init_sysctl.c revision 1.175 1 /* $NetBSD: init_sysctl.c,v 1.175 2010/07/01 02:38:30 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.175 2010/07/01 02:38:30 rmind Exp $");
34
35 #include "opt_sysv.h"
36 #include "opt_compat_netbsd32.h"
37 #include "opt_compat_netbsd.h"
38 #include "opt_modular.h"
39 #include "opt_sa.h"
40 #include "opt_posix.h"
41 #include "pty.h"
42 #include "rnd.h"
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/sysctl.h>
47 #include <sys/cpu.h>
48 #include <sys/errno.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/unistd.h>
52 #include <sys/disklabel.h>
53 #include <sys/rnd.h>
54 #include <sys/vnode.h>
55 #include <sys/mount.h>
56 #include <sys/namei.h>
57 #include <sys/msgbuf.h>
58 #include <dev/cons.h>
59 #include <sys/socketvar.h>
60 #include <sys/file.h>
61 #include <sys/filedesc.h>
62 #include <sys/tty.h>
63 #include <sys/kmem.h>
64 #include <sys/resource.h>
65 #include <sys/resourcevar.h>
66 #include <sys/exec.h>
67 #include <sys/conf.h>
68 #include <sys/device.h>
69 #include <sys/stat.h>
70 #include <sys/kauth.h>
71 #include <sys/ktrace.h>
72 #include <sys/ksem.h>
73
74 #ifdef COMPAT_NETBSD32
75 #include <compat/netbsd32/netbsd32.h>
76 #endif
77 #ifdef COMPAT_50
78 #include <compat/sys/time.h>
79 #endif
80
81 #ifdef KERN_SA
82 #include <sys/sa.h>
83 #endif
84
85 #include <sys/cpu.h>
86
87 #if defined(MODULAR) || defined(P1003_1B_SEMAPHORE)
88 int posix_semaphores = 200112;
89 #else
90 int posix_semaphores;
91 #endif
92
93 int security_setidcore_dump;
94 char security_setidcore_path[MAXPATHLEN] = "/var/crash/%n.core";
95 uid_t security_setidcore_owner = 0;
96 gid_t security_setidcore_group = 0;
97 mode_t security_setidcore_mode = (S_IRUSR|S_IWUSR);
98
99 /* Initialized in sysctl_init() for now... */
100 extern kmutex_t sysctl_file_marker_lock;
101 static u_int sysctl_file_marker = 1;
102
103 static const u_int sysctl_flagmap[] = {
104 PK_ADVLOCK, P_ADVLOCK,
105 PK_EXEC, P_EXEC,
106 PK_NOCLDWAIT, P_NOCLDWAIT,
107 PK_32, P_32,
108 PK_CLDSIGIGN, P_CLDSIGIGN,
109 PK_SUGID, P_SUGID,
110 0
111 };
112
113 static const u_int sysctl_sflagmap[] = {
114 PS_NOCLDSTOP, P_NOCLDSTOP,
115 PS_WEXIT, P_WEXIT,
116 PS_STOPFORK, P_STOPFORK,
117 PS_STOPEXEC, P_STOPEXEC,
118 PS_STOPEXIT, P_STOPEXIT,
119 0
120 };
121
122 static const u_int sysctl_slflagmap[] = {
123 PSL_TRACED, P_TRACED,
124 PSL_FSTRACE, P_FSTRACE,
125 PSL_CHTRACED, P_CHTRACED,
126 PSL_SYSCALL, P_SYSCALL,
127 0
128 };
129
130 static const u_int sysctl_lflagmap[] = {
131 PL_CONTROLT, P_CONTROLT,
132 PL_PPWAIT, P_PPWAIT,
133 0
134 };
135
136 static const u_int sysctl_stflagmap[] = {
137 PST_PROFIL, P_PROFIL,
138 0
139
140 };
141
142 static const u_int sysctl_lwpflagmap[] = {
143 LW_SINTR, P_SINTR,
144 LW_SYSTEM, P_SYSTEM,
145 LW_SA, P_SA, /* WRS ??? */
146 0
147 };
148
149 static const u_int sysctl_lwpprflagmap[] = {
150 LPR_DETACHED, L_DETACHED,
151 0
152 };
153
154 /*
155 * try over estimating by 5 procs/lwps
156 */
157 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
158 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
159
160 static int dcopyout(struct lwp *, const void *, void *, size_t);
161
162 static int
163 dcopyout(struct lwp *l, const void *kaddr, void *uaddr, size_t len)
164 {
165 int error;
166
167 error = copyout(kaddr, uaddr, len);
168 ktrmibio(-1, UIO_READ, uaddr, len, error);
169
170 return error;
171 }
172
173 #ifdef DIAGNOSTIC
174 static int sysctl_kern_trigger_panic(SYSCTLFN_PROTO);
175 #endif
176 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
177 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
178 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
179 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
180 static int sysctl_setlen(SYSCTLFN_PROTO);
181 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
182 static int sysctl_kern_file(SYSCTLFN_PROTO);
183 static int sysctl_msgbuf(SYSCTLFN_PROTO);
184 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
185 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
186 #if NPTY > 0
187 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
188 #endif /* NPTY > 0 */
189 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
190 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
191 static int sysctl_kern_arnd(SYSCTLFN_PROTO);
192 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
193 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
194 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
195 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
196 static int sysctl_kern_file2(SYSCTLFN_PROTO);
197 static int sysctl_security_setidcore(SYSCTLFN_PROTO);
198 static int sysctl_security_setidcorename(SYSCTLFN_PROTO);
199 static int sysctl_kern_cpid(SYSCTLFN_PROTO);
200 static int sysctl_doeproc(SYSCTLFN_PROTO);
201 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
202 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
203 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
204
205 static u_int sysctl_map_flags(const u_int *, u_int);
206 static void fill_kproc2(struct proc *, struct kinfo_proc2 *, bool);
207 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
208 static void fill_file(struct kinfo_file *, const file_t *, const fdfile_t *,
209 int, pid_t);
210
211 /*
212 * ********************************************************************
213 * section 1: setup routines
214 * ********************************************************************
215 * These functions are stuffed into a link set for sysctl setup
216 * functions. They're never called or referenced from anywhere else.
217 * ********************************************************************
218 */
219
220 /*
221 * this setup routine is a replacement for kern_sysctl()
222 */
223 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
224 {
225 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
226 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
227 extern int dumponpanic; /* defined in kern/subr_prf.c */
228 const struct sysctlnode *rnode;
229
230 sysctl_createv(clog, 0, NULL, NULL,
231 CTLFLAG_PERMANENT,
232 CTLTYPE_NODE, "kern", NULL,
233 NULL, 0, NULL, 0,
234 CTL_KERN, CTL_EOL);
235
236 sysctl_createv(clog, 0, NULL, NULL,
237 CTLFLAG_PERMANENT,
238 CTLTYPE_STRING, "ostype",
239 SYSCTL_DESCR("Operating system type"),
240 NULL, 0, &ostype, 0,
241 CTL_KERN, KERN_OSTYPE, CTL_EOL);
242 sysctl_createv(clog, 0, NULL, NULL,
243 CTLFLAG_PERMANENT,
244 CTLTYPE_STRING, "osrelease",
245 SYSCTL_DESCR("Operating system release"),
246 NULL, 0, &osrelease, 0,
247 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
248 sysctl_createv(clog, 0, NULL, NULL,
249 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
250 CTLTYPE_INT, "osrevision",
251 SYSCTL_DESCR("Operating system revision"),
252 NULL, __NetBSD_Version__, NULL, 0,
253 CTL_KERN, KERN_OSREV, CTL_EOL);
254 sysctl_createv(clog, 0, NULL, NULL,
255 CTLFLAG_PERMANENT,
256 CTLTYPE_STRING, "version",
257 SYSCTL_DESCR("Kernel version"),
258 NULL, 0, &version, 0,
259 CTL_KERN, KERN_VERSION, CTL_EOL);
260 sysctl_createv(clog, 0, NULL, NULL,
261 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
262 CTLTYPE_INT, "maxvnodes",
263 SYSCTL_DESCR("Maximum number of vnodes"),
264 sysctl_kern_maxvnodes, 0, NULL, 0,
265 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
268 CTLTYPE_INT, "maxproc",
269 SYSCTL_DESCR("Maximum number of simultaneous processes"),
270 sysctl_kern_maxproc, 0, NULL, 0,
271 CTL_KERN, KERN_MAXPROC, CTL_EOL);
272 sysctl_createv(clog, 0, NULL, NULL,
273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
274 CTLTYPE_INT, "maxfiles",
275 SYSCTL_DESCR("Maximum number of open files"),
276 NULL, 0, &maxfiles, 0,
277 CTL_KERN, KERN_MAXFILES, CTL_EOL);
278 sysctl_createv(clog, 0, NULL, NULL,
279 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
280 CTLTYPE_INT, "argmax",
281 SYSCTL_DESCR("Maximum number of bytes of arguments to "
282 "execve(2)"),
283 NULL, ARG_MAX, NULL, 0,
284 CTL_KERN, KERN_ARGMAX, CTL_EOL);
285 sysctl_createv(clog, 0, NULL, NULL,
286 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
287 CTLTYPE_STRING, "hostname",
288 SYSCTL_DESCR("System hostname"),
289 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
290 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
291 sysctl_createv(clog, 0, NULL, NULL,
292 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
293 CTLTYPE_INT, "hostid",
294 SYSCTL_DESCR("System host ID number"),
295 sysctl_kern_hostid, 0, NULL, 0,
296 CTL_KERN, KERN_HOSTID, CTL_EOL);
297 sysctl_createv(clog, 0, NULL, NULL,
298 CTLFLAG_PERMANENT,
299 CTLTYPE_STRUCT, "clockrate",
300 SYSCTL_DESCR("Kernel clock rates"),
301 sysctl_kern_clockrate, 0, NULL,
302 sizeof(struct clockinfo),
303 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
304 sysctl_createv(clog, 0, NULL, NULL,
305 CTLFLAG_PERMANENT,
306 CTLTYPE_INT, "hardclock_ticks",
307 SYSCTL_DESCR("Number of hardclock ticks"),
308 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
309 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
310 sysctl_createv(clog, 0, NULL, NULL,
311 CTLFLAG_PERMANENT,
312 CTLTYPE_STRUCT, "vnode",
313 SYSCTL_DESCR("System vnode table"),
314 sysctl_kern_vnode, 0, NULL, 0,
315 CTL_KERN, KERN_VNODE, CTL_EOL);
316 sysctl_createv(clog, 0, NULL, NULL,
317 CTLFLAG_PERMANENT,
318 CTLTYPE_STRUCT, "file",
319 SYSCTL_DESCR("System open file table"),
320 sysctl_kern_file, 0, NULL, 0,
321 CTL_KERN, KERN_FILE, CTL_EOL);
322 #ifndef GPROF
323 sysctl_createv(clog, 0, NULL, NULL,
324 CTLFLAG_PERMANENT,
325 CTLTYPE_NODE, "profiling",
326 SYSCTL_DESCR("Profiling information (not available)"),
327 sysctl_notavail, 0, NULL, 0,
328 CTL_KERN, KERN_PROF, CTL_EOL);
329 #endif
330 sysctl_createv(clog, 0, NULL, NULL,
331 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
332 CTLTYPE_INT, "posix1version",
333 SYSCTL_DESCR("Version of ISO/IEC 9945 (POSIX 1003.1) "
334 "with which the operating system attempts "
335 "to comply"),
336 NULL, _POSIX_VERSION, NULL, 0,
337 CTL_KERN, KERN_POSIX1, CTL_EOL);
338 sysctl_createv(clog, 0, NULL, NULL,
339 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
340 CTLTYPE_INT, "ngroups",
341 SYSCTL_DESCR("Maximum number of supplemental groups"),
342 NULL, NGROUPS_MAX, NULL, 0,
343 CTL_KERN, KERN_NGROUPS, CTL_EOL);
344 sysctl_createv(clog, 0, NULL, NULL,
345 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
346 CTLTYPE_INT, "job_control",
347 SYSCTL_DESCR("Whether job control is available"),
348 NULL, 1, NULL, 0,
349 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
350 sysctl_createv(clog, 0, NULL, NULL,
351 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
352 CTLTYPE_INT, "saved_ids",
353 SYSCTL_DESCR("Whether POSIX saved set-group/user ID is "
354 "available"), NULL,
355 #ifdef _POSIX_SAVED_IDS
356 1,
357 #else /* _POSIX_SAVED_IDS */
358 0,
359 #endif /* _POSIX_SAVED_IDS */
360 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
361 sysctl_createv(clog, 0, NULL, NULL,
362 CTLFLAG_PERMANENT|CTLFLAG_HEX,
363 CTLTYPE_INT, "boothowto",
364 SYSCTL_DESCR("Flags from boot loader"),
365 NULL, 0, &boothowto, sizeof(boothowto),
366 CTL_KERN, CTL_CREATE, CTL_EOL);
367 sysctl_createv(clog, 0, NULL, NULL,
368 CTLFLAG_PERMANENT,
369 CTLTYPE_STRUCT, "boottime",
370 SYSCTL_DESCR("System boot time"),
371 NULL, 0, &boottime, sizeof(boottime),
372 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
373 #ifdef COMPAT_50
374 {
375 extern struct timeval50 boottime50;
376 sysctl_createv(clog, 0, NULL, NULL,
377 CTLFLAG_PERMANENT,
378 CTLTYPE_STRUCT, "oboottime",
379 SYSCTL_DESCR("System boot time"),
380 NULL, 0, &boottime50, sizeof(boottime50),
381 CTL_KERN, KERN_OBOOTTIME, CTL_EOL);
382 }
383 #endif
384 sysctl_createv(clog, 0, NULL, NULL,
385 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
