init_sysctl.c revision 1.15 1 /* $NetBSD: init_sysctl.c,v 1.15 2003/12/28 14:39:36 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "opt_multiprocessor.h"
41 #include "opt_posix.h"
42 #include "pty.h"
43 #include "rnd.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/sysctl.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/unistd.h>
52 #include <sys/disklabel.h>
53 #include <sys/rnd.h>
54 #include <sys/vnode.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/msgbuf.h>
58 #include <dev/cons.h>
59 #include <sys/socketvar.h>
60 #include <sys/file.h>
61 #include <sys/tty.h>
62 #include <sys/malloc.h>
63 #include <sys/resource.h>
64 #include <sys/resourcevar.h>
65 #include <sys/exec.h>
66 #include <sys/conf.h>
67 #include <sys/device.h>
68
69 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
70 #include <sys/ipc.h>
71 #endif
72 #ifdef SYSVMSG
73 #include <sys/msg.h>
74 #endif
75 #ifdef SYSVSEM
76 #include <sys/sem.h>
77 #endif
78 #ifdef SYSVSHM
79 #include <sys/shm.h>
80 #endif
81
82 #include <machine/cpu.h>
83
84 /*
85 * try over estimating by 5 procs/lwps
86 */
87 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
88 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
89
90 /*
91 * convert pointer to 64 int for struct kinfo_proc2
92 */
93 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
94
95 #ifndef MULTIPROCESSOR
96 #define sysctl_ncpus() (1)
97 #else /* MULTIPROCESSOR */
98 #ifndef CPU_INFO_FOREACH
99 #define CPU_INFO_ITERATOR int
100 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
101 #endif
102 static int
103 sysctl_ncpus(void)
104 {
105 struct cpu_info *ci;
106 CPU_INFO_ITERATOR cii;
107
108 int ncpus = 0;
109 for (CPU_INFO_FOREACH(cii, ci))
110 ncpus++;
111 return (ncpus);
112 }
113 #endif /* MULTIPROCESSOR */
114
115 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
116 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
117 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
118 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
119 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
120 static int sysctl_kern_hostname(SYSCTLFN_PROTO);
121 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
122 static int sysctl_kern_file(SYSCTLFN_PROTO);
123 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
124 static int sysctl_msgbuf(SYSCTLFN_PROTO);
125 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
126 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
127 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
128 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
129 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
130 #if NPTY > 0
131 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
132 #endif /* NPTY > 0 */
133 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
134 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
135 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
136 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
137 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
138 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
139 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
140 static int sysctl_doeproc(SYSCTLFN_PROTO);
141 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
142 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
143 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
144 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
145
146 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
147 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
148
149 /*
150 * ********************************************************************
151 * section 1: setup routines
152 * ********************************************************************
153 * these functions are stuffed into a link set for sysctl setup
154 * functions. they're never called or referenced from anywhere else.
155 * ********************************************************************
156 */
157
158 /*
159 * sets up the base nodes...
160 */
161 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
162 {
163
164 sysctl_createv(SYSCTL_PERMANENT,
165 CTLTYPE_NODE, "kern", NULL,
166 NULL, 0, NULL, 0,
167 CTL_KERN, CTL_EOL);
168 sysctl_createv(SYSCTL_PERMANENT,
169 CTLTYPE_NODE, "vm", NULL,
170 NULL, 0, NULL, 0,
171 CTL_VM, CTL_EOL);
172 sysctl_createv(SYSCTL_PERMANENT,
173 CTLTYPE_NODE, "vfs", NULL,
174 NULL, 0, NULL, 0,
175 CTL_VFS, CTL_EOL);
176 sysctl_createv(SYSCTL_PERMANENT,
177 CTLTYPE_NODE, "net", NULL,
178 NULL, 0, NULL, 0,
179 CTL_NET, CTL_EOL);
180 sysctl_createv(SYSCTL_PERMANENT,
181 CTLTYPE_NODE, "debug", NULL,
182 NULL, 0, NULL, 0,
183 CTL_DEBUG, CTL_EOL);
184 sysctl_createv(SYSCTL_PERMANENT,
185 CTLTYPE_NODE, "hw", NULL,
186 NULL, 0, NULL, 0,
187 CTL_HW, CTL_EOL);
188 sysctl_createv(SYSCTL_PERMANENT,
189 CTLTYPE_NODE, "machdep", NULL,
190 NULL, 0, NULL, 0,
191 CTL_MACHDEP, CTL_EOL);
192 /*
193 * this node is inserted so that the sysctl nodes in libc can
194 * operate.
195 */
196 sysctl_createv(SYSCTL_PERMANENT,
197 CTLTYPE_NODE, "user", NULL,
198 NULL, 0, NULL, 0,
199 CTL_USER, CTL_EOL);
200 sysctl_createv(SYSCTL_PERMANENT,
201 CTLTYPE_NODE, "ddb", NULL,
202 NULL, 0, NULL, 0,
203 CTL_DDB, CTL_EOL);
204 sysctl_createv(SYSCTL_PERMANENT,
205 CTLTYPE_NODE, "proc", NULL,
206 NULL, 0, NULL, 0,
207 CTL_PROC, CTL_EOL);
208 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
209 CTLTYPE_NODE, "vendor", NULL,
210 NULL, 0, NULL, 0,
211 CTL_VENDOR, CTL_EOL);
212 sysctl_createv(SYSCTL_PERMANENT,
213 CTLTYPE_NODE, "emul", NULL,
214 NULL, 0, NULL, 0,
215 CTL_EMUL, CTL_EOL);
216 }
217
218 /*
219 * this setup routine is a replacement for kern_sysctl()
220 */
221 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
222 {
223 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
224 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
225 extern int dumponpanic; /* defined in kern/subr_prf.c */
226
227 sysctl_createv(SYSCTL_PERMANENT,
228 CTLTYPE_NODE, "kern", NULL,
229 NULL, 0, NULL, 0,
230 CTL_KERN, CTL_EOL);
231
232 sysctl_createv(SYSCTL_PERMANENT,
233 CTLTYPE_STRING, "ostype", NULL,
234 NULL, 0, &ostype, 0,
235 CTL_KERN, KERN_OSTYPE, CTL_EOL);
236 sysctl_createv(SYSCTL_PERMANENT,
237 CTLTYPE_STRING, "osrelease", NULL,
238 NULL, 0, &osrelease, 0,
239 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
240 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
241 CTLTYPE_INT, "osrevision", NULL,
242 NULL, __NetBSD_Version__, NULL, 0,
243 CTL_KERN, KERN_OSREV, CTL_EOL);
244 sysctl_createv(SYSCTL_PERMANENT,
245 CTLTYPE_STRING, "version", NULL,
246 NULL, 0, &version, 0,
247 CTL_KERN, KERN_VERSION, CTL_EOL);
248 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
249 CTLTYPE_INT, "maxvnodes", NULL,
250 sysctl_kern_maxvnodes, 0, NULL, 0,
251 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
252 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
253 CTLTYPE_INT, "maxproc", NULL,
254 sysctl_kern_maxproc, 0, NULL, 0,
255 CTL_KERN, KERN_MAXPROC, CTL_EOL);
256 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
257 CTLTYPE_INT, "maxfiles", NULL,
258 NULL, 0, &maxfiles, 0,
259 CTL_KERN, KERN_MAXFILES, CTL_EOL);
260 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
261 CTLTYPE_INT, "argmax", NULL,
262 NULL, ARG_MAX, NULL, 0,
263 CTL_KERN, KERN_ARGMAX, CTL_EOL);
264 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
265 CTLTYPE_INT, "securelevel", NULL,
266 sysctl_kern_securelevel, 0, &securelevel, 0,
267 CTL_KERN, KERN_SECURELVL, CTL_EOL);
268 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
269 CTLTYPE_STRING, "hostname", NULL,
270 sysctl_kern_hostname, 0, &hostname, MAXHOSTNAMELEN,
271 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
272 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
273 CTLTYPE_INT, "hostid", NULL,
274 sysctl_kern_hostid, 0, NULL, 0,
275 CTL_KERN, KERN_HOSTID, CTL_EOL);
276 sysctl_createv(SYSCTL_PERMANENT,
277 CTLTYPE_STRUCT, "clockrate", NULL,
278 sysctl_kern_clockrate, 0, NULL,
279 sizeof(struct clockinfo),
280 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
281 sysctl_createv(SYSCTL_PERMANENT,
282 CTLTYPE_STRUCT, "vnode", NULL,
283 sysctl_kern_vnode, 0, NULL, 0,
284 CTL_KERN, KERN_VNODE, CTL_EOL);
285 sysctl_createv(SYSCTL_PERMANENT,
286 CTLTYPE_STRUCT, "file", NULL,
287 sysctl_kern_file, 0, NULL, 0,
288 CTL_KERN, KERN_FILE, CTL_EOL);
289 #ifndef GPROF
290 sysctl_createv(SYSCTL_PERMANENT,
291 CTLTYPE_NODE, "profiling", NULL,
292 sysctl_notavail, 0, NULL, 0,
293 CTL_KERN, KERN_PROF, CTL_EOL);
294 #endif
295 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
296 CTLTYPE_INT, "posix1version", NULL,
297 NULL, _POSIX_VERSION, NULL, 0,
298 CTL_KERN, KERN_POSIX1, CTL_EOL);
299 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
300 CTLTYPE_INT, "ngroups", NULL,
301 NULL, NGROUPS_MAX, NULL, 0,
302 CTL_KERN, KERN_NGROUPS, CTL_EOL);
303 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
304 CTLTYPE_INT, "job_control", NULL,
305 NULL, 1, NULL, 0,
306 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
307 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
308 CTLTYPE_INT, "saved_ids", NULL, NULL,
309 #ifdef _POSIX_SAVED_IDS
310 1,
311 #else /* _POSIX_SAVED_IDS */
312 0,
313 #endif /* _POSIX_SAVED_IDS */
314 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
315 sysctl_createv(SYSCTL_PERMANENT,
316 CTLTYPE_STRUCT, "boottime", NULL,
317 NULL, 0, &boottime, sizeof(boottime),
318 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
319 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
320 CTLTYPE_STRING, "domainname", NULL,
321 NULL, 0, &domainname, MAXHOSTNAMELEN,
322 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
323 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
