init_sysctl.c revision 1.17 1 /* $NetBSD: init_sysctl.c,v 1.17 2003/12/28 22:19:59 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.17 2003/12/28 22:19:59 atatat Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "pty.h"
46 #include "rnd.h"
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/sysctl.h>
51 #include <sys/errno.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/unistd.h>
55 #include <sys/disklabel.h>
56 #include <sys/rnd.h>
57 #include <sys/vnode.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/msgbuf.h>
61 #include <dev/cons.h>
62 #include <sys/socketvar.h>
63 #include <sys/file.h>
64 #include <sys/tty.h>
65 #include <sys/malloc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/exec.h>
69 #include <sys/conf.h>
70 #include <sys/device.h>
71
72 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
73 #include <sys/ipc.h>
74 #endif
75 #ifdef SYSVMSG
76 #include <sys/msg.h>
77 #endif
78 #ifdef SYSVSEM
79 #include <sys/sem.h>
80 #endif
81 #ifdef SYSVSHM
82 #include <sys/shm.h>
83 #endif
84
85 #include <machine/cpu.h>
86
87 /*
88 * try over estimating by 5 procs/lwps
89 */
90 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
91 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
92
93 /*
94 * convert pointer to 64 int for struct kinfo_proc2
95 */
96 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
97
98 #ifndef MULTIPROCESSOR
99 #define sysctl_ncpus() (1)
100 #else /* MULTIPROCESSOR */
101 #ifndef CPU_INFO_FOREACH
102 #define CPU_INFO_ITERATOR int
103 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
104 #endif
105 static int
106 sysctl_ncpus(void)
107 {
108 struct cpu_info *ci;
109 CPU_INFO_ITERATOR cii;
110
111 int ncpus = 0;
112 for (CPU_INFO_FOREACH(cii, ci))
113 ncpus++;
114 return (ncpus);
115 }
116 #endif /* MULTIPROCESSOR */
117
118 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
119 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
120 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
121 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
122 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
123 static int sysctl_setlen(SYSCTLFN_PROTO);
124 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
125 static int sysctl_kern_file(SYSCTLFN_PROTO);
126 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
127 static int sysctl_msgbuf(SYSCTLFN_PROTO);
128 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
129 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
130 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
131 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
132 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
133 #if NPTY > 0
134 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
135 #endif /* NPTY > 0 */
136 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
137 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
138 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
139 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
140 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
141 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
142 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
143 static int sysctl_doeproc(SYSCTLFN_PROTO);
144 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
145 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
146 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
147 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
148
149 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
150 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
151
152 /*
153 * ********************************************************************
154 * section 1: setup routines
155 * ********************************************************************
156 * these functions are stuffed into a link set for sysctl setup
157 * functions. they're never called or referenced from anywhere else.
158 * ********************************************************************
159 */
160
161 /*
162 * sets up the base nodes...
163 */
164 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
165 {
166
167 sysctl_createv(SYSCTL_PERMANENT,
168 CTLTYPE_NODE, "kern", NULL,
169 NULL, 0, NULL, 0,
170 CTL_KERN, CTL_EOL);
171 sysctl_createv(SYSCTL_PERMANENT,
172 CTLTYPE_NODE, "vm", NULL,
173 NULL, 0, NULL, 0,
174 CTL_VM, CTL_EOL);
175 sysctl_createv(SYSCTL_PERMANENT,
176 CTLTYPE_NODE, "vfs", NULL,
177 NULL, 0, NULL, 0,
178 CTL_VFS, CTL_EOL);
179 sysctl_createv(SYSCTL_PERMANENT,
180 CTLTYPE_NODE, "net", NULL,
181 NULL, 0, NULL, 0,
182 CTL_NET, CTL_EOL);
183 sysctl_createv(SYSCTL_PERMANENT,
184 CTLTYPE_NODE, "debug", NULL,
185 NULL, 0, NULL, 0,
186 CTL_DEBUG, CTL_EOL);
187 sysctl_createv(SYSCTL_PERMANENT,
188 CTLTYPE_NODE, "hw", NULL,
189 NULL, 0, NULL, 0,
190 CTL_HW, CTL_EOL);
191 sysctl_createv(SYSCTL_PERMANENT,
192 CTLTYPE_NODE, "machdep", NULL,
193 NULL, 0, NULL, 0,
194 CTL_MACHDEP, CTL_EOL);
195 /*
196 * this node is inserted so that the sysctl nodes in libc can
197 * operate.
198 */
199 sysctl_createv(SYSCTL_PERMANENT,
200 CTLTYPE_NODE, "user", NULL,
201 NULL, 0, NULL, 0,
202 CTL_USER, CTL_EOL);
203 sysctl_createv(SYSCTL_PERMANENT,
204 CTLTYPE_NODE, "ddb", NULL,
205 NULL, 0, NULL, 0,
206 CTL_DDB, CTL_EOL);
207 sysctl_createv(SYSCTL_PERMANENT,
208 CTLTYPE_NODE, "proc", NULL,
209 NULL, 0, NULL, 0,
210 CTL_PROC, CTL_EOL);
211 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
212 CTLTYPE_NODE, "vendor", NULL,
213 NULL, 0, NULL, 0,
214 CTL_VENDOR, CTL_EOL);
215 sysctl_createv(SYSCTL_PERMANENT,
216 CTLTYPE_NODE, "emul", NULL,
217 NULL, 0, NULL, 0,
218 CTL_EMUL, CTL_EOL);
219 }
220
221 /*
222 * this setup routine is a replacement for kern_sysctl()
223 */
224 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
225 {
226 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
227 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
228 extern int dumponpanic; /* defined in kern/subr_prf.c */
229
230 sysctl_createv(SYSCTL_PERMANENT,
231 CTLTYPE_NODE, "kern", NULL,
232 NULL, 0, NULL, 0,
233 CTL_KERN, CTL_EOL);
234
235 sysctl_createv(SYSCTL_PERMANENT,
236 CTLTYPE_STRING, "ostype", NULL,
237 NULL, 0, &ostype, 0,
238 CTL_KERN, KERN_OSTYPE, CTL_EOL);
239 sysctl_createv(SYSCTL_PERMANENT,
240 CTLTYPE_STRING, "osrelease", NULL,
241 NULL, 0, &osrelease, 0,
242 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
243 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
244 CTLTYPE_INT, "osrevision", NULL,
245 NULL, __NetBSD_Version__, NULL, 0,
246 CTL_KERN, KERN_OSREV, CTL_EOL);
247 sysctl_createv(SYSCTL_PERMANENT,
248 CTLTYPE_STRING, "version", NULL,
249 NULL, 0, &version, 0,
250 CTL_KERN, KERN_VERSION, CTL_EOL);
251 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
252 CTLTYPE_INT, "maxvnodes", NULL,
253 sysctl_kern_maxvnodes, 0, NULL, 0,
254 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
255 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
256 CTLTYPE_INT, "maxproc", NULL,
257 sysctl_kern_maxproc, 0, NULL, 0,
258 CTL_KERN, KERN_MAXPROC, CTL_EOL);
259 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
260 CTLTYPE_INT, "maxfiles", NULL,
261 NULL, 0, &maxfiles, 0,
262 CTL_KERN, KERN_MAXFILES, CTL_EOL);
263 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
264 CTLTYPE_INT, "argmax", NULL,
265 NULL, ARG_MAX, NULL, 0,
266 CTL_KERN, KERN_ARGMAX, CTL_EOL);
267 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
268 CTLTYPE_INT, "securelevel", NULL,
269 sysctl_kern_securelevel, 0, &securelevel, 0,
270 CTL_KERN, KERN_SECURELVL, CTL_EOL);
271 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
272 CTLTYPE_STRING, "hostname", NULL,
273 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
274 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
275 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
276 CTLTYPE_INT, "hostid", NULL,
277 sysctl_kern_hostid, 0, NULL, 0,
278 CTL_KERN, KERN_HOSTID, CTL_EOL);
279 sysctl_createv(SYSCTL_PERMANENT,
280 CTLTYPE_STRUCT, "clockrate", NULL,
281 sysctl_kern_clockrate, 0, NULL,
282 sizeof(struct clockinfo),
283 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
284 sysctl_createv(SYSCTL_PERMANENT,
285 CTLTYPE_STRUCT, "vnode", NULL,
286 sysctl_kern_vnode, 0, NULL, 0,
287 CTL_KERN, KERN_VNODE, CTL_EOL);
288 sysctl_createv(SYSCTL_PERMANENT,
289 CTLTYPE_STRUCT, "file", NULL,
290 sysctl_kern_file, 0, NULL, 0,
291 CTL_KERN, KERN_FILE, CTL_EOL);
292 #ifndef GPROF
293 sysctl_createv(SYSCTL_PERMANENT,
294 CTLTYPE_NODE, "profiling", NULL,
295 sysctl_notavail, 0, NULL, 0,
296 CTL_KERN, KERN_PROF, CTL_EOL);
297 #endif
298 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
299 CTLTYPE_INT, "posix1version", NULL,
300 NULL, _POSIX_VERSION, NULL, 0,
301 CTL_KERN, KERN_POSIX1, CTL_EOL);
302 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
303 CTLTYPE_INT, "ngroups", NULL,
304 NULL, NGROUPS_MAX, NULL, 0,
305 CTL_KERN, KERN_NGROUPS, CTL_EOL);
306 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
307 CTLTYPE_INT, "job_control", NULL,
308 NULL, 1, NULL, 0,
309 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
310 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
311 CTLTYPE_INT, "saved_ids", NULL, NULL,
312 #ifdef _POSIX_SAVED_IDS
313 1,
314 #else /* _POSIX_SAVED_IDS */
315 0,
316 #endif /* _POSIX_SAVED_IDS */
317 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
318 sysctl_createv(SYSCTL_PERMANENT,
319 CTLTYPE_STRUCT, "boottime", NULL,
320 NULL, 0, &boottime, sizeof(boottime),
321 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
322 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
323 CTLTYPE_STRING, "domainname", NULL,
324 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
325 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
326 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
