init_sysctl.c revision 1.159 1 /* $NetBSD: init_sysctl.c,v 1.159 2009/03/11 05:55:22 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.159 2009/03/11 05:55:22 mrg Exp $");
34
35 #include "opt_sysv.h"
36 #include "opt_compat_netbsd32.h"
37 #include "opt_compat_netbsd.h"
38 #include "opt_modular.h"
39 #include "opt_sa.h"
40 #include "opt_posix.h"
41 #include "pty.h"
42 #include "rnd.h"
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/sysctl.h>
47 #include <sys/cpu.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/unistd.h>
52 #include <sys/disklabel.h>
53 #include <sys/rnd.h>
54 #include <sys/vnode.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/msgbuf.h>
58 #include <dev/cons.h>
59 #include <sys/socketvar.h>
60 #include <sys/file.h>
61 #include <sys/filedesc.h>
62 #include <sys/tty.h>
63 #include <sys/kmem.h>
64 #include <sys/resource.h>
65 #include <sys/resourcevar.h>
66 #include <sys/exec.h>
67 #include <sys/conf.h>
68 #include <sys/device.h>
69 #include <sys/stat.h>
70 #include <sys/kauth.h>
71 #include <sys/ktrace.h>
72 #include <sys/ksem.h>
73
74 #ifdef COMPAT_NETBSD32
75 #include <compat/netbsd32/netbsd32.h>
76 #endif
77 #ifdef COMPAT_50
78 #include <compat/sys/time.h>
79 #endif
80
81 #ifdef KERN_SA
82 #include <sys/sa.h>
83 #endif
84
85 #include <sys/cpu.h>
86
87 #if defined(MODULAR) || defined(P1003_1B_SEMAPHORE)
88 int posix_semaphores = 200112;
89 #else
90 int posix_semaphores;
91 #endif
92
93 int security_setidcore_dump;
94 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
95 uid_t security_setidcore_owner = 0;
96 gid_t security_setidcore_group = 0;
97 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
98
99 static const u_int sysctl_flagmap[] = {
100 PK_ADVLOCK, P_ADVLOCK,
101 PK_EXEC, P_EXEC,
102 PK_NOCLDWAIT, P_NOCLDWAIT,
103 PK_32, P_32,
104 PK_CLDSIGIGN, P_CLDSIGIGN,
105 PK_SUGID, P_SUGID,
106 0
107 };
108
109 static const u_int sysctl_sflagmap[] = {
110 PS_NOCLDSTOP, P_NOCLDSTOP,
111 PS_WEXIT, P_WEXIT,
112 PS_STOPFORK, P_STOPFORK,
113 PS_STOPEXEC, P_STOPEXEC,
114 PS_STOPEXIT, P_STOPEXIT,
115 0
116 };
117
118 static const u_int sysctl_slflagmap[] = {
119 PSL_TRACED, P_TRACED,
120 PSL_FSTRACE, P_FSTRACE,
121 PSL_CHTRACED, P_CHTRACED,
122 PSL_SYSCALL, P_SYSCALL,
123 0
124 };
125
126 static const u_int sysctl_lflagmap[] = {
127 PL_CONTROLT, P_CONTROLT,
128 PL_PPWAIT, P_PPWAIT,
129 0
130 };
131
132 static const u_int sysctl_stflagmap[] = {
133 PST_PROFIL, P_PROFIL,
134 0
135
136 };
137
138 static const u_int sysctl_lwpflagmap[] = {
139 LW_INMEM, P_INMEM,
140 LW_SINTR, P_SINTR,
141 LW_SYSTEM, P_SYSTEM,
142 LW_SA, P_SA, /* WRS ??? */
143 0
144 };
145
146 static const u_int sysctl_lwpprflagmap[] = {
147 LPR_DETACHED, L_DETACHED,
148 0
149 };
150
151 /*
152 * try over estimating by 5 procs/lwps
153 */
154 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
155 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
156
157 static int dcopyout(struct lwp *, const void *, void *, size_t);
158
159 static int
160 dcopyout(struct lwp *l, const void *kaddr, void *uaddr, size_t len)
161 {
162 int error;
163
164 error = copyout(kaddr, uaddr, len);
165 ktrmibio(-1, UIO_READ, uaddr, len, error);
166
167 return error;
168 }
169
170 #ifdef DIAGNOSTIC
171 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
172 #endif
173 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
174 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
175 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
176 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
177 static int sysctl_setlen(SYSCTLFN_PROTO);
178 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
179 static int sysctl_kern_file(SYSCTLFN_PROTO);
180 static int sysctl_msgbuf(SYSCTLFN_PROTO);
181 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
182 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
183 #if NPTY > 0
184 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
185 #endif /* NPTY > 0 */
186 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
187 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
188 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
189 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
190 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
191 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
192 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
193 static int sysctl_kern_file2(SYSCTLFN_PROTO);
194 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
195 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
196 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
197 static int sysctl_doeproc(SYSCTLFN_PROTO);
198 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
199 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
200 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
201
202 static u_int sysctl_map_flags(const u_int *, u_int);
203 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
204 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
205 static void fill_file(struct kinfo_file *, const file_t *, const fdfile_t *,
206 int, pid_t);
207
208 /*
209 * ********************************************************************
210 * section 1: setup routines
211 * ********************************************************************
212 * These functions are stuffed into a link set for sysctl setup
213 * functions. They're never called or referenced from anywhere else.
214 * ********************************************************************
215 */
216
217 /*
218 * sets up the base nodes...
219 */
220 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
221 {
222
223 sysctl_createv(clog, 0, NULL, NULL,
224 CTLFLAG_PERMANENT,
225 CTLTYPE_NODE, "kern",
226 SYSCTL_DESCR("High kernel"),
227 NULL, 0, NULL, 0,
228 CTL_KERN, CTL_EOL);
229 sysctl_createv(clog, 0, NULL, NULL,
230 CTLFLAG_PERMANENT,
231 CTLTYPE_NODE, "vm",
232 SYSCTL_DESCR("Virtual memory"),
233 NULL, 0, NULL, 0,
234 CTL_VM, CTL_EOL);
235 sysctl_createv(clog, 0, NULL, NULL,
236 CTLFLAG_PERMANENT,
237 CTLTYPE_NODE, "vfs",
238 SYSCTL_DESCR("Filesystem"),
239 NULL, 0, NULL, 0,
240 CTL_VFS, CTL_EOL);
241 sysctl_createv(clog, 0, NULL, NULL,
242 CTLFLAG_PERMANENT,
243 CTLTYPE_NODE, "net",
244 SYSCTL_DESCR("Networking"),
245 NULL, 0, NULL, 0,
246 CTL_NET, CTL_EOL);
247 sysctl_createv(clog, 0, NULL, NULL,
248 CTLFLAG_PERMANENT,
249 CTLTYPE_NODE, "debug",
250 SYSCTL_DESCR("Debugging"),
251 NULL, 0, NULL, 0,
252 CTL_DEBUG, CTL_EOL);
253 sysctl_createv(clog, 0, NULL, NULL,
254 CTLFLAG_PERMANENT,
255 CTLTYPE_NODE, "hw",
256 SYSCTL_DESCR("Generic CPU, I/O"),
257 NULL, 0, NULL, 0,
258 CTL_HW, CTL_EOL);
259 sysctl_createv(clog, 0, NULL, NULL,
260 CTLFLAG_PERMANENT,
261 CTLTYPE_NODE, "machdep",
262 SYSCTL_DESCR("Machine dependent"),
263 NULL, 0, NULL, 0,
264 CTL_MACHDEP, CTL_EOL);
265 /*
266 * this node is inserted so that the sysctl nodes in libc can
267 * operate.
268 */
269 sysctl_createv(clog, 0, NULL, NULL,
270 CTLFLAG_PERMANENT,
271 CTLTYPE_NODE, "user",
272 SYSCTL_DESCR("User-level"),
273 NULL, 0, NULL, 0,
274 CTL_USER, CTL_EOL);
275 sysctl_createv(clog, 0, NULL, NULL,
276 CTLFLAG_PERMANENT,
277 CTLTYPE_NODE, "ddb",
278 SYSCTL_DESCR("In-kernel debugger"),
279 NULL, 0, NULL, 0,
280 CTL_DDB, CTL_EOL);
281 sysctl_createv(clog, 0, NULL, NULL,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_NODE, "proc",
284 SYSCTL_DESCR("Per-process"),
285 NULL, 0, NULL, 0,
286 CTL_PROC, CTL_EOL);
287 sysctl_createv(clog, 0, NULL, NULL,
288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
289 CTLTYPE_NODE, "vendor",
290 SYSCTL_DESCR("Vendor specific"),
291 NULL, 0, NULL, 0,
292 CTL_VENDOR, CTL_EOL);
293 sysctl_createv(clog, 0, NULL, NULL,
294 CTLFLAG_PERMANENT,
295 CTLTYPE_NODE, "emul",
296 SYSCTL_DESCR("Emulation settings"),
297 NULL, 0, NULL, 0,
298 CTL_EMUL, CTL_EOL);
299 sysctl_createv(clog, 0, NULL, NULL,
300 CTLFLAG_PERMANENT,
301 CTLTYPE_NODE, "security",
302 SYSCTL_DESCR("Security"),
303 NULL, 0, NULL, 0,
304 CTL_SECURITY, CTL_EOL);
305 }
306
307 /*
308 * this setup routine is a replacement for kern_sysctl()
309 */
310 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
311 {
312 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
313 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
314 extern int dumponpanic; /* defined in kern/subr_prf.c */
315 const struct sysctlnode *rnode;
316
317 sysctl_createv(clog, 0, NULL, NULL,
318 CTLFLAG_PERMANENT,
319 CTLTYPE_NODE, "kern", NULL,
320 NULL, 0, NULL, 0,
321 CTL_KERN, CTL_EOL);
322
323 sysctl_createv(clog, 0, NULL, NULL,
324 CTLFLAG_PERMANENT,
325 CTLTYPE_STRING, "ostype",
326 SYSCTL_DESCR("Operating system type"),
327 NULL, 0, &ostype, 0,
328 CTL_KERN, KERN_OSTYPE, CTL_EOL);
329 sysctl_createv(clog, 0, NULL, NULL,
330 CTLFLAG_PERMANENT,
331 CTLTYPE_STRING, "osrelease",
332 SYSCTL_DESCR("Operating system release"),
333 NULL, 0, &osrelease, 0,
334 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
335 sysctl_createv(clog, 0, NULL, NULL,
336 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
337 CTLTYPE_INT, "osrevision",
338 SYSCTL_DESCR("Operating system revision"),
339 NULL, __NetBSD_Version__, NULL, 0,
340 CTL_KERN, KERN_OSREV, CTL_EOL);
341 sysctl_createv(clog, 0, NULL, NULL,
342 CTLFLAG_PERMANENT,
343 CTLTYPE_STRING, "version",
344 SYSCTL_DESCR("Kernel version"),
345 NULL, 0, &version, 0,
346 CTL_KERN, KERN_VERSION, CTL_EOL);
347 sysctl_createv(clog, 0, NULL, NULL,
348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
349 CTLTYPE_INT, "maxvnodes",
350 SYSCTL_DESCR("Maximum number of vnodes"),
351 sysctl_kern_maxvnodes, 0, NULL, 0,
352 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
353 sysctl_createv(clog, 0, NULL, NULL,
354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
355 CTLTYPE_INT, "maxproc",
356 SYSCTL_DESCR("Maximum number of simultaneous processes"),
357 sysctl_kern_maxproc, 0, NULL, 0,
358 CTL_KERN, KERN_MAXPROC, CTL_EOL);
359 sysctl_createv(clog, 0, NULL, NULL,
360 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
361 CTLTYPE_INT, "maxfiles",
362 SYSCTL_DESCR("Maximum number of open files"),
363 NULL, 0, &maxfiles, 0,
364 CTL_KERN, KERN_MAXFILES, CTL_EOL);
365 sysctl_createv(clog, 0, NULL, NULL,
366 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
367 CTLTYPE_INT, "argmax",
368 SYSCTL_DESCR("Maximum number of bytes of arguments to "
369 "execve(2)"),
370 NULL, ARG_MAX, NULL, 0,
371 CTL_KERN, KERN_ARGMAX, CTL_EOL);
372 sysctl_createv(clog, 0, NULL, NULL,
373 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
374 CTLTYPE_STRING, "hostname",
375 SYSCTL_DESCR("System hostname"),
376 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
377 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
378 sysctl_createv(clog, 0, NULL, NULL,
379 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
380 CTLTYPE_INT, "hostid",
381 SYSCTL_DESCR("System host ID number"),
382 sysctl_kern_hostid, 0, NULL, 0,
383 CTL_KERN, KERN_HOSTID, CTL_EOL);
384 sysctl_createv(clog, 0, NULL, NULL,
385 CTLFLAG_PERMANENT,
386 CTLTYPE_STRUCT, "clockrate",
387 SYSCTL_DESCR("Kernel clock rates"),
388 sysctl_kern_clockrate, 0, NULL,
389 sizeof(struct clockinfo),
390 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
391 sysctl_createv(clog, 0, NULL, NULL,
392 CTLFLAG_PERMANENT,
393 CTLTYPE_INT, "hardclock_ticks",
394 SYSCTL_DESCR("Number of hardclock ticks"),
395 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
396 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
397 sysctl_createv(clog, 0, NULL, NULL,
398 CTLFLAG_PERMANENT,
399 CTLTYPE_STRUCT, "vnode",
400 SYSCTL_DESCR("System vnode table"),
401 sysctl_kern_vnode, 0, NULL, 0,
402 CTL_KERN, KERN_VNODE, CTL_EOL);
403 sysctl_createv(clog, 0, NULL, NULL,