324 CTLTYPE_INT, "maxpartitions", NULL,
325 NULL, MAXPARTITIONS, NULL, 0,
326 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
327 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
328 CTLTYPE_INT, "rawpartition", NULL,
329 NULL, RAW_PART, NULL, 0,
330 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
331 sysctl_createv(SYSCTL_PERMANENT,
332 CTLTYPE_STRUCT, "timex", NULL,
333 sysctl_notavail, 0, NULL, 0,
334 CTL_KERN, KERN_TIMEX, CTL_EOL);
335 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
336 CTLTYPE_INT, "autonicetime", NULL,
337 sysctl_kern_autonice, 0, &autonicetime, 0,
338 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
339 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
340 CTLTYPE_INT, "autoniceval", NULL,
341 sysctl_kern_autonice, 0, &autoniceval, 0,
342 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
343 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
344 CTLTYPE_INT, "rtc_offset", NULL,
345 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
346 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
347 sysctl_createv(SYSCTL_PERMANENT,
348 CTLTYPE_STRING, "root_device", NULL,
349 sysctl_root_device, 0, NULL, 0,
350 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
351 sysctl_createv(SYSCTL_PERMANENT,
352 CTLTYPE_INT, "msgbufsize", NULL,
353 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
354 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
355 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
356 CTLTYPE_INT, "fsync", NULL,
357 NULL, 1, NULL, 0,
358 CTL_KERN, KERN_FSYNC, CTL_EOL);
359 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
360 CTLTYPE_INT, "sysvmsg", NULL, NULL,
361 #ifdef SYSVMSG
362 1,
363 #else /* SYSVMSG */
364 0,
365 #endif /* SYSVMSG */
366 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
367 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
368 CTLTYPE_INT, "sysvsem", NULL, NULL,
369 #ifdef SYSVSEM
370 1,
371 #else /* SYSVSEM */
372 0,
373 #endif /* SYSVSEM */
374 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
375 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
376 CTLTYPE_INT, "sysvshm", NULL, NULL,
377 #ifdef SYSVSHM
378 1,
379 #else /* SYSVSHM */
380 0,
381 #endif /* SYSVSHM */
382 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
383 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
384 CTLTYPE_INT, "synchronized_io", NULL,
385 NULL, 1, NULL, 0,
386 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
387 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
388 CTLTYPE_INT, "iov_max", NULL,
389 NULL, IOV_MAX, NULL, 0,
390 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
391 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
392 CTLTYPE_INT, "mapped_files", NULL,
393 NULL, 1, NULL, 0,
394 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
395 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
396 CTLTYPE_INT, "memlock", NULL,
397 NULL, 1, NULL, 0,
398 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
399 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
400 CTLTYPE_INT, "memlock_range", NULL,
401 NULL, 1, NULL, 0,
402 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
403 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
404 CTLTYPE_INT, "memory_protection", NULL,
405 NULL, 1, NULL, 0,
406 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
407 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
408 CTLTYPE_INT, "login_name_max", NULL,
409 NULL, LOGIN_NAME_MAX, NULL, 0,
410 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
411 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
412 CTLTYPE_STRING, "defcorename", NULL,
413 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
414 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
415 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
416 CTLTYPE_INT, "logsigexit", NULL,
417 NULL, 0, &kern_logsigexit, 0,
418 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
419 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
420 CTLTYPE_INT, "fscale", NULL,
421 NULL, FSCALE, NULL, 0,
422 CTL_KERN, KERN_FSCALE, CTL_EOL);
423 sysctl_createv(SYSCTL_PERMANENT,
424 CTLTYPE_INT, "ccpu", NULL,
425 NULL, 0, &ccpu, 0,
426 CTL_KERN, KERN_CCPU, CTL_EOL);
427 sysctl_createv(SYSCTL_PERMANENT,
428 CTLTYPE_STRUCT, "cp_time", NULL,
429 sysctl_kern_cptime, 0, NULL, 0,
430 CTL_KERN, KERN_CP_TIME, CTL_EOL);
431 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
432 sysctl_createv(SYSCTL_PERMANENT,
433 CTLTYPE_STRUCT, "sysvipc_info", NULL,
434 sysctl_kern_sysvipc, 0, NULL, 0,
435 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
436 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
437 sysctl_createv(SYSCTL_PERMANENT,
438 CTLTYPE_INT, "msgbuf", NULL,
439 sysctl_msgbuf, 0, NULL, 0,
440 CTL_KERN, KERN_MSGBUF, CTL_EOL);
441 sysctl_createv(SYSCTL_PERMANENT,
442 CTLTYPE_STRUCT, "consdev", NULL,
443 sysctl_consdev, 0, NULL, sizeof(dev_t),
444 CTL_KERN, KERN_CONSDEV, CTL_EOL);
445 #if NPTY > 0
446 sysctl_createv(SYSCTL_PERMANENT,
447 CTLTYPE_INT, "maxptys", NULL,
448 sysctl_kern_maxptys, 0, NULL, 0,
449 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
450 #endif /* NPTY > 0 */
451 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
452 CTLTYPE_INT, "maxphys", NULL,
453 NULL, MAXPHYS, NULL, 0,
454 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
455 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
456 CTLTYPE_INT, "sbmax", NULL,
457 sysctl_kern_sbmax, 0, NULL, 0,
458 CTL_KERN, KERN_SBMAX, CTL_EOL);
459 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
460 CTLTYPE_INT, "monotonic_clock", NULL,
461 /* XXX _POSIX_VERSION */
462 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
463 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
464 sysctl_createv(SYSCTL_PERMANENT,
465 CTLTYPE_INT, "urandom", NULL,
466 sysctl_kern_urnd, 0, NULL, 0,
467 CTL_KERN, KERN_URND, CTL_EOL);
468 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
469 CTLTYPE_INT, "labelsector", NULL,
470 NULL, LABELSECTOR, NULL, 0,
471 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
472 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
473 CTLTYPE_INT, "labeloffset", NULL,
474 NULL, LABELOFFSET, NULL, 0,
475 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
476 sysctl_createv(SYSCTL_PERMANENT,
477 CTLTYPE_NODE, "lwp", NULL,
478 sysctl_kern_lwp, 0, NULL, 0,
479 CTL_KERN, KERN_LWP, CTL_EOL);
480 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
481 CTLTYPE_INT, "forkfsleep", NULL,
482 sysctl_kern_forkfsleep, 0, NULL, 0,
483 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
484 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
485 CTLTYPE_INT, "posix_threads", NULL,
486 /* XXX _POSIX_VERSION */
487 NULL, _POSIX_THREADS, NULL, 0,
488 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
489 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
490 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
491 #ifdef P1003_1B_SEMAPHORE
492 200112,
493 #else /* P1003_1B_SEMAPHORE */
494 0,
495 #endif /* P1003_1B_SEMAPHORE */
496 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
497 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
498 CTLTYPE_INT, "posix_barriers", NULL,
499 /* XXX _POSIX_VERSION */
500 NULL, _POSIX_BARRIERS, NULL, 0,
501 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
502 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
503 CTLTYPE_INT, "posix_timers", NULL,
504 /* XXX _POSIX_VERSION */
505 NULL, _POSIX_TIMERS, NULL, 0,
506 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
507 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
508 CTLTYPE_INT, "posix_spin_locks", NULL,
509 /* XXX _POSIX_VERSION */
510 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
511 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
512 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
513 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
514 /* XXX _POSIX_VERSION */
515 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
516 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
517 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
518 CTLTYPE_INT, "dump_on_panic", NULL,
519 NULL, 0, &dumponpanic, 0,
520 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
521 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
522 CTLTYPE_INT, "somaxkva", NULL,
523 sysctl_kern_somaxkva, 0, NULL, 0,
524 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
525 sysctl_createv(SYSCTL_PERMANENT,
526 CTLTYPE_INT, "root_partition", NULL,
527 sysctl_kern_root_partition, 0, NULL, 0,
528 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
529 sysctl_createv(SYSCTL_PERMANENT,
530 CTLTYPE_STRUCT, "drivers", NULL,
531 sysctl_kern_drivers, 0, NULL, 0,
532 CTL_KERN, KERN_DRIVERS, CTL_EOL);
533 }
534
535 SYSCTL_SETUP(sysctl_kern_proc_setup,
536 "sysctl kern.proc/proc2/proc_args subtree setup")
537 {
538
539 sysctl_createv(SYSCTL_PERMANENT,
540 CTLTYPE_NODE, "kern", NULL,
541 NULL, 0, NULL, 0,
542 CTL_KERN, CTL_EOL);
543
544 sysctl_createv(SYSCTL_PERMANENT,
545 CTLTYPE_NODE, "proc", NULL,
546 sysctl_doeproc, 0, NULL, 0,
547 CTL_KERN, KERN_PROC, CTL_EOL);
548 sysctl_createv(SYSCTL_PERMANENT,
549 CTLTYPE_NODE, "proc2", NULL,
550 sysctl_doeproc, 0, NULL, 0,
551 CTL_KERN, KERN_PROC2, CTL_EOL);
552 sysctl_createv(SYSCTL_PERMANENT,
553 CTLTYPE_NODE, "proc_args", NULL,
554 sysctl_kern_proc_args, 0, NULL, 0,
555 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
556
557 /*
558 "nodes" under these:
559
560 KERN_PROC_ALL
561 KERN_PROC_PID pid
562 KERN_PROC_PGRP pgrp
563 KERN_PROC_SESSION sess
564 KERN_PROC_TTY tty
565 KERN_PROC_UID uid
566 KERN_PROC_RUID uid
567 KERN_PROC_GID gid
568 KERN_PROC_RGID gid
569
570 all in all, probably not worth the effort...