327 CTLTYPE_INT, "maxpartitions", NULL,
328 NULL, MAXPARTITIONS, NULL, 0,
329 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
330 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
331 CTLTYPE_INT, "rawpartition", NULL,
332 NULL, RAW_PART, NULL, 0,
333 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
334 sysctl_createv(SYSCTL_PERMANENT,
335 CTLTYPE_STRUCT, "timex", NULL,
336 sysctl_notavail, 0, NULL, 0,
337 CTL_KERN, KERN_TIMEX, CTL_EOL);
338 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
339 CTLTYPE_INT, "autonicetime", NULL,
340 sysctl_kern_autonice, 0, &autonicetime, 0,
341 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
342 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
343 CTLTYPE_INT, "autoniceval", NULL,
344 sysctl_kern_autonice, 0, &autoniceval, 0,
345 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
346 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
347 CTLTYPE_INT, "rtc_offset", NULL,
348 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
349 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
350 sysctl_createv(SYSCTL_PERMANENT,
351 CTLTYPE_STRING, "root_device", NULL,
352 sysctl_root_device, 0, NULL, 0,
353 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
354 sysctl_createv(SYSCTL_PERMANENT,
355 CTLTYPE_INT, "msgbufsize", NULL,
356 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
357 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
358 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
359 CTLTYPE_INT, "fsync", NULL,
360 NULL, 1, NULL, 0,
361 CTL_KERN, KERN_FSYNC, CTL_EOL);
362 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
363 CTLTYPE_INT, "sysvmsg", NULL, NULL,
364 #ifdef SYSVMSG
365 1,
366 #else /* SYSVMSG */
367 0,
368 #endif /* SYSVMSG */
369 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
370 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
371 CTLTYPE_INT, "sysvsem", NULL, NULL,
372 #ifdef SYSVSEM
373 1,
374 #else /* SYSVSEM */
375 0,
376 #endif /* SYSVSEM */
377 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
378 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
379 CTLTYPE_INT, "sysvshm", NULL, NULL,
380 #ifdef SYSVSHM
381 1,
382 #else /* SYSVSHM */
383 0,
384 #endif /* SYSVSHM */
385 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
386 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
387 CTLTYPE_INT, "synchronized_io", NULL,
388 NULL, 1, NULL, 0,
389 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
390 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
391 CTLTYPE_INT, "iov_max", NULL,
392 NULL, IOV_MAX, NULL, 0,
393 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
394 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
395 CTLTYPE_INT, "mapped_files", NULL,
396 NULL, 1, NULL, 0,
397 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
398 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
399 CTLTYPE_INT, "memlock", NULL,
400 NULL, 1, NULL, 0,
401 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
402 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
403 CTLTYPE_INT, "memlock_range", NULL,
404 NULL, 1, NULL, 0,
405 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
406 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
407 CTLTYPE_INT, "memory_protection", NULL,
408 NULL, 1, NULL, 0,
409 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
410 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
411 CTLTYPE_INT, "login_name_max", NULL,
412 NULL, LOGIN_NAME_MAX, NULL, 0,
413 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
414 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
415 CTLTYPE_STRING, "defcorename", NULL,
416 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
417 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
418 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
419 CTLTYPE_INT, "logsigexit", NULL,
420 NULL, 0, &kern_logsigexit, 0,
421 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
422 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
423 CTLTYPE_INT, "fscale", NULL,
424 NULL, FSCALE, NULL, 0,
425 CTL_KERN, KERN_FSCALE, CTL_EOL);
426 sysctl_createv(SYSCTL_PERMANENT,
427 CTLTYPE_INT, "ccpu", NULL,
428 NULL, 0, &ccpu, 0,
429 CTL_KERN, KERN_CCPU, CTL_EOL);
430 sysctl_createv(SYSCTL_PERMANENT,
431 CTLTYPE_STRUCT, "cp_time", NULL,
432 sysctl_kern_cptime, 0, NULL, 0,
433 CTL_KERN, KERN_CP_TIME, CTL_EOL);
434 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
435 sysctl_createv(SYSCTL_PERMANENT,
436 CTLTYPE_STRUCT, "sysvipc_info", NULL,
437 sysctl_kern_sysvipc, 0, NULL, 0,
438 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
439 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
440 sysctl_createv(SYSCTL_PERMANENT,
441 CTLTYPE_INT, "msgbuf", NULL,
442 sysctl_msgbuf, 0, NULL, 0,
443 CTL_KERN, KERN_MSGBUF, CTL_EOL);
444 sysctl_createv(SYSCTL_PERMANENT,
445 CTLTYPE_STRUCT, "consdev", NULL,
446 sysctl_consdev, 0, NULL, sizeof(dev_t),
447 CTL_KERN, KERN_CONSDEV, CTL_EOL);
448 #if NPTY > 0
449 sysctl_createv(SYSCTL_PERMANENT,
450 CTLTYPE_INT, "maxptys", NULL,
451 sysctl_kern_maxptys, 0, NULL, 0,
452 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
453 #endif /* NPTY > 0 */
454 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
455 CTLTYPE_INT, "maxphys", NULL,
456 NULL, MAXPHYS, NULL, 0,
457 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
458 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
459 CTLTYPE_INT, "sbmax", NULL,
460 sysctl_kern_sbmax, 0, NULL, 0,
461 CTL_KERN, KERN_SBMAX, CTL_EOL);
462 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
463 CTLTYPE_INT, "monotonic_clock", NULL,
464 /* XXX _POSIX_VERSION */
465 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
466 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
467 sysctl_createv(SYSCTL_PERMANENT,
468 CTLTYPE_INT, "urandom", NULL,
469 sysctl_kern_urnd, 0, NULL, 0,
470 CTL_KERN, KERN_URND, CTL_EOL);
471 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
472 CTLTYPE_INT, "labelsector", NULL,
473 NULL, LABELSECTOR, NULL, 0,
474 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
475 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
476 CTLTYPE_INT, "labeloffset", NULL,
477 NULL, LABELOFFSET, NULL, 0,
478 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
479 sysctl_createv(SYSCTL_PERMANENT,
480 CTLTYPE_NODE, "lwp", NULL,
481 sysctl_kern_lwp, 0, NULL, 0,
482 CTL_KERN, KERN_LWP, CTL_EOL);
483 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
484 CTLTYPE_INT, "forkfsleep", NULL,
485 sysctl_kern_forkfsleep, 0, NULL, 0,
486 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
487 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
488 CTLTYPE_INT, "posix_threads", NULL,
489 /* XXX _POSIX_VERSION */
490 NULL, _POSIX_THREADS, NULL, 0,
491 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
492 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
493 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
494 #ifdef P1003_1B_SEMAPHORE
495 200112,
496 #else /* P1003_1B_SEMAPHORE */
497 0,
498 #endif /* P1003_1B_SEMAPHORE */
499 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
500 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
501 CTLTYPE_INT, "posix_barriers", NULL,
502 /* XXX _POSIX_VERSION */
503 NULL, _POSIX_BARRIERS, NULL, 0,
504 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
505 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
506 CTLTYPE_INT, "posix_timers", NULL,
507 /* XXX _POSIX_VERSION */
508 NULL, _POSIX_TIMERS, NULL, 0,
509 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
510 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
511 CTLTYPE_INT, "posix_spin_locks", NULL,
512 /* XXX _POSIX_VERSION */
513 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
514 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
515 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
516 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
517 /* XXX _POSIX_VERSION */
518 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
519 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
520 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
521 CTLTYPE_INT, "dump_on_panic", NULL,
522 NULL, 0, &dumponpanic, 0,
523 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
524 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
525 CTLTYPE_INT, "somaxkva", NULL,
526 sysctl_kern_somaxkva, 0, NULL, 0,
527 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
528 sysctl_createv(SYSCTL_PERMANENT,
529 CTLTYPE_INT, "root_partition", NULL,
530 sysctl_kern_root_partition, 0, NULL, 0,
531 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
532 sysctl_createv(SYSCTL_PERMANENT,
533 CTLTYPE_STRUCT, "drivers", NULL,
534 sysctl_kern_drivers, 0, NULL, 0,
535 CTL_KERN, KERN_DRIVERS, CTL_EOL);
536 }
537
538 SYSCTL_SETUP(sysctl_kern_proc_setup,
539 "sysctl kern.proc/proc2/proc_args subtree setup")
540 {
541
542 sysctl_createv(SYSCTL_PERMANENT,
543 CTLTYPE_NODE, "kern", NULL,
544 NULL, 0, NULL, 0,
545 CTL_KERN, CTL_EOL);
546
547 sysctl_createv(SYSCTL_PERMANENT,
548 CTLTYPE_NODE, "proc", NULL,
549 sysctl_doeproc, 0, NULL, 0,
550 CTL_KERN, KERN_PROC, CTL_EOL);
551 sysctl_createv(SYSCTL_PERMANENT,
552 CTLTYPE_NODE, "proc2", NULL,
553 sysctl_doeproc, 0, NULL, 0,
554 CTL_KERN, KERN_PROC2, CTL_EOL);
555 sysctl_createv(SYSCTL_PERMANENT,
556 CTLTYPE_NODE, "proc_args", NULL,
557 sysctl_kern_proc_args, 0, NULL, 0,
558 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
559
560 /*
561 "nodes" under these:
562
563 KERN_PROC_ALL
564 KERN_PROC_PID pid
565 KERN_PROC_PGRP pgrp
566 KERN_PROC_SESSION sess
567 KERN_PROC_TTY tty
568 KERN_PROC_UID uid
569 KERN_PROC_RUID uid
570 KERN_PROC_GID gid
571 KERN_PROC_RGID gid
572
573 all in all, probably not worth the effort...