404 CTLFLAG_PERMANENT,
405 CTLTYPE_STRUCT, "file",
406 SYSCTL_DESCR("System open file table"),
407 sysctl_kern_file, 0, NULL, 0,
408 CTL_KERN, KERN_FILE, CTL_EOL);
409 #ifndef GPROF
410 sysctl_createv(clog, 0, NULL, NULL,
411 CTLFLAG_PERMANENT,
412 CTLTYPE_NODE, "profiling",
413 SYSCTL_DESCR("Profiling information (not available)"),
414 sysctl_notavail, 0, NULL, 0,
415 CTL_KERN, KERN_PROF, CTL_EOL);
416 #endif
417 sysctl_createv(clog, 0, NULL, NULL,
418 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
419 CTLTYPE_INT, "posix1version",
420 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
421 "with which the operating system attempts "
422 "to comply"),
423 NULL, _POSIX_VERSION, NULL, 0,
424 CTL_KERN, KERN_POSIX1, CTL_EOL);
425 sysctl_createv(clog, 0, NULL, NULL,
426 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
427 CTLTYPE_INT, "ngroups",
428 SYSCTL_DESCR("Maximum number of supplemental groups"),
429 NULL, NGROUPS_MAX, NULL, 0,
430 CTL_KERN, KERN_NGROUPS, CTL_EOL);
431 sysctl_createv(clog, 0, NULL, NULL,
432 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
433 CTLTYPE_INT, "job_control",
434 SYSCTL_DESCR("Whether job control is available"),
435 NULL, 1, NULL, 0,
436 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
437 sysctl_createv(clog, 0, NULL, NULL,
438 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
439 CTLTYPE_INT, "saved_ids",
440 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
441 "available"), NULL,
442 #ifdef _POSIX_SAVED_IDS
443 1,
444 #else /* _POSIX_SAVED_IDS */
445 0,
446 #endif /* _POSIX_SAVED_IDS */
447 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
448 sysctl_createv(clog, 0, NULL, NULL,
449 CTLFLAG_PERMANENT,
450 CTLTYPE_STRUCT, "boottime",
451 SYSCTL_DESCR("System boot time"),
452 NULL, 0, &boottime, sizeof(boottime),
453 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
454 #ifdef COMPAT_50
455 {
456 extern struct timeval50 boottime50;
457 sysctl_createv(clog, 0, NULL, NULL,
458 CTLFLAG_PERMANENT,
459 CTLTYPE_STRUCT, "oboottime",
460 SYSCTL_DESCR("System boot time"),
461 NULL, 0, &boottime50, sizeof(boottime50),
462 CTL_KERN, KERN_OBOOTTIME, CTL_EOL);
463 }
464 #endif
465 sysctl_createv(clog, 0, NULL, NULL,
466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
467 CTLTYPE_STRING, "domainname",
468 SYSCTL_DESCR("YP domain name"),
469 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
470 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
471 sysctl_createv(clog, 0, NULL, NULL,
472 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
473 CTLTYPE_INT, "maxpartitions",
474 SYSCTL_DESCR("Maximum number of partitions allowed per "
475 "disk"),
476 NULL, MAXPARTITIONS, NULL, 0,
477 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
478 sysctl_createv(clog, 0, NULL, NULL,
479 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
480 CTLTYPE_INT, "rawpartition",
481 SYSCTL_DESCR("Raw partition of a disk"),
482 NULL, RAW_PART, NULL, 0,
483 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
484 sysctl_createv(clog, 0, NULL, NULL,
485 CTLFLAG_PERMANENT,
486 CTLTYPE_STRUCT, "timex", NULL,
487 sysctl_notavail, 0, NULL, 0,
488 CTL_KERN, KERN_TIMEX, CTL_EOL);
489 sysctl_createv(clog, 0, NULL, NULL,
490 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
491 CTLTYPE_INT, "rtc_offset",
492 SYSCTL_DESCR("Offset of real time clock from UTC in "
493 "minutes"),
494 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
495 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
496 sysctl_createv(clog, 0, NULL, NULL,
497 CTLFLAG_PERMANENT,
498 CTLTYPE_STRING, "root_device",
499 SYSCTL_DESCR("Name of the root device"),
500 sysctl_root_device, 0, NULL, 0,
501 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
502 sysctl_createv(clog, 0, NULL, NULL,
503 CTLFLAG_PERMANENT,
504 CTLTYPE_INT, "msgbufsize",
505 SYSCTL_DESCR("Size of the kernel message buffer"),
506 sysctl_msgbuf, 0, NULL, 0,
507 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
508 sysctl_createv(clog, 0, NULL, NULL,
509 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
510 CTLTYPE_INT, "fsync",
511 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
512 "Synchronization Option is available on "
513 "this system"),
514 NULL, 1, NULL, 0,
515 CTL_KERN, KERN_FSYNC, CTL_EOL);
516 sysctl_createv(clog, 0, NULL, NULL,
517 CTLFLAG_PERMANENT,
518 CTLTYPE_NODE, "ipc",
519 SYSCTL_DESCR("SysV IPC options"),
520 NULL, 0, NULL, 0,
521 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
522 sysctl_createv(clog, 0, NULL, NULL,
523 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
524 CTLTYPE_INT, "sysvmsg",
525 SYSCTL_DESCR("System V style message support available"),
526 NULL,
527 #ifdef SYSVMSG
528 1,
529 #else /* SYSVMSG */
530 0,
531 #endif /* SYSVMSG */
532 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_MSG, CTL_EOL);
533 sysctl_createv(clog, 0, NULL, NULL,
534 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
535 CTLTYPE_INT, "sysvsem",
536 SYSCTL_DESCR("System V style semaphore support "
537 "available"), NULL,
538 #ifdef SYSVSEM
539 1,
540 #else /* SYSVSEM */
541 0,
542 #endif /* SYSVSEM */
543 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SEM, CTL_EOL);
544 sysctl_createv(clog, 0, NULL, NULL,
545 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
546 CTLTYPE_INT, "sysvshm",
547 SYSCTL_DESCR("System V style shared memory support "
548 "available"), NULL,
549 #ifdef SYSVSHM
550 1,
551 #else /* SYSVSHM */
552 0,
553 #endif /* SYSVSHM */
554 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHM, CTL_EOL);
555 sysctl_createv(clog, 0, NULL, NULL,
556 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
557 CTLTYPE_INT, "synchronized_io",
558 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
559 "I/O Option is available on this system"),
560 NULL, 1, NULL, 0,
561 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
562 sysctl_createv(clog, 0, NULL, NULL,
563 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
564 CTLTYPE_INT, "iov_max",
565 SYSCTL_DESCR("Maximum number of iovec structures per "
566 "process"),
567 NULL, IOV_MAX, NULL, 0,
568 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
569 sysctl_createv(clog, 0, NULL, NULL,
570 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
571 CTLTYPE_INT, "mapped_files",
572 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
573 "Files Option is available on this system"),
574 NULL, 1, NULL, 0,
575 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
576 sysctl_createv(clog, 0, NULL, NULL,
577 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
578 CTLTYPE_INT, "memlock",
579 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
580 "Locking Option is available on this "
581 "system"),
582 NULL, 1, NULL, 0,
583 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
584 sysctl_createv(clog, 0, NULL, NULL,
585 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
586 CTLTYPE_INT, "memlock_range",
587 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
588 "Locking Option is available on this "
589 "system"),
590 NULL, 1, NULL, 0,
591 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
592 sysctl_createv(clog, 0, NULL, NULL,
593 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
594 CTLTYPE_INT, "memory_protection",
595 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
596 "Protection Option is available on this "
597 "system"),
598 NULL, 1, NULL, 0,
599 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
600 sysctl_createv(clog, 0, NULL, NULL,
601 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
602 CTLTYPE_INT, "login_name_max",
603 SYSCTL_DESCR("Maximum login name length"),
604 NULL, LOGIN_NAME_MAX, NULL, 0,
605 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
606 sysctl_createv(clog, 0, NULL, NULL,
607 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
608 CTLTYPE_STRING, "defcorename",
609 SYSCTL_DESCR("Default core file name"),
610 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
611 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
612 sysctl_createv(clog, 0, NULL, NULL,
613 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
614 CTLTYPE_INT, "logsigexit",
615 SYSCTL_DESCR("Log process exit when caused by signals"),
616 NULL, 0, &kern_logsigexit, 0,
617 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
618 sysctl_createv(clog, 0, NULL, NULL,
619 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
620 CTLTYPE_INT, "fscale",
621 SYSCTL_DESCR("Kernel fixed-point scale factor"),
622 NULL, FSCALE, NULL, 0,
623 CTL_KERN, KERN_FSCALE, CTL_EOL);
624 sysctl_createv(clog, 0, NULL, NULL,
625 CTLFLAG_PERMANENT,
626 CTLTYPE_INT, "ccpu",
627 SYSCTL_DESCR("Scheduler exponential decay value"),
628 NULL, 0, &ccpu, 0,
629 CTL_KERN, KERN_CCPU, CTL_EOL);
630 sysctl_createv(clog, 0, NULL, NULL,
631 CTLFLAG_PERMANENT,
632 CTLTYPE_STRUCT, "cp_time",
633 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
634 sysctl_kern_cptime, 0, NULL, 0,
635 CTL_KERN, KERN_CP_TIME, CTL_EOL);
636 sysctl_createv(clog, 0, NULL, NULL,
637 CTLFLAG_PERMANENT,
638 CTLTYPE_INT, "msgbuf",
639 SYSCTL_DESCR("Kernel message buffer"),
640 sysctl_msgbuf, 0, NULL, 0,
641 CTL_KERN, KERN_MSGBUF, CTL_EOL);
642 sysctl_createv(clog, 0, NULL, NULL,
643 CTLFLAG_PERMANENT,
644 CTLTYPE_STRUCT, "consdev",
645 SYSCTL_DESCR("Console device"),
646 sysctl_consdev, 0, NULL, sizeof(dev_t),
647 CTL_KERN, KERN_CONSDEV, CTL_EOL);
648 #if NPTY > 0
649 sysctl_createv(clog, 0, NULL, NULL,
650 CTLFLAG_PERMANENT,
651 CTLTYPE_INT, "maxptys",
652 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
653 sysctl_kern_maxptys, 0, NULL, 0,
654 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
655 #endif /* NPTY > 0 */
656 sysctl_createv(clog, 0, NULL, NULL,
657 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
658 CTLTYPE_INT, "maxphys",
659 SYSCTL_DESCR("Maximum raw I/O transfer size"),
660 NULL, MAXPHYS, NULL, 0,
661 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
662 sysctl_createv(clog, 0, NULL, NULL,
663 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
664 CTLTYPE_INT, "sbmax",
665 SYSCTL_DESCR("Maximum socket buffer size"),
666 sysctl_kern_sbmax, 0, NULL, 0,
667 CTL_KERN, KERN_SBMAX, CTL_EOL);
668 sysctl_createv(clog, 0, NULL, NULL,
669 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
670 CTLTYPE_INT, "monotonic_clock",
671 SYSCTL_DESCR("Implementation version of the POSIX "
672 "1003.1b Monotonic Clock Option"),
673 /* XXX _POSIX_VERSION */
674 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
675 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
676 sysctl_createv(clog, 0, NULL, NULL,
677 CTLFLAG_PERMANENT,
678 CTLTYPE_INT, "urandom",
679 SYSCTL_DESCR("Random integer value"),
680 sysctl_kern_urnd, 0, NULL, 0,
681 CTL_KERN, KERN_URND, CTL_EOL);
682 sysctl_createv(clog, 0, NULL, NULL,
683 CTLFLAG_PERMANENT,
684 CTLTYPE_INT, "arandom",
685 SYSCTL_DESCR("n bytes of random data"),
686 sysctl_kern_arnd, 0, NULL, 0,
687 CTL_KERN, KERN_ARND, CTL_EOL);
688 sysctl_createv(clog, 0, NULL, NULL,
689 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
690 CTLTYPE_INT, "labelsector",
691 SYSCTL_DESCR("Sector number containing the disklabel"),
692 NULL, LABELSECTOR, NULL, 0,
693 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
694 sysctl_createv(clog, 0, NULL, NULL,
695 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
696 CTLTYPE_INT, "labeloffset",
697 SYSCTL_DESCR("Offset of the disklabel within the "
698 "sector"),
699 NULL, LABELOFFSET, NULL, 0,
700 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
701 sysctl_createv(clog, 0, NULL, NULL,
702 CTLFLAG_PERMANENT,
703 CTLTYPE_NODE, "lwp",
