init_sysctl.c revision 1.2 1 /* $NetBSD: init_sysctl.c,v 1.2 2003/12/06 02:52:29 atatat Exp $ */
2
3 /*-
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Brown.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include "opt_sysv.h"
40 #include "opt_multiprocessor.h"
41 #include "pty.h"
42 #include "rnd.h"
43
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/sysctl.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/kernel.h>
50 #include <sys/unistd.h>
51 #include <sys/disklabel.h>
52 #include <sys/rnd.h>
53 #include <sys/vnode.h>
54 #include <sys/mount.h>
55 #include <sys/namei.h>
56 #include <sys/msgbuf.h>
57 #include <dev/cons.h>
58 #include <sys/socketvar.h>
59 #include <sys/file.h>
60 #include <sys/tty.h>
61 #include <sys/malloc.h>
62 #include <sys/resource.h>
63 #include <sys/resourcevar.h>
64 #include <sys/exec.h>
65 #include <sys/conf.h>
66 #include <sys/device.h>
67
68 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
69 #include <sys/ipc.h>
70 #endif
71 #ifdef SYSVMSG
72 #include <sys/msg.h>
73 #endif
74 #ifdef SYSVSEM
75 #include <sys/sem.h>
76 #endif
77 #ifdef SYSVSHM
78 #include <sys/shm.h>
79 #endif
80
81 /*
82 * try over estimating by 5 procs/lwps
83 */
84 #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
85 #define KERN_LWPSLOP (5 * sizeof(struct kinfo_lwp))
86
87 /*
88 * convert pointer to 64 int for struct kinfo_proc2
89 */
90 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(foo))
91
92 #ifndef MULTIPROCESSOR
93 #define sysctl_ncpus() (1)
94 #else /* MULTIPROCESSOR */
95 #ifndef CPU_INFO_FOREACH
96 #define CPU_INFO_ITERATOR int
97 #define CPU_INFO_FOREACH(cii, ci) cii = 0, ci = curcpu(); ci != NULL; ci = NULL
98 #endif
99 static int
100 sysctl_ncpus(void)
101 {
102 struct cpu_info *ci;
103 CPU_INFO_ITERATOR cii;
104
105 int ncpus = 0;
106 for (CPU_INFO_FOREACH(cii, ci))
107 ncpus++;
108 return (ncpus);
109 }
110 #endif /* MULTIPROCESSOR */
111
112 static int sysctl_kern_maxvnodes(SYSCTLFN_PROTO);
113 static int sysctl_kern_maxproc(SYSCTLFN_PROTO);
114 static int sysctl_kern_securelevel(SYSCTLFN_PROTO);
115 static int sysctl_kern_hostid(SYSCTLFN_PROTO);
116 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
117 static int sysctl_kern_file(SYSCTLFN_PROTO);
118 static int sysctl_kern_autonice(SYSCTLFN_PROTO);
119 static int sysctl_msgbuf(SYSCTLFN_PROTO);
120 static int sysctl_kern_defcorename(SYSCTLFN_PROTO);
121 static int sysctl_kern_cptime(SYSCTLFN_PROTO);
122 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
123 static int sysctl_kern_sysvipc(SYSCTLFN_PROTO);
124 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
125 static int sysctl_kern_maxptys(SYSCTLFN_PROTO);
126 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
127 static int sysctl_kern_urnd(SYSCTLFN_PROTO);
128 static int sysctl_kern_lwp(SYSCTLFN_PROTO);
129 static int sysctl_kern_forkfsleep(SYSCTLFN_PROTO);
130 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
131 static int sysctl_kern_root_partition(SYSCTLFN_PROTO);
132 static int sysctl_kern_drivers(SYSCTLFN_PROTO);
133 static int sysctl_doeproc(SYSCTLFN_PROTO);
134 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
135 static int sysctl_hw_usermem(SYSCTLFN_PROTO);
136 static int sysctl_hw_cnmagic(SYSCTLFN_PROTO);
137
138 static void fill_kproc2(struct proc *, struct kinfo_proc2 *);
139 static void fill_lwp(struct lwp *l, struct kinfo_lwp *kl);
140
141 /*
142 * ********************************************************************
143 * section 1: setup routines
144 * ********************************************************************
145 * these functions are stuffed into a link set for sysctl setup
146 * functions. they're never called or referenced from anywhere else.
147 * ********************************************************************
148 */
149
150 /*
151 * sets up the base nodes...
152 */
153 SYSCTL_SETUP(sysctl_root_setup, "sysctl base setup")
154 {
155
156 sysctl_createv(SYSCTL_PERMANENT,
157 CTLTYPE_NODE, "kern", NULL,
158 NULL, 0, NULL, 0,
159 CTL_KERN, CTL_EOL);
160 sysctl_createv(SYSCTL_PERMANENT,
161 CTLTYPE_NODE, "vm", NULL,
162 NULL, 0, NULL, 0,
163 CTL_VM, CTL_EOL);
164 sysctl_createv(SYSCTL_PERMANENT,
165 CTLTYPE_NODE, "vfs", NULL,
166 NULL, 0, NULL, 0,
167 CTL_VFS, CTL_EOL);
168 sysctl_createv(SYSCTL_PERMANENT,
169 CTLTYPE_NODE, "net", NULL,
170 NULL, 0, NULL, 0,
171 CTL_NET, CTL_EOL);
172 sysctl_createv(SYSCTL_PERMANENT,
173 CTLTYPE_NODE, "debug", NULL,
174 NULL, 0, NULL, 0,
175 CTL_DEBUG, CTL_EOL);
176 sysctl_createv(SYSCTL_PERMANENT,
177 CTLTYPE_NODE, "hw", NULL,
178 NULL, 0, NULL, 0,
179 CTL_HW, CTL_EOL);
180 sysctl_createv(SYSCTL_PERMANENT,
181 CTLTYPE_NODE, "machdep", NULL,
182 NULL, 0, NULL, 0,
183 CTL_MACHDEP, CTL_EOL);
184 /*
185 * this node is inserted so that the sysctl nodes in libc can
186 * operate.
187 */
188 sysctl_createv(SYSCTL_PERMANENT,
189 CTLTYPE_NODE, "user", NULL,
190 NULL, 0, NULL, 0,
191 CTL_USER, CTL_EOL);
192 sysctl_createv(SYSCTL_PERMANENT,
193 CTLTYPE_NODE, "ddb", NULL,
194 NULL, 0, NULL, 0,
195 CTL_DDB, CTL_EOL);
196 sysctl_createv(SYSCTL_PERMANENT,
197 CTLTYPE_NODE, "proc", NULL,
198 NULL, 0, NULL, 0,
199 CTL_PROC, CTL_EOL);
200 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
201 CTLTYPE_NODE, "vendor", NULL,
202 NULL, 0, NULL, 0,
203 CTL_VENDOR, CTL_EOL);
204 sysctl_createv(SYSCTL_PERMANENT,
205 CTLTYPE_NODE, "emul", NULL,
206 NULL, 0, NULL, 0,
207 CTL_EMUL, CTL_EOL);
208 }
209
210 /*
211 * this setup routine is a replacement for kern_sysctl()
212 */
213 SYSCTL_SETUP(sysctl_kern_setup, "sysctl kern subtree setup")
214 {
215 extern int kern_logsigexit; /* defined in kern/kern_sig.c */
216 extern fixpt_t ccpu; /* defined in kern/kern_synch.c */
217 extern int dumponpanic; /* defined in kern/subr_prf.c */
218
219 sysctl_createv(SYSCTL_PERMANENT,
220 CTLTYPE_NODE, "kern", NULL,
221 NULL, 0, NULL, 0,
222 CTL_KERN, CTL_EOL);
223
224 sysctl_createv(SYSCTL_PERMANENT,
225 CTLTYPE_STRING, "ostype", NULL,
226 NULL, 0, &ostype, 0,
227 CTL_KERN, KERN_OSTYPE, CTL_EOL);
228 sysctl_createv(SYSCTL_PERMANENT,
229 CTLTYPE_STRING, "osrelease", NULL,
230 NULL, 0, &osrelease, 0,
231 CTL_KERN, KERN_OSRELEASE, CTL_EOL);
232 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
233 CTLTYPE_INT, "osrevision", NULL,
234 NULL, __NetBSD_Version__, NULL, 0,
235 CTL_KERN, KERN_OSREV, CTL_EOL);
236 sysctl_createv(SYSCTL_PERMANENT,
237 CTLTYPE_STRING, "version", NULL,
238 NULL, 0, &version, 0,
239 CTL_KERN, KERN_VERSION, CTL_EOL);
240 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
241 CTLTYPE_INT, "maxvnodes", NULL,
242 sysctl_kern_maxvnodes, 0, NULL, 0,
243 CTL_KERN, KERN_MAXVNODES, CTL_EOL);
244 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
245 CTLTYPE_INT, "maxproc", NULL,
246 sysctl_kern_maxproc, 0, NULL, 0,
247 CTL_KERN, KERN_MAXPROC, CTL_EOL);
248 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
249 CTLTYPE_INT, "maxfiles", NULL,
250 NULL, 0, &maxfiles, 0,
251 CTL_KERN, KERN_MAXFILES, CTL_EOL);
252 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
253 CTLTYPE_INT, "argmax", NULL,
254 NULL, ARG_MAX, NULL, 0,
255 CTL_KERN, KERN_ARGMAX, CTL_EOL);
256 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
257 CTLTYPE_INT, "securelevel", NULL,
258 sysctl_kern_securelevel, 0, &securelevel, 0,
259 CTL_KERN, KERN_SECURELVL, CTL_EOL);
260 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
261 CTLTYPE_STRING, "hostname", NULL,
262 NULL, 0, &hostname, MAXHOSTNAMELEN,
263 CTL_KERN, KERN_HOSTNAME, CTL_EOL);
264 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
265 CTLTYPE_INT, "hostid", NULL,
266 sysctl_kern_hostid, 0, NULL, 0,
267 CTL_KERN, KERN_HOSTID, CTL_EOL);
268 sysctl_createv(SYSCTL_PERMANENT,
269 CTLTYPE_STRUCT, "clockrate", NULL,
270 sysctl_kern_clockrate, 0, NULL,
271 sizeof(struct clockinfo),