571 */
572 }
573
574 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
575 {
576 u_int u;
577 u_quad_t q;
578
579 sysctl_createv(SYSCTL_PERMANENT,
580 CTLTYPE_NODE, "hw", NULL,
581 NULL, 0, NULL, 0,
582 CTL_HW, CTL_EOL);
583
584 sysctl_createv(SYSCTL_PERMANENT,
585 CTLTYPE_STRING, "machine", NULL,
586 NULL, 0, machine, 0,
587 CTL_HW, HW_MACHINE, CTL_EOL);
588 sysctl_createv(SYSCTL_PERMANENT,
589 CTLTYPE_STRING, "model", NULL,
590 NULL, 0, cpu_model, 0,
591 CTL_HW, HW_MODEL, CTL_EOL);
592 sysctl_createv(SYSCTL_PERMANENT,
593 CTLTYPE_INT, "ncpu", NULL,
594 sysctl_hw_ncpu, 0, NULL, 0,
595 CTL_HW, HW_NCPU, CTL_EOL);
596 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
597 CTLTYPE_INT, "byteorder", NULL,
598 NULL, BYTE_ORDER, NULL, 0,
599 CTL_HW, HW_BYTEORDER, CTL_EOL);
600 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
601 UINT_MAX : physmem * PAGE_SIZE;
602 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
603 CTLTYPE_INT, "physmem", NULL,
604 NULL, u, NULL, 0,
605 CTL_HW, HW_PHYSMEM, CTL_EOL);
606 sysctl_createv(SYSCTL_PERMANENT,
607 CTLTYPE_INT, "usermem", NULL,
608 sysctl_hw_usermem, 0, NULL, 0,
609 CTL_HW, HW_USERMEM, CTL_EOL);
610 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
611 CTLTYPE_INT, "pagesize", NULL,
612 NULL, PAGE_SIZE, NULL, 0,
613 CTL_HW, HW_PAGESIZE, CTL_EOL);
614 sysctl_createv(SYSCTL_PERMANENT,
615 CTLTYPE_STRING, "disknames", NULL,
616 sysctl_hw_disknames, 0, NULL, 0,
617 CTL_HW, HW_DISKNAMES, CTL_EOL);
618 sysctl_createv(SYSCTL_PERMANENT,
619 CTLTYPE_STRUCT, "diskstats", NULL,
620 sysctl_hw_diskstats, 0, NULL, 0,
621 CTL_HW, HW_DISKSTATS, CTL_EOL);
622 sysctl_createv(SYSCTL_PERMANENT,
623 CTLTYPE_STRING, "machine_arch", NULL,
624 NULL, 0, machine_arch, 0,
625 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
626 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
627 CTLTYPE_INT, "alignbytes", NULL,
628 NULL, ALIGNBYTES, NULL, 0,
629 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
630 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
631 CTLTYPE_STRING, "cnmagic", NULL,
632 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
633 CTL_HW, HW_CNMAGIC, CTL_EOL);
634 q = (u_quad_t)physmem * PAGE_SIZE;
635 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
636 CTLTYPE_QUAD, "physmem64", NULL,
637 NULL, q, NULL, 0,
638 CTL_HW, HW_PHYSMEM64, CTL_EOL);
639 sysctl_createv(SYSCTL_PERMANENT,
640 CTLTYPE_QUAD, "usermem64", NULL,
641 sysctl_hw_usermem, 0, NULL, 0,
642 CTL_HW, HW_USERMEM64, CTL_EOL);
643 }
644
645 #ifdef DEBUG
646 /*
647 * Debugging related system variables.
648 */
649 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
650 struct ctldebug debug5, debug6, debug7, debug8, debug9;
651 struct ctldebug debug10, debug11, debug12, debug13, debug14;
652 struct ctldebug debug15, debug16, debug17, debug18, debug19;
653 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
654 &debug0, &debug1, &debug2, &debug3, &debug4,
655 &debug5, &debug6, &debug7, &debug8, &debug9,
656 &debug10, &debug11, &debug12, &debug13, &debug14,
657 &debug15, &debug16, &debug17, &debug18, &debug19,
658 };
659
660 /*
661 * this setup routine is a replacement for debug_sysctl()
662 *
663 * note that it creates several nodes per defined debug variable
664 */
665 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
666 {
667 struct ctldebug *cdp;
668 char nodename[20];
669 int i;
670
671 /*
672 * two ways here:
673 *
674 * the "old" way (debug.name -> value) which was emulated by
675 * the sysctl(8) binary
676 *
677 * the new way, which the sysctl(8) binary was actually using
678
679 node debug
680 node debug.0
681 string debug.0.name
682 int debug.0.value
683 int debug.name
684
685 */
686
687 sysctl_createv(SYSCTL_PERMANENT,
688 CTLTYPE_NODE, "debug", NULL,
689 NULL, 0, NULL, 0,
690 CTL_DEBUG, CTL_EOL);
691
692 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
693 cdp = debugvars[i];
694 if (cdp->debugname == NULL || cdp->debugvar == NULL)
695 continue;
696
697 snprintf(nodename, sizeof(nodename), "debug%d", i);
698 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
699 CTLTYPE_NODE, nodename, NULL,
700 NULL, 0, NULL, 0,
701 CTL_DEBUG, i, CTL_EOL);
702 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
703 CTLTYPE_STRING, "name", NULL,
704 NULL, 0, cdp->debugname, 0,
705 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
706 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
707 CTLTYPE_INT, "value", NULL,
708 NULL, 0, cdp->debugvar, 0,
709 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
710 sysctl_createv(SYSCTL_PERMANENT,
711 CTLTYPE_INT, cdp->debugname, NULL,
712 NULL, 0, cdp->debugvar, 0,
713 CTL_DEBUG, CTL_CREATE, CTL_EOL);
714 }
715 }
716 #endif /* DEBUG */
717
718 /*
719 * ********************************************************************
720 * section 2: private node-specific helper routines.
721 * ********************************************************************
722 */
723
724 /*
725 * sysctl helper routine for kern.maxvnodes. drain vnodes if
726 * new value is lower than desiredvnodes and then calls reinit
727 * routines that needs to adjust to the new value.
728 */
729 static int
730 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
731 {
732 int error, new_vnodes, old_vnodes;
733 struct sysctlnode node;
734
735 new_vnodes = desiredvnodes;
736 node = *rnode;
737 node.sysctl_data = &new_vnodes;
738 error = sysctl_lookup(SYSCTLFN_CALL(&node));
739 if (error || newp == NULL)
740 return (error);
741
742 old_vnodes = desiredvnodes;
743 desiredvnodes = new_vnodes;
744 if (new_vnodes < old_vnodes) {
745 error = vfs_drainvnodes(new_vnodes, l->l_proc);
746 if (error) {
747 desiredvnodes = old_vnodes;
748 return (error);
749 }
750 }
751 vfs_reinit();
752 nchreinit();
753
754 return (0);
755 }
756
757 /*
758 * sysctl helper routine for rtc_offset - set time after changes
759 */
760 static int
761 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
762 {
763 struct timeval tv, delta;
764 int s, error, new_rtc_offset;
765 struct sysctlnode node;
766
767 new_rtc_offset = rtc_offset;
768 node = *rnode;
769 node.sysctl_data = &new_rtc_offset;
770 error = sysctl_lookup(SYSCTLFN_CALL(&node));
771 if (error || newp == NULL)
772 return (error);
773
774 if (securelevel > 0)
775 return (EPERM);
776 if (rtc_offset == new_rtc_offset)
777 return (0);
778
779 /* if we change the offset, adjust the time */
780 s = splclock();
781 tv = time;
782 splx(s);
783 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
784 delta.tv_usec = 0;
785 timeradd(&tv, &delta, &tv);
786 rtc_offset = new_rtc_offset;
787 settime(&tv);
788
789 return (0);
790 }
791
792 /*
793 * sysctl helper routine for kern.maxvnodes. ensures that the new
794 * values are not too low or too high.