386 CTLTYPE_STRING, "domainname",
387 SYSCTL_DESCR("YP domain name"),
388 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
389 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
390 sysctl_createv(clog, 0, NULL, NULL,
391 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
392 CTLTYPE_INT, "maxpartitions",
393 SYSCTL_DESCR("Maximum number of partitions allowed per "
394 "disk"),
395 NULL, MAXPARTITIONS, NULL, 0,
396 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
397 sysctl_createv(clog, 0, NULL, NULL,
398 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
399 CTLTYPE_INT, "rawpartition",
400 SYSCTL_DESCR("Raw partition of a disk"),
401 NULL, RAW_PART, NULL, 0,
402 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
403 sysctl_createv(clog, 0, NULL, NULL,
404 CTLFLAG_PERMANENT,
405 CTLTYPE_STRUCT, "timex", NULL,
406 sysctl_notavail, 0, NULL, 0,
407 CTL_KERN, KERN_TIMEX, CTL_EOL);
408 sysctl_createv(clog, 0, NULL, NULL,
409 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
410 CTLTYPE_INT, "rtc_offset",
411 SYSCTL_DESCR("Offset of real time clock from UTC in "
412 "minutes"),
413 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
414 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
415 sysctl_createv(clog, 0, NULL, NULL,
416 CTLFLAG_PERMANENT,
417 CTLTYPE_STRING, "root_device",
418 SYSCTL_DESCR("Name of the root device"),
419 sysctl_root_device, 0, NULL, 0,
420 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
421 sysctl_createv(clog, 0, NULL, NULL,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_INT, "msgbufsize",
424 SYSCTL_DESCR("Size of the kernel message buffer"),
425 sysctl_msgbuf, 0, NULL, 0,
426 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
427 sysctl_createv(clog, 0, NULL, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
429 CTLTYPE_INT, "fsync",
430 SYSCTL_DESCR("Whether the POSIX 1003.1b File "
431 "Synchronization Option is available on "
432 "this system"),
433 NULL, 1, NULL, 0,
434 CTL_KERN, KERN_FSYNC, CTL_EOL);
435 sysctl_createv(clog, 0, NULL, NULL,
436 CTLFLAG_PERMANENT,
437 CTLTYPE_NODE, "ipc",
438 SYSCTL_DESCR("SysV IPC options"),
439 NULL, 0, NULL, 0,
440 CTL_KERN, KERN_SYSVIPC, CTL_EOL);
441 sysctl_createv(clog, 0, NULL, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
443 CTLTYPE_INT, "sysvmsg",
444 SYSCTL_DESCR("System V style message support available"),
445 NULL,
446 #ifdef SYSVMSG
447 1,
448 #else /* SYSVMSG */
449 0,
450 #endif /* SYSVMSG */
451 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_MSG, CTL_EOL);
452 sysctl_createv(clog, 0, NULL, NULL,
453 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
454 CTLTYPE_INT, "sysvsem",
455 SYSCTL_DESCR("System V style semaphore support "
456 "available"), NULL,
457 #ifdef SYSVSEM
458 1,
459 #else /* SYSVSEM */
460 0,
461 #endif /* SYSVSEM */
462 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SEM, CTL_EOL);
463 sysctl_createv(clog, 0, NULL, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
465 CTLTYPE_INT, "sysvshm",
466 SYSCTL_DESCR("System V style shared memory support "
467 "available"), NULL,
468 #ifdef SYSVSHM
469 1,
470 #else /* SYSVSHM */
471 0,
472 #endif /* SYSVSHM */
473 NULL, 0, CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHM, CTL_EOL);
474 sysctl_createv(clog, 0, NULL, NULL,
475 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
476 CTLTYPE_INT, "synchronized_io",
477 SYSCTL_DESCR("Whether the POSIX 1003.1b Synchronized "
478 "I/O Option is available on this system"),
479 NULL, 1, NULL, 0,
480 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
481 sysctl_createv(clog, 0, NULL, NULL,
482 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
483 CTLTYPE_INT, "iov_max",
484 SYSCTL_DESCR("Maximum number of iovec structures per "
485 "process"),
486 NULL, IOV_MAX, NULL, 0,
487 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
488 sysctl_createv(clog, 0, NULL, NULL,
489 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
490 CTLTYPE_INT, "mapped_files",
491 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory Mapped "
492 "Files Option is available on this system"),
493 NULL, 1, NULL, 0,
494 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
495 sysctl_createv(clog, 0, NULL, NULL,
496 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
497 CTLTYPE_INT, "memlock",
498 SYSCTL_DESCR("Whether the POSIX 1003.1b Process Memory "
499 "Locking Option is available on this "
500 "system"),
501 NULL, 1, NULL, 0,
502 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
503 sysctl_createv(clog, 0, NULL, NULL,
504 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
505 CTLTYPE_INT, "memlock_range",
506 SYSCTL_DESCR("Whether the POSIX 1003.1b Range Memory "
507 "Locking Option is available on this "
508 "system"),
509 NULL, 1, NULL, 0,
510 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
511 sysctl_createv(clog, 0, NULL, NULL,
512 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
513 CTLTYPE_INT, "memory_protection",
514 SYSCTL_DESCR("Whether the POSIX 1003.1b Memory "
515 "Protection Option is available on this "
516 "system"),
517 NULL, 1, NULL, 0,
518 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
519 sysctl_createv(clog, 0, NULL, NULL,
520 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
521 CTLTYPE_INT, "login_name_max",
522 SYSCTL_DESCR("Maximum login name length"),
523 NULL, LOGIN_NAME_MAX, NULL, 0,
524 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
525 sysctl_createv(clog, 0, NULL, NULL,
526 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
527 CTLTYPE_STRING, "defcorename",
528 SYSCTL_DESCR("Default core file name"),
529 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
530 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
531 sysctl_createv(clog, 0, NULL, NULL,
532 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
533 CTLTYPE_INT, "logsigexit",
534 SYSCTL_DESCR("Log process exit when caused by signals"),
535 NULL, 0, &kern_logsigexit, 0,
536 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
537 sysctl_createv(clog, 0, NULL, NULL,
538 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
539 CTLTYPE_INT, "fscale",
540 SYSCTL_DESCR("Kernel fixed-point scale factor"),
541 NULL, FSCALE, NULL, 0,
542 CTL_KERN, KERN_FSCALE, CTL_EOL);
543 sysctl_createv(clog, 0, NULL, NULL,
544 CTLFLAG_PERMANENT,
545 CTLTYPE_INT, "ccpu",
546 SYSCTL_DESCR("Scheduler exponential decay value"),
547 NULL, 0, &ccpu, 0,
548 CTL_KERN, KERN_CCPU, CTL_EOL);
549 sysctl_createv(clog, 0, NULL, NULL,
550 CTLFLAG_PERMANENT,
551 CTLTYPE_STRUCT, "cp_time",
552 SYSCTL_DESCR("Clock ticks spent in different CPU states"),
553 sysctl_kern_cptime, 0, NULL, 0,
554 CTL_KERN, KERN_CP_TIME, CTL_EOL);
555 sysctl_createv(clog, 0, NULL, NULL,
556 CTLFLAG_PERMANENT,
557 CTLTYPE_INT, "msgbuf",
558 SYSCTL_DESCR("Kernel message buffer"),
559 sysctl_msgbuf, 0, NULL, 0,
560 CTL_KERN, KERN_MSGBUF, CTL_EOL);
561 sysctl_createv(clog, 0, NULL, NULL,
562 CTLFLAG_PERMANENT,
563 CTLTYPE_STRUCT, "consdev",
564 SYSCTL_DESCR("Console device"),
565 sysctl_consdev, 0, NULL, sizeof(dev_t),
566 CTL_KERN, KERN_CONSDEV, CTL_EOL);
567 #if NPTY > 0
568 sysctl_createv(clog, 0, NULL, NULL,
569 CTLFLAG_PERMANENT,
570 CTLTYPE_INT, "maxptys",
571 SYSCTL_DESCR("Maximum number of pseudo-ttys"),
572 sysctl_kern_maxptys, 0, NULL, 0,
573 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
574 #endif /* NPTY > 0 */
575 sysctl_createv(clog, 0, NULL, NULL,
576 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
577 CTLTYPE_INT, "maxphys",
578 SYSCTL_DESCR("Maximum raw I/O transfer size"),
579 NULL, MAXPHYS, NULL, 0,
580 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
581 sysctl_createv(clog, 0, NULL, NULL,
582 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
583 CTLTYPE_INT, "sbmax",
584 SYSCTL_DESCR("Maximum socket buffer size"),
585 sysctl_kern_sbmax, 0, NULL, 0,
586 CTL_KERN, KERN_SBMAX, CTL_EOL);
587 sysctl_createv(clog, 0, NULL, NULL,
588 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
589 CTLTYPE_INT, "monotonic_clock",
590 SYSCTL_DESCR("Implementation version of the POSIX "
591 "1003.1b Monotonic Clock Option"),
592 /* XXX _POSIX_VERSION */
593 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
594 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
595 sysctl_createv(clog, 0, NULL, NULL,
596 CTLFLAG_PERMANENT,
597 CTLTYPE_INT, "urandom",
598 SYSCTL_DESCR("Random integer value"),
599 sysctl_kern_urnd, 0, NULL, 0,
600 CTL_KERN, KERN_URND, CTL_EOL);
601 sysctl_createv(clog, 0, NULL, NULL,
602 CTLFLAG_PERMANENT,
603 CTLTYPE_INT, "arandom",
604 SYSCTL_DESCR("n bytes of random data"),
605 sysctl_kern_arnd, 0, NULL, 0,
606 CTL_KERN, KERN_ARND, CTL_EOL);
607 sysctl_createv(clog, 0, NULL, NULL,
608 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
609 CTLTYPE_INT, "labelsector",
610 SYSCTL_DESCR("Sector number containing the disklabel"),
611 NULL, LABELSECTOR, NULL, 0,
612 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
613 sysctl_createv(clog, 0, NULL, NULL,
614 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
615 CTLTYPE_INT, "labeloffset",
616 SYSCTL_DESCR("Offset of the disklabel within the "
617 "sector"),
618 NULL, LABELOFFSET, NULL, 0,
619 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
620 sysctl_createv(clog, 0, NULL, NULL,
621 CTLFLAG_PERMANENT,
622 CTLTYPE_NODE, "lwp",
623 SYSCTL_DESCR("System-wide LWP information"),
624 sysctl_kern_lwp, 0, NULL, 0,
625 CTL_KERN, KERN_LWP, CTL_EOL);
626 sysctl_createv(clog, 0, NULL, NULL,
627 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
628 CTLTYPE_INT, "forkfsleep",
629 SYSCTL_DESCR("Milliseconds to sleep on fork failure due "
630 "to process limits"),
631 sysctl_kern_forkfsleep, 0, NULL, 0,
632 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
633 sysctl_createv(clog, 0, NULL, NULL,
634 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
635 CTLTYPE_INT, "posix_threads",
636 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
637 "Threads option to which the system "
638 "attempts to conform"),
639 /* XXX _POSIX_VERSION */
640 NULL, _POSIX_THREADS, NULL, 0,
641 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
642 sysctl_createv(clog, 0, NULL, NULL,
643 CTLFLAG_PERMANENT,
644 CTLTYPE_INT, "posix_semaphores",
645 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
646 "Semaphores option to which the system "
647 "attempts to conform"), NULL,
648 0, &posix_semaphores,
649 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
650 sysctl_createv(clog, 0, NULL, NULL,
651 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
652 CTLTYPE_INT, "posix_barriers",
653 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
654 "Barriers option to which the system "
655 "attempts to conform"),
656 /* XXX _POSIX_VERSION */
657 NULL, _POSIX_BARRIERS, NULL, 0,
658 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
659 sysctl_createv(clog, 0, NULL, NULL,
660 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
661 CTLTYPE_INT, "posix_timers",
662 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
663 "Timers option to which the system "
664 "attempts to conform"),
665 /* XXX _POSIX_VERSION */
666 NULL, _POSIX_TIMERS, NULL, 0,
667 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
668 sysctl_createv(clog, 0, NULL, NULL,
669 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
670 CTLTYPE_INT, "posix_spin_locks",
671 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its Spin "
672 "Locks option to which the system attempts "
673 "to conform"),
674 /* XXX _POSIX_VERSION */
675 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
676 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
677 sysctl_createv(clog, 0, NULL, NULL,
678 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