272 CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
273 sysctl_createv(SYSCTL_PERMANENT,
274 CTLTYPE_STRUCT, "vnode", NULL,
275 sysctl_kern_vnode, 0, NULL, 0,
276 CTL_KERN, KERN_VNODE, CTL_EOL);
277 sysctl_createv(SYSCTL_PERMANENT,
278 CTLTYPE_STRUCT, "file", NULL,
279 sysctl_kern_file, 0, NULL, 0,
280 CTL_KERN, KERN_FILE, CTL_EOL);
281 #ifndef GPROF
282 sysctl_createv(SYSCTL_PERMANENT,
283 CTLTYPE_NODE, "profiling", NULL,
284 sysctl_notavail, 0, NULL, 0,
285 CTL_KERN, KERN_PROF, CTL_EOL);
286 #endif
287 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
288 CTLTYPE_INT, "posix1version", NULL,
289 NULL, _POSIX_VERSION, NULL, 0,
290 CTL_KERN, KERN_POSIX1, CTL_EOL);
291 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
292 CTLTYPE_INT, "ngroups", NULL,
293 NULL, NGROUPS_MAX, NULL, 0,
294 CTL_KERN, KERN_NGROUPS, CTL_EOL);
295 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
296 CTLTYPE_INT, "job_control", NULL,
297 NULL, 1, NULL, 0,
298 CTL_KERN, KERN_JOB_CONTROL, CTL_EOL);
299 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
300 CTLTYPE_INT, "saved_ids", NULL, NULL,
301 #ifdef _POSIX_SAVED_IDS
302 1,
303 #else /* _POSIX_SAVED_IDS */
304 0,
305 #endif /* _POSIX_SAVED_IDS */
306 NULL, 0, CTL_KERN, KERN_SAVED_IDS, CTL_EOL);
307 sysctl_createv(SYSCTL_PERMANENT,
308 CTLTYPE_STRUCT, "boottime", NULL,
309 NULL, 0, &boottime, sizeof(boottime),
310 CTL_KERN, KERN_BOOTTIME, CTL_EOL);
311 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
312 CTLTYPE_STRING, "domainname", NULL,
313 NULL, 0, &domainname, MAXHOSTNAMELEN,
314 CTL_KERN, KERN_DOMAINNAME, CTL_EOL);
315 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
316 CTLTYPE_INT, "maxpartitions", NULL,
317 NULL, MAXPARTITIONS, NULL, 0,
318 CTL_KERN, KERN_MAXPARTITIONS, CTL_EOL);
319 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
320 CTLTYPE_INT, "rawpartition", NULL,
321 NULL, RAW_PART, NULL, 0,
322 CTL_KERN, KERN_RAWPARTITION, CTL_EOL);
323 sysctl_createv(SYSCTL_PERMANENT,
324 CTLTYPE_STRUCT, "timex", NULL,
325 sysctl_notavail, 0, NULL, 0,
326 CTL_KERN, KERN_TIMEX, CTL_EOL);
327 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
328 CTLTYPE_INT, "autonicetime", NULL,
329 sysctl_kern_autonice, 0, &autonicetime, 0,
330 CTL_KERN, KERN_AUTONICETIME, CTL_EOL);
331 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
332 CTLTYPE_INT, "autoniceval", NULL,
333 sysctl_kern_autonice, 0, &autoniceval, 0,
334 CTL_KERN, KERN_AUTONICEVAL, CTL_EOL);
335 sysctl_createv(SYSCTL_PERMANENT,
336 CTLTYPE_INT, "rtc_offset", NULL,
337 NULL, 0, &rtc_offset, 0,
338 CTL_KERN, KERN_RTC_OFFSET, CTL_EOL);
339 sysctl_createv(SYSCTL_PERMANENT,
340 CTLTYPE_STRING, "root_device", NULL,
341 sysctl_root_device, 0, NULL, 0,
342 CTL_KERN, KERN_ROOT_DEVICE, CTL_EOL);
343 sysctl_createv(SYSCTL_PERMANENT,
344 CTLTYPE_INT, "msgbufsize", NULL,
345 sysctl_msgbuf, 0, &msgbufp->msg_bufs, 0,
346 CTL_KERN, KERN_MSGBUFSIZE, CTL_EOL);
347 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
348 CTLTYPE_INT, "fsync", NULL,
349 NULL, 1, NULL, 0,
350 CTL_KERN, KERN_FSYNC, CTL_EOL);
351 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
352 CTLTYPE_INT, "sysvmsg", NULL, NULL,
353 #ifdef SYSVMSG
354 1,
355 #else /* SYSVMSG */
356 0,
357 #endif /* SYSVMSG */
358 NULL, 0, CTL_KERN, KERN_SYSVMSG, CTL_EOL);
359 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
360 CTLTYPE_INT, "sysvsem", NULL, NULL,
361 #ifdef SYSVSEM
362 1,
363 #else /* SYSVSEM */
364 0,
365 #endif /* SYSVSEM */
366 NULL, 0, CTL_KERN, KERN_SYSVSEM, CTL_EOL);
367 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
368 CTLTYPE_INT, "sysvshm", NULL, NULL,
369 #ifdef SYSVSHM
370 1,
371 #else /* SYSVSHM */
372 0,
373 #endif /* SYSVSHM */
374 NULL, 0, CTL_KERN, KERN_SYSVSHM, CTL_EOL);
375 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
376 CTLTYPE_INT, "synchronized_io", NULL,
377 NULL, 1, NULL, 0,
378 CTL_KERN, KERN_SYNCHRONIZED_IO, CTL_EOL);
379 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
380 CTLTYPE_INT, "iov_max", NULL,
381 NULL, IOV_MAX, NULL, 0,
382 CTL_KERN, KERN_IOV_MAX, CTL_EOL);
383 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
384 CTLTYPE_INT, "mapped_files", NULL,
385 NULL, 1, NULL, 0,
386 CTL_KERN, KERN_MAPPED_FILES, CTL_EOL);
387 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
388 CTLTYPE_INT, "memlock", NULL,
389 NULL, 1, NULL, 0,
390 CTL_KERN, KERN_MEMLOCK, CTL_EOL);
391 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
392 CTLTYPE_INT, "memlock_range", NULL,
393 NULL, 1, NULL, 0,
394 CTL_KERN, KERN_MEMLOCK_RANGE, CTL_EOL);
395 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
396 CTLTYPE_INT, "memory_protection", NULL,
397 NULL, 1, NULL, 0,
398 CTL_KERN, KERN_MEMORY_PROTECTION, CTL_EOL);
399 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
400 CTLTYPE_INT, "login_name_max", NULL,
401 NULL, LOGIN_NAME_MAX, NULL, 0,
402 CTL_KERN, KERN_LOGIN_NAME_MAX, CTL_EOL);
403 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
404 CTLTYPE_STRING, "defcorename", NULL,
405 sysctl_kern_defcorename, 0, defcorename, MAXPATHLEN,
406 CTL_KERN, KERN_DEFCORENAME, CTL_EOL);
407 sysctl_createv(SYSCTL_PERMANENT,
408 CTLTYPE_INT, "logsigexit", NULL,
409 NULL, 0, &kern_logsigexit, 0,
410 CTL_KERN, KERN_LOGSIGEXIT, CTL_EOL);
411 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
412 CTLTYPE_INT, "fscale", NULL,
413 NULL, FSCALE, NULL, 0,
414 CTL_KERN, KERN_FSCALE, CTL_EOL);
415 sysctl_createv(SYSCTL_PERMANENT,
416 CTLTYPE_INT, "ccpu", NULL,
417 NULL, 0, &ccpu, 0,
418 CTL_KERN, KERN_CCPU, CTL_EOL);
419 sysctl_createv(SYSCTL_PERMANENT,
420 CTLTYPE_STRUCT, "cp_time", NULL,
421 sysctl_kern_cptime, 0, NULL, 0,
422 CTL_KERN, KERN_CP_TIME, CTL_EOL);
423 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
424 sysctl_createv(SYSCTL_PERMANENT,
425 CTLTYPE_STRUCT, "sysvipc_info", NULL,
426 sysctl_kern_sysvipc, 0, NULL, 0,
427 CTL_KERN, KERN_SYSVIPC_INFO, CTL_EOL);
428 #endif /* SYSVMSG || SYSVSEM || SYSVSHM */
429 sysctl_createv(SYSCTL_PERMANENT,
430 CTLTYPE_INT, "msgbuf", NULL,
431 sysctl_msgbuf, 0, NULL, 0,
432 CTL_KERN, KERN_MSGBUF, CTL_EOL);
433 sysctl_createv(SYSCTL_PERMANENT,
434 CTLTYPE_STRUCT, "consdev", NULL,
435 sysctl_consdev, 0, NULL, sizeof(dev_t),
436 CTL_KERN, KERN_CONSDEV, CTL_EOL);
437 #if NPTY > 0
438 sysctl_createv(SYSCTL_PERMANENT,
439 CTLTYPE_INT, "maxptys", NULL,
440 sysctl_kern_maxptys, 0, NULL, 0,
441 CTL_KERN, KERN_MAXPTYS, CTL_EOL);
442 #endif /* NPTY > 0 */
443 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
444 CTLTYPE_INT, "maxphys", NULL,
445 NULL, MAXPHYS, NULL, 0,
446 CTL_KERN, KERN_MAXPHYS, CTL_EOL);
447 sysctl_createv(SYSCTL_PERMANENT,
448 CTLTYPE_INT, "sbmax", NULL,
449 sysctl_kern_sbmax, 0, NULL, 0,
450 CTL_KERN, KERN_SBMAX, CTL_EOL);
451 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
452 CTLTYPE_INT, "monotonic_clock", NULL,
453 /* XXX _POSIX_VERSION */
454 NULL, _POSIX_MONOTONIC_CLOCK, NULL, 0,
455 CTL_KERN, KERN_MONOTONIC_CLOCK, CTL_EOL);
456 sysctl_createv(SYSCTL_PERMANENT,
457 CTLTYPE_INT, "urandom", NULL,
458 sysctl_kern_urnd, 0, NULL, 0,
459 CTL_KERN, KERN_URND, CTL_EOL);
460 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
461 CTLTYPE_INT, "labelsector", NULL,
462 NULL, LABELSECTOR, NULL, 0,
463 CTL_KERN, KERN_LABELSECTOR, CTL_EOL);
464 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
465 CTLTYPE_INT, "labeloffset", NULL,
466 NULL, LABELOFFSET, NULL, 0,
467 CTL_KERN, KERN_LABELOFFSET, CTL_EOL);
468 sysctl_createv(SYSCTL_PERMANENT,
469 CTLTYPE_NODE, "lwp", NULL,
470 sysctl_kern_lwp, 0, NULL, 0,
471 CTL_KERN, KERN_LWP, CTL_EOL);
472 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
473 CTLTYPE_INT, "forkfsleep", NULL,
474 sysctl_kern_forkfsleep, 0, NULL, 0,
475 CTL_KERN, KERN_FORKFSLEEP, CTL_EOL);
476 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