704 SYSCTL_DESCR("System-wide LWP information"),
705 sysctl_kern_lwp, 0, NULL, 0,
706 CTL_KERN, KERN_LWP, CTL_EOL);
707 sysctl_createv(clog, 0, NULL, NULL,
708 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
709 CTLTYPE_INT, "forkfsleep",
710 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
711 "to process limits"),
712 sysctl_kern_forkfsleep, 0, NULL, 0,
713 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
714 sysctl_createv(clog, 0, NULL, NULL,
715 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
716 CTLTYPE_INT, "posix_threads",
717 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
718 "Threads option to which the system "
719 "attempts to conform"),
720 /* XXX _POSIX_VERSION */
721 NULL, _POSIX_THREADS, NULL, 0,
722 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
723 sysctl_createv(clog, 0, NULL, NULL,
724 CTLFLAG_PERMANENT,
725 CTLTYPE_INT, "posix_semaphores",
726 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
727 "Semaphores option to which the system "
728 "attempts to conform"), NULL,
729 0, &posix_semaphores,
730 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
731 sysctl_createv(clog, 0, NULL, NULL,
732 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
733 CTLTYPE_INT, "posix_barriers",
734 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
735 "Barriers option to which the system "
736 "attempts to conform"),
737 /* XXX _POSIX_VERSION */
738 NULL, _POSIX_BARRIERS, NULL, 0,
739 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
740 sysctl_createv(clog, 0, NULL, NULL,
741 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
742 CTLTYPE_INT, "posix_timers",
743 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
744 "Timers option to which the system "
745 "attempts to conform"),
746 /* XXX _POSIX_VERSION */
747 NULL, _POSIX_TIMERS, NULL, 0,
748 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
749 sysctl_createv(clog, 0, NULL, NULL,
750 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
751 CTLTYPE_INT, "posix_spin_locks",
752 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
753 "Locks option to which the system attempts "
754 "to conform"),
755 /* XXX _POSIX_VERSION */
756 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
757 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
758 sysctl_createv(clog, 0, NULL, NULL,
759 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
760 CTLTYPE_INT, "posix_reader_writer_locks",
761 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
762 "Read-Write Locks option to which the "
763 "system attempts to conform"),
764 /* XXX _POSIX_VERSION */
765 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
766 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
767 sysctl_createv(clog, 0, NULL, NULL,
768 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
769 CTLTYPE_INT, "dump_on_panic",
770 SYSCTL_DESCR("Perform a crash dump on system panic"),
771 NULL, 0, &dumponpanic, 0,
772 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
773 #ifdef DIAGNOSTIC
774 sysctl_createv(clog, 0, NULL, NULL,
775 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
776 CTLTYPE_INT, "panic_now",
777 SYSCTL_DESCR("Trigger a panic"),
778 sysctl_kern_trigger_panic, 0, NULL, 0,
779 CTL_KERN, CTL_CREATE, CTL_EOL);
780 #endif
781 sysctl_createv(clog, 0, NULL, NULL,
782 CTLFLAG_PERMANENT,
783 CTLTYPE_INT, "root_partition",
784 SYSCTL_DESCR("Root partition on the root device"),
785 sysctl_kern_root_partition, 0, NULL, 0,
786 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
787 sysctl_createv(clog, 0, NULL, NULL,
788 CTLFLAG_PERMANENT,
789 CTLTYPE_STRUCT, "drivers",
790 SYSCTL_DESCR("List of all drivers with block and "
791 "character device numbers"),
792 sysctl_kern_drivers, 0, NULL, 0,
793 CTL_KERN, KERN_DRIVERS, CTL_EOL);
794 sysctl_createv(clog, 0, NULL, NULL,
795 CTLFLAG_PERMANENT,
796 CTLTYPE_STRUCT, "file2",
797 SYSCTL_DESCR("System open file table"),
798 sysctl_kern_file2, 0, NULL, 0,
799 CTL_KERN, KERN_FILE2, CTL_EOL);
800 sysctl_createv(clog, 0, NULL, NULL,
801 CTLFLAG_PERMANENT,
802 CTLTYPE_STRUCT, "cp_id",
803 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
804 sysctl_kern_cpid, 0, NULL, 0,
805 CTL_KERN, KERN_CP_ID, CTL_EOL);
806 sysctl_createv(clog, 0, NULL, &rnode,
807 CTLFLAG_PERMANENT,
808 CTLTYPE_NODE, "coredump",
809 SYSCTL_DESCR("Coredump settings."),
810 NULL, 0, NULL, 0,
811 CTL_KERN, CTL_CREATE, CTL_EOL);
812 sysctl_createv(clog, 0, &rnode, &rnode,
813 CTLFLAG_PERMANENT,
814 CTLTYPE_NODE, "setid",
815 SYSCTL_DESCR("Set-id processes' coredump settings."),
816 NULL, 0, NULL, 0,
817 CTL_CREATE, CTL_EOL);
818 sysctl_createv(clog, 0, &rnode, NULL,
819 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
820 CTLTYPE_INT, "dump",
821 SYSCTL_DESCR("Allow set-id processes to dump core."),
822 sysctl_security_setidcore, 0, &security_setidcore_dump,
823 sizeof(security_setidcore_dump),
824 CTL_CREATE, CTL_EOL);
825 sysctl_createv(clog, 0, &rnode, NULL,
826 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
827 CTLTYPE_STRING, "path",
828 SYSCTL_DESCR("Path pattern for set-id coredumps."),
829 sysctl_security_setidcorename, 0,
830 &security_setidcore_path,
831 sizeof(security_setidcore_path),
832 CTL_CREATE, CTL_EOL);
833 sysctl_createv(clog, 0, &rnode, NULL,
834 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
835 CTLTYPE_INT, "owner",
836 SYSCTL_DESCR("Owner id for set-id processes' cores."),
837 sysctl_security_setidcore, 0, &security_setidcore_owner,
838 0,
839 CTL_CREATE, CTL_EOL);
840 sysctl_createv(clog, 0, &rnode, NULL,
841 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
842 CTLTYPE_INT, "group",
843 SYSCTL_DESCR("Group id for set-id processes' cores."),
844 sysctl_security_setidcore, 0, &security_setidcore_group,
845 0,
846 CTL_CREATE, CTL_EOL);
847 sysctl_createv(clog, 0, &rnode, NULL,
848 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
849 CTLTYPE_INT, "mode",
850 SYSCTL_DESCR("Mode for set-id processes' cores."),
851 sysctl_security_setidcore, 0, &security_setidcore_mode,
852 0,
853 CTL_CREATE, CTL_EOL);
854 #ifdef KERN_SA
855 sysctl_createv(clog, 0, NULL, NULL,
856 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
857 CTLTYPE_INT, "no_sa_support",
858 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
859 NULL, 0, &sa_system_disabled, 0,
860 CTL_KERN, CTL_CREATE, CTL_EOL);
861 #else
862 sysctl_createv(clog, 0, NULL, NULL,
863 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
864 CTLTYPE_INT, "no_sa_support",
865 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
866 NULL, 1, NULL, 0,
867 CTL_KERN, CTL_CREATE, CTL_EOL);
868 #endif
869
870 /* kern.posix. */
871 sysctl_createv(clog, 0, NULL, &rnode,
872 CTLFLAG_PERMANENT,
873 CTLTYPE_NODE, "posix",
874 SYSCTL_DESCR("POSIX options"),
875 NULL, 0, NULL, 0,
876 CTL_KERN, CTL_CREATE, CTL_EOL);
877 sysctl_createv(clog, 0, &rnode, NULL,
878 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
879 CTLTYPE_INT, "semmax",
880 SYSCTL_DESCR("Maximal number of semaphores"),
881 NULL, 0, &ksem_max, 0,
882 CTL_CREATE, CTL_EOL);
883 }
884
885 SYSCTL_SETUP(sysctl_kern_proc_setup,
886 "sysctl kern.proc/proc2/proc_args subtree setup")
887 {
888
889 sysctl_createv(clog, 0, NULL, NULL,
890 CTLFLAG_PERMANENT,
891 CTLTYPE_NODE, "kern", NULL,
892 NULL, 0, NULL, 0,
893 CTL_KERN, CTL_EOL);
894
895 sysctl_createv(clog, 0, NULL, NULL,
896 CTLFLAG_PERMANENT,
897 CTLTYPE_NODE, "proc",
898 SYSCTL_DESCR("System-wide process information"),
899 sysctl_doeproc, 0, NULL, 0,
900 CTL_KERN, KERN_PROC, CTL_EOL);
901 sysctl_createv(clog, 0, NULL, NULL,
902 CTLFLAG_PERMANENT,
903 CTLTYPE_NODE, "proc2",
904 SYSCTL_DESCR("Machine-independent process information"),
905 sysctl_doeproc, 0, NULL, 0,
906 CTL_KERN, KERN_PROC2, CTL_EOL);
907 sysctl_createv(clog, 0, NULL, NULL,
908 CTLFLAG_PERMANENT,
909 CTLTYPE_NODE, "proc_args",
910 SYSCTL_DESCR("Process argument information"),
911 sysctl_kern_proc_args, 0, NULL, 0,
912 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
913
914 /*
915 "nodes" under these:
916
917 KERN_PROC_ALL
918 KERN_PROC_PID pid
919 KERN_PROC_PGRP pgrp
920 KERN_PROC_SESSION sess
921 KERN_PROC_TTY tty
922 KERN_PROC_UID uid
923 KERN_PROC_RUID uid
924 KERN_PROC_GID gid
925 KERN_PROC_RGID gid
926
927 all in all, probably not worth the effort...
928 */
929 }
930
931 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
932 {
933 u_int u;
934 u_quad_t q;
935
936 sysctl_createv(clog, 0, NULL, NULL,
937 CTLFLAG_PERMANENT,
938 CTLTYPE_NODE, "hw", NULL,
939 NULL, 0, NULL, 0,
940 CTL_HW, CTL_EOL);
941
942 sysctl_createv(clog, 0, NULL, NULL,
943 CTLFLAG_PERMANENT,
944 CTLTYPE_STRING, "machine",
945 SYSCTL_DESCR("Machine class"),
946 NULL, 0, machine, 0,
947 CTL_HW, HW_MACHINE, CTL_EOL);
948 sysctl_createv(clog, 0, NULL, NULL,
949 CTLFLAG_PERMANENT,
950 CTLTYPE_STRING, "model",
951 SYSCTL_DESCR("Machine model"),
952 NULL, 0, cpu_model, 0,
953 CTL_HW, HW_MODEL, CTL_EOL);
954 sysctl_createv(clog, 0, NULL, NULL,
955 CTLFLAG_PERMANENT,
956 CTLTYPE_INT, "ncpu",
957 SYSCTL_DESCR("Number of CPUs configured"),
958 NULL, 0, &ncpu, 0,
959 CTL_HW, HW_NCPU, CTL_EOL);
960 sysctl_createv(clog, 0, NULL, NULL,
961 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
962 CTLTYPE_INT, "byteorder",
963 SYSCTL_DESCR("System byte order"),
964 NULL, BYTE_ORDER, NULL, 0,
965 CTL_HW, HW_BYTEORDER, CTL_EOL);
966 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
967 UINT_MAX : physmem * PAGE_SIZE;
968 sysctl_createv(clog, 0, NULL, NULL,
969 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
970 CTLTYPE_INT, "physmem",
971 SYSCTL_DESCR("Bytes of physical memory"),
972 NULL, u, NULL, 0,
973 CTL_HW, HW_PHYSMEM, CTL_EOL);
974 sysctl_createv(clog, 0, NULL, NULL,
975 CTLFLAG_PERMANENT,
976 CTLTYPE_INT, "usermem",
977 SYSCTL_DESCR("Bytes of non-kernel memory"),
978 sysctl_hw_usermem, 0, NULL, 0,
979 CTL_HW, HW_USERMEM, CTL_EOL);
980 sysctl_createv(clog, 0, NULL, NULL,
981 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
982 CTLTYPE_INT, "pagesize",
983 SYSCTL_DESCR("Software page size"),
984 NULL, PAGE_SIZE, NULL, 0,
985 CTL_HW, HW_PAGESIZE, CTL_EOL);
986 sysctl_createv(clog, 0, NULL, NULL,
987 CTLFLAG_PERMANENT,
988 CTLTYPE_STRING, "machine_arch",
989 SYSCTL_DESCR("Machine CPU class"),
990 NULL, 0, machine_arch, 0,
991 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
992 sysctl_createv(clog, 0, NULL, NULL,
993 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
994 CTLTYPE_INT, "alignbytes",
995 SYSCTL_DESCR("Alignment constraint for all possible "
996 "data types"),
997 NULL, ALIGNBYTES, NULL, 0,
998 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
999 sysctl_createv(clog, 0, NULL, NULL,
1000 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
1001 CTLTYPE_STRING, "cnmagic",
1002 SYSCTL_DESCR("Console magic key sequence"),
1003 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
1004 CTL_HW, HW_CNMAGIC, CTL_EOL);
1005 q = (u_quad_t)physmem * PAGE_SIZE;
1006 sysctl_createv(clog, 0, NULL, NULL,
1007 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
1008 CTLTYPE_QUAD, "physmem64",
1009 SYSCTL_DESCR("Bytes of physical memory"),
1010 NULL, q, NULL, 0,
1011 CTL_HW, HW_PHYSMEM64, CTL_EOL);
1012 sysctl_createv(clog, 0, NULL, NULL,
1013 CTLFLAG_PERMANENT,
1014 CTLTYPE_QUAD, "usermem64",
1015 SYSCTL_DESCR("Bytes of non-kernel memory"),
1016 sysctl_hw_usermem, 0, NULL, 0,
1017 CTL_HW, HW_USERMEM64, CTL_EOL);
1018 sysctl_createv(clog, 0, NULL, NULL,
1019 CTLFLAG_PERMANENT,
1020 CTLTYPE_INT, "ncpuonline",
1021 SYSCTL_DESCR("Number of CPUs online"),
1022 NULL, 0, &ncpuonline, 0,
1023 CTL_HW, HW_NCPUONLINE, CTL_EOL);
1024 }
1025
1026 #ifdef DEBUG
1027 /*
1028 * Debugging related system variables.
