init_sysctl.c revision 1.18 1 /* $NetBSD: init_sysctl.c,v 1.18 2003/12/28 22:24:12 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: init_sysctl.c,v 1.18 2003/12/28 22:24:12 atatat Exp $");
41
42 #include "opt_sysv.h"
43 #include "opt_multiprocessor.h"
44 #include "opt_posix.h"
45 #include "pty.h"
46 #include "rnd.h"
47
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/sysctl.h>
51 #include <sys/errno.h>
52 #include <sys/systm.h>
53 #include <sys/kernel.h>
54 #include <sys/unistd.h>
55 #include <sys/disklabel.h>
56 #include <sys/rnd.h>
57 #include <sys/vnode.h>
58 #include <sys/mount.h>
59 #include <sys/namei.h>
60 #include <sys/msgbuf.h>
61 #include <dev/cons.h>
62 #include <sys/socketvar.h>
63 #include <sys/file.h>
64 #include <sys/tty.h>
65 #include <sys/malloc.h>
66 #include <sys/resource.h>
67 #include <sys/resourcevar.h>
68 #include <sys/exec.h>
69 #include <sys/conf.h>
70 #include <sys/device.h>
71
72 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
73 #include <sys/ipc.h>
74 #endif
75 #ifdef SYSVMSG
76 #include <sys/msg.h>
77 #endif
78 #ifdef SYSVSEM
79 #include <sys/sem.h>
80 #endif
81 #ifdef SYSVSHM
82 #include <sys/shm.h>
83 #endif
84
85 #include <machine/cpu.h>
86
87 /*
88 * try over estimating by 5 procs/lwps
89 */
90 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
91 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
92
93 /*
94 * convert pointer to 64 int for struct kinfo_proc2
95 */
96 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
97
98 #ifndef MULTIPROCESSOR
99 #define sysctl_ncpus() (1)
100 #else /* MULTIPROCESSOR */
101 #ifndef CPU_INFO_FOREACH
102 #define CPU_INFO_ITERATOR int
103 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
104 #endif
105 static int
106 sysctl_ncpus(void)
107 {
108 struct cpu_info *ci;
109 CPU_INFO_ITERATOR cii;
110
111 int ncpus = 0;
112 for (CPU_INFO_FOREACH(cii, ci))
113 ncpus++;
114 return (ncpus);
115 }
116 #endif /* MULTIPROCESSOR */
117
118 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
119 static int sysctl_kern_rtc_offset(SYSCTLFN_PROTO);
120 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
121 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
122 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
123 static int sysctl_setlen(SYSCTLFN_PROTO);
124 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
125 static int sysctl_kern_file(SYSCTLFN_PROTO);
126 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
127 static int sysctl_msgbuf(SYSCTLFN_PROTO);
128 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
129 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
130 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
131 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
132 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
133 #if NPTY > 0
134 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
135 #endif /* NPTY > 0 */
136 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
137 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
138 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
139 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
140 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
141 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
142 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
143 static int sysctl_doeproc(SYSCTLFN_PROTO);
144 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
145 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
146 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
147 static int sysctl_hw_ncpu(SYSCTLFN_PROTO);
148
149 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
150 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
151
152 /*
153 * ********************************************************************
154 * section 1: setup routines
155 * ********************************************************************
156 * these functions are stuffed into a link set for sysctl setup
157 * functions. they're never called or referenced from anywhere else.
158 * ********************************************************************
159 */
160
161 /*
162 * sets up the base nodes...
163 */
164 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
165 {
166
167 sysctl_createv(SYSCTL_PERMANENT,
168 CTLTYPE_NODE, "kern", NULL,
169 NULL, 0, NULL, 0,
170 CTL_KERN, CTL_EOL);
171 sysctl_createv(SYSCTL_PERMANENT,
172 CTLTYPE_NODE, "vm", NULL,
173 NULL, 0, NULL, 0,
174 CTL_VM, CTL_EOL);
175 sysctl_createv(SYSCTL_PERMANENT,
176 CTLTYPE_NODE, "vfs", NULL,
177 NULL, 0, NULL, 0,
178 CTL_VFS, CTL_EOL);
179 sysctl_createv(SYSCTL_PERMANENT,
180 CTLTYPE_NODE, "net", NULL,
181 NULL, 0, NULL, 0,
182 CTL_NET, CTL_EOL);
183 sysctl_createv(SYSCTL_PERMANENT,
184 CTLTYPE_NODE, "debug", NULL,
185 NULL, 0, NULL, 0,
186 CTL_DEBUG, CTL_EOL);
187 sysctl_createv(SYSCTL_PERMANENT,
188 CTLTYPE_NODE, "hw", NULL,
189 NULL, 0, NULL, 0,
190 CTL_HW, CTL_EOL);
191 sysctl_createv(SYSCTL_PERMANENT,
192 CTLTYPE_NODE, "machdep", NULL,
193 NULL, 0, NULL, 0,
194 CTL_MACHDEP, CTL_EOL);
195 /*
196 * this node is inserted so that the sysctl nodes in libc can
197 * operate.
198 */
199 sysctl_createv(SYSCTL_PERMANENT,
200 CTLTYPE_NODE, "user", NULL,
201 NULL, 0, NULL, 0,
202 CTL_USER, CTL_EOL);
203 sysctl_createv(SYSCTL_PERMANENT,
204 CTLTYPE_NODE, "ddb", NULL,
205 NULL, 0, NULL, 0,
206 CTL_DDB, CTL_EOL);
207 sysctl_createv(SYSCTL_PERMANENT,
208 CTLTYPE_NODE, "proc", NULL,
209 NULL, 0, NULL, 0,
210 CTL_PROC, CTL_EOL);
211 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
212 CTLTYPE_NODE, "vendor", NULL,
213 NULL, 0, NULL, 0,
214 CTL_VENDOR, CTL_EOL);
215 sysctl_createv(SYSCTL_PERMANENT,
216 CTLTYPE_NODE, "emul", NULL,
217 NULL, 0, NULL, 0,
218 CTL_EMUL, CTL_EOL);
219 }
220
221 /*
222 * this setup routine is a replacement for kern_sysctl()
223 */
224 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
225 {
226 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
227 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
228 extern int dumponpanic; /* defined in kern/subr_prf.c */
229
230 sysctl_createv(SYSCTL_PERMANENT,
231 CTLTYPE_NODE, "kern", NULL,
232 NULL, 0, NULL, 0,
233 CTL_KERN, CTL_EOL);
234
235 sysctl_createv(SYSCTL_PERMANENT,
236 CTLTYPE_STRING, "ostype", NULL,
237 NULL, 0, &ostype, 0,
238 CTL_KERN, KERN_OSTYPE, CTL_EOL);
239 sysctl_createv(SYSCTL_PERMANENT,
240 CTLTYPE_STRING, "osrelease", NULL,
241 NULL, 0, &osrelease, 0,
242 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
243 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
244 CTLTYPE_INT, "osrevision", NULL,
245 NULL, __NetBSD_Version__, NULL, 0,
246 CTL_KERN, KERN_OSREV, CTL_EOL);
247 sysctl_createv(SYSCTL_PERMANENT,
248 CTLTYPE_STRING, "version", NULL,
249 NULL, 0, &version, 0,
250 CTL_KERN, KERN_VERSION, CTL_EOL);
251 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
252 CTLTYPE_INT, "maxvnodes", NULL,
253 sysctl_kern_maxvnodes, 0, NULL, 0,
254 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
255 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
256 CTLTYPE_INT, "maxproc", NULL,
257 sysctl_kern_maxproc, 0, NULL, 0,
258 CTL_KERN, KERN_MAXPROC, CTL_EOL);
259 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
260 CTLTYPE_INT, "maxfiles", NULL,
261 NULL, 0, &maxfiles, 0,
262 CTL_KERN, KERN_MAXFILES, CTL_EOL);
263 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
264 CTLTYPE_INT, "argmax", NULL,
265 NULL, ARG_MAX, NULL, 0,
266 CTL_KERN, KERN_ARGMAX, CTL_EOL);
267 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
268 CTLTYPE_INT, "securelevel", NULL,
269 sysctl_kern_securelevel, 0, &securelevel, 0,
270 CTL_KERN, KERN_SECURELVL, CTL_EOL);
271 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
272 CTLTYPE_STRING, "hostname", NULL,
273 sysctl_setlen, 0, &hostname, MAXHOSTNAMELEN,
274 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
275 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
276 CTLTYPE_INT, "hostid", NULL,
277 sysctl_kern_hostid, 0, NULL, 0,
278 CTL_KERN, KERN_HOSTID, CTL_EOL);
279 sysctl_createv(SYSCTL_PERMANENT,
280 CTLTYPE_STRUCT, "clockrate", NULL,
281 sysctl_kern_clockrate, 0, NULL,
282 sizeof(struct clockinfo),
283 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
284 sysctl_createv(SYSCTL_PERMANENT,
285 CTLTYPE_STRUCT, "vnode", NULL,
286 sysctl_kern_vnode, 0, NULL, 0,
287 CTL_KERN, KERN_VNODE, CTL_EOL);
288 sysctl_createv(SYSCTL_PERMANENT,
289 CTLTYPE_STRUCT, "file", NULL,
290 sysctl_kern_file, 0, NULL, 0,
291 CTL_KERN, KERN_FILE, CTL_EOL);
292 #ifndef GPROF
293 sysctl_createv(SYSCTL_PERMANENT,
294 CTLTYPE_NODE, "profiling", NULL,
295 sysctl_notavail, 0, NULL, 0,
296 CTL_KERN, KERN_PROF, CTL_EOL);
297 #endif
298 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
299 CTLTYPE_INT, "posix1version", NULL,
300 NULL, _POSIX_VERSION, NULL, 0,
301 CTL_KERN, KERN_POSIX1, CTL_EOL);
302 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
303 CTLTYPE_INT, "ngroups", NULL,
304 NULL, NGROUPS_MAX, NULL, 0,
305 CTL_KERN, KERN_NGROUPS, CTL_EOL);
306 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
307 CTLTYPE_INT, "job_control", NULL,
308 NULL, 1, NULL, 0,
309 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
310 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
311 CTLTYPE_INT, "saved_ids", NULL, NULL,
312 #ifdef _POSIX_SAVED_IDS
313 1,
314 #else /* _POSIX_SAVED_IDS */
315 0,
316 #endif /* _POSIX_SAVED_IDS */
317 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
318 sysctl_createv(SYSCTL_PERMANENT,
319 CTLTYPE_STRUCT, "boottime", NULL,
320 NULL, 0, &boottime, sizeof(boottime),
321 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
322 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
323 CTLTYPE_STRING, "domainname", NULL,
324 sysctl_setlen, 0, &domainname, MAXHOSTNAMELEN,
325 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