477 CTLTYPE_INT, "posix_threads", NULL,
478 /* XXX _POSIX_VERSION */
479 NULL, _POSIX_THREADS, NULL, 0,
480 CTL_KERN, KERN_POSIX_THREADS, CTL_EOL);
481 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
482 CTLTYPE_INT, "posix_semaphores", NULL, NULL,
483 #ifdef P1003_1B_SEMAPHORE
484 200112,
485 #else /* P1003_1B_SEMAPHORE */
486 0,
487 #endif /* P1003_1B_SEMAPHORE */
488 NULL, 0, CTL_KERN, KERN_POSIX_SEMAPHORES, CTL_EOL);
489 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
490 CTLTYPE_INT, "posix_barriers", NULL,
491 /* XXX _POSIX_VERSION */
492 NULL, _POSIX_BARRIERS, NULL, 0,
493 CTL_KERN, KERN_POSIX_BARRIERS, CTL_EOL);
494 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
495 CTLTYPE_INT, "posix_timers", NULL,
496 /* XXX _POSIX_VERSION */
497 NULL, _POSIX_TIMERS, NULL, 0,
498 CTL_KERN, KERN_POSIX_TIMERS, CTL_EOL);
499 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
500 CTLTYPE_INT, "posix_spin_locks", NULL,
501 /* XXX _POSIX_VERSION */
502 NULL, _POSIX_SPIN_LOCKS, NULL, 0,
503 CTL_KERN, KERN_POSIX_SPIN_LOCKS, CTL_EOL);
504 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
505 CTLTYPE_INT, "posix_reader_writer_locks", NULL,
506 /* XXX _POSIX_VERSION */
507 NULL, _POSIX_READER_WRITER_LOCKS, NULL, 0,
508 CTL_KERN, KERN_POSIX_READER_WRITER_LOCKS, CTL_EOL);
509 sysctl_createv(SYSCTL_PERMANENT,
510 CTLTYPE_INT, "dump_on_panic", NULL,
511 NULL, 0, &dumponpanic, 0,
512 CTL_KERN, KERN_DUMP_ON_PANIC, CTL_EOL);
513 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE,
514 CTLTYPE_INT, "somaxkva", NULL,
515 sysctl_kern_somaxkva, 0, NULL, 0,
516 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
517 sysctl_createv(SYSCTL_PERMANENT,
518 CTLTYPE_INT, "root_partition", NULL,
519 sysctl_kern_root_partition, 0, NULL, 0,
520 CTL_KERN, KERN_ROOT_PARTITION, CTL_EOL);
521 sysctl_createv(SYSCTL_PERMANENT,
522 CTLTYPE_STRUCT, "drivers", NULL,
523 sysctl_kern_drivers, 0, NULL, 0,
524 CTL_KERN, KERN_DRIVERS, CTL_EOL);
525 }
526
527 SYSCTL_SETUP(sysctl_kern_proc_setup,
528 "sysctl kern.proc/proc2/proc_args subtree setup")
529 {
530
531 sysctl_createv(SYSCTL_PERMANENT,
532 CTLTYPE_NODE, "kern", NULL,
533 NULL, 0, NULL, 0,
534 CTL_KERN, CTL_EOL);
535
536 sysctl_createv(SYSCTL_PERMANENT,
537 CTLTYPE_NODE, "proc", NULL,
538 sysctl_doeproc, 0, NULL, 0,
539 CTL_KERN, KERN_PROC, CTL_EOL);
540 sysctl_createv(SYSCTL_PERMANENT,
541 CTLTYPE_NODE, "proc2", NULL,
542 sysctl_doeproc, 0, NULL, 0,
543 CTL_KERN, KERN_PROC2, CTL_EOL);
544 sysctl_createv(SYSCTL_PERMANENT,
545 CTLTYPE_NODE, "proc_args", NULL,
546 sysctl_kern_proc_args, 0, NULL, 0,
547 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
548
549 /*
550 "nodes" under these:
551
552 KERN_PROC_ALL
553 KERN_PROC_PID pid
554 KERN_PROC_PGRP pgrp
555 KERN_PROC_SESSION sess
556 KERN_PROC_TTY tty
557 KERN_PROC_UID uid
558 KERN_PROC_RUID uid
559 KERN_PROC_GID gid
560 KERN_PROC_RGID gid
561
562 all in all, probably not worth the effort...
563 */
564 }
565
566 SYSCTL_SETUP(sysctl_hw_setup, "sysctl hw subtree setup")
567 {
568 u_int u;
569 u_quad_t q;
570
571 sysctl_createv(SYSCTL_PERMANENT,
572 CTLTYPE_NODE, "hw", NULL,
573 NULL, 0, NULL, 0,
574 CTL_HW, CTL_EOL);
575
576 sysctl_createv(SYSCTL_PERMANENT,
577 CTLTYPE_STRING, "machine", NULL,
578 NULL, 0, machine, 0,
579 CTL_HW, HW_MACHINE, CTL_EOL);
580 sysctl_createv(SYSCTL_PERMANENT,
581 CTLTYPE_STRING, "model", NULL,
582 NULL, 0, cpu_model, 0,
583 CTL_HW, HW_MODEL, CTL_EOL);
584 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
585 CTLTYPE_INT, "ncpu", NULL,
586 NULL, sysctl_ncpus(), NULL, 0,
587 CTL_HW, HW_NCPU, CTL_EOL);
588 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
589 CTLTYPE_INT, "byteorder", NULL,
590 NULL, BYTE_ORDER, NULL, 0,
591 CTL_HW, HW_BYTEORDER, CTL_EOL);
592 u = ((u_int)physmem > (UINT_MAX / PAGE_SIZE)) ?
593 UINT_MAX : physmem * PAGE_SIZE;
594 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
595 CTLTYPE_INT, "physmem", NULL,
596 NULL, u, NULL, 0,
597 CTL_HW, HW_PHYSMEM, CTL_EOL);
598 sysctl_createv(SYSCTL_PERMANENT,
599 CTLTYPE_INT, "usermem", NULL,
600 sysctl_hw_usermem, 0, NULL, 0,
601 CTL_HW, HW_USERMEM, CTL_EOL);
602 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
603 CTLTYPE_INT, "pagesize", NULL,
604 NULL, PAGE_SIZE, NULL, 0,
605 CTL_HW, HW_PAGESIZE, CTL_EOL);
606 sysctl_createv(SYSCTL_PERMANENT,
607 CTLTYPE_STRING, "disknames", NULL,
608 sysctl_hw_disknames, 0, NULL, 0,
609 CTL_HW, HW_DISKNAMES, CTL_EOL);
610 sysctl_createv(SYSCTL_PERMANENT,
611 CTLTYPE_STRUCT, "diskstats", NULL,
612 sysctl_hw_diskstats, 0, NULL, 0,
613 CTL_HW, HW_DISKSTATS, CTL_EOL);
614 sysctl_createv(SYSCTL_PERMANENT,
615 CTLTYPE_STRING, "machine_arch", NULL,
616 NULL, 0, machine_arch, 0,
617 CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
618 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
619 CTLTYPE_INT, "alignbytes", NULL,
620 NULL, ALIGNBYTES, NULL, 0,
621 CTL_HW, HW_ALIGNBYTES, CTL_EOL);
622 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_READWRITE|SYSCTL_HEX,
623 CTLTYPE_STRING, "cnmagic", NULL,
624 sysctl_hw_cnmagic, 0, NULL, CNS_LEN,
625 CTL_HW, HW_CNMAGIC, CTL_EOL);
626 q = (u_quad_t)physmem * PAGE_SIZE;
627 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_IMMEDIATE,
628 CTLTYPE_QUAD, "physmem64", NULL,
629 NULL, q, NULL, 0,
630 CTL_HW, HW_PHYSMEM64, CTL_EOL);
631 sysctl_createv(SYSCTL_PERMANENT,
632 CTLTYPE_QUAD, "usermem64", NULL,
633 sysctl_hw_usermem, 0, NULL, 0,
634 CTL_HW, HW_USERMEM64, CTL_EOL);
635 }
636
637 #ifdef DEBUG
638 /*
639 * Debugging related system variables.
640 */
641 struct ctldebug /* debug0, */ /* debug1, */ debug2, debug3, debug4;
642 struct ctldebug debug5, debug6, debug7, debug8, debug9;
643 struct ctldebug debug10, debug11, debug12, debug13, debug14;
644 struct ctldebug debug15, debug16, debug17, debug18, debug19;
645 static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = {
646 &debug0, &debug1, &debug2, &debug3, &debug4,
647 &debug5, &debug6, &debug7, &debug8, &debug9,
648 &debug10, &debug11, &debug12, &debug13, &debug14,
649 &debug15, &debug16, &debug17, &debug18, &debug19,
650 };
651
652 /*
653 * this setup routine is a replacement for debug_sysctl()
654 *
655 * note that it creates several nodes per defined debug variable
656 */
657 SYSCTL_SETUP(sysctl_debug_setup, "sysctl debug subtree setup")
658 {
659 struct ctldebug *cdp;
660 char nodename[20];
661 int i;
662
663 /*
664 * two ways here:
665 *
666 * the "old" way (debug.name -> value) which was emulated by
667 * the sysctl(8) binary
668 *
669 * the new way, which the sysctl(8) binary was actually using
670
671 node debug
672 node debug.0
673 string debug.0.name
674 int debug.0.value
675 int debug.name
676
677 */
678
679 sysctl_createv(SYSCTL_PERMANENT,
680 CTLTYPE_NODE, "debug", NULL,
681 NULL, 0, NULL, 0,
682 CTL_DEBUG, CTL_EOL);
683
684 for (i = 0; i < CTL_DEBUG_MAXID; i++) {
685 cdp = debugvars[i];
686 if (cdp->debugname == NULL || cdp->debugvar == NULL)
687 continue;
688
689 snprintf(nodename, sizeof(nodename), "debug%d", i);
690 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
691 CTLTYPE_NODE, nodename, NULL,
692 NULL, 0, NULL, 0,
693 CTL_DEBUG, i, CTL_EOL);
694 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
695 CTLTYPE_STRING, "name", NULL,
696 NULL, 0, cdp->debugname, 0,
697 CTL_DEBUG, i, CTL_DEBUG_NAME, CTL_EOL);
698 sysctl_createv(SYSCTL_PERMANENT|SYSCTL_HIDDEN,
699 CTLTYPE_INT, "value", NULL,
700 NULL, 0, cdp->debugvar, 0,
701 CTL_DEBUG, i, CTL_DEBUG_VALUE, CTL_EOL);
702 sysctl_createv(SYSCTL_PERMANENT,
703 CTLTYPE_INT, cdp->debugname, NULL,
704 NULL, 0, cdp->debugvar, 0,
705 CTL_DEBUG, CTL_CREATE, CTL_EOL);
706 }
707 }
708 #endif /* DEBUG */
709
710 /*
711 * ********************************************************************
712 * section 2: private node-specific helper routines.