574 */
575 }
576
577 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
578 {
579 u_int u;
580 u_quad_t q;
581
582 sysctl_createv(SYSCTL_PERMANENT,
583 CTLTYPE_NODE, "hw", NULL,
584 NULL, 0, NULL, 0,
585 CTL_HW, CTL_EOL);
586
587 sysctl_createv(SYSCTL_PERMANENT,
588 CTLTYPE_STRING, "machine", NULL,
589 NULL, 0, machine, 0,
590 CTL_HW, HW_MACHINE, CTL_EOL);
591 sysctl_createv(SYSCTL_PERMANENT,
592 CTLTYPE_STRING, "model", NULL,
593 NULL, 0, cpu_model, 0,
594 CTL_HW, HW_MODEL, CTL_EOL);
595 sysctl_createv(SYSCTL_PERMANENT,
596 CTLTYPE_INT, "ncpu", NULL,
597 sysctl_hw_ncpu, 0, NULL, 0,
598 CTL_HW, HW_NCPU, CTL_EOL);
599 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
600 CTLTYPE_INT, "byteorder", NULL,
601 NULL, BYTE_ORDER, NULL, 0,
602 CTL_HW, HW_BYTEORDER, CTL_EOL);
603 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
604 UINT_MAX : physmem * PAGE_SIZE;
605 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
606 CTLTYPE_INT, "physmem", NULL,
607 NULL, u, NULL, 0,
608 CTL_HW, HW_PHYSMEM, CTL_EOL);
609 sysctl_createv(SYSCTL_PERMANENT,
610 CTLTYPE_INT, "usermem", NULL,
611 sysctl_hw_usermem, 0, NULL, 0,
612 CTL_HW, HW_USERMEM, CTL_EOL);
613 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
614 CTLTYPE_INT, "pagesize", NULL,
615 NULL, PAGE_SIZE, NULL, 0,
616 CTL_HW, HW_PAGESIZE, CTL_EOL);
617 sysctl_createv(SYSCTL_PERMANENT,
618 CTLTYPE_STRING, "disknames", NULL,
619 sysctl_hw_disknames, 0, NULL, 0,
620 CTL_HW, HW_DISKNAMES, CTL_EOL);
621 sysctl_createv(SYSCTL_PERMANENT,
622 CTLTYPE_STRUCT, "diskstats", NULL,
623 sysctl_hw_diskstats, 0, NULL, 0,
624 CTL_HW, HW_DISKSTATS, CTL_EOL);
625 sysctl_createv(SYSCTL_PERMANENT,
626 CTLTYPE_STRING, "machine_arch", NULL,
627 NULL, 0, machine_arch, 0,
628 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
629 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
630 CTLTYPE_INT, "alignbytes", NULL,
631 NULL, ALIGNBYTES, NULL, 0,
632 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
633 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
634 CTLTYPE_STRING, "cnmagic", NULL,
635 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
636 CTL_HW, HW_CNMAGIC, CTL_EOL);
637 q = (u_quad_t)physmem * PAGE_SIZE;
638 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
639 CTLTYPE_QUAD, "physmem64", NULL,
640 NULL, q, NULL, 0,
641 CTL_HW, HW_PHYSMEM64, CTL_EOL);
642 sysctl_createv(SYSCTL_PERMANENT,
643 CTLTYPE_QUAD, "usermem64", NULL,
644 sysctl_hw_usermem, 0, NULL, 0,
645 CTL_HW, HW_USERMEM64, CTL_EOL);
646 }
647
648 #ifdef DEBUG
649 /*
650 * Debugging related system variables.
651 */
652 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
653 struct ctldebug debug5, debug6, debug7, debug8, debug9;
654 struct ctldebug debug10, debug11, debug12, debug13, debug14;
655 struct ctldebug debug15, debug16, debug17, debug18, debug19;
656 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
657 &debug0, &debug1, &debug2, &debug3, &debug4,
658 &debug5, &debug6, &debug7, &debug8, &debug9,
659 &debug10, &debug11, &debug12, &debug13, &debug14,
660 &debug15, &debug16, &debug17, &debug18, &debug19,
661 };
662
663 /*
664 * this setup routine is a replacement for debug_sysctl()
665 *
666 * note that it creates several nodes per defined debug variable
667 */
668 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
669 {
670 struct ctldebug *cdp;
671 char nodename[20];
672 int i;
673
674 /*
675 * two ways here:
676 *
677 * the "old" way (debug.name -> value) which was emulated by
678 * the sysctl(8) binary
679 *
680 * the new way, which the sysctl(8) binary was actually using
681
682 node debug
683 node debug.0
684 string debug.0.name
685 int debug.0.value
686 int debug.name
687
688 */
689
690 sysctl_createv(SYSCTL_PERMANENT,
691 CTLTYPE_NODE, "debug", NULL,
692 NULL, 0, NULL, 0,
693 CTL_DEBUG, CTL_EOL);
694
695 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
696 cdp = debugvars[i];
697 if (cdp->debugname == NULL || cdp->debugvar == NULL)
698 continue;
699
700 snprintf(nodename, sizeof(nodename), "debug%d", i);
701 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
702 CTLTYPE_NODE, nodename, NULL,
703 NULL, 0, NULL, 0,
704 CTL_DEBUG, i, CTL_EOL);
705 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
706 CTLTYPE_STRING, "name", NULL,
707 NULL, 0, cdp->debugname, 0,
708 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
709 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
710 CTLTYPE_INT, "value", NULL,
711 NULL, 0, cdp->debugvar, 0,
712 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
713 sysctl_createv(SYSCTL_PERMANENT,
714 CTLTYPE_INT, cdp->debugname, NULL,
715 NULL, 0, cdp->debugvar, 0,
716 CTL_DEBUG, CTL_CREATE, CTL_EOL);
717 }
718 }
719 #endif /* DEBUG */
720
721 /*
722 * ********************************************************************
723 * section 2: private node-specific helper routines.
724 * ********************************************************************
725 */
726
727 /*
728 * sysctl helper routine for kern.maxvnodes. drain vnodes if
729 * new value is lower than desiredvnodes and then calls reinit
730 * routines that needs to adjust to the new value.
731 */
732 static int
733 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
734 {
735 int error, new_vnodes, old_vnodes;
736 struct sysctlnode node;
737
738 new_vnodes = desiredvnodes;
739 node = *rnode;
740 node.sysctl_data = &new_vnodes;
741 error = sysctl_lookup(SYSCTLFN_CALL(&node));
742 if (error || newp == NULL)
743 return (error);
744
745 old_vnodes = desiredvnodes;
746 desiredvnodes = new_vnodes;
747 if (new_vnodes < old_vnodes) {
748 error = vfs_drainvnodes(new_vnodes, l->l_proc);
749 if (error) {
750 desiredvnodes = old_vnodes;
751 return (error);
752 }
753 }
754 vfs_reinit();
755 nchreinit();
756
757 return (0);
758 }
759
760 /*
761 * sysctl helper routine for rtc_offset - set time after changes
762 */
763 static int
764 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
765 {
766 struct timeval tv, delta;
767 int s, error, new_rtc_offset;
768 struct sysctlnode node;
769
770 new_rtc_offset = rtc_offset;
771 node = *rnode;
772 node.sysctl_data = &new_rtc_offset;
773 error = sysctl_lookup(SYSCTLFN_CALL(&node));
774 if (error || newp == NULL)
775 return (error);
776
777 if (securelevel > 0)
778 return (EPERM);
779 if (rtc_offset == new_rtc_offset)
780 return (0);
781
782 /* if we change the offset, adjust the time */
783 s = splclock();
784 tv = time;
785 splx(s);
786 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
787 delta.tv_usec = 0;
788 timeradd(&tv, &delta, &tv);
789 rtc_offset = new_rtc_offset;
790 settime(&tv);
791
792 return (0);
793 }
794
795 /*
796 * sysctl helper routine for kern.maxvnodes. ensures that the new
797 * values are not too low or too high.
798 */
799 static int
800 sysctl_kern_maxproc(SYSCTLFN_ARGS)
801 {
802 int error, nmaxproc;
803 struct sysctlnode node;
804
805 nmaxproc = maxproc;
806 node = *rnode;
807 node.sysctl_data = &nmaxproc;
808 error = sysctl_lookup(SYSCTLFN_CALL(&node));
809 if (error || newp == NULL)
810 return (error);
811
812 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
813 return (EINVAL);
814 #ifdef __HAVE_CPU_MAXPROC
815 if (nmaxproc > cpu_maxproc())
816 return (EINVAL);
817 #endif
818 maxproc = nmaxproc;
819
820 return (0);
821 }
822
823 /*
824 * sysctl helper routine for kern.securelevel. ensures that the value
825 * only rises unless the caller has pid 1 (assumed to be init).