679 CTLTYPE_INT, "posix_reader_writer_locks",
680 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
681 "Read-Write Locks option to which the "
682 "system attempts to conform"),
683 /* XXX _POSIX_VERSION */
684 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
685 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
686 sysctl_createv(clog, 0, NULL, NULL,
687 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
688 CTLTYPE_INT, "dump_on_panic",
689 SYSCTL_DESCR("Perform a crash dump on system panic"),
690 NULL, 0, &dumponpanic, 0,
691 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
692 #ifdef DIAGNOSTIC
693 sysctl_createv(clog, 0, NULL, NULL,
694 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
695 CTLTYPE_INT, "panic_now",
696 SYSCTL_DESCR("Trigger a panic"),
697 sysctl_kern_trigger_panic, 0, NULL, 0,
698 CTL_KERN, CTL_CREATE, CTL_EOL);
699 #endif
700 sysctl_createv(clog, 0, NULL, NULL,
701 CTLFLAG_PERMANENT,
702 CTLTYPE_INT, "root_partition",
703 SYSCTL_DESCR("Root partition on the root device"),
704 sysctl_kern_root_partition, 0, NULL, 0,
705 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
706 sysctl_createv(clog, 0, NULL, NULL,
707 CTLFLAG_PERMANENT,
708 CTLTYPE_STRUCT, "drivers",
709 SYSCTL_DESCR("List of all drivers with block and "
710 "character device numbers"),
711 sysctl_kern_drivers, 0, NULL, 0,
712 CTL_KERN, KERN_DRIVERS, CTL_EOL);
713 sysctl_createv(clog, 0, NULL, NULL,
714 CTLFLAG_PERMANENT,
715 CTLTYPE_STRUCT, "file2",
716 SYSCTL_DESCR("System open file table"),
717 sysctl_kern_file2, 0, NULL, 0,
718 CTL_KERN, KERN_FILE2, CTL_EOL);
719 sysctl_createv(clog, 0, NULL, NULL,
720 CTLFLAG_PERMANENT,
721 CTLTYPE_STRUCT, "cp_id",
722 SYSCTL_DESCR("Mapping of CPU number to CPU id"),
723 sysctl_kern_cpid, 0, NULL, 0,
724 CTL_KERN, KERN_CP_ID, CTL_EOL);
725 sysctl_createv(clog, 0, NULL, &rnode,
726 CTLFLAG_PERMANENT,
727 CTLTYPE_NODE, "coredump",
728 SYSCTL_DESCR("Coredump settings."),
729 NULL, 0, NULL, 0,
730 CTL_KERN, CTL_CREATE, CTL_EOL);
731 sysctl_createv(clog, 0, &rnode, &rnode,
732 CTLFLAG_PERMANENT,
733 CTLTYPE_NODE, "setid",
734 SYSCTL_DESCR("Set-id processes' coredump settings."),
735 NULL, 0, NULL, 0,
736 CTL_CREATE, CTL_EOL);
737 sysctl_createv(clog, 0, &rnode, NULL,
738 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
739 CTLTYPE_INT, "dump",
740 SYSCTL_DESCR("Allow set-id processes to dump core."),
741 sysctl_security_setidcore, 0, &security_setidcore_dump,
742 sizeof(security_setidcore_dump),
743 CTL_CREATE, CTL_EOL);
744 sysctl_createv(clog, 0, &rnode, NULL,
745 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
746 CTLTYPE_STRING, "path",
747 SYSCTL_DESCR("Path pattern for set-id coredumps."),
748 sysctl_security_setidcorename, 0,
749 &security_setidcore_path,
750 sizeof(security_setidcore_path),
751 CTL_CREATE, CTL_EOL);
752 sysctl_createv(clog, 0, &rnode, NULL,
753 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
754 CTLTYPE_INT, "owner",
755 SYSCTL_DESCR("Owner id for set-id processes' cores."),
756 sysctl_security_setidcore, 0, &security_setidcore_owner,
757 0,
758 CTL_CREATE, CTL_EOL);
759 sysctl_createv(clog, 0, &rnode, NULL,
760 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
761 CTLTYPE_INT, "group",
762 SYSCTL_DESCR("Group id for set-id processes' cores."),
763 sysctl_security_setidcore, 0, &security_setidcore_group,
764 0,
765 CTL_CREATE, CTL_EOL);
766 sysctl_createv(clog, 0, &rnode, NULL,
767 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
768 CTLTYPE_INT, "mode",
769 SYSCTL_DESCR("Mode for set-id processes' cores."),
770 sysctl_security_setidcore, 0, &security_setidcore_mode,
771 0,
772 CTL_CREATE, CTL_EOL);
773 #ifdef KERN_SA
774 sysctl_createv(clog, 0, NULL, NULL,
775 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
776 CTLTYPE_INT, "no_sa_support",
777 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
778 NULL, 0, &sa_system_disabled, 0,
779 CTL_KERN, CTL_CREATE, CTL_EOL);
780 #else
781 sysctl_createv(clog, 0, NULL, NULL,
782 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
783 CTLTYPE_INT, "no_sa_support",
784 SYSCTL_DESCR("0 if the kernel supports SA, otherwise it doesn't"),
785 NULL, 1, NULL, 0,
786 CTL_KERN, CTL_CREATE, CTL_EOL);
787 #endif
788
789 /* kern.posix. */
790 sysctl_createv(clog, 0, NULL, &rnode,
791 CTLFLAG_PERMANENT,
792 CTLTYPE_NODE, "posix",
793 SYSCTL_DESCR("POSIX options"),
794 NULL, 0, NULL, 0,
795 CTL_KERN, CTL_CREATE, CTL_EOL);
796 sysctl_createv(clog, 0, &rnode, NULL,
797 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
798 CTLTYPE_INT, "semmax",
799 SYSCTL_DESCR("Maximal number of semaphores"),
800 NULL, 0, &ksem_max, 0,
801 CTL_CREATE, CTL_EOL);
802 }
803
804 SYSCTL_SETUP(sysctl_kern_proc_setup,
805 "sysctl kern.proc/proc2/proc_args subtree setup")
806 {
807
808 sysctl_createv(clog, 0, NULL, NULL,
809 CTLFLAG_PERMANENT,
810 CTLTYPE_NODE, "kern", NULL,
811 NULL, 0, NULL, 0,
812 CTL_KERN, CTL_EOL);
813
814 sysctl_createv(clog, 0, NULL, NULL,
815 CTLFLAG_PERMANENT,
816 CTLTYPE_NODE, "proc",
817 SYSCTL_DESCR("System-wide process information"),
818 sysctl_doeproc, 0, NULL, 0,
819 CTL_KERN, KERN_PROC, CTL_EOL);
820 sysctl_createv(clog, 0, NULL, NULL,
821 CTLFLAG_PERMANENT,
822 CTLTYPE_NODE, "proc2",
823 SYSCTL_DESCR("Machine-independent process information"),
824 sysctl_doeproc, 0, NULL, 0,
825 CTL_KERN, KERN_PROC2, CTL_EOL);
826 sysctl_createv(clog, 0, NULL, NULL,
827 CTLFLAG_PERMANENT,
828 CTLTYPE_NODE, "proc_args",
829 SYSCTL_DESCR("Process argument information"),
830 sysctl_kern_proc_args, 0, NULL, 0,
831 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
832
833 /*
834 "nodes" under these:
835
836 KERN_PROC_ALL
837 KERN_PROC_PID pid
838 KERN_PROC_PGRP pgrp
839 KERN_PROC_SESSION sess
840 KERN_PROC_TTY tty
841 KERN_PROC_UID uid
842 KERN_PROC_RUID uid
843 KERN_PROC_GID gid
844 KERN_PROC_RGID gid
845
846 all in all, probably not worth the effort...
847 */
848 }
849
850 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
851 {
852 u_int u;
853 u_quad_t q;
854
855 sysctl_createv(clog, 0, NULL, NULL,
856 CTLFLAG_PERMANENT,
857 CTLTYPE_NODE, "hw", NULL,
858 NULL, 0, NULL, 0,
859 CTL_HW, CTL_EOL);
860
861 sysctl_createv(clog, 0, NULL, NULL,
862 CTLFLAG_PERMANENT,
863 CTLTYPE_STRING, "machine",
864 SYSCTL_DESCR("Machine class"),
865 NULL, 0, machine, 0,
866 CTL_HW, HW_MACHINE, CTL_EOL);
867 sysctl_createv(clog, 0, NULL, NULL,
868 CTLFLAG_PERMANENT,
869 CTLTYPE_STRING, "model",
870 SYSCTL_DESCR("Machine model"),
871 NULL, 0, cpu_model, 0,
872 CTL_HW, HW_MODEL, CTL_EOL);
873 sysctl_createv(clog, 0, NULL, NULL,
874 CTLFLAG_PERMANENT,
875 CTLTYPE_INT, "ncpu",
876 SYSCTL_DESCR("Number of CPUs configured"),
877 NULL, 0, &ncpu, 0,
878 CTL_HW, HW_NCPU, CTL_EOL);
879 sysctl_createv(clog, 0, NULL, NULL,
880 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
881 CTLTYPE_INT, "byteorder",
882 SYSCTL_DESCR("System byte order"),
883 NULL, BYTE_ORDER, NULL, 0,
884 CTL_HW, HW_BYTEORDER, CTL_EOL);
885 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
886 UINT_MAX : physmem * PAGE_SIZE;
887 sysctl_createv(clog, 0, NULL, NULL,
888 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
889 CTLTYPE_INT, "physmem",
890 SYSCTL_DESCR("Bytes of physical memory"),
891 NULL, u, NULL, 0,
892 CTL_HW, HW_PHYSMEM, CTL_EOL);
893 sysctl_createv(clog, 0, NULL, NULL,
894 CTLFLAG_PERMANENT,
895 CTLTYPE_INT, "usermem",
896 SYSCTL_DESCR("Bytes of non-kernel memory"),
897 sysctl_hw_usermem, 0, NULL, 0,
898 CTL_HW, HW_USERMEM, CTL_EOL);
899 sysctl_createv(clog, 0, NULL, NULL,
900 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
901 CTLTYPE_INT, "pagesize",
902 SYSCTL_DESCR("Software page size"),
903 NULL, PAGE_SIZE, NULL, 0,
904 CTL_HW, HW_PAGESIZE, CTL_EOL);
905 sysctl_createv(clog, 0, NULL, NULL,
906 CTLFLAG_PERMANENT,
907 CTLTYPE_STRING, "machine_arch",
908 SYSCTL_DESCR("Machine CPU class"),
909 NULL, 0, machine_arch, 0,
910 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
911 sysctl_createv(clog, 0, NULL, NULL,
912 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
913 CTLTYPE_INT, "alignbytes",
914 SYSCTL_DESCR("Alignment constraint for all possible "
915 "data types"),
916 NULL, ALIGNBYTES, NULL, 0,
917 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
918 sysctl_createv(clog, 0, NULL, NULL,
919 CTLFLAG_PERMANENT|CTLFLAG_READWRITE|CTLFLAG_HEX,
920 CTLTYPE_STRING, "cnmagic",
921 SYSCTL_DESCR("Console magic key sequence"),
922 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
923 CTL_HW, HW_CNMAGIC, CTL_EOL);
924 q = (u_quad_t)physmem * PAGE_SIZE;
925 sysctl_createv(clog, 0, NULL, NULL,
926 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
927 CTLTYPE_QUAD, "physmem64",
928 SYSCTL_DESCR("Bytes of physical memory"),
929 NULL, q, NULL, 0,
930 CTL_HW, HW_PHYSMEM64, CTL_EOL);
931 sysctl_createv(clog, 0, NULL, NULL,
932 CTLFLAG_PERMANENT,
933 CTLTYPE_QUAD, "usermem64",
934 SYSCTL_DESCR("Bytes of non-kernel memory"),
935 sysctl_hw_usermem, 0, NULL, 0,
936 CTL_HW, HW_USERMEM64, CTL_EOL);
937 sysctl_createv(clog, 0, NULL, NULL,
938 CTLFLAG_PERMANENT,
939 CTLTYPE_INT, "ncpuonline",
940 SYSCTL_DESCR("Number of CPUs online"),
941 NULL, 0, &ncpuonline, 0,
942 CTL_HW, HW_NCPUONLINE, CTL_EOL);
943 }
944
945 #ifdef DEBUG
946 /*
947 * Debugging related system variables.
948 */
949 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
950 struct ctldebug debug5, debug6, debug7, debug8, debug9;
951 struct ctldebug debug10, debug11, debug12, debug13, debug14;
952 struct ctldebug debug15, debug16, debug17, debug18, debug19;
953 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
954 &debug0, &debug1, &debug2, &debug3, &debug4,
955 &debug5, &debug6, &debug7, &debug8, &debug9,
956 &debug10, &debug11, &debug12, &debug13, &debug14,
957 &debug15, &debug16, &debug17, &debug18, &debug19,
958 };
959
960 /*
961 * this setup routine is a replacement for debug_sysctl()
962 *
963 * note that it creates several nodes per defined debug variable
964 */
965 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
966 {
967 struct ctldebug *cdp;
968 char nodename[20];
969 int i;
970
971 /*
972 * two ways here:
973 *
974 * the "old" way (debug.name -> value) which was emulated by
975 * the sysctl(8) binary
976 *
977 * the new way, which the sysctl(8) binary was actually using
978
979 node debug
980 node debug.0
981 string debug.0.name
982 int debug.0.value
983 int debug.name
984
985 */
986
987 sysctl_createv(clog, 0, NULL, NULL,
988 CTLFLAG_PERMANENT,
989 CTLTYPE_NODE, "debug", NULL,
990 NULL, 0, NULL, 0,
991 CTL_DEBUG, CTL_EOL);
992
993 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
994 cdp = debugvars[i];
995 if (cdp->debugname == NULL || cdp->debugvar == NULL)
996 continue;
997
998 snprintf(nodename, sizeof(nodename), "debug%d", i);
999 sysctl_createv(clog, 0, NULL, NULL,
1000 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1001 CTLTYPE_NODE, nodename, NULL,
1002 NULL, 0, NULL, 0,
1003 CTL_DEBUG, i, CTL_EOL);
1004 sysctl_createv(clog, 0, NULL, NULL,
1005 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1006 CTLTYPE_STRING, "name", NULL,
1007 /*XXXUNCONST*/
1008 NULL, 0, __UNCONST(cdp->debugname), 0,
1009 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
1010 sysctl_createv(clog, 0, NULL, NULL,
1011 CTLFLAG_PERMANENT|CTLFLAG_HIDDEN,
1012 CTLTYPE_INT, "value", NULL,
1013 NULL, 0, cdp->debugvar, 0,
1014 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
1015 sysctl_createv(clog, 0, NULL, NULL,
1016 CTLFLAG_PERMANENT,
1017 CTLTYPE_INT, cdp->debugname, NULL,
1018 NULL, 0, cdp->debugvar, 0,
1019 CTL_DEBUG, CTL_CREATE, CTL_EOL);
1020 }
1021 }
1022 #endif /* DEBUG */
1023
1024 /*
1025 * ********************************************************************
1026 * section 2: private node-specific helper routines.