713 * ********************************************************************
714 */
715
716 /*
717 * sysctl helper routine for kern.maxvnodes. handles ensuring that
718 * new values never falls below desiredvnodes and then calls reinit
719 * routines that needs to adjust to the new value.
720 */
721 static int
722 sysctl_kern_maxvnodes(SYSCTLFN_ARGS)
723 {
724 int error, new_vnodes;
725 struct sysctlnode node;
726
727 new_vnodes = desiredvnodes;
728 node = *rnode;
729 node.sysctl_data = &new_vnodes;
730 error = sysctl_lookup(SYSCTLFN_CALL(&node));
731 if (error || newp == NULL)
732 return (error);
733
734 if (new_vnodes < desiredvnodes)
735 return (EINVAL);
736 desiredvnodes = new_vnodes;
737 vfs_reinit();
738 nchreinit();
739
740 return (0);
741 }
742
743 /*
744 * sysctl helper routine for kern.maxvnodes. ensures that the new
745 * values are not too low or too high.
746 */
747 static int
748 sysctl_kern_maxproc(SYSCTLFN_ARGS)
749 {
750 int error, nmaxproc;
751 struct sysctlnode node;
752
753 nmaxproc = maxproc;
754 node = *rnode;
755 node.sysctl_data = &nmaxproc;
756 error = sysctl_lookup(SYSCTLFN_CALL(&node));
757 if (error || newp == NULL)
758 return (error);
759
760 if (nmaxproc < 0 || nmaxproc >= PID_MAX)
761 return (EINVAL);
762 #ifdef __HAVE_CPU_MAXPROC
763 if (nmaxproc > cpu_maxproc())
764 return (EINVAL);
765 #endif
766 maxproc = nmaxproc;
767
768 return (0);
769 }
770
771 /*
772 * sysctl helper routine for kern.securelevel. ensures that the value
773 * only rises unless the caller has pid 1 (assumed to be init).
774 */
775 static int
776 sysctl_kern_securelevel(SYSCTLFN_ARGS)
777 {
778 int newsecurelevel, error;
779 struct sysctlnode node;
780
781 newsecurelevel = securelevel;
782 node = *rnode;
783 node.sysctl_data = &newsecurelevel;
784 error = sysctl_lookup(SYSCTLFN_CALL(&node));
785 if (error || newp == NULL)
786 return (error);
787
788 if (newsecurelevel < securelevel && l->l_proc->p_pid != 1)
789 return (EPERM);
790 securelevel = newsecurelevel;
791
792 return (error);
793 }
794
795 /*
796 * sysctl helper function for kern.hostid. the hostid is a long, but
797 * we export it as an int, so we need to give it a little help.
798 */
799 static int
800 sysctl_kern_hostid(SYSCTLFN_ARGS)
801 {
802 int error, inthostid;
803 struct sysctlnode node;
804
805 inthostid = hostid; /* XXX assumes sizeof int >= sizeof long */
806 node = *rnode;
807 node.sysctl_data = &inthostid;
808 error = sysctl_lookup(SYSCTLFN_CALL(&node));
809 if (error || newp == NULL)
810 return (error);
811
812 hostid = inthostid;
813
814 return (0);
815 }
816
817 /*
818 * sysctl helper routine for kern.clockrate. assembles a struct on
819 * the fly to be returned to the caller.
820 */
821 static int
822 sysctl_kern_clockrate(SYSCTLFN_ARGS)
823 {
824 struct clockinfo clkinfo;
825 struct sysctlnode node;
826
827 clkinfo.tick = tick;
828 clkinfo.tickadj = tickadj;
829 clkinfo.hz = hz;
830 clkinfo.profhz = profhz;
831 clkinfo.stathz = stathz ? stathz : hz;
832
833 node = *rnode;
834 node.sysctl_data = &clkinfo;
835 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
836 }
837
838
839 /*
840 * sysctl helper routine for kern.file pseudo-subtree.
841 */
842 static int
843 sysctl_kern_file(SYSCTLFN_ARGS)
844 {
845 int error;
846 size_t buflen;
847 struct file *fp;
848 char *start, *where;
849
850 start = where = oldp;
851 buflen = *oldlenp;
852 if (where == NULL) {
853 /*
854 * overestimate by 10 files
855 */
856 *oldlenp = sizeof(filehead) + (nfiles + 10) * sizeof(struct file);
857 return (0);
858 }
859
860 /*
861 * first copyout filehead
862 */
863 if (buflen < sizeof(filehead)) {
864 *oldlenp = 0;
865 return (0);
866 }
867 error = copyout(&filehead, where, sizeof(filehead));
868 if (error)
869 return (error);
870 buflen -= sizeof(filehead);
871 where += sizeof(filehead);
872
873 /*
874 * followed by an array of file structures
875 */
876 LIST_FOREACH(fp, &filehead, f_list) {
877 if (buflen < sizeof(struct file)) {
878 *oldlenp = where - start;
879 return (ENOMEM);
880 }
881 error = copyout(fp, where, sizeof(struct file));
882 if (error)
883 return (error);
884 buflen -= sizeof(struct file);
885 where += sizeof(struct file);
886 }
887 *oldlenp = where - start;
888 return (0);
889 }
890
891 /*
892 * sysctl helper routine for kern.autonicetime and kern.autoniceval.
893 * asserts that the assigned value is in the correct range.
894 */
895 static int
896 sysctl_kern_autonice(SYSCTLFN_ARGS)
897 {
898 int error, t = 0;
899 struct sysctlnode node;
900
901 node = *rnode;
902 t = *(int*)node.sysctl_data;
903 node.sysctl_data = &t;
904 error = sysctl_lookup(SYSCTLFN_CALL(&node));
905 if (error || newp == NULL)
906 return (error);
907
908 switch (node.sysctl_num) {
909 case KERN_AUTONICETIME:
910 if (t >= 0)
911 autonicetime = t;
912 break;
913 case KERN_AUTONICEVAL:
914 if (t < PRIO_MIN)
915 t = PRIO_MIN;
916 else if (t > PRIO_MAX)
917 t = PRIO_MAX;
918 autoniceval = t;
919 break;
920 }
921
922 return (0);
923 }
924
925 /*
926 * sysctl helper routine for kern.msgbufsize and kern.msgbuf. for the
927 * former it merely checks the the message buffer is set up. for the
928 * latter, it also copies out the data if necessary.
929 */
930 static int
931 sysctl_msgbuf(SYSCTLFN_ARGS)
932 {
933 char *where = oldp;
934 size_t len, maxlen;
935 long beg, end;
936 int error;
937
938 if (!msgbufenabled || msgbufp->msg_magic != MSG_MAGIC) {
939 msgbufenabled = 0;
940 return (ENXIO);
941 }
942
943 switch (rnode->sysctl_num) {
944 case KERN_MSGBUFSIZE:
945 return (sysctl_lookup(SYSCTLFN_CALL(rnode)));
946 case KERN_MSGBUF:
947 break;
948 default:
949 return (EOPNOTSUPP);
950 }
951
952 if (newp != NULL)
953 return (EPERM);
954
955 if (oldp == NULL) {
956 /* always return full buffer size */
957 *oldlenp = msgbufp->msg_bufs;
958 return (0);
959 }
960
961 error = 0;
962 maxlen = MIN(msgbufp->msg_bufs, *oldlenp);
963
964 /*
965 * First, copy from the write pointer to the end of
966 * message buffer.
967 */
968 beg = msgbufp->msg_bufx;
969 end = msgbufp->msg_bufs;
970 while (maxlen > 0) {
971 len = MIN(end - beg, maxlen);
972 if (len == 0)
973 break;
974 error = copyout(&msgbufp->msg_bufc[beg], where, len);
975 if (error)
976 break;
977 where += len;
978 maxlen -= len;
979
980 /*
981 * ... then, copy from the beginning of message buffer to
982 * the write pointer.
983 */
984 beg = 0;
985 end = msgbufp->msg_bufx;
986 }
987
988 return (error);
989 }
990
991 /*
992 * sysctl helper routine for kern.defcorename. in the case of a new
993 * string being assigned, check that it's not a zero-length string.
994 * (XXX the check in -current doesn't work, but do we really care?)
995 */
996 static int
997 sysctl_kern_defcorename(SYSCTLFN_ARGS)
998 {
999 int error;
1000 char newcorename[MAXPATHLEN];
1001 struct sysctlnode node;
1002
1003 node = *rnode;
1004 node.sysctl_data = &newcorename[0];
1005 memcpy(node.sysctl_data, rnode->sysctl_data, MAXPATHLEN);
1006 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1007 if (error || newp == NULL)
1008 return (error);
1009
1010 /*
1011 * when sysctl_lookup() deals with a string, it's guaranteed
1012 * to come back nul terminated. so there. :)
1013 */
1014 if (strlen(newcorename) == 0)
1015 return (EINVAL);
1016
1017 memcpy(rnode->sysctl_data, node.sysctl_data, MAXPATHLEN);
1018
1019 return (0);
1020 }
1021
1022 /*
1023 * sysctl helper routine for kern.cp_time node. adds up cpu time
1024 * across all cpus.
1025 */
1026 static int
1027 sysctl_kern_cptime(SYSCTLFN_ARGS)
1028 {
1029 struct sysctlnode node = *rnode;
1030 u_int64_t *cp_time = NULL;
1031 int error;
1032
1033 #ifdef MULTIPROCESSOR
1034 int n = sysctl_ncpus(), i;
1035 struct cpu_info *ci;
1036 CPU_INFO_ITERATOR cii;
1037
1038 /*
1039 * if you specifically pass a buffer that is the size of the
1040 * sum, or if you are probing for the size, you get the "sum"
1041 * of cp_time (and the size thereof) across all processors.
1042 *
1043 * alternately, you can pass an additional mib number and get
1044 * cp_time for that particular processor.