826 */
827 static int
828 sysctl_kern_securelevel(SYSCTLFN_ARGS)
829 {
830 int newsecurelevel, error;
831 struct sysctlnode node;
832
833 newsecurelevel = securelevel;
834 node = *rnode;
835 node.sysctl_data = &newsecurelevel;
836 error = sysctl_lookup(SYSCTLFN_CALL(&node));
837 if (error || newp == NULL)
838 return (error);
839
840 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
841 return (EPERM);
842 securelevel = newsecurelevel;
843
844 return (error);
845 }
846
847 /*
848 * sysctl helper function for kern.hostid. the hostid is a long, but
849 * we export it as an int, so we need to give it a little help.
850 */
851 static int
852 sysctl_kern_hostid(SYSCTLFN_ARGS)
853 {
854 int error, inthostid;
855 struct sysctlnode node;
856
857 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
858 node = *rnode;
859 node.sysctl_data = &inthostid;
860 error = sysctl_lookup(SYSCTLFN_CALL(&node));
861 if (error || newp == NULL)
862 return (error);
863
864 hostid = inthostid;
865
866 return (0);
867 }
868
869 /*
870 * sysctl helper function for kern.hostname and kern.domainnname.
871 * resets the relevant recorded length when the underlying name is
872 * changed.
873 */
874 static int
875 sysctl_setlen(SYSCTLFN_ARGS)
876 {
877 int error;
878
879 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
880 if (error || newp == NULL)
881 return (error);
882
883 switch (rnode->sysctl_num) {
884 case KERN_HOSTNAME:
885 hostnamelen = strlen((const char*)rnode->sysctl_data);
886 break;
887 case KERN_DOMAINNAME:
888 domainnamelen = strlen((const char*)rnode->sysctl_data);
889 break;
890 }
891
892 return (0);
893 }
894
895 /*
896 * sysctl helper routine for kern.clockrate. assembles a struct on
897 * the fly to be returned to the caller.
898 */
899 static int
900 sysctl_kern_clockrate(SYSCTLFN_ARGS)
901 {
902 struct clockinfo clkinfo;
903 struct sysctlnode node;
904
905 clkinfo.tick = tick;
906 clkinfo.tickadj = tickadj;
907 clkinfo.hz = hz;
908 clkinfo.profhz = profhz;
909 clkinfo.stathz = stathz ? stathz : hz;
910
911 node = *rnode;
912 node.sysctl_data = &clkinfo;
913 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
914 }
915
916
917 /*
918 * sysctl helper routine for kern.file pseudo-subtree.
919 */
920 static int
921 sysctl_kern_file(SYSCTLFN_ARGS)
922 {
923 int error;
924 size_t buflen;
925 struct file *fp;
926 char *start, *where;
927
928 start = where = oldp;
929 buflen = *oldlenp;
930 if (where == NULL) {
931 /*
932 * overestimate by 10 files
933 */
934 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
935 return (0);
936 }
937
938 /*
939 * first copyout filehead
940 */
941 if (buflen < sizeof(filehead)) {
942 *oldlenp = 0;
943 return (0);
944 }
945 error = copyout(&filehead, where, sizeof(filehead));
946 if (error)
947 return (error);
948 buflen -= sizeof(filehead);
949 where += sizeof(filehead);
950
951 /*
952 * followed by an array of file structures
953 */
954 LIST_FOREACH(fp, &filehead, f_list) {
955 if (buflen < sizeof(struct file)) {
956 *oldlenp = where - start;
957 return (ENOMEM);
958 }
959 error = copyout(fp, where, sizeof(struct file));
960 if (error)
961 return (error);
962 buflen -= sizeof(struct file);
963 where += sizeof(struct file);
964 }
965 *oldlenp = where - start;
966 return (0);
967 }
968
969 /*
970 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
971 * asserts that the assigned value is in the correct range.
972 */
973 static int
974 sysctl_kern_autonice(SYSCTLFN_ARGS)
975 {
976 int error, t = 0;
977 struct sysctlnode node;
978
979 node = *rnode;
980 t = *(int*)node.sysctl_data;
981 node.sysctl_data = &t;
982 error = sysctl_lookup(SYSCTLFN_CALL(&node));
983 if (error || newp == NULL)
984 return (error);
985
986 switch (node.sysctl_num) {
987 case KERN_AUTONICETIME:
988 if (t >= 0)
989 autonicetime = t;
990 break;
991 case KERN_AUTONICEVAL:
992 if (t < PRIO_MIN)
993 t = PRIO_MIN;
994 else if (t > PRIO_MAX)
995 t = PRIO_MAX;
996 autoniceval = t;
997 break;
998 }
999
1000 return (0);
1001 }
1002
1003 /*
1004 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1005 * former it merely checks the the message buffer is set up. for the
1006 * latter, it also copies out the data if necessary.
1007 */
1008 static int
1009 sysctl_msgbuf(SYSCTLFN_ARGS)
1010 {
1011 char *where = oldp;
1012 size_t len, maxlen;
1013 long beg, end;
1014 int error;
1015
1016 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1017 msgbufenabled = 0;
1018 return (ENXIO);
1019 }
1020
1021 switch (rnode->sysctl_num) {
1022 case KERN_MSGBUFSIZE:
1023 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
1024 case KERN_MSGBUF:
1025 break;
1026 default:
1027 return (EOPNOTSUPP);
1028 }
1029
1030 if (newp != NULL)
1031 return (EPERM);
1032
1033 if (oldp == NULL) {
1034 /* always return full buffer size */
1035 *oldlenp = msgbufp->msg_bufs;
1036 return (0);
1037 }
1038
1039 error = 0;
1040 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1041
1042 /*
1043 * First, copy from the write pointer to the end of
1044 * message buffer.
1045 */
1046 beg = msgbufp->msg_bufx;
1047 end = msgbufp->msg_bufs;
1048 while (maxlen > 0) {
1049 len = MIN(end - beg, maxlen);
1050 if (len == 0)
1051 break;
1052 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1053 if (error)
1054 break;
1055 where += len;
1056 maxlen -= len;
1057
1058 /*
1059 * ... then, copy from the beginning of message buffer to
1060 * the write pointer.
1061 */
1062 beg = 0;
1063 end = msgbufp->msg_bufx;
1064 }
1065
1066 return (error);
1067 }
1068
1069 /*
1070 * sysctl helper routine for kern.defcorename. in the case of a new
1071 * string being assigned, check that it's not a zero-length string.
1072 * (XXX the check in -current doesn't work, but do we really care?)
1073 */
1074 static int
1075 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1076 {
1077 int error;
1078 char newcorename[MAXPATHLEN];
1079 struct sysctlnode node;
1080
1081 node = *rnode;
1082 node.sysctl_data = &newcorename[0];
1083 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1084 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1085 if (error || newp == NULL)
1086 return (error);
1087
1088 /*
1089 * when sysctl_lookup() deals with a string, it's guaranteed
1090 * to come back nul terminated. so there. :)
1091 */
1092 if (strlen(newcorename) == 0)
1093 return (EINVAL);
1094
1095 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1096
1097 return (0);
1098 }
1099
1100 /*
1101 * sysctl helper routine for kern.cp_time node. adds up cpu time
1102 * across all cpus.
1103 */
1104 static int
1105 sysctl_kern_cptime(SYSCTLFN_ARGS)
1106 {
1107 struct sysctlnode node = *rnode;
1108
1109 #ifndef MULTIPROCESSOR
1110
1111 if (namelen == 1 && name[0] == 0) {
1112 /*
1113 * you're allowed to ask for the zero'th processor
1114 */
1115 name++;
1116 namelen--;
1117 }
1118 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1119 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1120 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1121
1122 #else /* MULTIPROCESSOR */
1123
1124 u_int64_t *cp_time = NULL;
1125 int error, n = sysctl_ncpus(), i;
1126 struct cpu_info *ci;
1127 CPU_INFO_ITERATOR cii;
1128
1129 /*
1130 * if you specifically pass a buffer that is the size of the
1131 * sum, or if you are probing for the size, you get the "sum"
1132 * of cp_time (and the size thereof) across all processors.
1133 *
1134 * alternately, you can pass an additional mib number and get
1135 * cp_time for that particular processor.