1027 * ********************************************************************
1028 */
1029
1030 #ifdef DIAGNOSTIC
1031 static int
1032 sysctl_kern_trigger_panic(SYSCTLFN_ARGS)
1033 {
1034 int newtrig, error;
1035 struct sysctlnode node;
1036
1037 newtrig = 0;
1038 node = *rnode;
1039 node.sysctl_data = &newtrig;
1040 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1041 if (error || newp == NULL)
1042 return (error);
1043
1044 if (newtrig != 0)
1045 panic("Panic triggered");
1046
1047 return (error);
1048 }
1049 #endif
1050
1051 /*
1052 * sysctl helper routine for kern.maxvnodes. Drain vnodes if
1053 * new value is lower than desiredvnodes and then calls reinit
1054 * routines that needs to adjust to the new value.
1055 */
1056 static int
1057 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
1058 {
1059 int error, new_vnodes, old_vnodes, new_max;
1060 struct sysctlnode node;
1061
1062 new_vnodes = desiredvnodes;
1063 node = *rnode;
1064 node.sysctl_data = &new_vnodes;
1065 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1066 if (error || newp == NULL)
1067 return (error);
1068
1069 /* Limits: 75% of KVA and physical memory. */
1070 new_max = calc_cache_size(kernel_map, 75, 75) / VNODE_COST;
1071 if (new_vnodes > new_max)
1072 new_vnodes = new_max;
1073
1074 old_vnodes = desiredvnodes;
1075 desiredvnodes = new_vnodes;
1076 if (new_vnodes < old_vnodes) {
1077 error = vfs_drainvnodes(new_vnodes, l);
1078 if (error) {
1079 desiredvnodes = old_vnodes;
1080 return (error);
1081 }
1082 }
1083 vfs_reinit();
1084 nchreinit();
1085
1086 return (0);
1087 }
1088
1089 /*
1090 * sysctl helper routine for rtc_offset - set time after changes
1091 */
1092 static int
1093 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
1094 {
1095 struct timespec ts, delta;
1096 int error, new_rtc_offset;
1097 struct sysctlnode node;
1098
1099 new_rtc_offset = rtc_offset;
1100 node = *rnode;
1101 node.sysctl_data = &new_rtc_offset;
1102 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1103 if (error || newp == NULL)
1104 return (error);
1105
1106 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
1107 KAUTH_REQ_SYSTEM_TIME_RTCOFFSET,
1108 KAUTH_ARG(new_rtc_offset), NULL, NULL))
1109 return (EPERM);
1110 if (rtc_offset == new_rtc_offset)
1111 return (0);
1112
1113 /* if we change the offset, adjust the time */
1114 nanotime(&ts);
1115 delta.tv_sec = 60 * (new_rtc_offset - rtc_offset);
1116 delta.tv_nsec = 0;
1117 timespecadd(&ts, &delta, &ts);
1118 rtc_offset = new_rtc_offset;
1119 return (settime(l->l_proc, &ts));
1120 }
1121
1122 /*
1123 * sysctl helper routine for kern.maxproc. Ensures that the new
1124 * values are not too low or too high.
1125 */
1126 static int
1127 sysctl_kern_maxproc(SYSCTLFN_ARGS)
1128 {
1129 int error, nmaxproc;
1130 struct sysctlnode node;
1131
1132 nmaxproc = maxproc;
1133 node = *rnode;
1134 node.sysctl_data = &nmaxproc;
1135 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1136 if (error || newp == NULL)
1137 return (error);
1138
1139 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
1140 return (EINVAL);
1141 #ifdef __HAVE_CPU_MAXPROC
1142 if (nmaxproc > cpu_maxproc())
1143 return (EINVAL);
1144 #endif
1145 maxproc = nmaxproc;
1146
1147 return (0);
1148 }
1149
1150 /*
1151 * sysctl helper function for kern.hostid. The hostid is a long, but
1152 * we export it as an int, so we need to give it a little help.
1153 */
1154 static int
1155 sysctl_kern_hostid(SYSCTLFN_ARGS)
1156 {
1157 int error, inthostid;
1158 struct sysctlnode node;
1159
1160 inthostid = hostid; /* XXX assumes sizeof int <= sizeof long */
1161 node = *rnode;
1162 node.sysctl_data = &inthostid;
1163 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1164 if (error || newp == NULL)
1165 return (error);
1166
1167 hostid = (unsigned)inthostid;
1168
1169 return (0);
1170 }
1171
1172 /*
1173 * sysctl helper function for kern.hostname and kern.domainnname.
1174 * resets the relevant recorded length when the underlying name is
1175 * changed.
1176 */
1177 static int
1178 sysctl_setlen(SYSCTLFN_ARGS)
1179 {
1180 int error;
1181
1182 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1183 if (error || newp == NULL)
1184 return (error);
1185
1186 switch (rnode->sysctl_num) {
1187 case KERN_HOSTNAME:
1188 hostnamelen = strlen((const char*)rnode->sysctl_data);
1189 break;
1190 case KERN_DOMAINNAME:
1191 domainnamelen = strlen((const char*)rnode->sysctl_data);
1192 break;
1193 }
1194
1195 return (0);
1196 }
1197
1198 /*
1199 * sysctl helper routine for kern.clockrate. Assembles a struct on
1200 * the fly to be returned to the caller.
1201 */
1202 static int
1203 sysctl_kern_clockrate(SYSCTLFN_ARGS)
1204 {
1205 struct clockinfo clkinfo;
1206 struct sysctlnode node;
1207
1208 clkinfo.tick = tick;
1209 clkinfo.tickadj = tickadj;
1210 clkinfo.hz = hz;
1211 clkinfo.profhz = profhz;
1212 clkinfo.stathz = stathz ? stathz : hz;
1213
1214 node = *rnode;
1215 node.sysctl_data = &clkinfo;
1216 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1217 }
1218
1219 /*
1220 * Expects to be called with proc_lock and sysctl_file_marker_lock locked.
1221 */
1222 static void
1223 sysctl_file_marker_reset(void)
1224 {
1225 struct proc *p;
1226
1227 PROCLIST_FOREACH(p, &allproc) {
1228 struct filedesc *fd = p->p_fd;
1229 fdtab_t *dt;
1230 u_int i;
1231
1232 mutex_enter(&fd->fd_lock);
1233
1234 dt = fd->fd_dt;
1235 for (i = 0; i < dt->dt_nfiles; i++) {
1236 struct file *fp;
1237 fdfile_t *ff;
1238
1239 if ((ff = dt->dt_ff[i]) == NULL) {
1240 continue;
1241 }
1242
1243 if ((fp = ff->ff_file) == NULL) {
1244 continue;
1245 }
1246
1247 fp->f_marker = 0;
1248 }
1249
1250 mutex_exit(&fd->fd_lock);
1251 }
1252 }
1253
1254 /*
1255 * sysctl helper routine for kern.file pseudo-subtree.
1256 */
1257 static int
1258 sysctl_kern_file(SYSCTLFN_ARGS)
1259 {
1260 int error;
1261 size_t buflen;
1262 struct file *fp, fbuf;
1263 char *start, *where;
1264 struct proc *p;
1265
1266 start = where = oldp;
1267 buflen = *oldlenp;
1268
1269 if (where == NULL) {
1270 /*
1271 * overestimate by 10 files
1272 */
1273 *oldlenp = sizeof(filehead) + (nfiles + 10) *
1274 sizeof(struct file);
1275 return (0);
1276 }
1277
1278 /*
1279 * first dcopyout filehead
1280 */
1281 if (buflen < sizeof(filehead)) {
1282 *oldlenp = 0;
1283 return (0);
1284 }
1285 sysctl_unlock();
1286 error = dcopyout(l, &filehead, where, sizeof(filehead));
1287 if (error) {
1288 sysctl_relock();
1289 return error;
1290 }
1291 buflen -= sizeof(filehead);
1292 where += sizeof(filehead);
1293
1294 /*
1295 * followed by an array of file structures
1296 */
1297 mutex_enter(&sysctl_file_marker_lock);
1298 mutex_enter(proc_lock);
1299 PROCLIST_FOREACH(p, &allproc) {
1300 struct filedesc *fd;
1301 fdtab_t *dt;
1302 u_int i;
1303
1304 if (p->p_stat == SIDL) {
1305 /* skip embryonic processes */
1306 continue;
1307 }
1308 mutex_enter(p->p_lock);
1309 error = kauth_authorize_process(l->l_cred,
1310 KAUTH_PROCESS_CANSEE, p,
1311 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
1312 NULL, NULL);
1313 mutex_exit(p->p_lock);
1314 if (error != 0) {
1315 /*
1316 * Don't leak kauth retval if we're silently
1317 * skipping this entry.
1318 */
1319 error = 0;
1320 continue;
1321 }
1322
1323 /*
1324 * Grab a hold on the process.
1325 */
1326 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
1327 continue;
1328 }
1329 mutex_exit(proc_lock);
1330
1331 fd = p->p_fd;
1332 mutex_enter(&fd->fd_lock);
1333 dt = fd->fd_dt;
1334 for (i = 0; i < dt->dt_nfiles; i++) {
1335 fdfile_t *ff;
1336
1337 if ((ff = dt->dt_ff[i]) == NULL) {
1338 continue;
1339 }
1340 if ((fp = ff->ff_file) == NULL) {
1341 continue;
1342 }
1343
1344 mutex_enter(&fp->f_lock);
1345
1346 if ((fp->f_count == 0) ||
1347 (fp->f_marker == sysctl_file_marker)) {
1348 mutex_exit(&fp->f_lock);
1349 continue;
1350 }
1351
1352 /* Check that we have enough space. */
1353 if (buflen < sizeof(struct file)) {
1354 *oldlenp = where - start;
1355 mutex_exit(&fp->f_lock);
1356 error = ENOMEM;
1357 break;
1358 }
1359
1360 memcpy(&fbuf, fp, sizeof(fbuf));
1361 mutex_exit(&fp->f_lock);
1362 error = dcopyout(l, &fbuf, where, sizeof(fbuf));
1363 if (error) {
1364 break;
1365 }
1366 buflen -= sizeof(struct file);
1367 where += sizeof(struct file);
1368
1369 fp->f_marker = sysctl_file_marker;
1370 }
1371 mutex_exit(&fd->fd_lock);
1372
1373 /*
1374 * Release reference to process.
1375 */
1376 mutex_enter(proc_lock);
1377 rw_exit(&p->p_reflock);
1378
1379 if (error)
1380 break;
1381 }
1382
1383 sysctl_file_marker++;
1384 /* Reset all markers if wrapped. */
1385 if (sysctl_file_marker == 0) {
1386 sysctl_file_marker_reset();
1387 sysctl_file_marker++;
1388 }
1389
1390 mutex_exit(proc_lock);
1391 mutex_exit(&sysctl_file_marker_lock);
1392
1393 *oldlenp = where - start;
1394 sysctl_relock();
1395 return (error);
1396 }
1397
1398 /*
1399 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. For the
1400 * former it merely checks the message buffer is set up. For the latter,
1401 * it also copies out the data if necessary.
1402 */
1403 static int
1404 sysctl_msgbuf(SYSCTLFN_ARGS)
1405 {
1406 char *where = oldp;
1407 size_t len, maxlen;
1408 long beg, end;
1409 extern kmutex_t log_lock;
1410 int error;
1411
1412 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1413 msgbufenabled = 0;
1414 return (ENXIO);
1415 }
1416
1417 switch (rnode->sysctl_num) {
1418 case KERN_MSGBUFSIZE: {
1419 struct sysctlnode node = *rnode;
1420 int msg_bufs = (int)msgbufp->msg_bufs;
1421 node.sysctl_data = &msg_bufs;
1422 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1423 }
1424 case KERN_MSGBUF:
1425 break;
1426 default:
1427 return (EOPNOTSUPP);
1428 }
1429
1430 if (newp != NULL)
1431 return (EPERM);
1432
1433 if (oldp == NULL) {
1434 /* always return full buffer size */
1435 *oldlenp = msgbufp->msg_bufs;
1436 return (0);
1437 }
1438
1439 sysctl_unlock();
1440
1441 /*
1442 * First, copy from the write pointer to the end of
1443 * message buffer.
1444 */
1445 error = 0;
1446 mutex_spin_enter(&log_lock);
1447 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1448 beg = msgbufp->msg_bufx;
1449 end = msgbufp->msg_bufs;
1450 mutex_spin_exit(&log_lock);
1451
1452 while (maxlen > 0) {
1453 len = MIN(end - beg, maxlen);
1454 if (len == 0)
1455 break;
1456 /* XXX unlocked, but hardly matters. */
1457 error = dcopyout(l, &msgbufp->msg_bufc[beg], where, len);
1458 if (error)
1459 break;
1460 where += len;
1461 maxlen -= len;
1462
1463 /*
1464 * ... then, copy from the beginning of message buffer to
1465 * the write pointer.
1466 */
1467 beg = 0;
1468 end = msgbufp->msg_bufx;
1469 }
1470
1471 sysctl_relock();
1472 return (error);
1473 }
1474
1475 /*
1476 * sysctl helper routine for kern.defcorename. In the case of a new
1477 * string being assigned, check that it's not a zero-length string.
1478 * (XXX the check in -current doesn't work, but do we really care?)