1045 */
1046 switch (namelen) {
1047 case 0:
1048 if (*oldlenp == sizeof(*cp_time) * CPUSTATES || oldp == NULL) {
1049 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1050 cp_time = malloc(node.sysctl_size,
1051 M_TEMP, M_WAITOK|M_CANFAIL);
1052 n = -1; /* SUM */
1053 }
1054 else {
1055 node.sysctl_size = n * sizeof(cp_time) * CPUSTATES;
1056 cp_time = malloc(node.sysctl_size,
1057 M_TEMP, M_WAITOK|M_CANFAIL);
1058 n = -2; /* ALL */
1059 }
1060 break;
1061 case 1:
1062 if (name[0] < 0 || name[0] >= n)
1063 return (EINVAL); /* ENOSUCHPROCESSOR */
1064 node.sysctl_size = sizeof(cp_time) * CPUSTATES;
1065 cp_time = malloc(node.sysctl_size,
1066 M_TEMP, M_WAITOK|M_CANFAIL);
1067 n = name[0];
1068 /*
1069 * adjust these so that sysctl_lookup() will be happy
1070 */
1071 name++;
1072 namelen--;
1073 default:
1074 return (EINVAL);
1075 }
1076
1077 if (cp_time == NULL)
1078 return (ENOMEM);
1079 node.sysctl_data = cp_time;
1080 memset(cp_time, 0, node.sysctl_size);
1081
1082 for (CPU_INFO_FOREACH(cii, ci)) {
1083 /*
1084 * doing a sum or doing just this processor
1085 */
1086 if (n == -1 || n == 0)
1087 for (i = 0; i < CPUSTATES; i++)
1088 cp_time[i] += ci->ci_schedstate.spc_cp_time[i];
1089 /*
1090 * if a specific processor was requested and we just
1091 * did it, we're done here
1092 */
1093 if (n == 0)
1094 break;
1095 /*
1096 * if doing "all", skip to next cp_time set for next processor
1097 */
1098 if (n == -2)
1099 cp_time += CPUSTATES;
1100 /*
1101 * if we're doing a specific processor, we're one
1102 * processor closer
1103 */
1104 if (n > 0)
1105 n--;
1106 }
1107
1108 #else /* MULTIPROCESSOR */
1109 if (namelen == 1 && name[0] == 0) {
1110 name++;
1111 namelen--;
1112 }
1113 node.sysctl_data = curcpu()->ci_schedstate.spc_cp_time;
1114 node.sysctl_size = sizeof(curcpu()->ci_schedstate.spc_cp_time);
1115 #endif /* MULTIPROCESSOR */
1116
1117 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1118 if (cp_time != NULL)
1119 free(cp_time, M_TEMP);
1120
1121 return (error);
1122 }
1123
1124 #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM)
1125 /*
1126 * sysctl helper routine for kern.sysvipc_info subtree.
1127 */
1128
1129 #define FILL_PERM(src, dst) do { \
1130 (dst)._key = (src)._key; \
1131 (dst).uid = (src).uid; \
1132 (dst).gid = (src).gid; \
1133 (dst).cuid = (src).cuid; \
1134 (dst).cgid = (src).cgid; \
1135 (dst).mode = (src).mode; \
1136 (dst)._seq = (src)._seq; \
1137 } while (/*CONSTCOND*/ 0);
1138 #define FILL_MSG(src, dst) do { \
1139 FILL_PERM((src).msg_perm, (dst).msg_perm); \
1140 (dst).msg_qnum = (src).msg_qnum; \
1141 (dst).msg_qbytes = (src).msg_qbytes; \
1142 (dst)._msg_cbytes = (src)._msg_cbytes; \
1143 (dst).msg_lspid = (src).msg_lspid; \
1144 (dst).msg_lrpid = (src).msg_lrpid; \
1145 (dst).msg_stime = (src).msg_stime; \
1146 (dst).msg_rtime = (src).msg_rtime; \
1147 (dst).msg_ctime = (src).msg_ctime; \
1148 } while (/*CONSTCOND*/ 0)
1149 #define FILL_SEM(src, dst) do { \
1150 FILL_PERM((src).sem_perm, (dst).sem_perm); \
1151 (dst).sem_nsems = (src).sem_nsems; \
1152 (dst).sem_otime = (src).sem_otime; \
1153 (dst).sem_ctime = (src).sem_ctime; \
1154 } while (/*CONSTCOND*/ 0)
1155 #define FILL_SHM(src, dst) do { \
1156 FILL_PERM((src).shm_perm, (dst).shm_perm); \
1157 (dst).shm_segsz = (src).shm_segsz; \
1158 (dst).shm_lpid = (src).shm_lpid; \
1159 (dst).shm_cpid = (src).shm_cpid; \
1160 (dst).shm_atime = (src).shm_atime; \
1161 (dst).shm_dtime = (src).shm_dtime; \
1162 (dst).shm_ctime = (src).shm_ctime; \
1163 (dst).shm_nattch = (src).shm_nattch; \
1164 } while (/*CONSTCOND*/ 0)
1165
1166 static int
1167 sysctl_kern_sysvipc(SYSCTLFN_ARGS)
1168 {
1169 void *where = oldp;
1170 size_t *sizep = oldlenp;
1171 #ifdef SYSVMSG
1172 struct msg_sysctl_info *msgsi = NULL;
1173 #endif
1174 #ifdef SYSVSEM
1175 struct sem_sysctl_info *semsi = NULL;
1176 #endif
1177 #ifdef SYSVSHM
1178 struct shm_sysctl_info *shmsi = NULL;
1179 #endif
1180 size_t infosize, dssize, tsize, buflen;
1181 void *buf = NULL;
1182 char *start;
1183 int32_t nds;
1184 int i, error, ret;
1185
1186 if (namelen != 1)
1187 return (EINVAL);
1188
1189 start = where;
1190 buflen = *sizep;
1191
1192 switch (*name) {
1193 case KERN_SYSVIPC_MSG_INFO:
1194 #ifdef SYSVMSG
1195 infosize = sizeof(msgsi->msginfo);
1196 nds = msginfo.msgmni;
1197 dssize = sizeof(msgsi->msgids[0]);
1198 break;
1199 #else
1200 return (EINVAL);
1201 #endif
1202 case KERN_SYSVIPC_SEM_INFO:
1203 #ifdef SYSVSEM
1204 infosize = sizeof(semsi->seminfo);
1205 nds = seminfo.semmni;
1206 dssize = sizeof(semsi->semids[0]);
1207 break;
1208 #else
1209 return (EINVAL);
1210 #endif
1211 case KERN_SYSVIPC_SHM_INFO:
1212 #ifdef SYSVSHM
1213 infosize = sizeof(shmsi->shminfo);
1214 nds = shminfo.shmmni;
1215 dssize = sizeof(shmsi->shmids[0]);
1216 break;
1217 #else
1218 return (EINVAL);
1219 #endif
1220 default:
1221 return (EINVAL);
1222 }
1223 /*
1224 * Round infosize to 64 bit boundary if requesting more than just
1225 * the info structure or getting the total data size.
1226 */
1227 if (where == NULL || *sizep > infosize)
1228 infosize = ((infosize + 7) / 8) * 8;
1229 tsize = infosize + nds * dssize;
1230
1231 /* Return just the total size required. */
1232 if (where == NULL) {
1233 *sizep = tsize;
1234 return (0);
1235 }
1236
1237 /* Not enough room for even the info struct. */
1238 if (buflen < infosize) {
1239 *sizep = 0;
1240 return (ENOMEM);
1241 }
1242 buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK);
1243 memset(buf, 0, min(tsize, buflen));
1244
1245 switch (*name) {
1246 #ifdef SYSVMSG
1247 case KERN_SYSVIPC_MSG_INFO:
1248 msgsi = (struct msg_sysctl_info *)buf;
1249 msgsi->msginfo = msginfo;
1250 break;
1251 #endif
1252 #ifdef SYSVSEM
1253 case KERN_SYSVIPC_SEM_INFO:
1254 semsi = (struct sem_sysctl_info *)buf;
1255 semsi->seminfo = seminfo;
1256 break;
1257 #endif
1258 #ifdef SYSVSHM
1259 case KERN_SYSVIPC_SHM_INFO:
1260 shmsi = (struct shm_sysctl_info *)buf;
1261 shmsi->shminfo = shminfo;
1262 break;
1263 #endif
1264 }
1265 buflen -= infosize;
1266
1267 ret = 0;
1268 if (buflen > 0) {
1269 /* Fill in the IPC data structures. */
1270 for (i = 0; i < nds; i++) {
1271 if (buflen < dssize) {
1272 ret = ENOMEM;
1273 break;
1274 }
1275 switch (*name) {
1276 #ifdef SYSVMSG
1277 case KERN_SYSVIPC_MSG_INFO:
1278 FILL_MSG(msqids[i], msgsi->msgids[i]);
1279 break;
1280 #endif
1281 #ifdef SYSVSEM
1282 case KERN_SYSVIPC_SEM_INFO:
1283 FILL_SEM(sema[i], semsi->semids[i]);
1284 break;
1285 #endif
1286 #ifdef SYSVSHM
1287 case KERN_SYSVIPC_SHM_INFO:
1288 FILL_SHM(shmsegs[i], shmsi->shmids[i]);
1289 break;
1290 #endif
1291 }
1292 buflen -= dssize;
1293 }
1294 }
1295 *sizep -= buflen;
1296 error = copyout(buf, start, *sizep);
1297 /* If copyout succeeded, use return code set earlier. */
1298 if (error == 0)
1299 error = ret;
1300 if (buf)
1301 free(buf, M_TEMP);
1302 return (error);
1303 }
1304
1305 #undef FILL_PERM
1306 #undef FILL_MSG
1307 #undef FILL_SEM
1308 #undef FILL_SHM
1309
1310 #endif /* defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) */
1311
1312 #if NPTY > 0
1313 /*
1314 * sysctl helper routine for kern.maxptys. ensures that any new value
1315 * is acceptable to the pty subsystem.
1316 */
1317 static int
1318 sysctl_kern_maxptys(SYSCTLFN_ARGS)
1319 {
1320 int pty_maxptys(int, int); /* defined in kern/tty_pty.c */
1321 int error, max;
1322 struct sysctlnode node;
1323
1324 /* get current value of maxptys */
1325 max = pty_maxptys(0, 0);
1326
1327 node = *rnode;
1328 node.sysctl_data = &max;
1329 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1330 if (error || newp == NULL)
1331 return (error);
1332
1333 if (max != pty_maxptys(max, 1))
1334 return (EINVAL);
1335
1336 return (0);
1337 }
1338 #endif /* NPTY > 0 */
1339
1340 /*
1341 * sysctl helper routine for kern.sbmax. basically just ensures that
1342 * any new value is not too small.
1343 */
1344 static int
1345 sysctl_kern_sbmax(SYSCTLFN_ARGS)
1346 {
1347 int error, new_sbmax;
1348 struct sysctlnode node;
1349
1350 new_sbmax = sb_max;
1351 node = *rnode;
1352 node.sysctl_data = &new_sbmax;
1353 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1354 if (error || newp == NULL)
1355 return (error);
1356
1357 error = sb_max_set(new_sbmax);
1358
1359 return (error);
1360 }
1361
1362 /*
1363 * sysctl helper routine for kern.urandom node. picks a random number
1364 * for you.
1365 */
1366 static int
1367 sysctl_kern_urnd(SYSCTLFN_ARGS)
1368 {
1369 #if NRND > 0
1370 int v;
1371
1372 if (rnd_extract_data(&v, sizeof(v), RND_EXTRACT_ANY) == sizeof(v)) {
1373 struct sysctlnode node = *rnode;
1374 node.sysctl_data = &v;
1375 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1376 }
1377 else
1378 return (EIO); /*XXX*/
1379 #else
1380 return (EOPNOTSUPP);
1381 #endif
1382 }
1383
1384 /*
1385 * sysctl helper routine to do kern.lwp.* work.