326 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
327 CTLTYPE_INT, "maxpartitions", NULL,
328 NULL, MAXPARTITIONS, NULL, 0,
329 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
330 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
331 CTLTYPE_INT, "rawpartition", NULL,
332 NULL, RAW_PART, NULL, 0,
333 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
334 sysctl_createv(SYSCTL_PERMANENT,
335 CTLTYPE_STRUCT, "timex", NULL,
336 sysctl_notavail, 0, NULL, 0,
337 CTL_KERN, KERN_TIMEX, CTL_EOL);
338 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
339 CTLTYPE_INT, "autonicetime", NULL,
340 sysctl_kern_autonice, 0, &autonicetime, 0,
341 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
342 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
343 CTLTYPE_INT, "autoniceval", NULL,
344 sysctl_kern_autonice, 0, &autoniceval, 0,
345 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
346 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
347 CTLTYPE_INT, "rtc_offset", NULL,
348 sysctl_kern_rtc_offset, 0, &rtc_offset, 0,
349 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
350 sysctl_createv(SYSCTL_PERMANENT,
351 CTLTYPE_STRING, "root_device", NULL,
352 sysctl_root_device, 0, NULL, 0,
353 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
354 sysctl_createv(SYSCTL_PERMANENT,
355 CTLTYPE_INT, "msgbufsize", NULL,
356 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
357 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
358 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
359 CTLTYPE_INT, "fsync", NULL,
360 NULL, 1, NULL, 0,
361 CTL_KERN, KERN_FSYNC, CTL_EOL);
362 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
363 CTLTYPE_INT, "sysvmsg", NULL, NULL,
364 #ifdef SYSVMSG
365 1,
366 #else /* SYSVMSG */
367 0,
368 #endif /* SYSVMSG */
369 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
370 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
371 CTLTYPE_INT, "sysvsem", NULL, NULL,
372 #ifdef SYSVSEM
373 1,
374 #else /* SYSVSEM */
375 0,
376 #endif /* SYSVSEM */
377 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
378 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
379 CTLTYPE_INT, "sysvshm", NULL, NULL,
380 #ifdef SYSVSHM
381 1,
382 #else /* SYSVSHM */
383 0,
384 #endif /* SYSVSHM */
385 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
386 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
387 CTLTYPE_INT, "synchronized_io", NULL,
388 NULL, 1, NULL, 0,
389 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
390 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
391 CTLTYPE_INT, "iov_max", NULL,
392 NULL, IOV_MAX, NULL, 0,
393 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
394 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
395 CTLTYPE_INT, "mapped_files", NULL,
396 NULL, 1, NULL, 0,
397 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
398 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
399 CTLTYPE_INT, "memlock", NULL,
400 NULL, 1, NULL, 0,
401 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
402 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
403 CTLTYPE_INT, "memlock_range", NULL,
404 NULL, 1, NULL, 0,
405 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
406 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
407 CTLTYPE_INT, "memory_protection", NULL,
408 NULL, 1, NULL, 0,
409 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
410 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
411 CTLTYPE_INT, "login_name_max", NULL,
412 NULL, LOGIN_NAME_MAX, NULL, 0,
413 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
414 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
415 CTLTYPE_STRING, "defcorename", NULL,
416 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
417 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
418 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
419 CTLTYPE_INT, "logsigexit", NULL,
420 NULL, 0, &kern_logsigexit, 0,
421 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
422 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
423 CTLTYPE_INT, "fscale", NULL,
424 NULL, FSCALE, NULL, 0,
425 CTL_KERN, KERN_FSCALE, CTL_EOL);
426 sysctl_createv(SYSCTL_PERMANENT,
427 CTLTYPE_INT, "ccpu", NULL,
428 NULL, 0, &ccpu, 0,
429 CTL_KERN, KERN_CCPU, CTL_EOL);
430 sysctl_createv(SYSCTL_PERMANENT,
431 CTLTYPE_STRUCT, "cp_time", NULL,
432 sysctl_kern_cptime, 0, NULL, 0,
433 CTL_KERN, KERN_CP_TIME, CTL_EOL);
434 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
435 sysctl_createv(SYSCTL_PERMANENT,
436 CTLTYPE_STRUCT, "sysvipc_info", NULL,
437 sysctl_kern_sysvipc, 0, NULL, 0,
438 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
439 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
440 sysctl_createv(SYSCTL_PERMANENT,
441 CTLTYPE_INT, "msgbuf", NULL,
442 sysctl_msgbuf, 0, NULL, 0,
443 CTL_KERN, KERN_MSGBUF, CTL_EOL);
444 sysctl_createv(SYSCTL_PERMANENT,
445 CTLTYPE_STRUCT, "consdev", NULL,
446 sysctl_consdev, 0, NULL, sizeof(dev_t),
447 CTL_KERN, KERN_CONSDEV, CTL_EOL);
448 #if NPTY > 0
449 sysctl_createv(SYSCTL_PERMANENT,
450 CTLTYPE_INT, "maxptys", NULL,
451 sysctl_kern_maxptys, 0, NULL, 0,
452 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
453 #endif /* NPTY > 0 */
454 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
455 CTLTYPE_INT, "maxphys", NULL,
456 NULL, MAXPHYS, NULL, 0,
457 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
458 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
459 CTLTYPE_INT, "sbmax", NULL,
460 sysctl_kern_sbmax, 0, NULL, 0,
461 CTL_KERN, KERN_SBMAX, CTL_EOL);
462 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
463 CTLTYPE_INT, "monotonic_clock", NULL,
464 /* XXX _POSIX_VERSION */
465 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
466 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
467 sysctl_createv(SYSCTL_PERMANENT,
468 CTLTYPE_INT, "urandom", NULL,
469 sysctl_kern_urnd, 0, NULL, 0,
470 CTL_KERN, KERN_URND, CTL_EOL);
471 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
472 CTLTYPE_INT, "labelsector", NULL,
473 NULL, LABELSECTOR, NULL, 0,
474 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
475 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
476 CTLTYPE_INT, "labeloffset", NULL,
477 NULL, LABELOFFSET, NULL, 0,
478 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
479 sysctl_createv(SYSCTL_PERMANENT,
480 CTLTYPE_NODE, "lwp", NULL,
481 sysctl_kern_lwp, 0, NULL, 0,
482 CTL_KERN, KERN_LWP, CTL_EOL);
483 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
484 CTLTYPE_INT, "forkfsleep", NULL,
485 sysctl_kern_forkfsleep, 0, NULL, 0,
486 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
487 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
488 CTLTYPE_INT, "posix_threads", NULL,
489 /* XXX _POSIX_VERSION */
490 NULL, _POSIX_THREADS, NULL, 0,
491 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
492 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
493 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
494 #ifdef P1003_1B_SEMAPHORE
495 200112,
496 #else /* P1003_1B_SEMAPHORE */
497 0,
498 #endif /* P1003_1B_SEMAPHORE */
499 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
500 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
501 CTLTYPE_INT, "posix_barriers", NULL,
502 /* XXX _POSIX_VERSION */
503 NULL, _POSIX_BARRIERS, NULL, 0,
504 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
505 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
506 CTLTYPE_INT, "posix_timers", NULL,
507 /* XXX _POSIX_VERSION */
508 NULL, _POSIX_TIMERS, NULL, 0,
509 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
510 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
511 CTLTYPE_INT, "posix_spin_locks", NULL,
512 /* XXX _POSIX_VERSION */
513 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
514 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
515 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
516 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
517 /* XXX _POSIX_VERSION */
518 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
519 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
520 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
521 CTLTYPE_INT, "dump_on_panic", NULL,
522 NULL, 0, &dumponpanic, 0,
523 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
524 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
525 CTLTYPE_INT, "somaxkva", NULL,
526 sysctl_kern_somaxkva, 0, NULL, 0,
527 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
528 sysctl_createv(SYSCTL_PERMANENT,
529 CTLTYPE_INT, "root_partition", NULL,
530 sysctl_kern_root_partition, 0, NULL, 0,
531 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
532 sysctl_createv(SYSCTL_PERMANENT,
533 CTLTYPE_STRUCT, "drivers", NULL,
534 sysctl_kern_drivers, 0, NULL, 0,
535 CTL_KERN, KERN_DRIVERS, CTL_EOL);
536 }
537
538 SYSCTL_SETUP(sysctl_kern_proc_setup,
539 "sysctl kern.proc/proc2/proc_args subtree setup")
540 {
541
542 sysctl_createv(SYSCTL_PERMANENT,
543 CTLTYPE_NODE, "kern", NULL,
544 NULL, 0, NULL, 0,
545 CTL_KERN, CTL_EOL);
546
547 sysctl_createv(SYSCTL_PERMANENT,
548 CTLTYPE_NODE, "proc", NULL,
549 sysctl_doeproc, 0, NULL, 0,
550 CTL_KERN, KERN_PROC, CTL_EOL);
551 sysctl_createv(SYSCTL_PERMANENT,
552 CTLTYPE_NODE, "proc2", NULL,
553 sysctl_doeproc, 0, NULL, 0,
554 CTL_KERN, KERN_PROC2, CTL_EOL);
555 sysctl_createv(SYSCTL_PERMANENT,
556 CTLTYPE_NODE, "proc_args", NULL,
557 sysctl_kern_proc_args, 0, NULL, 0,
558 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
559
560 /*
561 "nodes" under these:
562
563 KERN_PROC_ALL
564 KERN_PROC_PID pid
565 KERN_PROC_PGRP pgrp
566 KERN_PROC_SESSION sess
567 KERN_PROC_TTY tty
568 KERN_PROC_UID uid
569 KERN_PROC_RUID uid
570 KERN_PROC_GID gid
571 KERN_PROC_RGID gid
572
573 all in all, probably not worth the effort...