1029 */
1030 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
1031 struct ctldebug debug5, debug6, debug7, debug8, debug9;
1032 struct ctldebug debug10, debug11, debug12, debug13, debug14;
1033 struct ctldebug debug15, debug16, debug17, debug18, debug19;
1034 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
1035 &debug0, &debug1, &debug2, &debug3, &debug4,
1036 &debug5, &debug6, &debug7, &debug8, &debug9,
1037 &debug10, &debug11, &debug12, &debug13, &debug14,
1038 &debug15, &debug16, &debug17, &debug18, &debug19,
1039 };
1040
1041 /*
1042 * this setup routine is a replacement for debug_sysctl()
1043 *
1044 * note that it creates several nodes per defined debug variable
1045 */
1046 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
1047 {
1048 struct ctldebug *cdp;
1049 char nodename[20];
1050 int i;
1051
1052 /*
1053 * two ways here:
1054 *
1055 * the "old" way (debug.name -> value) which was emulated by
1056 * the sysctl(8) binary
1057 *
1058 * the new way, which the sysctl(8) binary was actually using
1059
1060 node debug
1061 node debug.0
1062 string debug.0.name
1063 int debug.0.value
1064 int debug.name
1065
1066 */
1067
1068 sysctl_createv(clog, 0, NULL, NULL,
1069 CTLFLAG_PERMANENT,
1070 CTLTYPE_NODE, "debug", NULL,
1071 NULL, 0, NULL, 0,
1072 CTL_DEBUG, CTL_EOL);
1073
1074 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
1075 cdp = debugvars[i];
1076 if (cdp->debugname == NULL || cdp->debugvar == NULL)
1077 continue;
1078
1079 snprintf(nodename, sizeof(nodename), "debug%d", i);
1080 sysctl_createv(clog, 0, NULL, NULL,
1081 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1082 CTLTYPE_NODE, nodename, NULL,
1083 NULL, 0, NULL, 0,
1084 CTL_DEBUG, i, CTL_EOL);
1085 sysctl_createv(clog, 0, NULL, NULL,
1086 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1087 CTLTYPE_STRING, "name", NULL,
1088 /*XXXUNCONST*/
1089 NULL, 0, __UNCONST(cdp->debugname), 0,
1090 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1091 sysctl_createv(clog, 0, NULL, NULL,
1092 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1093 CTLTYPE_INT, "value", NULL,
1094 NULL, 0, cdp->debugvar, 0,
1095 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1096 sysctl_createv(clog, 0, NULL, NULL,
1097 CTLFLAG_PERMANENT,
1098 CTLTYPE_INT, cdp->debugname, NULL,
1099 NULL, 0, cdp->debugvar, 0,
1100 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1101 }
1102 }
1103 #endif /* DEBUG */
1104
1105 /*
1106 * ********************************************************************
1107 * section 2: private node-specific helper routines.
1108 * ********************************************************************
1109 */
1110
1111 #ifdef DIAGNOSTIC
1112 static int
1113 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1114 {
1115 int newtrig, error;
1116 struct sysctlnode node;
1117
1118 newtrig = 0;
1119 node = *rnode;
1120 node.sysctl_data = &newtrig;
1121 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1122 if (error || newp == NULL)
1123 return (error);
1124
1125 if (newtrig != 0)
1126 panic("Panic triggered");
1127
1128 return (error);
1129 }
1130 #endif
1131
1132 /*
1133 * sysctl helper routine for kern.maxvnodes. Drain vnodes if
1134 * new value is lower than desiredvnodes and then calls reinit
1135 * routines that needs to adjust to the new value.
1136 */
1137 static int
1138 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1139 {
1140 int error, new_vnodes, old_vnodes, new_max;
1141 struct sysctlnode node;
1142
1143 new_vnodes = desiredvnodes;
1144 node = *rnode;
1145 node.sysctl_data = &new_vnodes;
1146 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1147 if (error || newp == NULL)
1148 return (error);
1149
1150 /* Limits: 75% of KVA and physical memory. */
1151 new_max = calc_cache_size(kernel_map, 75, 75) / VNODE_COST;
1152 if (new_vnodes > new_max)
1153 new_vnodes = new_max;
1154
1155 old_vnodes = desiredvnodes;
1156 desiredvnodes = new_vnodes;
1157 if (new_vnodes < old_vnodes) {
1158 error = vfs_drainvnodes(new_vnodes, l);
1159 if (error) {
1160 desiredvnodes = old_vnodes;
1161 return (error);
1162 }
1163 }
1164 vfs_reinit();
1165 nchreinit();
1166
1167 return (0);
1168 }
1169
1170 /*
1171 * sysctl helper routine for rtc_offset - set time after changes
1172 */
1173 static int
1174 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1175 {
1176 struct timespec ts, delta;
1177 int error, new_rtc_offset;
1178 struct sysctlnode node;
1179
1180 new_rtc_offset = rtc_offset;
1181 node = *rnode;
1182 node.sysctl_data = &new_rtc_offset;
1183 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1184 if (error || newp == NULL)
1185 return (error);
1186
1187 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
1188 KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
1189 KAUTH_ARG(new_rtc_offset), NULL, NULL))
1190 return (EPERM);
1191 if (rtc_offset == new_rtc_offset)
1192 return (0);
1193
1194 /* if we change the offset, adjust the time */
1195 nanotime(&ts);
1196 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1197 delta.tv_nsec = 0;
1198 timespecadd(&ts, &delta, &ts);
1199 rtc_offset = new_rtc_offset;
1200 return (settime(l->l_proc, &ts));
1201 }
1202
1203 /*
1204 * sysctl helper routine for kern.maxproc. Ensures that the new
1205 * values are not too low or too high.
1206 */
1207 static int
1208 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1209 {
1210 int error, nmaxproc;
1211 struct sysctlnode node;
1212
1213 nmaxproc = maxproc;
1214 node = *rnode;
1215 node.sysctl_data = &nmaxproc;
1216 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1217 if (error || newp == NULL)
1218 return (error);
1219
1220 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1221 return (EINVAL);
1222 #ifdef __HAVE_CPU_MAXPROC
1223 if (nmaxproc > cpu_maxproc())
1224 return (EINVAL);
1225 #endif
1226 maxproc = nmaxproc;
1227
1228 return (0);
1229 }
1230
1231 /*
1232 * sysctl helper function for kern.hostid. The hostid is a long, but
1233 * we export it as an int, so we need to give it a little help.
1234 */
1235 static int
1236 sysctl_kern_hostid(SYSCTLFN_ARGS)
1237 {
1238 int error, inthostid;
1239 struct sysctlnode node;
1240
1241 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1242 node = *rnode;
1243 node.sysctl_data = &inthostid;
1244 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1245 if (error || newp == NULL)
1246 return (error);
1247
1248 hostid = (unsigned)inthostid;
1249
1250 return (0);
1251 }
1252
1253 /*
1254 * sysctl helper function for kern.hostname and kern.domainnname.
1255 * resets the relevant recorded length when the underlying name is
1256 * changed.
1257 */
1258 static int
1259 sysctl_setlen(SYSCTLFN_ARGS)
1260 {
1261 int error;
1262
1263 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1264 if (error || newp == NULL)
1265 return (error);
1266
1267 switch (rnode->sysctl_num) {
1268 case KERN_HOSTNAME:
1269 hostnamelen = strlen((const char*)rnode->sysctl_data);
1270 break;
1271 case KERN_DOMAINNAME:
1272 domainnamelen = strlen((const char*)rnode->sysctl_data);
1273 break;
1274 }
1275
1276 return (0);
1277 }
1278
1279 /*
1280 * sysctl helper routine for kern.clockrate. Assembles a struct on
1281 * the fly to be returned to the caller.
1282 */
1283 static int
1284 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1285 {
1286 struct clockinfo clkinfo;
1287 struct sysctlnode node;
1288
1289 clkinfo.tick = tick;
1290 clkinfo.tickadj = tickadj;
1291 clkinfo.hz = hz;
1292 clkinfo.profhz = profhz;
1293 clkinfo.stathz = stathz ? stathz : hz;
1294
1295 node = *rnode;
1296 node.sysctl_data = &clkinfo;
1297 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1298 }
1299
1300
1301 /*
1302 * sysctl helper routine for kern.file pseudo-subtree.
1303 */
1304 static int
1305 sysctl_kern_file(SYSCTLFN_ARGS)
1306 {
1307 int error;
1308 size_t buflen;
1309 struct file *fp, *dp, *np, fbuf;
1310 char *start, *where;
1311
1312 start = where = oldp;
1313 buflen = *oldlenp;
1314 dp = NULL;
1315
1316 if (where == NULL) {
1317 /*
1318 * overestimate by 10 files
1319 */
1320 *oldlenp = sizeof(filehead) + (nfiles + 10) *
1321 sizeof(struct file);
1322 return (0);
1323 }
1324
1325 /*
1326 * first dcopyout filehead
1327 */
1328 if (buflen < sizeof(filehead)) {
1329 *oldlenp = 0;
1330 return (0);
1331 }
1332 sysctl_unlock();
1333 error = dcopyout(l, &filehead, where, sizeof(filehead));
1334 if (error) {
1335 sysctl_relock();
1336 return error;
1337 }
1338 buflen -= sizeof(filehead);
1339 where += sizeof(filehead);
1340
1341 /*
1342 * allocate dummy file descriptor to make position in list
1343 */
1344 if ((dp = fgetdummy()) == NULL) {
1345 sysctl_relock();
1346 return ENOMEM;
1347 }
1348
1349 /*
1350 * followed by an array of file structures
1351 */
1352 mutex_enter(&filelist_lock);
1353 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1354 np = LIST_NEXT(fp, f_list);
1355 mutex_enter(&fp->f_lock);
1356 if (fp->f_count == 0) {
1357 mutex_exit(&fp->f_lock);
1358 continue;
1359 }
1360 /*
1361 * XXX Need to prevent that from being an alternative way
1362 * XXX to getting process information.
1363 */
1364 if (kauth_authorize_generic(l->l_cred,
1365 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0) {
1366 mutex_exit(&fp->f_lock);
1367 continue;
1368 }
1369 if (buflen < sizeof(struct file)) {
1370 *oldlenp = where - start;
1371 mutex_exit(&fp->f_lock);
1372 error = ENOMEM;
1373 break;
1374 }
1375 memcpy(&fbuf, fp, sizeof(fbuf));
1376 LIST_INSERT_AFTER(fp, dp, f_list);
1377 mutex_exit(&fp->f_lock);
1378 mutex_exit(&filelist_lock);
1379 error = dcopyout(l, &fbuf, where, sizeof(fbuf));
1380 if (error) {
1381 mutex_enter(&filelist_lock);
1382 LIST_REMOVE(dp, f_list);
1383 break;
1384 }
1385 buflen -= sizeof(struct file);
1386 where += sizeof(struct file);
1387 mutex_enter(&filelist_lock);
1388 np = LIST_NEXT(dp, f_list);
1389 LIST_REMOVE(dp, f_list);
1390 }
1391 mutex_exit(&filelist_lock);
1392 *oldlenp = where - start;
1393 if (dp != NULL)
1394 fputdummy(dp);
1395 sysctl_relock();
1396 return (error);
1397 }
1398
1399 /*
1400 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. For the
1401 * former it merely checks the message buffer is set up. For the latter,
1402 * it also copies out the data if necessary.
1403 */
1404 static int
1405 sysctl_msgbuf(SYSCTLFN_ARGS)
1406 {
1407 char *where = oldp;
1408 size_t len, maxlen;
1409 long beg, end;
1410 extern kmutex_t log_lock;
1411 int error;
1412
1413 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1414 msgbufenabled = 0;
1415 return (ENXIO);
1416 }
1417
1418 switch (rnode->sysctl_num) {
1419 case KERN_MSGBUFSIZE: {
1420 struct sysctlnode node = *rnode;
1421 int msg_bufs = (int)msgbufp->msg_bufs;
1422 node.sysctl_data = &msg_bufs;
1423 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1424 }
1425 case KERN_MSGBUF:
1426 break;
1427 default:
1428 return (EOPNOTSUPP);
1429 }
1430
1431 if (newp != NULL)
1432 return (EPERM);
1433
1434 if (oldp == NULL) {
1435 /* always return full buffer size */
1436 *oldlenp = msgbufp->msg_bufs;
1437 return (0);
1438 }
1439
1440 sysctl_unlock();
1441
1442 /*
1443 * First, copy from the write pointer to the end of
1444 * message buffer.
1445 */
1446 error = 0;
1447 mutex_spin_enter(&log_lock);
1448 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1449 beg = msgbufp->msg_bufx;
1450 end = msgbufp->msg_bufs;
1451 mutex_spin_exit(&log_lock);
1452
1453 while (maxlen > 0) {
1454 len = MIN(end - beg, maxlen);
1455 if (len == 0)
1456 break;
1457 /* XXX unlocked, but hardly matters. */
1458 error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
1459 if (error)
1460 break;
1461 where += len;
1462 maxlen -= len;
1463
1464 /*
1465 * ... then, copy from the beginning of message buffer to
1466 * the write pointer.
1467 */
1468 beg = 0;
1469 end = msgbufp->msg_bufx;
1470 }
1471
1472 sysctl_relock();
1473 return (error);
1474 }
1475
1476 /*
1477 * sysctl helper routine for kern.defcorename. In the case of a new
1478 * string being assigned, check that it's not a zero-length string.
1479 * (XXX the check in -current doesn't work, but do we really care?)