795 */
796 static int
797 sysctl_kern_maxproc(SYSCTLFN_ARGS)
798 {
799 int error, nmaxproc;
800 struct sysctlnode node;
801
802 nmaxproc = maxproc;
803 node = *rnode;
804 node.sysctl_data = &nmaxproc;
805 error = sysctl_lookup(SYSCTLFN_CALL(&node));
806 if (error || newp == NULL)
807 return (error);
808
809 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
810 return (EINVAL);
811 #ifdef __HAVE_CPU_MAXPROC
812 if (nmaxproc > cpu_maxproc())
813 return (EINVAL);
814 #endif
815 maxproc = nmaxproc;
816
817 return (0);
818 }
819
820 /*
821 * sysctl helper routine for kern.securelevel. ensures that the value
822 * only rises unless the caller has pid 1 (assumed to be init).
823 */
824 static int
825 sysctl_kern_securelevel(SYSCTLFN_ARGS)
826 {
827 int newsecurelevel, error;
828 struct sysctlnode node;
829
830 newsecurelevel = securelevel;
831 node = *rnode;
832 node.sysctl_data = &newsecurelevel;
833 error = sysctl_lookup(SYSCTLFN_CALL(&node));
834 if (error || newp == NULL)
835 return (error);
836
837 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
838 return (EPERM);
839 securelevel = newsecurelevel;
840
841 return (error);
842 }
843
844 /*
845 * sysctl helper function for kern.hostid. the hostid is a long, but
846 * we export it as an int, so we need to give it a little help.
847 */
848 static int
849 sysctl_kern_hostid(SYSCTLFN_ARGS)
850 {
851 int error, inthostid;
852 struct sysctlnode node;
853
854 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
855 node = *rnode;
856 node.sysctl_data = &inthostid;
857 error = sysctl_lookup(SYSCTLFN_CALL(&node));
858 if (error || newp == NULL)
859 return (error);
860
861 hostid = inthostid;
862
863 return (0);
864 }
865
866 /*
867 * sysctl helper function for kern.hostname.
868 * we have to adjust hostnamelen after changes.
869 */
870 static int
871 sysctl_kern_hostname(SYSCTLFN_ARGS)
872 {
873 int error;
874 struct sysctlnode node;
875
876 node = *rnode;
877 error = sysctl_lookup(SYSCTLFN_CALL(&node));
878 if (error || newp == NULL)
879 return (error);
880
881 hostnamelen = strlen(hostname);
882 return (0);
883 }
884
885 /*
886 * sysctl helper routine for kern.clockrate. assembles a struct on
887 * the fly to be returned to the caller.
888 */
889 static int
890 sysctl_kern_clockrate(SYSCTLFN_ARGS)
891 {
892 struct clockinfo clkinfo;
893 struct sysctlnode node;
894
895 clkinfo.tick = tick;
896 clkinfo.tickadj = tickadj;
897 clkinfo.hz = hz;
898 clkinfo.profhz = profhz;
899 clkinfo.stathz = stathz ? stathz : hz;
900
901 node = *rnode;
902 node.sysctl_data = &clkinfo;
903 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
904 }
905
906
907 /*
908 * sysctl helper routine for kern.file pseudo-subtree.
909 */
910 static int
911 sysctl_kern_file(SYSCTLFN_ARGS)
912 {
913 int error;
914 size_t buflen;
915 struct file *fp;
916 char *start, *where;
917
918 start = where = oldp;
919 buflen = *oldlenp;
920 if (where == NULL) {
921 /*
922 * overestimate by 10 files
923 */
924 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
925 return (0);
926 }
927
928 /*
929 * first copyout filehead
930 */
931 if (buflen < sizeof(filehead)) {
932 *oldlenp = 0;
933 return (0);
934 }
935 error = copyout(&filehead, where, sizeof(filehead));
936 if (error)
937 return (error);
938 buflen -= sizeof(filehead);
939 where += sizeof(filehead);
940
941 /*
942 * followed by an array of file structures
943 */
944 LIST_FOREACH(fp, &filehead, f_list) {
945 if (buflen < sizeof(struct file)) {
946 *oldlenp = where - start;
947 return (ENOMEM);
948 }
949 error = copyout(fp, where, sizeof(struct file));
950 if (error)
951 return (error);
952 buflen -= sizeof(struct file);
953 where += sizeof(struct file);
954 }
955 *oldlenp = where - start;
956 return (0);
957 }
958
959 /*
960 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
961 * asserts that the assigned value is in the correct range.
962 */
963 static int
964 sysctl_kern_autonice(SYSCTLFN_ARGS)
965 {
966 int error, t = 0;
967 struct sysctlnode node;
968
969 node = *rnode;
970 t = *(int*)node.sysctl_data;
971 node.sysctl_data = &t;
972 error = sysctl_lookup(SYSCTLFN_CALL(&node));
973 if (error || newp == NULL)
974 return (error);
975
976 switch (node.sysctl_num) {
977 case KERN_AUTONICETIME:
978 if (t >= 0)
979 autonicetime = t;
980 break;
981 case KERN_AUTONICEVAL:
982 if (t < PRIO_MIN)
983 t = PRIO_MIN;
984 else if (t > PRIO_MAX)
985 t = PRIO_MAX;
986 autoniceval = t;
987 break;
988 }
989
990 return (0);
991 }
992
993 /*
994 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
995 * former it merely checks the the message buffer is set up. for the
996 * latter, it also copies out the data if necessary.
997 */
998 static int
999 sysctl_msgbuf(SYSCTLFN_ARGS)
1000 {
1001 char *where = oldp;
1002 size_t len, maxlen;
1003 long beg, end;
1004 int error;
1005
1006 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1007 msgbufenabled = 0;
1008 return (ENXIO);
1009 }
1010
1011 switch (rnode->sysctl_num) {
1012 case KERN_MSGBUFSIZE:
1013 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
1014 case KERN_MSGBUF:
1015 break;
1016 default:
1017 return (EOPNOTSUPP);
1018 }
1019
1020 if (newp != NULL)
1021 return (EPERM);
1022
1023 if (oldp == NULL) {
1024 /* always return full buffer size */
1025 *oldlenp = msgbufp->msg_bufs;
1026 return (0);
1027 }
1028
1029 error = 0;
1030 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1031
1032 /*
1033 * First, copy from the write pointer to the end of
1034 * message buffer.
1035 */
1036 beg = msgbufp->msg_bufx;
1037 end = msgbufp->msg_bufs;
1038 while (maxlen > 0) {
1039 len = MIN(end - beg, maxlen);
1040 if (len == 0)
1041 break;
1042 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1043 if (error)
1044 break;
1045 where += len;
1046 maxlen -= len;
1047
1048 /*
1049 * ... then, copy from the beginning of message buffer to
1050 * the write pointer.
1051 */
1052 beg = 0;
1053 end = msgbufp->msg_bufx;
1054 }
1055
1056 return (error);
1057 }
1058
1059 /*
1060 * sysctl helper routine for kern.defcorename. in the case of a new
1061 * string being assigned, check that it's not a zero-length string.
1062 * (XXX the check in -current doesn't work, but do we really care?)
1063 */
1064 static int
1065 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1066 {
1067 int error;
1068 char newcorename[MAXPATHLEN];
1069 struct sysctlnode node;
1070
1071 node = *rnode;
1072 node.sysctl_data = &newcorename[0];
1073 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1074 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1075 if (error || newp == NULL)
1076 return (error);
1077
1078 /*
1079 * when sysctl_lookup() deals with a string, it's guaranteed
1080 * to come back nul terminated. so there. :)
1081 */
1082 if (strlen(newcorename) == 0)
1083 return (EINVAL);
1084
1085 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1086
1087 return (0);
1088 }
1089
1090 /*
1091 * sysctl helper routine for kern.cp_time node. adds up cpu time
1092 * across all cpus.
1093 */
1094 static int
1095 sysctl_kern_cptime(SYSCTLFN_ARGS)
1096 {
1097 struct sysctlnode node = *rnode;
1098
1099 #ifndef MULTIPROCESSOR
1100
1101 if (namelen == 1 && name[0] == 0) {
1102 /*
1103 * you're allowed to ask for the zero'th processor
1104 */
1105 name++;
1106 namelen--;
1107 }
1108 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1109 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1110 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1111
1112 #else /* MULTIPROCESSOR */
1113
1114 u_int64_t *cp_time = NULL;
1115 int error, n = sysctl_ncpus(), i;
1116 struct cpu_info *ci;
1117 CPU_INFO_ITERATOR cii;
1118
1119 /*
1120 * if you specifically pass a buffer that is the size of the
1121 * sum, or if you are probing for the size, you get the "sum"
1122 * of cp_time (and the size thereof) across all processors.
1123 *
1124 * alternately, you can pass an additional mib number and get
1125 * cp_time for that particular processor.