574 */
575 }
576
577 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
578 {
579 u_int u;
580 u_quad_t q;
581
582 sysctl_createv(SYSCTL_PERMANENT,
583 CTLTYPE_NODE, "hw", NULL,
584 NULL, 0, NULL, 0,
585 CTL_HW, CTL_EOL);
586
587 sysctl_createv(SYSCTL_PERMANENT,
588 CTLTYPE_STRING, "machine", NULL,
589 NULL, 0, machine, 0,
590 CTL_HW, HW_MACHINE, CTL_EOL);
591 sysctl_createv(SYSCTL_PERMANENT,
592 CTLTYPE_STRING, "model", NULL,
593 NULL, 0, cpu_model, 0,
594 CTL_HW, HW_MODEL, CTL_EOL);
595 sysctl_createv(SYSCTL_PERMANENT,
596 CTLTYPE_INT, "ncpu", NULL,
597 sysctl_hw_ncpu, 0, NULL, 0,
598 CTL_HW, HW_NCPU, CTL_EOL);
599 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
600 CTLTYPE_INT, "byteorder", NULL,
601 NULL, BYTE_ORDER, NULL, 0,
602 CTL_HW, HW_BYTEORDER, CTL_EOL);
603 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
604 UINT_MAX : physmem * PAGE_SIZE;
605 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
606 CTLTYPE_INT, "physmem", NULL,
607 NULL, u, NULL, 0,
608 CTL_HW, HW_PHYSMEM, CTL_EOL);
609 sysctl_createv(SYSCTL_PERMANENT,
610 CTLTYPE_INT, "usermem", NULL,
611 sysctl_hw_usermem, 0, NULL, 0,
612 CTL_HW, HW_USERMEM, CTL_EOL);
613 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
614 CTLTYPE_INT, "pagesize", NULL,
615 NULL, PAGE_SIZE, NULL, 0,
616 CTL_HW, HW_PAGESIZE, CTL_EOL);
617 sysctl_createv(SYSCTL_PERMANENT,
618 CTLTYPE_STRING, "disknames", NULL,
619 sysctl_hw_disknames, 0, NULL, 0,
620 CTL_HW, HW_DISKNAMES, CTL_EOL);
621 sysctl_createv(SYSCTL_PERMANENT,
622 CTLTYPE_STRUCT, "diskstats", NULL,
623 sysctl_hw_diskstats, 0, NULL, 0,
624 CTL_HW, HW_DISKSTATS, CTL_EOL);
625 sysctl_createv(SYSCTL_PERMANENT,
626 CTLTYPE_STRING, "machine_arch", NULL,
627 NULL, 0, machine_arch, 0,
628 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
629 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
630 CTLTYPE_INT, "alignbytes", NULL,
631 NULL, ALIGNBYTES, NULL, 0,
632 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
633 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
634 CTLTYPE_STRING, "cnmagic", NULL,
635 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
636 CTL_HW, HW_CNMAGIC, CTL_EOL);
637 q = (u_quad_t)physmem * PAGE_SIZE;
638 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
639 CTLTYPE_QUAD, "physmem64", NULL,
640 NULL, q, NULL, 0,
641 CTL_HW, HW_PHYSMEM64, CTL_EOL);
642 sysctl_createv(SYSCTL_PERMANENT,
643 CTLTYPE_QUAD, "usermem64", NULL,
644 sysctl_hw_usermem, 0, NULL, 0,
645 CTL_HW, HW_USERMEM64, CTL_EOL);
646 }
647
648 #ifdef DEBUG
649 /*
650 * Debugging related system variables.
651 */
652 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
653 struct ctldebug debug5, debug6, debug7, debug8, debug9;
654 struct ctldebug debug10, debug11, debug12, debug13, debug14;
655 struct ctldebug debug15, debug16, debug17, debug18, debug19;
656 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
657 &debug0, &debug1, &debug2, &debug3, &debug4,
658 &debug5, &debug6, &debug7, &debug8, &debug9,
659 &debug10, &debug11, &debug12, &debug13, &debug14,
660 &debug15, &debug16, &debug17, &debug18, &debug19,
661 };
662
663 /*
664 * this setup routine is a replacement for debug_sysctl()
665 *
666 * note that it creates several nodes per defined debug variable
667 */
668 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
669 {
670 struct ctldebug *cdp;
671 char nodename[20];
672 int i;
673
674 /*
675 * two ways here:
676 *
677 * the "old" way (debug.name -> value) which was emulated by
678 * the sysctl(8) binary
679 *
680 * the new way, which the sysctl(8) binary was actually using
681
682 node debug
683 node debug.0
684 string debug.0.name
685 int debug.0.value
686 int debug.name
687
688 */
689
690 sysctl_createv(SYSCTL_PERMANENT,
691 CTLTYPE_NODE, "debug", NULL,
692 NULL, 0, NULL, 0,
693 CTL_DEBUG, CTL_EOL);
694
695 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
696 cdp = debugvars[i];
697 if (cdp->debugname == NULL || cdp->debugvar == NULL)
698 continue;
699
700 snprintf(nodename, sizeof(nodename), "debug%d", i);
701 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
702 CTLTYPE_NODE, nodename, NULL,
703 NULL, 0, NULL, 0,
704 CTL_DEBUG, i, CTL_EOL);
705 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
706 CTLTYPE_STRING, "name", NULL,
707 NULL, 0, cdp->debugname, 0,
708 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
709 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
710 CTLTYPE_INT, "value", NULL,
711 NULL, 0, cdp->debugvar, 0,
712 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
713 sysctl_createv(SYSCTL_PERMANENT,
714 CTLTYPE_INT, cdp->debugname, NULL,
715 NULL, 0, cdp->debugvar, 0,
716 CTL_DEBUG, CTL_CREATE, CTL_EOL);
717 }
718 }
719 #endif /* DEBUG */
720
721 /*
722 * ********************************************************************
723 * section 2: private node-specific helper routines.
724 * ********************************************************************
725 */
726
727 /*
728 * sysctl helper routine for kern.maxvnodes. drain vnodes if
729 * new value is lower than desiredvnodes and then calls reinit
730 * routines that needs to adjust to the new value.
731 */
732 static int
733 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
734 {
735 int error, new_vnodes, old_vnodes;
736 struct sysctlnode node;
737
738 new_vnodes = desiredvnodes;
739 node = *rnode;
740 node.sysctl_data = &new_vnodes;
741 error = sysctl_lookup(SYSCTLFN_CALL(&node));
742 if (error || newp == NULL)
743 return (error);
744
745 old_vnodes = desiredvnodes;
746 desiredvnodes = new_vnodes;
747 if (new_vnodes < old_vnodes) {
748 error = vfs_drainvnodes(new_vnodes, l->l_proc);
749 if (error) {
750 desiredvnodes = old_vnodes;
751 return (error);
752 }
753 }
754 vfs_reinit();
755 nchreinit();
756
757 return (0);
758 }
759
760 /*
761 * sysctl helper routine for rtc_offset - set time after changes
762 */
763 static int
764 sysctl_kern_rtc_offset(SYSCTLFN_ARGS)
765 {
766 struct timeval tv, delta;
767 int s, error, new_rtc_offset;
768 struct sysctlnode node;
769
770 new_rtc_offset = rtc_offset;
771 node = *rnode;
772 node.sysctl_data = &new_rtc_offset;
773 error = sysctl_lookup(SYSCTLFN_CALL(&node));
774 if (error || newp == NULL)
775 return (error);
776
777 if (securelevel > 0)
778 return (EPERM);
779 if (rtc_offset == new_rtc_offset)
780 return (0);
781
782 /* if we change the offset, adjust the time */
783 s = splclock();
784 tv = time;
785 splx(s);
786 delta.tv_sec = 60*(new_rtc_offset - rtc_offset);
787 delta.tv_usec = 0;
788 timeradd(&tv, &delta, &tv);
789 rtc_offset = new_rtc_offset;
790 settime(&tv);
791
792 return (0);
793 }
794
795 /*
796 * sysctl helper routine for kern.maxvnodes. ensures that the new
797 * values are not too low or too high.