1480 */
1481 static int
1482 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1483 {
1484 int error;
1485 char *newcorename;
1486 struct sysctlnode node;
1487
1488 newcorename = PNBUF_GET();
1489 node = *rnode;
1490 node.sysctl_data = &newcorename[0];
1491 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1492 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1493 if (error || newp == NULL) {
1494 goto done;
1495 }
1496
1497 /*
1498 * when sysctl_lookup() deals with a string, it's guaranteed
1499 * to come back nul terminated. So there. :)
1500 */
1501 if (strlen(newcorename) == 0) {
1502 error = EINVAL;
1503 } else {
1504 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1505 error = 0;
1506 }
1507 done:
1508 PNBUF_PUT(newcorename);
1509 return error;
1510 }
1511
1512 /*
1513 * sysctl helper routine for kern.cp_time node. Adds up cpu time
1514 * across all cpus.
1515 */
1516 static int
1517 sysctl_kern_cptime(SYSCTLFN_ARGS)
1518 {
1519 struct sysctlnode node = *rnode;
1520 uint64_t *cp_time = NULL;
1521 int error, n = ncpu, i;
1522 struct cpu_info *ci;
1523 CPU_INFO_ITERATOR cii;
1524
1525 /*
1526 * if you specifically pass a buffer that is the size of the
1527 * sum, or if you are probing for the size, you get the "sum"
1528 * of cp_time (and the size thereof) across all processors.
1529 *
1530 * alternately, you can pass an additional mib number and get
1531 * cp_time for that particular processor.
1532 */
1533 switch (namelen) {
1534 case 0:
1535 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1536 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1537 n = -1; /* SUM */
1538 }
1539 else {
1540 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1541 n = -2; /* ALL */
1542 }
1543 break;
1544 case 1:
1545 if (name[0] < 0 || name[0] >= n)
1546 return (ENOENT); /* ENOSUCHPROCESSOR */
1547 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1548 n = name[0];
1549 /*
1550 * adjust these so that sysctl_lookup() will be happy
1551 */
1552 name++;
1553 namelen--;
1554 break;
1555 default:
1556 return (EINVAL);
1557 }
1558
1559 cp_time = kmem_alloc(node.sysctl_size, KM_SLEEP);
1560 if (cp_time == NULL)
1561 return (ENOMEM);
1562 node.sysctl_data = cp_time;
1563 memset(cp_time, 0, node.sysctl_size);
1564
1565 for (CPU_INFO_FOREACH(cii, ci)) {
1566 if (n <= 0) {
1567 for (i = 0; i < CPUSTATES; i++) {
1568 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1569 }
1570 }
1571 /*
1572 * if a specific processor was requested and we just
1573 * did it, we're done here
1574 */
1575 if (n == 0)
1576 break;
1577 /*
1578 * if doing "all", skip to next cp_time set for next processor
1579 */
1580 if (n == -2)
1581 cp_time += CPUSTATES;
1582 /*
1583 * if we're doing a specific processor, we're one
1584 * processor closer
1585 */
1586 if (n > 0)
1587 n--;
1588 }
1589
1590 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1591 kmem_free(node.sysctl_data, node.sysctl_size);
1592 return (error);
1593 }
1594
1595 #if NPTY > 0
1596 /*
1597 * sysctl helper routine for kern.maxptys. Ensures that any new value
1598 * is acceptable to the pty subsystem.
1599 */
1600 static int
1601 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1602 {
1603 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1604 int error, xmax;
1605 struct sysctlnode node;
1606
1607 /* get current value of maxptys */
1608 xmax = pty_maxptys(0, 0);
1609
1610 node = *rnode;
1611 node.sysctl_data = &xmax;
1612 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1613 if (error || newp == NULL)
1614 return (error);
1615
1616 if (xmax != pty_maxptys(xmax, 1))
1617 return (EINVAL);
1618
1619 return (0);
1620 }
1621 #endif /* NPTY > 0 */
1622
1623 /*
1624 * sysctl helper routine for kern.sbmax. Basically just ensures that
1625 * any new value is not too small.
1626 */
1627 static int
1628 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1629 {
1630 int error, new_sbmax;
1631 struct sysctlnode node;
1632
1633 new_sbmax = sb_max;
1634 node = *rnode;
1635 node.sysctl_data = &new_sbmax;
1636 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1637 if (error || newp == NULL)
1638 return (error);
1639
1640 KERNEL_LOCK(1, NULL);
1641 error = sb_max_set(new_sbmax);
1642 KERNEL_UNLOCK_ONE(NULL);
1643
1644 return (error);
1645 }
1646
1647 /*
1648 * sysctl helper routine for kern.urandom node. Picks a random number
1649 * for you.
1650 */
1651 static int
1652 sysctl_kern_urnd(SYSCTLFN_ARGS)
1653 {
1654 #if NRND > 0
1655 int v, rv;
1656
1657 KERNEL_LOCK(1, NULL);
1658 rv = rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY);
1659 KERNEL_UNLOCK_ONE(NULL);
1660 if (rv == sizeof(v)) {
1661 struct sysctlnode node = *rnode;
1662 node.sysctl_data = &v;
1663 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1664 }
1665 else
1666 return (EIO); /*XXX*/
1667 #else
1668 return (EOPNOTSUPP);
1669 #endif
1670 }
1671
1672 /*
1673 * sysctl helper routine for kern.arandom node. Picks a random number
1674 * for you.
1675 */
1676 static int
1677 sysctl_kern_arnd(SYSCTLFN_ARGS)
1678 {
1679 #if NRND > 0
1680 int error;
1681 void *v;
1682 struct sysctlnode node = *rnode;
1683
1684 if (*oldlenp == 0)
1685 return 0;
1686 if (*oldlenp > 8192)
1687 return E2BIG;
1688
1689 v = kmem_alloc(*oldlenp, KM_SLEEP);
1690 arc4randbytes(v, *oldlenp);
1691 node.sysctl_data = v;
1692 node.sysctl_size = *oldlenp;
1693 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1694 kmem_free(v, *oldlenp);
1695 return error;
1696 #else
1697 return (EOPNOTSUPP);
1698 #endif
1699 }
1700 /*
1701 * sysctl helper routine to do kern.lwp.* work.
1702 */
1703 static int
1704 sysctl_kern_lwp(SYSCTLFN_ARGS)
1705 {
1706 struct kinfo_lwp klwp;
1707 struct proc *p;
1708 struct lwp *l2, *l3;
1709 char *where, *dp;
1710 int pid, elem_size, elem_count;
1711 int buflen, needed, error;
1712 bool gotit;
1713
1714 if (namelen == 1 && name[0] == CTL_QUERY)
1715 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1716
1717 dp = where = oldp;
1718 buflen = where != NULL ? *oldlenp : 0;
1719 error = needed = 0;
1720
1721 if (newp != NULL || namelen != 3)
1722 return (EINVAL);
1723 pid = name[0];
1724 elem_size = name[1];
1725 elem_count = name[2];
1726
1727 sysctl_unlock();
1728 if (pid == -1) {
1729 mutex_enter(proc_lock);
1730 LIST_FOREACH(p, &allproc, p_list) {
1731 /* Grab a hold on the process. */
1732 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
1733 continue;
1734 }
1735 mutex_exit(proc_lock);
1736
1737 mutex_enter(p->p_lock);
1738 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1739 if (buflen >= elem_size && elem_count > 0) {
1740 lwp_lock(l2);
1741 fill_lwp(l2, &klwp);
1742 lwp_unlock(l2);
1743 mutex_exit(p->p_lock);
1744
1745 /*
1746 * Copy out elem_size, but not
1747 * larger than the size of a
1748 * struct kinfo_proc2.
1749 */
1750 error = dcopyout(l, &klwp, dp,
1751 min(sizeof(klwp), elem_size));
1752 if (error) {
1753 rw_exit(&p->p_reflock);
1754 goto cleanup;
1755 }
1756 mutex_enter(p->p_lock);
1757 LIST_FOREACH(l3, &p->p_lwps,
1758 l_sibling) {
1759 if (l2 == l3)
1760 break;
1761 }
1762 if (l3 == NULL) {
1763 mutex_exit(p->p_lock);
1764 rw_exit(&p->p_reflock);
1765 error = EAGAIN;
1766 goto cleanup;
1767 }
1768 dp += elem_size;
1769 buflen -= elem_size;
1770 elem_count--;
1771 }
1772 needed += elem_size;
1773 }
1774 mutex_exit(p->p_lock);
1775
1776 /* Drop reference to process. */
1777 mutex_enter(proc_lock);
1778 rw_exit(&p->p_reflock);
1779 }
1780 mutex_exit(proc_lock);
1781 } else {
1782 mutex_enter(proc_lock);
1783 p = p_find(pid, PFIND_LOCKED);
1784 if (p == NULL) {
1785 error = ESRCH;
1786 mutex_exit(proc_lock);
1787 goto cleanup;
1788 }
1789 /* Grab a hold on the process. */
1790 gotit = rw_tryenter(&p->p_reflock, RW_READER);
1791 mutex_exit(proc_lock);
1792 if (!gotit) {
1793 error = ESRCH;
1794 goto cleanup;
1795 }
1796
1797 mutex_enter(p->p_lock);
1798 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1799 if (buflen >= elem_size && elem_count > 0) {
1800 lwp_lock(l2);
1801 fill_lwp(l2, &klwp);
1802 lwp_unlock(l2);
1803 mutex_exit(p->p_lock);
1804 /*
1805 * Copy out elem_size, but not larger than
1806 * the size of a struct kinfo_proc2.
1807 */
1808 error = dcopyout(l, &klwp, dp,
1809 min(sizeof(klwp), elem_size));
1810 if (error) {
1811 rw_exit(&p->p_reflock);
1812 goto cleanup;
1813 }
1814 mutex_enter(p->p_lock);
1815 LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
1816 if (l2 == l3)
1817 break;
1818 }
1819 if (l3 == NULL) {
1820 mutex_exit(p->p_lock);
1821 rw_exit(&p->p_reflock);
1822 error = EAGAIN;
1823 goto cleanup;
1824 }
1825 dp += elem_size;
1826 buflen -= elem_size;
1827 elem_count--;
1828 }
1829 needed += elem_size;
1830 }
1831 mutex_exit(p->p_lock);
1832
1833 /* Drop reference to process. */
1834 rw_exit(&p->p_reflock);
1835 }
1836
1837 if (where != NULL) {
1838 *oldlenp = dp - where;
1839 if (needed > *oldlenp) {
1840 sysctl_relock();
1841 return (ENOMEM);
1842 }
1843 } else {
1844 needed += KERN_LWPSLOP;
1845 *oldlenp = needed;
1846 }
1847 error = 0;
1848 cleanup:
1849 sysctl_relock();
1850 return (error);
1851 }
1852
1853 /*
1854 * sysctl helper routine for kern.forkfsleep node. Ensures that the
1855 * given value is not too large or two small, and is at least one
1856 * timer tick if not zero.
1857 */
1858 static int
1859 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1860 {
1861 /* userland sees value in ms, internally is in ticks */
1862 extern int forkfsleep; /* defined in kern/kern_fork.c */
1863 int error, timo, lsleep;
1864 struct sysctlnode node;
1865
1866 lsleep = forkfsleep * 1000 / hz;
1867 node = *rnode;
1868 node.sysctl_data = &lsleep;
1869 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1870 if (error || newp == NULL)
1871 return (error);
1872
1873 /* refuse negative values, and overly 'long time' */
1874 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1875 return (EINVAL);
1876
1877 timo = mstohz(lsleep);
1878
1879 /* if the interval is >0 ms && <1 tick, use 1 tick */
1880 if (lsleep != 0 && timo == 0)
1881 forkfsleep = 1;
1882 else
1883 forkfsleep = timo;
1884
1885 return (0);
1886 }
1887
1888 /*
1889 * sysctl helper routine for kern.root_partition
1890 */
1891 static int
1892 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1893 {
1894 int rootpart = DISKPART(rootdev);
1895 struct sysctlnode node = *rnode;
1896
1897 node.sysctl_data = &rootpart;
1898 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1899 }
1900
1901 /*
1902 * sysctl helper function for kern.drivers
1903 */
1904 static int
1905 sysctl_kern_drivers(SYSCTLFN_ARGS)
1906 {
1907 int error;
1908 size_t buflen;
1909 struct kinfo_drivers kd;
1910 char *start, *where;
1911 const char *dname;
1912 int i;
1913 extern struct devsw_conv *devsw_conv;
1914 extern int max_devsw_convs;
1915
1916 if (newp != NULL || namelen != 0)
1917 return (EINVAL);
1918
1919 start = where = oldp;
1920 buflen = *oldlenp;
1921 if (where == NULL) {
1922 *oldlenp = max_devsw_convs * sizeof kd;
1923 return 0;
1924 }
1925
1926 /*
1927 * An array of kinfo_drivers structures
1928 */
1929 error = 0;
1930 sysctl_unlock();
1931 mutex_enter(&device_lock);
1932 for (i = 0; i < max_devsw_convs; i++) {
1933 dname = devsw_conv[i].d_name;
1934 if (dname == NULL)
1935 continue;
1936 if (buflen < sizeof kd) {
1937 error = ENOMEM;
1938 break;
1939 }
1940 memset(&kd, 0, sizeof(kd));
1941 kd.d_bmajor = devsw_conv[i].d_bmajor;
1942 kd.d_cmajor = devsw_conv[i].d_cmajor;
1943 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1944 mutex_exit(&device_lock);
1945 error = dcopyout(l, &kd, where, sizeof kd);
1946 mutex_enter(&device_lock);
1947 if (error != 0)
1948 break;
1949 buflen -= sizeof kd;
1950 where += sizeof kd;
1951 }
1952 mutex_exit(&device_lock);
1953 sysctl_relock();
1954 *oldlenp = where - start;
1955 return error;
1956 }
1957
1958 /*
1959 * sysctl helper function for kern.file2
1960 */
1961 static int
1962 sysctl_kern_file2(SYSCTLFN_ARGS)
1963 {
1964 struct proc *p;
1965 struct file *fp, *tp, *np;
1966 struct filedesc *fd;
1967 struct kinfo_file kf;
1968 char *dp;
1969 u_int i, op;
1970 size_t len, needed, elem_size, out_size;
1971 int error, arg, elem_count;
1972 fdfile_t *ff;
1973
1974 if (namelen == 1 && name[0] == CTL_QUERY)
1975 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1976
1977 if (namelen != 4)
1978 return (EINVAL);
1979
1980 error = 0;
1981 dp = oldp;
1982 len = (oldp != NULL) ? *oldlenp : 0;
1983 op = name[0];
1984 arg = name[1];
1985 elem_size = name[2];
1986 elem_count = name[3];
1987 out_size = MIN(sizeof(kf), elem_size);
1988 needed = 0;
1989
1990 if (elem_size < 1 || elem_count < 0)
1991 return (EINVAL);
1992
1993 switch (op) {
1994 case KERN_FILE_BYFILE:
1995 /*
1996 * doesn't use arg so it must be zero
1997 */
1998 if (arg != 0)
1999 return (EINVAL);
2000 sysctl_unlock();
2001 /*
2002 * allocate dummy file descriptor to make position in list
2003 */
2004 if ((tp = fgetdummy()) == NULL) {
2005 sysctl_relock();
2006 return ENOMEM;
2007 }
2008 mutex_enter(&filelist_lock);
2009 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
2010 np = LIST_NEXT(fp, f_list);
2011 mutex_enter(&fp->f_lock);
2012 if (fp->f_count == 0) {
2013 mutex_exit(&fp->f_lock);
2014 continue;
2015 }
2016 /*
2017 * XXX Need to prevent that from being an alternative
2018 * XXX way for getting process information.