1136 */
1137 switch (namelen) {
1138 case 0:
1139 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1140 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1141 n = -1; /* SUM */
1142 }
1143 else {
1144 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1145 n = -2; /* ALL */
1146 }
1147 break;
1148 case 1:
1149 if (name[0] < 0 || name[0] >= n)
1150 return (EINVAL); /* ENOSUCHPROCESSOR */
1151 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1152 n = name[0];
1153 /*
1154 * adjust these so that sysctl_lookup() will be happy
1155 */
1156 name++;
1157 namelen--;
1158 break;
1159 default:
1160 return (EINVAL);
1161 }
1162
1163 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1164 if (cp_time == NULL)
1165 return (ENOMEM);
1166 node.sysctl_data = cp_time;
1167 memset(cp_time, 0, node.sysctl_size);
1168
1169 for (CPU_INFO_FOREACH(cii, ci)) {
1170 if (n <= 0)
1171 for (i = 0; i < CPUSTATES; i++)
1172 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1173 /*
1174 * if a specific processor was requested and we just
1175 * did it, we're done here
1176 */
1177 if (n == 0)
1178 break;
1179 /*
1180 * if doing "all", skip to next cp_time set for next processor
1181 */
1182 if (n == -2)
1183 cp_time += CPUSTATES;
1184 /*
1185 * if we're doing a specific processor, we're one
1186 * processor closer
1187 */
1188 if (n > 0)
1189 n--;
1190 }
1191
1192 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1193 free(node.sysctl_data, M_TEMP);
1194 return (error);
1195
1196 #endif /* MULTIPROCESSOR */
1197 }
1198
1199 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1200 /*
1201 * sysctl helper routine for kern.sysvipc_info subtree.
1202 */
1203
1204 #define FILL_PERM(src, dst) do { \
1205 (dst)._key = (src)._key; \
1206 (dst).uid = (src).uid; \
1207 (dst).gid = (src).gid; \
1208 (dst).cuid = (src).cuid; \
1209 (dst).cgid = (src).cgid; \
1210 (dst).mode = (src).mode; \
1211 (dst)._seq = (src)._seq; \
1212 } while (/*CONSTCOND*/ 0);
1213 #define FILL_MSG(src, dst) do { \
1214 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1215 (dst).msg_qnum = (src).msg_qnum; \
1216 (dst).msg_qbytes = (src).msg_qbytes; \
1217 (dst)._msg_cbytes = (src)._msg_cbytes; \
1218 (dst).msg_lspid = (src).msg_lspid; \
1219 (dst).msg_lrpid = (src).msg_lrpid; \
1220 (dst).msg_stime = (src).msg_stime; \
1221 (dst).msg_rtime = (src).msg_rtime; \
1222 (dst).msg_ctime = (src).msg_ctime; \
1223 } while (/*CONSTCOND*/ 0)
1224 #define FILL_SEM(src, dst) do { \
1225 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1226 (dst).sem_nsems = (src).sem_nsems; \
1227 (dst).sem_otime = (src).sem_otime; \
1228 (dst).sem_ctime = (src).sem_ctime; \
1229 } while (/*CONSTCOND*/ 0)
1230 #define FILL_SHM(src, dst) do { \
1231 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1232 (dst).shm_segsz = (src).shm_segsz; \
1233 (dst).shm_lpid = (src).shm_lpid; \
1234 (dst).shm_cpid = (src).shm_cpid; \
1235 (dst).shm_atime = (src).shm_atime; \
1236 (dst).shm_dtime = (src).shm_dtime; \
1237 (dst).shm_ctime = (src).shm_ctime; \
1238 (dst).shm_nattch = (src).shm_nattch; \
1239 } while (/*CONSTCOND*/ 0)
1240
1241 static int
1242 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1243 {
1244 void *where = oldp;
1245 size_t *sizep = oldlenp;
1246 #ifdef SYSVMSG
1247 struct msg_sysctl_info *msgsi = NULL;
1248 #endif
1249 #ifdef SYSVSEM
1250 struct sem_sysctl_info *semsi = NULL;
1251 #endif
1252 #ifdef SYSVSHM
1253 struct shm_sysctl_info *shmsi = NULL;
1254 #endif
1255 size_t infosize, dssize, tsize, buflen;
1256 void *buf = NULL;
1257 char *start;
1258 int32_t nds;
1259 int i, error, ret;
1260
1261 if (namelen != 1)
1262 return (EINVAL);
1263
1264 start = where;
1265 buflen = *sizep;
1266
1267 switch (*name) {
1268 case KERN_SYSVIPC_MSG_INFO:
1269 #ifdef SYSVMSG
1270 infosize = sizeof(msgsi->msginfo);
1271 nds = msginfo.msgmni;
1272 dssize = sizeof(msgsi->msgids[0]);
1273 break;
1274 #else
1275 return (EINVAL);
1276 #endif
1277 case KERN_SYSVIPC_SEM_INFO:
1278 #ifdef SYSVSEM
1279 infosize = sizeof(semsi->seminfo);
1280 nds = seminfo.semmni;
1281 dssize = sizeof(semsi->semids[0]);
1282 break;
1283 #else
1284 return (EINVAL);
1285 #endif
1286 case KERN_SYSVIPC_SHM_INFO:
1287 #ifdef SYSVSHM
1288 infosize = sizeof(shmsi->shminfo);
1289 nds = shminfo.shmmni;
1290 dssize = sizeof(shmsi->shmids[0]);
1291 break;
1292 #else
1293 return (EINVAL);
1294 #endif
1295 default:
1296 return (EINVAL);
1297 }
1298 /*
1299 * Round infosize to 64 bit boundary if requesting more than just
1300 * the info structure or getting the total data size.
1301 */
1302 if (where == NULL || *sizep > infosize)
1303 infosize = ((infosize + 7) / 8) * 8;
1304 tsize = infosize + nds * dssize;
1305
1306 /* Return just the total size required. */
1307 if (where == NULL) {
1308 *sizep = tsize;
1309 return (0);
1310 }
1311
1312 /* Not enough room for even the info struct. */
1313 if (buflen < infosize) {
1314 *sizep = 0;
1315 return (ENOMEM);
1316 }
1317 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1318 memset(buf, 0, min(tsize, buflen));
1319
1320 switch (*name) {
1321 #ifdef SYSVMSG
1322 case KERN_SYSVIPC_MSG_INFO:
1323 msgsi = (struct msg_sysctl_info *)buf;
1324 msgsi->msginfo = msginfo;
1325 break;
1326 #endif
1327 #ifdef SYSVSEM
1328 case KERN_SYSVIPC_SEM_INFO:
1329 semsi = (struct sem_sysctl_info *)buf;
1330 semsi->seminfo = seminfo;
1331 break;
1332 #endif
1333 #ifdef SYSVSHM
1334 case KERN_SYSVIPC_SHM_INFO:
1335 shmsi = (struct shm_sysctl_info *)buf;
1336 shmsi->shminfo = shminfo;
1337 break;
1338 #endif
1339 }
1340 buflen -= infosize;
1341
1342 ret = 0;
1343 if (buflen > 0) {
1344 /* Fill in the IPC data structures. */
1345 for (i = 0; i < nds; i++) {
1346 if (buflen < dssize) {
1347 ret = ENOMEM;
1348 break;
1349 }
1350 switch (*name) {
1351 #ifdef SYSVMSG
1352 case KERN_SYSVIPC_MSG_INFO:
1353 FILL_MSG(msqids[i], msgsi->msgids[i]);
1354 break;
1355 #endif
1356 #ifdef SYSVSEM
1357 case KERN_SYSVIPC_SEM_INFO:
1358 FILL_SEM(sema[i], semsi->semids[i]);
1359 break;
1360 #endif
1361 #ifdef SYSVSHM
1362 case KERN_SYSVIPC_SHM_INFO:
1363 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1364 break;
1365 #endif
1366 }
1367 buflen -= dssize;
1368 }
1369 }
1370 *sizep -= buflen;
1371 error = copyout(buf, start, *sizep);
1372 /* If copyout succeeded, use return code set earlier. */
1373 if (error == 0)
1374 error = ret;
1375 if (buf)
1376 free(buf, M_TEMP);
1377 return (error);
1378 }
1379
1380 #undef FILL_PERM
1381 #undef FILL_MSG
1382 #undef FILL_SEM
1383 #undef FILL_SHM
1384
1385 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1386
1387 #if NPTY > 0
1388 /*
1389 * sysctl helper routine for kern.maxptys. ensures that any new value
1390 * is acceptable to the pty subsystem.
1391 */
1392 static int
1393 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1394 {
1395 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1396 int error, max;
1397 struct sysctlnode node;
1398
1399 /* get current value of maxptys */
1400 max = pty_maxptys(0, 0);
1401
1402 node = *rnode;
1403 node.sysctl_data = &max;
1404 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1405 if (error || newp == NULL)
1406 return (error);
1407
1408 if (max != pty_maxptys(max, 1))
1409 return (EINVAL);
1410
1411 return (0);
1412 }
1413 #endif /* NPTY > 0 */
1414
1415 /*
1416 * sysctl helper routine for kern.sbmax. basically just ensures that
1417 * any new value is not too small.
1418 */
1419 static int
1420 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1421 {
1422 int error, new_sbmax;
1423 struct sysctlnode node;
1424
1425 new_sbmax = sb_max;
1426 node = *rnode;
1427 node.sysctl_data = &new_sbmax;
1428 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1429 if (error || newp == NULL)
1430 return (error);
1431
1432 error = sb_max_set(new_sbmax);
1433
1434 return (error);
1435 }
1436
1437 /*
1438 * sysctl helper routine for kern.urandom node. picks a random number
1439 * for you.
1440 */
1441 static int
1442 sysctl_kern_urnd(SYSCTLFN_ARGS)
1443 {
1444 #if NRND > 0
1445 int v;
1446
1447 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1448 struct sysctlnode node = *rnode;
1449 node.sysctl_data = &v;
1450 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1451 }
1452 else
1453 return (EIO); /*XXX*/
1454 #else
1455 return (EOPNOTSUPP);
1456 #endif
1457 }
1458
1459 /*
1460 * sysctl helper routine to do kern.lwp.* work.