798 */
799 static int
800 sysctl_kern_maxproc(SYSCTLFN_ARGS)
801 {
802 int error, nmaxproc;
803 struct sysctlnode node;
804
805 nmaxproc = maxproc;
806 node = *rnode;
807 node.sysctl_data = &nmaxproc;
808 error = sysctl_lookup(SYSCTLFN_CALL(&node));
809 if (error || newp == NULL)
810 return (error);
811
812 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
813 return (EINVAL);
814 #ifdef __HAVE_CPU_MAXPROC
815 if (nmaxproc > cpu_maxproc())
816 return (EINVAL);
817 #endif
818 maxproc = nmaxproc;
819
820 return (0);
821 }
822
823 /*
824 * sysctl helper routine for kern.securelevel. ensures that the value
825 * only rises unless the caller has pid 1 (assumed to be init).
826 */
827 static int
828 sysctl_kern_securelevel(SYSCTLFN_ARGS)
829 {
830 int newsecurelevel, error;
831 struct sysctlnode node;
832
833 newsecurelevel = securelevel;
834 node = *rnode;
835 node.sysctl_data = &newsecurelevel;
836 error = sysctl_lookup(SYSCTLFN_CALL(&node));
837 if (error || newp == NULL)
838 return (error);
839
840 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
841 return (EPERM);
842 securelevel = newsecurelevel;
843
844 return (error);
845 }
846
847 /*
848 * sysctl helper function for kern.hostid. the hostid is a long, but
849 * we export it as an int, so we need to give it a little help.
850 */
851 static int
852 sysctl_kern_hostid(SYSCTLFN_ARGS)
853 {
854 int error, inthostid;
855 struct sysctlnode node;
856
857 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
858 node = *rnode;
859 node.sysctl_data = &inthostid;
860 error = sysctl_lookup(SYSCTLFN_CALL(&node));
861 if (error || newp == NULL)
862 return (error);
863
864 hostid = inthostid;
865
866 return (0);
867 }
868
869 /*
870 * sysctl helper function for kern.hostname and kern.domainnname.
871 * resets the relevant recorded length when the underlying name is
872 * changed.
873 */
874 static int
875 sysctl_setlen(SYSCTLFN_ARGS)
876 {
877 int error;
878
879 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
880 if (error || newp == NULL)
881 return (error);
882
883 switch (rnode->sysctl_num) {
884 case KERN_HOSTNAME:
885 hostnamelen = strlen((const char*)rnode->sysctl_data);
886 break;
887 case KERN_DOMAINNAME:
888 domainnamelen = strlen((const char*)rnode->sysctl_data);
889 break;
890 }
891
892 return (0);
893 }
894
895 /*
896 * sysctl helper routine for kern.clockrate. assembles a struct on
897 * the fly to be returned to the caller.
898 */
899 static int
900 sysctl_kern_clockrate(SYSCTLFN_ARGS)
901 {
902 struct clockinfo clkinfo;
903 struct sysctlnode node;
904
905 clkinfo.tick = tick;
906 clkinfo.tickadj = tickadj;
907 clkinfo.hz = hz;
908 clkinfo.profhz = profhz;
909 clkinfo.stathz = stathz ? stathz : hz;
910
911 node = *rnode;
912 node.sysctl_data = &clkinfo;
913 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
914 }
915
916
917 /*
918 * sysctl helper routine for kern.file pseudo-subtree.
919 */
920 static int
921 sysctl_kern_file(SYSCTLFN_ARGS)
922 {
923 int error;
924 size_t buflen;
925 struct file *fp;
926 char *start, *where;
927
928 start = where = oldp;
929 buflen = *oldlenp;
930 if (where == NULL) {
931 /*
932 * overestimate by 10 files
933 */
934 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
935 return (0);
936 }
937
938 /*
939 * first copyout filehead
940 */
941 if (buflen < sizeof(filehead)) {
942 *oldlenp = 0;
943 return (0);
944 }
945 error = copyout(&filehead, where, sizeof(filehead));
946 if (error)
947 return (error);
948 buflen -= sizeof(filehead);
949 where += sizeof(filehead);
950
951 /*
952 * followed by an array of file structures
953 */
954 LIST_FOREACH(fp, &filehead, f_list) {
955 if (buflen < sizeof(struct file)) {
956 *oldlenp = where - start;
957 return (ENOMEM);
958 }
959 error = copyout(fp, where, sizeof(struct file));
960 if (error)
961 return (error);
962 buflen -= sizeof(struct file);
963 where += sizeof(struct file);
964 }
965 *oldlenp = where - start;
966 return (0);
967 }
968
969 /*
970 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
971 * asserts that the assigned value is in the correct range.
972 */
973 static int
974 sysctl_kern_autonice(SYSCTLFN_ARGS)
975 {
976 int error, t = 0;
977 struct sysctlnode node;
978
979 node = *rnode;
980 t = *(int*)node.sysctl_data;
981 node.sysctl_data = &t;
982 error = sysctl_lookup(SYSCTLFN_CALL(&node));
983 if (error || newp == NULL)
984 return (error);
985
986 switch (node.sysctl_num) {
987 case KERN_AUTONICETIME:
988 if (t >= 0)
989 autonicetime = t;
990 break;
991 case KERN_AUTONICEVAL:
992 if (t < PRIO_MIN)
993 t = PRIO_MIN;
994 else if (t > PRIO_MAX)
995 t = PRIO_MAX;
996 autoniceval = t;
997 break;
998 }
999
1000 return (0);
1001 }
1002
1003 /*
1004 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
1005 * former it merely checks the the message buffer is set up. for the
1006 * latter, it also copies out the data if necessary.
1007 */
1008 static int
1009 sysctl_msgbuf(SYSCTLFN_ARGS)
1010 {
1011 char *where = oldp;
1012 size_t len, maxlen;
1013 long beg, end;
1014 int error;
1015
1016 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
1017 msgbufenabled = 0;
1018 return (ENXIO);
1019 }
1020
1021 switch (rnode->sysctl_num) {
1022 case KERN_MSGBUFSIZE:
1023 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
1024 case KERN_MSGBUF:
1025 break;
1026 default:
1027 return (EOPNOTSUPP);
1028 }
1029
1030 if (newp != NULL)
1031 return (EPERM);
1032
1033 if (oldp == NULL) {
1034 /* always return full buffer size */
1035 *oldlenp = msgbufp->msg_bufs;
1036 return (0);
1037 }
1038
1039 error = 0;
1040 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
1041
1042 /*
1043 * First, copy from the write pointer to the end of
1044 * message buffer.
1045 */
1046 beg = msgbufp->msg_bufx;
1047 end = msgbufp->msg_bufs;
1048 while (maxlen > 0) {
1049 len = MIN(end - beg, maxlen);
1050 if (len == 0)
1051 break;
1052 error = copyout(&msgbufp->msg_bufc[beg], where, len);
1053 if (error)
1054 break;
1055 where += len;
1056 maxlen -= len;
1057
1058 /*
1059 * ... then, copy from the beginning of message buffer to
1060 * the write pointer.
1061 */
1062 beg = 0;
1063 end = msgbufp->msg_bufx;
1064 }
1065
1066 return (error);
1067 }
1068
1069 /*
1070 * sysctl helper routine for kern.defcorename. in the case of a new
1071 * string being assigned, check that it's not a zero-length string.
1072 * (XXX the check in -current doesn't work, but do we really care?)
1073 */
1074 static int
1075 sysctl_kern_defcorename(SYSCTLFN_ARGS)
1076 {
1077 int error;
1078 char newcorename[MAXPATHLEN];
1079 struct sysctlnode node;
1080
1081 node = *rnode;
1082 node.sysctl_data = &newcorename[0];
1083 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1084 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1085 if (error || newp == NULL)
1086 return (error);
1087
1088 /*
1089 * when sysctl_lookup() deals with a string, it's guaranteed
1090 * to come back nul terminated. so there. :)
1091 */
1092 if (strlen(newcorename) == 0)
1093 return (EINVAL);
1094
1095 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1096
1097 return (0);
1098 }
1099
1100 /*
1101 * sysctl helper routine for kern.cp_time node. adds up cpu time
1102 * across all cpus.
1103 */
1104 static int
1105 sysctl_kern_cptime(SYSCTLFN_ARGS)
1106 {
1107 struct sysctlnode node = *rnode;
1108
1109 #ifndef MULTIPROCESSOR
1110
1111 if (namelen == 1) {
1112 if (name[0] != 0)
1113 return (ENOENT);
1114 /*
1115 * you're allowed to ask for the zero'th processor
1116 */
1117 name++;
1118 namelen--;
1119 }
1120 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1121 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1122 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1123
1124 #else /* MULTIPROCESSOR */
1125
1126 u_int64_t *cp_time = NULL;
1127 int error, n = sysctl_ncpus(), i;
1128 struct cpu_info *ci;
1129 CPU_INFO_ITERATOR cii;
1130
1131 /*
1132 * if you specifically pass a buffer that is the size of the
1133 * sum, or if you are probing for the size, you get the "sum"
1134 * of cp_time (and the size thereof) across all processors.
1135 *
1136 * alternately, you can pass an additional mib number and get
1137 * cp_time for that particular processor.