1479 */
1480 static int
1481 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1482 {
1483 int error;
1484 char *newcorename;
1485 struct sysctlnode node;
1486
1487 newcorename = PNBUF_GET();
1488 node = *rnode;
1489 node.sysctl_data = &newcorename[0];
1490 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1491 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1492 if (error || newp == NULL) {
1493 goto done;
1494 }
1495
1496 /*
1497 * when sysctl_lookup() deals with a string, it's guaranteed
1498 * to come back nul terminated. So there. :)
1499 */
1500 if (strlen(newcorename) == 0) {
1501 error = EINVAL;
1502 } else {
1503 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1504 error = 0;
1505 }
1506 done:
1507 PNBUF_PUT(newcorename);
1508 return error;
1509 }
1510
1511 /*
1512 * sysctl helper routine for kern.cp_time node. Adds up cpu time
1513 * across all cpus.
1514 */
1515 static int
1516 sysctl_kern_cptime(SYSCTLFN_ARGS)
1517 {
1518 struct sysctlnode node = *rnode;
1519 uint64_t *cp_time = NULL;
1520 int error, n = ncpu, i;
1521 struct cpu_info *ci;
1522 CPU_INFO_ITERATOR cii;
1523
1524 /*
1525 * if you specifically pass a buffer that is the size of the
1526 * sum, or if you are probing for the size, you get the "sum"
1527 * of cp_time (and the size thereof) across all processors.
1528 *
1529 * alternately, you can pass an additional mib number and get
1530 * cp_time for that particular processor.
1531 */
1532 switch (namelen) {
1533 case 0:
1534 if (*oldlenp == sizeof(uint64_t) * CPUSTATES || oldp == NULL) {
1535 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1536 n = -1; /* SUM */
1537 }
1538 else {
1539 node.sysctl_size = n * sizeof(uint64_t) * CPUSTATES;
1540 n = -2; /* ALL */
1541 }
1542 break;
1543 case 1:
1544 if (name[0] < 0 || name[0] >= n)
1545 return (ENOENT); /* ENOSUCHPROCESSOR */
1546 node.sysctl_size = sizeof(uint64_t) * CPUSTATES;
1547 n = name[0];
1548 /*
1549 * adjust these so that sysctl_lookup() will be happy
1550 */
1551 name++;
1552 namelen--;
1553 break;
1554 default:
1555 return (EINVAL);
1556 }
1557
1558 cp_time = kmem_alloc(node.sysctl_size, KM_SLEEP);
1559 if (cp_time == NULL)
1560 return (ENOMEM);
1561 node.sysctl_data = cp_time;
1562 memset(cp_time, 0, node.sysctl_size);
1563
1564 for (CPU_INFO_FOREACH(cii, ci)) {
1565 if (n <= 0) {
1566 for (i = 0; i < CPUSTATES; i++) {
1567 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1568 }
1569 }
1570 /*
1571 * if a specific processor was requested and we just
1572 * did it, we're done here
1573 */
1574 if (n == 0)
1575 break;
1576 /*
1577 * if doing "all", skip to next cp_time set for next processor
1578 */
1579 if (n == -2)
1580 cp_time += CPUSTATES;
1581 /*
1582 * if we're doing a specific processor, we're one
1583 * processor closer
1584 */
1585 if (n > 0)
1586 n--;
1587 }
1588
1589 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1590 kmem_free(node.sysctl_data, node.sysctl_size);
1591 return (error);
1592 }
1593
1594 #if NPTY > 0
1595 /*
1596 * sysctl helper routine for kern.maxptys. Ensures that any new value
1597 * is acceptable to the pty subsystem.
1598 */
1599 static int
1600 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1601 {
1602 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1603 int error, xmax;
1604 struct sysctlnode node;
1605
1606 /* get current value of maxptys */
1607 xmax = pty_maxptys(0, 0);
1608
1609 node = *rnode;
1610 node.sysctl_data = &xmax;
1611 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1612 if (error || newp == NULL)
1613 return (error);
1614
1615 if (xmax != pty_maxptys(xmax, 1))
1616 return (EINVAL);
1617
1618 return (0);
1619 }
1620 #endif /* NPTY > 0 */
1621
1622 /*
1623 * sysctl helper routine for kern.sbmax. Basically just ensures that
1624 * any new value is not too small.
1625 */
1626 static int
1627 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1628 {
1629 int error, new_sbmax;
1630 struct sysctlnode node;
1631
1632 new_sbmax = sb_max;
1633 node = *rnode;
1634 node.sysctl_data = &new_sbmax;
1635 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1636 if (error || newp == NULL)
1637 return (error);
1638
1639 KERNEL_LOCK(1, NULL);
1640 error = sb_max_set(new_sbmax);
1641 KERNEL_UNLOCK_ONE(NULL);
1642
1643 return (error);
1644 }
1645
1646 /*
1647 * sysctl helper routine for kern.urandom node. Picks a random number
1648 * for you.
1649 */
1650 static int
1651 sysctl_kern_urnd(SYSCTLFN_ARGS)
1652 {
1653 #if NRND > 0
1654 int v, rv;
1655
1656 KERNEL_LOCK(1, NULL);
1657 rv = rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY);
1658 KERNEL_UNLOCK_ONE(NULL);
1659 if (rv == sizeof(v)) {
1660 struct sysctlnode node = *rnode;
1661 node.sysctl_data = &v;
1662 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1663 }
1664 else
1665 return (EIO); /*XXX*/
1666 #else
1667 return (EOPNOTSUPP);
1668 #endif
1669 }
1670
1671 /*
1672 * sysctl helper routine for kern.arandom node. Picks a random number
1673 * for you.
1674 */
1675 static int
1676 sysctl_kern_arnd(SYSCTLFN_ARGS)
1677 {
1678 #if NRND > 0
1679 int error;
1680 void *v;
1681 struct sysctlnode node = *rnode;
1682
1683 if (*oldlenp == 0)
1684 return 0;
1685 if (*oldlenp > 8192)
1686 return E2BIG;
1687
1688 v = kmem_alloc(*oldlenp, KM_SLEEP);
1689 arc4randbytes(v, *oldlenp);
1690 node.sysctl_data = v;
1691 node.sysctl_size = *oldlenp;
1692 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1693 kmem_free(v, *oldlenp);
1694 return error;
1695 #else
1696 return (EOPNOTSUPP);
1697 #endif
1698 }
1699 /*
1700 * sysctl helper routine to do kern.lwp.* work.
1701 */
1702 static int
1703 sysctl_kern_lwp(SYSCTLFN_ARGS)
1704 {
1705 struct kinfo_lwp klwp;
1706 struct proc *p;
1707 struct lwp *l2, *l3;
1708 char *where, *dp;
1709 int pid, elem_size, elem_count;
1710 int buflen, needed, error;
1711 bool gotit;
1712
1713 if (namelen == 1 && name[0] == CTL_QUERY)
1714 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1715
1716 dp = where = oldp;
1717 buflen = where != NULL ? *oldlenp : 0;
1718 error = needed = 0;
1719
1720 if (newp != NULL || namelen != 3)
1721 return (EINVAL);
1722 pid = name[0];
1723 elem_size = name[1];
1724 elem_count = name[2];
1725
1726 sysctl_unlock();
1727 if (pid == -1) {
1728 mutex_enter(proc_lock);
1729 PROCLIST_FOREACH(p, &allproc) {
1730 /* Grab a hold on the process. */
1731 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
1732 continue;
1733 }
1734 mutex_exit(proc_lock);
1735
1736 mutex_enter(p->p_lock);
1737 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1738 if (buflen >= elem_size && elem_count > 0) {
1739 lwp_lock(l2);
1740 fill_lwp(l2, &klwp);
1741 lwp_unlock(l2);
1742 mutex_exit(p->p_lock);
1743
1744 /*
1745 * Copy out elem_size, but not
1746 * larger than the size of a
1747 * struct kinfo_proc2.
1748 */
1749 error = dcopyout(l, &klwp, dp,
1750 min(sizeof(klwp), elem_size));
1751 if (error) {
1752 rw_exit(&p->p_reflock);
1753 goto cleanup;
1754 }
1755 mutex_enter(p->p_lock);
1756 LIST_FOREACH(l3, &p->p_lwps,
1757 l_sibling) {
1758 if (l2 == l3)
1759 break;
1760 }
1761 if (l3 == NULL) {
1762 mutex_exit(p->p_lock);
1763 rw_exit(&p->p_reflock);
1764 error = EAGAIN;
1765 goto cleanup;
1766 }
1767 dp += elem_size;
1768 buflen -= elem_size;
1769 elem_count--;
1770 }
1771 needed += elem_size;
1772 }
1773 mutex_exit(p->p_lock);
1774
1775 /* Drop reference to process. */
1776 mutex_enter(proc_lock);
1777 rw_exit(&p->p_reflock);
1778 }
1779 mutex_exit(proc_lock);
1780 } else {
1781 mutex_enter(proc_lock);
1782 p = proc_find(pid);
1783 if (p == NULL) {
1784 error = ESRCH;
1785 mutex_exit(proc_lock);
1786 goto cleanup;
1787 }
1788 /* Grab a hold on the process. */
1789 gotit = rw_tryenter(&p->p_reflock, RW_READER);
1790 mutex_exit(proc_lock);
1791 if (!gotit) {
1792 error = ESRCH;
1793 goto cleanup;
1794 }
1795
1796 mutex_enter(p->p_lock);
1797 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1798 if (buflen >= elem_size && elem_count > 0) {
1799 lwp_lock(l2);
1800 fill_lwp(l2, &klwp);
1801 lwp_unlock(l2);
1802 mutex_exit(p->p_lock);
1803 /*
1804 * Copy out elem_size, but not larger than
1805 * the size of a struct kinfo_proc2.
1806 */
1807 error = dcopyout(l, &klwp, dp,
1808 min(sizeof(klwp), elem_size));
1809 if (error) {
1810 rw_exit(&p->p_reflock);
1811 goto cleanup;
1812 }
1813 mutex_enter(p->p_lock);
1814 LIST_FOREACH(l3, &p->p_lwps, l_sibling) {
1815 if (l2 == l3)
1816 break;
1817 }
1818 if (l3 == NULL) {
1819 mutex_exit(p->p_lock);
1820 rw_exit(&p->p_reflock);
1821 error = EAGAIN;
1822 goto cleanup;
1823 }
1824 dp += elem_size;
1825 buflen -= elem_size;
1826 elem_count--;
1827 }
1828 needed += elem_size;
1829 }
1830 mutex_exit(p->p_lock);
1831
1832 /* Drop reference to process. */
1833 rw_exit(&p->p_reflock);
1834 }
1835
1836 if (where != NULL) {
1837 *oldlenp = dp - where;
1838 if (needed > *oldlenp) {
1839 sysctl_relock();
1840 return (ENOMEM);
1841 }
1842 } else {
1843 needed += KERN_LWPSLOP;
1844 *oldlenp = needed;
1845 }
1846 error = 0;
1847 cleanup:
1848 sysctl_relock();
1849 return (error);
1850 }
1851
1852 /*
1853 * sysctl helper routine for kern.forkfsleep node. Ensures that the
1854 * given value is not too large or two small, and is at least one
1855 * timer tick if not zero.
1856 */
1857 static int
1858 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1859 {
1860 /* userland sees value in ms, internally is in ticks */
1861 extern int forkfsleep; /* defined in kern/kern_fork.c */
1862 int error, timo, lsleep;
1863 struct sysctlnode node;
1864
1865 lsleep = forkfsleep * 1000 / hz;
1866 node = *rnode;
1867 node.sysctl_data = &lsleep;
1868 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1869 if (error || newp == NULL)
1870 return (error);
1871
1872 /* refuse negative values, and overly 'long time' */
1873 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1874 return (EINVAL);
1875
1876 timo = mstohz(lsleep);
1877
1878 /* if the interval is >0 ms && <1 tick, use 1 tick */
1879 if (lsleep != 0 && timo == 0)
1880 forkfsleep = 1;
1881 else
1882 forkfsleep = timo;
1883
1884 return (0);
1885 }
1886
1887 /*
1888 * sysctl helper routine for kern.root_partition
1889 */
1890 static int
1891 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1892 {
1893 int rootpart = DISKPART(rootdev);
1894 struct sysctlnode node = *rnode;
1895
1896 node.sysctl_data = &rootpart;
1897 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1898 }
1899
1900 /*
1901 * sysctl helper function for kern.drivers
1902 */
1903 static int
1904 sysctl_kern_drivers(SYSCTLFN_ARGS)
1905 {
1906 int error;
1907 size_t buflen;
1908 struct kinfo_drivers kd;
1909 char *start, *where;
1910 const char *dname;
1911 int i;
1912 extern struct devsw_conv *devsw_conv;
1913 extern int max_devsw_convs;
1914
1915 if (newp != NULL || namelen != 0)
1916 return (EINVAL);
1917
1918 start = where = oldp;
1919 buflen = *oldlenp;
1920 if (where == NULL) {
1921 *oldlenp = max_devsw_convs * sizeof kd;
1922 return 0;
1923 }
1924
1925 /*
1926 * An array of kinfo_drivers structures
1927 */
1928 error = 0;
1929 sysctl_unlock();
1930 mutex_enter(&device_lock);
1931 for (i = 0; i < max_devsw_convs; i++) {
1932 dname = devsw_conv[i].d_name;
1933 if (dname == NULL)
1934 continue;
1935 if (buflen < sizeof kd) {
1936 error = ENOMEM;
1937 break;
1938 }
1939 memset(&kd, 0, sizeof(kd));
1940 kd.d_bmajor = devsw_conv[i].d_bmajor;
1941 kd.d_cmajor = devsw_conv[i].d_cmajor;
1942 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1943 mutex_exit(&device_lock);
1944 error = dcopyout(l, &kd, where, sizeof kd);
1945 mutex_enter(&device_lock);
1946 if (error != 0)
1947 break;
1948 buflen -= sizeof kd;
1949 where += sizeof kd;
1950 }
1951 mutex_exit(&device_lock);
1952 sysctl_relock();
1953 *oldlenp = where - start;
1954 return error;
1955 }
1956
1957 /*
1958 * sysctl helper function for kern.file2
1959 */
1960 static int
1961 sysctl_kern_file2(SYSCTLFN_ARGS)
1962 {
1963 struct proc *p;
1964 struct file *fp;
1965 struct filedesc *fd;
1966 struct kinfo_file kf;
1967 char *dp;
1968 u_int i, op;
1969 size_t len, needed, elem_size, out_size;
1970 int error, arg, elem_count;
1971 fdfile_t *ff;
1972 fdtab_t *dt;
1973
1974 if (namelen == 1 && name[0] == CTL_QUERY)
1975 return (sysctl_query(SYSCTLFN_CALL(rnode)));
1976
1977 if (namelen != 4)
1978 return (EINVAL);
1979
1980 error = 0;
1981 dp = oldp;
1982 len = (oldp != NULL) ? *oldlenp : 0;
1983 op = name[0];
1984 arg = name[1];
1985 elem_size = name[2];
1986 elem_count = name[3];
1987 out_size = MIN(sizeof(kf), elem_size);
1988 needed = 0;
1989
1990 if (elem_size < 1 || elem_count < 0)
1991 return (EINVAL);
1992
1993 switch (op) {
1994 case KERN_FILE_BYFILE:
1995 case KERN_FILE_BYPID:
1996 /*
1997 * We're traversing the process list in both cases; the BYFILE
1998 * case does additional work of keeping track of files already
1999 * looked at.