1386 */
1387 static int
1388 sysctl_kern_lwp(SYSCTLFN_ARGS)
1389 {
1390 struct kinfo_lwp klwp;
1391 struct proc *p;
1392 struct lwp *l2;
1393 char *where, *dp;
1394 int pid, elem_size, elem_count;
1395 int buflen, needed, error;
1396
1397 dp = where = oldp;
1398 buflen = where != NULL ? *oldlenp : 0;
1399 error = needed = 0;
1400
1401 if (newp != NULL || namelen != 4)
1402 return (EINVAL);
1403 pid = name[1];
1404 elem_size = name[2];
1405 elem_count = name[3];
1406
1407 p = pfind(pid);
1408 if (p == NULL)
1409 return (ESRCH);
1410 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1411 if (buflen >= elem_size && elem_count > 0) {
1412 fill_lwp(l2, &klwp);
1413 /*
1414 * Copy out elem_size, but not larger than
1415 * the size of a struct kinfo_proc2.
1416 */
1417 error = copyout(&klwp, dp,
1418 min(sizeof(klwp), elem_size));
1419 if (error)
1420 goto cleanup;
1421 dp += elem_size;
1422 buflen -= elem_size;
1423 elem_count--;
1424 }
1425 needed += elem_size;
1426 }
1427
1428 if (where != NULL) {
1429 *oldlenp = dp - where;
1430 if (needed > *oldlenp)
1431 return (ENOMEM);
1432 } else {
1433 needed += KERN_PROCSLOP;
1434 *oldlenp = needed;
1435 }
1436 return (0);
1437 cleanup:
1438 return (error);
1439 }
1440
1441 /*
1442 * sysctl helper routine for kern.forkfsleep node. ensures that the
1443 * given value is not too large or two small, and is at least one
1444 * timer tick if not zero.
1445 */
1446 static int
1447 sysctl_kern_forkfsleep(SYSCTLFN_ARGS)
1448 {
1449 /* userland sees value in ms, internally is in ticks */
1450 extern int forkfsleep; /* defined in kern/kern_fork.c */
1451 int error, timo, lsleep;
1452 struct sysctlnode node;
1453
1454 lsleep = forkfsleep * 1000 / hz;
1455 node = *rnode;
1456 node.sysctl_data = &lsleep;
1457 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1458 if (error || newp == NULL)
1459 return (error);
1460
1461 /* refuse negative values, and overly 'long time' */
1462 if (lsleep < 0 || lsleep > MAXSLP * 1000)
1463 return (EINVAL);
1464
1465 timo = mstohz(lsleep);
1466
1467 /* if the interval is >0 ms && <1 tick, use 1 tick */
1468 if (lsleep != 0 && timo == 0)
1469 forkfsleep = 1;
1470 else
1471 forkfsleep = timo;
1472
1473 return (0);
1474 }
1475
1476 /*
1477 * sysctl helper routine for kern.somaxkva. ensures that the given
1478 * value is not too small.
1479 * (XXX should we maybe make sure it's not too large as well?)
1480 */
1481 static int
1482 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1483 {
1484 int error, new_somaxkva;
1485 struct sysctlnode node;
1486
1487 new_somaxkva = somaxkva;
1488 node = *rnode;
1489 node.sysctl_data = &new_somaxkva;
1490 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1491 if (error || newp == NULL)
1492 return (error);
1493
1494 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1495 return (EINVAL);
1496 somaxkva = new_somaxkva;
1497
1498 return (error);
1499 }
1500
1501 /*
1502 * sysctl helper routine for kern.root_partition
1503 */
1504 static int
1505 sysctl_kern_root_partition(SYSCTLFN_ARGS)
1506 {
1507 int rootpart = DISKPART(rootdev);
1508 struct sysctlnode node = *rnode;
1509
1510 node.sysctl_data = &rootpart;
1511 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1512 }
1513
1514 /*
1515 * sysctl helper function for kern.drivers
1516 */
1517 static int
1518 sysctl_kern_drivers(SYSCTLFN_ARGS)
1519 {
1520 int error;
1521 size_t buflen;
1522 struct kinfo_drivers kd;
1523 char *start, *where;
1524 const char *dname;
1525 int i;
1526 extern struct devsw_conv *devsw_conv;
1527 extern int max_devsw_convs;
1528
1529 if (newp != NULL || namelen != 0)
1530 return (EINVAL);
1531
1532 start = where = oldp;
1533 buflen = *oldlenp;
1534 if (where == NULL) {
1535 *oldlenp = max_devsw_convs * sizeof kd;
1536 return 0;
1537 }
1538
1539 /*
1540 * An array of kinfo_drivers structures
1541 */
1542 error = 0;
1543 for (i = 0; i < max_devsw_convs; i++) {
1544 dname = devsw_conv[i].d_name;
1545 if (dname == NULL)
1546 continue;
1547 if (buflen < sizeof kd) {
1548 error = ENOMEM;
1549 break;
1550 }
1551 kd.d_bmajor = devsw_conv[i].d_bmajor;
1552 kd.d_cmajor = devsw_conv[i].d_cmajor;
1553 strlcpy(kd.d_name, dname, sizeof kd.d_name);
1554 error = copyout(&kd, where, sizeof kd);
1555 if (error != 0)
1556 break;
1557 buflen -= sizeof kd;
1558 where += sizeof kd;
1559 }
1560 *oldlenp = where - start;
1561 return error;
1562 }
1563
1564 static int
1565 sysctl_doeproc(SYSCTLFN_ARGS)
1566 {
1567 struct eproc eproc;
1568 struct kinfo_proc2 kproc2;
1569 struct kinfo_proc *dp;
1570 struct proc *p;
1571 const struct proclist_desc *pd;
1572 char *where, *dp2;
1573 int type, op, arg;
1574 u_int elem_size, elem_count;
1575 size_t buflen, needed;
1576 int error;
1577
1578 dp = oldp;
1579 dp2 = where = oldp;
1580 buflen = where != NULL ? *oldlenp : 0;
1581 error = 0;
1582 needed = 0;
1583 type = rnode->sysctl_num;
1584
1585 if (type == KERN_PROC) {
1586 if (namelen != 2 && !(namelen == 1 && name[0] == KERN_PROC_ALL))
1587 return (EINVAL);
1588 op = name[0];
1589 if (op != KERN_PROC_ALL)
1590 arg = name[1];
1591 else
1592 arg = 0; /* Quell compiler warning */
1593 elem_size = elem_count = 0; /* Ditto */
1594 } else {
1595 if (namelen != 4)
1596 return (EINVAL);
1597 op = name[0];
1598 arg = name[1];
1599 elem_size = name[2];
1600 elem_count = name[3];
1601 }
1602
1603 proclist_lock_read();
1604
1605 pd = proclists;
1606 again:
1607 for (p = LIST_FIRST(pd->pd_list); p != NULL; p = LIST_NEXT(p, p_list)) {
1608 /*
1609 * Skip embryonic processes.
1610 */
1611 if (p->p_stat == SIDL)
1612 continue;
1613 /*
1614 * TODO - make more efficient (see notes below).
1615 * do by session.
1616 */
1617 switch (op) {
1618
1619 case KERN_PROC_PID:
1620 /* could do this with just a lookup */
1621 if (p->p_pid != (pid_t)arg)
1622 continue;
1623 break;
1624
1625 case KERN_PROC_PGRP:
1626 /* could do this by traversing pgrp */
1627 if (p->p_pgrp->pg_id != (pid_t)arg)
1628 continue;
1629 break;
1630
1631 case KERN_PROC_SESSION:
1632 if (p->p_session->s_sid != (pid_t)arg)
1633 continue;
1634 break;
1635
1636 case KERN_PROC_TTY:
1637 if (arg == (int) KERN_PROC_TTY_REVOKE) {
1638 if ((p->p_flag & P_CONTROLT) == 0 ||
1639 p->p_session->s_ttyp == NULL ||
1640 p->p_session->s_ttyvp != NULL)
1641 continue;
1642 } else if ((p->p_flag & P_CONTROLT) == 0 ||
1643 p->p_session->s_ttyp == NULL) {
1644 if ((dev_t)arg != KERN_PROC_TTY_NODEV)
1645 continue;
1646 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg)
1647 continue;
1648 break;
1649
1650 case KERN_PROC_UID:
1651 if (p->p_ucred->cr_uid != (uid_t)arg)
1652 continue;
1653 break;
1654
1655 case KERN_PROC_RUID:
1656 if (p->p_cred->p_ruid != (uid_t)arg)
1657 continue;
1658 break;
1659
1660 case KERN_PROC_GID:
1661 if (p->p_ucred->cr_gid != (uid_t)arg)
1662 continue;
1663 break;
1664
1665 case KERN_PROC_RGID:
1666 if (p->p_cred->p_rgid != (uid_t)arg)
1667 continue;
1668 break;
1669
1670 case KERN_PROC_ALL:
1671 /* allow everything */
1672 break;
1673
1674 default:
1675 error = EINVAL;
1676 goto cleanup;
1677 }
1678 if (type == KERN_PROC) {
1679 if (buflen >= sizeof(struct kinfo_proc)) {
1680 fill_eproc(p, &eproc);
1681 error = copyout(p, &dp->kp_proc,
1682 sizeof(struct proc));
1683 if (error)
1684 goto cleanup;
1685 error = copyout(&eproc, &dp->kp_eproc,
1686 sizeof(eproc));
1687 if (error)
1688 goto cleanup;
1689 dp++;
1690 buflen -= sizeof(struct kinfo_proc);
1691 }
1692 needed += sizeof(struct kinfo_proc);
1693 } else { /* KERN_PROC2 */
1694 if (buflen >= elem_size && elem_count > 0) {
1695 fill_kproc2(p, &kproc2);
1696 /*
1697 * Copy out elem_size, but not larger than
1698 * the size of a struct kinfo_proc2.
1699 */
1700 error = copyout(&kproc2, dp2,
1701 min(sizeof(kproc2), elem_size));
1702 if (error)
1703 goto cleanup;
1704 dp2 += elem_size;
1705 buflen -= elem_size;
1706 elem_count--;
1707 }
1708 needed += elem_size;
1709 }
1710 }
1711 pd++;
1712 if (pd->pd_list != NULL)
1713 goto again;
1714 proclist_unlock_read();
1715
1716 if (where != NULL) {
1717 if (type == KERN_PROC)
1718 *oldlenp = (char *)dp - where;
1719 else
1720 *oldlenp = dp2 - where;
1721 if (needed > *oldlenp)
1722 return (ENOMEM);
1723 } else {
1724 needed += KERN_PROCSLOP;
1725 *oldlenp = needed;
1726 }
1727 return (0);
1728 cleanup:
1729 proclist_unlock_read();
1730 return (error);
1731 }
1732
1733 /*
1734 * sysctl helper routine for kern.proc_args pseudo-subtree.