1126 */
1127 switch (namelen) {
1128 case 0:
1129 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1130 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1131 n = -1; /* SUM */
1132 }
1133 else {
1134 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1135 n = -2; /* ALL */
1136 }
1137 break;
1138 case 1:
1139 if (name[0] < 0 || name[0] >= n)
1140 return (EINVAL); /* ENOSUCHPROCESSOR */
1141 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1142 n = name[0];
1143 /*
1144 * adjust these so that sysctl_lookup() will be happy
1145 */
1146 name++;
1147 namelen--;
1148 break;
1149 default:
1150 return (EINVAL);
1151 }
1152
1153 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1154 if (cp_time == NULL)
1155 return (ENOMEM);
1156 node.sysctl_data = cp_time;
1157 memset(cp_time, 0, node.sysctl_size);
1158
1159 for (CPU_INFO_FOREACH(cii, ci)) {
1160 if (n <= 0)
1161 for (i = 0; i < CPUSTATES; i++)
1162 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1163 /*
1164 * if a specific processor was requested and we just
1165 * did it, we're done here
1166 */
1167 if (n == 0)
1168 break;
1169 /*
1170 * if doing "all", skip to next cp_time set for next processor
1171 */
1172 if (n == -2)
1173 cp_time += CPUSTATES;
1174 /*
1175 * if we're doing a specific processor, we're one
1176 * processor closer
1177 */
1178 if (n > 0)
1179 n--;
1180 }
1181
1182 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1183 free(node.sysctl_data, M_TEMP);
1184 return (error);
1185
1186 #endif /* MULTIPROCESSOR */
1187 }
1188
1189 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1190 /*
1191 * sysctl helper routine for kern.sysvipc_info subtree.
1192 */
1193
1194 #define FILL_PERM(src, dst) do { \
1195 (dst)._key = (src)._key; \
1196 (dst).uid = (src).uid; \
1197 (dst).gid = (src).gid; \
1198 (dst).cuid = (src).cuid; \
1199 (dst).cgid = (src).cgid; \
1200 (dst).mode = (src).mode; \
1201 (dst)._seq = (src)._seq; \
1202 } while (/*CONSTCOND*/ 0);
1203 #define FILL_MSG(src, dst) do { \
1204 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1205 (dst).msg_qnum = (src).msg_qnum; \
1206 (dst).msg_qbytes = (src).msg_qbytes; \
1207 (dst)._msg_cbytes = (src)._msg_cbytes; \
1208 (dst).msg_lspid = (src).msg_lspid; \
1209 (dst).msg_lrpid = (src).msg_lrpid; \
1210 (dst).msg_stime = (src).msg_stime; \
1211 (dst).msg_rtime = (src).msg_rtime; \
1212 (dst).msg_ctime = (src).msg_ctime; \
1213 } while (/*CONSTCOND*/ 0)
1214 #define FILL_SEM(src, dst) do { \
1215 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1216 (dst).sem_nsems = (src).sem_nsems; \
1217 (dst).sem_otime = (src).sem_otime; \
1218 (dst).sem_ctime = (src).sem_ctime; \
1219 } while (/*CONSTCOND*/ 0)
1220 #define FILL_SHM(src, dst) do { \
1221 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1222 (dst).shm_segsz = (src).shm_segsz; \
1223 (dst).shm_lpid = (src).shm_lpid; \
1224 (dst).shm_cpid = (src).shm_cpid; \
1225 (dst).shm_atime = (src).shm_atime; \
1226 (dst).shm_dtime = (src).shm_dtime; \
1227 (dst).shm_ctime = (src).shm_ctime; \
1228 (dst).shm_nattch = (src).shm_nattch; \
1229 } while (/*CONSTCOND*/ 0)
1230
1231 static int
1232 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1233 {
1234 void *where = oldp;
1235 size_t *sizep = oldlenp;
1236 #ifdef SYSVMSG
1237 struct msg_sysctl_info *msgsi = NULL;
1238 #endif
1239 #ifdef SYSVSEM
1240 struct sem_sysctl_info *semsi = NULL;
1241 #endif
1242 #ifdef SYSVSHM
1243 struct shm_sysctl_info *shmsi = NULL;
1244 #endif
1245 size_t infosize, dssize, tsize, buflen;
1246 void *buf = NULL;
1247 char *start;
1248 int32_t nds;
1249 int i, error, ret;
1250
1251 if (namelen != 1)
1252 return (EINVAL);
1253
1254 start = where;
1255 buflen = *sizep;
1256
1257 switch (*name) {
1258 case KERN_SYSVIPC_MSG_INFO:
1259 #ifdef SYSVMSG
1260 infosize = sizeof(msgsi->msginfo);
1261 nds = msginfo.msgmni;
1262 dssize = sizeof(msgsi->msgids[0]);
1263 break;
1264 #else
1265 return (EINVAL);
1266 #endif
1267 case KERN_SYSVIPC_SEM_INFO:
1268 #ifdef SYSVSEM
1269 infosize = sizeof(semsi->seminfo);
1270 nds = seminfo.semmni;
1271 dssize = sizeof(semsi->semids[0]);
1272 break;
1273 #else
1274 return (EINVAL);
1275 #endif
1276 case KERN_SYSVIPC_SHM_INFO:
1277 #ifdef SYSVSHM
1278 infosize = sizeof(shmsi->shminfo);
1279 nds = shminfo.shmmni;
1280 dssize = sizeof(shmsi->shmids[0]);
1281 break;
1282 #else
1283 return (EINVAL);
1284 #endif
1285 default:
1286 return (EINVAL);
1287 }
1288 /*
1289 * Round infosize to 64 bit boundary if requesting more than just
1290 * the info structure or getting the total data size.
1291 */
1292 if (where == NULL || *sizep > infosize)
1293 infosize = ((infosize + 7) / 8) * 8;
1294 tsize = infosize + nds * dssize;
1295
1296 /* Return just the total size required. */
1297 if (where == NULL) {
1298 *sizep = tsize;
1299 return (0);
1300 }
1301
1302 /* Not enough room for even the info struct. */
1303 if (buflen < infosize) {
1304 *sizep = 0;
1305 return (ENOMEM);
1306 }
1307 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1308 memset(buf, 0, min(tsize, buflen));
1309
1310 switch (*name) {
1311 #ifdef SYSVMSG
1312 case KERN_SYSVIPC_MSG_INFO:
1313 msgsi = (struct msg_sysctl_info *)buf;
1314 msgsi->msginfo = msginfo;
1315 break;
1316 #endif
1317 #ifdef SYSVSEM
1318 case KERN_SYSVIPC_SEM_INFO:
1319 semsi = (struct sem_sysctl_info *)buf;
1320 semsi->seminfo = seminfo;
1321 break;
1322 #endif
1323 #ifdef SYSVSHM
1324 case KERN_SYSVIPC_SHM_INFO:
1325 shmsi = (struct shm_sysctl_info *)buf;
1326 shmsi->shminfo = shminfo;
1327 break;
1328 #endif
1329 }
1330 buflen -= infosize;
1331
1332 ret = 0;
1333 if (buflen > 0) {
1334 /* Fill in the IPC data structures. */
1335 for (i = 0; i < nds; i++) {
1336 if (buflen < dssize) {
1337 ret = ENOMEM;
1338 break;
1339 }
1340 switch (*name) {
1341 #ifdef SYSVMSG
1342 case KERN_SYSVIPC_MSG_INFO:
1343 FILL_MSG(msqids[i], msgsi->msgids[i]);
1344 break;
1345 #endif
1346 #ifdef SYSVSEM
1347 case KERN_SYSVIPC_SEM_INFO:
1348 FILL_SEM(sema[i], semsi->semids[i]);
1349 break;
1350 #endif
1351 #ifdef SYSVSHM
1352 case KERN_SYSVIPC_SHM_INFO:
1353 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1354 break;
1355 #endif
1356 }
1357 buflen -= dssize;
1358 }
1359 }
1360 *sizep -= buflen;
1361 error = copyout(buf, start, *sizep);
1362 /* If copyout succeeded, use return code set earlier. */
1363 if (error == 0)
1364 error = ret;
1365 if (buf)
1366 free(buf, M_TEMP);
1367 return (error);
1368 }
1369
1370 #undef FILL_PERM
1371 #undef FILL_MSG
1372 #undef FILL_SEM
1373 #undef FILL_SHM
1374
1375 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1376
1377 #if NPTY > 0
1378 /*
1379 * sysctl helper routine for kern.maxptys. ensures that any new value
1380 * is acceptable to the pty subsystem.
1381 */
1382 static int
1383 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1384 {
1385 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1386 int error, max;
1387 struct sysctlnode node;
1388
1389 /* get current value of maxptys */
1390 max = pty_maxptys(0, 0);
1391
1392 node = *rnode;
1393 node.sysctl_data = &max;
1394 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1395 if (error || newp == NULL)
1396 return (error);
1397
1398 if (max != pty_maxptys(max, 1))
1399 return (EINVAL);
1400
1401 return (0);
1402 }
1403 #endif /* NPTY > 0 */
1404
1405 /*
1406 * sysctl helper routine for kern.sbmax. basically just ensures that
1407 * any new value is not too small.
1408 */
1409 static int
1410 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1411 {
1412 int error, new_sbmax;
1413 struct sysctlnode node;
1414
1415 new_sbmax = sb_max;
1416 node = *rnode;
1417 node.sysctl_data = &new_sbmax;
1418 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1419 if (error || newp == NULL)
1420 return (error);
1421
1422 error = sb_max_set(new_sbmax);
1423
1424 return (error);
1425 }
1426
1427 /*
1428 * sysctl helper routine for kern.urandom node. picks a random number
1429 * for you.
1430 */
1431 static int
1432 sysctl_kern_urnd(SYSCTLFN_ARGS)
1433 {
1434 #if NRND > 0
1435 int v;
1436
1437 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1438 struct sysctlnode node = *rnode;
1439 node.sysctl_data = &v;
1440 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1441 }
1442 else
1443 return (EIO); /*XXX*/
1444 #else
1445 return (EOPNOTSUPP);
1446 #endif
1447 }
1448
1449 /*
1450 * sysctl helper routine to do kern.lwp.* work.