1461 */
1462 static int
1463 sysctl_kern_lwp(SYSCTLFN_ARGS)
1464 {
1465 struct kinfo_lwp klwp;
1466 struct proc *p;
1467 struct lwp *l2;
1468 char *where, *dp;
1469 int pid, elem_size, elem_count;
1470 int buflen, needed, error;
1471
1472 dp = where = oldp;
1473 buflen = where != NULL ? *oldlenp : 0;
1474 error = needed = 0;
1475
1476 if (newp != NULL || namelen != 3)
1477 return (EINVAL);
1478 pid = name[0];
1479 elem_size = name[1];
1480 elem_count = name[2];
1481
1482 p = pfind(pid);
1483 if (p == NULL)
1484 return (ESRCH);
1485 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1486 if (buflen >= elem_size && elem_count > 0) {
1487 fill_lwp(l2, &klwp);
1488 /*
1489 * Copy out elem_size, but not larger than
1490 * the size of a struct kinfo_proc2.
1491 */
1492 error = copyout(&klwp, dp,
1493 min(sizeof(klwp), elem_size));
1494 if (error)
1495 goto cleanup;
1496 dp += elem_size;
1497 buflen -= elem_size;
1498 elem_count--;
1499 }
1500 needed += elem_size;
1501 }
1502
1503 if (where != NULL) {
1504 *oldlenp = dp - where;
1505 if (needed > *oldlenp)
1506 return (ENOMEM);
1507 } else {
1508 needed += KERN_PROCSLOP;
1509 *oldlenp = needed;
1510 }
1511 return (0);
1512 cleanup:
1513 return (error);
1514 }
1515
1516 /*
1517 * sysctl helper routine for kern.forkfsleep node. ensures that the
1518 * given value is not too large or two small, and is at least one
1519 * timer tick if not zero.
1520 */
1521 static int
1522 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1523 {
1524 /* userland sees value in ms, internally is in ticks */
1525 extern int forkfsleep; /* defined in kern/kern_fork.c */
1526 int error, timo, lsleep;
1527 struct sysctlnode node;
1528
1529 lsleep = forkfsleep * 1000 / hz;
1530 node = *rnode;
1531 node.sysctl_data = &lsleep;
1532 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1533 if (error || newp == NULL)
1534 return (error);
1535
1536 /* refuse negative values, and overly 'long time' */
1537 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1538 return (EINVAL);
1539
1540 timo = mstohz(lsleep);
1541
1542 /* if the interval is >0 ms && <1 tick, use 1 tick */
1543 if (lsleep != 0 && timo == 0)
1544 forkfsleep = 1;
1545 else
1546 forkfsleep = timo;
1547
1548 return (0);
1549 }
1550
1551 /*
1552 * sysctl helper routine for kern.somaxkva. ensures that the given
1553 * value is not too small.
1554 * (XXX should we maybe make sure it's not too large as well?)
1555 */
1556 static int
1557 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1558 {
1559 int error, new_somaxkva;
1560 struct sysctlnode node;
1561
1562 new_somaxkva = somaxkva;
1563 node = *rnode;
1564 node.sysctl_data = &new_somaxkva;
1565 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1566 if (error || newp == NULL)
1567 return (error);
1568
1569 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1570 return (EINVAL);
1571 somaxkva = new_somaxkva;
1572
1573 return (error);
1574 }
1575
1576 /*
1577 * sysctl helper routine for kern.root_partition
1578 */
1579 static int
1580 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1581 {
1582 int rootpart = DISKPART(rootdev);
1583 struct sysctlnode node = *rnode;
1584
1585 node.sysctl_data = &rootpart;
1586 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1587 }
1588
1589 /*
1590 * sysctl helper function for kern.drivers
1591 */
1592 static int
1593 sysctl_kern_drivers(SYSCTLFN_ARGS)
1594 {
1595 int error;
1596 size_t buflen;
1597 struct kinfo_drivers kd;
1598 char *start, *where;
1599 const char *dname;
1600 int i;
1601 extern struct devsw_conv *devsw_conv;
1602 extern int max_devsw_convs;
1603
1604 if (newp != NULL || namelen != 0)
1605 return (EINVAL);
1606
1607 start = where = oldp;
1608 buflen = *oldlenp;
1609 if (where == NULL) {
1610 *oldlenp = max_devsw_convs * sizeof kd;
1611 return 0;
1612 }
1613
1614 /*
1615 * An array of kinfo_drivers structures
1616 */
1617 error = 0;
1618 for (i = 0; i < max_devsw_convs; i++) {
1619 dname = devsw_conv[i].d_name;
1620 if (dname == NULL)
1621 continue;
1622 if (buflen < sizeof kd) {
1623 error = ENOMEM;
1624 break;
1625 }
1626 kd.d_bmajor = devsw_conv[i].d_bmajor;
1627 kd.d_cmajor = devsw_conv[i].d_cmajor;
1628 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1629 error = copyout(&kd, where, sizeof kd);
1630 if (error != 0)
1631 break;
1632 buflen -= sizeof kd;
1633 where += sizeof kd;
1634 }
1635 *oldlenp = where - start;
1636 return error;
1637 }
1638
1639 static int
1640 sysctl_doeproc(SYSCTLFN_ARGS)
1641 {
1642 struct eproc eproc;
1643 struct kinfo_proc2 kproc2;
1644 struct kinfo_proc *dp;
1645 struct proc *p;
1646 const struct proclist_desc *pd;
1647 char *where, *dp2;
1648 int type, op, arg;
1649 u_int elem_size, elem_count;
1650 size_t buflen, needed;
1651 int error;
1652
1653 dp = oldp;
1654 dp2 = where = oldp;
1655 buflen = where != NULL ? *oldlenp : 0;
1656 error = 0;
1657 needed = 0;
1658 type = rnode->sysctl_num;
1659
1660 if (type == KERN_PROC) {
1661 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1662 return (EINVAL);
1663 op = name[0];
1664 if (op != KERN_PROC_ALL)
1665 arg = name[1];
1666 else
1667 arg = 0; /* Quell compiler warning */
1668 elem_size = elem_count = 0; /* Ditto */
1669 } else {
1670 if (namelen != 4)
1671 return (EINVAL);
1672 op = name[0];
1673 arg = name[1];
1674 elem_size = name[2];
1675 elem_count = name[3];
1676 }
1677
1678 proclist_lock_read();
1679
1680 pd = proclists;
1681 again:
1682 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1683 /*
1684 * Skip embryonic processes.
1685 */
1686 if (p->p_stat == SIDL)
1687 continue;
1688 /*
1689 * TODO - make more efficient (see notes below).
1690 * do by session.
1691 */
1692 switch (op) {
1693
1694 case KERN_PROC_PID:
1695 /* could do this with just a lookup */
1696 if (p->p_pid != (pid_t)arg)
1697 continue;
1698 break;
1699
1700 case KERN_PROC_PGRP:
1701 /* could do this by traversing pgrp */
1702 if (p->p_pgrp->pg_id != (pid_t)arg)
1703 continue;
1704 break;
1705
1706 case KERN_PROC_SESSION:
1707 if (p->p_session->s_sid != (pid_t)arg)
1708 continue;
1709 break;
1710
1711 case KERN_PROC_TTY:
1712 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1713 if ((p->p_flag & P_CONTROLT) == 0 ||
1714 p->p_session->s_ttyp == NULL ||
1715 p->p_session->s_ttyvp != NULL)
1716 continue;
1717 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1718 p->p_session->s_ttyp == NULL) {
1719 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1720 continue;
1721 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1722 continue;
1723 break;
1724
1725 case KERN_PROC_UID:
1726 if (p->p_ucred->cr_uid != (uid_t)arg)
1727 continue;
1728 break;
1729
1730 case KERN_PROC_RUID:
1731 if (p->p_cred->p_ruid != (uid_t)arg)
1732 continue;
1733 break;
1734
1735 case KERN_PROC_GID:
1736 if (p->p_ucred->cr_gid != (uid_t)arg)
1737 continue;
1738 break;
1739
1740 case KERN_PROC_RGID:
1741 if (p->p_cred->p_rgid != (uid_t)arg)
1742 continue;
1743 break;
1744
1745 case KERN_PROC_ALL:
1746 /* allow everything */
1747 break;
1748
1749 default:
1750 error = EINVAL;
1751 goto cleanup;
1752 }
1753 if (type == KERN_PROC) {
1754 if (buflen >= sizeof(struct kinfo_proc)) {
1755 fill_eproc(p, &eproc);
1756 error = copyout(p, &dp->kp_proc,
1757 sizeof(struct proc));
1758 if (error)
1759 goto cleanup;
1760 error = copyout(&eproc, &dp->kp_eproc,
1761 sizeof(eproc));
1762 if (error)
1763 goto cleanup;
1764 dp++;
1765 buflen -= sizeof(struct kinfo_proc);
1766 }
1767 needed += sizeof(struct kinfo_proc);
1768 } else { /* KERN_PROC2 */
1769 if (buflen >= elem_size && elem_count > 0) {
1770 fill_kproc2(p, &kproc2);
1771 /*
1772 * Copy out elem_size, but not larger than
1773 * the size of a struct kinfo_proc2.