1138 */
1139 switch (namelen) {
1140 case 0:
1141 if (*oldlenp == sizeof(u_int64_t) * CPUSTATES || oldp == NULL) {
1142 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1143 n = -1; /* SUM */
1144 }
1145 else {
1146 node.sysctl_size = n * sizeof(u_int64_t) * CPUSTATES;
1147 n = -2; /* ALL */
1148 }
1149 break;
1150 case 1:
1151 if (name[0] < 0 || name[0] >= n)
1152 return (ENOENT); /* ENOSUCHPROCESSOR */
1153 node.sysctl_size = sizeof(u_int64_t) * CPUSTATES;
1154 n = name[0];
1155 /*
1156 * adjust these so that sysctl_lookup() will be happy
1157 */
1158 name++;
1159 namelen--;
1160 break;
1161 default:
1162 return (EINVAL);
1163 }
1164
1165 cp_time = malloc(node.sysctl_size, M_TEMP, M_WAITOK|M_CANFAIL);
1166 if (cp_time == NULL)
1167 return (ENOMEM);
1168 node.sysctl_data = cp_time;
1169 memset(cp_time, 0, node.sysctl_size);
1170
1171 for (CPU_INFO_FOREACH(cii, ci)) {
1172 if (n <= 0)
1173 for (i = 0; i < CPUSTATES; i++)
1174 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1175 /*
1176 * if a specific processor was requested and we just
1177 * did it, we're done here
1178 */
1179 if (n == 0)
1180 break;
1181 /*
1182 * if doing "all", skip to next cp_time set for next processor
1183 */
1184 if (n == -2)
1185 cp_time += CPUSTATES;
1186 /*
1187 * if we're doing a specific processor, we're one
1188 * processor closer
1189 */
1190 if (n > 0)
1191 n--;
1192 }
1193
1194 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1195 free(node.sysctl_data, M_TEMP);
1196 return (error);
1197
1198 #endif /* MULTIPROCESSOR */
1199 }
1200
1201 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1202 /*
1203 * sysctl helper routine for kern.sysvipc_info subtree.
1204 */
1205
1206 #define FILL_PERM(src, dst) do { \
1207 (dst)._key = (src)._key; \
1208 (dst).uid = (src).uid; \
1209 (dst).gid = (src).gid; \
1210 (dst).cuid = (src).cuid; \
1211 (dst).cgid = (src).cgid; \
1212 (dst).mode = (src).mode; \
1213 (dst)._seq = (src)._seq; \
1214 } while (/*CONSTCOND*/ 0);
1215 #define FILL_MSG(src, dst) do { \
1216 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1217 (dst).msg_qnum = (src).msg_qnum; \
1218 (dst).msg_qbytes = (src).msg_qbytes; \
1219 (dst)._msg_cbytes = (src)._msg_cbytes; \
1220 (dst).msg_lspid = (src).msg_lspid; \
1221 (dst).msg_lrpid = (src).msg_lrpid; \
1222 (dst).msg_stime = (src).msg_stime; \
1223 (dst).msg_rtime = (src).msg_rtime; \
1224 (dst).msg_ctime = (src).msg_ctime; \
1225 } while (/*CONSTCOND*/ 0)
1226 #define FILL_SEM(src, dst) do { \
1227 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1228 (dst).sem_nsems = (src).sem_nsems; \
1229 (dst).sem_otime = (src).sem_otime; \
1230 (dst).sem_ctime = (src).sem_ctime; \
1231 } while (/*CONSTCOND*/ 0)
1232 #define FILL_SHM(src, dst) do { \
1233 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1234 (dst).shm_segsz = (src).shm_segsz; \
1235 (dst).shm_lpid = (src).shm_lpid; \
1236 (dst).shm_cpid = (src).shm_cpid; \
1237 (dst).shm_atime = (src).shm_atime; \
1238 (dst).shm_dtime = (src).shm_dtime; \
1239 (dst).shm_ctime = (src).shm_ctime; \
1240 (dst).shm_nattch = (src).shm_nattch; \
1241 } while (/*CONSTCOND*/ 0)
1242
1243 static int
1244 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1245 {
1246 void *where = oldp;
1247 size_t *sizep = oldlenp;
1248 #ifdef SYSVMSG
1249 struct msg_sysctl_info *msgsi = NULL;
1250 #endif
1251 #ifdef SYSVSEM
1252 struct sem_sysctl_info *semsi = NULL;
1253 #endif
1254 #ifdef SYSVSHM
1255 struct shm_sysctl_info *shmsi = NULL;
1256 #endif
1257 size_t infosize, dssize, tsize, buflen;
1258 void *buf = NULL;
1259 char *start;
1260 int32_t nds;
1261 int i, error, ret;
1262
1263 if (namelen != 1)
1264 return (EINVAL);
1265
1266 start = where;
1267 buflen = *sizep;
1268
1269 switch (*name) {
1270 case KERN_SYSVIPC_MSG_INFO:
1271 #ifdef SYSVMSG
1272 infosize = sizeof(msgsi->msginfo);
1273 nds = msginfo.msgmni;
1274 dssize = sizeof(msgsi->msgids[0]);
1275 break;
1276 #else
1277 return (EINVAL);
1278 #endif
1279 case KERN_SYSVIPC_SEM_INFO:
1280 #ifdef SYSVSEM
1281 infosize = sizeof(semsi->seminfo);
1282 nds = seminfo.semmni;
1283 dssize = sizeof(semsi->semids[0]);
1284 break;
1285 #else
1286 return (EINVAL);
1287 #endif
1288 case KERN_SYSVIPC_SHM_INFO:
1289 #ifdef SYSVSHM
1290 infosize = sizeof(shmsi->shminfo);
1291 nds = shminfo.shmmni;
1292 dssize = sizeof(shmsi->shmids[0]);
1293 break;
1294 #else
1295 return (EINVAL);
1296 #endif
1297 default:
1298 return (EINVAL);
1299 }
1300 /*
1301 * Round infosize to 64 bit boundary if requesting more than just
1302 * the info structure or getting the total data size.
1303 */
1304 if (where == NULL || *sizep > infosize)
1305 infosize = ((infosize + 7) / 8) * 8;
1306 tsize = infosize + nds * dssize;
1307
1308 /* Return just the total size required. */
1309 if (where == NULL) {
1310 *sizep = tsize;
1311 return (0);
1312 }
1313
1314 /* Not enough room for even the info struct. */
1315 if (buflen < infosize) {
1316 *sizep = 0;
1317 return (ENOMEM);
1318 }
1319 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1320 memset(buf, 0, min(tsize, buflen));
1321
1322 switch (*name) {
1323 #ifdef SYSVMSG
1324 case KERN_SYSVIPC_MSG_INFO:
1325 msgsi = (struct msg_sysctl_info *)buf;
1326 msgsi->msginfo = msginfo;
1327 break;
1328 #endif
1329 #ifdef SYSVSEM
1330 case KERN_SYSVIPC_SEM_INFO:
1331 semsi = (struct sem_sysctl_info *)buf;
1332 semsi->seminfo = seminfo;
1333 break;
1334 #endif
1335 #ifdef SYSVSHM
1336 case KERN_SYSVIPC_SHM_INFO:
1337 shmsi = (struct shm_sysctl_info *)buf;
1338 shmsi->shminfo = shminfo;
1339 break;
1340 #endif
1341 }
1342 buflen -= infosize;
1343
1344 ret = 0;
1345 if (buflen > 0) {
1346 /* Fill in the IPC data structures. */
1347 for (i = 0; i < nds; i++) {
1348 if (buflen < dssize) {
1349 ret = ENOMEM;
1350 break;
1351 }
1352 switch (*name) {
1353 #ifdef SYSVMSG
1354 case KERN_SYSVIPC_MSG_INFO:
1355 FILL_MSG(msqids[i], msgsi->msgids[i]);
1356 break;
1357 #endif
1358 #ifdef SYSVSEM
1359 case KERN_SYSVIPC_SEM_INFO:
1360 FILL_SEM(sema[i], semsi->semids[i]);
1361 break;
1362 #endif
1363 #ifdef SYSVSHM
1364 case KERN_SYSVIPC_SHM_INFO:
1365 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1366 break;
1367 #endif
1368 }
1369 buflen -= dssize;
1370 }
1371 }
1372 *sizep -= buflen;
1373 error = copyout(buf, start, *sizep);
1374 /* If copyout succeeded, use return code set earlier. */
1375 if (error == 0)
1376 error = ret;
1377 if (buf)
1378 free(buf, M_TEMP);
1379 return (error);
1380 }
1381
1382 #undef FILL_PERM
1383 #undef FILL_MSG
1384 #undef FILL_SEM
1385 #undef FILL_SHM
1386
1387 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1388
1389 #if NPTY > 0
1390 /*
1391 * sysctl helper routine for kern.maxptys. ensures that any new value
1392 * is acceptable to the pty subsystem.
1393 */
1394 static int
1395 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1396 {
1397 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1398 int error, max;
1399 struct sysctlnode node;
1400
1401 /* get current value of maxptys */
1402 max = pty_maxptys(0, 0);
1403
1404 node = *rnode;
1405 node.sysctl_data = &max;
1406 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1407 if (error || newp == NULL)
1408 return (error);
1409
1410 if (max != pty_maxptys(max, 1))
1411 return (EINVAL);
1412
1413 return (0);
1414 }
1415 #endif /* NPTY > 0 */
1416
1417 /*
1418 * sysctl helper routine for kern.sbmax. basically just ensures that
1419 * any new value is not too small.
1420 */
1421 static int
1422 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1423 {
1424 int error, new_sbmax;
1425 struct sysctlnode node;
1426
1427 new_sbmax = sb_max;
1428 node = *rnode;
1429 node.sysctl_data = &new_sbmax;
1430 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1431 if (error || newp == NULL)
1432 return (error);
1433
1434 error = sb_max_set(new_sbmax);
1435
1436 return (error);
1437 }
1438
1439 /*
1440 * sysctl helper routine for kern.urandom node. picks a random number
1441 * for you.