1451 */
1452 static int
1453 sysctl_kern_lwp(SYSCTLFN_ARGS)
1454 {
1455 struct kinfo_lwp klwp;
1456 struct proc *p;
1457 struct lwp *l2;
1458 char *where, *dp;
1459 int pid, elem_size, elem_count;
1460 int buflen, needed, error;
1461
1462 dp = where = oldp;
1463 buflen = where != NULL ? *oldlenp : 0;
1464 error = needed = 0;
1465
1466 if (newp != NULL || namelen != 3)
1467 return (EINVAL);
1468 pid = name[0];
1469 elem_size = name[1];
1470 elem_count = name[2];
1471
1472 p = pfind(pid);
1473 if (p == NULL)
1474 return (ESRCH);
1475 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1476 if (buflen >= elem_size && elem_count > 0) {
1477 fill_lwp(l2, &klwp);
1478 /*
1479 * Copy out elem_size, but not larger than
1480 * the size of a struct kinfo_proc2.
1481 */
1482 error = copyout(&klwp, dp,
1483 min(sizeof(klwp), elem_size));
1484 if (error)
1485 goto cleanup;
1486 dp += elem_size;
1487 buflen -= elem_size;
1488 elem_count--;
1489 }
1490 needed += elem_size;
1491 }
1492
1493 if (where != NULL) {
1494 *oldlenp = dp - where;
1495 if (needed > *oldlenp)
1496 return (ENOMEM);
1497 } else {
1498 needed += KERN_PROCSLOP;
1499 *oldlenp = needed;
1500 }
1501 return (0);
1502 cleanup:
1503 return (error);
1504 }
1505
1506 /*
1507 * sysctl helper routine for kern.forkfsleep node. ensures that the
1508 * given value is not too large or two small, and is at least one
1509 * timer tick if not zero.
1510 */
1511 static int
1512 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1513 {
1514 /* userland sees value in ms, internally is in ticks */
1515 extern int forkfsleep; /* defined in kern/kern_fork.c */
1516 int error, timo, lsleep;
1517 struct sysctlnode node;
1518
1519 lsleep = forkfsleep * 1000 / hz;
1520 node = *rnode;
1521 node.sysctl_data = &lsleep;
1522 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1523 if (error || newp == NULL)
1524 return (error);
1525
1526 /* refuse negative values, and overly 'long time' */
1527 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1528 return (EINVAL);
1529
1530 timo = mstohz(lsleep);
1531
1532 /* if the interval is >0 ms && <1 tick, use 1 tick */
1533 if (lsleep != 0 && timo == 0)
1534 forkfsleep = 1;
1535 else
1536 forkfsleep = timo;
1537
1538 return (0);
1539 }
1540
1541 /*
1542 * sysctl helper routine for kern.somaxkva. ensures that the given
1543 * value is not too small.
1544 * (XXX should we maybe make sure it's not too large as well?)
1545 */
1546 static int
1547 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1548 {
1549 int error, new_somaxkva;
1550 struct sysctlnode node;
1551
1552 new_somaxkva = somaxkva;
1553 node = *rnode;
1554 node.sysctl_data = &new_somaxkva;
1555 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1556 if (error || newp == NULL)
1557 return (error);
1558
1559 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1560 return (EINVAL);
1561 somaxkva = new_somaxkva;
1562
1563 return (error);
1564 }
1565
1566 /*
1567 * sysctl helper routine for kern.root_partition
1568 */
1569 static int
1570 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1571 {
1572 int rootpart = DISKPART(rootdev);
1573 struct sysctlnode node = *rnode;
1574
1575 node.sysctl_data = &rootpart;
1576 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1577 }
1578
1579 /*
1580 * sysctl helper function for kern.drivers
1581 */
1582 static int
1583 sysctl_kern_drivers(SYSCTLFN_ARGS)
1584 {
1585 int error;
1586 size_t buflen;
1587 struct kinfo_drivers kd;
1588 char *start, *where;
1589 const char *dname;
1590 int i;
1591 extern struct devsw_conv *devsw_conv;
1592 extern int max_devsw_convs;
1593
1594 if (newp != NULL || namelen != 0)
1595 return (EINVAL);
1596
1597 start = where = oldp;
1598 buflen = *oldlenp;
1599 if (where == NULL) {
1600 *oldlenp = max_devsw_convs * sizeof kd;
1601 return 0;
1602 }
1603
1604 /*
1605 * An array of kinfo_drivers structures
1606 */
1607 error = 0;
1608 for (i = 0; i < max_devsw_convs; i++) {
1609 dname = devsw_conv[i].d_name;
1610 if (dname == NULL)
1611 continue;
1612 if (buflen < sizeof kd) {
1613 error = ENOMEM;
1614 break;
1615 }
1616 kd.d_bmajor = devsw_conv[i].d_bmajor;
1617 kd.d_cmajor = devsw_conv[i].d_cmajor;
1618 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1619 error = copyout(&kd, where, sizeof kd);
1620 if (error != 0)
1621 break;
1622 buflen -= sizeof kd;
1623 where += sizeof kd;
1624 }
1625 *oldlenp = where - start;
1626 return error;
1627 }
1628
1629 static int
1630 sysctl_doeproc(SYSCTLFN_ARGS)
1631 {
1632 struct eproc eproc;
1633 struct kinfo_proc2 kproc2;
1634 struct kinfo_proc *dp;
1635 struct proc *p;
1636 const struct proclist_desc *pd;
1637 char *where, *dp2;
1638 int type, op, arg;
1639 u_int elem_size, elem_count;
1640 size_t buflen, needed;
1641 int error;
1642
1643 dp = oldp;
1644 dp2 = where = oldp;
1645 buflen = where != NULL ? *oldlenp : 0;
1646 error = 0;
1647 needed = 0;
1648 type = rnode->sysctl_num;
1649
1650 if (type == KERN_PROC) {
1651 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1652 return (EINVAL);
1653 op = name[0];
1654 if (op != KERN_PROC_ALL)
1655 arg = name[1];
1656 else
1657 arg = 0; /* Quell compiler warning */
1658 elem_size = elem_count = 0; /* Ditto */
1659 } else {
1660 if (namelen != 4)
1661 return (EINVAL);
1662 op = name[0];
1663 arg = name[1];
1664 elem_size = name[2];
1665 elem_count = name[3];
1666 }
1667
1668 proclist_lock_read();
1669
1670 pd = proclists;
1671 again:
1672 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1673 /*
1674 * Skip embryonic processes.
1675 */
1676 if (p->p_stat == SIDL)
1677 continue;
1678 /*
1679 * TODO - make more efficient (see notes below).
1680 * do by session.
1681 */
1682 switch (op) {
1683
1684 case KERN_PROC_PID:
1685 /* could do this with just a lookup */
1686 if (p->p_pid != (pid_t)arg)
1687 continue;
1688 break;
1689
1690 case KERN_PROC_PGRP:
1691 /* could do this by traversing pgrp */
1692 if (p->p_pgrp->pg_id != (pid_t)arg)
1693 continue;
1694 break;
1695
1696 case KERN_PROC_SESSION:
1697 if (p->p_session->s_sid != (pid_t)arg)
1698 continue;
1699 break;
1700
1701 case KERN_PROC_TTY:
1702 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1703 if ((p->p_flag & P_CONTROLT) == 0 ||
1704 p->p_session->s_ttyp == NULL ||
1705 p->p_session->s_ttyvp != NULL)
1706 continue;
1707 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1708 p->p_session->s_ttyp == NULL) {
1709 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1710 continue;
1711 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1712 continue;
1713 break;
1714
1715 case KERN_PROC_UID:
1716 if (p->p_ucred->cr_uid != (uid_t)arg)
1717 continue;
1718 break;
1719
1720 case KERN_PROC_RUID:
1721 if (p->p_cred->p_ruid != (uid_t)arg)
1722 continue;
1723 break;
1724
1725 case KERN_PROC_GID:
1726 if (p->p_ucred->cr_gid != (uid_t)arg)
1727 continue;
1728 break;
1729
1730 case KERN_PROC_RGID:
1731 if (p->p_cred->p_rgid != (uid_t)arg)
1732 continue;
1733 break;
1734
1735 case KERN_PROC_ALL:
1736 /* allow everything */
1737 break;
1738
1739 default:
1740 error = EINVAL;
1741 goto cleanup;
1742 }
1743 if (type == KERN_PROC) {
1744 if (buflen >= sizeof(struct kinfo_proc)) {
1745 fill_eproc(p, &eproc);
1746 error = copyout(p, &dp->kp_proc,
1747 sizeof(struct proc));
1748 if (error)
1749 goto cleanup;
1750 error = copyout(&eproc, &dp->kp_eproc,
1751 sizeof(eproc));
1752 if (error)
1753 goto cleanup;
1754 dp++;
1755 buflen -= sizeof(struct kinfo_proc);
1756 }
1757 needed += sizeof(struct kinfo_proc);
1758 } else { /* KERN_PROC2 */
1759 if (buflen >= elem_size && elem_count > 0) {
1760 fill_kproc2(p, &kproc2);
1761 /*
1762 * Copy out elem_size, but not larger than
1763 * the size of a struct kinfo_proc2.