1774 */
1775 error = copyout(&kproc2, dp2,
1776 min(sizeof(kproc2), elem_size));
1777 if (error)
1778 goto cleanup;
1779 dp2 += elem_size;
1780 buflen -= elem_size;
1781 elem_count--;
1782 }
1783 needed += elem_size;
1784 }
1785 }
1786 pd++;
1787 if (pd->pd_list != NULL)
1788 goto again;
1789 proclist_unlock_read();
1790
1791 if (where != NULL) {
1792 if (type == KERN_PROC)
1793 *oldlenp = (char *)dp - where;
1794 else
1795 *oldlenp = dp2 - where;
1796 if (needed > *oldlenp)
1797 return (ENOMEM);
1798 } else {
1799 needed += KERN_LWPSLOP;
1800 *oldlenp = needed;
1801 }
1802 return (0);
1803 cleanup:
1804 proclist_unlock_read();
1805 return (error);
1806 }
1807
1808 /*
1809 * sysctl helper routine for kern.proc_args pseudo-subtree.
1810 */
1811 static int
1812 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1813 {
1814 struct ps_strings pss;
1815 struct proc *p, *up = l->l_proc;
1816 size_t len, upper_bound, xlen, i;
1817 struct uio auio;
1818 struct iovec aiov;
1819 vaddr_t argv;
1820 pid_t pid;
1821 int nargv, type, error;
1822 char *arg;
1823 char *tmp;
1824
1825 if (newp != NULL || namelen != 2)
1826 return (EINVAL);
1827 pid = name[0];
1828 type = name[1];
1829
1830 switch (type) {
1831 case KERN_PROC_ARGV:
1832 case KERN_PROC_NARGV:
1833 case KERN_PROC_ENV:
1834 case KERN_PROC_NENV:
1835 /* ok */
1836 break;
1837 default:
1838 return (EINVAL);
1839 }
1840
1841 /* check pid */
1842 if ((p = pfind(pid)) == NULL)
1843 return (EINVAL);
1844
1845 /* only root or same user change look at the environment */
1846 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1847 if (up->p_ucred->cr_uid != 0) {
1848 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1849 up->p_cred->p_ruid != p->p_cred->p_svuid)
1850 return (EPERM);
1851 }
1852 }
1853
1854 if (oldp == NULL) {
1855 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1856 *oldlenp = sizeof (int);
1857 else
1858 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1859 return (0);
1860 }
1861
1862 /*
1863 * Zombies don't have a stack, so we can't read their psstrings.
1864 * System processes also don't have a user stack.
1865 */
1866 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1867 return (EINVAL);
1868
1869 /*
1870 * Lock the process down in memory.
1871 */
1872 /* XXXCDC: how should locking work here? */
1873 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1874 return (EFAULT);
1875
1876 p->p_vmspace->vm_refcnt++; /* XXX */
1877
1878 /*
1879 * Allocate a temporary buffer to hold the arguments.
1880 */
1881 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1882
1883 /*
1884 * Read in the ps_strings structure.
1885 */
1886 aiov.iov_base = &pss;
1887 aiov.iov_len = sizeof(pss);
1888 auio.uio_iov = &aiov;
1889 auio.uio_iovcnt = 1;
1890 auio.uio_offset = (vaddr_t)p->p_psstr;
1891 auio.uio_resid = sizeof(pss);
1892 auio.uio_segflg = UIO_SYSSPACE;
1893 auio.uio_rw = UIO_READ;
1894 auio.uio_procp = NULL;
1895 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1896 if (error)
1897 goto done;
1898
1899 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1900 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1901 else
1902 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1903 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1904 error = copyout(&nargv, oldp, sizeof(nargv));
1905 *oldlenp = sizeof(nargv);
1906 goto done;
1907 }
1908 /*
1909 * Now read the address of the argument vector.
1910 */
1911 switch (type) {
1912 case KERN_PROC_ARGV:
1913 /* XXX compat32 stuff here */
1914 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1915 break;
1916 case KERN_PROC_ENV:
1917 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1918 break;
1919 default:
1920 return (EINVAL);
1921 }
1922 auio.uio_offset = (off_t)(long)tmp;
1923 aiov.iov_base = &argv;
1924 aiov.iov_len = sizeof(argv);
1925 auio.uio_iov = &aiov;
1926 auio.uio_iovcnt = 1;
1927 auio.uio_resid = sizeof(argv);
1928 auio.uio_segflg = UIO_SYSSPACE;
1929 auio.uio_rw = UIO_READ;
1930 auio.uio_procp = NULL;
1931 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1932 if (error)
1933 goto done;
1934
1935 /*
1936 * Now copy in the actual argument vector, one page at a time,
1937 * since we don't know how long the vector is (though, we do
1938 * know how many NUL-terminated strings are in the vector).
1939 */
1940 len = 0;
1941 upper_bound = *oldlenp;
1942 for (; nargv != 0 && len < upper_bound; len += xlen) {
1943 aiov.iov_base = arg;
1944 aiov.iov_len = PAGE_SIZE;
1945 auio.uio_iov = &aiov;
1946 auio.uio_iovcnt = 1;
1947 auio.uio_offset = argv + len;
1948 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1949 auio.uio_resid = xlen;
1950 auio.uio_segflg = UIO_SYSSPACE;
1951 auio.uio_rw = UIO_READ;
1952 auio.uio_procp = NULL;
1953 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1954 if (error)
1955 goto done;
1956
1957 for (i = 0; i < xlen && nargv != 0; i++) {
1958 if (arg[i] == '\0')
1959 nargv--; /* one full string */
1960 }
1961
1962 /*
1963 * Make sure we don't copyout past the end of the user's
1964 * buffer.
1965 */
1966 if (len + i > upper_bound)
1967 i = upper_bound - len;
1968
1969 error = copyout(arg, (char *)oldp + len, i);
1970 if (error)
1971 break;
1972
1973 if (nargv == 0) {
1974 len += i;
1975 break;
1976 }
1977 }
1978 *oldlenp = len;
1979
1980 done:
1981 uvmspace_free(p->p_vmspace);
1982
1983 free(arg, M_TEMP);
1984 return (error);
1985 }
1986
1987 /*
1988 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1989 * calculate on the fly taking into account integer overflow and the
1990 * current wired count.
1991 */
1992 static int
1993 sysctl_hw_usermem(SYSCTLFN_ARGS)
1994 {
1995 u_int ui;
1996 u_quad_t uq;
1997 struct sysctlnode node;
1998
1999 node = *rnode;
2000 switch (rnode->sysctl_num) {
2001 case HW_USERMEM:
2002 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2003 ui = UINT_MAX;
2004 else
2005 ui *= PAGE_SIZE;
2006 node.sysctl_data = &ui;
2007 break;
2008 case HW_USERMEM64:
2009 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2010 node.sysctl_data = &uq;
2011 break;
2012 default:
2013 return (EINVAL);
2014 }
2015
2016 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2017 }
2018
2019 /*
2020 * sysctl helper routine for kern.cnmagic node. pulls the old value
2021 * out, encoded, and stuffs the new value in for decoding.
2022 */
2023 static int
2024 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2025 {
2026 char magic[CNS_LEN];
2027 int error;
2028 struct sysctlnode node;
2029
2030 if (oldp)
2031 cn_get_magic(magic, CNS_LEN);
2032 node = *rnode;
2033 node.sysctl_data = &magic[0];
2034 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2035 if (error || newp == NULL)
2036 return (error);
2037
2038 return (cn_set_magic(magic));
2039 }
2040
2041 static int
2042 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2043 {
2044 int ncpu;
2045 struct sysctlnode node;
2046
2047 ncpu = sysctl_ncpus();
2048 node = *rnode;
2049 node.sysctl_data = &ncpu;
2050
2051 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2052 }
2053
2054
2055 /*
2056 * ********************************************************************
2057 * section 3: public helper routines that are used for more than one
2058 * node
2059 * ********************************************************************
2060 */
2061
2062 /*
2063 * sysctl helper routine for the kern.root_device node and some ports'
2064 * machdep.root_device nodes.
2065 */
2066 int
2067 sysctl_root_device(SYSCTLFN_ARGS)
2068 {
2069 struct sysctlnode node;
2070
2071 node = *rnode;
2072 node.sysctl_data = root_device->dv_xname;
2073 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2074 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2075 }
2076
2077 /*
2078 * sysctl helper routine for kern.consdev, dependent on the current
2079 * state of the console. also used for machdep.console_device on some
2080 * ports.
2081 */
2082 int
2083 sysctl_consdev(SYSCTLFN_ARGS)
2084 {
2085 dev_t consdev;
2086 struct sysctlnode node;
2087
2088 if (cn_tab != NULL)
2089 consdev = cn_tab->cn_dev;
2090 else
2091 consdev = NODEV;
2092 node = *rnode;
2093 node.sysctl_data = &consdev;
2094 node.sysctl_size = sizeof(consdev);
2095 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2096 }
2097
2098 /*
2099 * ********************************************************************
2100 * section 4: support for some helpers
2101 * ********************************************************************
2102 */
2103
2104 /*
2105 * Fill in a kinfo_proc2 structure for the specified process.