1442 */
1443 static int
1444 sysctl_kern_urnd(SYSCTLFN_ARGS)
1445 {
1446 #if NRND > 0
1447 int v;
1448
1449 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1450 struct sysctlnode node = *rnode;
1451 node.sysctl_data = &v;
1452 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1453 }
1454 else
1455 return (EIO); /*XXX*/
1456 #else
1457 return (EOPNOTSUPP);
1458 #endif
1459 }
1460
1461 /*
1462 * sysctl helper routine to do kern.lwp.* work.
1463 */
1464 static int
1465 sysctl_kern_lwp(SYSCTLFN_ARGS)
1466 {
1467 struct kinfo_lwp klwp;
1468 struct proc *p;
1469 struct lwp *l2;
1470 char *where, *dp;
1471 int pid, elem_size, elem_count;
1472 int buflen, needed, error;
1473
1474 dp = where = oldp;
1475 buflen = where != NULL ? *oldlenp : 0;
1476 error = needed = 0;
1477
1478 if (newp != NULL || namelen != 3)
1479 return (EINVAL);
1480 pid = name[0];
1481 elem_size = name[1];
1482 elem_count = name[2];
1483
1484 p = pfind(pid);
1485 if (p == NULL)
1486 return (ESRCH);
1487 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1488 if (buflen >= elem_size && elem_count > 0) {
1489 fill_lwp(l2, &klwp);
1490 /*
1491 * Copy out elem_size, but not larger than
1492 * the size of a struct kinfo_proc2.
1493 */
1494 error = copyout(&klwp, dp,
1495 min(sizeof(klwp), elem_size));
1496 if (error)
1497 goto cleanup;
1498 dp += elem_size;
1499 buflen -= elem_size;
1500 elem_count--;
1501 }
1502 needed += elem_size;
1503 }
1504
1505 if (where != NULL) {
1506 *oldlenp = dp - where;
1507 if (needed > *oldlenp)
1508 return (ENOMEM);
1509 } else {
1510 needed += KERN_PROCSLOP;
1511 *oldlenp = needed;
1512 }
1513 return (0);
1514 cleanup:
1515 return (error);
1516 }
1517
1518 /*
1519 * sysctl helper routine for kern.forkfsleep node. ensures that the
1520 * given value is not too large or two small, and is at least one
1521 * timer tick if not zero.
1522 */
1523 static int
1524 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1525 {
1526 /* userland sees value in ms, internally is in ticks */
1527 extern int forkfsleep; /* defined in kern/kern_fork.c */
1528 int error, timo, lsleep;
1529 struct sysctlnode node;
1530
1531 lsleep = forkfsleep * 1000 / hz;
1532 node = *rnode;
1533 node.sysctl_data = &lsleep;
1534 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1535 if (error || newp == NULL)
1536 return (error);
1537
1538 /* refuse negative values, and overly 'long time' */
1539 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1540 return (EINVAL);
1541
1542 timo = mstohz(lsleep);
1543
1544 /* if the interval is >0 ms && <1 tick, use 1 tick */
1545 if (lsleep != 0 && timo == 0)
1546 forkfsleep = 1;
1547 else
1548 forkfsleep = timo;
1549
1550 return (0);
1551 }
1552
1553 /*
1554 * sysctl helper routine for kern.somaxkva. ensures that the given
1555 * value is not too small.
1556 * (XXX should we maybe make sure it's not too large as well?)
1557 */
1558 static int
1559 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1560 {
1561 int error, new_somaxkva;
1562 struct sysctlnode node;
1563
1564 new_somaxkva = somaxkva;
1565 node = *rnode;
1566 node.sysctl_data = &new_somaxkva;
1567 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1568 if (error || newp == NULL)
1569 return (error);
1570
1571 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1572 return (EINVAL);
1573 somaxkva = new_somaxkva;
1574
1575 return (error);
1576 }
1577
1578 /*
1579 * sysctl helper routine for kern.root_partition
1580 */
1581 static int
1582 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1583 {
1584 int rootpart = DISKPART(rootdev);
1585 struct sysctlnode node = *rnode;
1586
1587 node.sysctl_data = &rootpart;
1588 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1589 }
1590
1591 /*
1592 * sysctl helper function for kern.drivers
1593 */
1594 static int
1595 sysctl_kern_drivers(SYSCTLFN_ARGS)
1596 {
1597 int error;
1598 size_t buflen;
1599 struct kinfo_drivers kd;
1600 char *start, *where;
1601 const char *dname;
1602 int i;
1603 extern struct devsw_conv *devsw_conv;
1604 extern int max_devsw_convs;
1605
1606 if (newp != NULL || namelen != 0)
1607 return (EINVAL);
1608
1609 start = where = oldp;
1610 buflen = *oldlenp;
1611 if (where == NULL) {
1612 *oldlenp = max_devsw_convs * sizeof kd;
1613 return 0;
1614 }
1615
1616 /*
1617 * An array of kinfo_drivers structures
1618 */
1619 error = 0;
1620 for (i = 0; i < max_devsw_convs; i++) {
1621 dname = devsw_conv[i].d_name;
1622 if (dname == NULL)
1623 continue;
1624 if (buflen < sizeof kd) {
1625 error = ENOMEM;
1626 break;
1627 }
1628 kd.d_bmajor = devsw_conv[i].d_bmajor;
1629 kd.d_cmajor = devsw_conv[i].d_cmajor;
1630 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1631 error = copyout(&kd, where, sizeof kd);
1632 if (error != 0)
1633 break;
1634 buflen -= sizeof kd;
1635 where += sizeof kd;
1636 }
1637 *oldlenp = where - start;
1638 return error;
1639 }
1640
1641 static int
1642 sysctl_doeproc(SYSCTLFN_ARGS)
1643 {
1644 struct eproc eproc;
1645 struct kinfo_proc2 kproc2;
1646 struct kinfo_proc *dp;
1647 struct proc *p;
1648 const struct proclist_desc *pd;
1649 char *where, *dp2;
1650 int type, op, arg;
1651 u_int elem_size, elem_count;
1652 size_t buflen, needed;
1653 int error;
1654
1655 dp = oldp;
1656 dp2 = where = oldp;
1657 buflen = where != NULL ? *oldlenp : 0;
1658 error = 0;
1659 needed = 0;
1660 type = rnode->sysctl_num;
1661
1662 if (type == KERN_PROC) {
1663 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1664 return (EINVAL);
1665 op = name[0];
1666 if (op != KERN_PROC_ALL)
1667 arg = name[1];
1668 else
1669 arg = 0; /* Quell compiler warning */
1670 elem_size = elem_count = 0; /* Ditto */
1671 } else {
1672 if (namelen != 4)
1673 return (EINVAL);
1674 op = name[0];
1675 arg = name[1];
1676 elem_size = name[2];
1677 elem_count = name[3];
1678 }
1679
1680 proclist_lock_read();
1681
1682 pd = proclists;
1683 again:
1684 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1685 /*
1686 * Skip embryonic processes.
1687 */
1688 if (p->p_stat == SIDL)
1689 continue;
1690 /*
1691 * TODO - make more efficient (see notes below).
1692 * do by session.
1693 */
1694 switch (op) {
1695
1696 case KERN_PROC_PID:
1697 /* could do this with just a lookup */
1698 if (p->p_pid != (pid_t)arg)
1699 continue;
1700 break;
1701
1702 case KERN_PROC_PGRP:
1703 /* could do this by traversing pgrp */
1704 if (p->p_pgrp->pg_id != (pid_t)arg)
1705 continue;
1706 break;
1707
1708 case KERN_PROC_SESSION:
1709 if (p->p_session->s_sid != (pid_t)arg)
1710 continue;
1711 break;
1712
1713 case KERN_PROC_TTY:
1714 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1715 if ((p->p_flag & P_CONTROLT) == 0 ||
1716 p->p_session->s_ttyp == NULL ||
1717 p->p_session->s_ttyvp != NULL)
1718 continue;
1719 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1720 p->p_session->s_ttyp == NULL) {
1721 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1722 continue;
1723 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1724 continue;
1725 break;
1726
1727 case KERN_PROC_UID:
1728 if (p->p_ucred->cr_uid != (uid_t)arg)
1729 continue;
1730 break;
1731
1732 case KERN_PROC_RUID:
1733 if (p->p_cred->p_ruid != (uid_t)arg)
1734 continue;
1735 break;
1736
1737 case KERN_PROC_GID:
1738 if (p->p_ucred->cr_gid != (uid_t)arg)
1739 continue;
1740 break;
1741
1742 case KERN_PROC_RGID:
1743 if (p->p_cred->p_rgid != (uid_t)arg)
1744 continue;
1745 break;
1746
1747 case KERN_PROC_ALL:
1748 /* allow everything */
1749 break;
1750
1751 default:
1752 error = EINVAL;
1753 goto cleanup;
1754 }
1755 if (type == KERN_PROC) {
1756 if (buflen >= sizeof(struct kinfo_proc)) {
1757 fill_eproc(p, &eproc);
1758 error = copyout(p, &dp->kp_proc,
1759 sizeof(struct proc));
1760 if (error)
1761 goto cleanup;
1762 error = copyout(&eproc, &dp->kp_eproc,
1763 sizeof(eproc));
1764 if (error)
1765 goto cleanup;
1766 dp++;
1767 buflen -= sizeof(struct kinfo_proc);
1768 }
1769 needed += sizeof(struct kinfo_proc);
1770 } else { /* KERN_PROC2 */
1771 if (buflen >= elem_size && elem_count > 0) {
1772 fill_kproc2(p, &kproc2);
1773 /*
1774 * Copy out elem_size, but not larger than
1775 * the size of a struct kinfo_proc2.