2000 */
2001
2002 /* doesn't use arg so it must be zero */
2003 if ((op == KERN_FILE_BYFILE) && (arg != 0))
2004 return EINVAL;
2005
2006 if ((op == KERN_FILE_BYPID) && (arg < -1))
2007 /* -1 means all processes */
2008 return (EINVAL);
2009
2010 sysctl_unlock();
2011 if (op == KERN_FILE_BYFILE)
2012 mutex_enter(&sysctl_file_marker_lock);
2013 mutex_enter(proc_lock);
2014 PROCLIST_FOREACH(p, &allproc) {
2015 if (p->p_stat == SIDL) {
2016 /* skip embryonic processes */
2017 continue;
2018 }
2019 if (arg > 0 && p->p_pid != arg) {
2020 /* pick only the one we want */
2021 /* XXX want 0 to mean "kernel files" */
2022 continue;
2023 }
2024 mutex_enter(p->p_lock);
2025 error = kauth_authorize_process(l->l_cred,
2026 KAUTH_PROCESS_CANSEE, p,
2027 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_OPENFILES),
2028 NULL, NULL);
2029 mutex_exit(p->p_lock);
2030 if (error != 0) {
2031 /*
2032 * Don't leak kauth retval if we're silently
2033 * skipping this entry.
2034 */
2035 error = 0;
2036 continue;
2037 }
2038
2039 /*
2040 * Grab a hold on the process.
2041 */
2042 if (!rw_tryenter(&p->p_reflock, RW_READER)) {
2043 continue;
2044 }
2045 mutex_exit(proc_lock);
2046
2047 fd = p->p_fd;
2048 mutex_enter(&fd->fd_lock);
2049 dt = fd->fd_dt;
2050 for (i = 0; i < dt->dt_nfiles; i++) {
2051 if ((ff = dt->dt_ff[i]) == NULL) {
2052 continue;
2053 }
2054 if ((fp = ff->ff_file) == NULL) {
2055 continue;
2056 }
2057
2058 if ((op == KERN_FILE_BYFILE) &&
2059 (fp->f_marker == sysctl_file_marker)) {
2060 continue;
2061 }
2062 if (len >= elem_size && elem_count > 0) {
2063 mutex_enter(&fp->f_lock);
2064 fill_file(&kf, fp, ff, i, p->p_pid);
2065 mutex_exit(&fp->f_lock);
2066 mutex_exit(&fd->fd_lock);
2067 error = dcopyout(l, &kf, dp, out_size);
2068 mutex_enter(&fd->fd_lock);
2069 if (error)
2070 break;
2071 dp += elem_size;
2072 len -= elem_size;
2073 }
2074 if (op == KERN_FILE_BYFILE)
2075 fp->f_marker = sysctl_file_marker;
2076 needed += elem_size;
2077 if (elem_count > 0 && elem_count != INT_MAX)
2078 elem_count--;
2079 }
2080 mutex_exit(&fd->fd_lock);
2081
2082 /*
2083 * Release reference to process.
2084 */
2085 mutex_enter(proc_lock);
2086 rw_exit(&p->p_reflock);
2087 }
2088 if (op == KERN_FILE_BYFILE) {
2089 sysctl_file_marker++;
2090
2091 /* Reset all markers if wrapped. */
2092 if (sysctl_file_marker == 0) {
2093 sysctl_file_marker_reset();
2094 sysctl_file_marker++;
2095 }
2096 }
2097 mutex_exit(proc_lock);
2098 if (op == KERN_FILE_BYFILE)
2099 mutex_exit(&sysctl_file_marker_lock);
2100 sysctl_relock();
2101 break;
2102 default:
2103 return (EINVAL);
2104 }
2105
2106 if (oldp == NULL)
2107 needed += KERN_FILESLOP * elem_size;
2108 *oldlenp = needed;
2109
2110 return (error);
2111 }
2112
2113 static void
2114 fill_file(struct kinfo_file *kp, const file_t *fp, const fdfile_t *ff,
2115 int i, pid_t pid)
2116 {
2117
2118 memset(kp, 0, sizeof(*kp));
2119
2120 kp->ki_fileaddr = PTRTOUINT64(fp);
2121 kp->ki_flag = fp->f_flag;
2122 kp->ki_iflags = 0;
2123 kp->ki_ftype = fp->f_type;
2124 kp->ki_count = fp->f_count;
2125 kp->ki_msgcount = fp->f_msgcount;
2126 kp->ki_fucred = PTRTOUINT64(fp->f_cred);
2127 kp->ki_fuid = kauth_cred_geteuid(fp->f_cred);
2128 kp->ki_fgid = kauth_cred_getegid(fp->f_cred);
2129 kp->ki_fops = PTRTOUINT64(fp->f_ops);
2130 kp->ki_foffset = fp->f_offset;
2131 kp->ki_fdata = PTRTOUINT64(fp->f_data);
2132
2133 /* vnode information to glue this file to something */
2134 if (fp->f_type == DTYPE_VNODE) {
2135 struct vnode *vp = (struct vnode *)fp->f_data;
2136
2137 kp->ki_vun = PTRTOUINT64(vp->v_un.vu_socket);
2138 kp->ki_vsize = vp->v_size;
2139 kp->ki_vtype = vp->v_type;
2140 kp->ki_vtag = vp->v_tag;
2141 kp->ki_vdata = PTRTOUINT64(vp->v_data);
2142 }
2143
2144 /* process information when retrieved via KERN_FILE_BYPID */
2145 if (ff != NULL) {
2146 kp->ki_pid = pid;
2147 kp->ki_fd = i;
2148 kp->ki_ofileflags = ff->ff_exclose;
2149 kp->ki_usecount = ff->ff_refcnt;
2150 }
2151 }
2152
2153 static int
2154 sysctl_doeproc(SYSCTLFN_ARGS)
2155 {
2156 union {
2157 struct kinfo_proc kproc;
2158 struct kinfo_proc2 kproc2;
2159 } *kbuf;
2160 struct proc *p, *next, *marker;
2161 char *where, *dp;
2162 int type, op, arg, error;
2163 u_int elem_size, kelem_size, elem_count;
2164 size_t buflen, needed;
2165 bool match, zombie, mmmbrains;
2166
2167 if (namelen == 1 && name[0] == CTL_QUERY)
2168 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2169
2170 dp = where = oldp;
2171 buflen = where != NULL ? *oldlenp : 0;
2172 error = 0;
2173 needed = 0;
2174 type = rnode->sysctl_num;
2175
2176 if (type == KERN_PROC) {
2177 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
2178 return (EINVAL);
2179 op = name[0];
2180 if (op != KERN_PROC_ALL)
2181 arg = name[1];
2182 else
2183 arg = 0; /* Quell compiler warning */
2184 elem_count = 0; /* Ditto */
2185 kelem_size = elem_size = sizeof(kbuf->kproc);
2186 } else {
2187 if (namelen != 4)
2188 return (EINVAL);
2189 op = name[0];
2190 arg = name[1];
2191 elem_size = name[2];
2192 elem_count = name[3];
2193 kelem_size = sizeof(kbuf->kproc2);
2194 }
2195
2196 sysctl_unlock();
2197
2198 kbuf = kmem_alloc(sizeof(*kbuf), KM_SLEEP);
2199 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2200 marker->p_flag = PK_MARKER;
2201
2202 mutex_enter(proc_lock);
2203 mmmbrains = false;
2204 for (p = LIST_FIRST(&allproc);; p = next) {
2205 if (p == NULL) {
2206 if (!mmmbrains) {
2207 p = LIST_FIRST(&zombproc);
2208 mmmbrains = true;
2209 }
2210 if (p == NULL)
2211 break;
2212 }
2213 next = LIST_NEXT(p, p_list);
2214 if ((p->p_flag & PK_MARKER) != 0)
2215 continue;
2216
2217 /*
2218 * Skip embryonic processes.
2219 */
2220 if (p->p_stat == SIDL)
2221 continue;
2222
2223 mutex_enter(p->p_lock);
2224 error = kauth_authorize_process(l->l_cred,
2225 KAUTH_PROCESS_CANSEE, p,
2226 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2227 if (error != 0) {
2228 mutex_exit(p->p_lock);
2229 continue;
2230 }
2231
2232 /*
2233 * TODO - make more efficient (see notes below).
2234 * do by session.
2235 */
2236 switch (op) {
2237 case KERN_PROC_PID:
2238 /* could do this with just a lookup */
2239 match = (p->p_pid == (pid_t)arg);
2240 break;
2241
2242 case KERN_PROC_PGRP:
2243 /* could do this by traversing pgrp */
2244 match = (p->p_pgrp->pg_id == (pid_t)arg);
2245 break;
2246
2247 case KERN_PROC_SESSION:
2248 match = (p->p_session->s_sid == (pid_t)arg);
2249 break;
2250
2251 case KERN_PROC_TTY:
2252 match = true;
2253 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2254 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2255 p->p_session->s_ttyp == NULL ||
2256 p->p_session->s_ttyvp != NULL) {
2257 match = false;
2258 }
2259 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2260 p->p_session->s_ttyp == NULL) {
2261 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2262 match = false;
2263 }
2264 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2265 match = false;
2266 }
2267 break;
2268
2269 case KERN_PROC_UID:
2270 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2271 break;
2272
2273 case KERN_PROC_RUID:
2274 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2275 break;
2276
2277 case KERN_PROC_GID:
2278 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2279 break;
2280
2281 case KERN_PROC_RGID:
2282 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2283 break;
2284
2285 case KERN_PROC_ALL:
2286 match = true;
2287 /* allow everything */
2288 break;
2289
2290 default:
2291 error = EINVAL;
2292 mutex_exit(p->p_lock);
2293 goto cleanup;
2294 }
2295 if (!match) {
2296 mutex_exit(p->p_lock);
2297 continue;
2298 }
2299
2300 /*
2301 * Grab a hold on the process.
2302 */
2303 if (mmmbrains) {
2304 zombie = true;
2305 } else {
2306 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2307 }
2308 if (zombie) {
2309 LIST_INSERT_AFTER(p, marker, p_list);
2310 }
2311
2312 if (buflen >= elem_size &&
2313 (type == KERN_PROC || elem_count > 0)) {
2314 if (type == KERN_PROC) {
2315 kbuf->kproc.kp_proc = *p;
2316 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie);
2317 } else {
2318 fill_kproc2(p, &kbuf->kproc2, zombie);
2319 elem_count--;
2320 }
2321 mutex_exit(p->p_lock);
2322 mutex_exit(proc_lock);
2323 /*
2324 * Copy out elem_size, but not larger than kelem_size
2325 */
2326 error = dcopyout(l, kbuf, dp,
2327 min(kelem_size, elem_size));
2328 mutex_enter(proc_lock);
2329 if (error) {
2330 goto bah;
2331 }
2332 dp += elem_size;
2333 buflen -= elem_size;
2334 } else {
2335 mutex_exit(p->p_lock);
2336 }
2337 needed += elem_size;
2338
2339 /*
2340 * Release reference to process.
2341 */
2342 if (zombie) {
2343 next = LIST_NEXT(marker, p_list);
2344 LIST_REMOVE(marker, p_list);
2345 } else {
2346 rw_exit(&p->p_reflock);
2347 next = LIST_NEXT(p, p_list);
2348 }
2349 }
2350 mutex_exit(proc_lock);
2351
2352 if (where != NULL) {
2353 *oldlenp = dp - where;
2354 if (needed > *oldlenp) {
2355 error = ENOMEM;
2356 goto out;
2357 }
2358 } else {
2359 needed += KERN_PROCSLOP;
2360 *oldlenp = needed;
2361 }
2362 if (kbuf)
2363 kmem_free(kbuf, sizeof(*kbuf));
2364 if (marker)
2365 kmem_free(marker, sizeof(*marker));
2366 sysctl_relock();
2367 return 0;
2368 bah:
2369 if (zombie)
2370 LIST_REMOVE(marker, p_list);
2371 else
2372 rw_exit(&p->p_reflock);
2373 cleanup:
2374 mutex_exit(proc_lock);
2375 out:
2376 if (kbuf)
2377 kmem_free(kbuf, sizeof(*kbuf));
2378 if (marker)
2379 kmem_free(marker, sizeof(*marker));
2380 sysctl_relock();
2381 return error;
2382 }
2383
2384 /*
2385 * sysctl helper routine for kern.proc_args pseudo-subtree.