2019 */
2020 if (kauth_authorize_generic(l->l_cred,
2021 KAUTH_GENERIC_CANSEE, fp->f_cred) != 0) {
2022 mutex_exit(&fp->f_lock);
2023 continue;
2024 }
2025 if (len >= elem_size && elem_count > 0) {
2026 fill_file(&kf, fp, NULL, 0, 0);
2027 LIST_INSERT_AFTER(fp, tp, f_list);
2028 mutex_exit(&fp->f_lock);
2029 mutex_exit(&filelist_lock);
2030 error = dcopyout(l, &kf, dp, out_size);
2031 mutex_enter(&filelist_lock);
2032 np = LIST_NEXT(tp, f_list);
2033 LIST_REMOVE(tp, f_list);
2034 if (error) {
2035 break;
2036 }
2037 dp += elem_size;
2038 len -= elem_size;
2039 } else {
2040 mutex_exit(&fp->f_lock);
2041 }
2042 needed += elem_size;
2043 if (elem_count > 0 && elem_count != INT_MAX)
2044 elem_count--;
2045 }
2046 mutex_exit(&filelist_lock);
2047 fputdummy(tp);
2048 sysctl_relock();
2049 break;
2050 case KERN_FILE_BYPID:
2051 if (arg < -1)
2052 /* -1 means all processes */
2053 return (EINVAL);
2054 sysctl_unlock();
2055 mutex_enter(proc_lock);
2056 LIST_FOREACH(p, &allproc, p_list) {
2057 if (p->p_stat == SIDL) {
2058 /* skip embryonic processes */
2059 continue;
2060 }
2061 if (arg > 0 && p->p_pid != arg) {
2062 /* pick only the one we want */
2063 /* XXX want 0 to mean "kernel files" */
2064 continue;
2065 }
2066 mutex_enter(p->p_lock);
2067 error = kauth_authorize_process(l->l_cred,
2068 KAUTH_PROCESS_CANSEE, p,
2069 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2070 NULL, NULL);
2071 mutex_exit(p->p_lock);
2072 if (error != 0) {
2073 /*
2074 * Don't leak kauth retval if we're silently
2075 * skipping this entry.
2076 */
2077 error = 0;
2078 continue;
2079 }
2080
2081 /*
2082 * Grab a hold on the process.
2083 */
2084 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2085 continue;
2086 }
2087 mutex_exit(proc_lock);
2088
2089 /* XXX Do we need to check permission per file? */
2090 fd = p->p_fd;
2091 mutex_enter(&fd->fd_lock);
2092 for (i = 0; i < fd->fd_nfiles; i++) {
2093 if ((ff = fd->fd_ofiles[i]) == NULL) {
2094 continue;
2095 }
2096 mutex_enter(&ff->ff_lock);
2097 if ((fp = ff->ff_file) == NULL) {
2098 mutex_exit(&ff->ff_lock);
2099 continue;
2100 }
2101 if (len >= elem_size && elem_count > 0) {
2102 mutex_enter(&fp->f_lock);
2103 fill_file(&kf, fp, ff, i, p->p_pid);
2104 mutex_exit(&fp->f_lock);
2105 mutex_exit(&ff->ff_lock);
2106 mutex_exit(&fd->fd_lock);
2107 error = dcopyout(l, &kf, dp, out_size);
2108 mutex_enter(&fd->fd_lock);
2109 if (error)
2110 break;
2111 dp += elem_size;
2112 len -= elem_size;
2113 } else {
2114 mutex_exit(&ff->ff_lock);
2115 }
2116 needed += elem_size;
2117 if (elem_count > 0 && elem_count != INT_MAX)
2118 elem_count--;
2119 }
2120 mutex_exit(&fd->fd_lock);
2121
2122 /*
2123 * Release reference to process.
2124 */
2125 mutex_enter(proc_lock);
2126 rw_exit(&p->p_reflock);
2127 }
2128 mutex_exit(proc_lock);
2129 sysctl_relock();
2130 break;
2131 default:
2132 return (EINVAL);
2133 }
2134
2135 if (oldp == NULL)
2136 needed += KERN_FILESLOP * elem_size;
2137 *oldlenp = needed;
2138
2139 return (error);
2140 }
2141
2142 static void
2143 fill_file(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2144 int i, pid_t pid)
2145 {
2146
2147 memset(kp, 0, sizeof(*kp));
2148
2149 kp->ki_fileaddr = PTRTOUINT64(fp);
2150 kp->ki_flag = fp->f_flag;
2151 kp->ki_iflags = 0;
2152 kp->ki_ftype = fp->f_type;
2153 kp->ki_count = fp->f_count;
2154 kp->ki_msgcount = fp->f_msgcount;
2155 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2156 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2157 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2158 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2159 kp->ki_foffset = fp->f_offset;
2160 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2161
2162 /* vnode information to glue this file to something */
2163 if (fp->f_type == DTYPE_VNODE) {
2164 struct vnode *vp = (struct vnode *)fp->f_data;
2165
2166 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2167 kp->ki_vsize = vp->v_size;
2168 kp->ki_vtype = vp->v_type;
2169 kp->ki_vtag = vp->v_tag;
2170 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2171 }
2172
2173 /* process information when retrieved via KERN_FILE_BYPID */
2174 if (ff != NULL) {
2175 kp->ki_pid = pid;
2176 kp->ki_fd = i;
2177 kp->ki_ofileflags = ff->ff_exclose;
2178 kp->ki_usecount = ff->ff_refcnt;
2179 }
2180 }
2181
2182 static int
2183 sysctl_doeproc(SYSCTLFN_ARGS)
2184 {
2185 struct eproc *eproc;
2186 struct kinfo_proc2 *kproc2;
2187 struct kinfo_proc *dp;
2188 struct proc *p, *next, *marker;
2189 char *where, *dp2;
2190 int type, op, arg, error;
2191 u_int elem_size, elem_count;
2192 size_t buflen, needed;
2193 bool match, zombie, mmmbrains;
2194
2195 if (namelen == 1 && name[0] == CTL_QUERY)
2196 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2197
2198 dp = oldp;
2199 dp2 = where = oldp;
2200 buflen = where != NULL ? *oldlenp : 0;
2201 error = 0;
2202 needed = 0;
2203 type = rnode->sysctl_num;
2204
2205 if (type == KERN_PROC) {
2206 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2207 return (EINVAL);
2208 op = name[0];
2209 if (op != KERN_PROC_ALL)
2210 arg = name[1];
2211 else
2212 arg = 0; /* Quell compiler warning */
2213 elem_size = elem_count = 0; /* Ditto */
2214 } else {
2215 if (namelen != 4)
2216 return (EINVAL);
2217 op = name[0];
2218 arg = name[1];
2219 elem_size = name[2];
2220 elem_count = name[3];
2221 }
2222
2223 sysctl_unlock();
2224
2225 if (type == KERN_PROC) {
2226 eproc = kmem_alloc(sizeof(*eproc), KM_SLEEP);
2227 kproc2 = NULL;
2228 } else {
2229 eproc = NULL;
2230 kproc2 = kmem_alloc(sizeof(*kproc2), KM_SLEEP);
2231 }
2232 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2233
2234 mutex_enter(proc_lock);
2235 mmmbrains = false;
2236 for (p = LIST_FIRST(&allproc);; p = next) {
2237 if (p == NULL) {
2238 if (!mmmbrains) {
2239 p = LIST_FIRST(&zombproc);
2240 mmmbrains = true;
2241 }
2242 if (p == NULL)
2243 break;
2244 }
2245 next = LIST_NEXT(p, p_list);
2246
2247 /*
2248 * Skip embryonic processes.
2249 */
2250 if (p->p_stat == SIDL)
2251 continue;
2252
2253 mutex_enter(p->p_lock);
2254 error = kauth_authorize_process(l->l_cred,
2255 KAUTH_PROCESS_CANSEE, p,
2256 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2257 if (error != 0) {
2258 mutex_exit(p->p_lock);
2259 continue;
2260 }
2261
2262 /*
2263 * TODO - make more efficient (see notes below).
2264 * do by session.
2265 */
2266 switch (op) {
2267 case KERN_PROC_PID:
2268 /* could do this with just a lookup */
2269 match = (p->p_pid == (pid_t)arg);
2270 break;
2271
2272 case KERN_PROC_PGRP:
2273 /* could do this by traversing pgrp */
2274 match = (p->p_pgrp->pg_id == (pid_t)arg);
2275 break;
2276
2277 case KERN_PROC_SESSION:
2278 match = (p->p_session->s_sid == (pid_t)arg);
2279 break;
2280
2281 case KERN_PROC_TTY:
2282 match = true;
2283 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2284 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2285 p->p_session->s_ttyp == NULL ||
2286 p->p_session->s_ttyvp != NULL) {
2287 match = false;
2288 }
2289 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2290 p->p_session->s_ttyp == NULL) {
2291 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2292 match = false;
2293 }
2294 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2295 match = false;
2296 }
2297 break;
2298
2299 case KERN_PROC_UID:
2300 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2301 break;
2302
2303 case KERN_PROC_RUID:
2304 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2305 break;
2306
2307 case KERN_PROC_GID:
2308 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2309 break;
2310
2311 case KERN_PROC_RGID:
2312 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2313 break;
2314
2315 case KERN_PROC_ALL:
2316 match = true;
2317 /* allow everything */
2318 break;
2319
2320 default:
2321 error = EINVAL;
2322 mutex_exit(p->p_lock);
2323 goto cleanup;
2324 }
2325 if (!match) {
2326 mutex_exit(p->p_lock);
2327 continue;
2328 }
2329
2330 /*
2331 * Grab a hold on the process.
2332 */
2333 if (mmmbrains) {
2334 zombie = true;
2335 } else {
2336 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2337 }
2338 if (zombie) {
2339 LIST_INSERT_AFTER(p, marker, p_list);
2340 }
2341
2342 if (type == KERN_PROC) {
2343 if (buflen >= sizeof(struct kinfo_proc)) {
2344 fill_eproc(p, eproc, zombie);
2345 mutex_exit(p->p_lock);
2346 mutex_exit(proc_lock);
2347 error = dcopyout(l, p, &dp->kp_proc,
2348 sizeof(struct proc));
2349 mutex_enter(proc_lock);
2350 if (error) {
2351 goto bah;
2352 }
2353 error = dcopyout(l, eproc, &dp->kp_eproc,
2354 sizeof(*eproc));
2355 if (error) {
2356 goto bah;
2357 }
2358 dp++;
2359 buflen -= sizeof(struct kinfo_proc);
2360 } else {
2361 mutex_exit(p->p_lock);
2362 }
2363 needed += sizeof(struct kinfo_proc);
2364 } else { /* KERN_PROC2 */
2365 if (buflen >= elem_size && elem_count > 0) {
2366 fill_kproc2(p, kproc2, zombie);
2367 mutex_exit(p->p_lock);
2368 mutex_exit(proc_lock);
2369 /*
2370 * Copy out elem_size, but not larger than
2371 * the size of a struct kinfo_proc2.
2372 */
2373 error = dcopyout(l, kproc2, dp2,
2374 min(sizeof(*kproc2), elem_size));
2375 mutex_enter(proc_lock);
2376 if (error) {
2377 goto bah;
2378 }
2379 dp2 += elem_size;
2380 buflen -= elem_size;
2381 elem_count--;
2382 } else {
2383 mutex_exit(p->p_lock);
2384 }
2385 needed += elem_size;
2386 }
2387
2388 /*
2389 * Release reference to process.