1776 */
1777 error = copyout(&kproc2, dp2,
1778 min(sizeof(kproc2), elem_size));
1779 if (error)
1780 goto cleanup;
1781 dp2 += elem_size;
1782 buflen -= elem_size;
1783 elem_count--;
1784 }
1785 needed += elem_size;
1786 }
1787 }
1788 pd++;
1789 if (pd->pd_list != NULL)
1790 goto again;
1791 proclist_unlock_read();
1792
1793 if (where != NULL) {
1794 if (type == KERN_PROC)
1795 *oldlenp = (char *)dp - where;
1796 else
1797 *oldlenp = dp2 - where;
1798 if (needed > *oldlenp)
1799 return (ENOMEM);
1800 } else {
1801 needed += KERN_LWPSLOP;
1802 *oldlenp = needed;
1803 }
1804 return (0);
1805 cleanup:
1806 proclist_unlock_read();
1807 return (error);
1808 }
1809
1810 /*
1811 * sysctl helper routine for kern.proc_args pseudo-subtree.
1812 */
1813 static int
1814 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1815 {
1816 struct ps_strings pss;
1817 struct proc *p, *up = l->l_proc;
1818 size_t len, upper_bound, xlen, i;
1819 struct uio auio;
1820 struct iovec aiov;
1821 vaddr_t argv;
1822 pid_t pid;
1823 int nargv, type, error;
1824 char *arg;
1825 char *tmp;
1826
1827 if (newp != NULL || namelen != 2)
1828 return (EINVAL);
1829 pid = name[0];
1830 type = name[1];
1831
1832 switch (type) {
1833 case KERN_PROC_ARGV:
1834 case KERN_PROC_NARGV:
1835 case KERN_PROC_ENV:
1836 case KERN_PROC_NENV:
1837 /* ok */
1838 break;
1839 default:
1840 return (EINVAL);
1841 }
1842
1843 /* check pid */
1844 if ((p = pfind(pid)) == NULL)
1845 return (EINVAL);
1846
1847 /* only root or same user change look at the environment */
1848 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1849 if (up->p_ucred->cr_uid != 0) {
1850 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1851 up->p_cred->p_ruid != p->p_cred->p_svuid)
1852 return (EPERM);
1853 }
1854 }
1855
1856 if (oldp == NULL) {
1857 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1858 *oldlenp = sizeof (int);
1859 else
1860 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1861 return (0);
1862 }
1863
1864 /*
1865 * Zombies don't have a stack, so we can't read their psstrings.
1866 * System processes also don't have a user stack.
1867 */
1868 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1869 return (EINVAL);
1870
1871 /*
1872 * Lock the process down in memory.
1873 */
1874 /* XXXCDC: how should locking work here? */
1875 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1876 return (EFAULT);
1877
1878 p->p_vmspace->vm_refcnt++; /* XXX */
1879
1880 /*
1881 * Allocate a temporary buffer to hold the arguments.
1882 */
1883 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1884
1885 /*
1886 * Read in the ps_strings structure.
1887 */
1888 aiov.iov_base = &pss;
1889 aiov.iov_len = sizeof(pss);
1890 auio.uio_iov = &aiov;
1891 auio.uio_iovcnt = 1;
1892 auio.uio_offset = (vaddr_t)p->p_psstr;
1893 auio.uio_resid = sizeof(pss);
1894 auio.uio_segflg = UIO_SYSSPACE;
1895 auio.uio_rw = UIO_READ;
1896 auio.uio_procp = NULL;
1897 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1898 if (error)
1899 goto done;
1900
1901 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1902 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1903 else
1904 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1905 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1906 error = copyout(&nargv, oldp, sizeof(nargv));
1907 *oldlenp = sizeof(nargv);
1908 goto done;
1909 }
1910 /*
1911 * Now read the address of the argument vector.
1912 */
1913 switch (type) {
1914 case KERN_PROC_ARGV:
1915 /* XXX compat32 stuff here */
1916 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1917 break;
1918 case KERN_PROC_ENV:
1919 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1920 break;
1921 default:
1922 return (EINVAL);
1923 }
1924 auio.uio_offset = (off_t)(long)tmp;
1925 aiov.iov_base = &argv;
1926 aiov.iov_len = sizeof(argv);
1927 auio.uio_iov = &aiov;
1928 auio.uio_iovcnt = 1;
1929 auio.uio_resid = sizeof(argv);
1930 auio.uio_segflg = UIO_SYSSPACE;
1931 auio.uio_rw = UIO_READ;
1932 auio.uio_procp = NULL;
1933 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1934 if (error)
1935 goto done;
1936
1937 /*
1938 * Now copy in the actual argument vector, one page at a time,
1939 * since we don't know how long the vector is (though, we do
1940 * know how many NUL-terminated strings are in the vector).
1941 */
1942 len = 0;
1943 upper_bound = *oldlenp;
1944 for (; nargv != 0 && len < upper_bound; len += xlen) {
1945 aiov.iov_base = arg;
1946 aiov.iov_len = PAGE_SIZE;
1947 auio.uio_iov = &aiov;
1948 auio.uio_iovcnt = 1;
1949 auio.uio_offset = argv + len;
1950 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1951 auio.uio_resid = xlen;
1952 auio.uio_segflg = UIO_SYSSPACE;
1953 auio.uio_rw = UIO_READ;
1954 auio.uio_procp = NULL;
1955 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1956 if (error)
1957 goto done;
1958
1959 for (i = 0; i < xlen && nargv != 0; i++) {
1960 if (arg[i] == '\0')
1961 nargv--; /* one full string */
1962 }
1963
1964 /*
1965 * Make sure we don't copyout past the end of the user's
1966 * buffer.
1967 */
1968 if (len + i > upper_bound)
1969 i = upper_bound - len;
1970
1971 error = copyout(arg, (char *)oldp + len, i);
1972 if (error)
1973 break;
1974
1975 if (nargv == 0) {
1976 len += i;
1977 break;
1978 }
1979 }
1980 *oldlenp = len;
1981
1982 done:
1983 uvmspace_free(p->p_vmspace);
1984
1985 free(arg, M_TEMP);
1986 return (error);
1987 }
1988
1989 /*
1990 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1991 * calculate on the fly taking into account integer overflow and the
1992 * current wired count.
1993 */
1994 static int
1995 sysctl_hw_usermem(SYSCTLFN_ARGS)
1996 {
1997 u_int ui;
1998 u_quad_t uq;
1999 struct sysctlnode node;
2000
2001 node = *rnode;
2002 switch (rnode->sysctl_num) {
2003 case HW_USERMEM:
2004 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
2005 ui = UINT_MAX;
2006 else
2007 ui *= PAGE_SIZE;
2008 node.sysctl_data = &ui;
2009 break;
2010 case HW_USERMEM64:
2011 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
2012 node.sysctl_data = &uq;
2013 break;
2014 default:
2015 return (EINVAL);
2016 }
2017
2018 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2019 }
2020
2021 /*
2022 * sysctl helper routine for kern.cnmagic node. pulls the old value
2023 * out, encoded, and stuffs the new value in for decoding.
2024 */
2025 static int
2026 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
2027 {
2028 char magic[CNS_LEN];
2029 int error;
2030 struct sysctlnode node;
2031
2032 if (oldp)
2033 cn_get_magic(magic, CNS_LEN);
2034 node = *rnode;
2035 node.sysctl_data = &magic[0];
2036 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2037 if (error || newp == NULL)
2038 return (error);
2039
2040 return (cn_set_magic(magic));
2041 }
2042
2043 static int
2044 sysctl_hw_ncpu(SYSCTLFN_ARGS)
2045 {
2046 int ncpu;
2047 struct sysctlnode node;
2048
2049 ncpu = sysctl_ncpus();
2050 node = *rnode;
2051 node.sysctl_data = &ncpu;
2052
2053 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2054 }
2055
2056
2057 /*
2058 * ********************************************************************
2059 * section 3: public helper routines that are used for more than one
2060 * node
2061 * ********************************************************************
2062 */
2063
2064 /*
2065 * sysctl helper routine for the kern.root_device node and some ports'
2066 * machdep.root_device nodes.
2067 */
2068 int
2069 sysctl_root_device(SYSCTLFN_ARGS)
2070 {
2071 struct sysctlnode node;
2072
2073 node = *rnode;
2074 node.sysctl_data = root_device->dv_xname;
2075 node.sysctl_size = strlen(root_device->dv_xname) + 1;
2076 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2077 }
2078
2079 /*
2080 * sysctl helper routine for kern.consdev, dependent on the current
2081 * state of the console. also used for machdep.console_device on some
2082 * ports.
2083 */
2084 int
2085 sysctl_consdev(SYSCTLFN_ARGS)
2086 {
2087 dev_t consdev;
2088 struct sysctlnode node;
2089
2090 if (cn_tab != NULL)
2091 consdev = cn_tab->cn_dev;
2092 else
2093 consdev = NODEV;
2094 node = *rnode;
2095 node.sysctl_data = &consdev;
2096 node.sysctl_size = sizeof(consdev);
2097 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2098 }
2099
2100 /*
2101 * ********************************************************************
2102 * section 4: support for some helpers
2103 * ********************************************************************
2104 */
2105
2106 /*
2107 * Fill in a kinfo_proc2 structure for the specified process.