1735 */
1736 static int
1737 sysctl_kern_proc_args(SYSCTLFN_ARGS)
1738 {
1739 struct ps_strings pss;
1740 struct proc *p, *up = l->l_proc;
1741 size_t len, upper_bound, xlen, i;
1742 struct uio auio;
1743 struct iovec aiov;
1744 vaddr_t argv;
1745 pid_t pid;
1746 int nargv, type, error;
1747 char *arg;
1748 char *tmp;
1749
1750 if (newp != NULL || namelen != 2)
1751 return (EINVAL);
1752 pid = name[0];
1753 type = name[1];
1754
1755 switch (type) {
1756 case KERN_PROC_ARGV:
1757 case KERN_PROC_NARGV:
1758 case KERN_PROC_ENV:
1759 case KERN_PROC_NENV:
1760 /* ok */
1761 break;
1762 default:
1763 return (EINVAL);
1764 }
1765
1766 /* check pid */
1767 if ((p = pfind(pid)) == NULL)
1768 return (EINVAL);
1769
1770 /* only root or same user change look at the environment */
1771 if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) {
1772 if (up->p_ucred->cr_uid != 0) {
1773 if (up->p_cred->p_ruid != p->p_cred->p_ruid ||
1774 up->p_cred->p_ruid != p->p_cred->p_svuid)
1775 return (EPERM);
1776 }
1777 }
1778
1779 if (oldp == NULL) {
1780 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
1781 *oldlenp = sizeof (int);
1782 else
1783 *oldlenp = ARG_MAX; /* XXX XXX XXX */
1784 return (0);
1785 }
1786
1787 /*
1788 * Zombies don't have a stack, so we can't read their psstrings.
1789 * System processes also don't have a user stack.
1790 */
1791 if (P_ZOMBIE(p) || (p->p_flag & P_SYSTEM) != 0)
1792 return (EINVAL);
1793
1794 /*
1795 * Lock the process down in memory.
1796 */
1797 /* XXXCDC: how should locking work here? */
1798 if ((p->p_flag & P_WEXIT) || (p->p_vmspace->vm_refcnt < 1))
1799 return (EFAULT);
1800
1801 p->p_vmspace->vm_refcnt++; /* XXX */
1802
1803 /*
1804 * Allocate a temporary buffer to hold the arguments.
1805 */
1806 arg = malloc(PAGE_SIZE, M_TEMP, M_WAITOK);
1807
1808 /*
1809 * Read in the ps_strings structure.
1810 */
1811 aiov.iov_base = &pss;
1812 aiov.iov_len = sizeof(pss);
1813 auio.uio_iov = &aiov;
1814 auio.uio_iovcnt = 1;
1815 auio.uio_offset = (vaddr_t)p->p_psstr;
1816 auio.uio_resid = sizeof(pss);
1817 auio.uio_segflg = UIO_SYSSPACE;
1818 auio.uio_rw = UIO_READ;
1819 auio.uio_procp = NULL;
1820 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1821 if (error)
1822 goto done;
1823
1824 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
1825 memcpy(&nargv, (char *)&pss + p->p_psnargv, sizeof(nargv));
1826 else
1827 memcpy(&nargv, (char *)&pss + p->p_psnenv, sizeof(nargv));
1828 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
1829 error = copyout(&nargv, oldp, sizeof(nargv));
1830 *oldlenp = sizeof(nargv);
1831 goto done;
1832 }
1833 /*
1834 * Now read the address of the argument vector.
1835 */
1836 switch (type) {
1837 case KERN_PROC_ARGV:
1838 /* XXX compat32 stuff here */
1839 memcpy(&tmp, (char *)&pss + p->p_psargv, sizeof(tmp));
1840 break;
1841 case KERN_PROC_ENV:
1842 memcpy(&tmp, (char *)&pss + p->p_psenv, sizeof(tmp));
1843 break;
1844 default:
1845 return (EINVAL);
1846 }
1847 auio.uio_offset = (off_t)(long)tmp;
1848 aiov.iov_base = &argv;
1849 aiov.iov_len = sizeof(argv);
1850 auio.uio_iov = &aiov;
1851 auio.uio_iovcnt = 1;
1852 auio.uio_resid = sizeof(argv);
1853 auio.uio_segflg = UIO_SYSSPACE;
1854 auio.uio_rw = UIO_READ;
1855 auio.uio_procp = NULL;
1856 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1857 if (error)
1858 goto done;
1859
1860 /*
1861 * Now copy in the actual argument vector, one page at a time,
1862 * since we don't know how long the vector is (though, we do
1863 * know how many NUL-terminated strings are in the vector).
1864 */
1865 len = 0;
1866 upper_bound = *oldlenp;
1867 for (; nargv != 0 && len < upper_bound; len += xlen) {
1868 aiov.iov_base = arg;
1869 aiov.iov_len = PAGE_SIZE;
1870 auio.uio_iov = &aiov;
1871 auio.uio_iovcnt = 1;
1872 auio.uio_offset = argv + len;
1873 xlen = PAGE_SIZE - ((argv + len) & PAGE_MASK);
1874 auio.uio_resid = xlen;
1875 auio.uio_segflg = UIO_SYSSPACE;
1876 auio.uio_rw = UIO_READ;
1877 auio.uio_procp = NULL;
1878 error = uvm_io(&p->p_vmspace->vm_map, &auio);
1879 if (error)
1880 goto done;
1881
1882 for (i = 0; i < xlen && nargv != 0; i++) {
1883 if (arg[i] == '\0')
1884 nargv--; /* one full string */
1885 }
1886
1887 /*
1888 * Make sure we don't copyout past the end of the user's
1889 * buffer.
1890 */
1891 if (len + i > upper_bound)
1892 i = upper_bound - len;
1893
1894 error = copyout(arg, (char *)oldp + len, i);
1895 if (error)
1896 break;
1897
1898 if (nargv == 0) {
1899 len += i;
1900 break;
1901 }
1902 }
1903 *oldlenp = len;
1904
1905 done:
1906 uvmspace_free(p->p_vmspace);
1907
1908 free(arg, M_TEMP);
1909 return (error);
1910 }
1911
1912 /*
1913 * sysctl helper routine for hw.usermem and hw.usermem64. values are
1914 * calculate on the fly taking into account integer overflow and the
1915 * current wired count.
1916 */
1917 static int
1918 sysctl_hw_usermem(SYSCTLFN_ARGS)
1919 {
1920 u_int ui;
1921 u_quad_t uq;
1922 struct sysctlnode node;
1923
1924 node = *rnode;
1925 switch (rnode->sysctl_num) {
1926 case HW_USERMEM:
1927 if ((ui = physmem - uvmexp.wired) > (UINT_MAX / PAGE_SIZE))
1928 ui = UINT_MAX;
1929 else
1930 ui *= PAGE_SIZE;
1931 node.sysctl_data = &ui;
1932 break;
1933 case HW_USERMEM64:
1934 uq = (u_quad_t)(physmem - uvmexp.wired) * PAGE_SIZE;
1935 node.sysctl_data = &uq;
1936 break;
1937 default:
1938 return (EINVAL);
1939 }
1940
1941 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1942 }
1943
1944 /*
1945 * sysctl helper routine for kern.cnmagic node. pulls the old value
1946 * out, encoded, and stuffs the new value in for decoding.
1947 */
1948 static int
1949 sysctl_hw_cnmagic(SYSCTLFN_ARGS)
1950 {
1951 char magic[CNS_LEN];
1952 int error;
1953 struct sysctlnode node;
1954
1955 if (oldp)
1956 cn_get_magic(magic, CNS_LEN);
1957 node = *rnode;
1958 node.sysctl_data = &magic[0];
1959 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1960 if (error || newp == NULL)
1961 return (error);
1962
1963 return (cn_set_magic(magic));
1964 }
1965
1966 /*
1967 * ********************************************************************
1968 * section 3: public helper routines that are used for more than one
1969 * node
1970 * ********************************************************************
1971 */
1972
1973 /*
1974 * sysctl helper routine for the kern.root_device node and some ports'
1975 * machdep.root_device nodes.
1976 */
1977 int
1978 sysctl_root_device(SYSCTLFN_ARGS)
1979 {
1980 struct sysctlnode node;
1981
1982 node = *rnode;
1983 node.sysctl_data = root_device->dv_xname;
1984 node.sysctl_size = strlen(root_device->dv_xname) + 1;
1985 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1986 }
1987
1988 /*
1989 * sysctl helper routine for kern.consdev, dependent on the current
1990 * state of the console. also used for machdep.console_device on some
1991 * ports.
1992 */
1993 int
1994 sysctl_consdev(SYSCTLFN_ARGS)
1995 {
1996 dev_t consdev;
1997 struct sysctlnode node;
1998
1999 if (cn_tab != NULL)
2000 consdev = cn_tab->cn_dev;
2001 else
2002 consdev = NODEV;
2003 node = *rnode;
2004 node.sysctl_data = &consdev;
2005 node.sysctl_size = sizeof(consdev);
2006 return (sysctl_lookup(SYSCTLFN_CALL(&node)));
2007 }
2008
2009 /*
2010 * ********************************************************************
2011 * section 4: support for some helpers
2012 * ********************************************************************
2013 */
2014
2015 /*
2016 * Fill in a kinfo_proc2 structure for the specified process.