2390 */
2391 if (zombie) {
2392 next = LIST_NEXT(marker, p_list);
2393 LIST_REMOVE(marker, p_list);
2394 } else {
2395 rw_exit(&p->p_reflock);
2396 }
2397 }
2398 mutex_exit(proc_lock);
2399
2400 if (where != NULL) {
2401 if (type == KERN_PROC)
2402 *oldlenp = (char *)dp - where;
2403 else
2404 *oldlenp = dp2 - where;
2405 if (needed > *oldlenp) {
2406 error = ENOMEM;
2407 goto out;
2408 }
2409 } else {
2410 needed += KERN_PROCSLOP;
2411 *oldlenp = needed;
2412 }
2413 if (kproc2)
2414 kmem_free(kproc2, sizeof(*kproc2));
2415 if (eproc)
2416 kmem_free(eproc, sizeof(*eproc));
2417 if (marker)
2418 kmem_free(marker, sizeof(*marker));
2419 sysctl_relock();
2420 return 0;
2421 bah:
2422 if (zombie)
2423 LIST_REMOVE(marker, p_list);
2424 else
2425 rw_exit(&p->p_reflock);
2426 cleanup:
2427 mutex_exit(proc_lock);
2428 out:
2429 if (kproc2)
2430 kmem_free(kproc2, sizeof(*kproc2));
2431 if (eproc)
2432 kmem_free(eproc, sizeof(*eproc));
2433 if (marker)
2434 kmem_free(marker, sizeof(*marker));
2435 sysctl_relock();
2436 return error;
2437 }
2438
2439 /*
2440 * sysctl helper routine for kern.proc_args pseudo-subtree.
2441 */
2442 static int
2443 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2444 {
2445 struct ps_strings pss;
2446 struct proc *p;
2447 size_t len, i;
2448 struct uio auio;
2449 struct iovec aiov;
2450 pid_t pid;
2451 int nargv, type, error, argvlen;
2452 char *arg;
2453 char **argv = NULL;
2454 char *tmp;
2455 struct vmspace *vmspace;
2456 vaddr_t psstr_addr;
2457 vaddr_t offsetn;
2458 vaddr_t offsetv;
2459
2460 if (namelen == 1 && name[0] == CTL_QUERY)
2461 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2462
2463 if (newp != NULL || namelen != 2)
2464 return (EINVAL);
2465 pid = name[0];
2466 type = name[1];
2467 argv = NULL;
2468 argvlen = 0;
2469
2470 switch (type) {
2471 case KERN_PROC_ARGV:
2472 case KERN_PROC_NARGV:
2473 case KERN_PROC_ENV:
2474 case KERN_PROC_NENV:
2475 /* ok */
2476 break;
2477 default:
2478 return (EINVAL);
2479 }
2480
2481 sysctl_unlock();
2482
2483 /* check pid */
2484 mutex_enter(proc_lock);
2485 if ((p = p_find(pid, PFIND_LOCKED)) == NULL) {
2486 error = EINVAL;
2487 goto out_locked;
2488 }
2489 mutex_enter(p->p_lock);
2490
2491 /* Check permission. */
2492 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2493 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2494 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2495 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2496 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2497 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2498 else
2499 error = EINVAL; /* XXXGCC */
2500 if (error) {
2501 mutex_exit(p->p_lock);
2502 goto out_locked;
2503 }
2504
2505 if (oldp == NULL) {
2506 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2507 *oldlenp = sizeof (int);
2508 else
2509 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2510 error = 0;
2511 mutex_exit(p->p_lock);
2512 goto out_locked;
2513 }
2514
2515 /*
2516 * Zombies don't have a stack, so we can't read their psstrings.
2517 * System processes also don't have a user stack.
2518 */
2519 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2520 error = EINVAL;
2521 mutex_exit(p->p_lock);
2522 goto out_locked;
2523 }
2524
2525 /*
2526 * Lock the process down in memory.
2527 */
2528 psstr_addr = (vaddr_t)p->p_psstr;
2529 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2530 offsetn = p->p_psnargv;
2531 offsetv = p->p_psargv;
2532 } else {
2533 offsetn = p->p_psnenv;
2534 offsetv = p->p_psenv;
2535 }
2536 vmspace = p->p_vmspace;
2537 uvmspace_addref(vmspace);
2538 mutex_exit(p->p_lock);
2539 mutex_exit(proc_lock);
2540
2541 /*
2542 * Allocate a temporary buffer to hold the arguments.
2543 */
2544 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2545
2546 /*
2547 * Read in the ps_strings structure.
2548 */
2549 aiov.iov_base = &pss;
2550 aiov.iov_len = sizeof(pss);
2551 auio.uio_iov = &aiov;
2552 auio.uio_iovcnt = 1;
2553 auio.uio_offset = psstr_addr;
2554 auio.uio_resid = sizeof(pss);
2555 auio.uio_rw = UIO_READ;
2556 UIO_SETUP_SYSSPACE(&auio);
2557 error = uvm_io(&vmspace->vm_map, &auio);
2558 if (error)
2559 goto done;
2560
2561 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2562 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2563 error = dcopyout(l, &nargv, oldp, sizeof(nargv));
2564 *oldlenp = sizeof(nargv);
2565 goto done;
2566 }
2567 /*
2568 * Now read the address of the argument vector.
2569 */
2570 switch (type) {
2571 case KERN_PROC_ARGV:
2572 /* FALLTHROUGH */
2573 case KERN_PROC_ENV:
2574 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2575 break;
2576 default:
2577 error = EINVAL;
2578 goto done;
2579 }
2580
2581 #ifdef COMPAT_NETBSD32
2582 if (p->p_flag & PK_32)
2583 len = sizeof(netbsd32_charp) * nargv;
2584 else
2585 #endif
2586 len = sizeof(char *) * nargv;
2587
2588 if ((argvlen = len) != 0)
2589 argv = kmem_alloc(len, KM_SLEEP);
2590
2591 aiov.iov_base = argv;
2592 aiov.iov_len = len;
2593 auio.uio_iov = &aiov;
2594 auio.uio_iovcnt = 1;
2595 auio.uio_offset = (off_t)(unsigned long)tmp;
2596 auio.uio_resid = len;
2597 auio.uio_rw = UIO_READ;
2598 UIO_SETUP_SYSSPACE(&auio);
2599 error = uvm_io(&vmspace->vm_map, &auio);
2600 if (error)
2601 goto done;
2602
2603 /*
2604 * Now copy each string.
2605 */
2606 len = 0; /* bytes written to user buffer */
2607 for (i = 0; i < nargv; i++) {
2608 int finished = 0;
2609 vaddr_t base;
2610 size_t xlen;
2611 int j;
2612
2613 #ifdef COMPAT_NETBSD32
2614 if (p->p_flag & PK_32) {
2615 netbsd32_charp *argv32;
2616
2617 argv32 = (netbsd32_charp *)argv;
2618 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2619 } else
2620 #endif
2621 base = (vaddr_t)argv[i];
2622
2623 /*
2624 * The program has messed around with its arguments,
2625 * possibly deleting some, and replacing them with
2626 * NULL's. Treat this as the last argument and not
2627 * a failure.
2628 */
2629 if (base == 0)
2630 break;
2631
2632 while (!finished) {
2633 xlen = PAGE_SIZE - (base & PAGE_MASK);
2634
2635 aiov.iov_base = arg;
2636 aiov.iov_len = PAGE_SIZE;
2637 auio.uio_iov = &aiov;
2638 auio.uio_iovcnt = 1;
2639 auio.uio_offset = base;
2640 auio.uio_resid = xlen;
2641 auio.uio_rw = UIO_READ;
2642 UIO_SETUP_SYSSPACE(&auio);
2643 error = uvm_io(&vmspace->vm_map, &auio);
2644 if (error)
2645 goto done;
2646
2647 /* Look for the end of the string */
2648 for (j = 0; j < xlen; j++) {
2649 if (arg[j] == '\0') {
2650 xlen = j + 1;
2651 finished = 1;
2652 break;
2653 }
2654 }
2655
2656 /* Check for user buffer overflow */
2657 if (len + xlen > *oldlenp) {
2658 finished = 1;
2659 if (len > *oldlenp)
2660 xlen = 0;
2661 else
2662 xlen = *oldlenp - len;
2663 }
2664
2665 /* Copyout the page */
2666 error = dcopyout(l, arg, (char *)oldp + len, xlen);
2667 if (error)
2668 goto done;
2669
2670 len += xlen;
2671 base += xlen;
2672 }
2673 }
2674 *oldlenp = len;
2675
2676 done:
2677 if (argvlen != 0)
2678 kmem_free(argv, argvlen);
2679 uvmspace_free(vmspace);
2680 kmem_free(arg, PAGE_SIZE);
2681 sysctl_relock();
2682 return error;
2683
2684 out_locked:
2685 mutex_exit(proc_lock);
2686 sysctl_relock();
2687 return error;
2688 }
2689
2690 static int
2691 sysctl_security_setidcore(SYSCTLFN_ARGS)
2692 {
2693 int newsize, error;
2694 struct sysctlnode node;
2695
2696 node = *rnode;
2697 node.sysctl_data = &newsize;
2698 newsize = *(int *)rnode->sysctl_data;
2699 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2700 if (error || newp == NULL)
2701 return error;
2702
2703 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2704 0, NULL, NULL, NULL))
2705 return (EPERM);
2706
2707 *(int *)rnode->sysctl_data = newsize;
2708
2709 return 0;
2710 }
2711
2712 static int
2713 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2714 {
2715 int error;
2716 char *newsetidcorename;
2717 struct sysctlnode node;
2718
2719 newsetidcorename = PNBUF_GET();
2720 node = *rnode;
2721 node.sysctl_data = newsetidcorename;
2722 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2723 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2724 if (error || newp == NULL) {
2725 goto out;
2726 }
2727 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2728 0, NULL, NULL, NULL)) {
2729 error = EPERM;
2730 goto out;
2731 }
2732 if (strlen(newsetidcorename) == 0) {
2733 error = EINVAL;
2734 goto out;
2735 }
2736 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2737 out:
2738 PNBUF_PUT(newsetidcorename);
2739 return error;
2740 }
2741
2742 /*
2743 * sysctl helper routine for kern.cp_id node. Maps cpus to their
2744 * cpuids.
2745 */
2746 static int
2747 sysctl_kern_cpid(SYSCTLFN_ARGS)
2748 {
2749 struct sysctlnode node = *rnode;
2750 uint64_t *cp_id = NULL;
2751 int error, n = ncpu;
2752 struct cpu_info *ci;
2753 CPU_INFO_ITERATOR cii;
2754
2755 /*
2756 * Here you may either retrieve a single cpu id or the whole
2757 * set. The size you get back when probing depends on what
2758 * you ask for.
2759 */
2760 switch (namelen) {
2761 case 0:
2762 node.sysctl_size = n * sizeof(uint64_t);
2763 n = -2; /* ALL */
2764 break;
2765 case 1:
2766 if (name[0] < 0 || name[0] >= n)
2767 return (ENOENT); /* ENOSUCHPROCESSOR */
2768 node.sysctl_size = sizeof(uint64_t);
2769 n = name[0];
2770 /*
2771 * adjust these so that sysctl_lookup() will be happy
2772 */
2773 name++;
2774 namelen--;
2775 break;
2776 default:
2777 return (EINVAL);
2778 }
2779
2780 cp_id = kmem_alloc(node.sysctl_size, KM_SLEEP);
2781 if (cp_id == NULL)
2782 return (ENOMEM);
2783 node.sysctl_data = cp_id;
2784 memset(cp_id, 0, node.sysctl_size);
2785
2786 for (CPU_INFO_FOREACH(cii, ci)) {
2787 if (n <= 0)
2788 cp_id[0] = cpu_index(ci);
2789 /*
2790 * if a specific processor was requested and we just
2791 * did it, we're done here
2792 */
2793 if (n == 0)
2794 break;
2795 /*
2796 * if doing "all", skip to next cp_id slot for next processor
2797 */
2798 if (n == -2)
2799 cp_id++;
2800 /*
2801 * if we're doing a specific processor, we're one
2802 * processor closer
2803 */
2804 if (n > 0)
2805 n--;
2806 }
2807
2808 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2809 kmem_free(node.sysctl_data, node.sysctl_size);
2810 return (error);
2811 }
2812
2813 /*
2814 * sysctl helper routine for hw.usermem and hw.usermem64. Values are
2815 * calculate on the fly taking into account integer overflow and the
2816 * current wired count.
2817 */
2818 static int
2819 sysctl_hw_usermem(SYSCTLFN_ARGS)
2820 {
2821 u_int ui;
2822 u_quad_t uq;
2823 struct sysctlnode node;
2824
2825 node = *rnode;
2826 switch (rnode->sysctl_num) {
2827 case HW_USERMEM:
2828 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2829 ui = UINT_MAX;
2830 else
2831 ui *= PAGE_SIZE;
2832 node.sysctl_data = &ui;
2833 break;
2834 case HW_USERMEM64:
2835 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2836 node.sysctl_data = &uq;
2837 break;
2838 default:
2839 return (EINVAL);
2840 }
2841
2842 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2843 }
2844
2845 /*
2846 * sysctl helper routine for kern.cnmagic node. Pulls the old value
2847 * out, encoded, and stuffs the new value in for decoding.
2848 */
2849 static int
2850 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2851 {
2852 char magic[CNS_LEN];
2853 int error;
2854 struct sysctlnode node;
2855
2856 if (oldp)
2857 cn_get_magic(magic, CNS_LEN);
2858 node = *rnode;
2859 node.sysctl_data = &magic[0];
2860 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2861 if (error || newp == NULL)
2862 return (error);
2863
2864 return (cn_set_magic(magic));
2865 }
2866
2867 /*
2868 * ********************************************************************
2869 * section 3: public helper routines that are used for more than one
2870 * node
2871 * ********************************************************************
2872 */
2873
2874 /*
2875 * sysctl helper routine for the kern.root_device node and some ports'
2876 * machdep.root_device nodes.