2386 */
2387 static int
2388 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2389 {
2390 struct ps_strings pss;
2391 struct proc *p;
2392 size_t len, i;
2393 struct uio auio;
2394 struct iovec aiov;
2395 pid_t pid;
2396 int nargv, type, error, argvlen;
2397 char *arg;
2398 char **argv = NULL;
2399 char *tmp;
2400 struct vmspace *vmspace;
2401 vaddr_t psstr_addr;
2402 vaddr_t offsetn;
2403 vaddr_t offsetv;
2404
2405 if (namelen == 1 && name[0] == CTL_QUERY)
2406 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2407
2408 if (newp != NULL || namelen != 2)
2409 return (EINVAL);
2410 pid = name[0];
2411 type = name[1];
2412 argv = NULL;
2413 argvlen = 0;
2414
2415 switch (type) {
2416 case KERN_PROC_ARGV:
2417 case KERN_PROC_NARGV:
2418 case KERN_PROC_ENV:
2419 case KERN_PROC_NENV:
2420 /* ok */
2421 break;
2422 default:
2423 return (EINVAL);
2424 }
2425
2426 sysctl_unlock();
2427
2428 /* check pid */
2429 mutex_enter(proc_lock);
2430 if ((p = proc_find(pid)) == NULL) {
2431 error = EINVAL;
2432 goto out_locked;
2433 }
2434 mutex_enter(p->p_lock);
2435
2436 /* Check permission. */
2437 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2438 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2439 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2440 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2441 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2442 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2443 else
2444 error = EINVAL; /* XXXGCC */
2445 if (error) {
2446 mutex_exit(p->p_lock);
2447 goto out_locked;
2448 }
2449
2450 if (oldp == NULL) {
2451 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2452 *oldlenp = sizeof (int);
2453 else
2454 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2455 error = 0;
2456 mutex_exit(p->p_lock);
2457 goto out_locked;
2458 }
2459
2460 /*
2461 * Zombies don't have a stack, so we can't read their psstrings.
2462 * System processes also don't have a user stack.
2463 */
2464 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2465 error = EINVAL;
2466 mutex_exit(p->p_lock);
2467 goto out_locked;
2468 }
2469
2470 /*
2471 * Lock the process down in memory.
2472 */
2473 psstr_addr = (vaddr_t)p->p_psstr;
2474 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) {
2475 offsetn = p->p_psnargv;
2476 offsetv = p->p_psargv;
2477 } else {
2478 offsetn = p->p_psnenv;
2479 offsetv = p->p_psenv;
2480 }
2481 vmspace = p->p_vmspace;
2482 uvmspace_addref(vmspace);
2483 mutex_exit(p->p_lock);
2484 mutex_exit(proc_lock);
2485
2486 /*
2487 * Allocate a temporary buffer to hold the arguments.
2488 */
2489 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2490
2491 /*
2492 * Read in the ps_strings structure.
2493 */
2494 aiov.iov_base = &pss;
2495 aiov.iov_len = sizeof(pss);
2496 auio.uio_iov = &aiov;
2497 auio.uio_iovcnt = 1;
2498 auio.uio_offset = psstr_addr;
2499 auio.uio_resid = sizeof(pss);
2500 auio.uio_rw = UIO_READ;
2501 UIO_SETUP_SYSSPACE(&auio);
2502 error = uvm_io(&vmspace->vm_map, &auio);
2503 if (error)
2504 goto done;
2505
2506 memcpy(&nargv, (char *)&pss + offsetn, sizeof(nargv));
2507 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2508 error = dcopyout(l, &nargv, oldp, sizeof(nargv));
2509 *oldlenp = sizeof(nargv);
2510 goto done;
2511 }
2512 /*
2513 * Now read the address of the argument vector.
2514 */
2515 switch (type) {
2516 case KERN_PROC_ARGV:
2517 /* FALLTHROUGH */
2518 case KERN_PROC_ENV:
2519 memcpy(&tmp, (char *)&pss + offsetv, sizeof(tmp));
2520 break;
2521 default:
2522 error = EINVAL;
2523 goto done;
2524 }
2525
2526 #ifdef COMPAT_NETBSD32
2527 if (p->p_flag & PK_32)
2528 len = sizeof(netbsd32_charp) * nargv;
2529 else
2530 #endif
2531 len = sizeof(char *) * nargv;
2532
2533 if ((argvlen = len) != 0)
2534 argv = kmem_alloc(len, KM_SLEEP);
2535
2536 aiov.iov_base = argv;
2537 aiov.iov_len = len;
2538 auio.uio_iov = &aiov;
2539 auio.uio_iovcnt = 1;
2540 auio.uio_offset = (off_t)(unsigned long)tmp;
2541 auio.uio_resid = len;
2542 auio.uio_rw = UIO_READ;
2543 UIO_SETUP_SYSSPACE(&auio);
2544 error = uvm_io(&vmspace->vm_map, &auio);
2545 if (error)
2546 goto done;
2547
2548 /*
2549 * Now copy each string.
2550 */
2551 len = 0; /* bytes written to user buffer */
2552 for (i = 0; i < nargv; i++) {
2553 int finished = 0;
2554 vaddr_t base;
2555 size_t xlen;
2556 int j;
2557
2558 #ifdef COMPAT_NETBSD32
2559 if (p->p_flag & PK_32) {
2560 netbsd32_charp *argv32;
2561
2562 argv32 = (netbsd32_charp *)argv;
2563 base = (vaddr_t)NETBSD32PTR64(argv32[i]);
2564 } else
2565 #endif
2566 base = (vaddr_t)argv[i];
2567
2568 /*
2569 * The program has messed around with its arguments,
2570 * possibly deleting some, and replacing them with
2571 * NULL's. Treat this as the last argument and not
2572 * a failure.
2573 */
2574 if (base == 0)
2575 break;
2576
2577 while (!finished) {
2578 xlen = PAGE_SIZE - (base & PAGE_MASK);
2579
2580 aiov.iov_base = arg;
2581 aiov.iov_len = PAGE_SIZE;
2582 auio.uio_iov = &aiov;
2583 auio.uio_iovcnt = 1;
2584 auio.uio_offset = base;
2585 auio.uio_resid = xlen;
2586 auio.uio_rw = UIO_READ;
2587 UIO_SETUP_SYSSPACE(&auio);
2588 error = uvm_io(&vmspace->vm_map, &auio);
2589 if (error)
2590 goto done;
2591
2592 /* Look for the end of the string */
2593 for (j = 0; j < xlen; j++) {
2594 if (arg[j] == '\0') {
2595 xlen = j + 1;
2596 finished = 1;
2597 break;
2598 }
2599 }
2600
2601 /* Check for user buffer overflow */
2602 if (len + xlen > *oldlenp) {
2603 finished = 1;
2604 if (len > *oldlenp)
2605 xlen = 0;
2606 else
2607 xlen = *oldlenp - len;
2608 }
2609
2610 /* Copyout the page */
2611 error = dcopyout(l, arg, (char *)oldp + len, xlen);
2612 if (error)
2613 goto done;
2614
2615 len += xlen;
2616 base += xlen;
2617 }
2618 }
2619 *oldlenp = len;
2620
2621 done:
2622 if (argvlen != 0)
2623 kmem_free(argv, argvlen);
2624 uvmspace_free(vmspace);
2625 kmem_free(arg, PAGE_SIZE);
2626 sysctl_relock();
2627 return error;
2628
2629 out_locked:
2630 mutex_exit(proc_lock);
2631 sysctl_relock();
2632 return error;
2633 }
2634
2635 static int
2636 sysctl_security_setidcore(SYSCTLFN_ARGS)
2637 {
2638 int newsize, error;
2639 struct sysctlnode node;
2640
2641 node = *rnode;
2642 node.sysctl_data = &newsize;
2643 newsize = *(int *)rnode->sysctl_data;
2644 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2645 if (error || newp == NULL)
2646 return error;
2647
2648 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2649 0, NULL, NULL, NULL))
2650 return (EPERM);
2651
2652 *(int *)rnode->sysctl_data = newsize;
2653
2654 return 0;
2655 }
2656
2657 static int
2658 sysctl_security_setidcorename(SYSCTLFN_ARGS)
2659 {
2660 int error;
2661 char *newsetidcorename;
2662 struct sysctlnode node;
2663
2664 newsetidcorename = PNBUF_GET();
2665 node = *rnode;
2666 node.sysctl_data = newsetidcorename;
2667 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
2668 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2669 if (error || newp == NULL) {
2670 goto out;
2671 }
2672 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SETIDCORE,
2673 0, NULL, NULL, NULL)) {
2674 error = EPERM;
2675 goto out;
2676 }
2677 if (strlen(newsetidcorename) == 0) {
2678 error = EINVAL;
2679 goto out;
2680 }
2681 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
2682 out:
2683 PNBUF_PUT(newsetidcorename);
2684 return error;
2685 }
2686
2687 /*
2688 * sysctl helper routine for kern.cp_id node. Maps cpus to their
2689 * cpuids.
2690 */
2691 static int
2692 sysctl_kern_cpid(SYSCTLFN_ARGS)
2693 {
2694 struct sysctlnode node = *rnode;
2695 uint64_t *cp_id = NULL;
2696 int error, n = ncpu;
2697 struct cpu_info *ci;
2698 CPU_INFO_ITERATOR cii;
2699
2700 /*
2701 * Here you may either retrieve a single cpu id or the whole
2702 * set. The size you get back when probing depends on what
2703 * you ask for.
2704 */
2705 switch (namelen) {
2706 case 0:
2707 node.sysctl_size = n * sizeof(uint64_t);
2708 n = -2; /* ALL */
2709 break;
2710 case 1:
2711 if (name[0] < 0 || name[0] >= n)
2712 return (ENOENT); /* ENOSUCHPROCESSOR */
2713 node.sysctl_size = sizeof(uint64_t);
2714 n = name[0];
2715 /*
2716 * adjust these so that sysctl_lookup() will be happy
2717 */
2718 name++;
2719 namelen--;
2720 break;
2721 default:
2722 return (EINVAL);
2723 }
2724
2725 cp_id = kmem_alloc(node.sysctl_size, KM_SLEEP);
2726 if (cp_id == NULL)
2727 return (ENOMEM);
2728 node.sysctl_data = cp_id;
2729 memset(cp_id, 0, node.sysctl_size);
2730
2731 for (CPU_INFO_FOREACH(cii, ci)) {
2732 if (n <= 0)
2733 cp_id[0] = cpu_index(ci);
2734 /*
2735 * if a specific processor was requested and we just
2736 * did it, we're done here
2737 */
2738 if (n == 0)
2739 break;
2740 /*
2741 * if doing "all", skip to next cp_id slot for next processor
2742 */
2743 if (n == -2)
2744 cp_id++;
2745 /*
2746 * if we're doing a specific processor, we're one
2747 * processor closer
2748 */
2749 if (n > 0)
2750 n--;
2751 }
2752
2753 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2754 kmem_free(node.sysctl_data, node.sysctl_size);
2755 return (error);
2756 }
2757
2758 /*
2759 * sysctl helper routine for hw.usermem and hw.usermem64. Values are
2760 * calculate on the fly taking into account integer overflow and the
2761 * current wired count.
2762 */
2763 static int
2764 sysctl_hw_usermem(SYSCTLFN_ARGS)
2765 {
2766 u_int ui;
2767 u_quad_t uq;
2768 struct sysctlnode node;
2769
2770 node = *rnode;
2771 switch (rnode->sysctl_num) {
2772 case HW_USERMEM:
2773 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2774 ui = UINT_MAX;
2775 else
2776 ui *= PAGE_SIZE;
2777 node.sysctl_data = &ui;
2778 break;
2779 case HW_USERMEM64:
2780 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2781 node.sysctl_data = &uq;
2782 break;
2783 default:
2784 return (EINVAL);
2785 }
2786
2787 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2788 }
2789
2790 /*
2791 * sysctl helper routine for kern.cnmagic node. Pulls the old value
2792 * out, encoded, and stuffs the new value in for decoding.
2793 */
2794 static int
2795 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2796 {
2797 char magic[CNS_LEN];
2798 int error;
2799 struct sysctlnode node;
2800
2801 if (oldp)
2802 cn_get_magic(magic, CNS_LEN);
2803 node = *rnode;
2804 node.sysctl_data = &magic[0];
2805 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2806 if (error || newp == NULL)
2807 return (error);
2808
2809 return (cn_set_magic(magic));
2810 }
2811
2812 /*
2813 * ********************************************************************
2814 * section 3: public helper routines that are used for more than one
2815 * node
2816 * ********************************************************************
2817 */
2818
2819 /*
2820 * sysctl helper routine for the kern.root_device node and some ports'
2821 * machdep.root_device nodes.
2822 */
2823 int
2824 sysctl_root_device(SYSCTLFN_ARGS)
2825 {
2826 struct sysctlnode node;
2827
2828 node = *rnode;
2829 node.sysctl_data = root_device->dv_xname;
2830 node.sysctl_size = strlen(device_xname(root_device)) + 1;
2831 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2832 }
2833
2834 /*
2835 * sysctl helper routine for kern.consdev, dependent on the current
2836 * state of the console. Also used for machdep.console_device on some
2837 * ports.