1764 */
1765 error = copyout(&kproc2, dp2,
1766 min(sizeof(kproc2), elem_size));
1767 if (error)
1768 goto cleanup;
1769 dp2 += elem_size;
1770 buflen -= elem_size;
1771 elem_count--;
1772 }
1773 needed += elem_size;
1774 }
1775 }
1776 pd++;
1777 if (pd->pd_list != NULL)
1778 goto again;
1779 proclist_unlock_read();
1780
1781 if (where != NULL) {
1782 if (type == KERN_PROC)
1783 *oldlenp = (char *)dp - where;
1784 else
1785 *oldlenp = dp2 - where;
1786 if (needed > *oldlenp)
1787 return (ENOMEM);
1788 } else {
1789 needed += KERN_LWPSLOP;
1790 *oldlenp = needed;
1791 }
1792 return (0);
1793 cleanup:
1794 proclist_unlock_read();
1795 return (error);
1796 }
1797
1798 /*
1799 * sysctl helper routine for kern.proc_args pseudo-subtree.
1800 */
1801 static int
1802 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1803 {
1804 struct ps_strings pss;
1805 struct proc *p, *up = l->l_proc;
1806 size_t len, upper_bound, xlen, i;
1807 struct uio auio;
1808 struct iovec aiov;
1809 vaddr_t argv;
1810 pid_t pid;
1811 int nargv, type, error;
1812 char *arg;
1813 char *tmp;
1814
1815 if (newp != NULL || namelen != 2)
1816 return (EINVAL);
1817 pid = name[0];
1818 type = name[1];
1819
1820 switch (type) {
1821 case KERN_PROC_ARGV:
1822 case KERN_PROC_NARGV:
1823 case KERN_PROC_ENV:
1824 case KERN_PROC_NENV:
1825 /* ok */
1826 break;
1827 default:
1828 return (EINVAL);
1829 }
1830
1831 /* check pid */
1832 if ((p = pfind(pid)) == NULL)
1833 return (EINVAL);
1834
1835 /* only root or same user change look at the environment */
1836 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1837 if (up->p_ucred->cr_uid != 0) {
1838 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1839 up->p_cred->p_ruid != p->p_cred->p_svuid)
1840 return (EPERM);
1841 }
1842 }
1843
1844 if (oldp == NULL) {
1845 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1846 *oldlenp = sizeof (int);
1847 else
1848 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1849 return (0);
1850 }
1851
1852 /*
1853 * Zombies don't have a stack, so we can't read their psstrings.
1854 * System processes also don't have a user stack.
1855 */
1856 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1857 return (EINVAL);
1858
1859 /*
1860 * Lock the process down in memory.
1861 */
1862 /* XXXCDC: how should locking work here? */
1863 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1864 return (EFAULT);
1865
1866 p->p_vmspace->vm_refcnt++; /* XXX */
1867
1868 /*
1869 * Allocate a temporary buffer to hold the arguments.
1870 */
1871 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1872
1873 /*
1874 * Read in the ps_strings structure.
1875 */
1876 aiov.iov_base = &pss;
1877 aiov.iov_len = sizeof(pss);
1878 auio.uio_iov = &aiov;
1879 auio.uio_iovcnt = 1;
1880 auio.uio_offset = (vaddr_t)p->p_psstr;
1881 auio.uio_resid = sizeof(pss);
1882 auio.uio_segflg = UIO_SYSSPACE;
1883 auio.uio_rw = UIO_READ;
1884 auio.uio_procp = NULL;
1885 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1886 if (error)
1887 goto done;
1888
1889 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1890 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1891 else
1892 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1893 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1894 error = copyout(&nargv, oldp, sizeof(nargv));
1895 *oldlenp = sizeof(nargv);
1896 goto done;
1897 }
1898 /*
1899 * Now read the address of the argument vector.
1900 */
1901 switch (type) {
1902 case KERN_PROC_ARGV:
1903 /* XXX compat32 stuff here */
1904 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1905 break;
1906 case KERN_PROC_ENV:
1907 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1908 break;
1909 default:
1910 return (EINVAL);
1911 }
1912 auio.uio_offset = (off_t)(long)tmp;
1913 aiov.iov_base = &argv;
1914 aiov.iov_len = sizeof(argv);
1915 auio.uio_iov = &aiov;
1916 auio.uio_iovcnt = 1;
1917 auio.uio_resid = sizeof(argv);
1918 auio.uio_segflg = UIO_SYSSPACE;
1919 auio.uio_rw = UIO_READ;
1920 auio.uio_procp = NULL;
1921 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1922 if (error)
1923 goto done;
1924
1925 /*
1926 * Now copy in the actual argument vector, one page at a time,
1927 * since we don't know how long the vector is (though, we do
1928 * know how many NUL-terminated strings are in the vector).
1929 */
1930 len = 0;
1931 upper_bound = *oldlenp;
1932 for (; nargv != 0 && len < upper_bound; len += xlen) {
1933 aiov.iov_base = arg;
1934 aiov.iov_len = PAGE_SIZE;
1935 auio.uio_iov = &aiov;
1936 auio.uio_iovcnt = 1;
1937 auio.uio_offset = argv + len;
1938 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1939 auio.uio_resid = xlen;
1940 auio.uio_segflg = UIO_SYSSPACE;
1941 auio.uio_rw = UIO_READ;
1942 auio.uio_procp = NULL;
1943 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1944 if (error)
1945 goto done;
1946
1947 for (i = 0; i < xlen && nargv != 0; i++) {
1948 if (arg[i] == '\0')
1949 nargv--; /* one full string */
1950 }
1951
1952 /*
1953 * Make sure we don't copyout past the end of the user's
1954 * buffer.
1955 */
1956 if (len + i > upper_bound)
1957 i = upper_bound - len;
1958
1959 error = copyout(arg, (char *)oldp + len, i);
1960 if (error)
1961 break;
1962
1963 if (nargv == 0) {
1964 len += i;
1965 break;
1966 }
1967 }
1968 *oldlenp = len;
1969
1970 done:
1971 uvmspace_free(p->p_vmspace);
1972
1973 free(arg, M_TEMP);
1974 return (error);
1975 }
1976
1977 /*
1978 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1979 * calculate on the fly taking into account integer overflow and the
1980 * current wired count.
1981 */
1982 static int
1983 sysctl_hw_usermem(SYSCTLFN_ARGS)
1984 {
1985 u_int ui;
1986 u_quad_t uq;
1987 struct sysctlnode node;
1988
1989 node = *rnode;
1990 switch (rnode->sysctl_num) {
1991 case HW_USERMEM:
1992 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1993 ui = UINT_MAX;
1994 else
1995 ui *= PAGE_SIZE;
1996 node.sysctl_data = &ui;
1997 break;
1998 case HW_USERMEM64:
1999 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2000 node.sysctl_data = &uq;
2001 break;
2002 default:
2003 return (EINVAL);
2004 }
2005
2006 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2007 }
2008
2009 /*
2010 * sysctl helper routine for kern.cnmagic node. pulls the old value
2011 * out, encoded, and stuffs the new value in for decoding.
2012 */
2013 static int
2014 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2015 {
2016 char magic[CNS_LEN];
2017 int error;
2018 struct sysctlnode node;
2019
2020 if (oldp)
2021 cn_get_magic(magic, CNS_LEN);
2022 node = *rnode;
2023 node.sysctl_data = &magic[0];
2024 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2025 if (error || newp == NULL)
2026 return (error);
2027
2028 return (cn_set_magic(magic));
2029 }
2030
2031 static int
2032 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2033 {
2034 int ncpu;
2035 struct sysctlnode node;
2036
2037 ncpu = sysctl_ncpus();
2038 node = *rnode;
2039 node.sysctl_data = &ncpu;
2040
2041 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2042 }
2043
2044
2045 /*
2046 * ********************************************************************
2047 * section 3: public helper routines that are used for more than one
2048 * node
2049 * ********************************************************************
2050 */
2051
2052 /*
2053 * sysctl helper routine for the kern.root_device node and some ports'
2054 * machdep.root_device nodes.
2055 */
2056 int
2057 sysctl_root_device(SYSCTLFN_ARGS)
2058 {
2059 struct sysctlnode node;
2060
2061 node = *rnode;
2062 node.sysctl_data = root_device->dv_xname;
2063 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2064 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2065 }
2066
2067 /*
2068 * sysctl helper routine for kern.consdev, dependent on the current
2069 * state of the console. also used for machdep.console_device on some
2070 * ports.
2071 */
2072 int
2073 sysctl_consdev(SYSCTLFN_ARGS)
2074 {
2075 dev_t consdev;
2076 struct sysctlnode node;
2077
2078 if (cn_tab != NULL)
2079 consdev = cn_tab->cn_dev;
2080 else
2081 consdev = NODEV;
2082 node = *rnode;
2083 node.sysctl_data = &consdev;
2084 node.sysctl_size = sizeof(consdev);
2085 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2086 }
2087
2088 /*
2089 * ********************************************************************
2090 * section 4: support for some helpers
2091 * ********************************************************************
2092 */
2093
2094 /*
2095 * Fill in a kinfo_proc2 structure for the specified process.