2106 */
2107 static void
2108 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2109 {
2110 struct tty *tp;
2111 struct lwp *l;
2112 struct timeval ut, st;
2113
2114 memset(ki, 0, sizeof(*ki));
2115
2116 ki->p_paddr = PTRTOINT64(p);
2117 ki->p_fd = PTRTOINT64(p->p_fd);
2118 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2119 ki->p_stats = PTRTOINT64(p->p_stats);
2120 ki->p_limit = PTRTOINT64(p->p_limit);
2121 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2122 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2123 ki->p_sess = PTRTOINT64(p->p_session);
2124 ki->p_tsess = 0; /* may be changed if controlling tty below */
2125 ki->p_ru = PTRTOINT64(p->p_ru);
2126
2127 ki->p_eflag = 0;
2128 ki->p_exitsig = p->p_exitsig;
2129 ki->p_flag = p->p_flag;
2130
2131 ki->p_pid = p->p_pid;
2132 if (p->p_pptr)
2133 ki->p_ppid = p->p_pptr->p_pid;
2134 else
2135 ki->p_ppid = 0;
2136 ki->p_sid = p->p_session->s_sid;
2137 ki->p__pgid = p->p_pgrp->pg_id;
2138
2139 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2140
2141 ki->p_uid = p->p_ucred->cr_uid;
2142 ki->p_ruid = p->p_cred->p_ruid;
2143 ki->p_gid = p->p_ucred->cr_gid;
2144 ki->p_rgid = p->p_cred->p_rgid;
2145 ki->p_svuid = p->p_cred->p_svuid;
2146 ki->p_svgid = p->p_cred->p_svgid;
2147
2148 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2149 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2150 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2151
2152 ki->p_jobc = p->p_pgrp->pg_jobc;
2153 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2154 ki->p_tdev = tp->t_dev;
2155 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2156 ki->p_tsess = PTRTOINT64(tp->t_session);
2157 } else {
2158 ki->p_tdev = NODEV;
2159 }
2160
2161 ki->p_estcpu = p->p_estcpu;
2162 ki->p_rtime_sec = p->p_rtime.tv_sec;
2163 ki->p_rtime_usec = p->p_rtime.tv_usec;
2164 ki->p_cpticks = p->p_cpticks;
2165 ki->p_pctcpu = p->p_pctcpu;
2166
2167 ki->p_uticks = p->p_uticks;
2168 ki->p_sticks = p->p_sticks;
2169 ki->p_iticks = p->p_iticks;
2170
2171 ki->p_tracep = PTRTOINT64(p->p_tracep);
2172 ki->p_traceflag = p->p_traceflag;
2173
2174
2175 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2176 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2177 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2178 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2179
2180 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2181 ki->p_realstat = p->p_stat;
2182 ki->p_nice = p->p_nice;
2183
2184 ki->p_xstat = p->p_xstat;
2185 ki->p_acflag = p->p_acflag;
2186
2187 strncpy(ki->p_comm, p->p_comm,
2188 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2189
2190 strncpy(ki->p_login, p->p_session->s_login,
2191 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2192
2193 ki->p_nlwps = p->p_nlwps;
2194 ki->p_nrlwps = p->p_nrlwps;
2195 ki->p_realflag = p->p_flag;
2196
2197 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2198 ki->p_vm_rssize = 0;
2199 ki->p_vm_tsize = 0;
2200 ki->p_vm_dsize = 0;
2201 ki->p_vm_ssize = 0;
2202 l = NULL;
2203 } else {
2204 struct vmspace *vm = p->p_vmspace;
2205
2206 ki->p_vm_rssize = vm_resident_count(vm);
2207 ki->p_vm_tsize = vm->vm_tsize;
2208 ki->p_vm_dsize = vm->vm_dsize;
2209 ki->p_vm_ssize = vm->vm_ssize;
2210
2211 /* Pick a "representative" LWP */
2212 l = proc_representative_lwp(p);
2213 ki->p_forw = PTRTOINT64(l->l_forw);
2214 ki->p_back = PTRTOINT64(l->l_back);
2215 ki->p_addr = PTRTOINT64(l->l_addr);
2216 ki->p_stat = l->l_stat;
2217 ki->p_flag |= l->l_flag;
2218 ki->p_swtime = l->l_swtime;
2219 ki->p_slptime = l->l_slptime;
2220 if (l->l_stat == LSONPROC) {
2221 KDASSERT(l->l_cpu != NULL);
2222 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2223 } else
2224 ki->p_schedflags = 0;
2225 ki->p_holdcnt = l->l_holdcnt;
2226 ki->p_priority = l->l_priority;
2227 ki->p_usrpri = l->l_usrpri;
2228 if (l->l_wmesg)
2229 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2230 ki->p_wchan = PTRTOINT64(l->l_wchan);
2231
2232 }
2233
2234 if (p->p_session->s_ttyvp)
2235 ki->p_eflag |= EPROC_CTTY;
2236 if (SESS_LEADER(p))
2237 ki->p_eflag |= EPROC_SLEADER;
2238
2239 /* XXX Is this double check necessary? */
2240 if (P_ZOMBIE(p)) {
2241 ki->p_uvalid = 0;
2242 } else {
2243 ki->p_uvalid = 1;
2244
2245 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2246 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2247
2248 calcru(p, &ut, &st, 0);
2249 ki->p_uutime_sec = ut.tv_sec;
2250 ki->p_uutime_usec = ut.tv_usec;
2251 ki->p_ustime_sec = st.tv_sec;
2252 ki->p_ustime_usec = st.tv_usec;
2253
2254 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2255 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2256 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2257 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2258 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2259 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2260 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2261 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2262 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2263 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2264 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2265 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2266 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2267 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2268
2269 timeradd(&p->p_stats->p_cru.ru_utime,
2270 &p->p_stats->p_cru.ru_stime, &ut);
2271 ki->p_uctime_sec = ut.tv_sec;
2272 ki->p_uctime_usec = ut.tv_usec;
2273 }
2274 #ifdef MULTIPROCESSOR
2275 if (l && l->l_cpu != NULL)
2276 ki->p_cpuid = l->l_cpu->ci_cpuid;
2277 else
2278 #endif
2279 ki->p_cpuid = KI_NOCPU;
2280 }
2281
2282 /*
2283 * Fill in a kinfo_lwp structure for the specified lwp.
2284 */
2285 static void
2286 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2287 {
2288
2289 kl->l_forw = PTRTOINT64(l->l_forw);
2290 kl->l_back = PTRTOINT64(l->l_back);
2291 kl->l_laddr = PTRTOINT64(l);
2292 kl->l_addr = PTRTOINT64(l->l_addr);
2293 kl->l_stat = l->l_stat;
2294 kl->l_lid = l->l_lid;
2295 kl->l_flag = l->l_flag;
2296
2297 kl->l_swtime = l->l_swtime;
2298 kl->l_slptime = l->l_slptime;
2299 if (l->l_stat == LSONPROC) {
2300 KDASSERT(l->l_cpu != NULL);
2301 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2302 } else
2303 kl->l_schedflags = 0;
2304 kl->l_holdcnt = l->l_holdcnt;
2305 kl->l_priority = l->l_priority;
2306 kl->l_usrpri = l->l_usrpri;
2307 if (l->l_wmesg)
2308 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2309 kl->l_wchan = PTRTOINT64(l->l_wchan);
2310 #ifdef MULTIPROCESSOR
2311 if (l->l_cpu != NULL)
2312 kl->l_cpuid = l->l_cpu->ci_cpuid;
2313 else
2314 #endif
2315 kl->l_cpuid = KI_NOCPU;
2316 }
2317
2318 /*
2319 * Fill in an eproc structure for the specified process.
2320 */
2321 void
2322 fill_eproc(struct proc *p, struct eproc *ep)
2323 {
2324 struct tty *tp;
2325 struct lwp *l;
2326
2327 ep->e_paddr = p;
2328 ep->e_sess = p->p_session;
2329 ep->e_pcred = *p->p_cred;
2330 ep->e_ucred = *p->p_ucred;
2331 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2332 ep->e_vm.vm_rssize = 0;
2333 ep->e_vm.vm_tsize = 0;
2334 ep->e_vm.vm_dsize = 0;
2335 ep->e_vm.vm_ssize = 0;
2336 /* ep->e_vm.vm_pmap = XXX; */
2337 } else {
2338 struct vmspace *vm = p->p_vmspace;
2339
2340 ep->e_vm.vm_rssize = vm_resident_count(vm);
2341 ep->e_vm.vm_tsize = vm->vm_tsize;
2342 ep->e_vm.vm_dsize = vm->vm_dsize;
2343 ep->e_vm.vm_ssize = vm->vm_ssize;
2344
2345 /* Pick a "representative" LWP */
2346 l = proc_representative_lwp(p);
2347
2348 if (l->l_wmesg)
2349 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2350 }
2351 if (p->p_pptr)
2352 ep->e_ppid = p->p_pptr->p_pid;
2353 else
2354 ep->e_ppid = 0;
2355 ep->e_pgid = p->p_pgrp->pg_id;
2356 ep->e_sid = ep->e_sess->s_sid;
2357 ep->e_jobc = p->p_pgrp->pg_jobc;
2358 if ((p->p_flag & P_CONTROLT) &&
2359 (tp = ep->e_sess->s_ttyp)) {
2360 ep->e_tdev = tp->t_dev;
2361 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2362 ep->e_tsess = tp->t_session;
2363 } else
2364 ep->e_tdev = NODEV;
2365
2366 ep->e_xsize = ep->e_xrssize = 0;
2367 ep->e_xccount = ep->e_xswrss = 0;
2368 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2369 if (SESS_LEADER(p))
2370 ep->e_flag |= EPROC_SLEADER;
2371 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2372 }
2373