2108 */
2109 static void
2110 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2111 {
2112 struct tty *tp;
2113 struct lwp *l;
2114 struct timeval ut, st;
2115
2116 memset(ki, 0, sizeof(*ki));
2117
2118 ki->p_paddr = PTRTOINT64(p);
2119 ki->p_fd = PTRTOINT64(p->p_fd);
2120 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2121 ki->p_stats = PTRTOINT64(p->p_stats);
2122 ki->p_limit = PTRTOINT64(p->p_limit);
2123 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2124 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2125 ki->p_sess = PTRTOINT64(p->p_session);
2126 ki->p_tsess = 0; /* may be changed if controlling tty below */
2127 ki->p_ru = PTRTOINT64(p->p_ru);
2128
2129 ki->p_eflag = 0;
2130 ki->p_exitsig = p->p_exitsig;
2131 ki->p_flag = p->p_flag;
2132
2133 ki->p_pid = p->p_pid;
2134 if (p->p_pptr)
2135 ki->p_ppid = p->p_pptr->p_pid;
2136 else
2137 ki->p_ppid = 0;
2138 ki->p_sid = p->p_session->s_sid;
2139 ki->p__pgid = p->p_pgrp->pg_id;
2140
2141 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2142
2143 ki->p_uid = p->p_ucred->cr_uid;
2144 ki->p_ruid = p->p_cred->p_ruid;
2145 ki->p_gid = p->p_ucred->cr_gid;
2146 ki->p_rgid = p->p_cred->p_rgid;
2147 ki->p_svuid = p->p_cred->p_svuid;
2148 ki->p_svgid = p->p_cred->p_svgid;
2149
2150 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2151 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2152 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2153
2154 ki->p_jobc = p->p_pgrp->pg_jobc;
2155 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2156 ki->p_tdev = tp->t_dev;
2157 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2158 ki->p_tsess = PTRTOINT64(tp->t_session);
2159 } else {
2160 ki->p_tdev = NODEV;
2161 }
2162
2163 ki->p_estcpu = p->p_estcpu;
2164 ki->p_rtime_sec = p->p_rtime.tv_sec;
2165 ki->p_rtime_usec = p->p_rtime.tv_usec;
2166 ki->p_cpticks = p->p_cpticks;
2167 ki->p_pctcpu = p->p_pctcpu;
2168
2169 ki->p_uticks = p->p_uticks;
2170 ki->p_sticks = p->p_sticks;
2171 ki->p_iticks = p->p_iticks;
2172
2173 ki->p_tracep = PTRTOINT64(p->p_tracep);
2174 ki->p_traceflag = p->p_traceflag;
2175
2176
2177 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2178 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2179 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2180 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2181
2182 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2183 ki->p_realstat = p->p_stat;
2184 ki->p_nice = p->p_nice;
2185
2186 ki->p_xstat = p->p_xstat;
2187 ki->p_acflag = p->p_acflag;
2188
2189 strncpy(ki->p_comm, p->p_comm,
2190 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2191
2192 strncpy(ki->p_login, p->p_session->s_login,
2193 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2194
2195 ki->p_nlwps = p->p_nlwps;
2196 ki->p_nrlwps = p->p_nrlwps;
2197 ki->p_realflag = p->p_flag;
2198
2199 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2200 ki->p_vm_rssize = 0;
2201 ki->p_vm_tsize = 0;
2202 ki->p_vm_dsize = 0;
2203 ki->p_vm_ssize = 0;
2204 l = NULL;
2205 } else {
2206 struct vmspace *vm = p->p_vmspace;
2207
2208 ki->p_vm_rssize = vm_resident_count(vm);
2209 ki->p_vm_tsize = vm->vm_tsize;
2210 ki->p_vm_dsize = vm->vm_dsize;
2211 ki->p_vm_ssize = vm->vm_ssize;
2212
2213 /* Pick a "representative" LWP */
2214 l = proc_representative_lwp(p);
2215 ki->p_forw = PTRTOINT64(l->l_forw);
2216 ki->p_back = PTRTOINT64(l->l_back);
2217 ki->p_addr = PTRTOINT64(l->l_addr);
2218 ki->p_stat = l->l_stat;
2219 ki->p_flag |= l->l_flag;
2220 ki->p_swtime = l->l_swtime;
2221 ki->p_slptime = l->l_slptime;
2222 if (l->l_stat == LSONPROC) {
2223 KDASSERT(l->l_cpu != NULL);
2224 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2225 } else
2226 ki->p_schedflags = 0;
2227 ki->p_holdcnt = l->l_holdcnt;
2228 ki->p_priority = l->l_priority;
2229 ki->p_usrpri = l->l_usrpri;
2230 if (l->l_wmesg)
2231 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2232 ki->p_wchan = PTRTOINT64(l->l_wchan);
2233
2234 }
2235
2236 if (p->p_session->s_ttyvp)
2237 ki->p_eflag |= EPROC_CTTY;
2238 if (SESS_LEADER(p))
2239 ki->p_eflag |= EPROC_SLEADER;
2240
2241 /* XXX Is this double check necessary? */
2242 if (P_ZOMBIE(p)) {
2243 ki->p_uvalid = 0;
2244 } else {
2245 ki->p_uvalid = 1;
2246
2247 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2248 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2249
2250 calcru(p, &ut, &st, 0);
2251 ki->p_uutime_sec = ut.tv_sec;
2252 ki->p_uutime_usec = ut.tv_usec;
2253 ki->p_ustime_sec = st.tv_sec;
2254 ki->p_ustime_usec = st.tv_usec;
2255
2256 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2257 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2258 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2259 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2260 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2261 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2262 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2263 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2264 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2265 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2266 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2267 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2268 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2269 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2270
2271 timeradd(&p->p_stats->p_cru.ru_utime,
2272 &p->p_stats->p_cru.ru_stime, &ut);
2273 ki->p_uctime_sec = ut.tv_sec;
2274 ki->p_uctime_usec = ut.tv_usec;
2275 }
2276 #ifdef MULTIPROCESSOR
2277 if (l && l->l_cpu != NULL)
2278 ki->p_cpuid = l->l_cpu->ci_cpuid;
2279 else
2280 #endif
2281 ki->p_cpuid = KI_NOCPU;
2282 }
2283
2284 /*
2285 * Fill in a kinfo_lwp structure for the specified lwp.
2286 */
2287 static void
2288 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2289 {
2290
2291 kl->l_forw = PTRTOINT64(l->l_forw);
2292 kl->l_back = PTRTOINT64(l->l_back);
2293 kl->l_laddr = PTRTOINT64(l);
2294 kl->l_addr = PTRTOINT64(l->l_addr);
2295 kl->l_stat = l->l_stat;
2296 kl->l_lid = l->l_lid;
2297 kl->l_flag = l->l_flag;
2298
2299 kl->l_swtime = l->l_swtime;
2300 kl->l_slptime = l->l_slptime;
2301 if (l->l_stat == LSONPROC) {
2302 KDASSERT(l->l_cpu != NULL);
2303 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2304 } else
2305 kl->l_schedflags = 0;
2306 kl->l_holdcnt = l->l_holdcnt;
2307 kl->l_priority = l->l_priority;
2308 kl->l_usrpri = l->l_usrpri;
2309 if (l->l_wmesg)
2310 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2311 kl->l_wchan = PTRTOINT64(l->l_wchan);
2312 #ifdef MULTIPROCESSOR
2313 if (l->l_cpu != NULL)
2314 kl->l_cpuid = l->l_cpu->ci_cpuid;
2315 else
2316 #endif
2317 kl->l_cpuid = KI_NOCPU;
2318 }
2319
2320 /*
2321 * Fill in an eproc structure for the specified process.
2322 */
2323 void
2324 fill_eproc(struct proc *p, struct eproc *ep)
2325 {
2326 struct tty *tp;
2327 struct lwp *l;
2328
2329 ep->e_paddr = p;
2330 ep->e_sess = p->p_session;
2331 ep->e_pcred = *p->p_cred;
2332 ep->e_ucred = *p->p_ucred;
2333 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2334 ep->e_vm.vm_rssize = 0;
2335 ep->e_vm.vm_tsize = 0;
2336 ep->e_vm.vm_dsize = 0;
2337 ep->e_vm.vm_ssize = 0;
2338 /* ep->e_vm.vm_pmap = XXX; */
2339 } else {
2340 struct vmspace *vm = p->p_vmspace;
2341
2342 ep->e_vm.vm_rssize = vm_resident_count(vm);
2343 ep->e_vm.vm_tsize = vm->vm_tsize;
2344 ep->e_vm.vm_dsize = vm->vm_dsize;
2345 ep->e_vm.vm_ssize = vm->vm_ssize;
2346
2347 /* Pick a "representative" LWP */
2348 l = proc_representative_lwp(p);
2349
2350 if (l->l_wmesg)
2351 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2352 }
2353 if (p->p_pptr)
2354 ep->e_ppid = p->p_pptr->p_pid;
2355 else
2356 ep->e_ppid = 0;
2357 ep->e_pgid = p->p_pgrp->pg_id;
2358 ep->e_sid = ep->e_sess->s_sid;
2359 ep->e_jobc = p->p_pgrp->pg_jobc;
2360 if ((p->p_flag & P_CONTROLT) &&
2361 (tp = ep->e_sess->s_ttyp)) {
2362 ep->e_tdev = tp->t_dev;
2363 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2364 ep->e_tsess = tp->t_session;
2365 } else
2366 ep->e_tdev = NODEV;
2367
2368 ep->e_xsize = ep->e_xrssize = 0;
2369 ep->e_xccount = ep->e_xswrss = 0;
2370 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2371 if (SESS_LEADER(p))
2372 ep->e_flag |= EPROC_SLEADER;
2373 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2374 }
2375