2096 */
2097 static void
2098 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2099 {
2100 struct tty *tp;
2101 struct lwp *l;
2102 struct timeval ut, st;
2103
2104 memset(ki, 0, sizeof(*ki));
2105
2106 ki->p_paddr = PTRTOINT64(p);
2107 ki->p_fd = PTRTOINT64(p->p_fd);
2108 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2109 ki->p_stats = PTRTOINT64(p->p_stats);
2110 ki->p_limit = PTRTOINT64(p->p_limit);
2111 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2112 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2113 ki->p_sess = PTRTOINT64(p->p_session);
2114 ki->p_tsess = 0; /* may be changed if controlling tty below */
2115 ki->p_ru = PTRTOINT64(p->p_ru);
2116
2117 ki->p_eflag = 0;
2118 ki->p_exitsig = p->p_exitsig;
2119 ki->p_flag = p->p_flag;
2120
2121 ki->p_pid = p->p_pid;
2122 if (p->p_pptr)
2123 ki->p_ppid = p->p_pptr->p_pid;
2124 else
2125 ki->p_ppid = 0;
2126 ki->p_sid = p->p_session->s_sid;
2127 ki->p__pgid = p->p_pgrp->pg_id;
2128
2129 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2130
2131 ki->p_uid = p->p_ucred->cr_uid;
2132 ki->p_ruid = p->p_cred->p_ruid;
2133 ki->p_gid = p->p_ucred->cr_gid;
2134 ki->p_rgid = p->p_cred->p_rgid;
2135 ki->p_svuid = p->p_cred->p_svuid;
2136 ki->p_svgid = p->p_cred->p_svgid;
2137
2138 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2139 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2140 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2141
2142 ki->p_jobc = p->p_pgrp->pg_jobc;
2143 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2144 ki->p_tdev = tp->t_dev;
2145 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2146 ki->p_tsess = PTRTOINT64(tp->t_session);
2147 } else {
2148 ki->p_tdev = NODEV;
2149 }
2150
2151 ki->p_estcpu = p->p_estcpu;
2152 ki->p_rtime_sec = p->p_rtime.tv_sec;
2153 ki->p_rtime_usec = p->p_rtime.tv_usec;
2154 ki->p_cpticks = p->p_cpticks;
2155 ki->p_pctcpu = p->p_pctcpu;
2156
2157 ki->p_uticks = p->p_uticks;
2158 ki->p_sticks = p->p_sticks;
2159 ki->p_iticks = p->p_iticks;
2160
2161 ki->p_tracep = PTRTOINT64(p->p_tracep);
2162 ki->p_traceflag = p->p_traceflag;
2163
2164
2165 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2166 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2167 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2168 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2169
2170 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2171 ki->p_realstat = p->p_stat;
2172 ki->p_nice = p->p_nice;
2173
2174 ki->p_xstat = p->p_xstat;
2175 ki->p_acflag = p->p_acflag;
2176
2177 strncpy(ki->p_comm, p->p_comm,
2178 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2179
2180 strncpy(ki->p_login, p->p_session->s_login,
2181 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2182
2183 ki->p_nlwps = p->p_nlwps;
2184 ki->p_nrlwps = p->p_nrlwps;
2185 ki->p_realflag = p->p_flag;
2186
2187 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2188 ki->p_vm_rssize = 0;
2189 ki->p_vm_tsize = 0;
2190 ki->p_vm_dsize = 0;
2191 ki->p_vm_ssize = 0;
2192 l = NULL;
2193 } else {
2194 struct vmspace *vm = p->p_vmspace;
2195
2196 ki->p_vm_rssize = vm_resident_count(vm);
2197 ki->p_vm_tsize = vm->vm_tsize;
2198 ki->p_vm_dsize = vm->vm_dsize;
2199 ki->p_vm_ssize = vm->vm_ssize;
2200
2201 /* Pick a "representative" LWP */
2202 l = proc_representative_lwp(p);
2203 ki->p_forw = PTRTOINT64(l->l_forw);
2204 ki->p_back = PTRTOINT64(l->l_back);
2205 ki->p_addr = PTRTOINT64(l->l_addr);
2206 ki->p_stat = l->l_stat;
2207 ki->p_flag |= l->l_flag;
2208 ki->p_swtime = l->l_swtime;
2209 ki->p_slptime = l->l_slptime;
2210 if (l->l_stat == LSONPROC) {
2211 KDASSERT(l->l_cpu != NULL);
2212 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2213 } else
2214 ki->p_schedflags = 0;
2215 ki->p_holdcnt = l->l_holdcnt;
2216 ki->p_priority = l->l_priority;
2217 ki->p_usrpri = l->l_usrpri;
2218 if (l->l_wmesg)
2219 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2220 ki->p_wchan = PTRTOINT64(l->l_wchan);
2221
2222 }
2223
2224 if (p->p_session->s_ttyvp)
2225 ki->p_eflag |= EPROC_CTTY;
2226 if (SESS_LEADER(p))
2227 ki->p_eflag |= EPROC_SLEADER;
2228
2229 /* XXX Is this double check necessary? */
2230 if (P_ZOMBIE(p)) {
2231 ki->p_uvalid = 0;
2232 } else {
2233 ki->p_uvalid = 1;
2234
2235 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2236 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2237
2238 calcru(p, &ut, &st, 0);
2239 ki->p_uutime_sec = ut.tv_sec;
2240 ki->p_uutime_usec = ut.tv_usec;
2241 ki->p_ustime_sec = st.tv_sec;
2242 ki->p_ustime_usec = st.tv_usec;
2243
2244 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2245 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2246 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2247 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2248 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2249 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2250 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2251 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2252 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2253 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2254 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2255 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2256 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2257 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2258
2259 timeradd(&p->p_stats->p_cru.ru_utime,
2260 &p->p_stats->p_cru.ru_stime, &ut);
2261 ki->p_uctime_sec = ut.tv_sec;
2262 ki->p_uctime_usec = ut.tv_usec;
2263 }
2264 #ifdef MULTIPROCESSOR
2265 if (l && l->l_cpu != NULL)
2266 ki->p_cpuid = l->l_cpu->ci_cpuid;
2267 else
2268 #endif
2269 ki->p_cpuid = KI_NOCPU;
2270 }
2271
2272 /*
2273 * Fill in a kinfo_lwp structure for the specified lwp.
2274 */
2275 static void
2276 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2277 {
2278
2279 kl->l_forw = PTRTOINT64(l->l_forw);
2280 kl->l_back = PTRTOINT64(l->l_back);
2281 kl->l_laddr = PTRTOINT64(l);
2282 kl->l_addr = PTRTOINT64(l->l_addr);
2283 kl->l_stat = l->l_stat;
2284 kl->l_lid = l->l_lid;
2285 kl->l_flag = l->l_flag;
2286
2287 kl->l_swtime = l->l_swtime;
2288 kl->l_slptime = l->l_slptime;
2289 if (l->l_stat == LSONPROC) {
2290 KDASSERT(l->l_cpu != NULL);
2291 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2292 } else
2293 kl->l_schedflags = 0;
2294 kl->l_holdcnt = l->l_holdcnt;
2295 kl->l_priority = l->l_priority;
2296 kl->l_usrpri = l->l_usrpri;
2297 if (l->l_wmesg)
2298 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2299 kl->l_wchan = PTRTOINT64(l->l_wchan);
2300 #ifdef MULTIPROCESSOR
2301 if (l->l_cpu != NULL)
2302 kl->l_cpuid = l->l_cpu->ci_cpuid;
2303 else
2304 #endif
2305 kl->l_cpuid = KI_NOCPU;
2306 }
2307
2308 /*
2309 * Fill in an eproc structure for the specified process.
2310 */
2311 void
2312 fill_eproc(struct proc *p, struct eproc *ep)
2313 {
2314 struct tty *tp;
2315 struct lwp *l;
2316
2317 ep->e_paddr = p;
2318 ep->e_sess = p->p_session;
2319 ep->e_pcred = *p->p_cred;
2320 ep->e_ucred = *p->p_ucred;
2321 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2322 ep->e_vm.vm_rssize = 0;
2323 ep->e_vm.vm_tsize = 0;
2324 ep->e_vm.vm_dsize = 0;
2325 ep->e_vm.vm_ssize = 0;
2326 /* ep->e_vm.vm_pmap = XXX; */
2327 } else {
2328 struct vmspace *vm = p->p_vmspace;
2329
2330 ep->e_vm.vm_rssize = vm_resident_count(vm);
2331 ep->e_vm.vm_tsize = vm->vm_tsize;
2332 ep->e_vm.vm_dsize = vm->vm_dsize;
2333 ep->e_vm.vm_ssize = vm->vm_ssize;
2334
2335 /* Pick a "representative" LWP */
2336 l = proc_representative_lwp(p);
2337
2338 if (l->l_wmesg)
2339 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2340 }
2341 if (p->p_pptr)
2342 ep->e_ppid = p->p_pptr->p_pid;
2343 else
2344 ep->e_ppid = 0;
2345 ep->e_pgid = p->p_pgrp->pg_id;
2346 ep->e_sid = ep->e_sess->s_sid;
2347 ep->e_jobc = p->p_pgrp->pg_jobc;
2348 if ((p->p_flag & P_CONTROLT) &&
2349 (tp = ep->e_sess->s_ttyp)) {
2350 ep->e_tdev = tp->t_dev;
2351 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2352 ep->e_tsess = tp->t_session;
2353 } else
2354 ep->e_tdev = NODEV;
2355
2356 ep->e_xsize = ep->e_xrssize = 0;
2357 ep->e_xccount = ep->e_xswrss = 0;
2358 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2359 if (SESS_LEADER(p))
2360 ep->e_flag |= EPROC_SLEADER;
2361 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2362 }
2363