188 struct vmspace *vm = p->p_vmspace;
3189
3190 ep->e_vm.vm_rssize = vm_resident_count(vm);
3191 ep->e_vm.vm_tsize = vm->vm_tsize;
3192 ep->e_vm.vm_dsize = vm->vm_dsize;
3193 ep->e_vm.vm_ssize = vm->vm_ssize;
3194
3195 /* Pick the primary (first) LWP */
3196 l = proc_active_lwp(p);
3197 KASSERT(l != NULL);
3198 lwp_lock(l);
3199 if (l->l_wchan)
3200 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3201 lwp_unlock(l);
3202 }
3203 if (p->p_pptr)
3204 ep->e_ppid = p->p_pptr->p_pid;
3205 if (p->p_pgrp && p->p_session) {
3206 ep->e_pgid = p->p_pgrp->pg_id;
3207 ep->e_jobc = p->p_pgrp->pg_jobc;
3208 ep->e_sid = p->p_session->s_sid;
3209 if ((p->p_lflag & PL_CONTROLT) &&
3210 (tp = ep->e_sess->s_ttyp)) {
3211 ep->e_tdev = tp->t_dev;
3212 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3213 ep->e_tsess = tp->t_session;
3214 } else
3215 ep->e_tdev = NODEV;
3216 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3217 if (SESS_LEADER(p))
3218 ep->e_flag |= EPROC_SLEADER;
3219 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3220 }
3221 ep->e_xsize = ep->e_xrssize = 0;
3222 ep->e_xccount = ep->e_xswrss = 0;
3223 }
3224
3225 u_int
3226 sysctl_map_flags(const u_int *map, u_int word)
3227 {
3228 u_int rv;
3229
3230 for (rv = 0; *map != 0; map += 2)
3231 if ((word & map[0]) != 0)
3232 rv |= map[1];
3233
3234 return rv;
3235 }
3236