2877 */
2878 int
2879 sysctl_root_device(SYSCTLFN_ARGS)
2880 {
2881 struct sysctlnode node;
2882
2883 node = *rnode;
2884 node.sysctl_data = root_device->dv_xname;
2885 node.sysctl_size = strlen(device_xname(root_device)) + 1;
2886 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2887 }
2888
2889 /*
2890 * sysctl helper routine for kern.consdev, dependent on the current
2891 * state of the console. Also used for machdep.console_device on some
2892 * ports.
2893 */
2894 int
2895 sysctl_consdev(SYSCTLFN_ARGS)
2896 {
2897 dev_t consdev;
2898 struct sysctlnode node;
2899
2900 if (cn_tab != NULL)
2901 consdev = cn_tab->cn_dev;
2902 else
2903 consdev = NODEV;
2904 node = *rnode;
2905 node.sysctl_data = &consdev;
2906 node.sysctl_size = sizeof(consdev);
2907 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2908 }
2909
2910 /*
2911 * ********************************************************************
2912 * section 4: support for some helpers
2913 * ********************************************************************
2914 */
2915 /*
2916 * Find the most ``active'' lwp of a process and return it for ps display
2917 * purposes
2918 */
2919 static struct lwp *
2920 proc_active_lwp(struct proc *p)
2921 {
2922 static const int ostat[] = {
2923 0,
2924 2, /* LSIDL */
2925 6, /* LSRUN */
2926 5, /* LSSLEEP */
2927 4, /* LSSTOP */
2928 0, /* LSZOMB */
2929 1, /* LSDEAD */
2930 7, /* LSONPROC */
2931 3 /* LSSUSPENDED */
2932 };
2933
2934 struct lwp *l, *lp = NULL;
2935 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2936 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2937 if (lp == NULL ||
2938 ostat[l->l_stat] > ostat[lp->l_stat] ||
2939 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2940 l->l_cpticks > lp->l_cpticks)) {
2941 lp = l;
2942 continue;
2943 }
2944 }
2945 return lp;
2946 }
2947
2948
2949 /*
2950 * Fill in a kinfo_proc2 structure for the specified process.
2951 */
2952 static void
2953 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2954 {
2955 struct tty *tp;
2956 struct lwp *l, *l2;
2957 struct timeval ut, st, rt;
2958 sigset_t ss1, ss2;
2959 struct rusage ru;
2960 struct vmspace *vm;
2961
2962 KASSERT(mutex_owned(proc_lock));
2963 KASSERT(mutex_owned(p->p_lock));
2964
2965 sigemptyset(&ss1);
2966 sigemptyset(&ss2);
2967 memset(ki, 0, sizeof(*ki));
2968
2969 ki->p_paddr = PTRTOUINT64(p);
2970 ki->p_fd = PTRTOUINT64(p->p_fd);
2971 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2972 ki->p_stats = PTRTOUINT64(p->p_stats);
2973 ki->p_limit = PTRTOUINT64(p->p_limit);
2974 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2975 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2976 ki->p_sess = PTRTOUINT64(p->p_session);
2977 ki->p_tsess = 0; /* may be changed if controlling tty below */
2978 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2979 ki->p_eflag = 0;
2980 ki->p_exitsig = p->p_exitsig;
2981 ki->p_flag = sysctl_map_flags(sysctl_flagmap, p->p_flag);
2982 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2983 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2984 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2985 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2986 ki->p_pid = p->p_pid;
2987 if (p->p_pptr)
2988 ki->p_ppid = p->p_pptr->p_pid;
2989 else
2990 ki->p_ppid = 0;
2991 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2992 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2993 ki->p_gid = kauth_cred_getegid(p->p_cred);
2994 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2995 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2996 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2997 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2998 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2999 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
3000 UIO_SYSSPACE);
3001
3002 ki->p_uticks = p->p_uticks;
3003 ki->p_sticks = p->p_sticks;
3004 ki->p_iticks = p->p_iticks;
3005 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
3006 ki->p_tracep = PTRTOUINT64(p->p_tracep);
3007 ki->p_traceflag = p->p_traceflag;
3008
3009 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
3010 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
3011
3012 ki->p_cpticks = 0;
3013 ki->p_pctcpu = p->p_pctcpu;
3014 ki->p_estcpu = 0;
3015 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
3016 ki->p_realstat = p->p_stat;
3017 ki->p_nice = p->p_nice;
3018 ki->p_xstat = p->p_xstat;
3019 ki->p_acflag = p->p_acflag;
3020
3021 strncpy(ki->p_comm, p->p_comm,
3022 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
3023 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
3024
3025 ki->p_nlwps = p->p_nlwps;
3026 ki->p_realflag = ki->p_flag;
3027
3028 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
3029 vm = p->p_vmspace;
3030 ki->p_vm_rssize = vm_resident_count(vm);
3031 ki->p_vm_tsize = vm->vm_tsize;
3032 ki->p_vm_dsize = vm->vm_dsize;
3033 ki->p_vm_ssize = vm->vm_ssize;
3034
3035 /* Pick the primary (first) LWP */
3036 l = proc_active_lwp(p);
3037 KASSERT(l != NULL);
3038 lwp_lock(l);
3039 ki->p_nrlwps = p->p_nrlwps;
3040 ki->p_forw = 0;
3041 ki->p_back = 0;
3042 ki->p_addr = PTRTOUINT64(l->l_addr);
3043 ki->p_stat = l->l_stat;
3044 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3045 ki->p_swtime = l->l_swtime;
3046 ki->p_slptime = l->l_slptime;
3047 if (l->l_stat == LSONPROC)
3048 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3049 else
3050 ki->p_schedflags = 0;
3051 ki->p_holdcnt = l->l_holdcnt;
3052 ki->p_priority = lwp_eprio(l);
3053 ki->p_usrpri = l->l_priority;
3054 if (l->l_wchan)
3055 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
3056 ki->p_wchan = PTRTOUINT64(l->l_wchan);
3057 ki->p_cpuid = cpu_index(l->l_cpu);
3058 lwp_unlock(l);
3059 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
3060 /* This is hardly correct, but... */
3061 sigplusset(&l->l_sigpend.sp_set, &ss1);
3062 sigplusset(&l->l_sigmask, &ss2);
3063 ki->p_cpticks += l->l_cpticks;
3064 ki->p_pctcpu += l->l_pctcpu;
3065 ki->p_estcpu += l->l_estcpu;
3066 }
3067 }
3068 sigplusset(&p->p_sigpend.sp_set, &ss2);
3069 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
3070 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
3071
3072 if (p->p_session != NULL) {
3073 ki->p_sid = p->p_session->s_sid;
3074 ki->p__pgid = p->p_pgrp->pg_id;
3075 if (p->p_session->s_ttyvp)
3076 ki->p_eflag |= EPROC_CTTY;
3077 if (SESS_LEADER(p))
3078 ki->p_eflag |= EPROC_SLEADER;
3079 strncpy(ki->p_login, p->p_session->s_login,
3080 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
3081 ki->p_jobc = p->p_pgrp->pg_jobc;
3082 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
3083 ki->p_tdev = tp->t_dev;
3084 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3085 ki->p_tsess = PTRTOUINT64(tp->t_session);
3086 } else {
3087 ki->p_tdev = (int32_t)NODEV;
3088 }
3089 }
3090
3091 if (!P_ZOMBIE(p) && !zombie) {
3092 ki->p_uvalid = 1;
3093 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
3094 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
3095
3096 calcru(p, &ut, &st, NULL, &rt);
3097 ki->p_rtime_sec = rt.tv_sec;
3098 ki->p_rtime_usec = rt.tv_usec;
3099 ki->p_uutime_sec = ut.tv_sec;
3100 ki->p_uutime_usec = ut.tv_usec;
3101 ki->p_ustime_sec = st.tv_sec;
3102 ki->p_ustime_usec = st.tv_usec;
3103
3104 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
3105 ki->p_uru_nvcsw = 0;
3106 ki->p_uru_nivcsw = 0;
3107 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
3108 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
3109 ki->p_uru_nivcsw += l2->l_nivcsw;
3110 ruadd(&ru, &l2->l_ru);
3111 }
3112 ki->p_uru_maxrss = ru.ru_maxrss;
3113 ki->p_uru_ixrss = ru.ru_ixrss;
3114 ki->p_uru_idrss = ru.ru_idrss;
3115 ki->p_uru_isrss = ru.ru_isrss;
3116 ki->p_uru_minflt = ru.ru_minflt;
3117 ki->p_uru_majflt = ru.ru_majflt;
3118 ki->p_uru_nswap = ru.ru_nswap;
3119 ki->p_uru_inblock = ru.ru_inblock;
3120 ki->p_uru_oublock = ru.ru_oublock;
3121 ki->p_uru_msgsnd = ru.ru_msgsnd;
3122 ki->p_uru_msgrcv = ru.ru_msgrcv;
3123 ki->p_uru_nsignals = ru.ru_nsignals;
3124
3125 timeradd(&p->p_stats->p_cru.ru_utime,
3126 &p->p_stats->p_cru.ru_stime, &ut);
3127 ki->p_uctime_sec = ut.tv_sec;
3128 ki->p_uctime_usec = ut.tv_usec;
3129 }
3130 }
3131
3132 /*
3133 * Fill in a kinfo_lwp structure for the specified lwp.
3134 */
3135 static void
3136 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3137 {
3138 struct proc *p = l->l_proc;
3139 struct timeval tv;
3140
3141 KASSERT(lwp_locked(l, NULL));
3142
3143 kl->l_forw = 0;
3144 kl->l_back = 0;
3145 kl->l_laddr = PTRTOUINT64(l);
3146 kl->l_addr = PTRTOUINT64(l->l_addr);
3147 kl->l_stat = l->l_stat;
3148 kl->l_lid = l->l_lid;
3149 kl->l_flag = sysctl_map_flags(sysctl_lwpprflagmap, l->l_prflag);
3150 kl->l_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3151
3152 kl->l_swtime = l->l_swtime;
3153 kl->l_slptime = l->l_slptime;
3154 if (l->l_stat == LSONPROC)
3155 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3156 else
3157 kl->l_schedflags = 0;
3158 kl->l_holdcnt = l->l_holdcnt;
3159 kl->l_priority = lwp_eprio(l);
3160 kl->l_usrpri = l->l_priority;
3161 if (l->l_wchan)
3162 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3163 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3164 kl->l_cpuid = cpu_index(l->l_cpu);
3165 bintime2timeval(&l->l_rtime, &tv);
3166 kl->l_rtime_sec = tv.tv_sec;
3167 kl->l_rtime_usec = tv.tv_usec;
3168 kl->l_cpticks = l->l_cpticks;
3169 kl->l_pctcpu = l->l_pctcpu;
3170 kl->l_pid = p->p_pid;
3171 if (l->l_name == NULL)
3172 kl->l_name[0] = '\0';
3173 else
3174 strlcpy(kl->l_name, l->l_name, sizeof(kl->l_name));
3175 }
3176
3177 /*
3178 * Fill in an eproc structure for the specified process.
3179 */
3180 void
3181 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
3182 {
3183 struct tty *tp;
3184 struct lwp *l;
3185
3186 KASSERT(mutex_owned(proc_lock));
3187 KASSERT(mutex_owned(p->p_lock));
3188
3189 memset(ep, 0, sizeof(*ep));
3190
3191 ep->e_paddr = p;
3192 ep->e_sess = p->p_session;
3193 if (p->p_cred) {
3194 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
3195 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
3196 }
3197 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
3198 struct vmspace *vm = p->p_vmspace;
3199
3200 ep->e_vm.vm_rssize = vm_resident_count(vm);
3201 ep->e_vm.vm_tsize = vm->vm_tsize;
3202 ep->e_vm.vm_dsize = vm->vm_dsize;
3203 ep->e_vm.vm_ssize = vm->vm_ssize;
3204
3205 /* Pick the primary (first) LWP */
3206 l = proc_active_lwp(p);
3207 KASSERT(l != NULL);
3208 lwp_lock(l);
3209 if (l->l_wchan)
3210 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3211 lwp_unlock(l);
3212 }
3213 if (p->p_pptr)
3214 ep->e_ppid = p->p_pptr->p_pid;
3215 if (p->p_pgrp && p->p_session) {
3216 ep->e_pgid = p->p_pgrp->pg_id;
3217 ep->e_jobc = p->p_pgrp->pg_jobc;
3218 ep->e_sid = p->p_session->s_sid;
3219 if ((p->p_lflag & PL_CONTROLT) &&
3220 (tp = ep->e_sess->s_ttyp)) {
3221 ep->e_tdev = tp->t_dev;
3222 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3223 ep->e_tsess = tp->t_session;
3224 } else
3225 ep->e_tdev = (uint32_t)NODEV;
3226 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3227 if (SESS_LEADER(p))
3228 ep->e_flag |= EPROC_SLEADER;
3229 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3230 }
3231 ep->e_xsize = ep->e_xrssize = 0;
3232 ep->e_xccount = ep->e_xswrss = 0;
3233 }
3234
3235 u_int
3236 sysctl_map_flags(const u_int *map, u_int word)
3237 {
3238 u_int rv;
3239
3240 for (rv = 0; *map != 0; map += 2)
3241 if ((word & map[0]) != 0)
3242 rv |= map[1];
3243
3244 return rv;
3245 }
3246