2838 */
2839 int
2840 sysctl_consdev(SYSCTLFN_ARGS)
2841 {
2842 dev_t consdev;
2843 uint32_t oconsdev;
2844 struct sysctlnode node;
2845
2846 if (cn_tab != NULL)
2847 consdev = cn_tab->cn_dev;
2848 else
2849 consdev = NODEV;
2850 node = *rnode;
2851 switch (*oldlenp) {
2852 case sizeof(consdev):
2853 node.sysctl_data = &consdev;
2854 node.sysctl_size = sizeof(consdev);
2855 break;
2856 case sizeof(oconsdev):
2857 oconsdev = (uint32_t)consdev;
2858 node.sysctl_data = &oconsdev;
2859 node.sysctl_size = sizeof(oconsdev);
2860 break;
2861 default:
2862 return EINVAL;
2863 }
2864 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2865 }
2866
2867 /*
2868 * ********************************************************************
2869 * section 4: support for some helpers
2870 * ********************************************************************
2871 */
2872 /*
2873 * Find the most ``active'' lwp of a process and return it for ps display
2874 * purposes
2875 */
2876 static struct lwp *
2877 proc_active_lwp(struct proc *p)
2878 {
2879 static const int ostat[] = {
2880 0,
2881 2, /* LSIDL */
2882 6, /* LSRUN */
2883 5, /* LSSLEEP */
2884 4, /* LSSTOP */
2885 0, /* LSZOMB */
2886 1, /* LSDEAD */
2887 7, /* LSONPROC */
2888 3 /* LSSUSPENDED */
2889 };
2890
2891 struct lwp *l, *lp = NULL;
2892 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2893 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2894 if (lp == NULL ||
2895 ostat[l->l_stat] > ostat[lp->l_stat] ||
2896 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2897 l->l_cpticks > lp->l_cpticks)) {
2898 lp = l;
2899 continue;
2900 }
2901 }
2902 return lp;
2903 }
2904
2905
2906 /*
2907 * Fill in a kinfo_proc2 structure for the specified process.
2908 */
2909 static void
2910 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie)
2911 {
2912 struct tty *tp;
2913 struct lwp *l, *l2;
2914 struct timeval ut, st, rt;
2915 sigset_t ss1, ss2;
2916 struct rusage ru;
2917 struct vmspace *vm;
2918
2919 KASSERT(mutex_owned(proc_lock));
2920 KASSERT(mutex_owned(p->p_lock));
2921
2922 sigemptyset(&ss1);
2923 sigemptyset(&ss2);
2924 memset(ki, 0, sizeof(*ki));
2925
2926 ki->p_paddr = PTRTOUINT64(p);
2927 ki->p_fd = PTRTOUINT64(p->p_fd);
2928 ki->p_cwdi = PTRTOUINT64(p->p_cwdi);
2929 ki->p_stats = PTRTOUINT64(p->p_stats);
2930 ki->p_limit = PTRTOUINT64(p->p_limit);
2931 ki->p_vmspace = PTRTOUINT64(p->p_vmspace);
2932 ki->p_sigacts = PTRTOUINT64(p->p_sigacts);
2933 ki->p_sess = PTRTOUINT64(p->p_session);
2934 ki->p_tsess = 0; /* may be changed if controlling tty below */
2935 ki->p_ru = PTRTOUINT64(&p->p_stats->p_ru);
2936 ki->p_eflag = 0;
2937 ki->p_exitsig = p->p_exitsig;
2938 ki->p_flag = L_INMEM; /* Process never swapped out */
2939 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2940 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2941 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2942 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2943 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2944 ki->p_pid = p->p_pid;
2945 if (p->p_pptr)
2946 ki->p_ppid = p->p_pptr->p_pid;
2947 else
2948 ki->p_ppid = 0;
2949 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2950 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2951 ki->p_gid = kauth_cred_getegid(p->p_cred);
2952 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2953 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2954 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2955 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2956 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2957 min(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2958 UIO_SYSSPACE);
2959
2960 ki->p_uticks = p->p_uticks;
2961 ki->p_sticks = p->p_sticks;
2962 ki->p_iticks = p->p_iticks;
2963 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2964 ki->p_tracep = PTRTOUINT64(p->p_tracep);
2965 ki->p_traceflag = p->p_traceflag;
2966
2967 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2968 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2969
2970 ki->p_cpticks = 0;
2971 ki->p_pctcpu = p->p_pctcpu;
2972 ki->p_estcpu = 0;
2973 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2974 ki->p_realstat = p->p_stat;
2975 ki->p_nice = p->p_nice;
2976 ki->p_xstat = p->p_xstat;
2977 ki->p_acflag = p->p_acflag;
2978
2979 strncpy(ki->p_comm, p->p_comm,
2980 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2981 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2982
2983 ki->p_nlwps = p->p_nlwps;
2984 ki->p_realflag = ki->p_flag;
2985
2986 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2987 vm = p->p_vmspace;
2988 ki->p_vm_rssize = vm_resident_count(vm);
2989 ki->p_vm_tsize = vm->vm_tsize;
2990 ki->p_vm_dsize = vm->vm_dsize;
2991 ki->p_vm_ssize = vm->vm_ssize;
2992 ki->p_vm_vsize = vm->vm_map.size;
2993 /*
2994 * Since the stack is initially mapped mostly with
2995 * PROT_NONE and grown as needed, adjust the "mapped size"
2996 * to skip the unused stack portion.
2997 */
2998 ki->p_vm_msize =
2999 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
3000
3001 /* Pick the primary (first) LWP */
3002 l = proc_active_lwp(p);
3003 KASSERT(l != NULL);
3004 lwp_lock(l);
3005 ki->p_nrlwps = p->p_nrlwps;
3006 ki->p_forw = 0;
3007 ki->p_back = 0;
3008 ki->p_addr = PTRTOUINT64(l->l_addr);
3009 ki->p_stat = l->l_stat;
3010 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3011 ki->p_swtime = l->l_swtime;
3012 ki->p_slptime = l->l_slptime;
3013 if (l->l_stat == LSONPROC)
3014 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3015 else
3016 ki->p_schedflags = 0;
3017 ki->p_priority = lwp_eprio(l);
3018 ki->p_usrpri = l->l_priority;
3019 if (l->l_wchan)
3020 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
3021 ki->p_wchan = PTRTOUINT64(l->l_wchan);
3022 ki->p_cpuid = cpu_index(l->l_cpu);
3023 lwp_unlock(l);
3024 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
3025 /* This is hardly correct, but... */
3026 sigplusset(&l->l_sigpend.sp_set, &ss1);
3027 sigplusset(&l->l_sigmask, &ss2);
3028 ki->p_cpticks += l->l_cpticks;
3029 ki->p_pctcpu += l->l_pctcpu;
3030 ki->p_estcpu += l->l_estcpu;
3031 }
3032 }
3033 sigplusset(&p->p_sigpend.sp_set, &ss2);
3034 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
3035 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
3036
3037 if (p->p_session != NULL) {
3038 ki->p_sid = p->p_session->s_sid;
3039 ki->p__pgid = p->p_pgrp->pg_id;
3040 if (p->p_session->s_ttyvp)
3041 ki->p_eflag |= EPROC_CTTY;
3042 if (SESS_LEADER(p))
3043 ki->p_eflag |= EPROC_SLEADER;
3044 strncpy(ki->p_login, p->p_session->s_login,
3045 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
3046 ki->p_jobc = p->p_pgrp->pg_jobc;
3047 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
3048 ki->p_tdev = tp->t_dev;
3049 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3050 ki->p_tsess = PTRTOUINT64(tp->t_session);
3051 } else {
3052 ki->p_tdev = (int32_t)NODEV;
3053 }
3054 }
3055
3056 if (!P_ZOMBIE(p) && !zombie) {
3057 ki->p_uvalid = 1;
3058 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
3059 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
3060
3061 calcru(p, &ut, &st, NULL, &rt);
3062 ki->p_rtime_sec = rt.tv_sec;
3063 ki->p_rtime_usec = rt.tv_usec;
3064 ki->p_uutime_sec = ut.tv_sec;
3065 ki->p_uutime_usec = ut.tv_usec;
3066 ki->p_ustime_sec = st.tv_sec;
3067 ki->p_ustime_usec = st.tv_usec;
3068
3069 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
3070 ki->p_uru_nvcsw = 0;
3071 ki->p_uru_nivcsw = 0;
3072 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
3073 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
3074 ki->p_uru_nivcsw += l2->l_nivcsw;
3075 ruadd(&ru, &l2->l_ru);
3076 }
3077 ki->p_uru_maxrss = ru.ru_maxrss;
3078 ki->p_uru_ixrss = ru.ru_ixrss;
3079 ki->p_uru_idrss = ru.ru_idrss;
3080 ki->p_uru_isrss = ru.ru_isrss;
3081 ki->p_uru_minflt = ru.ru_minflt;
3082 ki->p_uru_majflt = ru.ru_majflt;
3083 ki->p_uru_nswap = ru.ru_nswap;
3084 ki->p_uru_inblock = ru.ru_inblock;
3085 ki->p_uru_oublock = ru.ru_oublock;
3086 ki->p_uru_msgsnd = ru.ru_msgsnd;
3087 ki->p_uru_msgrcv = ru.ru_msgrcv;
3088 ki->p_uru_nsignals = ru.ru_nsignals;
3089
3090 timeradd(&p->p_stats->p_cru.ru_utime,
3091 &p->p_stats->p_cru.ru_stime, &ut);
3092 ki->p_uctime_sec = ut.tv_sec;
3093 ki->p_uctime_usec = ut.tv_usec;
3094 }
3095 }
3096
3097 /*
3098 * Fill in a kinfo_lwp structure for the specified lwp.
3099 */
3100 static void
3101 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
3102 {
3103 struct proc *p = l->l_proc;
3104 struct timeval tv;
3105
3106 KASSERT(lwp_locked(l, NULL));
3107
3108 memset(kl, 0, sizeof(*kl));
3109
3110 kl->l_forw = 0;
3111 kl->l_back = 0;
3112 kl->l_laddr = PTRTOUINT64(l);
3113 kl->l_addr = PTRTOUINT64(l->l_addr);
3114 kl->l_stat = l->l_stat;
3115 kl->l_lid = l->l_lid;
3116 kl->l_flag = L_INMEM;
3117 kl->l_flag |= sysctl_map_flags(sysctl_lwpprflagmap, l->l_prflag);
3118 kl->l_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
3119
3120 kl->l_swtime = l->l_swtime;
3121 kl->l_slptime = l->l_slptime;
3122 if (l->l_stat == LSONPROC)
3123 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
3124 else
3125 kl->l_schedflags = 0;
3126 kl->l_priority = lwp_eprio(l);
3127 kl->l_usrpri = l->l_priority;
3128 if (l->l_wchan)
3129 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
3130 kl->l_wchan = PTRTOUINT64(l->l_wchan);
3131 kl->l_cpuid = cpu_index(l->l_cpu);
3132 bintime2timeval(&l->l_rtime, &tv);
3133 kl->l_rtime_sec = tv.tv_sec;
3134 kl->l_rtime_usec = tv.tv_usec;
3135 kl->l_cpticks = l->l_cpticks;
3136 kl->l_pctcpu = l->l_pctcpu;
3137 kl->l_pid = p->p_pid;
3138 if (l->l_name == NULL)
3139 kl->l_name[0] = '\0';
3140 else
3141 strlcpy(kl->l_name, l->l_name, sizeof(kl->l_name));
3142 }
3143
3144 /*
3145 * Fill in an eproc structure for the specified process.
3146 */
3147 void
3148 fill_eproc(struct proc *p, struct eproc *ep, bool zombie)
3149 {
3150 struct tty *tp;
3151 struct lwp *l;
3152
3153 KASSERT(mutex_owned(proc_lock));
3154 KASSERT(mutex_owned(p->p_lock));
3155
3156 memset(ep, 0, sizeof(*ep));
3157
3158 ep->e_paddr = p;
3159 ep->e_sess = p->p_session;
3160 if (p->p_cred) {
3161 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
3162 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
3163 }
3164 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
3165 struct vmspace *vm = p->p_vmspace;
3166
3167 ep->e_vm.vm_rssize = vm_resident_count(vm);
3168 ep->e_vm.vm_tsize = vm->vm_tsize;
3169 ep->e_vm.vm_dsize = vm->vm_dsize;
3170 ep->e_vm.vm_ssize = vm->vm_ssize;
3171 ep->e_vm.vm_map.size = vm->vm_map.size;
3172
3173 /* Pick the primary (first) LWP */
3174 l = proc_active_lwp(p);
3175 KASSERT(l != NULL);
3176 lwp_lock(l);
3177 if (l->l_wchan)
3178 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
3179 lwp_unlock(l);
3180 }
3181 if (p->p_pptr)
3182 ep->e_ppid = p->p_pptr->p_pid;
3183 if (p->p_pgrp && p->p_session) {
3184 ep->e_pgid = p->p_pgrp->pg_id;
3185 ep->e_jobc = p->p_pgrp->pg_jobc;
3186 ep->e_sid = p->p_session->s_sid;
3187 if ((p->p_lflag & PL_CONTROLT) &&
3188 (tp = ep->e_sess->s_ttyp)) {
3189 ep->e_tdev = tp->t_dev;
3190 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
3191 ep->e_tsess = tp->t_session;
3192 } else
3193 ep->e_tdev = (uint32_t)NODEV;
3194 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
3195 if (SESS_LEADER(p))
3196 ep->e_flag |= EPROC_SLEADER;
3197 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
3198 }
3199 ep->e_xsize = ep->e_xrssize = 0;
3200 ep->e_xccount = ep->e_xswrss = 0;
3201 }
3202
3203 u_int
3204 sysctl_map_flags(const u_int *map, u_int word)
3205 {
3206 u_int rv;
3207
3208 for (rv = 0; *map != 0; map += 2)
3209 if ((word & map[0]) != 0)
3210 rv |= map[1];
3211
3212 return rv;
3213 }
3214