2017 */
2018 static void
2019 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki)
2020 {
2021 struct tty *tp;
2022 struct lwp *l;
2023 struct timeval ut, st;
2024
2025 memset(ki, 0, sizeof(*ki));
2026
2027 ki->p_paddr = PTRTOINT64(p);
2028 ki->p_fd = PTRTOINT64(p->p_fd);
2029 ki->p_cwdi = PTRTOINT64(p->p_cwdi);
2030 ki->p_stats = PTRTOINT64(p->p_stats);
2031 ki->p_limit = PTRTOINT64(p->p_limit);
2032 ki->p_vmspace = PTRTOINT64(p->p_vmspace);
2033 ki->p_sigacts = PTRTOINT64(p->p_sigacts);
2034 ki->p_sess = PTRTOINT64(p->p_session);
2035 ki->p_tsess = 0; /* may be changed if controlling tty below */
2036 ki->p_ru = PTRTOINT64(p->p_ru);
2037
2038 ki->p_eflag = 0;
2039 ki->p_exitsig = p->p_exitsig;
2040 ki->p_flag = p->p_flag;
2041
2042 ki->p_pid = p->p_pid;
2043 if (p->p_pptr)
2044 ki->p_ppid = p->p_pptr->p_pid;
2045 else
2046 ki->p_ppid = 0;
2047 ki->p_sid = p->p_session->s_sid;
2048 ki->p__pgid = p->p_pgrp->pg_id;
2049
2050 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2051
2052 ki->p_uid = p->p_ucred->cr_uid;
2053 ki->p_ruid = p->p_cred->p_ruid;
2054 ki->p_gid = p->p_ucred->cr_gid;
2055 ki->p_rgid = p->p_cred->p_rgid;
2056 ki->p_svuid = p->p_cred->p_svuid;
2057 ki->p_svgid = p->p_cred->p_svgid;
2058
2059 memcpy(ki->p_groups, p->p_cred->pc_ucred->cr_groups,
2060 min(sizeof(ki->p_groups), sizeof(p->p_cred->pc_ucred->cr_groups)));
2061 ki->p_ngroups = p->p_cred->pc_ucred->cr_ngroups;
2062
2063 ki->p_jobc = p->p_pgrp->pg_jobc;
2064 if ((p->p_flag & P_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2065 ki->p_tdev = tp->t_dev;
2066 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2067 ki->p_tsess = PTRTOINT64(tp->t_session);
2068 } else {
2069 ki->p_tdev = NODEV;
2070 }
2071
2072 ki->p_estcpu = p->p_estcpu;
2073 ki->p_rtime_sec = p->p_rtime.tv_sec;
2074 ki->p_rtime_usec = p->p_rtime.tv_usec;
2075 ki->p_cpticks = p->p_cpticks;
2076 ki->p_pctcpu = p->p_pctcpu;
2077
2078 ki->p_uticks = p->p_uticks;
2079 ki->p_sticks = p->p_sticks;
2080 ki->p_iticks = p->p_iticks;
2081
2082 ki->p_tracep = PTRTOINT64(p->p_tracep);
2083 ki->p_traceflag = p->p_traceflag;
2084
2085
2086 memcpy(&ki->p_siglist, &p->p_sigctx.ps_siglist, sizeof(ki_sigset_t));
2087 memcpy(&ki->p_sigmask, &p->p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
2088 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2089 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2090
2091 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2092 ki->p_realstat = p->p_stat;
2093 ki->p_nice = p->p_nice;
2094
2095 ki->p_xstat = p->p_xstat;
2096 ki->p_acflag = p->p_acflag;
2097
2098 strncpy(ki->p_comm, p->p_comm,
2099 min(sizeof(ki->p_comm), sizeof(p->p_comm)));
2100
2101 strncpy(ki->p_login, p->p_session->s_login,
2102 min(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2103
2104 ki->p_nlwps = p->p_nlwps;
2105 ki->p_nrlwps = p->p_nrlwps;
2106 ki->p_realflag = p->p_flag;
2107
2108 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2109 ki->p_vm_rssize = 0;
2110 ki->p_vm_tsize = 0;
2111 ki->p_vm_dsize = 0;
2112 ki->p_vm_ssize = 0;
2113 l = NULL;
2114 } else {
2115 struct vmspace *vm = p->p_vmspace;
2116
2117 ki->p_vm_rssize = vm_resident_count(vm);
2118 ki->p_vm_tsize = vm->vm_tsize;
2119 ki->p_vm_dsize = vm->vm_dsize;
2120 ki->p_vm_ssize = vm->vm_ssize;
2121
2122 /* Pick a "representative" LWP */
2123 l = proc_representative_lwp(p);
2124 ki->p_forw = PTRTOINT64(l->l_forw);
2125 ki->p_back = PTRTOINT64(l->l_back);
2126 ki->p_addr = PTRTOINT64(l->l_addr);
2127 ki->p_stat = l->l_stat;
2128 ki->p_flag |= l->l_flag;
2129 ki->p_swtime = l->l_swtime;
2130 ki->p_slptime = l->l_slptime;
2131 if (l->l_stat == LSONPROC) {
2132 KDASSERT(l->l_cpu != NULL);
2133 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2134 } else
2135 ki->p_schedflags = 0;
2136 ki->p_holdcnt = l->l_holdcnt;
2137 ki->p_priority = l->l_priority;
2138 ki->p_usrpri = l->l_usrpri;
2139 if (l->l_wmesg)
2140 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2141 ki->p_wchan = PTRTOINT64(l->l_wchan);
2142
2143 }
2144
2145 if (p->p_session->s_ttyvp)
2146 ki->p_eflag |= EPROC_CTTY;
2147 if (SESS_LEADER(p))
2148 ki->p_eflag |= EPROC_SLEADER;
2149
2150 /* XXX Is this double check necessary? */
2151 if (P_ZOMBIE(p)) {
2152 ki->p_uvalid = 0;
2153 } else {
2154 ki->p_uvalid = 1;
2155
2156 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2157 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2158
2159 calcru(p, &ut, &st, 0);
2160 ki->p_uutime_sec = ut.tv_sec;
2161 ki->p_uutime_usec = ut.tv_usec;
2162 ki->p_ustime_sec = st.tv_sec;
2163 ki->p_ustime_usec = st.tv_usec;
2164
2165 ki->p_uru_maxrss = p->p_stats->p_ru.ru_maxrss;
2166 ki->p_uru_ixrss = p->p_stats->p_ru.ru_ixrss;
2167 ki->p_uru_idrss = p->p_stats->p_ru.ru_idrss;
2168 ki->p_uru_isrss = p->p_stats->p_ru.ru_isrss;
2169 ki->p_uru_minflt = p->p_stats->p_ru.ru_minflt;
2170 ki->p_uru_majflt = p->p_stats->p_ru.ru_majflt;
2171 ki->p_uru_nswap = p->p_stats->p_ru.ru_nswap;
2172 ki->p_uru_inblock = p->p_stats->p_ru.ru_inblock;
2173 ki->p_uru_oublock = p->p_stats->p_ru.ru_oublock;
2174 ki->p_uru_msgsnd = p->p_stats->p_ru.ru_msgsnd;
2175 ki->p_uru_msgrcv = p->p_stats->p_ru.ru_msgrcv;
2176 ki->p_uru_nsignals = p->p_stats->p_ru.ru_nsignals;
2177 ki->p_uru_nvcsw = p->p_stats->p_ru.ru_nvcsw;
2178 ki->p_uru_nivcsw = p->p_stats->p_ru.ru_nivcsw;
2179
2180 timeradd(&p->p_stats->p_cru.ru_utime,
2181 &p->p_stats->p_cru.ru_stime, &ut);
2182 ki->p_uctime_sec = ut.tv_sec;
2183 ki->p_uctime_usec = ut.tv_usec;
2184 }
2185 #ifdef MULTIPROCESSOR
2186 if (l && l->l_cpu != NULL)
2187 ki->p_cpuid = l->l_cpu->ci_cpuid;
2188 else
2189 #endif
2190 ki->p_cpuid = KI_NOCPU;
2191 }
2192
2193 /*
2194 * Fill in a kinfo_lwp structure for the specified lwp.
2195 */
2196 static void
2197 fill_lwp(struct lwp *l, struct kinfo_lwp *kl)
2198 {
2199
2200 kl->l_forw = PTRTOINT64(l->l_forw);
2201 kl->l_back = PTRTOINT64(l->l_back);
2202 kl->l_laddr = PTRTOINT64(l);
2203 kl->l_addr = PTRTOINT64(l->l_addr);
2204 kl->l_stat = l->l_stat;
2205 kl->l_lid = l->l_lid;
2206 kl->l_flag = l->l_flag;
2207
2208 kl->l_swtime = l->l_swtime;
2209 kl->l_slptime = l->l_slptime;
2210 if (l->l_stat == LSONPROC) {
2211 KDASSERT(l->l_cpu != NULL);
2212 kl->l_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2213 } else
2214 kl->l_schedflags = 0;
2215 kl->l_holdcnt = l->l_holdcnt;
2216 kl->l_priority = l->l_priority;
2217 kl->l_usrpri = l->l_usrpri;
2218 if (l->l_wmesg)
2219 strncpy(kl->l_wmesg, l->l_wmesg, sizeof(kl->l_wmesg));
2220 kl->l_wchan = PTRTOINT64(l->l_wchan);
2221 #ifdef MULTIPROCESSOR
2222 if (l->l_cpu != NULL)
2223 kl->l_cpuid = l->l_cpu->ci_cpuid;
2224 else
2225 #endif
2226 kl->l_cpuid = KI_NOCPU;
2227 }
2228
2229 /*
2230 * Fill in an eproc structure for the specified process.
2231 */
2232 void
2233 fill_eproc(struct proc *p, struct eproc *ep)
2234 {
2235 struct tty *tp;
2236 struct lwp *l;
2237
2238 ep->e_paddr = p;
2239 ep->e_sess = p->p_session;
2240 ep->e_pcred = *p->p_cred;
2241 ep->e_ucred = *p->p_ucred;
2242 if (p->p_stat == SIDL || P_ZOMBIE(p)) {
2243 ep->e_vm.vm_rssize = 0;
2244 ep->e_vm.vm_tsize = 0;
2245 ep->e_vm.vm_dsize = 0;
2246 ep->e_vm.vm_ssize = 0;
2247 /* ep->e_vm.vm_pmap = XXX; */
2248 } else {
2249 struct vmspace *vm = p->p_vmspace;
2250
2251 ep->e_vm.vm_rssize = vm_resident_count(vm);
2252 ep->e_vm.vm_tsize = vm->vm_tsize;
2253 ep->e_vm.vm_dsize = vm->vm_dsize;
2254 ep->e_vm.vm_ssize = vm->vm_ssize;
2255
2256 /* Pick a "representative" LWP */
2257 l = proc_representative_lwp(p);
2258
2259 if (l->l_wmesg)
2260 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2261 }
2262 if (p->p_pptr)
2263 ep->e_ppid = p->p_pptr->p_pid;
2264 else
2265 ep->e_ppid = 0;
2266 ep->e_pgid = p->p_pgrp->pg_id;
2267 ep->e_sid = ep->e_sess->s_sid;
2268 ep->e_jobc = p->p_pgrp->pg_jobc;
2269 if ((p->p_flag & P_CONTROLT) &&
2270 (tp = ep->e_sess->s_ttyp)) {
2271 ep->e_tdev = tp->t_dev;
2272 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2273 ep->e_tsess = tp->t_session;
2274 } else
2275 ep->e_tdev = NODEV;
2276
2277 ep->e_xsize = ep->e_xrssize = 0;
2278 ep->e_xccount = ep->e_xswrss = 0;
2279 ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0;
2280 if (SESS_LEADER(p))
2281 ep->e_flag |= EPROC_SLEADER;
2282 strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME);
2283 }
2284